Nothing Special   »   [go: up one dir, main page]

WO2012020473A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2012020473A1
WO2012020473A1 PCT/JP2010/063526 JP2010063526W WO2012020473A1 WO 2012020473 A1 WO2012020473 A1 WO 2012020473A1 JP 2010063526 W JP2010063526 W JP 2010063526W WO 2012020473 A1 WO2012020473 A1 WO 2012020473A1
Authority
WO
WIPO (PCT)
Prior art keywords
main circuit
conversion device
output
leakage current
power conversion
Prior art date
Application number
PCT/JP2010/063526
Other languages
English (en)
French (fr)
Inventor
田中 哲夫
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/063526 priority Critical patent/WO2012020473A1/ja
Priority to KR1020137005646A priority patent/KR20130043683A/ko
Priority to JP2012528531A priority patent/JPWO2012020473A1/ja
Priority to CN2010800686073A priority patent/CN103080756A/zh
Priority to US13/816,300 priority patent/US20130141957A1/en
Priority to TW099131006A priority patent/TW201207420A/zh
Publication of WO2012020473A1 publication Critical patent/WO2012020473A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/145Indicating the presence of current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/16Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies

Definitions

  • the present invention relates to a power converter, and more particularly to a method for visualizing the output state of the power converter.
  • a method of detecting the output state of the power converter a method of detecting a voltage by directly connecting a signal input unit to the power circuit of the power converter, or a current transformer with a current transformer sandwiching the periphery of the power circuit with a core There is a way.
  • Patent Document 1 describes the operation status of an electronic device by detecting a common mode noise generated by operating the electronic device by sandwiching a detection unit between a power cord or a signal line connected to the electronic device. A technique for non-contact detection from the outside is disclosed.
  • the sensor unit is disposed close to the outside of the power cable of the electric device, and the magnetic flux generated by the current flowing through the power cable when the electric device is in operation is detected by the sensor unit.
  • a technique for detecting the presence / absence of energization at an arbitrary position is disclosed.
  • the output voltage of the power converter is a high voltage, and a resistor for dropping the voltage and a photocoupler for insulation are required. There is a problem that an increase in installation space is required.
  • Patent Document 1 In the method disclosed in Patent Document 1, it is necessary to sandwich the detection unit between the power cord and the signal line, and there is a problem that a large space is required around the power cord and the signal line.
  • Patent Document 2 has a problem that the magnetic sensor is expensive and the installation space increases.
  • This invention is made in view of the above, Comprising: It aims at obtaining the power converter device which can detect the output state of a power converter device non-contacting, suppressing the increase in installation space. .
  • the power conversion device of the present invention includes an electrode pattern that forms a stray capacitance with an output pattern connected to an inverter, and a leakage current that flows out of the output pattern.
  • a leakage current detection circuit for detecting the operation state of the inverter based on a detection result by the leakage current detection circuit.
  • the present invention it is possible to detect the output state of the power conversion device in a non-contact manner while suppressing an increase in installation space.
  • FIG. 1 is a block diagram showing a schematic configuration of a power conversion device according to Embodiment 1 of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration example of the leakage current detection circuit 11 and the driver 13 of FIG. 3 is a diagram showing input / output waveforms of the comparator PA in FIG. 2 at the time of output of the power conversion device 5 in FIG.
  • FIG. 4 is a diagram showing input / output waveforms of the comparator PA in FIG. 2 when the output of the power converter 5 in FIG. 1 is stopped.
  • FIG. 5A is a plan view showing a schematic configuration of the power conversion device 5 in FIG. 1
  • FIG. 5B is a side view showing a schematic configuration of the power conversion device 5 in FIG.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of the main circuit board 25 cut along the line AA ′ in FIG.
  • FIG. 1 is a block diagram showing a schematic configuration of a power conversion device according to Embodiment 1 of the present invention.
  • a power converter 5 is provided with a converter 2 that converts alternating current of commercial frequency into direct current and an inverter 3 that converts direct current into alternating current of a desired frequency.
  • an R-phase input terminal R, an S-phase input terminal S and a T-phase input terminal T are provided on the converter 2 side, and a U-phase output terminal U, a V-phase output terminal V and a W-phase are provided on the inverter 3 side.
  • An output terminal W is provided.
  • Converter 2 is connected to three-phase power supply 1 via R-phase input terminal R, S-phase input terminal S and T-phase input terminal T, and inverter 3 includes U-phase output terminal U, V-phase output terminal V and It is connected to the motor 4 via a W-phase output terminal W.
  • these R-phase input terminal R, S-phase input terminal S, and T-phase input terminal T are connected to converter 2 via input pattern LI.
  • the U-phase output terminal U, the V-phase output terminal V, and the W-phase output terminal W are connected to the inverter 3 via the output pattern LO.
  • the converter 2 is provided with rectifier diodes D1 to D6, the rectifier diodes D1 and D2 are connected in series with each other, the rectifier diodes D3 and D4 are connected in series with each other, and the rectifier diodes D5 and D6 are connected in series with each other.
  • An R-phase input terminal R is provided at a connection point between the rectifier diodes D1 and D2
  • an S-phase input terminal S is provided at a connection point between the rectification diodes D3 and D4, and a connection point between the rectification diodes D5 and D6.
  • a T-phase input terminal T is provided.
  • the smoothing capacitor C1 is connected in parallel to a series circuit of rectifier diodes D1 and D2, a series circuit of rectifier diodes D3 and D4, and a series circuit of rectifier diodes D5 and D6.
  • the inverter 3 is provided with switching elements M1 to M6 and freewheeling diodes N1 to N6.
  • switching elements M1 to M6 IGBTs may be used, bipolar transistors may be used, or field effect transistors may be used.
  • the freewheeling diodes N1 to N6 are connected in parallel to the switching elements M1 to M6, respectively.
  • the switching elements M1 and M2 are connected in series, the switching elements M3 and M4 are connected in series, and the switching elements M5 and M6 are connected in series.
  • a connection point between the switching elements M1 and M2 is provided with a U-phase output terminal U
  • a connection point between the switching elements M3 and M4 is provided with a V-phase output terminal V
  • a connection point between the switching elements M5 and M6 is provided at a connection point.
  • a W-phase output terminal W is provided.
  • the power converter 5 includes an electrode pattern 12 disposed in the vicinity of the output pattern LO, a leakage current detection circuit 11 that detects the leakage current PA flowing out of the output pattern LO via the electrode pattern 12, and leakage current detection.
  • a driver 13 for driving the light emitting diode 14 based on the detection result by the circuit 11 and a light emitting diode 14 for notifying the operation state of the inverter 3 are provided.
  • stray capacitance Cf can be formed between the electrode pattern 12 and the output pattern LO.
  • FIG. 2 is a circuit diagram showing a configuration example of the leakage current detection circuit 11 and the driver 13 of FIG.
  • the leakage current detection circuit 11 is provided with capacitors C11 and C12, a diode D11, a resistor R11, a switch SW, a reference power source DC, and a comparator CP.
  • the driver 13 is provided with resistors R12 and R13 and a transistor TR.
  • the electrode pattern 12 is connected to one input terminal of the comparator CP via a capacitor C11, a diode D11, and a resistor R11 sequentially.
  • a capacitor C12 is connected to one input terminal of the comparator CP.
  • a switch SW is connected in parallel to the capacitor C12.
  • the reference power source DC is connected to the other input terminal of the comparator CP.
  • the output terminal of the comparator CP is connected to the base of the transistor TR via the resistor R12.
  • the collector of the transistor TR is connected to the power supply potential via the resistor R13, and the emitter of the transistor TR is connected to the light emitting diode 14.
  • alternating current is input from the three-phase power source 1 to the converter 2, it is converted into direct current by the converter 2 and input to the inverter 3.
  • the direct current is converted into alternating current according to the switching operation of the switching elements M 1 to M 6, and the alternating current is supplied to the motor 4, whereby the motor 4 is driven by PWM control.
  • FIG. 3 is a diagram showing input / output waveforms of the comparator PA of FIG. 2 at the time of output of the power converter 5 of FIG.
  • a leakage current PA flows through the stray capacitance Cf for each switching due to high-speed on / off.
  • dv / dt is the switching speed of the switching elements M1 to M6.
  • This leakage current PA flows through the path of the smoothing capacitor C1, the switching elements M1 to M6, the output pattern LO, the electrode pattern 12, the leakage current detection circuit 11, the ground point E1, the ground point E2, and the smoothing capacitor C1.
  • the capacitor C12 of the leakage current detection circuit 11 is charged by the leakage current PA.
  • the output voltage Vout of the comparator CP rises.
  • the transistor TR is turned on, and a current flows through the light emitting diode 14 via the transistor TR, so that the light emitting diode 14 is turned on, thereby notifying that the inverter 3 is operating.
  • the switch SW is turned on / off at a constant cycle, and the capacitor C12 is intermittently discharged. Note that the ON / OFF cycle of the switch SW at this time can be set so that the voltage Vc2 between terminals of the capacitor C11 does not fall below the reference voltage Vref when the power converter 5 outputs.
  • FIG. 4 is a diagram showing input / output waveforms of the comparator PA in FIG. 2 when the output of the power converter 5 in FIG. 1 is stopped.
  • the switch SW is turned on / off at a constant cycle, whereby the charge accumulated in the capacitor C12 is discharged, and the voltage Vc2 between the terminals of the capacitor C12 falls below the reference voltage Vref, so that the output of the comparator CP The voltage Vout becomes a low level.
  • the transistor TR is turned off, the current flowing through the light emitting diode 14 is cut off by the transistor TR, the light emitting diode 14 is turned off, and it is notified that the inverter 3 is stopped.
  • a signal input unit can be directly connected to the electric circuit of the power converter 5, or a power cord or signal There is no need to put a detection unit between the lines, and the output state of the power converter 5 can be detected in a non-contact manner while suppressing an increase in installation space.
  • the light emitting diode 14 is used as the notification unit for notifying the operation state of the inverter 3 .
  • a light bulb, a liquid crystal display device, or the like may be used.
  • FIG. 5A is a plan view showing a schematic configuration of the power conversion device of FIG. 1
  • FIG. 5B is a side view showing a schematic configuration of the power conversion device of FIG.
  • the semiconductor module 21 is mounted on the main circuit board 25 and is electrically connected to the main circuit board 25 via the module pins 23.
  • the semiconductor module 21 is mounted with a semiconductor chip on which switching elements M1 to M6, rectifier diodes D1 to D6, and freewheeling diodes N1 to N6 in FIG. 1 are formed.
  • a heat sink 22 that releases heat generated from the semiconductor module 21 is disposed on the back surface of the semiconductor module 21.
  • a fan 27 that blows air to the heat sink 22 is provided in the vicinity of the heat sink 22. Further, module pins 23 are drawn from the surface side of the semiconductor module 21.
  • a smoothing capacitor C1 and a main circuit terminal block 26 are mounted on the main circuit board 25.
  • An output pattern LO is formed on the main circuit board 25, and the module pin 23 and the main circuit terminal block 26 are connected to each UVW phase via the output pattern LO.
  • the main circuit terminal block 26 can be provided with an R-phase input terminal R, an S-phase input terminal S, a T-phase input terminal T, a U-phase output terminal U, a V-phase output terminal V, and a W-phase output terminal W. .
  • the electrode pattern 12 is formed on the main circuit board 25 in the vicinity of the output pattern LO.
  • the light emitting diode 14 is mounted on the main circuit board 25, and the light emitting diode 14 can be disposed in the vicinity of the U phase output terminal U, the V phase output terminal V, or the W phase output terminal W of the main circuit terminal block 26. .
  • the operation state of the inverter 3 can be easily confirmed, and when the operation state of the inverter 3 is confirmed. Safety can be improved.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of the main circuit board cut along the line AA ′ in FIG.
  • a wiring layer L ⁇ b> 1 is provided on the front surface of the main circuit board 25, and a wiring layer L ⁇ b> 2 is provided on the back surface of the main circuit board 25.
  • An output pattern LO is formed in the wiring layer L1, and an electrode pattern 12 is formed in the wiring layer L2.
  • the electrode pattern 12 is preferably arranged so as to face at least one layer of the output pattern LO.
  • At least one of the electrode pattern 12 and the output pattern LO may be arranged in the inner layer of the main circuit board 25.
  • the electrode pattern 12 and the output pattern LO are preferably arranged so as to face the layers adjacent to each other of the main circuit board 25.
  • the power conversion device can detect the output state of the power conversion device in a non-contact manner while suppressing an increase in installation space, and is a method for visualizing the output state of the power conversion device. Is suitable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

 出力パターンLOの近傍に電極パターン12を配置し、出力パターンLOから流れ出した漏れ電流PAを電極パターン12を介して漏れ電流検出回路11にて検出し、漏れ電流検出回路11による検出結果に基づいて発光ダイオード14を駆動することで、インバータ3の動作状態を通知する。

Description

電力変換装置
 本発明は電力変換装置に関し、特に、電力変換装置の出力状態を可視化する方式に関する。
 電力変換装置の出力状態を検知する方法として、電力変換装置の電路に信号入力部を直に接続して電圧を検知する方法や、電路の周囲をコアで挟み込んだカレントトランスにて電流を検知する方法がある。
 また、特許文献1には、電子機器に接続されている電源コードや信号線に検出部を挟み、電子機器が動作することによって発生するコモンモードノイズを検出することで、電子機器の動作状況を外部から非接触で検出する技術が開示されている。
 また、特許文献2には、センサ部を電気機器の電源ケーブルの外側に近接配置し、電気機器の稼働時に電源ケーブルに流れる電流によって発生する磁束をセンサ部にて検知することにより、電源ケーブルの任意の位置で通電の有無を検知する技術が開示されている。
特開2007-120956号公報 特開2002-368191号公報
 しかしながら、電力変換装置の電路に信号入力部を直に接続する方法では、電力変換装置の出力電圧は高電圧であり、電圧を降下させる抵抗や、絶縁するためのホトカプラが必要となり、部品コストの増大や設置スペースの増大が必要になるという問題があった。
 カレントトランスを用いる方法では、電路の周囲をコアで挟み込む必要があり、設置位置に制約がある上に取り付けが容易でないという問題があった。
 特許文献1に開示された方法では、電源コードや信号線に検出部を挟む必要があり、電源コードや信号線の周囲に大きなスペースが必要になるという問題があった。
 特許文献2に開示された方法では、磁気センサは高価であり、設置スペースが増大するという問題があった。
 本発明は、上記に鑑みてなされたものであって、設置スペースの増大を抑制しつつ、電力変換装置の出力状態を非接触で検出することが可能な電力変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の電力変換装置は、インバータに接続された出力パターンとの間で浮遊容量を形成する電極パターンと、前記出力パターンから流れ出した漏れ電流を前記電極パターンを介して検出する漏れ電流検出回路と、前記漏れ電流検出回路による検出結果に基づいて前記インバータの動作状態を通知する通知部とを備えることを特徴とする。
 この発明によれば、設置スペースの増大を抑制しつつ、電力変換装置の出力状態を非接触で検出することが可能という効果を奏する。
図1は、本発明に係る電力変換装置の実施の形態1の概略構成を示すブロック図である。 図2は、図1の漏れ電流検出回路11およびドライバ13の構成例を示す回路図である。 図3は、図1の電力変換装置5の出力時の図2のコンパレータPAの入出力波形を示す図である。 図4は、図1の電力変換装置5の出力停止時の図2のコンパレータPAの入出力波形を示す図である。 図5(a)は、図1の電力変換装置5の概略構成を示す平面図、図5(b)は、図1の電力変換装置5の概略構成を示す側面図である。 図6は、図5(a)のA-A´線で切断した主回路基板25の概略構成を示す断面図である。
 以下に、本発明に係る電力変換装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明に係る電力変換装置の実施の形態1の概略構成を示すブロック図である。図1において、電力変換装置5には、商用周波数の交流を直流に変換するコンバータ2および直流を所望の周波数の交流に変換するインバータ3が設けられている。ここで、コンバータ2側には、R相入力端子R、S相入力端子SおよびT相入力端子Tが設けられ、インバータ3側には、U相出力端子U、V相出力端子VおよびW相出力端子Wが設けられている。
 そして、コンバータ2は、R相入力端子R、S相入力端子SおよびT相入力端子Tを介して三相電源1に接続され、インバータ3は、U相出力端子U、V相出力端子VおよびW相出力端子Wを介してモータ4に接続されている。ここで、これらのR相入力端子R、S相入力端子SおよびT相入力端子Tは、入力パターンLIを介してコンバータ2に接続されている。U相出力端子U、V相出力端子VおよびW相出力端子Wは、出力パターンLOを介してインバータ3に接続されている。
 コンバータ2には、整流ダイオードD1~D6が設けられ、整流ダイオードD1、D2は互いに直列接続され、整流ダイオードD3、D4は互いに直列接続され、整流ダイオードD5、D6は互いに直列接続されている。そして、整流ダイオードD1、D2の接続点にはR相入力端子Rが設けられ、整流ダイオードD3、D4の接続点にはS相入力端子Sが設けられ、整流ダイオードD5、D6の接続点にはT相入力端子Tが設けられている。
 平滑コンデンサC1は、整流ダイオードD1、D2の直列回路、整流ダイオードD3、D4の直列回路および整流ダイオードD5、D6の直列回路に並列に接続されている。
 インバータ3には、スイッチング素子M1~M6および還流ダイオードN1~N6が設けられている。なお、スイッチング素子M1~M6としては、IGBTを用いるようにしてもよいし、バイポーラトランジスタを用いるようにしてもよいし、電界効果トランジスタを用いるようにしてもよい。
 ここで、還流ダイオードN1~N6は、スイッチング素子M1~M6にそれぞれ並列に接続されている。スイッチング素子M1、M2は互いに直列接続され、スイッチング素子M3、M4は互いに直列接続され、スイッチング素子M5、M6は互いに直列接続されている。そして、スイッチング素子M1、M2の接続点にはU相出力端子Uが設けられ、スイッチング素子M3、M4の接続点にはV相出力端子Vが設けられ、スイッチング素子M5、M6の接続点にはW相出力端子Wが設けられている。
 また、この電力変換装置5には、出力パターンLOの近傍に配置された電極パターン12、出力パターンLOから流れ出した漏れ電流PAを電極パターン12を介して検出する漏れ電流検出回路11、漏れ電流検出回路11による検出結果に基づいて発光ダイオード14を駆動するドライバ13およびインバータ3の動作状態を通知する発光ダイオード14が設けられている。ここで、電極パターン12は、出力パターンLOとの間で浮遊容量Cfを形成することができる。
 図2は、図1の漏れ電流検出回路11およびドライバ13の構成例を示す回路図である。図2において、漏れ電流検出回路11には、コンデンサC11、C12、ダイオードD11、抵抗R11、スイッチSW、基準電源DCおよびコンパレータCPが設けられている。ドライバ13には、抵抗R12、R13およびトランジスタTRが設けられている。
 そして、電極パターン12は、コンデンサC11、ダイオードD11および抵抗R11を順次介してコンパレータCPの一方の入力端子に接続されている。また、コンパレータCPの一方の入力端子には、コンデンサC12が接続されている。また、コンデンサC12にはスイッチSWが並列に接続されている。基準電源DCは、コンパレータCPの他方の入力端子に接続されている。
 コンパレータCPの出力端子は抵抗R12を介してトランジスタTRのベースに接続されている。トランジスタTRのコレクタは、抵抗R13を介して電源電位に接続され、トランジスタTRのエミッタは発光ダイオード14に接続されている。
 以下、図1の電力変換装置5の動作について説明する。
 三相電源1からコンバータ2に交流が入力されると、コンバータ2にて直流に変換され、インバータ3に入力される。そして、インバータ3において、スイッチング素子M1~M6のスイッチング動作に従って直流が交流に変換され、その交流がモータ4に供給されることで、PWM制御によってモータ4が駆動される。
 図3は、図1の電力変換装置5の出力時の図2のコンパレータPAの入出力波形を示す図である。図3において、図1のスイッチング素子M1~M6がスイッチング動作すると、高速のオンオフにより、スイッチングごとに浮遊容量Cfを介して漏れ電流PAが流れる。
 この時の漏れ電流PAは、PA=Cf・dv/dtという式で表すことができる。ただし、dv/dtは、スイッチング素子M1~M6のスイッチング速度である。この漏れ電流PAは、平滑コンデンサC1→スイッチング素子M1~M6出力パターンLO→電極パターン12→漏れ電流検出回路11→接地点E1→接地点E2→平滑コンデンサC1の経路で流れる。この時、漏れ電流PAにより、漏れ電流検出回路11のコンデンサC12が充電される。
 そして、コンデンサC12が充電されることで、コンデンサC12の端子間電圧Vc2が基準電源DCにて与えられる基準電圧Vref以上になると、コンパレータCPの出力電圧Voutが立ち上がる。この結果、トランジスタTRがオンし、トランジスタTRを介して発光ダイオード14に電流が流れることで、発光ダイオード14が点灯することで、インバータ3が動作中であることが通知される。
 この時、スイッチSWは一定の周期でオン/オフされ、コンデンサC12が断続的に放電される。なお、この時のスイッチSWのオン/オフの周期は、電力変換装置5の出力時にコンデンサC11の端子間電圧Vc2が基準電圧Vrefを下回らないように設定することができる。
 図4は、図1の電力変換装置5の出力停止時の図2のコンパレータPAの入出力波形を示す図である。図4において、漏れ電流PAは、PA=Cf・dv/dtであり、スイッチング素子M1~M6のスイッチング動作が停止すると、dv/dt=0となる。このため、漏れ電流PAが出力パターンLOから流れ出すことがなくなり、浮遊容量Cfを介して電極パターン12が充電されなくなる。
 この時、スイッチSWは一定の周期でオン/オフされることで、コンデンサC12に蓄積されていた電荷が放電され、コンデンサC12の端子間電圧Vc2が基準電圧Vrefを下回ることで、コンパレータCPの出力電圧Voutはロウレベルになる。
 この結果、トランジスタTRがオフし、トランジスタTRにて発光ダイオード14に流れる電流が遮断されることで、発光ダイオード14が消灯し、インバータ3が停止中であることが通知される。
 ここで、電極パターン12を介して検出された漏れ電流PAに基づいてインバータ3の動作状態を検出することにより、電力変換装置5の電路に信号入力部を直に接続したり、電源コードや信号線に検出部を挟んだりする必要がなくなり、設置スペースの増大を抑制しつつ、電力変換装置5の出力状態を非接触で検出することが可能となる。
 なお、上述した実施の形態では、インバータ3の動作状態を通知する通知部として発光ダイオード14を用いた場合について説明したが、電球や液晶表示装置などを用いるようにしてもよい。
 図5(a)は、図1の電力変換装置の概略構成を示す平面図、図5(b)は、図1の電力変換装置の概略構成を示す側面図である。図5において、半導体モジュール21は主回路基板25に実装され、モジュールピン23を介して主回路基板25に電気的に接続されている。なお、半導体モジュール21には、図1のスイッチング素子M1~M6、整流ダイオードD1~D6および還流ダイオードN1~N6が形成された半導体チップを搭載している。
 そして、半導体モジュール21の裏面には、半導体モジュール21から発生した熱を放出するヒートシンク22が配置されている。ヒートシンク22の近傍には、ヒートシンク22に送風するファン27が設けられている。また、半導体モジュール21の表面側からはモジュールピン23が引き出されている。
 また、主回路基板25には、平滑コンデンサC1および主回路端子台26が実装されている。また、主回路基板25には出力パターンLOが形成され、モジュールピン23と主回路端子台26とは、出力パターンLOを介してUVW相ごとに接続されている。
 なお、主回路端子台26には、R相入力端子R、S相入力端子S、T相入力端子T、U相出力端子U、V相出力端子VおよびW相出力端子Wを設けることができる。
 また、主回路基板25には出力パターンLOの近傍に電極パターン12が形成されている。また、主回路基板25には発光ダイオード14が実装され、発光ダイオード14は主回路端子台26のU相出力端子U、V相出力端子VまたはW相出力端子Wの近傍に配置することができる。
 ここで、主回路基板25に発光ダイオード14を実装することにより、主回路端子台26にケーブル配線する時に、インバータ3の動作状態を容易に確認することができ、インバータ3の動作状態の確認時の安全性を向上させることができる。
 図6は、図5(a)のA-A´線で切断した主回路基板の概略構成を示す断面図である。図6において、主回路基板25の表面には配線層L1が設けられ、主回路基板25の裏面には配線層L2が設けられている。そして、配線層L1には出力パターンLOが形成され、配線層L2には電極パターン12が形成されている。なお、電極パターン12は、出力パターンLOの少なくともいずれかの1層分と対向するように配置することが好ましい。
 なお、電極パターン12と出力パターンLOの少なくともいずれかの一方は主回路基板25の内層に配置するようにしてもよい。この場合、電極パターン12と出力パターンLOとは、主回路基板25の互いに隣接する層に対向して配置することが好ましい。
 ここで、電極パターン12と出力パターンLOの少なくともいずれかの一方を主回路基板25の内層に形成することにより、主回路基板25の面積の増大を抑制することが可能となり、電力変換装置5の大型化を抑制することが可能となる。
 以上のように本発明に係る電力変換装置は、設置スペースの増大を抑制しつつ、電力変換装置の出力状態を非接触で検出することが可能となり、電力変換装置の出力状態を可視化する方法に適している。
 1 三相電源
 2 コンバータ
 3 インバータ
 4 モータ
 5 電力変換装置
 D1~D6 整流ダイオード
 C1 平滑コンデンサ
 M1~M6 スイッチング素子
 N1~N6 還流ダイオード
 11 漏れ電流検出回路
 12 電極パターン
 13 ドライバ
 14 発光ダイオード
 LI 入力パターン
 LO 出力パターン
 R R相入力端子
 S S相入力端子
 T T相入力端子
 U U相出力端子
 V V相出力端子
 W W相出力端子
 21 半導体モジュール
 22 ヒートシンク
 23 モジュールピン
 25 主回路基板
 26 主回路端子台
 27 ファン
 L1、L2 配線層
 C11、C12 コンデンサ
 D11 ダイオード
 R11~R13 抵抗
 SW スイッチ
 DC 基準電源
 CP コンパレータ
 TR トランジスタ

Claims (6)

  1.  インバータに接続された出力パターンとの間で浮遊容量を形成する電極パターンと、
     前記出力パターンから流れ出した漏れ電流を前記電極パターンを介して検出する漏れ電流検出回路と、
     前記漏れ電流検出回路による検出結果に基づいて前記インバータの動作状態を通知する通知部とを備えることを特徴とする電力変換装置。
  2.  前記通知部は、前記漏れ電流検出回路による検出結果に基づいて動作する発光ダイオードであることを特徴とする請求項1に記載の電力変換装置。
  3.  前記電極パターンと前記出力パターンとが近接して配置された主回路基板をさらに備えることを特徴とする請求項2に記載の電力変換装置。
  4.  前記電極パターンと前記出力パターンとは、前記主回路基板の互いに隣接する層に対向して配置されていることを特徴とする請求項3に記載の電力変換装置。
  5.  前記出力パターンは、前記主回路基板の内層に配置されていることを特徴とする請求項4に記載の電力変換装置。
  6.  前記発光ダイオードは、前記主回路基板上に実装された主回路端子台の近傍に配置されていることを特徴とする請求項2から5のいずれか1項に記載の電力変換装置。
PCT/JP2010/063526 2010-08-10 2010-08-10 電力変換装置 WO2012020473A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2010/063526 WO2012020473A1 (ja) 2010-08-10 2010-08-10 電力変換装置
KR1020137005646A KR20130043683A (ko) 2010-08-10 2010-08-10 전력 변환 장치
JP2012528531A JPWO2012020473A1 (ja) 2010-08-10 2010-08-10 電力変換装置
CN2010800686073A CN103080756A (zh) 2010-08-10 2010-08-10 功率转换装置
US13/816,300 US20130141957A1 (en) 2010-08-10 2010-08-10 Power conversion device
TW099131006A TW201207420A (en) 2010-08-10 2010-09-14 Power converting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/063526 WO2012020473A1 (ja) 2010-08-10 2010-08-10 電力変換装置

Publications (1)

Publication Number Publication Date
WO2012020473A1 true WO2012020473A1 (ja) 2012-02-16

Family

ID=45567453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063526 WO2012020473A1 (ja) 2010-08-10 2010-08-10 電力変換装置

Country Status (6)

Country Link
US (1) US20130141957A1 (ja)
JP (1) JPWO2012020473A1 (ja)
KR (1) KR20130043683A (ja)
CN (1) CN103080756A (ja)
TW (1) TW201207420A (ja)
WO (1) WO2012020473A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171672A (ja) * 2015-03-12 2016-09-23 アイシン・エィ・ダブリュ株式会社 電力変換装置用の制御基板
WO2017046966A1 (ja) * 2015-09-18 2017-03-23 株式会社安川電機 産業機械の状態表示装置、及び電力変換装置
JP2018207566A (ja) * 2017-05-30 2018-12-27 ファナック株式会社 漏れ電流の発生を検知するモータ駆動装置
JP2021043055A (ja) * 2019-09-11 2021-03-18 ローム株式会社 電圧測定装置およびセンサ付きデバイス

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069661A (zh) * 2017-04-28 2017-08-18 南京南瑞太阳能科技有限公司 一种抑制光伏组件pid效应的装置
TWI717142B (zh) * 2019-12-10 2021-01-21 東元電機股份有限公司 內建有輸出濾波器之變頻器裝置以及依據漏電流值而選擇性輸出電流之方法
EP4421506A1 (en) * 2023-02-23 2024-08-28 Hamilton Sundstrand Corporation Insulation monitoring in the ac aircraft power district

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153628A (ja) * 1997-11-20 1999-06-08 Nissin Electric Co Ltd ガス絶縁電気機器用受電電圧検出装置
JP2001159644A (ja) * 1999-12-01 2001-06-12 Mitsubishi Electric Corp 電圧センサ
JP2004343972A (ja) * 2003-05-19 2004-12-02 Matsushita Electric Works Ltd 漏電検出装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128497U (ja) * 1979-03-06 1980-09-11
JPS6027598B2 (ja) * 1979-03-29 1985-06-29 株式会社日本債券信用銀行 ペン先構造体
JP2508715Y2 (ja) * 1989-07-20 1996-08-28 株式会社イトーキクレビオ 間仕切パネルにおける巾木取付装置
JPH04343073A (ja) * 1991-05-20 1992-11-30 Pfu Ltd 簡易電圧モニタ方式
JP3025714U (ja) * 1995-12-11 1996-06-25 株式会社井上電機製作所 検電装置
US6134126A (en) * 1998-09-08 2000-10-17 Kabushiki Kaisha Toshiba Power conversion system
US6977518B2 (en) * 2002-11-11 2005-12-20 Matsushita Electric Works, Ltd. Electrical leak detecting apparatus
US20050243485A1 (en) * 2004-04-26 2005-11-03 Gershen Bernard J Leakage current detection interrupter with open neutral detection
US20050280961A1 (en) * 2004-06-18 2005-12-22 Steve Campolo Leakage current detection interrupter with sensor module for detecting abnormal non-electrical conditions
US7623329B2 (en) * 2005-01-04 2009-11-24 Technology Research Corporation Leakage current detection and interruption circuit with improved shield
US8009394B2 (en) * 2005-01-31 2011-08-30 Toyotsugu Atoji Leak current breaker and method
CN200950533Y (zh) * 2006-09-12 2007-09-19 上海益而益电器制造有限公司 一种漏电检测保护电路
JP2008102096A (ja) * 2006-10-20 2008-05-01 Fanuc Ltd モータの絶縁抵抗劣化検出装置
US20080180866A1 (en) * 2007-01-29 2008-07-31 Honor Tone, Ltd. Combined arc fault circuit interrupter and leakage current detector interrupter
JP4650477B2 (ja) * 2007-10-30 2011-03-16 ダイキン工業株式会社 漏電検出方法
US8659857B2 (en) * 2008-07-24 2014-02-25 Technology Reasearch Corporation Leakage current detection and interruption circuit powered by leakage current
WO2010100934A1 (ja) * 2009-03-05 2010-09-10 三菱電機株式会社 漏れ電流低減装置
US8335062B2 (en) * 2010-03-08 2012-12-18 Pass & Seymour, Inc. Protective device for an electrical supply facility
US8405939B2 (en) * 2010-03-08 2013-03-26 Pass & Seymour, Inc. Protective device for an electrical supply facility
CN103155388B (zh) * 2010-08-26 2016-02-17 三菱电机株式会社 泄漏电流降低装置
IES20110389A2 (en) * 2011-09-06 2013-03-13 Atreus Entpr Ltd Leakage current detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153628A (ja) * 1997-11-20 1999-06-08 Nissin Electric Co Ltd ガス絶縁電気機器用受電電圧検出装置
JP2001159644A (ja) * 1999-12-01 2001-06-12 Mitsubishi Electric Corp 電圧センサ
JP2004343972A (ja) * 2003-05-19 2004-12-02 Matsushita Electric Works Ltd 漏電検出装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171672A (ja) * 2015-03-12 2016-09-23 アイシン・エィ・ダブリュ株式会社 電力変換装置用の制御基板
WO2017046966A1 (ja) * 2015-09-18 2017-03-23 株式会社安川電機 産業機械の状態表示装置、及び電力変換装置
US10135379B2 (en) 2015-09-18 2018-11-20 Kabushiki Kaisha Yaskawa Denki State display device of industrial machinery and power conversion device
JP2018207566A (ja) * 2017-05-30 2018-12-27 ファナック株式会社 漏れ電流の発生を検知するモータ駆動装置
US10587213B2 (en) 2017-05-30 2020-03-10 Fanuc Corporation Motor drive apparatus to detect occurrence of leakage current
JP2021043055A (ja) * 2019-09-11 2021-03-18 ローム株式会社 電圧測定装置およびセンサ付きデバイス
JP7304247B2 (ja) 2019-09-11 2023-07-06 ローム株式会社 電圧測定装置およびセンサ付きデバイス

Also Published As

Publication number Publication date
TW201207420A (en) 2012-02-16
US20130141957A1 (en) 2013-06-06
CN103080756A (zh) 2013-05-01
JPWO2012020473A1 (ja) 2013-10-28
KR20130043683A (ko) 2013-04-30

Similar Documents

Publication Publication Date Title
WO2012020473A1 (ja) 電力変換装置
Madhusoodhanan et al. Medium voltage (≥ 2.3 kV) high frequency three-phase two-level converter design and demonstration using 10 kV SiC MOSFETs for high speed motor drive applications
JP2011193705A5 (ja)
EP2629410A1 (en) Three-phase ac/dc converting apparatus and air handling unit using three-phase ac/dc converting apparatus
JP6421882B2 (ja) 電力変換装置
CN103378757A (zh) 功率转换装置
CN103516228B (zh) 变频空调器的功率变换模块
Merkert et al. Component design and implementation of a 60 kW full SiC traction inverter with boost converter
JP2011064559A (ja) 電圧検出装置及びそれを用いた電力変換装置
JP2019161804A (ja) モータ駆動装置
CN104620490B (zh) 功率转换装置
EP3432460B1 (en) Power converter
TW201541851A (zh) 馬達驅動電路
CN101622778B (zh) 直流电源设备
JPWO2020017169A1 (ja) 駆動回路内蔵型パワーモジュール
KR101958787B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
US8760890B2 (en) Current source inverter
US11329591B2 (en) Power conversion apparatus having two DC voltage modes and motor drive apparatus
KR101946369B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
JP2016127677A (ja) 電力変換装置
Kwon et al. The new smart power modules for up to 1kW motor drive application
JP2011147197A (ja) 家電機器用モータを駆動電源装置,空気調和機
CN204906214U (zh) 一种逆变器的驱动板
KR101873764B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
JP2013005463A (ja) 電源回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068607.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855874

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012528531

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13816300

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137005646

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10855874

Country of ref document: EP

Kind code of ref document: A1