WO2012020473A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2012020473A1 WO2012020473A1 PCT/JP2010/063526 JP2010063526W WO2012020473A1 WO 2012020473 A1 WO2012020473 A1 WO 2012020473A1 JP 2010063526 W JP2010063526 W JP 2010063526W WO 2012020473 A1 WO2012020473 A1 WO 2012020473A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- main circuit
- conversion device
- output
- leakage current
- power conversion
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 19
- 238000001514 detection method Methods 0.000 claims abstract description 24
- 239000003990 capacitor Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 10
- 239000013256 coordination polymer Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000009434 installation Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 7
- 230000018199 S phase Effects 0.000 description 6
- 229910001219 R-phase Inorganic materials 0.000 description 5
- 238000009499 grossing Methods 0.000 description 5
- 230000005669 field effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/145—Indicating the presence of current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/12—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/16—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/40—Testing power supplies
- G01R31/42—AC power supplies
Definitions
- the present invention relates to a power converter, and more particularly to a method for visualizing the output state of the power converter.
- a method of detecting the output state of the power converter a method of detecting a voltage by directly connecting a signal input unit to the power circuit of the power converter, or a current transformer with a current transformer sandwiching the periphery of the power circuit with a core There is a way.
- Patent Document 1 describes the operation status of an electronic device by detecting a common mode noise generated by operating the electronic device by sandwiching a detection unit between a power cord or a signal line connected to the electronic device. A technique for non-contact detection from the outside is disclosed.
- the sensor unit is disposed close to the outside of the power cable of the electric device, and the magnetic flux generated by the current flowing through the power cable when the electric device is in operation is detected by the sensor unit.
- a technique for detecting the presence / absence of energization at an arbitrary position is disclosed.
- the output voltage of the power converter is a high voltage, and a resistor for dropping the voltage and a photocoupler for insulation are required. There is a problem that an increase in installation space is required.
- Patent Document 1 In the method disclosed in Patent Document 1, it is necessary to sandwich the detection unit between the power cord and the signal line, and there is a problem that a large space is required around the power cord and the signal line.
- Patent Document 2 has a problem that the magnetic sensor is expensive and the installation space increases.
- This invention is made in view of the above, Comprising: It aims at obtaining the power converter device which can detect the output state of a power converter device non-contacting, suppressing the increase in installation space. .
- the power conversion device of the present invention includes an electrode pattern that forms a stray capacitance with an output pattern connected to an inverter, and a leakage current that flows out of the output pattern.
- a leakage current detection circuit for detecting the operation state of the inverter based on a detection result by the leakage current detection circuit.
- the present invention it is possible to detect the output state of the power conversion device in a non-contact manner while suppressing an increase in installation space.
- FIG. 1 is a block diagram showing a schematic configuration of a power conversion device according to Embodiment 1 of the present invention.
- FIG. 2 is a circuit diagram showing a configuration example of the leakage current detection circuit 11 and the driver 13 of FIG. 3 is a diagram showing input / output waveforms of the comparator PA in FIG. 2 at the time of output of the power conversion device 5 in FIG.
- FIG. 4 is a diagram showing input / output waveforms of the comparator PA in FIG. 2 when the output of the power converter 5 in FIG. 1 is stopped.
- FIG. 5A is a plan view showing a schematic configuration of the power conversion device 5 in FIG. 1
- FIG. 5B is a side view showing a schematic configuration of the power conversion device 5 in FIG.
- FIG. 6 is a cross-sectional view showing a schematic configuration of the main circuit board 25 cut along the line AA ′ in FIG.
- FIG. 1 is a block diagram showing a schematic configuration of a power conversion device according to Embodiment 1 of the present invention.
- a power converter 5 is provided with a converter 2 that converts alternating current of commercial frequency into direct current and an inverter 3 that converts direct current into alternating current of a desired frequency.
- an R-phase input terminal R, an S-phase input terminal S and a T-phase input terminal T are provided on the converter 2 side, and a U-phase output terminal U, a V-phase output terminal V and a W-phase are provided on the inverter 3 side.
- An output terminal W is provided.
- Converter 2 is connected to three-phase power supply 1 via R-phase input terminal R, S-phase input terminal S and T-phase input terminal T, and inverter 3 includes U-phase output terminal U, V-phase output terminal V and It is connected to the motor 4 via a W-phase output terminal W.
- these R-phase input terminal R, S-phase input terminal S, and T-phase input terminal T are connected to converter 2 via input pattern LI.
- the U-phase output terminal U, the V-phase output terminal V, and the W-phase output terminal W are connected to the inverter 3 via the output pattern LO.
- the converter 2 is provided with rectifier diodes D1 to D6, the rectifier diodes D1 and D2 are connected in series with each other, the rectifier diodes D3 and D4 are connected in series with each other, and the rectifier diodes D5 and D6 are connected in series with each other.
- An R-phase input terminal R is provided at a connection point between the rectifier diodes D1 and D2
- an S-phase input terminal S is provided at a connection point between the rectification diodes D3 and D4, and a connection point between the rectification diodes D5 and D6.
- a T-phase input terminal T is provided.
- the smoothing capacitor C1 is connected in parallel to a series circuit of rectifier diodes D1 and D2, a series circuit of rectifier diodes D3 and D4, and a series circuit of rectifier diodes D5 and D6.
- the inverter 3 is provided with switching elements M1 to M6 and freewheeling diodes N1 to N6.
- switching elements M1 to M6 IGBTs may be used, bipolar transistors may be used, or field effect transistors may be used.
- the freewheeling diodes N1 to N6 are connected in parallel to the switching elements M1 to M6, respectively.
- the switching elements M1 and M2 are connected in series, the switching elements M3 and M4 are connected in series, and the switching elements M5 and M6 are connected in series.
- a connection point between the switching elements M1 and M2 is provided with a U-phase output terminal U
- a connection point between the switching elements M3 and M4 is provided with a V-phase output terminal V
- a connection point between the switching elements M5 and M6 is provided at a connection point.
- a W-phase output terminal W is provided.
- the power converter 5 includes an electrode pattern 12 disposed in the vicinity of the output pattern LO, a leakage current detection circuit 11 that detects the leakage current PA flowing out of the output pattern LO via the electrode pattern 12, and leakage current detection.
- a driver 13 for driving the light emitting diode 14 based on the detection result by the circuit 11 and a light emitting diode 14 for notifying the operation state of the inverter 3 are provided.
- stray capacitance Cf can be formed between the electrode pattern 12 and the output pattern LO.
- FIG. 2 is a circuit diagram showing a configuration example of the leakage current detection circuit 11 and the driver 13 of FIG.
- the leakage current detection circuit 11 is provided with capacitors C11 and C12, a diode D11, a resistor R11, a switch SW, a reference power source DC, and a comparator CP.
- the driver 13 is provided with resistors R12 and R13 and a transistor TR.
- the electrode pattern 12 is connected to one input terminal of the comparator CP via a capacitor C11, a diode D11, and a resistor R11 sequentially.
- a capacitor C12 is connected to one input terminal of the comparator CP.
- a switch SW is connected in parallel to the capacitor C12.
- the reference power source DC is connected to the other input terminal of the comparator CP.
- the output terminal of the comparator CP is connected to the base of the transistor TR via the resistor R12.
- the collector of the transistor TR is connected to the power supply potential via the resistor R13, and the emitter of the transistor TR is connected to the light emitting diode 14.
- alternating current is input from the three-phase power source 1 to the converter 2, it is converted into direct current by the converter 2 and input to the inverter 3.
- the direct current is converted into alternating current according to the switching operation of the switching elements M 1 to M 6, and the alternating current is supplied to the motor 4, whereby the motor 4 is driven by PWM control.
- FIG. 3 is a diagram showing input / output waveforms of the comparator PA of FIG. 2 at the time of output of the power converter 5 of FIG.
- a leakage current PA flows through the stray capacitance Cf for each switching due to high-speed on / off.
- dv / dt is the switching speed of the switching elements M1 to M6.
- This leakage current PA flows through the path of the smoothing capacitor C1, the switching elements M1 to M6, the output pattern LO, the electrode pattern 12, the leakage current detection circuit 11, the ground point E1, the ground point E2, and the smoothing capacitor C1.
- the capacitor C12 of the leakage current detection circuit 11 is charged by the leakage current PA.
- the output voltage Vout of the comparator CP rises.
- the transistor TR is turned on, and a current flows through the light emitting diode 14 via the transistor TR, so that the light emitting diode 14 is turned on, thereby notifying that the inverter 3 is operating.
- the switch SW is turned on / off at a constant cycle, and the capacitor C12 is intermittently discharged. Note that the ON / OFF cycle of the switch SW at this time can be set so that the voltage Vc2 between terminals of the capacitor C11 does not fall below the reference voltage Vref when the power converter 5 outputs.
- FIG. 4 is a diagram showing input / output waveforms of the comparator PA in FIG. 2 when the output of the power converter 5 in FIG. 1 is stopped.
- the switch SW is turned on / off at a constant cycle, whereby the charge accumulated in the capacitor C12 is discharged, and the voltage Vc2 between the terminals of the capacitor C12 falls below the reference voltage Vref, so that the output of the comparator CP The voltage Vout becomes a low level.
- the transistor TR is turned off, the current flowing through the light emitting diode 14 is cut off by the transistor TR, the light emitting diode 14 is turned off, and it is notified that the inverter 3 is stopped.
- a signal input unit can be directly connected to the electric circuit of the power converter 5, or a power cord or signal There is no need to put a detection unit between the lines, and the output state of the power converter 5 can be detected in a non-contact manner while suppressing an increase in installation space.
- the light emitting diode 14 is used as the notification unit for notifying the operation state of the inverter 3 .
- a light bulb, a liquid crystal display device, or the like may be used.
- FIG. 5A is a plan view showing a schematic configuration of the power conversion device of FIG. 1
- FIG. 5B is a side view showing a schematic configuration of the power conversion device of FIG.
- the semiconductor module 21 is mounted on the main circuit board 25 and is electrically connected to the main circuit board 25 via the module pins 23.
- the semiconductor module 21 is mounted with a semiconductor chip on which switching elements M1 to M6, rectifier diodes D1 to D6, and freewheeling diodes N1 to N6 in FIG. 1 are formed.
- a heat sink 22 that releases heat generated from the semiconductor module 21 is disposed on the back surface of the semiconductor module 21.
- a fan 27 that blows air to the heat sink 22 is provided in the vicinity of the heat sink 22. Further, module pins 23 are drawn from the surface side of the semiconductor module 21.
- a smoothing capacitor C1 and a main circuit terminal block 26 are mounted on the main circuit board 25.
- An output pattern LO is formed on the main circuit board 25, and the module pin 23 and the main circuit terminal block 26 are connected to each UVW phase via the output pattern LO.
- the main circuit terminal block 26 can be provided with an R-phase input terminal R, an S-phase input terminal S, a T-phase input terminal T, a U-phase output terminal U, a V-phase output terminal V, and a W-phase output terminal W. .
- the electrode pattern 12 is formed on the main circuit board 25 in the vicinity of the output pattern LO.
- the light emitting diode 14 is mounted on the main circuit board 25, and the light emitting diode 14 can be disposed in the vicinity of the U phase output terminal U, the V phase output terminal V, or the W phase output terminal W of the main circuit terminal block 26. .
- the operation state of the inverter 3 can be easily confirmed, and when the operation state of the inverter 3 is confirmed. Safety can be improved.
- FIG. 6 is a cross-sectional view showing a schematic configuration of the main circuit board cut along the line AA ′ in FIG.
- a wiring layer L ⁇ b> 1 is provided on the front surface of the main circuit board 25, and a wiring layer L ⁇ b> 2 is provided on the back surface of the main circuit board 25.
- An output pattern LO is formed in the wiring layer L1, and an electrode pattern 12 is formed in the wiring layer L2.
- the electrode pattern 12 is preferably arranged so as to face at least one layer of the output pattern LO.
- At least one of the electrode pattern 12 and the output pattern LO may be arranged in the inner layer of the main circuit board 25.
- the electrode pattern 12 and the output pattern LO are preferably arranged so as to face the layers adjacent to each other of the main circuit board 25.
- the power conversion device can detect the output state of the power conversion device in a non-contact manner while suppressing an increase in installation space, and is a method for visualizing the output state of the power conversion device. Is suitable.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
図1は、本発明に係る電力変換装置の実施の形態1の概略構成を示すブロック図である。図1において、電力変換装置5には、商用周波数の交流を直流に変換するコンバータ2および直流を所望の周波数の交流に変換するインバータ3が設けられている。ここで、コンバータ2側には、R相入力端子R、S相入力端子SおよびT相入力端子Tが設けられ、インバータ3側には、U相出力端子U、V相出力端子VおよびW相出力端子Wが設けられている。
三相電源1からコンバータ2に交流が入力されると、コンバータ2にて直流に変換され、インバータ3に入力される。そして、インバータ3において、スイッチング素子M1~M6のスイッチング動作に従って直流が交流に変換され、その交流がモータ4に供給されることで、PWM制御によってモータ4が駆動される。
2 コンバータ
3 インバータ
4 モータ
5 電力変換装置
D1~D6 整流ダイオード
C1 平滑コンデンサ
M1~M6 スイッチング素子
N1~N6 還流ダイオード
11 漏れ電流検出回路
12 電極パターン
13 ドライバ
14 発光ダイオード
LI 入力パターン
LO 出力パターン
R R相入力端子
S S相入力端子
T T相入力端子
U U相出力端子
V V相出力端子
W W相出力端子
21 半導体モジュール
22 ヒートシンク
23 モジュールピン
25 主回路基板
26 主回路端子台
27 ファン
L1、L2 配線層
C11、C12 コンデンサ
D11 ダイオード
R11~R13 抵抗
SW スイッチ
DC 基準電源
CP コンパレータ
TR トランジスタ
Claims (6)
- インバータに接続された出力パターンとの間で浮遊容量を形成する電極パターンと、
前記出力パターンから流れ出した漏れ電流を前記電極パターンを介して検出する漏れ電流検出回路と、
前記漏れ電流検出回路による検出結果に基づいて前記インバータの動作状態を通知する通知部とを備えることを特徴とする電力変換装置。 - 前記通知部は、前記漏れ電流検出回路による検出結果に基づいて動作する発光ダイオードであることを特徴とする請求項1に記載の電力変換装置。
- 前記電極パターンと前記出力パターンとが近接して配置された主回路基板をさらに備えることを特徴とする請求項2に記載の電力変換装置。
- 前記電極パターンと前記出力パターンとは、前記主回路基板の互いに隣接する層に対向して配置されていることを特徴とする請求項3に記載の電力変換装置。
- 前記出力パターンは、前記主回路基板の内層に配置されていることを特徴とする請求項4に記載の電力変換装置。
- 前記発光ダイオードは、前記主回路基板上に実装された主回路端子台の近傍に配置されていることを特徴とする請求項2から5のいずれか1項に記載の電力変換装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/063526 WO2012020473A1 (ja) | 2010-08-10 | 2010-08-10 | 電力変換装置 |
KR1020137005646A KR20130043683A (ko) | 2010-08-10 | 2010-08-10 | 전력 변환 장치 |
JP2012528531A JPWO2012020473A1 (ja) | 2010-08-10 | 2010-08-10 | 電力変換装置 |
CN2010800686073A CN103080756A (zh) | 2010-08-10 | 2010-08-10 | 功率转换装置 |
US13/816,300 US20130141957A1 (en) | 2010-08-10 | 2010-08-10 | Power conversion device |
TW099131006A TW201207420A (en) | 2010-08-10 | 2010-09-14 | Power converting apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/063526 WO2012020473A1 (ja) | 2010-08-10 | 2010-08-10 | 電力変換装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012020473A1 true WO2012020473A1 (ja) | 2012-02-16 |
Family
ID=45567453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/063526 WO2012020473A1 (ja) | 2010-08-10 | 2010-08-10 | 電力変換装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130141957A1 (ja) |
JP (1) | JPWO2012020473A1 (ja) |
KR (1) | KR20130043683A (ja) |
CN (1) | CN103080756A (ja) |
TW (1) | TW201207420A (ja) |
WO (1) | WO2012020473A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016171672A (ja) * | 2015-03-12 | 2016-09-23 | アイシン・エィ・ダブリュ株式会社 | 電力変換装置用の制御基板 |
WO2017046966A1 (ja) * | 2015-09-18 | 2017-03-23 | 株式会社安川電機 | 産業機械の状態表示装置、及び電力変換装置 |
JP2018207566A (ja) * | 2017-05-30 | 2018-12-27 | ファナック株式会社 | 漏れ電流の発生を検知するモータ駆動装置 |
JP2021043055A (ja) * | 2019-09-11 | 2021-03-18 | ローム株式会社 | 電圧測定装置およびセンサ付きデバイス |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107069661A (zh) * | 2017-04-28 | 2017-08-18 | 南京南瑞太阳能科技有限公司 | 一种抑制光伏组件pid效应的装置 |
TWI717142B (zh) * | 2019-12-10 | 2021-01-21 | 東元電機股份有限公司 | 內建有輸出濾波器之變頻器裝置以及依據漏電流值而選擇性輸出電流之方法 |
EP4421506A1 (en) * | 2023-02-23 | 2024-08-28 | Hamilton Sundstrand Corporation | Insulation monitoring in the ac aircraft power district |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11153628A (ja) * | 1997-11-20 | 1999-06-08 | Nissin Electric Co Ltd | ガス絶縁電気機器用受電電圧検出装置 |
JP2001159644A (ja) * | 1999-12-01 | 2001-06-12 | Mitsubishi Electric Corp | 電圧センサ |
JP2004343972A (ja) * | 2003-05-19 | 2004-12-02 | Matsushita Electric Works Ltd | 漏電検出装置 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55128497U (ja) * | 1979-03-06 | 1980-09-11 | ||
JPS6027598B2 (ja) * | 1979-03-29 | 1985-06-29 | 株式会社日本債券信用銀行 | ペン先構造体 |
JP2508715Y2 (ja) * | 1989-07-20 | 1996-08-28 | 株式会社イトーキクレビオ | 間仕切パネルにおける巾木取付装置 |
JPH04343073A (ja) * | 1991-05-20 | 1992-11-30 | Pfu Ltd | 簡易電圧モニタ方式 |
JP3025714U (ja) * | 1995-12-11 | 1996-06-25 | 株式会社井上電機製作所 | 検電装置 |
US6134126A (en) * | 1998-09-08 | 2000-10-17 | Kabushiki Kaisha Toshiba | Power conversion system |
US6977518B2 (en) * | 2002-11-11 | 2005-12-20 | Matsushita Electric Works, Ltd. | Electrical leak detecting apparatus |
US20050243485A1 (en) * | 2004-04-26 | 2005-11-03 | Gershen Bernard J | Leakage current detection interrupter with open neutral detection |
US20050280961A1 (en) * | 2004-06-18 | 2005-12-22 | Steve Campolo | Leakage current detection interrupter with sensor module for detecting abnormal non-electrical conditions |
US7623329B2 (en) * | 2005-01-04 | 2009-11-24 | Technology Research Corporation | Leakage current detection and interruption circuit with improved shield |
US8009394B2 (en) * | 2005-01-31 | 2011-08-30 | Toyotsugu Atoji | Leak current breaker and method |
CN200950533Y (zh) * | 2006-09-12 | 2007-09-19 | 上海益而益电器制造有限公司 | 一种漏电检测保护电路 |
JP2008102096A (ja) * | 2006-10-20 | 2008-05-01 | Fanuc Ltd | モータの絶縁抵抗劣化検出装置 |
US20080180866A1 (en) * | 2007-01-29 | 2008-07-31 | Honor Tone, Ltd. | Combined arc fault circuit interrupter and leakage current detector interrupter |
JP4650477B2 (ja) * | 2007-10-30 | 2011-03-16 | ダイキン工業株式会社 | 漏電検出方法 |
US8659857B2 (en) * | 2008-07-24 | 2014-02-25 | Technology Reasearch Corporation | Leakage current detection and interruption circuit powered by leakage current |
WO2010100934A1 (ja) * | 2009-03-05 | 2010-09-10 | 三菱電機株式会社 | 漏れ電流低減装置 |
US8335062B2 (en) * | 2010-03-08 | 2012-12-18 | Pass & Seymour, Inc. | Protective device for an electrical supply facility |
US8405939B2 (en) * | 2010-03-08 | 2013-03-26 | Pass & Seymour, Inc. | Protective device for an electrical supply facility |
CN103155388B (zh) * | 2010-08-26 | 2016-02-17 | 三菱电机株式会社 | 泄漏电流降低装置 |
IES20110389A2 (en) * | 2011-09-06 | 2013-03-13 | Atreus Entpr Ltd | Leakage current detector |
-
2010
- 2010-08-10 US US13/816,300 patent/US20130141957A1/en not_active Abandoned
- 2010-08-10 JP JP2012528531A patent/JPWO2012020473A1/ja active Pending
- 2010-08-10 KR KR1020137005646A patent/KR20130043683A/ko not_active Application Discontinuation
- 2010-08-10 WO PCT/JP2010/063526 patent/WO2012020473A1/ja active Application Filing
- 2010-08-10 CN CN2010800686073A patent/CN103080756A/zh active Pending
- 2010-09-14 TW TW099131006A patent/TW201207420A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11153628A (ja) * | 1997-11-20 | 1999-06-08 | Nissin Electric Co Ltd | ガス絶縁電気機器用受電電圧検出装置 |
JP2001159644A (ja) * | 1999-12-01 | 2001-06-12 | Mitsubishi Electric Corp | 電圧センサ |
JP2004343972A (ja) * | 2003-05-19 | 2004-12-02 | Matsushita Electric Works Ltd | 漏電検出装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016171672A (ja) * | 2015-03-12 | 2016-09-23 | アイシン・エィ・ダブリュ株式会社 | 電力変換装置用の制御基板 |
WO2017046966A1 (ja) * | 2015-09-18 | 2017-03-23 | 株式会社安川電機 | 産業機械の状態表示装置、及び電力変換装置 |
US10135379B2 (en) | 2015-09-18 | 2018-11-20 | Kabushiki Kaisha Yaskawa Denki | State display device of industrial machinery and power conversion device |
JP2018207566A (ja) * | 2017-05-30 | 2018-12-27 | ファナック株式会社 | 漏れ電流の発生を検知するモータ駆動装置 |
US10587213B2 (en) | 2017-05-30 | 2020-03-10 | Fanuc Corporation | Motor drive apparatus to detect occurrence of leakage current |
JP2021043055A (ja) * | 2019-09-11 | 2021-03-18 | ローム株式会社 | 電圧測定装置およびセンサ付きデバイス |
JP7304247B2 (ja) | 2019-09-11 | 2023-07-06 | ローム株式会社 | 電圧測定装置およびセンサ付きデバイス |
Also Published As
Publication number | Publication date |
---|---|
TW201207420A (en) | 2012-02-16 |
US20130141957A1 (en) | 2013-06-06 |
CN103080756A (zh) | 2013-05-01 |
JPWO2012020473A1 (ja) | 2013-10-28 |
KR20130043683A (ko) | 2013-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012020473A1 (ja) | 電力変換装置 | |
Madhusoodhanan et al. | Medium voltage (≥ 2.3 kV) high frequency three-phase two-level converter design and demonstration using 10 kV SiC MOSFETs for high speed motor drive applications | |
JP2011193705A5 (ja) | ||
EP2629410A1 (en) | Three-phase ac/dc converting apparatus and air handling unit using three-phase ac/dc converting apparatus | |
JP6421882B2 (ja) | 電力変換装置 | |
CN103378757A (zh) | 功率转换装置 | |
CN103516228B (zh) | 变频空调器的功率变换模块 | |
Merkert et al. | Component design and implementation of a 60 kW full SiC traction inverter with boost converter | |
JP2011064559A (ja) | 電圧検出装置及びそれを用いた電力変換装置 | |
JP2019161804A (ja) | モータ駆動装置 | |
CN104620490B (zh) | 功率转换装置 | |
EP3432460B1 (en) | Power converter | |
TW201541851A (zh) | 馬達驅動電路 | |
CN101622778B (zh) | 直流电源设备 | |
JPWO2020017169A1 (ja) | 駆動回路内蔵型パワーモジュール | |
KR101958787B1 (ko) | 전력 변환 장치 및 이를 포함하는 공기 조화기 | |
US8760890B2 (en) | Current source inverter | |
US11329591B2 (en) | Power conversion apparatus having two DC voltage modes and motor drive apparatus | |
KR101946369B1 (ko) | 전력 변환 장치 및 이를 포함하는 공기 조화기 | |
JP2016127677A (ja) | 電力変換装置 | |
Kwon et al. | The new smart power modules for up to 1kW motor drive application | |
JP2011147197A (ja) | 家電機器用モータを駆動電源装置,空気調和機 | |
CN204906214U (zh) | 一种逆变器的驱动板 | |
KR101873764B1 (ko) | 전력 변환 장치 및 이를 포함하는 공기 조화기 | |
JP2013005463A (ja) | 電源回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080068607.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10855874 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012528531 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13816300 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20137005646 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10855874 Country of ref document: EP Kind code of ref document: A1 |