Nothing Special   »   [go: up one dir, main page]

WO2012002358A1 - 蓄電デバイス及びその製造方法 - Google Patents

蓄電デバイス及びその製造方法 Download PDF

Info

Publication number
WO2012002358A1
WO2012002358A1 PCT/JP2011/064751 JP2011064751W WO2012002358A1 WO 2012002358 A1 WO2012002358 A1 WO 2012002358A1 JP 2011064751 W JP2011064751 W JP 2011064751W WO 2012002358 A1 WO2012002358 A1 WO 2012002358A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
positive electrode
current collector
negative electrode
composite sheet
Prior art date
Application number
PCT/JP2011/064751
Other languages
English (en)
French (fr)
Inventor
景司 堀川
幸夫 得原
昌治 板谷
恭丈 福田
学 澤田
原田 裕之
悠介 上羽
上田 安彦
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2012522630A priority Critical patent/JP5435131B2/ja
Priority to CN201180032391.XA priority patent/CN102971816B/zh
Publication of WO2012002358A1 publication Critical patent/WO2012002358A1/ja
Priority to US13/729,094 priority patent/US9368776B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0414Methods of deposition of the material by screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/005Devices for making primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • H01M6/46Grouping of primary cells into batteries of flat cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49114Electric battery cell making including adhesively bonding

Definitions

  • the present invention relates to a power storage device and a manufacturing method thereof.
  • this electrochemical cell has a structure including three layers of a negative electrode layer, a separator / electrolyte layer, and a positive electrode layer, and each electrode layer is formed on the electrode substrate and the substrate. It has a formed active material (electrode).
  • electrode active material
  • the solid part of a separator is joined to an electrode plate to form a composite structure (paragraph 0048 of patent document 1), and after the electrolyte is dispersed in the separator, another electrode is pressed against the separator.
  • an electrochemical cell is configured (paragraph 0053 of Patent Document 1).
  • an object of the present invention is to provide an electricity storage device that can be easily multilayered and has a high volume capacity ratio, and a method for manufacturing the same.
  • an electricity storage device includes a laminate in which a separator layer is provided between one first electrode of a positive electrode or a negative electrode and the other second electrode, an electrolyte, and the laminate.
  • a power storage device comprising a body and a package containing the electrolyte, The first electrode current collector electrode, the first electrode active material layer provided on one main surface of the first electrode current collector electrode, and the separator layer covering at least a part of the one main surface are integrated.
  • Comprising at least two first pole composite sheets The other main surface of the first electrode current collector electrode of one first electrode composite sheet of the at least two first electrode composite sheets and the other main electrode of the first electrode current collector electrode of the other first electrode composite sheet. The surface is joined oppositely.
  • the first electrode current collector electrode, the first electrode active material layer provided on one main surface thereof, and the separator layer are integrated. Since the first electrode composite sheet is included, it can be easily multilayered. Moreover, since the 1st pole active material layer can be easily arrange
  • the second electrode current collector electrode, the second electrode active material layer provided on one main surface of the second electrode current collector electrode, and the second electrode current collector electrode It is preferable that the 2nd pole composite sheet formed by integrating with the separator layer which covers at least one part of said one said main surface is included.
  • a second electrode current collector electrode, a second electrode active material layer provided on one main surface of the second electrode current collector electrode, and the second electrode current collector electrode Comprising at least two second electrode composite sheets integrated with a separator layer covering at least a part of the one main surface of the first electrode, and one second electrode composite of the at least two second electrode composite sheets.
  • the other main surface of the second electrode current collector electrode of the sheet and the other main surface of the second electrode current collector electrode of the other second electrode composite sheet are opposed to each other.
  • the separator layer of the said 1st electrode composite sheet and the separator layer of the said 2nd electrode composite sheet are joined.
  • the separator layers are bonded in this way, it is possible to prevent a positional shift between the first electrode and the second electrode that occurs during the manufacturing process or during use of the product.
  • the separator layers are joined to form a double structure, even when a defect occurs in one separator layer, the insulation between the positive electrode and the negative electrode is ensured in the other separator layer.
  • the said separator layer contains an inorganic filler.
  • the separator layer contains an inorganic filler, the difference in thermal expansion between the separator layer, the active material layer, and the current collector electrode can be reduced, and warpage and peeling can be suppressed.
  • the method for manufacturing an electricity storage device includes a laminate, an electrolyte, the laminate, and the electrolyte in which a separator layer is provided between one first electrode of the positive electrode or the negative electrode and the second electrode of the other.
  • a method of manufacturing an electricity storage device having a package containing The first electrode current collector electrode, the first electrode active material layer provided on one main surface of the first electrode current collector electrode, and the separator layer covering at least a part of the one main surface are integrated.
  • a first electrode composite sheet preparation step of preparing at least two first electrode composite sheets comprising: The at least two first electrode composite sheets, the other main surface of the first electrode current collector electrode of one of the first electrode composite sheets and the other electrode electrode of the first electrode current collector electrode of the other first electrode composite sheet. And a first pole composite sheet joining step for joining so as to be opposed to each other.
  • the method for manufacturing an electricity storage device according to the present invention configured as described above can easily produce the first electrode having the first electrode active material layer on both sides of the bonded first electrode current collector electrode.
  • a laminate having a high volume capacity ratio can be produced.
  • the first electrode composite sheet manufacturing step includes: A first electrode current collector electrode forming step of forming the first electrode current collector electrode on a substrate; Forming the first electrode active material layer on the one main surface which is the surface of the first electrode current collector electrode formed on the substrate; and covering at least a part of the one main surface Forming a separator layer, It is preferable to include the base material peeling process which peels the 1st pole composite sheet to join from a base material before the said 1st pole composite sheet joining process.
  • a 1st pole composite sheet is produced using a base material, a 1st pole collector electrode can be made thin and a laminated body with a higher volume capacity ratio can be produced.
  • a second electrode current collector electrode, a second electrode active material layer provided on one main surface of the second electrode current collector electrode, and at least part of the one main surface of the second electrode current collector electrode A second electrode composite sheet production step of producing a second electrode composite sheet formed by integrating a separator layer covering A separator interlayer joining step for joining the separator layer of the first electrode composite sheet and the separator layer of the second electrode composite sheet; It is preferable to contain.
  • a second electrode current collector electrode, a second electrode active material layer provided on one main surface of the second electrode current collector electrode, and at least a part of the one main surface of the second electrode current collector electrode A second electrode composite sheet production step of producing at least two second electrode composite sheets formed by integrating a separator layer covering The at least two second electrode composite sheets, the other main surface of the second electrode current collector electrode of one second electrode composite sheet and the other electrode electrode of the second electrode current collector of the other second electrode composite sheet.
  • the 2nd on the both sides of the joined 2nd pole current collector electrode.
  • a second electrode having an electrode active material layer can be easily produced.
  • it since it includes a separator interlayer joining step for joining the separator layer of the first electrode composite sheet and the separator layer of the second electrode composite sheet, misalignment between the first electrode and the second electrode during the manufacturing process is prevented. And a laminate can be easily produced.
  • the inter-separator bonding step may be included before the first electrode composite sheet bonding step and / or the second electrode composite sheet bonding step.
  • the second electrode composite sheet manufacturing process includes: A second electrode current collector electrode forming step of forming the second electrode current collector electrode on a substrate; Forming the second electrode active material layer on the one main surface which is the surface of the second electrode current collector electrode formed on the substrate; and the one of the second electrode current collector electrodes Forming a separator layer covering at least a part of the main surface of It is preferable to include a substrate peeling step for peeling the second electrode composite sheet from the substrate.
  • a 2nd pole composite sheet is produced using a base material, a 2nd pole collector electrode can be made thin and a laminated body with a higher volume capacity ratio can be produced.
  • the said separator layer contains an inorganic filler.
  • the difference in thermal expansion between the separator layer and the first electrode or second electrode active material layer / first electrode or second electrode current collector electrode can be reduced. It is possible to suppress warping and peeling of the sheet.
  • the separator layer is pressure-bonded, the separator layer is not easily crushed by the pressure-bonding, so that a short circuit due to the first electrode or the second electrode active material layer penetrating the separator layer can be prevented.
  • compression-bonding can be suppressed.
  • the electrolyte is not particularly limited.
  • an electrolytic solution containing a supporting salt, an ionic liquid, a gel electrolyte, or a polymer solid electrolyte can be used.
  • FIG. 1 It is a process flow figure of the manufacturing method of the electrical storage device of Embodiment 1 concerning the present invention.
  • the process of forming the positive electrode 21 on the base film 100 is shown, (1) is a cross-sectional view of the base film 100 including the release layer 101, (2) is a cross-sectional view in which the positive electrode current collector film 102 is formed on the release layer 101, and (3) is a cross-sectional view in which the resist pattern R102 is formed on the positive electrode current collector film 102.
  • (7) is a cross-sectional view in which the embedded layer 41 is formed on the surface on which the positive electrode current collector electrode 21a and the positive electrode active material layer 21b are formed, and the surface is flattened.
  • (8) is a flat surface.
  • (9a) is a plan view in which the negative electrode 31 is formed on a base film
  • (9b) is a cross-sectional view of (9a)
  • 10) is a cross-sectional view of the negative electrode separator / electrode composite sheet 30A.
  • (11) is sectional drawing which has arrange
  • (12) is a cross-sectional view of the positive electrode / negative electrode integrated sheet 50A joined between the separator layers 11 of the positive electrode composite sheet 20A and the negative electrode composite sheet 30A
  • (13) is a positive electrode of the positive electrode / negative electrode integrated sheet 50A.
  • (14) is sectional drawing which has arrange
  • stacking a positive electrode / negative electrode integrated sheet is shown
  • (15) is sectional drawing which laminated
  • (16) are sectional drawings which peeled the one base film 100.
  • FIG. 1 It is a partial cross section perspective view of the electrochemical element of Embodiment 1 which formed the positive electrode terminal electrode 21t and the negative electrode terminal electrode 31t in the laminated block 1 for electrochemical elements. It is a process flow figure of the manufacturing method of the electrical storage device of Embodiment 2 concerning the present invention.
  • the production process of positive electrode / negative electrode integrated sheet 50AB, BA in the method for manufacturing an electricity storage device of Embodiment 2 is shown, wherein (1) forms the negative electrode active material layer 32b on the separator layer 11 of the positive electrode composite sheet 20A.
  • (2) is a cross-sectional view in which a buried layer 42 is formed on the surface on which the negative electrode active material layer 32b is formed and is flattened.
  • (3) is a cross-sectional view on the flattened surface.
  • the manufacturing method of the electrical storage device of Embodiment 3 shows the process of producing the positive electrode / positive electrode integrated sheet 20D, wherein (1) arranges the transfer film 300 so as to face the separator layer 11 of the positive electrode composite sheet 20A. (2) is a cross-sectional view in which the transfer film 300 is bonded to the separator layer 11 of the positive electrode composite sheet 20A, and (3) is a cross-sectional view in which the base film 100 of the positive electrode composite sheet 20A is peeled off. (4) is a cross-sectional view in which the positive electrode current collector electrode 23a is formed on the surface where the base film 100 of the positive electrode composite sheet 20A is bonded, and (5) is on the positive electrode current collector electrode 23a.
  • FIG. 6 is a cross-sectional view in which a positive electrode active material layer 23b is formed
  • (6) is a cross-sectional view in which a buried layer 43 is formed in a portion where the positive electrode active material layer 23b is not formed to flatten the surface. It is.
  • a step of laminating the positive electrode / positive electrode integrated sheet 20D and the negative electrode / negative electrode integrated sheet 30D is shown
  • (7) is a positive electrode formed on the transfer film 300
  • (8) is a cross-sectional view of the negative electrode / negative electrode integrated sheet 30D formed on the transfer film 300
  • (9) is a positive electrode / positive electrode integrated sheet 20D.
  • FIG. 1 In the manufacturing method of the electrical storage device of Embodiment 4 which concerns on this invention, the process of producing positive electrode composite sheet 70A is shown, (1) is sectional drawing of the base film 100 provided with the mold release layer 101, (2a) is a cross-sectional view in which the positive electrode current collector electrode 24a is formed, (2b) is a plan view of (2a), and (3a) is a positive electrode active material layer on the positive electrode current collector electrode 24a.
  • 24B is a cross-sectional view in which 24b is formed, (3b) is a plan view of (3a), and (4a) is a cross-sectional view in which a separator layer 61 covering the positive electrode current collector electrode 24a and the positive electrode active material layer 24b is formed.
  • (4b) is a plan view of (4a).
  • (1) is sectional drawing of the base film 100 provided with the mold release layer 101
  • (2a) FIG. 3 is a cross-sectional view of the negative electrode current collector electrode 34a
  • (2b) is a plan view of (2a)
  • (3a) is a negative electrode active material layer 34b formed on the negative electrode current collector electrode 34a.
  • (3b) is a plan view of (3a)
  • (4a) is a cross-sectional view in which a separator layer 62 covering the negative electrode current collector electrode 34a and the negative electrode active material layer 34b is formed.
  • 4b) is a plan view of (4a).
  • the step of laminating the positive electrode composite sheet 70A and the negative electrode composite sheet 70B is shown, and (5) shows the separator layer 61 of the positive electrode composite sheet 70A and the separator of the negative electrode composite sheet 70B.
  • 6 is a cross-sectional view of the positive electrode / negative electrode integrated sheet 70AB bonded to the layer 62; (6) is a cross section of the base film 100 of the positive electrode composite sheet 70A peeled after the separator layer 61 and the separator layer 62 are bonded. (7) is a positive electrode / negative electrode integrated sheet 70AB from which the base film 100 of the positive electrode composite sheet 70A is further peeled off, in addition to the positive electrode / negative electrode integrated sheet 70AB from which the base film 100 of the positive electrode composite sheet 70A is peeled off. Is a cross-sectional view in which two positive electrode / negative electrode integrated sheets 70AB are joined and then one base is joined. The film 100 is peeled cross-sectional view.
  • Embodiment 8 shows a process in the method for manufacturing the electricity storage device of Embodiment 5 according to the present invention, wherein (1) is a cross-sectional view of the positive electrode composite sheet 20A produced in the same manner as Step PS1 to Step PS7 of Embodiment 1, (2) is a cross-sectional view of the negative electrode composite sheet 30A produced in the same manner as Step NS1 to Step NS7 of Embodiment 1, and (3) is a separator sheet in which the separator layer 10 is formed on the base film 100.
  • 60 is a cross-sectional view when the base film 100 of the positive electrode composite sheet 20A is peeled off, and (5) is a surface where the base film 100 of the positive electrode composite sheet 20A is peeled off.
  • FIG. 6 shows steps in the method for manufacturing an electricity storage device of Embodiment 5, wherein (7) peels the base film 100 of the joined negative electrode composite sheet 30A after joining the negative electrode composite sheet 30A on the positive electrode composite sheet 20A.
  • (8) is a cross-sectional view when the base film 100 of the negative electrode composite sheet 30A is further peeled, and (9) is a negative electrode composite sheet 30A from which the base film 100 has been peeled off.
  • FIG. 10 shows steps in the method for manufacturing an electricity storage device of Embodiment 5, wherein (10) is a cross-sectional view when the positive electrode composite sheet 20A is bonded onto the bonded negative electrode composite sheet 30A, and (11) is Furthermore, it is sectional drawing which joined the positive electrode composite sheet 20A on the negative electrode composite sheet 30A, and peeled the base film 100.
  • FIG. 10 shows steps in the method for manufacturing an electricity storage device of Embodiment 5, wherein (10) is a cross-sectional view when the positive electrode composite sheet 20A is bonded onto the bonded negative electrode composite sheet 30A, and (11) is Furthermore, it is sectional drawing which joined the positive electrode composite sheet 20A on the negative electrode composite sheet 30A, and peeled the base film 100.
  • FIG. 10 shows steps in a method for manufacturing an electricity storage device of a modified example according to Embodiment 5, wherein (1) shows a state in which the positive electrode composite sheet 20A is bonded to the base film 100 and the separator layer 11 side of the positive electrode composite sheet 20A.
  • FIG. 2 is a cross-sectional view when the transfer film 300 is bonded to the substrate, (2) is a cross-sectional view when the base film 100 is peeled from the positive electrode composite sheet 20A, and (3) is the base film 100 It is sectional drawing when the separator layer 10 side of the sheet
  • FIG. 2B is a cross-sectional view in which a positive electrode current collector film 102 is formed on an adhesive layer 121
  • FIG. 3B is a cross-sectional view in which a resist pattern R102 is formed on the positive electrode current collector film 102.
  • (4) is a cross-sectional view in which the positive electrode current collector film 102 is etched
  • (5) is a cross-sectional view in which the resist pattern R102 is removed
  • (6a) is on the positive electrode current collector electrode 21a.
  • (6b) is a top view of (6a).
  • a step of forming the separator composite layer 20A on the positive electrode 21 to produce the positive electrode composite sheet 20A and a step of forming the negative electrode current collector electrode 31a and the negative electrode active material layer 31b (7a) is a sectional view in which the separator layer 42 is formed on the positive electrode current collector electrode 21a and the adhesive layer 121, (7b) is a plan view of (7a), and (8a) These are the top views which formed the negative electrode 31 on the base film.
  • FIG. 17 is a cross-sectional view in which another positive electrode / negative electrode integrated sheet 50A is stacked on the stacked positive electrode / negative electrode integrated sheet 50A in the method for manufacturing an electricity storage device of Embodiment 6.
  • FIG. It is sectional drawing of the lamination sheet LB1 for electrochemical elements on which 50 A of positive electrode / negative electrode integrated sheets of Embodiment 6 were laminated
  • FIG. It is sectional drawing of the electric double layer capacitor 80A shown as an example of the electrical storage device containing the multilayer block 1 for electrochemical elements which concerns on Embodiment 6.
  • FIG. (A) is the schematic which shows the measuring method of a capacity
  • (b) is the schematic which shows the measuring method of an electrical resistance (ESR). It is a process flow figure of the manufacturing method of the electrical storage device concerning Embodiment 6 of the present invention.
  • FIG. FIG. 1 is a process flow diagram of a method for manufacturing an electricity storage device according to Embodiment 1 of the present invention.
  • the electricity storage device includes a lithium ion secondary battery, a lithium ion capacitor, and the like in addition to the electric double layer capacitor described in the examples described later.
  • a base film 100 made of polyethylene terephthalate having a silicone release layer 101 formed on the surface is prepared.
  • the substrate film itself having releasability can be used without performing releasability imparting treatment.
  • the base film preferably has a releasability imparting treatment such as forming a release layer 101 in order to improve the releasability.
  • the base film 100 for example, plastic films such as polypropylene, polyester, polycarbonate, polyamide, polyamideimide, polyethylene, fluororesin, cellulose acetate, cellophane, paper, and the like can be used.
  • the releasability imparting treatment method include a method of coating a base film with a silicone resin, wax, surfactant, metal oxide, fluororesin or the like.
  • the release layer 101 is mainly composed of one or more of resins such as nitrocellulose, hard polyvinyl chloride, polyamide, polyester, acrylic resin, melamine resin, urea resin, epoxy resin, and urethane resin.
  • an inorganic oxide filler such as silica is contained in the release layer because the release property is further improved.
  • a positive electrode current collector film 102 is formed on the base film 100 by, for example, vapor deposition.
  • vapor deposition a known technique such as sputtering or coating can be used in addition to vapor deposition. In vapor deposition and sputtering, since the film continuity is good, it is easy to form a current collector film with a low resistance and a thin film thickness, and the power storage device can be easily reduced in size and height.
  • Step PS3> As shown in FIG. 2 (3), a plurality of resist patterns R102 are printed at a predetermined interval on the positive electrode current collector film 102 and dried.
  • the resist pattern R102 is arranged in a matrix, for example, and is formed in the same rectangular shape as the positive electrode collector electrode 21a.
  • the positive electrode current collector film 102 is etched using the resist pattern R102 as an etching mask, and the resist pattern R102 is peeled off as shown in FIG. 2 (5). As described above, the rectangular positive electrode collector electrode 21a is formed.
  • a masking method in addition to a method of printing a resist by screen printing, resist printing by gravure printing, photolithography using a coating type resist, photolithography using a dry film resist, or the like may be used. Screen printing and gravure printing are preferred if importance is placed on low cost, and photolithography is preferred if accuracy is important.
  • a method of forming the current collector electrode in addition to the method of etching the current collector film, a method of directly depositing the current collector film using a metal mask on the base film on which the release layer is formed Alternatively, a method of performing plasma ashing by directly depositing a current collector film using an oil mask or the like may be used.
  • the positive electrode current collector electrode 21a forms an oxide film on the surface
  • the oxide film on the Al surface can be removed by passing through a mixed acid of hydrofluoric acid and sulfuric acid when the positive electrode current collector electrode 21a is formed of Al. it can.
  • positive electrode active material layers 21b are formed at two locations on the positive electrode collector electrode 21a.
  • the positive electrode active material layer 21b can be formed on the positive electrode current collector electrode 21a, for example, by screen printing an active material slurry.
  • the center line L1 orthogonal to the longitudinal direction of the positive electrode current collector electrode 21a Symmetrically with respect to the center line L1.
  • the side surfaces except the inner side surfaces facing each other across the center line L1 are formed so as to coincide with the outer periphery of the positive electrode collector electrode 21a.
  • a buried layer 41 that fills the step formed by forming the positive electrode current collector electrode 21a and the positive electrode active material layer 21b and flattens the surface is formed as the positive electrode active material.
  • the layer 21b is formed in a portion where the layer 21b is not formed.
  • the buried layer 41 preferably contains the same components as those of the separator layer formed in a later step.
  • the positive electrode active material layer 21b may be formed so as to fill the space between the buried layers 41.
  • Step PS6> the separator layer 11 is formed on the planarized buried layer 41 and the positive electrode active material layer 21b.
  • the surface on which the separator layer 11 is formed is flattened by the buried layer 41, it is possible to easily and accurately form a separator layer having a flat surface and no defects such as holes.
  • the positive electrode separator / electrode composite sheet 20A is manufactured.
  • steps PS1 to PS6 are repeated to produce the required number of positive electrode separator / electrode composite sheets 20A.
  • Negative Electrode Separator / Electrode Composite Sheet 30A As shown in FIG. 1, according to steps NS1 to NS7 similar to steps PS1 to PS7 when producing positive electrode separator / electrode composite sheet 20A, negative electrode separator / electrode composite sheet 30A Is made.
  • the negative electrode current collector electrode 31a has a positive line in the positive electrode separator / electrode composite sheet 20A as shown in FIGS. 3 (9a) and 9 (b). It arrange
  • steps NS2 to NS4 instead of the positive electrode current collector film 102, the positive electrode current collector electrode 21a, and the positive electrode active material layer 21b in steps PS2 to PS4, respectively, a negative electrode current collector film, a negative electrode current collector electrode 31a, Although the negative electrode active material layer 31b is formed, when producing an electric double layer capacitor as an electrochemical element, the positive electrode current collector film 102 and the negative electrode current collector film, the positive electrode current collector electrode 21a and the negative electrode current collector electrode The same thing can be used for 31a, the positive electrode active material layer 21b, and the negative electrode active material layer 31b, respectively.
  • the shape and area of the positive electrode collector electrode 21a and the negative electrode collector electrode 31a may be the same or different.
  • the shape and area of the positive electrode active material layer 21b and the negative electrode active material layer 31b may be the same or different. Considering the displacement of the positive electrode 21 and the negative electrode 31, the area of the positive electrode 21 and the negative electrode 31 is changed even when the positive electrode 21 or the negative electrode 31 is displaced by increasing the area of one of the positive electrode 21 or the negative electrode 31. The change in resistance and capacitance of the electric double layer capacitor can be suppressed.
  • the positive electrode separator / electrode composite sheet 20A is referred to as a positive electrode composite sheet 20A
  • the negative electrode separator / electrode composite sheet 30A is referred to as a negative electrode composite sheet 30A.
  • the positive electrode composite sheet 20A and the negative electrode composite sheet 30A are referred to as a composite sheet, and the positive electrode current collector electrode 21a and the negative electrode
  • the collector electrode 31a is simply referred to as a collector electrode
  • the positive electrode active material layer 21b and the negative electrode active material layer 31b are simply referred to as an active material layer.
  • the composite sheet is first separated on the base film 100. After forming 11 and forming an active material layer thereon, a collector electrode may be formed.
  • the binder in the active material layer is near the interface between the active material layer / current collector electrode. Because of the deposition, the binding force between the active material layer / current collector electrode can be increased.
  • the active material layer is applied on the thin collector electrode having high continuity, a further reduction in size and height can be achieved. Become.
  • the collector electrode when the collector electrode is formed on the active material layer, it becomes difficult to etch the collector electrode or remove the oxide film of the collector electrode.
  • the collector electrode is used. Since the active material layer is formed on the active material layer, it is possible to form the active material layer after etching of the current collector electrode and removal of the oxide film of the current collector electrode, so that etching and removal of the oxide film are easy. It becomes.
  • Step MS1> First, as shown in FIG. 4 (11), the positive electrode composite sheet 20A and the negative electrode composite sheet 30A are arranged so that the surfaces on which the separator layer 11 is formed are opposed to each other. From both sides, for example, the separator layers 11 are joined as shown in FIG. 4 (12) by applying pressure and heating uniformly with a pressure plate (not shown). As described above, the positive electrode / negative electrode integrated sheet 50A is manufactured. At this time, for example, the pressure plate temperature is set to 150 ° C., the pressurization pressure is set to 0.05 MPa, and the pressurization time is set to 1 minute.
  • the positive electrode / negative electrode integrated sheet 50A produced by joining the separator layers 11 has the same heat expansion and contraction characteristics as the positive electrode composite sheet 20A and the negative electrode composite sheet 30A on both sides of the bonded surface. Since it has, the curvature after joining is suppressed and the handling in the following manufacturing processes becomes easy.
  • the warping of the positive electrode composite sheet 20A, the negative electrode composite sheet 30A, and the positive electrode / negative electrode integrated sheet 50A can be suppressed as follows in the first embodiment.
  • a resin often used for forming the separator layer 11 generally has a large thermal expansion coefficient, expansion due to heating / cooling at the time of preparing a composite sheet or a laminate of the positive electrode / negative electrode integrated sheet 50A and the like. ⁇ Shrinkage is large. Therefore, when the collector electrode 11 having a low thermal expansion coefficient or the material constituting the active material layer and the separator layer 11 made of resin are bonded together, the composite sheet, the laminate of the positive electrode / negative electrode integrated sheet 50A and the like are warped. Or, further, a problem that the separator layer 11 made of resin is peeled off from the active material layer is likely to occur.
  • the difference in thermal expansion between the separator layer 11 and the active material layer / current collector electrode can be reduced by including an inorganic filler having a relatively small thermal expansion coefficient in the separator layer 11. It becomes possible to suppress the curvature and peeling of the sheet
  • the separator layer 11 contains an inorganic filler
  • the separator layer 11 is not easily crushed by the pressure-bonding, so that a short circuit due to the active material layer penetrating the separator layer can be prevented.
  • the volume occupied by the resin in the separator can be reduced, an increase in the thickness of the separator layer 11 due to the swelling of the resin by the electrolytic solution can be suppressed.
  • the positive electrode / negative electrode integrated sheet 50A ensures insulation between the positive electrode and the negative electrode in the other separator layer even when an unintended defect occurs in one separator layer 11. Is done. Further, even when both separator layers are defective, since both defective portions hardly overlap at the same position, a short circuit between the positive electrode and the negative electrode can be prevented.
  • the positive electrode composite sheet 20A and the negative electrode composite sheet 30A are joined to form a positive electrode / negative electrode integrated sheet 50A, even when the positive electrode composite sheet 20A and the negative electrode composite sheet 30A are thinned, the positive electrode composite sheet Without destroying the 20A and the negative electrode composite sheet 30A, it becomes easier to handle while maintaining the regular arrangement and the predetermined position, and the device can be further reduced in size and height.
  • either the base film 100 on the negative electrode composite sheet 30A side or the positive electrode composite sheet 20A side is peeled off.
  • the negative electrode side of the positive electrode / negative electrode integrated sheet 50A is brought into contact with a suction plate (not shown) and sucked.
  • the negative electrode integrated sheet 50A is lifted, and the base film 100 on the positive electrode side is peeled off.
  • the base film 100 on the positive electrode side is to be peeled off, it is necessary to secure a bonding force stronger than the bonding force between the base film 100 and the positive electrode composite sheet 20A between the positive electrode composite sheet 20A and the negative electrode composite sheet 30A.
  • the difference in bonding strength between them can be realized relatively easily when there is a release layer between the base film 100 and the positive electrode composite sheet 20A.
  • the difference in the bonding force is realized, for example, by bonding the positive electrode composite sheet 20A and the negative electrode composite sheet 30A at high temperature and high pressure. it can.
  • the voids of the active material layer and the separator layer are not collapsed, and the shapes of the positive electrode composite sheet 20A and the negative electrode composite sheet 30A are not deformed. It is necessary to keep in mind.
  • the adhesive force with the base film becomes stronger due to thermal damage to the base film and entrapping due to the kinetic energy of the deposited particles, If there is no release layer, peeling may be difficult. Therefore, in this invention, it is preferable to form the release layer of the thickness which can prevent the damage to a base film.
  • the required number of positive electrode / negative electrode integrated sheets 50A in which the base film 100 is bonded to either the positive electrode composite sheet 20A side or the negative electrode composite sheet 30A side is prepared.
  • the base film 100 is bonded to the negative electrode composite sheet 30A side under the positive electrode / negative electrode integrated sheet 50A in which the negative electrode side is sucked by the suction disk.
  • the positive electrode / negative electrode integrated sheet 50A is arranged so that the base film 100 faces downward, the two positive electrode / negative electrode integrated sheets 50A are brought into contact with each other as shown in FIG. Press the entire surface evenly with a pressure plate that does not.
  • the pressure plate temperature is set to 150 ° C.
  • the pressurization pressure is set to 0.05 MPa
  • the pressurization time is set to 1 minute.
  • a separator layer of predetermined thickness for example, 6 micrometers
  • the positive electrode / negative electrode integrated sheet 50A is laminated on the separator layer of the separator sheet.
  • the base film 100 on the negative electrode side of the positive electrode / negative electrode integrated sheet 50A sucked by the suction disk is peeled off.
  • the positive electrode / negative electrode integrated sheet 50A from which the negative electrode-side base film 100 has been peeled off as shown in FIG.
  • the negative electrode integrated sheet 50A is arranged so that the negative electrode sides face each other, and the negative electrode sides are joined to each other as shown in FIG.
  • the positive electrode-side base film 100 of another laminated positive / negative electrode integrated sheet 50A is peeled off, and the positive-electrode-side base film 100 is peeled thereon, and then the positive / negative electrode integrated sheet 50A.
  • the positive electrode sides face each other, and the positive electrode sides are joined to each other.
  • Step MS1 and Step MS2 are repeated as many times as necessary to produce an electrochemical element laminated sheet LB1 in which the positive and negative electrode integrated sheets 50A are laminated as shown in FIG.
  • the electrochemical element laminated block 1 in which the separator layer is arranged on the outermost layer as shown in FIG. 8 it is the same as that used for the first lamination, for the separator in which only the separator layer is formed. A sheet is used, and the separator layers of the separator sheet are opposed to each other at the end of the lamination.
  • the multilayer block 1 for electrochemical devices manufactured by the above process as shown in FIG.
  • the outermost positive electrode current collector electrode 21a and the negative electrode current collector electrode 31a are one layer, and the positive electrode current collector Although the electrode 21a or the negative electrode current collector electrode 31a is thinner than the inner current collector electrode formed by stacking two layers, in FIG. 8, all positive current collector electrodes and negative electrode current collector electrodes are shown due to restrictions in drawing. Are drawn to the same thickness. However, in the present invention, for example, the thicknesses of the collector electrode and the active material layer may be the same regardless of the formation location, and can be appropriately changed according to the formation location and the manufacturing method.
  • Step MS3> After peeling off the base film 100 disposed in the upper and lower outermost layers of the electrochemical element laminate sheet LB1, the electrochemical element laminate sheet LB1 is cut along the cutting line D1 to be used for the electrochemical element.
  • the laminated block 1 is produced.
  • the base film 100 may be peeled after the electrochemical element laminated sheet LB1 is cut.
  • a positive electrode terminal electrode 21 t is formed on the side surface where the positive electrode current collector electrode 21 a is exposed in the cut surface of the laminated block 1 for electrochemical elements, and the negative electrode current collector electrode A negative electrode terminal electrode 31t is formed on the side surface where 31a is exposed.
  • the positive electrode terminal electrode 21t and the negative electrode terminal electrode 31t can be formed by adhering Al to the side surface of the electrochemical device multilayer block 1 by sputtering, for example.
  • the positive electrode terminal electrode 21t and the negative electrode terminal electrode 31t are prepared by forming a conductive film directly on the side surface of the multilayer block 1 for electrochemical elements by sputtering, vapor deposition, ion plating, thermal spraying, cold spraying, plating, or the like. Also good.
  • the positive electrode terminal electrode 21t and the negative electrode terminal electrode 31t may be formed by applying a conductive adhesive directly to the side surface of the electrochemical device multilayer block 1 by dipping.
  • the electrochemical device laminated block 1 having the positive electrode terminal electrode 21t and the negative electrode terminal electrode 31t formed on the side surfaces is housed together with an electrolyte in a package (not shown) having a positive electrode package electrode and a negative electrode package electrode, thereby producing an electricity storage device. Is done.
  • a conductive adhesive containing gold as conductive particles is applied by dipping on the positive terminal electrode 21t and the negative terminal electrode 31t, and the conductive
  • the laminated block 1 for electrochemical elements is arranged so that the adhesive is connected to the positive electrode package electrode and the negative electrode package electrode, respectively. Then, for example, the package in which the electrochemical device multilayer block 1 is disposed is heated at 170 ° C.
  • the positive terminal electrode 21t and the negative terminal electrode 31t are electrically connected to the positive package electrode and the negative package electrode, respectively.
  • the conductive particles carbon, silver, copper, aluminum or the like is used in addition to gold.
  • the manufacturing method of the above Embodiment 1 includes the process of producing the positive electrode composite sheet 20A or the negative electrode composite sheet 30A on the base film 100, and peeling the positive electrode composite sheet 20A or the negative electrode composite sheet 30A from the base film 100. It is out. Thereby, it becomes possible to integrally produce a plurality of positive electrode current collector electrodes 21a and a plurality of positive electrode active material layers 21b patterned on one continuous separator layer 11. Similarly, a plurality of patterned negative electrode current collector electrodes 31 a and negative electrode active material layers 31 b can be integrally formed on one continuous separator layer 11. Therefore, in the manufacturing method of Embodiment 1, a large number of laminated blocks 1 for electrochemical elements can be produced at once, and the conventional method for producing and handling the laminated blocks 1 for electrochemical elements one by one is used. In comparison, productivity can be improved.
  • the positional shift between the positive electrode 21 and the negative electrode 31 after the manufacturing process and commercialization occurs. Can be prevented. This facilitates handling and multilayering of sheets in the manufacturing process, and suppresses changes in characteristics such as capacity changes after commercialization.
  • the some positive electrode collector electrode 21a and / or the negative electrode collector electrode 31a which were patterned, the some positive electrode active material layer 21b, and / or the negative electrode active material layer 31b, Is integrated with the separator layer 11, even when the electrochemical element multilayer block 1 is downsized, handling in the manufacturing process is facilitated, and a smaller electrochemical element multilayer block 1 can be produced. .
  • the positive electrode / negative electrode integrated sheet 50A is produced by joining the separator layers 11 of the positive electrode composite sheet 20A and the negative electrode composite sheet 30A, and the positive electrode / negative electrode integrated sheet 50A is laminated.
  • a laminated sheet LB1 for electrochemical devices was produced.
  • the production method of the laminated sheet for electrochemical devices is not limited to this, and may be produced as follows. For example, two positive electrode composite sheets 20A from which the base film 100 has been peeled are bonded to each other with the positive electrode current collector electrodes 21a facing each other between the surfaces from which the base film has been peeled to produce a positive electrode / positive electrode integrated sheet. To do.
  • the negative electrode current collector electrodes 31a are bonded to each other between the surfaces of the two negative electrode composite sheets 30A from which the base film 100 has been peeled off so that the negative electrode current collector electrodes 31a face each other. Make it.
  • the positive electrode / positive electrode integrated sheet and the negative electrode / negative electrode integrated sheet are bonded to each other with the separator layers 11 facing each other to produce a laminated sheet.
  • Another negative electrode / negative electrode integrated sheet is bonded to the laminated sheet on the positive electrode / positive electrode integrated sheet side with the separator layers 11 facing each other. This lamination process is repeated as many times as necessary to produce a laminated sheet for electrochemical elements.
  • Embodiment 2 a laminated block for an electrochemical element is produced by a method different from that in Embodiment 1 using the positive electrode composite sheet 20A and the negative electrode composite sheet 30A produced in Embodiment 1.
  • the positive electrode composite sheet 20A is produced on the base film 100 in the same steps as steps PS1 to PS6 of the first embodiment.
  • the negative electrode active material layer 32b is formed on the separator layer 11 of the positive electrode composite sheet 20A.
  • the negative electrode active material layer 32b is formed so as to face the positive electrode active material layer 21b with the separator layer 11 in between. Further, the negative electrode active material layer 32b is formed by, for example, drying after printing a negative electrode active material pattern by screen printing.
  • Step 2 NS8> As shown in FIG. 10 (2), the negative electrode active material layer 32b was formed on the portion where the negative electrode active material layer 32b was not formed and the separator layer 11 was exposed on the surface. A buried layer 42 is formed so as to fill the step, and is flattened.
  • the negative electrode current collector electrode 32a is formed on the planarized surface. As shown in FIG. 10 (3), the negative electrode current collector electrode 32a is formed across the negative electrode active material layer 32b formed above the adjacent positive electrode current collector electrode 21a in the positive electrode composite sheet 20A. As described above, since the surface on which the negative electrode current collector electrode 32a is formed is flattened by the buried layer 42, a current collector electrode having a flat surface and free from defects such as holes can be easily formed with high accuracy. Is possible. Through the above steps PS1 to 2NS9, the positive electrode / negative electrode integrated sheet 50AB is manufactured.
  • steps PS1 to 2NS9 are repeated to produce the necessary number of positive electrode / negative electrode integrated sheets 50AB.
  • the separator layer of the separator sheet may be opposed to the upper and lower sides of the positive electrode / negative electrode integrated sheet 50AB.
  • Step 2 MS1> The positive electrode / negative electrode integrated sheet 50AB from which the base film has been peeled is cut along a cutting line D2, to produce a laminated block 2 for electrochemical elements.
  • the base film may be peeled off after cutting the positive electrode / negative electrode integrated sheet 50AB.
  • the electrochemical device of Embodiment 2 including the single separator layer 11 is manufactured. Thereafter, an electricity storage device is fabricated in the same manner as in the first embodiment.
  • the manufacturing method of the above Embodiment 2 includes producing on the base film 100 positive electrode / negative electrode integrated sheet 50AB in which the positive electrode and the negative electrode were integrated with the separator layer 11.
  • a plurality of positive electrode current collector electrodes 21a, positive electrode active material layers 21b, negative electrode current collector electrodes 32a, and negative electrode active material layers 32b patterned on one continuous separator layer 11 can be integrally manufactured.
  • productivity can be improved as compared with the conventional method in which the electrochemical element laminated blocks 2 are individually manufactured and handled one by one.
  • the positive electrode / negative electrode integrated sheet 50BA shown in FIG. 10 (5) is manufactured and further multilayered as follows. May be.
  • a positive electrode / negative electrode integrated sheet 50BA shown in FIG. 10 (5) is produced in the same manner as the positive electrode / negative electrode integrated sheet 50AB except that the current collector electrode 22a is formed.
  • the base film 100 on one positive electrode side is peeled off to The positive electrode / negative electrode integrated sheet 50BA is laminated so that the positive electrode collector electrode 22a is bonded to the positive electrode collector electrode 21a, and the base film 100 on the negative electrode side of the positive electrode / negative electrode integrated sheet 50BA is peeled off. Then, the lamination of the positive electrode / negative electrode integrated sheet 50AB is alternately repeated so that the negative electrode current collector electrode 32a is bonded to the negative electrode current collector electrode 31a, thereby producing a laminated sheet for electrochemical devices.
  • a separator sheet in which only a separator layer having a predetermined thickness is formed on a base film is used.
  • the positive electrode / negative electrode integrated sheet 50AB may be laminated on the separator layer, and the separator layers of the separator sheet may be opposed to each other at the end of the lamination.
  • the laminated body formed by bonding is still thin, but the positive and negative electrode integrated sheets 50AB on both sides of the bonded surface are almost equal. Since it has an expansion / contraction characteristic with respect to heat, warping after joining is suppressed, and handling in the following manufacturing process becomes easy.
  • the other surfaces of the current collector electrode having the active material layer formed on one surface are arranged to face each other, the state where the active material layer is formed on both surfaces of the current collector electrode can be easily achieved. This makes it possible to produce a laminated block for an electrochemical element having a high volume capacity ratio.
  • the electrochemical element laminated sheet is cut to produce an electrochemical element laminated block, and the positive electrode terminal electrode and the negative electrode terminal electrode are formed in the same manner as in the first embodiment.
  • the manufacturing method of the second embodiment configured as described above has the same function and effect as those of the first embodiment, and since the separator layers are not joined to each other, the separator layer can be made thin.
  • FIG. 12 is a process flow diagram showing the manufacturing process of the third embodiment according to the present invention. Hereafter, each process is demonstrated according to the process flowchart of FIG.
  • a transfer film 300 made of polyethylene terephthalate having a release layer (not shown) formed on the surface is disposed so as to face the separator layer 11 of the positive electrode composite sheet 20A.
  • the transfer film 300 is bonded to the positive electrode composite sheet 20A as shown in FIG.
  • plastic film such as polypropylene, polyester, polycarbonate, polyamide, polyamideimide, polyethylene, fluororesin, cellulose acetate, cellophane, paper, or the like can be used.
  • Step 3PS9 the positive electrode collector electrode 23a is formed in the surface where the base film 100 of the positive electrode composite sheet 20A was joined so as to oppose the positive electrode collector electrode 21a.
  • Step 3PS8 when the base film 100 of the positive electrode composite sheet 20A is peeled off, the base film 100 is peeled off so that the release layer 101 does not remain on the positive electrode composite sheet 20A side. The number of steps can be reduced by omitting the formation of the body electrode 23a.
  • the positive electrode active material layer 23b having the same size as the positive electrode active material layer 21b is formed on the positive electrode current collector electrode 23a so as to face the positive electrode active material layer 21b.
  • the release layer 101 remains on the surface of the positive electrode current collector electrode 21a to which the base film 100 is bonded, or the current collector is oxidized. Even in the case where a film is formed, electrical connection between the positive electrode active material layer 23b and the positive electrode current collector electrode is ensured, and the resistance of the electricity storage device can be reduced.
  • a buried layer 43 is formed in a portion where the positive electrode active material layer 23b is not formed, and the surface on which the positive electrode active material layer 23b is formed is smoothed.
  • Step 3PS12> As shown in FIG. 14 (7), the separator layer 13 is formed on the smoothed surface.
  • the positive electrode / positive electrode integrated sheet 20D constituted by the positive electrode composite sheet 20A and the positive electrode composite sheet 20C formed on the positive electrode composite sheet 20A is produced.
  • the positive electrode composite sheet 20A and the positive electrode composite sheet 20C are bonded so that the positive electrode current collector electrode 21a and the positive electrode current collector electrode 23a face each other.
  • Step 3PS13> By repeating the above steps PS1 to 3PS12, the necessary number of positive electrode / positive electrode integrated sheets 20D are produced.
  • Negative Electrode / Negative Electrode Integrated Sheet 30D The negative electrode / negative electrode integrated sheet 30D is prepared according to steps NS1 to NS3 of FIG. 14 (8) except that the negative electrode current collector electrode 33a and the negative electrode active material layer 33b are formed in place of the positive electrode current collector electrode 23a and the positive electrode active material layer 23b, respectively.
  • the negative electrode current collector electrode 33a straddles the positive electrode active material layer 23b formed above the adjacent positive electrode current collector electrode 23a in the positive electrode / positive electrode integrated sheet 20D. Formed.
  • the state in which the active material layer was formed on both surfaces of the current collector electrode can be easily realized, and a laminated block for electrochemical elements having a high volume capacity ratio can be produced. That is, when the current collector electrode is made thin for miniaturization, it is not easy to form an active material layer on both surfaces of the current collector electrode such as a current collector foil. The method is easy.
  • the separator layer is double, even if one separator layer has an unintentional defect, insulation between the electrodes is ensured by the other separator layer. Further, even when both separator layers are defective, since both defective portions hardly overlap at the same position, a short circuit between the positive electrode and the negative electrode can be prevented.
  • Step 3MS1> The separator film 14 side of the negative electrode / negative electrode integrated sheet 30D is bonded to the positive electrode / positive electrode integrated sheet 20D side from which the transfer film 300 has been peeled off, and the transfer film 300 is peeled off.
  • Step 3MS1> The separator film 13 side of the positive electrode / positive electrode integrated sheet 20 ⁇ / b> D is bonded to the negative electrode / negative electrode integrated sheet 30 ⁇ / b> D side from which the transfer film 300 has been peeled off, and the transfer film 300 is peeled off.
  • Step 3 MS1 is repeated as many times as necessary to produce an electrochemical element laminated sheet LB3.
  • Step 3 After peeling the base film arranged in the lowermost layer of the electrochemical element laminate sheet LB3, the electrochemical element laminate sheet LB3 is cut along the cutting line D3 shown in FIG. 3 is produced. In this step, the base material film may be peeled off after the electrochemical element laminated sheet LB3 is cut.
  • Step 3 MS3> Then, the positive electrode terminal electrode and the negative electrode terminal electrode are formed as in the first embodiment. Thereafter, an electricity storage device is fabricated in the same manner as in the first embodiment.
  • seat for separators in which only the separator layer of predetermined thickness (for example, 6 micrometers) was formed on a base film was prepared, and the lamination block 3 for electrochemical elements was prepared.
  • the lamination block 3 for electrochemical elements was prepared.
  • the first lamination the positive electrode composite sheet 20A from which the base film 100 shown in FIG. 13 (3) is peeled off is bonded onto the separator layer of the separator sheet, and the positive electrode collector electrode 21a is bonded to the separator layer of the separator sheet.
  • the transfer film 300 is peeled off, and the negative electrode / negative electrode integrated sheet 30D and the positive electrode / positive electrode integrated sheet 20D are stacked thereon.
  • the base film 100 is peeled off, and the separator layer of the separator sheet is formed on the peeled surface. Are bonded so as to face each other, and the base film of the separator sheet is peeled off. This is preferable because an active material layer that does not contribute much to the capacity is not formed on the upper and lower outermost layers of the multilayer block 3 for electrochemical elements.
  • the manufacturing method of the electricity storage device of the third embodiment configured as described above has the same function and effect as those of the first embodiment, and further joins the transfer film 300 and peels the base film 100, so that the base film
  • the positive electrode composite sheet 20A and the negative electrode composite sheet 30A after the separation of 100 can be easily handled. That is, in the manufacturing method of Embodiment 3 described above, a plurality of patterned positive electrode current collector electrodes 21a or negative electrode current collector electrodes 31a are integrated with a continuous separator layer 11 to form a plurality of patterned positive electrode current collectors.
  • the electrode 23a is integrated with the separator layer 13 and the plurality of patterned negative electrode current collector electrodes 33a are integrated with the separator layer 14, the handling of the electrode becomes easy, and after the base film 100 is peeled off Even if it exists, handling of an electrode becomes still easier because the transfer film 300 is joined.
  • the collector electrode in which the active material layer is formed on one surface is integrated with the separator layer on the other surface of the collector electrode. Since the active material layers are formed to face the active material layers, the state where the active material layers are formed on both surfaces of the current collector electrode can be easily realized, and a laminated block for an electrochemical device having a high volume capacity ratio can be obtained. It becomes possible to produce.
  • the conventional manufacturing method it is not easy in handling and difficult to form an active material layer on both surfaces of the current collector foil.
  • the formation of the buried layer and the formation of the separator layer are performed in different steps in consideration of the difference in the functions.
  • the buried layer and the separator layer are the same. It can also be formed simultaneously with the material.
  • Embodiment 4 FIG. First, a rectangular base film 100 having a silicone release layer 101 formed on the surface shown in FIG.
  • the positive electrode current collector electrode 24 a is formed on the release layer 101 of the base film 100.
  • the positive electrode current collector electrode 24a has three sides out of the four sides, and the base 24 has one base 24e so that the outer periphery coincides with the outer periphery of the base film 100 as shown in FIG.
  • the material film 100 is formed away from one side 100e.
  • a positive electrode active material layer 24b is formed on the positive electrode current collector electrode 24a.
  • This positive electrode active material layer 24b has three sides out of the four sides, as shown in FIG. 16 (3b), so that the outer periphery thereof coincides with the outer periphery of the positive electrode collector electrode 24a.
  • the positive electrode current collector electrode 24a is formed away from one side 24f.
  • the side 24e and the side 24f are opposite sides.
  • the separator layer 61 is formed so that the positive electrode 24 which consists of the positive electrode collector electrode 24a and the positive electrode active material layer 24b may be covered.
  • the positive electrode composite sheet 70A in which the positive electrode 24 including the positive electrode current collector electrode 24a and the positive electrode active material layer 24b is integrated with the separator layer 61 is manufactured.
  • a rectangular base film 100 in which a silicone release layer 101 is formed on the surface shown in FIG. 17A is prepared, and as shown in FIGS.
  • the negative electrode current collector electrode 34a is formed on the release layer 101 of the film 100.
  • the negative electrode current collector electrode 34 a has only one side 34 e that coincides with the side 100 e on the surface of the base film 100, and the other three sides are inside the outer periphery of the base film 100. Form apart.
  • a negative electrode active material layer 34b is formed on the negative electrode collector electrode 34a.
  • the negative electrode active material layer 34b is formed away from the one side 34e of the negative electrode current collector electrode 34a.
  • the separator layer 62 is formed so that the negative electrode 34 which consists of the negative electrode collector electrode 34a and the negative electrode active material layer 34b may be covered.
  • the negative electrode composite sheet 70B in which the negative electrode 34 including the negative electrode current collector electrode 34a and the negative electrode active material layer 34b is integrated with the separator layer 62 is produced.
  • the positive electrode composite sheet 70A and the negative electrode composite sheet 70B are arranged with the positive electrode composite sheet 70A facing down, with the separator surfaces facing each other, and the entire surface is pressed evenly.
  • a positive electrode / negative electrode integrated sheet 70AB is formed.
  • the positive electrode / negative electrode integrated sheet 70AB in which the positive electrode 24 and the negative electrode 34 are integrated by the separator layers 61 and 62 is manufactured.
  • the required number of positive electrode / negative electrode integrated sheets 70AB are prepared.
  • the positive electrode composite sheet 70A and the negative electrode composite sheet 70B on both sides of the bonded surface are subjected to substantially the same heat. Since it has an expansion / contraction characteristic, warping after joining is suppressed, and handling in the following manufacturing process becomes easy.
  • the separator layer has a double structure of the separator layer 61 and the separator layer 62, even when one separator layer has an unintentional defect, insulation between the electrodes is ensured by the other separator layer. Further, even when both separator layers are defective, since both defective portions hardly overlap at the same position, a short circuit between the positive electrode and the negative electrode can be prevented.
  • the negative electrode side of the positive electrode / negative electrode integrated sheet 70 AB is brought into contact with the suction plate 80 and lifted by suction, and then the base film 100 on the positive electrode side is peeled off.
  • the base film 100 sucked by the suction plate 80 was peeled from the positive electrode / negative electrode integrated sheet 70AB, and the peeled off as shown in FIG. 19 (9).
  • Another positive electrode / negative electrode integrated sheet 70AB is bonded to the negative electrode side, and the base film 100 is peeled off. The above steps are repeated to laminate the required number of positive electrode / negative electrode integrated sheets 70AB.
  • the embedded layer is formed by forming the positive electrode current collector electrode 24a and the negative electrode current collector electrode 34a on the single base film 100, rather than in an assembled state, individually.
  • the number of processes and cutting processes can be reduced, and the number of processes can be reduced. That is, in the fourth embodiment, the elements corresponding to the buried layer in the first embodiment and the like are formed simultaneously with the separator layer.
  • a bonding function is added to the separator layer, that is, the bonding material is provided on the surface of the separator layer, or the bonding material is provided on the surface of the separator layer. Etc. are possible. Also, the bonding between the separator layers has a larger area contributing to the bonding than between the separator layer and the positive electrode current collector electrode or the negative electrode current collector electrode, between the positive electrode current collector electrode or between the negative electrode current collector electrodes. And a strong bond can be obtained. In addition, when arrange
  • Embodiment 5 in the method for manufacturing an electricity storage device of the fifth embodiment, the required number of positive electrode composite sheets 20A shown in FIG. 20 (1) are manufactured in the same manner as in steps PS1 to PS7 of the first embodiment.
  • the positive electrode current collector electrode 21a1 located on one end side on the right side in the drawing has a positive electrode active material layer 21b at two locations, and the positive electrode active material layer 21b is formed at two locations. It is different from the other positive electrode collector electrode 21a formed.
  • the required number of negative electrode composite sheets 30A shown in FIG. 20 (2) are produced in the same manner as in Step NS1 to Step NS7 of the first embodiment.
  • the negative electrode current collector electrode 31a1 located on the other end side on the left side in the drawing has a negative electrode active material layer 31b formed at only one location on the negative electrode current collector electrode 31a1. It is different from the other negative electrode collector electrode 31a formed.
  • the required number of separator sheets 60 in which the separator layer 10 is formed on the base film 100 are produced.
  • the positive electrode composite sheet 20A, the negative electrode composite sheet 30A, and the separator sheet 60 produced as described above are laminated as follows.
  • the surface on the separator layer 11 side of the positive electrode composite sheet 20A is adsorbed and lifted, and the base film 100 of the positive electrode composite sheet 20A is peeled as shown in FIG. 20 (4).
  • the adsorbed positive electrode composite sheet 20A is arranged so that the surface from which the base film 100 is peeled is opposed to the separator layer 10 of the separator sheet 60, and the separator sheet.
  • the positive electrode composite sheet 20 ⁇ / b> A is bonded onto the 60.
  • the negative electrode composite sheet 30A is bonded onto the positive electrode composite sheet 20A bonded to the separator sheet 60. Specifically, the base film 100 side of the negative electrode composite sheet 30A formed on the base film 100 is adsorbed and lifted by a suction disk, and the separator layers are opposed to each other on the positive electrode composite sheet 20A. The negative electrode composite sheet 30A is joined.
  • the separator layer side surface of the negative electrode composite sheet 30A is adsorbed and lifted to peel off the base film 100 of the negative electrode composite sheet 30A as shown in FIG.
  • the peeled surface of the negative electrode composite sheet 30A from which 100 has been peeled is joined to the surface from which the base film 100 of the negative electrode composite sheet 30A shown in FIG. 21 (7) has been peeled off.
  • the positive electrode composite sheet 20A is bonded onto the bonded negative electrode composite sheet 30A. Specifically, the base film 100 side of the positive electrode composite sheet 20A formed on the base film 100 is adsorbed and lifted by a suction disk, and the separator layers are opposed to each other on the negative electrode composite sheet 30A. The positive electrode composite sheet 20A is joined.
  • the base film 100 of the joined positive electrode composite sheet 20A is peeled off, and thereafter, similarly, the positive electrode composite sheet 20A, the negative electrode composite sheet 30A, the negative electrode composite sheet 30A, and the positive electrode composite Sheet 20A, positive electrode composite sheet 20A, negative electrode composite sheet 30A, negative electrode composite sheet 30A,... Are repeatedly laminated in this order, and finally the surface from which base film 100 of positive electrode composite sheet 20A or negative electrode composite sheet 30A is peeled off
  • the separator sheet 60 side of the separator sheet 60 is bonded to the substrate.
  • the produced electrochemical element laminated sheet is cut in the same manner as in Embodiment 1 to produce an electrochemical element, and an electricity storage device is produced in the same manner as in Embodiment 1 or the like.
  • the electricity storage device of the fifth embodiment described above has the same operational effects as those of the first to third embodiments.
  • a transfer film is used. Remove.
  • a suction disk or the like is not in direct contact with the positive electrode composite sheet or the negative electrode composite sheet, and foreign substances can be prevented from entering the electrochemical element.
  • the surface of the positive electrode composite sheet 20A on the separator layer 11 side is adsorbed and lifted to form a base material for the positive electrode composite sheet 20A. As shown in FIG.
  • the adsorbed positive electrode composite sheet 20A is arranged so that the surface from which the base film 100 is peeled is opposed to the separator layer 10 of the separator sheet 60, as shown in FIG.
  • the present invention can also be applied when the positive electrode composite sheet 20A is joined on the separator sheet 60.
  • the surface on the separator layer 11 side of the negative electrode composite sheet 30A is adsorbed and lifted, and the base film 100 of the negative electrode composite sheet 30A is peeled off, and FIG. As shown, it can also be applied when joining the peeled surface of the negative electrode composite sheet 30A from which the base film 100 has been peeled off to the face of the negative electrode composite sheet 30A from which the base film 100 has been peeled off.
  • the electric storage device is manufactured in the same manner as in the fifth embodiment through the steps described with reference to FIGS. 20 (6) to 22 (11).
  • the formation of the buried layer and the separator layer are performed in different steps in consideration of the difference in their functions.
  • the buried layer and the separator layer are made of the same material. It can also be formed simultaneously.
  • the separator layer, the positive electrode, the negative electrode, and the like are drawn thick due to drawing restrictions, but the actual dimensions are accurately enlarged or reduced. is not.
  • the size or the positional relationship is appropriately modified or exaggerated so as to be easily constrained or understood.
  • FIG. 30 is a perspective view showing the laminated block 1 for electrochemical elements used in the power storage device according to the sixth embodiment.
  • FIG. 31 is a cross-sectional view of an electric double layer capacitor 80A shown as an example of an electricity storage device including the multilayer block 1 for electrochemical elements.
  • the front surface (the surface indicated by hatching) of the laminated block 1 for electrochemical elements is the positive electrode 21 (positive electrode current collector electrode 21a and positive electrode active material layer 21b) and negative electrode 31 (negative electrode current collector electrode 31a).
  • the negative electrode active material layer 31b) are shown in cross-section so that the outline of the arrangement can be understood, but in fact, as shown in detail in the manufacturing method to be described later, this is covered with an adhesive separator layer 42.
  • the electrolyte solution is supplied to the electricity storage unit in the electrochemical device laminated block 1 through the notch 25 (see FIG. 25 (7b)) provided in the separator layer. That is, the cut 25 functions as an electrolyte solution guide path through which the electrolyte solution can be introduced into the electrochemical device laminated block 1.
  • the rear surface (a surface parallel to the front surface) of the multilayer block 1 for electrochemical elements is also covered with a separator layer 42 (not shown), and a cut 25 may be provided in the separator layer 42 covering the rear surface.
  • the electrochemical device laminated block 1 is housed together with an electrolyte in a package including a positive electrode package electrode and a negative electrode package electrode, for example, an electric double layer capacitor, a lithium ion secondary battery, or a lithium ion capacitor.
  • An electricity storage device can be formed.
  • the laminated block 1 for electrochemical elements includes a pair of positive electrode 21 (positive electrode current collector electrode 21a and positive electrode active material layer 21b) and negative electrode 31 (negative electrode) in which a positive electrode active material layer 21b and a negative electrode active material layer 31b face each other.
  • Current collector electrode 31a and negative electrode active material layer 31b) and separator layer 42 disposed between the positive electrode and the negative electrode and bonded to part of the surface of the positive electrode and part of the surface of the negative electrode (FIG. 30). Then, the description of the detailed portion is omitted).
  • the separator layer 42 forms the electrolyte solution induction path which can induce
  • the injection of the electrolytic solution can be performed after the formation of the laminate, it is not necessary to handle the power storage unit in a state including the electrolytic solution when the power storage units are stacked, and the process is simplified and efficient. Furthermore, since the electrolytic solution reaches the power storage unit in a shorter time, there is an advantage that the injection of the electrolytic solution is easy.
  • this does not limit the injection of the electrolyte solution into the electrochemical device multilayer block 1 after the electrical storage units are laminated in the production of the electrical storage device using the electrochemical device multilayer block 1.
  • the liquid may be injected before and / or during the stacking of the power storage units, or may be additionally injected after the power storage units are stacked.
  • the separator layer 42 has adhesion so that it can be adhered to a part of the surface of the positive electrode or a part of the surface of the negative electrode, or can be adhered to each other.
  • thermoplastic resin polyvinylidene fluoride
  • thermosetting resins such as polyimide, polyamideimide, and polyamide.
  • the thermoplastic resin is softened by heating to the glass transition temperature or the melting point. Therefore, the positive electrode active material layer 21b, the negative electrode active material layer 31b, and the positive electrode, which are adherends, are bonded by heating or heating.
  • the contact area with the current collector electrode 21a or the negative electrode current collector electrode 31a or the separator layer is increased, and strong adhesive strength (bonding strength) is obtained, which is preferable.
  • thermosetting resin has high heat resistance, strong binding force, excellent chemical stability, and high strength compared to the thermoplastic resin, so that the strength of the laminate is improved.
  • Examples of the method for adhering the separator layer 42 to the above-mentioned adherend include pressure bonding or heating of each electrode provided with the separator layer 42, and the adherend (positive electrode, negative electrode, etc.) by pressure bonding or heating. It is glued and integrated. Moreover, it can adhere
  • the temporary laminated body is formed by performing temporary adhesion by heating or the like during sequential lamination of the electrodes. This adhesion is applied by heating or the like. If it does in this way, at the time of lamination
  • this bonding may be performed on a laminated assembly in which a plurality of laminated bodies are temporarily bonded together, or may be performed for each stacked body after the temporarily bonded laminated assemblies are separated into pieces.
  • the separator layer 42 may include a particulate insulator. By including the particulate insulator in the separator layer 42, the strength of the separator layer 42 can be improved, crushing at the time of lamination can be suppressed, and a short circuit between the electrodes can be prevented.
  • the separator layer 42 preferably has an air permeability of 1250 sec / 100 cc or more in order to ensure sufficient adhesion and to maintain the shape of the laminated block for electrochemical elements firmly.
  • the air permeability is a scale used to express the ease of gas permeation, and is a digital type Oken type air permeability tester (for example, a method according to Japanese Industrial Standard (JIS) P8117). Asahi Seiko Co., Ltd. “EG01-5-1MR”) can be used under the conditions of a cylinder pressure of 0.25 MPa, a measurement pressure of 0.05 MPa, and a measurement internal diameter of 30 mm. When the value of the air permeability is large, it is difficult for gas to pass through.
  • JIS Japanese Industrial Standard
  • the electrochemical element laminated block 1 is arranged in a package including a package base portion 11b and a package lid portion 11a.
  • the package base portion 11b and the package lid portion 11a can be formed of a heat resistant resin such as a liquid crystal polymer.
  • a positive electrode package electrode 122b and a negative electrode package electrode 132b made of a metal such as aluminum are separately arranged on the package base portion 11b.
  • the positive electrode terminal electrode 21t of the stacked block for electrochemical devices 1 electrically connected to the plurality of positive electrode current collector electrodes 21a and the positive electrode package electrode 122b are electrically connected by the conductive adhesive 122a.
  • the negative electrode terminal electrode 31t of the stacked block for electrochemical devices 1 electrically connected to the plurality of negative electrode current collector electrodes 31a and the negative electrode package electrode 132b are electrically connected by the conductive adhesive 132a.
  • An electrolytic solution is disposed in a package including the package base portion 11b and the package lid portion 11a.
  • the electrolytic solution When the electrolytic solution is supplied after the electrochemical element laminated block 1 is disposed in the package, the electrolytic solution reaches the electric storage unit through the notch 25 as described above.
  • FIG. 33 is a process flow diagram of a method for producing an electricity storage device (electrochemical element multilayer block 1) according to Embodiment 6 of the present invention. Hereafter, each process is demonstrated according to the process flow of FIG.
  • a base film 100 made of polyethylene terephthalate having a silicone release layer 101 formed on the surface thereof is prepared.
  • the substrate film itself having releasability can be used without performing releasability imparting treatment.
  • the base film preferably has a releasability imparting treatment such as forming a release layer 101 in order to improve the releasability.
  • Examples of the base film 100 include plastic films such as polypropylene, polyester, polycarbonate, polyamide, polyamideimide, polyethylene, fluororesin, and cellulose acetate, cellophane, paper, and the like.
  • Examples of the release property imparting treatment method include a method of coating a base film with a silicone resin, a wax, a surfactant, a metal oxide, a fluororesin or the like.
  • As the release layer 101 for example, those mainly composed of one or more kinds of resins such as nitrocellulose, hard polyvinyl chloride, polyamide, polyester, melamine resin, urea resin, epoxy resin, and urethane resin are appropriately used.
  • the method for imparting releasability there is a method of forming a coating on a base film by, for example, a gravure method. Further, the adhesive layer 121 is formed on the base film 100 (or the release layer 101). As the adhesive layer 121, urethane resin, polyvinylidene fluoride resin (PVDF), polyamideimide resin (PAI), polyimide resin, polyamide resin, silicone, or the like can be used.
  • PVDF polyvinylidene fluoride resin
  • PAI polyamideimide resin
  • silicone silicone
  • the positive electrode current collector film 102 is formed on the adhesive layer 121 by, for example, vapor deposition.
  • vapor deposition a known technique such as sputtering or coating can be used in addition to vapor deposition. In vapor deposition and sputtering, since the film continuity is good, it is easy to form a current collector film with a low resistance and a thin film thickness, and the power storage device can be easily reduced in size and height.
  • a plurality of resist patterns R102 are printed at a predetermined interval on the positive electrode current collector film 102 and dried.
  • the resist pattern R102 is arranged in a matrix, for example, and is formed in the same rectangular shape as the positive electrode collector electrode 21a.
  • the positive electrode current collector film 102 is etched using the resist pattern R102 as an etching mask, and then the resist pattern R102 is peeled off as shown in FIG. 24 (5). As described above, the rectangular positive electrode collector electrode 21a is formed.
  • a masking method in addition to a method of printing a resist by screen printing, resist printing by gravure printing, photolithography using a coating type resist, photolithography using a dry film resist, or the like may be used. Screen printing and gravure printing are preferred if importance is placed on low cost, and photolithography is preferred if accuracy is important.
  • a method of forming the current collector electrode in addition to the method of etching the current collector film, a method of directly depositing the current collector film using a metal mask on the base film on which the release layer is formed Alternatively, a method of performing plasma ashing by directly depositing a current collector film using an oil mask or the like may be used.
  • the positive electrode current collector electrode 21a forms an oxide film on the surface
  • the positive electrode current collector electrode 21a is formed of aluminum (Al)
  • the oxide film on the aluminum surface is removed by passing through a mixed acid of hydrofluoric acid and sulfuric acid. can do.
  • positive electrode active material layers 21b are formed at two locations on the positive electrode current collector electrode 21a.
  • the positive electrode active material layer 21b can be formed on the positive electrode current collector electrode 21a, for example, by screen printing an active material slurry.
  • the center line L1 orthogonal to the longitudinal direction of the positive electrode current collector electrode 21a Symmetrically with respect to the center line L1.
  • the side surfaces except the inner side surfaces facing each other across the center line L1 are formed so as to coincide with the outer periphery of the positive electrode collector electrode 21a.
  • a separator layer 42 is formed on the adhesive layer 121 and the positive electrode current collector electrode 21a so as to surround the positive electrode active material layer 21b.
  • the notch 25 is provided in the separator layer 42 so as to be in contact with the positive electrode active material layer 21b. The cut 25 penetrates the separator layer 42 in (7b).
  • step MS3 a plurality of power storage units (a set of positive electrodes in which the positive electrode active material layer 21b and the negative electrode active material layer 31b are opposed to each other in the vertical direction in FIG.
  • the intermediate product for obtaining the power storage unit is separated one by one in the vertical direction, for example, C1 in FIG. 25 (7b), By separating at a portion corresponding to the C2 line and the C3 line, the front surface and the rear surface of the electrochemical device laminated block 1 can be covered with the separator layer 42, respectively.
  • Separator layers 42 that cover the front and rear surfaces of the laminated block 1 for electrochemical elements each have a cut 25. And since the notch 25 functions as an electrolyte solution guide path, the electrolyte solution can enter the electrochemical element laminated block 1 through the notch 25. Further, the gas generated in each power storage unit of the electrochemical device multilayer block 1 is passed through the electrolyte solution guide path of each power storage unit, so that the outside of the power storage unit (outside of the electrochemical device multilayer block 1). Can be discharged.
  • the positive electrode composite sheet 20A is manufactured through the above steps PS1 to PS5.
  • steps PS1 to PS5 are repeated to produce the required number of positive electrode composite sheets 20A.
  • a negative electrode composite sheet 30A is produced according to steps NS1 to NS6 similar to steps PS1 to PS6 when producing the positive electrode composite sheet 20A.
  • the negative electrode current collector electrode 31a has a positive electrode current collector in the positive electrode composite sheet 20A as shown in FIGS. 25 (8a) and 26 (8b). It arrange
  • steps NS2 to NS4 instead of the positive electrode current collector film 102, the positive electrode current collector electrode 21a, and the positive electrode active material layer 21b in steps PS2 to PS4, respectively, a negative electrode current collector film, a negative electrode current collector electrode 31a, although the negative electrode active material layer 31b is formed, when producing an electric double layer capacitor as an electricity storage device, the positive electrode current collector film 102 and the negative electrode current collector film, the positive electrode current collector electrode 21a and the negative electrode current collector electrode 31a
  • the positive electrode active material layer 21b and the negative electrode active material layer 31b can be the same.
  • the shape and area of the positive electrode current collector electrode 21a and the negative electrode current collector electrode 31a may be the same or different.
  • the shape and area of the positive electrode active material layer 21b and the negative electrode active material layer 31b may be the same or different. Considering the displacement of the positive electrode 21 and the negative electrode 31, the area of the positive electrode 21 and the negative electrode 31 is changed even when the positive electrode 21 or the negative electrode 31 is displaced by increasing the area of one of the positive electrode 21 or the negative electrode 31. The change in resistance and capacitance of the electric double layer capacitor can be suppressed.
  • the positive electrode composite sheet 20A and the negative electrode composite sheet 30A are referred to as a composite sheet
  • the collector electrode 31a may be simply referred to as a collector electrode
  • the positive electrode active material layer 21b and the negative electrode active material layer 31b may be simply referred to as an active material layer.
  • the binder in the active material layer is deposited near the interface between the active material layer and the current collector electrode. Therefore, the binding force between the active material layer / current collector electrode can be increased.
  • the collector electrode is used. Since the active material layer is formed on the active material layer, it is possible to form the active material layer after etching of the current collector electrode and removal of the oxide film of the current collector electrode, so that etching and removal of the oxide film are easy. It becomes.
  • Step MS1> First, as shown in FIG. 26 (10), the positive electrode composite sheet 20A and the negative electrode composite sheet 30A are arranged so that the surfaces on which the separator layer 42 is formed are opposed to each other. From both sides, the separator layers 42 are joined as shown in FIG. 26 (11), for example, by applying pressure and heating evenly with a pressure plate (not shown). As described above, the positive electrode / negative electrode integrated sheet 50A is manufactured. At this time, for example, the pressure plate temperature is set to 150 ° C., the pressurization pressure is set to 20 MPa, and the pressurization time is set to 30 seconds.
  • the positive electrode / negative electrode integrated sheet 50A produced by joining the separator layers 42 has approximately the same heat expansion and contraction characteristics as the positive electrode composite sheet 20A and the negative electrode composite sheet 30A on both sides of the bonded surface. Since it has, the curvature after joining is suppressed and the handling in the following manufacturing processes becomes easy. Further, since the positive electrode composite sheet 20A and the negative electrode composite sheet 30A are joined to form a positive electrode / negative electrode integrated sheet 50A, even when the positive electrode composite sheet 20A and the negative electrode composite sheet 30A are thinned, the positive electrode composite sheet Without destroying the 20A and the negative electrode composite sheet 30A, it becomes easier to handle while maintaining the regular arrangement and the predetermined position, and the device can be further reduced in size and height.
  • the positive electrode / negative electrode integrated sheet 50 ⁇ / b> A a plurality of power storage units are aligned in the horizontal direction.
  • the gap formed between the positive electrode active material layer 21b and the negative electrode active material layer 31b passes through the cut 25 to form the positive electrode / negative electrode integrated sheet. It is preferable to communicate with the outside of 50A.
  • an extra gas air or the like
  • Sealing can prevent the positive electrode / negative electrode integrated sheet 50A from swelling and deforming.
  • either the base film 100 on the negative electrode composite sheet 30A side or the positive electrode composite sheet 20A side is peeled off.
  • the negative electrode side of the positive electrode / negative electrode integrated sheet 50A is brought into contact with a suction plate (not shown) and sucked.
  • the negative electrode integrated sheet 50A is lifted, and the base film 100 on the positive electrode side is peeled off.
  • the base film 100 on the positive electrode side is to be peeled off, it is necessary to secure a bonding force stronger than the bonding force between the base film 100 and the positive electrode composite sheet 20A between the positive electrode composite sheet 20A and the negative electrode composite sheet 30A.
  • the difference in bonding strength between them can be realized relatively easily when there is a release layer between the base film 100 and the positive electrode composite sheet 20A.
  • the difference in the bonding force is, for example, high temperature and high pressure. This can be realized by joining the positive electrode composite sheet 20A and the negative electrode composite sheet 30A.
  • the voids of the active material layer and the separator layer are not collapsed, and the shapes of the positive electrode composite sheet 20A and the negative electrode composite sheet 30A are not deformed. It is necessary to keep in mind.
  • the adhesion with the substrate film becomes stronger due to thermal damage to the substrate film and entrapping due to the kinetic energy of the deposited particles, If there is no release layer, peeling may be difficult. Therefore, in this invention, it is preferable to form the release layer of the thickness which can prevent the damage to a base film.
  • the base film 100 on the negative electrode side is peeled off, the positive electrode side of the positive electrode / negative electrode integrated sheet 50A is brought into contact with a suction disk and sucked to lift the positive electrode / negative electrode integrated sheet 50A, thereby to form the negative electrode substrate film. 100 is peeled off.
  • the required number of positive electrode / negative electrode integrated sheets 50A in which the base film 100 is bonded to either the positive electrode composite sheet 20A side or the negative electrode composite sheet 30A side is prepared.
  • the base film 100 is bonded to the negative electrode composite sheet 30A side under the positive electrode / negative electrode integrated sheet 50A having the negative electrode side sucked by the suction disk.
  • the positive electrode / negative electrode integrated sheet 50A is arranged so that the base film 100 faces down, the two positive electrode / negative electrode integrated sheets 50A are brought into contact with each other as shown in FIG. Press the entire surface evenly with a pressure plate that does not.
  • the pressure plate temperature is set to 150 ° C.
  • the pressurization pressure is set to 20 MPa
  • the pressurization time is set to 30 seconds.
  • a separator layer of predetermined thickness for example, 6 micrometers
  • the positive electrode / negative electrode integrated sheet 50A is laminated on the separator layer of the separator layer sheet.
  • the base film 100 on the negative electrode side of the positive electrode / negative electrode integrated sheet 50A sucked by the suction disk is peeled off.
  • the positive electrode / negative electrode integrated sheet 50A from which the negative electrode-side base film 100 has been peeled off as shown in FIG.
  • the negative electrode integrated sheet 50A is disposed so that the negative electrode sides face each other, and the negative electrode sides are joined to each other as shown in FIG.
  • the positive electrode-side base film 100 of another laminated positive / negative electrode integrated sheet 50A is peeled off, and the positive-electrode-side base film 100 is peeled thereon, and then the positive / negative electrode integrated sheet 50A.
  • the positive electrode sides face each other, and the positive electrode sides are bonded to each other by bonding the respective adhesive layers 121 to each other.
  • Step MS1 and Step MS2 are repeated as many times as necessary to produce an electrochemical element laminated sheet LB1 in which the positive and negative electrode integrated sheets 50A are laminated as shown in FIG.
  • the separator layer in which only the separator layer is formed is the same as that used for the first lamination.
  • the separator layer of the separator layer sheet is oppositely bonded at the end of the lamination.
  • the outermost positive electrode collector electrode 21a and the negative electrode collector electrode 31a are one layer, and the positive electrode current collector Although the body electrode 21a or the negative electrode current collector electrode 31a is thinner than the inner current collector electrode formed by stacking two layers, in FIG.
  • the electrodes are drawn to the same thickness.
  • the thicknesses of the collector electrode and the active material layer may be the same regardless of the formation location, and can be appropriately changed according to the formation location and the manufacturing method.
  • the adhesive layer 121 is formed on the release layer 101 formed on the surface of the base film 100, and the positive electrode current collector electrode 21 a and the negative electrode current collector electrode 31 a are formed on the adhesive layer 121. Is forming. Accordingly, the positive electrode current collector electrodes and the negative electrode current collector electrodes are more reliably bonded to each other via the adhesive layer 121, and a more reliable power storage device can be manufactured.
  • the electrochemical element laminate sheet LB1 is cut along the cutting line D1 to be used for the electrochemical element.
  • the laminated block 1 is produced. That is, the multilayer block 1 for an electrochemical element is produced by cutting a plurality of power storage units stacked in the vertical direction into a single stacked power storage unit from a state where a plurality of power storage units are aligned in the horizontal direction. In this step, the base film 100 may be peeled after the electrochemical element laminated sheet LB1 is cut.
  • a positive electrode terminal electrode 21 t is formed on the side surface where the positive electrode current collector electrode 21 a is exposed in the cut surface of the laminated block 1 for electrochemical elements, and the negative electrode current collector electrode A negative electrode terminal electrode 31t is formed on the side surface where 31a is exposed.
  • the positive electrode terminal electrode 21t and the negative electrode terminal electrode 31t can be formed by depositing aluminum on the side surface of the multilayer block 1 for electrochemical elements, for example, by sputtering.
  • the positive electrode terminal electrode 21t and the negative electrode terminal electrode 31t are prepared by forming a conductive film directly on the side surface of the multilayer block 1 for electrochemical elements by sputtering, vapor deposition, ion plating, thermal spraying, cold spraying, plating, or the like. Also good.
  • the positive electrode terminal electrode 21t and the negative electrode terminal electrode 31t may be formed by applying a conductive adhesive directly to the side surface of the electrochemical device multilayer block 1 by dipping. It is preferable that the electrolyte solution guide path is not exposed on the side surface of the laminated block 1 for electrochemical elements where the positive electrode terminal electrode 21t or the negative electrode terminal electrode 31t is formed. This is because when the electrolyte solution guide path is exposed, the positive electrode terminal electrode 21t or the negative electrode terminal electrode 31t may enter the power storage unit and short-circuit with the positive electrode or the negative electrode.
  • the laminated block 1 for electrochemical elements having the positive electrode terminal electrode 21 t and the negative electrode terminal electrode 31 t formed on the side surfaces is put together with an electrolyte in a package including the positive electrode package electrode 122 b and the negative electrode package electrode 132 b.
  • an electric storage device such as an electric double layer capacitor 80A is manufactured.
  • the electrochemical device laminated block 1 When the electrochemical device laminated block 1 is housed in the package, for example, conductive adhesives 122a and 132a containing gold as conductive particles are applied to the positive terminal electrode 21t and the negative terminal electrode 31t by dipping, The laminated block 1 for electrochemical elements is arranged so that the conductive adhesive 122a and the conductive adhesive 132a are connected to the positive electrode package electrode 122b and the negative electrode package electrode 132b, respectively. Then, for example, the package in which the electrochemical element multilayer block 1 is disposed is heated at 170 ° C.
  • the electrochemical element multilayer block 1 is then connected to the package electrode 122b,
  • the positive electrode terminal electrode 21t and the negative electrode terminal electrode 31t are electrically connected to the positive electrode package electrode 122b and the negative electrode package electrode 132b, respectively.
  • the conductive particles carbon, silver, copper, aluminum or the like is used in addition to gold.
  • the laminated block 1 for electrochemical elements contained in the package has the cuts 25 on the front and rear surfaces as described above, and each of the power storage units has the electrolyte solution guide path, so that the electrolyte solution can be quickly discharged. Are supplied between the positive electrode active material layer 21a and the negative electrode active material layer 31b in the power storage unit.
  • the positive electrode composite sheet 20A or the negative electrode composite sheet 30A is produced on the base film 100, and the positive electrode composite sheet 20A or the negative electrode composite sheet 30A is prepared.
  • the process of peeling from the base film 100 is included.
  • a plurality of negative electrode current collector electrodes 31a and negative electrode active material layers 31b patterned on one continuous separator layer can be integrally manufactured. Therefore, in the manufacturing method of Embodiment 6, a large number of laminated blocks 1 for electrochemical elements can be produced at once, and productivity is improved as compared with the conventional method in which electric double layer capacitors are individually handled one by one. Can be improved.
  • the adjacent positive electrode 21 and negative electrode 31 are bonded and fixed to the separator layer 42, the positional shift between the positive electrode 21 and the negative electrode 31 after the manufacturing process and commercialization is eliminated. Can be prevented. This facilitates handling and multilayering of sheets in the manufacturing process, and suppresses changes in characteristics such as capacity changes after commercialization.
  • the other surfaces of the current collector electrode having the active material layer formed on one surface are disposed facing each other, so that the active electrode is disposed on both surfaces of the current collector electrode.
  • the state in which the material layer is formed can be easily realized, and it is possible to produce the laminated block 1 for an electrochemical element having a high volume capacity ratio. That is, in the conventional manufacturing method, it is not easy in handling and difficult to form an active material layer on both surfaces of the current collector foil.
  • the positive electrode / negative electrode integrated sheet 50A is produced by bonding the separator layers 42 of the positive electrode composite sheet 20A and the negative electrode composite sheet 30A, and the positive electrode / negative electrode integrated sheet 50A is laminated.
  • a laminated sheet LB1 for electrochemical elements was produced.
  • the production method of the laminated sheet for electrochemical devices is not limited to this, and may be produced as follows. For example, two positive electrode composite sheets 20A from which the base film 100 has been peeled are bonded to each other with the positive electrode current collector electrodes 21a facing each other between the surfaces from which the base film has been peeled to produce a positive electrode / positive electrode integrated sheet. To do.
  • the negative electrode current collector electrodes 31a are bonded to each other between the surfaces of the two negative electrode composite sheets 30A from which the base film 100 has been peeled off so that the negative electrode current collector electrodes 31a face each other. Make it.
  • the positive electrode / positive electrode integrated sheet and the negative electrode / negative electrode integrated sheet are bonded to each other with the separator layers 42 facing each other to produce a laminated sheet.
  • Another negative electrode / negative electrode integrated sheet is bonded to the laminated sheet on the positive electrode / positive electrode integrated sheet side with the separator layers 42 facing each other. This lamination process is repeated as many times as necessary to produce a laminated sheet for electrochemical elements.
  • the multilayer block 1 for electrochemical elements and the electric double layer capacitor 80A in the present embodiment are not limited to the form in which the power storage units as shown in FIGS. 30 and 31 are stacked.
  • the electrochemical device multilayer block 1 and the electric double layer capacitor 80A in which the power storage unit is not laminated are also included in the present invention.
  • Such a laminated block 1 for electrochemical devices and an electric double layer capacitor 80A can be obtained by using only one sheet without laminating the positive electrode / negative electrode integrated sheet 50A, for example.
  • a porous insulating layer having a lower air permeability than the separator layer 42 may be formed on the positive electrode active material layer 21b and the negative electrode active material layer 31b. In this case, leakage current is more reliably ensured. Can be suppressed.
  • Example 1 an electric double layer capacitor block was manufactured according to the manufacturing method of Embodiment 1. First, a base material PET film having a silicone release layer 101 formed on the surface was prepared as the base material film 100.
  • An Al film having a thickness of 500 nm was formed as the positive electrode current collector film 102 on the base PET film by a vacuum deposition method.
  • the film formation conditions were a degree of vacuum of 3 ⁇ 10 ⁇ 4 Pa, a current value of 800 mA, a film formation rate of 30 L / s, and a substrate cooling temperature of ⁇ 10 ° C.
  • 100 ° C. For 15 minutes.
  • Example 1 By immersing the base material PET film on which the resist pattern R102 is printed in a 45 ° C. ferric chloride aqueous solution tank for 30 seconds, and removing the Al film other than the portion masked by the resist by wet etching. A positive electrode current collector Al electrode was formed as the positive electrode current collector electrode 21a. Thereafter, the aqueous ferric chloride solution remaining on the substrate surface was removed by a water shower.
  • inexpensive ferric chloride was used, but hydrochloric acid, sulfuric acid, nitric acid or a mixed acid thereof can also be used, and a hydrofluoric acid salt-based neutral aqueous solution can also be used.
  • the base material PET film on which the positive electrode current collector Al electrode was formed was passed through a butyl acetate shower to peel off the resist. Thereafter, butyl acetate remaining on the substrate surface was evaporated in a hot air oven at 60 ° C.
  • organic solvents such as propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, and amine solvents can be used for resist stripping.
  • the oxide film on the surface of the positive electrode current collector Al electrode was removed and the surface was fluorinated with a mixed acid of hydrofluoric acid / sulfuric acid.
  • Other surface treatment methods include removal of oxide film on the current collector surface by other acid or alkali treatment, surface fluorination by fluorine-based liquid or gas, plasma, surface by chemical or mechanical polishing.
  • the surface may be roughened or a surface coating may be applied by applying a conductive paint.
  • Two active material layer patterns of 6 ⁇ m ⁇ 10 mm rectangular shape with a thickness of 10 ⁇ m are printed in the arrangement shown in FIG. 2 (6 a) by screen printing on a rectangular positive electrode current collector Al electrode having a size of 20 mm ⁇ 10 mm. Then, the positive electrode active material layer 21b was formed by drying in a hot air oven at 80 ° C. for 20 minutes.
  • a PVDF binder solution (Kureha L # 1120, molecular weight 28) was prepared by dispersing silica powder in methyl ethyl ketone as a solvent by screen printing on the portion where the positive electrode active material layer on the base PET film was not formed. 10 wt. 12 wt% solution) is printed and dried in a 120 ° C. hot air oven for 30 minutes, and the thickness is 10 ⁇ m on the positive electrode current collector Al electrode and 10.5 ⁇ m in other portions.
  • a lattice-like silica layer was formed as the buried layer 41. The lattice-like silica layer plays a role of leveling the step of the active material layer thickness on the sheet.
  • a PVDF binder solution (Kureha L # 1120, molecular weight 280,000, 12 wt% solution) is mixed with a dispersion of silica powder in methyl ethyl ketone as a solvent by screen printing on the leveled surface.
  • the paste thus produced was printed so as to cover the active material pattern group, and dried in a hot air oven at 120 ° C. for 30 minutes to form a separator layer having a thickness of 6 ⁇ m.
  • Ten positive electrode composite sheets 20A prepared as described above were prepared.
  • the positive electrode composite sheet and the negative electrode composite sheet were arranged with the separator layer facing each other with the positive electrode composite sheet facing down, and the entire surface was evenly pressed with pressure plates from both sides and joined.
  • the temperature of the pressure plate was set to 150 ° C.
  • the pressure of the pressure was set to 0.05 MPa
  • the pressure time was set to 1 minute.
  • the positive electrode / negative electrode integrated sheet 50A prepared as described above was laminated while appropriately peeling the base PET film as follows.
  • the negative electrode side of one positive electrode / negative electrode integrated sheet was brought into contact with a suction disk and sucked to lift the positive electrode / negative electrode integrated sheet, and then the positive electrode PET film was peeled off.
  • the base PET film side Underneath the positive and negative electrode integrated sheet from which the positive-side substrate PET film has been peeled off by sucking it into the suction disk, the base PET film side is placed on a sheet in which only the separator layer is formed on the base PET film. Placed and joined. And the base-material PET film by the side of the negative electrode of the positive electrode / negative electrode integrated sheet
  • the positive electrode side of another positive electrode / negative electrode integrated sheet was brought into contact with the suction disk and sucked to lift the positive electrode / negative electrode integrated sheet, and then the negative electrode PET film was peeled off.
  • a positive electrode / negative electrode integrated sheet in which a sheet having only a separator layer formed on the PET film is bonded is disposed. And joined. After joining, the base PET film on the positive electrode side of the other positive electrode / negative electrode integrated sheet was peeled off.
  • the above-mentioned joining was performed by bringing the separator layer and the positive electrode / negative electrode integrated sheet or the two positive electrode / negative electrode integrated sheets into contact with each other on the base PET film and uniformly pressing the entire surface with a pressure plate.
  • the temperature of the pressure plate was set to 150 ° C.
  • the pressure of the pressure was set to 0.05 MPa
  • the pressure time was set to 1 minute.
  • the laminated sheet for an electrochemical element of Example 1 produced as described above was peeled off from the base PET film adhered up and down, and then cut to produce an electric double layer capacitor block.
  • a positive electrode and a negative electrode terminal electrode are formed on the side surface of the electric double layer capacitor block produced as described above by Al sputtering, and a conductive adhesive containing gold as conductive particles is respectively formed on the positive electrode and the negative electrode terminal electrode. It was applied by dipping. Then, the electric double layer capacitor block was placed in a separately prepared package so that the applied conductive adhesive was connected to the positive electrode package electrode and the negative electrode package electrode, respectively, and heated at 170 ° C. for 10 minutes. As described above, after the fixing and electrical connection in the package were completed, the electrolytic solution was injected to seal the package. As for the electrical characteristics of the electric double layer capacitor of Example 1 manufactured as described above, the DC capacitance was 112 mF.
  • Example 2 an electric double layer capacitor block was manufactured according to the manufacturing method of Embodiment 2.
  • a negative electrode active material pattern group was printed by screen printing on the separator layer of the positive electrode composite sheet using the positive electrode composite sheet produced in the same manner as in Example 1, and then a hot stove at 80 ° C.
  • the anode was dried for 20 minutes to form a negative electrode active material layer having a thickness of 10 ⁇ m, thereby forming a negative electrode active material layer 32b.
  • PVDF binder solution manufactured by Kureha Co., Ltd.
  • a PVDF binder solution manufactured by Kureha Co., Ltd.
  • a paste prepared by mixing L # 1120, molecular weight 280,000, 12 wt% solution) is printed and dried in a hot air oven at 120 ° C. for 30 minutes to form a 10 ⁇ m thick lattice-like silica layer as an embedded layer 42 The surface was flattened.
  • a negative electrode current collector Al electrode having a thickness of 500 nm is formed by vacuum deposition, and the negative electrode current collector electrode 32a.
  • the film formation conditions were a degree of vacuum of 3 ⁇ 10 ⁇ 4 Pa, a current value of 800 mA, a film formation rate of 30 L / s, and a substrate cooling temperature of ⁇ 10 ° C.
  • Five positive electrode / negative electrode integrated sheets 50AB having the base PET film bonded to the positive electrode side were prepared.
  • Example 2 using the negative electrode composite sheet produced in the same manner as in Example 1, five positive electrode / negative electrode integrated sheets 50BA each having a base PET film bonded to the negative electrode side were produced.
  • the positive electrode / negative electrode integrated sheet 50AB and the positive electrode / negative electrode integrated sheet 50BA thus produced were laminated as follows.
  • the negative electrode side of one positive electrode / negative electrode integrated sheet 50BA is brought into contact with the suction board and sucked to lift the positive electrode / negative electrode integrated sheet 50BA, and only the separator layer is placed on the base PET film underneath.
  • the sheet on which the substrate was formed was placed and bonded so that the base PET film side was on the bottom.
  • the base PET film on the negative electrode side of the positive electrode / negative electrode integrated sheet 50BA sucked by the suction disk was peeled off.
  • the positive electrode side of the single positive electrode / negative electrode integrated sheet 50AB is brought into contact with the suction board and sucked to lift the positive electrode / negative electrode integrated sheet 50AB, and only the separator layer is placed on the base PET film below it.
  • the positive electrode / negative electrode integrated sheet 50BA, to which the sheet having the sapphire was bonded was disposed and bonded. After bonding, the base PET film on the positive electrode side of the positive electrode / negative electrode integrated sheet 50AB was peeled off.
  • the positive electrode / negative electrode integrated sheet 50BA and the positive electrode / negative electrode integrated sheet 50AB are alternately joined in the same manner, and the positive electrode / negative electrode integrated sheet is formed on the sheet in which only the separator layer is formed on the base PET film.
  • a total of 10 sheets of 50BA and positive electrode / negative electrode integrated sheet 50AB were alternately laminated, and the uppermost substrate PET film was peeled off.
  • the base PET film side of the sheet on which only the separator layer is formed on the base PET film is brought into contact with a suction disc and sucked, and the separator layer is peeled off from the uppermost base PET film.
  • the laminated sheet for electrochemical devices was produced by bonding on the negative electrode integrated sheet 50AB.
  • the above-mentioned joining was performed by bringing the separator layer and the positive electrode / negative electrode integrated sheet or the two positive electrode / negative electrode integrated sheets into contact with each other on the base PET film and uniformly pressing the entire surface with a pressure plate.
  • the temperature of the pressure plate was set to 150 ° C.
  • the pressure of the pressure was set to 0.05 MPa
  • the pressure time was set to 1 minute.
  • the laminated sheet for an electrochemical element of Example 2 produced as described above was peeled off from the base material PET film adhered up and down, and then cut to produce an electric double layer capacitor block.
  • Example 2 An electric double layer capacitor of Example 2 was produced in the same manner as Example 1.
  • the DC capacity was 123 mF.
  • Example 3 In Example 3, the transfer film was placed on the separator layer of the positive electrode composite sheet formed on the base PET film produced in Example 1 and pressed, and the transfer film was bonded to the positive electrode composite sheet. At this time, the temperature of the pressing plate was 150 ° C., the pressing pressure was 0.05 MPa, and the pressing time was 1 minute. Thereafter, the base material PET film of the positive electrode composite sheet was peeled off.
  • a positive electrode current collector Al electrode having a thickness of 500 nm was formed by vacuum deposition.
  • a positive electrode collector electrode 23a was obtained.
  • the film formation conditions were a degree of vacuum of 3 ⁇ 10 ⁇ 4 Pa, a current value of 800 mA, a film formation rate of 30 ⁇ / s, and a substrate cooling temperature of ⁇ 10 ° C.
  • the positive electrode current collector Al electrode was a rectangular pattern having a size of 20 mm ⁇ 10 mm.
  • PVDF binder solution (Kureha L # 1120, molecular weight 280,000, 12 wt% solution) in which silica powder is dispersed in methyl ethyl ketone as a solvent by screen printing on the part where the positive electrode active material layer is not formed
  • a paste made by mixing the two is printed and dried in a hot air oven at 120 ° C. for 30 minutes.
  • the thickness is 10 ⁇ m at the thin part on the positive electrode current collector Al electrode, and the other thick part is at 10.5 ⁇ m.
  • a silica layer was formed as the buried layer 43.
  • the lattice-like silica layer plays a role of filling the gap between the active material layer thickness on the sheet and flattening the surface.
  • PVDF binder solution (Kureha L # 1120, molecular weight 280,000, 12 wt% solution) into a flattened surface dispersed by silica printing in methyl ethyl ketone as a solvent by screen printing.
  • the paste thus obtained was printed so as to cover the active material pattern group and dried in a hot air oven at 120 ° C. for 30 minutes to form a separator layer having a thickness of 6 ⁇ m.
  • a positive electrode / positive electrode integrated sheet having both positive and negative surfaces was prepared, and a positive electrode / positive electrode integrated sheet 20D was obtained. Three more positive electrode / positive electrode integrated sheets were produced.
  • five negative electrode / negative electrode integrated sheets 30D were produced. Furthermore, for example, two separator sheets each having only a separator layer having a thickness of 6 ⁇ m formed on a base PET film were prepared, and two positive electrode composite sheets 20A were prepared in the same manner as in Example 1.
  • the positive electrode / positive electrode integrated sheet 20D, the negative electrode / negative electrode integrated sheet 30D, the separator sheet, and the positive electrode composite sheet 20A prepared as described above were laminated as follows. First, on the separator layer of the separator sheet, the positive electrode composite sheet 20A bonded to the transfer film and peeled off the base film 100 is laminated so that the positive electrode collector electrode 21a is bonded to the separator layer of the separator sheet. The transfer film was peeled off.
  • the negative electrode / negative electrode integrated sheet was lifted by bringing the negative electrode / negative electrode integrated sheet into contact with the suction film surface and sucking it.
  • the positive electrode composite sheet 20A having the base film 100 peeled off on the separator layer of the separator sheet is used, and the positive electrode current collector electrode 21a is the separator sheet. Laminate the layers so that they are bonded to each other, place the transfer film peeled off, contact the negative electrode / negative electrode integrated sheet sucked into the separator layer, and press the entire surface evenly with a pressure plate to bond did.
  • the temperature of the pressing plate was 150 ° C.
  • the pressing pressure was 0.05 MPa
  • the pressing time was 1 minute. Thereafter, the transfer film was peeled off.
  • the base film 100 is peeled off, and joined so that the separator layer of the separator sheet faces the peeled surface.
  • the film was peeled off.
  • the electrochemical element laminated sheet LB3 was produced, and the electrochemical element laminated sheet LB3 was cut to produce an electric double layer capacitor block.
  • Example 3 An electric double layer capacitor of Example 3 was produced in the same manner as Example 1.
  • the DC capacitance was 108 mF.
  • Example 4 an electric double layer capacitor block was manufactured according to the manufacturing method of Embodiment 4. First, a base material PET film having a silicone release layer 101 formed on the surface was prepared as the base material film 100. The substrate PET film having a size of 50 mm ⁇ 30 mm was used.
  • a positive electrode current collector Al electrode was formed as a positive electrode current collector electrode 24a having a thickness of 500 nm on a base PET film by a vacuum deposition method.
  • the film formation conditions were such that the degree of vacuum was 3 ⁇ 10 ⁇ 4 Pa, the current value was 800 mA, the film formation rate was 30 ⁇ / s, and the substrate cooling temperature was ⁇ 10 ° C.
  • the positive electrode current collector Al electrode was 45 mm ⁇ 30 mm, and was formed on the substrate PET film so as to be separated from the one side by 5 mm inside.
  • the active material paste on the positive electrode current collector Al electrode After coating the active material paste on the positive electrode current collector Al electrode by screen printing, it was dried in a hot air oven at 80 ° C. for 20 minutes to form an active material layer having a thickness of 10 ⁇ m. 24b.
  • the dimensions of the positive electrode active material layer were 40 mm ⁇ 30 mm, and the arrangement on the base PET film was as shown in FIGS.
  • a paste prepared by mixing a silica powder dispersed in methyl ethyl ketone as a solvent using screen printing and a PVDF binder solution (Kureha L # 1120, molecular weight 280,000, 12 wt% solution) is used.
  • the separator was applied and dried in a hot air oven at 120 ° C. for 30 minutes to form a separator layer having a thickness of 6 ⁇ m.
  • a positive electrode composite sheet having the pattern shown in FIG. 16 (4b) was produced, and a positive electrode composite sheet 70A was obtained.
  • a negative electrode composite sheet having a pattern shown in FIG. 17 (4b) was prepared, and a negative electrode composite sheet 70B was obtained.
  • the dimension of the negative electrode collector electrode 34a was 45 mm x 20 mm.
  • the dimension of the negative electrode active material layer 34b was 40 mm ⁇ 20 mm.
  • the positive electrode composite sheet and the negative electrode composite sheet prepared as described above are disposed with the composite sheet for the positive electrode facing down, with the separator surfaces facing each other, and the entire surface is pressed evenly from both sides and bonded together.
  • An integrated sheet was prepared and used as a positive electrode / negative electrode integrated sheet 70AB. At this time, the temperature of the pressure plate was 150 ° C., the pressure of the pressure was 0.05 MPa, and the pressure time was 1 minute.
  • the negative electrode side of one positive electrode / negative electrode integrated sheet was brought into contact with the suction board and sucked to lift the integrated sheet, and then the base PET film on the positive electrode side was peeled off.
  • another positive electrode / negative electrode integrated sheet is arranged so that the negative electrode PET film on the negative electrode side faces down, and the positive electrode PET film on the positive electrode side is peeled off.
  • the entire surface was pressed evenly and joined.
  • the temperature of the pressing plate was 150 ° C.
  • the pressing pressure was 0.05 MPa
  • the pressing time was 1 minute.
  • the base material PET film that was in contact with the suction disk was peeled off.
  • Example 4 An electric double layer capacitor of Example 4 was produced in the same manner as Example 1.
  • the direct current capacity was 1480 mF.
  • Example 5 In Example 5, according to the manufacturing method of Embodiment 6, an electric double layer capacitor block (multilayer block 1 for electrochemical elements) was produced. First, as a base film 100, urethane is applied to the surface of a base PET film having a silicone release layer 101 formed on the surface to form an adhesive layer 121 having a thickness of 1 ⁇ m, and then a positive electrode current collector As the film 102, an Al film having a film thickness of 500 nm was formed by a vacuum deposition method.
  • the film formation conditions for the aluminum film were as follows: the degree of vacuum was 3 ⁇ 10 ⁇ 4 Pa, the current value was 800 mA, the film formation rate was 30 kg / sec, and the substrate cooling temperature was ⁇ 10 ° C.
  • the substrate PET film 100 on which the resist pattern R102 is printed is immersed in an aqueous ferric chloride solution at 45 ° C. for 30 seconds, and the aluminum film other than the portion masked by the resist is removed by wet etching.
  • a positive electrode current collector aluminum electrode was formed as the positive electrode current collector electrode 21a.
  • the aqueous ferric chloride solution remaining on the substrate surface was removed by a water shower.
  • Example 5 inexpensive ferric chloride was used, but hydrochloric acid, sulfuric acid, nitric acid or a mixed acid thereof can also be used, and a hydrofluoric acid salt-based neutral aqueous solution can also be used.
  • the base material PET film 100 on which the positive electrode current collector electrode 21a (aluminum electrode) was formed was passed through a butyl acetate shower to remove the resist. Thereafter, butyl acetate remaining on the substrate surface was evaporated in a hot air oven at 60 ° C.
  • organic solvents such as propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, and amine solvents can be used for resist stripping.
  • BET specific surface area 1668 m 2 / g, average pore diameter 1.83 nm, average particle diameter D50 1.26 ⁇ m
  • Carbon black Toka Black (registere
  • two active material layer patterns each having a rectangular shape of 6 mm ⁇ 10 mm are shown by screen printing on a rectangular positive electrode collector electrode (aluminum electrode) having a size of 20 mm ⁇ 10 mm.
  • the positive electrode active material layer 21b having a thickness of 4 ⁇ m was formed by drying in a hot air oven at 80 ° C. for 20 minutes.
  • Binder solution adjustment After adding 160 g of PVDF-HFP (polyvinylidene fluoride-hexafluoropropylene copolymer) to a 1 L capacity pot, and further adding 640 g of NMP (1-methyl-2-pyrrolidone) solvent, Put in a pot rack and mix. The mixing was performed at a rotational speed of 150 rpm for 24 hours, thereby obtaining a binder solution in which 20% by mass PVDF-HFP was present in NMP.
  • PVDF-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • the positive electrode composite sheet 20A and the negative electrode composite sheet 30A were disposed with the positive electrode composite sheet 20A facing down, with the separator layers 42 facing each other, and the entire surface was evenly pressed from both sides with a pressure plate and joined.
  • the temperature of the pressure plate was set to 150 ° C.
  • the pressure of the pressure was set to 20 MPa
  • the pressure time was set to 30 seconds.
  • a further 49 positive electrode / negative electrode integrated sheets were produced to obtain a positive electrode / negative electrode integrated sheet 50A.
  • the positive electrode / negative electrode integrated sheet 50A was laminated while appropriately peeling the base PET film 100 as described below.
  • the negative electrode side of one positive electrode / negative electrode integrated sheet 50A was brought into contact with a suction disk and sucked to lift the positive electrode / negative electrode integrated sheet 50A, and then the base PET film 100 on the positive electrode side was peeled off.
  • a sheet in which a separator layer 42 having a thickness of 8 ⁇ m is formed on the base PET film 100 is formed on the base PET film 100 under the positive and negative electrode integrated sheet 50A from which the base PET film 100 on the positive electrode side is peeled by suction.
  • the film 100 was placed with the side facing down and joined.
  • the base PET film 100 on the negative electrode side of the positive electrode / negative electrode integrated sheet 50A sucked by the suction disk was peeled off.
  • the positive electrode side of another positive electrode / negative electrode integrated sheet 50A is brought into contact with the suction board and sucked to lift the positive electrode / negative electrode integrated sheet, and then the negative electrode PET film 100 is peeled off. did.
  • the positive electrode / negative electrode integrated body in which a sheet having only the separator layer 42 formed on the base PET film 100 is bonded to the lower side of the another positive electrode / negative electrode integrated sheet 50A from which the base PET film 100 on the negative electrode side is peeled off.
  • seat 50 was arrange
  • 50 positive electrode / negative electrode integrated sheets 50A are laminated on a sheet in which only the separator layer 42 is formed on the base PET film 100, and the uppermost base PET film 100 is laminated. Was peeled off. Finally, the substrate PET film 100 side of the sheet in which only the separator layer 42 is formed on the separately prepared substrate PET film 100 is brought into contact with a suction disk and sucked, and the separator layer 42 is the uppermost substrate.
  • a laminated sheet for electrochemical devices was produced by bonding the PET film 100 onto the positive electrode / negative electrode integrated sheet 50A from which the PET film 100 was peeled off.
  • the above-mentioned joining is performed by contacting the separator layer 42 and the positive electrode / negative electrode integrated sheet 50A or between the two positive electrode / negative electrode integrated sheets 50A on the base PET film 100 with the pressure plate uniformly. This was done by applying pressure. At this time, the temperature of the pressure plate was set to 150 ° C., the pressure of the pressure was set to 20 MPa, and the pressure time was set to 30 seconds.
  • the laminated sheet LB1 for an electrochemical element produced as described above is peeled off from the base PET film 100 bonded to the top and bottom, and then cut to form an electric double layer capacitor block (laminated block for an electrochemical element) 1 Was made.
  • the positive electrode terminal electrode 21t and the negative electrode terminal electrode 31t were formed by depositing aluminum on the side surface of the cut electric double layer capacitor block 1 by sputtering.
  • a package made of a liquid crystal polymer comprising a package base portion 11b having a positive electrode package electrode 122b and a negative electrode package electrode 132b and a package lid portion 11a as shown in FIG.
  • conductive adhesive 122a containing gold as conductive particles and conductive adhesive 132a are applied by dipping on the positive terminal electrode 21t and the negative terminal electrode 31t, respectively, and the conductive adhesion
  • the laminated block 1 for electrochemical elements was arranged so that the agent 122a and the conductive adhesive 132a were connected to the positive electrode package electrode 122b and the negative electrode package electrode 132b, respectively.
  • FIG. 32A is a schematic diagram showing a method for measuring capacitance (CAP)
  • FIG. 32B is a schematic diagram showing a method for measuring electrical resistance (ESR).
  • the capacitance (CAP) of the electric double layer capacitor was measured as follows.
  • the relationship between the voltage (V) and the time (t) at the time of constant current discharge is measured, the relationship of the voltage with respect to the time from 30 milliseconds to 60 milliseconds after the start of discharge is linearly approximated, and the slope ⁇ V 1 / ⁇ t (becomes a negative value) was determined.
  • capacitance (CAP) was computed from the following (1) Formula.
  • the electric resistance (ESR) of the electric double layer capacitor was measured as follows.
  • I 3A.
  • FIG. 32 (b) immediately after the start of discharge, the voltage rapidly decreases by ⁇ V 2 from 2.75V due to the influence of the electrical resistance (ESR).
  • the capacitance of the electric double layer capacitor of Example 5 was 476 mF, and the electric resistance was 18 m ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Abstract

多層化が容易でかつ体積容量比率の高い蓄電デバイス及びその製造方法を提供する。 正極又は負極の一方の第1極と他方の第2極との間にセパレータ層が設けられてなる積層体と電解質と前記積層体と前記電解質を収納したパッケージを有してなる蓄電デバイスであって、第1極集電体電極とその第1極集電体電極の一方の主面に設けられた第1極活物質層と前記一方の主面の少なくとも一部を覆うセパレータ層とが一体化されてなる第1極複合シートを少なくとも2つ含んでなり、前記少なくとも2つの第1極複合シートの一方の第1極複合シートの第1極集電体電極の他方の主面と他方の第1極複合シートの第1極集電体電極の他方の主面とが対向して接合されている。

Description

蓄電デバイス及びその製造方法
 本発明は、蓄電デバイス及びその製造方法に関する。
 近年、比較的大容量が得られる小型・軽量のバッテリとして、電気化学電池等の蓄電デバイスが広く用いられている。
 この電気化学電池は、例えば、特許文献1に開示されているように、負極層、セパレータ/電解質層および正極層の三つの積層よりなる構造を有し、各電極層は電極基板および基板上に形成した活物質(電極)を有している。この特許文献1では、セパレータの固体部が電極板に接合されて複合構造が構成され(特許文献1の段落0048)、電解液がセパレータ中に分散された後、他の電極がセパレータに押し付けられることにより電気化学電池が構成されている(特許文献1の段落0053)。
特開平10-334877号公報
 しかしながら、近年、より体積容量比率の高い蓄電デバイスが求められているが、特許文献1に開示された電気化学電池のような蓄電デバイスは、十分そのような要求に応えられていない。
 また、隣接する電極間が接合により固定されて一体化されていないため、多層化が難しいという問題があった。
 そこで、本発明は、多層化が容易でかつ体積容量比率の高い蓄電デバイス及びその製造方法を提供することを目的とする。
 以上の目的を達成するために、本発明に係る蓄電デバイスは、正極又は負極の一方の第1極と他方の第2極との間にセパレータ層が設けられてなる積層体と電解質と前記積層体と前記電解質を収納したパッケージを有してなる蓄電デバイスであって、
 第1極集電体電極とその第1極集電体電極の一方の主面に設けられた第1極活物質層と前記一方の主面の少なくとも一部を覆うセパレータ層とが一体化されてなる第1極複合シートを少なくとも2つ含んでなり、
 前記少なくとも2つの第1極複合シートの一方の第1極複合シートの第1極集電体電極の他方の主面と他方の第1極複合シートの第1極集電体電極の他方の主面とが対向して接合されたことを特徴とする。
 以上のように構成された本発明に係る蓄電デバイスは、前記第1極集電体電極とその一方の主面に設けられた前記第1極活物質層と前記セパレータ層とが一体化されてなる第1極複合シートを含んでいるので、容易に多層化できる。
 また、本発明に係る蓄電デバイスは、接合された第1極集電体電極の両側に第1極活物質層を容易に配置することができるので、積層体の体積容量比率を高くできる。
 また、本発明に係る蓄電デバイスでは、第2極集電体電極とその第2極集電体電極の一方の主面に設けられた第2極活物質層と前記第2極集電体電極の前記一方の主面の少なくとも一部を覆うセパレータ層とが一体化されてなる第2極複合シートを含んでいることが好ましい。
 また、本発明に係る蓄電デバイスにおいて、第2極集電体電極とその第2極集電体電極の一方の主面に設けられた第2極活物質層と前記第2極集電体電極の前記一方の主面の少なくとも一部を覆うセパレータ層とが一体化されてなる第2極複合シートを少なくとも2つ含んでなり、前記少なくとも2つの第2極複合シートの一方の第2極複合シートの第2極集電体電極の他方の主面と他方の第2極複合シートの第2極集電体電極の他方の主面とが対向して接合されていることが好ましい。
 このように、接合された第2極集電体電極の両側に第2極活物質層が形成された第2極を、同様に構成された前記第1極と組み合わせることにより、積層体の体積容量比率をより高くできる。
 また、本発明に係る蓄電デバイスでは、前記第1極複合シートのセパレータ層と前記第2極複合シートのセパレータ層とが接合されていることが好ましい。
 このようにセパレータ層間が接合されていると、製造工程中や製品の使用中に生じる第1極と第2極間の位置ずれを防止できる。
 また、セパレータ層間が接合されて二重構造となると、一方のセパレータ層に欠陥が生じた場合でも、他方のセパレータ層で正極と負極間の絶縁性は確保される。
 また、本発明に係る蓄電デバイスでは、前記セパレータ層が無機フィラーを含むことが好ましい。
 このように、セパレータ層に無機フィラーを含有させると、セパレータ層と活物質層や集電体電極との熱膨張差を低減することができ、反りや剥離を抑制することが可能になる。
 また、本発明に係る蓄電デバイスの製造方法は、正極又は負極の一方の第1極と他方の第2極との間にセパレータ層が設けられてなる積層体と電解質と前記積層体と前記電解質を収納したパッケージを有してなる蓄電デバイスの製造方法において、
 第1極集電体電極とその第1極集電体電極の一方の主面に設けられた第1極活物質層と前記一方の主面の少なくとも一部を覆うセパレータ層とが一体化されてなる第1極複合シートを少なくとも2つ作製する第1極複合シート作製工程と、
 前記少なくとも2つの第1極複合シートを、その一方の第1極複合シートの第1極集電体電極の他方の主面と他方の第1極複合シートの第1極集電体電極の他方の主面とが対向して接合されるように接合する第1極複合シート接合工程とを含むことを特徴とする。
 以上のように構成された本発明に係る蓄電デバイスの製造方法は、接合された第1極集電体電極の両側に第1極活物質層を有してなる第1極を容易に作製でき、体積容量比率の高い積層体を作製できる。
 また、本発明に係る蓄電デバイスの製造方法において、
 前記第1極複合シート作製工程は、
 基材上に前記第1極集電体電極を形成する第1極集電体電極形成工程と、
 前記基材上に形成された前記第1極集電体電極の表面である前記一方の主面に前記第1極活物質層を形成する工程と、前記一方の主面の少なくとも一部を覆うセパレータ層を形成する工程を含み、
 前記第1極複合シート接合工程の前に、接合する第1極複合シートを基材から剥離する基材剥離工程を含むことが好ましい。
 このように基材を用いて第1極複合シートを作製すると、第1極集電体電極を薄くすることができ、より体積容量比率の高い積層体を作製できる。
 また、本発明に係る蓄電デバイスの製造方法では、
第2極集電体電極とその第2極集電体電極の一方の主面に設けられた第2極活物質層と前記第2極集電体電極の前記一方の主面の少なくとも一部を覆うセパレータ層とが一体化されてなる第2極複合シートを作製する第2極複合シート作製工程と、
 前記第1極複合シートのセパレータ層と前記第2極複合シートのセパレータ層とを接合するセパレータ層間接合工程と、
を含むことが好ましい。
 また、本発明に係る蓄電デバイスの製造方法において、
 第2極集電体電極とその第2極集電体電極の一方の主面に設けられた第2極活物質層と前記第2極集電体電極の前記一方の主面の少なくとも一部を覆うセパレータ層とが一体化されてなる第2極複合シートを少なくとも2つ作製する第2極複合シート作製工程と、
 前記少なくとも2つの第2極複合シートを、その一方の第2極複合シートの第2極集電体電極の他方の主面と他方の第2極複合シートの第2極集電体電極の他方の主面とが対向して接合されるように接合する第2極複合シート接合工程と、
 前記第1極複合シートのセパレータ層と前記第2極複合シートのセパレータ層とを接合するセパレータ層間接合工程と、
 を含むことが好ましい。
 このようにすると、接合された第1極集電体電極の両側に第1極活物質層を有してなる第1極に加えさらに接合された第2極集電体電極の両側に第2極活物質層を有してなる第2極を容易に作製できる。
 また、前記第1極複合シートのセパレータ層と前記第2極複合シートのセパレータ層とを接合するセパレータ層間接合工程を含むので、製造工程中における第1極と第2極間の位置ずれを防止でき、容易に積層体を作製できる。
 また、本発明に係る蓄電デバイスの製造方法では、
 前記セパレータ間接合工程を、第1極複合シート接合工程及び/又は第2極複合シート接合工程の前に含んでいてもよい。
 また、本発明に係る蓄電デバイスの製造方法において、
前記第2極複合シート作製工程は、
 基材上に前記第2極集電体電極を形成する第2極集電体電極形成工程と、
 前記基材上に形成された前記第2極集電体電極の表面である前記一方の主面に前記第2極活物質層を形成する工程と、前記第2極集電体電極の前記一方の主面の少なくとも一部を覆うセパレータ層を形成する工程を含み、
 前記第2極複合シートを前記基材から剥離する基材剥離工程を含むことが好ましい。
 このように基材を用いて第2極複合シートを作製すると、第2極集電体電極を薄くすることができ、より体積容量比率の高い積層体を作製できる。
 また、本発明に係る蓄電デバイスの製造方法において、前記セパレータ層に無機フィラーを含有させることが好ましい。
 このようにすると、セパレータ層と、第1極又は第2極活物質層・第1極又は第2極集電体電極との熱膨張差を低減することができ、積層体を作製するときのシートの反りや剥離を抑制することが可能になる。
 また、例えば、セパレータ層が圧着される際に、セパレータ層が圧着により潰れにくくなるため、第1極又は第2極活物質層がセパレータ層を突き抜けることによるショートを防止することができる。また、セパレータ層が圧着により潰れることによるセパレータ層の空隙率の低下を抑えることができる。
 なお、本発明において、電解質としては、特に限定されるものではないが、例えば、支持塩を含む電解液やイオン液体、ゲル電解質、高分子固体電解質を用いることができる。
 以上のように、本発明によれば、多層化が容易でかつ体積容量比率の高い蓄電デバイス及びその製造方法を提供することができる。
本発明に係る実施形態1の蓄電デバイスの製造方法の工程フロー図である。 実施形態1の蓄電デバイスの製造方法において、基材フィルム100上に正極21を形成する工程を示しており、 (1)は、離型層101を備えた基材フィルム100の断面図であり、 (2)は、離型層101上に正極集電体膜102を形成した断面図であり、 (3)は、正極集電体膜102上にレジストパターンR102を形成した断面図であり、 (4)は、正極集電体膜102がエッチングされた断面図であり、 (5)は、レジストパターンR102を除去した断面図であり、 (6a)は、正極集電体電極21a上に正極活物質層21bを形成した断面図であり、 (6b)は、(6a)の平面図である。 実施形態1の蓄電デバイスの製造方法において、正極21上にセパレータ層11を形成して正極セパレータ/電極複合シート20Aを作製する工程と、負極セパレータ/電極複合シート30Aを作製する工程とを示しており、 (7)は、正極集電体電極21aと正極活物質層21bとが形成された表面に埋込層41を形成して表面を平坦化した断面図であり、 (8)は、平坦化した表面にセパレータ層11を形成した断面図であり、 (9a)は、基材フィルム上に負極31を形成した平面図であり、 (9b)は、(9a)の断面図であり、 (10)は、負極セパレータ/電極複合シート30Aの断面図である。 実施形態1の蓄電デバイスの製造方法において、正極・負極一体化シートを作製する工程を示しており、 (11)は、正極複合シート20Aと負極複合シート30Aを対向して配置した断面図であり、 (12)は、正極複合シート20Aと負極複合シート30Aのセパレータ層11間を接合した正極・負極一体化シート50Aの断面図であり、 (13)は、正極・負極一体化シート50Aの正極側の基材フィルム100を剥離した断面図であり、 (14)は、2つの正極・負極一体化シート50Aを対向して配置した断面図である。 実施形態1の蓄電デバイスの製造方法において、正極・負極一体化シートを積層する工程を示しており、 (15)は、2つの正極・負極一体化シートを積層した断面図であり、 (16)は、その一方の基材フィルム100を剥離した断面図である。 実施形態1の蓄電デバイスの製造方法において、正極・負極一体化シート50Aの積層を繰り返す工程を示しており、 (17)は、積層された正極・負極一体化シート50Aにさらに別の正極・負極一体化シート50Aを配置した断面図であり、 (18)は、積層された正極・負極一体化シート50Aに別の正極・負極一体化シート50Aを接合した断面図である。 実施形態1の正極・負極一体化シート50Aが積層された電気化学素子用積層シートLB1の断面図である。 電気化学素子用積層ブロック1に正極端子電極21tと負極端子電極31tとを形成した実施形態1の電気化学素子の一部断面斜視図である。 本発明に係る実施形態2の蓄電デバイスの製造方法の工程フロー図である。 実施形態2の蓄電デバイスの製造方法における、正極・負極一体化シート50AB,BAの作製工程を示し、 (1)は、正極複合シート20Aのセパレータ層11上に、負極活物質層32bを形成した断面図であり、 (2)は、負極活物質層32bを形成した表面に埋込層42を形成して、平坦化した断面図であり、 (3)は、平坦化された表面に負極集電体電極32aを形成した正極・負極一体化シート50ABの断面図であり、 (4)は、正極・負極一体化シート50ABの裁断線D2を示す断面図であり、 (5)は、正極・負極一体化シート50BAの断面図である。 本発明に係る実施形態2の蓄電デバイスの製造方法において、正極・負極一体化シート50BAを作製する工程フロー図である。 本発明に係る実施形態3の蓄電デバイスの製造方法の工程フロー図である。 実施形態3の蓄電デバイスの製造方法において、正極・正極一体化シート20Dを作製する工程を示しており、 (1)は、正極複合シート20Aのセパレータ層11に対向するように転写フィルム300を配置した断面図であり、 (2)は、正極複合シート20Aのセパレータ層11に転写フィルム300を接合した断面図であり、 (3)は、正極複合シート20Aの基材フィルム100を剥離した断面図であり、 (4)は、正極複合シート20Aの基材フィルム100が接合されていた面に正極集電体電極23aを形成した断面図であり、 (5)は、正極集電体電極23a上に正極活物質層23bを形成した断面図であり、 (6)は、正極活物質層23bが形成されていない部分に埋込層43を形成して表面を平坦化した断面図である。 実施形態3の蓄電デバイスの製造方法において、正極・正極一体化シート20Dと負極・負極一体化シート30Dとを積層する工程を示しており、 (7)は、転写フィルム300上に形成された正極・正極一体化シート20Dの断面図であり、 (8)は、転写フィルム300上に形成された負極・負極一体化シート30Dの断面図であり、 (9)は、正極・正極一体化シート20Dと負極・負極一体化シート30Dとを接合した断面図である。 実施形態3の電気化学素子用積層シートLB3の断面図である。 本発明に係る実施形態4の蓄電デバイスの製造方法において、正極複合シート70Aを作製する工程を示しており、 (1)は、離型層101を備えた基材フィルム100の断面図であり、 (2a)は、正極集電体電極24aを形成した断面図であり、 (2b)は、(2a)の平面図であり、 (3a)は、正極集電体電極24a上に正極活物質層24bを形成した断面図であり、 (3b)は、(3a)の平面図であり、 (4a)は、正極集電体電極24a及び正極活物質層24bを覆うセパレータ層61を形成した断面図であり、 (4b)は、(4a)の平面図である。 実施形態4の蓄電デバイスの製造方法において、負極複合シート70Bを作製する工程を示しており、 (1)は、離型層101を備えた基材フィルム100の断面図であり、 (2a)は、負極集電体電極34aを形成した断面図であり、 (2b)は、(2a)の平面図であり、 (3a)は、負極集電体電極34a上に負極活物質層34bを形成した断面図であり、 (3b)は、(3a)の平面図であり、 (4a)は、負極集電体電極34a及び負極活物質層34bを覆うセパレータ層62を形成した断面図であり、 (4b)は、(4a)の平面図である。 実施形態4の蓄電デバイスの製造方法において、正極複合シート70Aと負極複合シート70Bとを積層する工程を示しており、 (5)は、正極複合シート70Aのセパレータ層61と負極複合シート70Bのセパレータ層62とを接合した正極・負極一体化シート70ABの断面図であり、 (6)は、セパレータ層61とセパレータ層62とを接合した後、正極複合シート70Aの基材フィルム100を剥離した断面図であり、 (7)は、正極複合シート70Aの基材フィルム100を剥離した正極・負極一体化シート70ABにさらに、正極複合シート70Aの基材フィルム100を剥離した正極・負極一体化シート70ABを接合した断面図であり、 (8)は、2つの正極・負極一体化シート70ABを接合した後、一方の基材フィルム100を剥離した断面図である。 実施形態4の蓄電デバイスの製造方法において、正極・負極一体化シート70ABをさらに繰り返し積層する工程を示しており、 (9)は、2つの正極・負極一体化シート70ABを接合して一方の基材フィルム100を剥離した後、さらに正極・負極一体化シート70ABを積層した断面図であり、 (10)は、その積層体から一方の基材フィルム100を剥離した断面図である。 本発明に係る実施形態5の蓄電デバイスの製造方法における工程を示しており、 (1)は、実施形態1のステップPS1~ステップPS7と同様にして作製した正極複合シート20Aの断面図であり、 (2)は、実施形態1のステップNS1~ステップNS7と同様にして作製した負極複合シート30Aの断面図であり、 (3)は、基材フィルム100上にセパレータ層10を形成したセパレータ用シート60の断面図であり、 (4)は、正極複合シート20Aの基材フィルム100を剥離するときの断面図であり、 (5)は、正極複合シート20Aの基材フィルム100を剥離した面をセパレータ用シート60に接合するときの断面図であり、 (6)は、セパレータ用シート60に接合された正極複合シート20Aの上に負極複合シート30Aを接合するときの断面図である。 実施形態5の蓄電デバイスの製造方法における工程を示しており、 (7)は、正極複合シート20Aの上に負極複合シート30Aを接合した後、接合した負極複合シート30Aの基材フィルム100を剥離するときの断面図であり、 (8)は、さらに負極複合シート30Aの基材フィルム100を剥離するときの断面図であり、 (9)は、その基材フィルム100を剥離した負極複合シート30Aの剥離した面を、負極複合シート30Aの基材フィルム100を剥離した面に接合するときの断面図である。 実施形態5の蓄電デバイスの製造方法における工程を示しており、 (10)は、接合された負極複合シート30Aの上に正極複合シート20Aを接合するときの断面図であり、 (11)は、さらに、負極複合シート30Aの上に正極複合シート20Aを接合して、その基材フィルム100を剥離した断面図である。 実施形態5に係る変形例の蓄電デバイスの製造方法における工程を示しており、 (1)は、正極複合シート20Aを基材フィルム100に接合した状態で、その正極複合シート20Aのセパレータ層11側に転写フィルム300を接合するときの断面図であり、 (2)は、その基材フィルム100を正極複合シート20Aから剥離するときの断面図であり、 (3)は、その基材フィルム100を剥離した面に、セパレータ用シート60のセパレータ層10側を接合するときの断面図であり、 (4)は、さらに転写フィルム300を剥がすときの断面図である。 実施形態6の蓄電デバイスの製造方法において、基材フィルム100上に正極21を形成する工程を示しており、(1)は、離型層101と接着層121を備えた基材フィルム100の断面図であり、(2)は接着層121上に正極集電体膜102を形成した断面図であり、(3)は、正極集電体膜102上にレジストパターンR102を形成した断面図であり、(4)は、正極集電体膜102がエッチングされた断面図であり、(5)は、レジストパターンR102を除去した断面図であり、(6a)は、正極集電体電極21a上に正極活物質層21bを形成した断面図であり、(6b)は、(6a)の平面図である。 実施形態6の蓄電デバイスの製造方法において、正極21上にセパレータ層42を形成して正極複合シート20Aを作製する工程と、負極集電体電極31aと負極活物質層31bを形成する工程とを示しており、(7a)は、正極集電体電極21aと接着層121の上にセパレータ層42を形成した断面図であり、(7b)は、(7a)の平面図であり、(8a)は、基材フィルム上に負極31を形成した平面図である。 実施形態6の蓄電デバイスの製造方法において、正極・負極一体化シート50Aを形成する工程を示しており、(8b)は、図10(8a)の断面図であり、(9)は、負極複合シート30Aの断面図であり、(10)は、正極複合シート20Aと負極複合シート30Aを対向して配置した断面図であり、(11)は、正極複合シート20Aと負極複合シート30Aのセパレータ層42間を接合した正極・負極一体化シート50Aの断面図であり、(12)は、正極・負極一体化シート50Aの正極側の基材フィルム100を剥離した断面図である。 実施形態6の蓄電デバイスの製造方法において、正極・負極一体化シートを積層する工程を示しており、(13)は、2つの正極・負極一体化シート50Aを対向して配置した断面図であり、(14)は、2つの正極・負極一体化シートを積層した断面図であり、(15)は、その一方の基材フィルム100を剥離した断面図であり、(16)は、積層された正極・負極一体化シート50Aにさらに別の正極・負極一体化シート50Aを配置した断面図である。 (17)は、実施形態6の蓄電デバイスの製造方法において、積層された正極・負極一体化シート50Aにさらに別の正極・負極一体化シート50Aを積層した断面図である。 実施形態6の正極・負極一体化シート50Aが積層された電気化学素子用積層シートLB1の断面図である。 実施形態6に係る電気化学素子用積層ブロック1に正極端子電極21tと負極端子電極31tとを形成した電気化学素子の一部断面斜視図である。 実施形態6に係る電気化学素子用積層ブロック1を含む蓄電デバイスの例として示す、電気二重層キャパシタ80Aの断面図である。 (a)は、容量(CAP)の測定方法を示す概略図であり、(b)は、電気抵抗(ESR)の測定方法を示す概略図である。 本発明の実施形態6に係る蓄電デバイスの製造方法の工程フロー図である。
 以下、本発明に係る実施形態について図面を参照しながら説明する。
 実施形態1.
 図1は、本発明に係る実施形態1の蓄電デバイスの製造方法の工程フロー図である。以下、図1の工程フローにしたがって各工程を説明する。
 尚、本明細書において、蓄電デバイスとは、後述の実施例に示す電気二重層コンデンサの他、リチウムイオン二次電池やリチウムイオンキャパシタ等が含まれる。
 1.正極セパレータ/電極複合シート20A作製
 <ステップPS1>
 まず、図2(1)に示すように、例えば、表面にシリコーン系の離型層101が形成されたポリエチレンテレフタレートからなる基材フィルム100を準備する。
 基材フィルムそのものが離型性を有するものは離型性付与処理をすることなく用いることができる。
 基材フィルムが離型性を有しないもの、又はより離型性を高めるために、離型層101を形成する等、離型性付与処理をして使用することが好ましい。
 基材フィルム100としては、例えば、ポリプロピレン、ポリエステル、ポリカーボネート、ポリアミド、ポリアミドイミド、ポリエチレン、フッ素樹脂、セルロースアセテートなどのプラスチツクフイルムをはじめ、セロハン、紙なども用いることができる。
 離型性付与処理法としては、たとえばシリコーン樹脂、ワツクス、界面活性剤、金属酸化物、フッ素樹脂などを基材フィルム上にコーティングする方法が挙げられる。
 離型層101としては、その他にたとえばニトロセルロース、硬質ポリ塩化ビニル、ポリアミド、ポリエステル、アクリル樹脂、メラミン樹脂、尿素樹脂、エポキシ樹脂、ウレタン樹脂などの樹脂の1種または2種以上を主体とするものが適宜用いられ、それらの離型性付与処理法としては、基材フィルム上にたとえばグラビア方式によりコーティングして形成することが挙げられる。
 また、前記離型層中にシリカなどの無機酸化物フィラーが含まれていると、離型性がより向上するため、好ましい。
 <ステップPS2>
 次に、図2(2)に示すように、基材フィルム100上に、正極集電体膜102を例えば蒸着により形成する。
 このように、表面が平滑な基材フィルム100上に正極集電体膜102を形成することで、高い連続性を有し、薄膜でありながら低抵抗の正極集電体膜102を得ることが容易となり、その結果、蓄電デバイスの小型低背化を効果的に進めることができる。
また、正極集電体膜102の形成方法としては蒸着の他、スパッタリングや塗布など公知の技術を用いることができる。蒸着やスパッタリングは、膜の連続性が良いため低抵抗で、膜厚が薄い集電体膜の形成が容易であり、蓄電デバイスの小型低背化が容易となる。
 <ステップPS3>
 図2(3)に示すように、正極集電体膜102上に、複数のレジストパターンR102を所定の間隔で印刷して、乾燥させる。このレジストパターンR102は、例えば、マトリクス状に配置され、それぞれ正極集電体電極21aと同様の矩形形状に形成される。
 次に、図2(4)に示すように、レジストパターンR102をエッチングマスクとして、正極集電体膜102をエッチングして、図2(5)に示すように、レジストパターンR102を剥離する。以上のようにして、矩形形状の正極集電体電極21aを形成する。
 マスキング方法としてはスクリーン印刷によりレジストを印刷する方法の他、グラビア印刷によるレジストの印刷、塗布型レジストを用いたフォトリソ、ドライフィルムレジストを用いたフォトリソなどを用いてもよい。コストが安いことを重視するのであれば、スクリーン印刷、グラビア印刷が好ましく、精度を重視するのであれば、フォトリソが好ましい。
また、集電体電極を形成する方法として、集電体膜をエッチングする方法の他に、離型層が形成された基材フィルム上にメタルマスクを用いて直接集電体膜を蒸着する方法やオイルマスクを用いて直接集電体膜を蒸着してプラズマアッシング処理を行う方法などを用いてもよい。
 また、正極集電体電極21aが表面に酸化膜を形成するような場合は、正極集電体電極21aを形成した後、正極集電体電極21aの酸化膜を除去する工程を含むことが好ましい。正極集電体電極21aの酸化膜の除去は、例えば、Alにより正極集電体電極21aを形成した場合には、フッ酸と硫酸の混酸に通して、Al表面の酸化膜を除去することができる。
 <ステップPS4>
 図2(6a)(6b)に示すように、正極集電体電極21a上の2箇所に、正極活物質層21bを形成する。
 正極活物質層21bは、正極集電体電極21a上に、例えば、活物質スラリーをスクリーン印刷することにより形成することができ、例えば、正極集電体電極21aの長手方向に直交する中心線L1に対して対称に、中心線L1から所定の間隔を開けて形成される。
正極活物質層21bにおいて、中心線L1を挟んで対向する内側側面を除く側面はそれぞれ、正極集電体電極21aの外周に一致するように形成することが好ましい。
 <ステップPS5>
 次に、図3(7)に示すように、正極集電体電極21a及び正極活物質層21bを形成したことにより形成された段差を埋めて表面を平坦化する埋込層41を正極活物質層21bが形成されていない部分に形成する。
 この埋込層41は、後の工程で形成されるセパレータ層と同様の成分を含んでいることが好ましい。
 本実施形態1では、正極活物質層21bを形成した後に埋込層41を形成して平坦化した例を示したが、本発明はこれに限定されるものではなく、埋込層41を形成した後に、埋込層41の間を埋めるように正極活物質層21bを形成するようにしてもよい。
 <ステップPS6>
 そして、図3(8)に示すように、平坦化された埋込層41及び正極活物質層21bの表面にセパレータ層11を形成する。
このように、セパレータ層11が形成される表面が埋込層41によって平坦化されているため、表面が平坦で穴などの欠陥のないセパレータ層を精度よく容易に形成することが可能となる。
 以上のステップPS1~ステップPS6の工程を経て、正極セパレータ/電極複合シート20Aが作製される。
 <ステップPS7>
 ステップPS7では、ステップPS1~ステップPS6を繰り返して、必要な枚数の正極セパレータ/電極複合シート20Aを作製する。
 2.負極セパレータ/電極複合シート30A作製
 図1に示すように、正極セパレータ/電極複合シート20Aを製造する際のステップPS1~ステップPS7と同様のステップNS1~ステップNS7にしたがって、負極セパレータ/電極複合シート30Aを作製する。
 負極セパレータ/電極複合シート30Aにおいて、負極集電体電極31aは、その長手方向に直交する中心線L2が、図3(9a)(9b)に示すように、正極セパレータ/電極複合シート20Aにおける正極集電体電極21aの中心線L1の中央に位置するように配置され、負極活物質層31bはそれぞれ中心線L2に対して対称に、かつ正極活物質層21bに重なるような位置に形成される。
 また、ステップNS2~NS4において、ステップPS2~ステップPS4における正極集電体膜102、正極集電体電極21a、正極活物質層21bに代えてそれぞれ負極集電体膜、負極集電体電極31a、負極活物質層31bを形成するが、電気化学素子として電気二重層キャパシタを作製する際には、正極集電体膜102と負極集電体膜、正極集電体電極21aと負極集電体電極31a及び正極活物質層21bと負極活物質層31bとはそれぞれ同様のものを用いることができる。
 なお、正極集電体電極21aと負極集電体電極31aの形状及び面積は同一であってもよいし、異なっていても良い。また、正極活物質層21bと負極活物質層31bの形状及び面積は同一であってもよいし、異なっていてもよい。正極21や負極31の位置ずれを考慮して、正極21又は負極31の一方の面積を大きくして、正極21や負極31が位置ずれしたような場合でも正極21と負極31の対向面積が変化しないようにでき、電気二重層キャパシタの抵抗や容量の変化を抑制することができる。
 尚、本明細書において、簡略化するときは、正極セパレータ/電極複合シート20Aは、正極複合シート20Aといい、負極セパレータ/電極複合シート30Aは、負極複合シート30Aという。
 また、本明細書において、正極と負極に共通する事項を、特に両者を区別することなく説明するときには、正極複合シート20A及び負極複合シート30Aは複合シートといい、正極集電体電極21a及び負極集電体電極31aは単に集電体電極といい、正極活物質層21b及び負極活物質層31bは単に活物質層という。
 以上のように、本実施形態1では、集電体電極を形成した後、活物質層を塗工する例を説明したが、本発明では、複合シートは、基材フィルム100上にまずセパレータ層11を形成し、その上に活物質層を形成した後、集電体電極を形成するようにしてもよい。
 しかしながら、本実施形態1で示したように、集電体上に活物質層を塗工するようにした場合には、活物質層中のバインダが活物質層/集電体電極の界面付近に堆積するため、活物質層/集電体電極間の結着力を高くできる。
 また、本実施形態1で示したように、高い連続性を有し、薄膜化された集電体電極上に活物質層を塗工するようにすると、より一層の小型低背化が可能になる。
 また、活物質層上に集電体電極を形成するようにすると、集電体電極のエッチングや集電体電極の酸化膜の除去が困難となるが、本実施形態1では、集電体電極上に活物質層を形成するようにしているので、集電体電極のエッチングや集電体電極の酸化膜の除去後に活物質層を形成することが可能となり、エッチングや酸化膜の除去が容易となる。
 3.正極・負極一体化シート作製及び積層
 <ステップMS1>
 まず、図4(11)に示すように、正極複合シート20Aと負極複合シート30Aをセパレータ層11が形成されている面が対向するように配置して、正極複合シート20Aと負極複合シート30Aの両側から、例えば、図示しない加圧板により均等に加圧して加熱することにより、図4(12)に示すように、セパレータ層11間を接合する。以上のようにして、正極・負極一体化シート50Aが作製される。
 このとき、例えば、加圧板の温度は150℃とし、加圧の圧力は0.05MPa、加圧時間は1分に設定する。
 このようにセパレータ層11間を接合することにより作製された正極・負極一体化シート50Aは、その貼り合わせ面の両側の正極複合シート20Aと負極複合シート30Aとがほぼ同等の熱に対する伸縮特性を有しているので、接合後の反りが抑えられ、以下の製造工程における取り扱いが容易になる。
 また、正極複合シート20A、負極複合シート30A及び正極・負極一体化シート50Aの反りを、本実施形態1では、以下のように抑制することができる。
 すなわち、セパレータ層11を形成する際によく用いられる樹脂は、一般に、熱膨張係数が大きいため、複合シートの作製時や正極・負極一体化シート50A等の積層体作製時の加熱・冷却による膨張・収縮が大きい。したがって、熱膨張係数の小さい集電体電極や活物質層を構成する材料と樹脂からなるセパレータ層11が貼りあわされると、複合シートや正極・負極一体化シート50A等の積層体に反りが発生したり、更には樹脂からなるセパレータ層11が活物質層から剥離してしまう問題が生じやすい。
 これを抑えるために、セパレータ層11中に熱膨張係数の比較的小さい無機フィラーを含有させることにより、セパレータ層11と活物質層・集電体電極との熱膨張差を低減することができ、複合シートや積層体作製時のシートの反りや剥離を抑制することが可能になる。
 また、セパレータ層11に無機フィラーを含有させると、セパレータ層11が圧着される際に、セパレータ層11が圧着により潰れにくくなるため、活物質層がセパレータ層を突き抜けることによるショートを防止できる。さらに、セパレータ中の樹脂が占める体積を減少させることができるので、電解液による樹脂の膨潤によるセパレータ層11の厚み増大を抑制できる。
 また、正極・負極一体化シート50Aは、セパレータ層が二重構造となるので、一方のセパレータ層11に意図しない欠陥が生じた場合でも、他方のセパレータ層で正極と負極間の絶縁性は確保される。また、両方のセパレータ層に欠陥があるような場合でも、両方の欠陥部位が同じ位置で重なることはほとんどないので、正極と負極間のショートを防止することができる。
 また、正極複合シート20Aと負極複合シート30Aが接合され正極・負極一体化シート50Aとされているため、正極複合シート20Aと負極複合シート30Aが薄層化されたような場合でも、正極複合シート20Aと負極複合シート30Aを破壊することなく、正規の配列・所定の位置を保持したままハンドリングすることが更に容易となり、デバイスの更なる小型低背化が可能となる。
 セパレータ層11間を接合した後、負極複合シート30A側又は正極複合シート20A側の基材フィルム100のいずれか一方を剥離する。
 例えば、正極側の基材フィルム100を剥離するときには、図4(13)に示すように、図示しない吸引盤に、正極・負極一体化シート50Aの負極側を接触させて吸引して、正極・負極一体化シート50Aを持ち上げて、正極側の基材フィルム100を剥離する。
 正極側の基材フィルム100を剥離しようとする場合、基材フィルム100と正極複合シート20A間の接合力よりも強い接合力を正極複合シート20Aと負極複合シート30A間で確保する必要があるが、両者の接合力の差は、基材フィルム100と正極複合シート20Aの間に離型層がある場合は、比較的容易に実現できる。
 一方、基材フィルム100と正極複合シート20Aの間に離型層がない場合は、上記接合力の差は、例えば、高温・高圧で正極複合シート20Aと負極複合シート30Aを接合することにより実現できる。しかしながら、高温・高圧下での接合では、活物質層やセパレータ層の空隙が潰れてしまうことがないように、また、正極複合シート20Aや負極複合シート30Aの形状が変形してしまうことがないように留意する必要がある。
 また、集電体電極を基材フィルム上に蒸着により形成した場合などは、基材フィルムへの熱ダメージおよび蒸着粒子の運動エネルギーによるめり込みのため、基材フィルムとの密着力がより強くなり、離型層がないと剥離が困難となることがある。したがって、本発明では、基材フィルムへのダメージを防止できる厚みの離型層を形成しておくことが好ましい。
 負極側の基材フィルム100を剥離するときには、正極・負極一体化シート50Aの正極側を接触させて吸引して、正極・負極一体化シート50Aを持ち上げて、負極側の基材フィルム100を剥離する。
 このようにして、正極複合シート20A側又は負極複合シート30A側のいずれか一方に基材フィルム100が接合された、正極・負極一体化シート50Aを必要枚数作製する。
 4.正極・負極一体化シートの積層
 <ステップMS2>
 最初の積層は、例えば、図4(14)に示すように、負極側が吸引盤に吸引された正極・負極一体化シート50Aの下に、負極複合シート30A側に基材フィルム100が接合された正極・負極一体化シート50Aを、基材フィルム100が下になるように配置した後、図5(15)に示すように、その2枚の正極・負極一体化シート50Aを接触させて、図示しない加圧板により全面を均等に加圧して接合する。
 このとき、例えば、加圧板の温度は150℃とし、加圧の圧力は0.05MPa、加圧時間は1分に設定する。
 尚、図8に示すような上下最外層にセパレータ層が配置された電気化学素子用積層ブロック1を作製する場合には、基材フィルム上に例えば、所定の厚み(例えば、6μm)のセパレータ層のみが形成されたセパレータ用シートを用い、最初の積層は、そのセパレータ用シートのセパレータ層の上に正極・負極一体化シート50Aを積層するようにする。
 次に、図5(16)に示すように、吸引盤に吸引された正極・負極一体化シート50Aの負極側の基材フィルム100を剥離する。
 そして、その負極側の基材フィルム100が剥離された正極・負極一体化シート50Aの上に、図6(17)に示すように、負極側の基材フィルム100が剥離された別の正極・負極一体化シート50Aを、負極側が対向するように配置して、図6(18)に示すように、負極側同士を接合する。
 次に、積層された別の正極・負極一体化シート50Aの正極側の基材フィルム100を剥離して、その上に、正極側の基材フィルム100が剥離された正極・負極一体化シート50Aを正極側が対向するように配置して、正極側同士を接合する。
 以降、ステップMS1及びステップMS2を必要回数繰り返して、図7に示すような、正極・負極一体化シート50Aが積層された電気化学素子用積層シートLB1を作製する。
 尚、図8に示すような最外層にセパレータ層が配置された電気化学素子用積層ブロック1を作製する場合には、最初の積層に用いたものと同じ、セパレータ層のみが形成されたセパレータ用シートを用い、積層の最後にそのセパレータ用シートのセパレータ層を対向させて接合する。
 また、以上工程により作製される電気化学素子用積層ブロック1では、図7に示すように、最外層の正極集電体電極21a及び負極集電体電極31aは1層であり、正極集電体電極21a又は負極集電体電極31aが2層重ねられてなる内側の集電体電極より薄くなるが、図8では、作図上の制約により、全ての正極集電体電極及び負極集電体電極を同じ厚さに描いている。
 しかしながら、本発明では、例えば、集電体電極や活物質層の厚さを形成場所によらず同一にしてもよいし、形成場所や製造方法に応じて適宜変更することも可能である。
 <ステップMS3>
 次に、電気化学素子用積層シートLB1の上下最外層に配置されている基材フィルム100を剥がした後、電気化学素子用積層シートLB1を裁断線D1に沿って裁断して、電気化学素子用積層ブロック1を作製する。
 尚、このステップでは、電気化学素子用積層シートLB1を裁断した後、基材フィルム100を剥離するようにしてもよい。
 <ステップMS4>
 そして、図8に示すように、裁断された電気化学素子用積層ブロック1の裁断面のうち、正極集電体電極21aが露出された側面に正極端子電極21tを形成し、負極集電体電極31aが露出された側面に負極端子電極31tを形成する。
 ここで、正極端子電極21t及び負極端子電極31tは、電気化学素子用積層ブロック1の側面に、例えば、スパッタリングによりAlを付着させることにより形成することができる。
 正極端子電極21t及び負極端子電極31tは、スパッタリングの他、蒸着、イオンプレーティング、溶射、コールドスプレー、めっきなどにより電気化学素子用積層ブロック1の側面に直接導電皮膜を形成することで作製してもよい。
 また、正極端子電極21t及び負極端子電極31tは、電気化学素子用積層ブロック1の側面に直接導電性接着剤をディッピングにより塗布するようにして形成してもよい。
 側面に正極端子電極21t及び負極端子電極31tが形成された電気化学素子用積層ブロック1は、図示しない、正極パッケージ電極及び負極パッケージ電極を備えたパッケージ内に電解液とともに収納され、蓄電デバイスが作製される。
 パッケージ内に電気化学素子用積層ブロック1を収納する際、例えば、正極端子電極21t及び負極端子電極31t上に、導電性粒子として金を含有する導電性接着剤をディッピングにより塗布して、その導電性接着剤が、それぞれ正極パッケージ電極及び負極パッケージ電極に接続されるように、電気化学素子用積層ブロック1を配置する。
 そして、電気化学素子用積層ブロック1が配置されたパッケージを例えば、170℃で10分加熱して、導電性接着剤を硬化させて、電気化学素子用積層ブロック1をパッケージ電極に固定するとともに、正極端子電極21t及び負極端子電極31tをそれぞれ正極パッケージ電極及び負極パッケージ電極に電気的に接続する。
 導電性粒子としては、金の他にカーボン、銀、銅、アルミニウムなどが用途によって用いられる。
 以上の実施形態1の製造方法は、基材フィルム100上に正極複合シート20A又は負極複合シート30Aを作製して、その正極複合シート20A又は負極複合シート30Aを基材フィルム100から剥がす工程を含んでいる。
 これにより、連続した1つのセパレータ層11に複数のパターニングされた複数の正極集電体電極21aと、正極活物質層21bとを一体化して作製することが可能になる。
 同様に、連続した1つのセパレータ層11に複数のパターニングされた複数の負極集電体電極31aと負極活物質層31bとを一体化して作製することが可能になる。
 したがって、実施形態1の製造方法では、多数の電気化学素子用積層ブロック1を一括して作製することができ、電気化学素子用積層ブロック1を個別に1つずつ作製、ハンドリングする従来の方法に比較して生産性を向上させることができる。
 また、以上の実施形態1の製造方法では、複数のパターニングされた正極集電体電極21a又は負極集電体電極31aが連続した1つのセパレータ層11で一体化されているため、電極の取り扱いが容易となる。また、積層されるまで、正極複合シート20A及び負極複合シート30Aが基材フィルム100に支持されているので、さらに電極の取り扱いが容易となる。
 したがって、例えば、正極集電体電極21a又は負極集電体電極31aを薄くしてもそれらの電極の取り扱いが容易である。したがって、より小型の電気化学素子用積層ブロック1を作製することができる。
 さらに、以上の実施形態1の製造方法では、隣接する正極21と負極31とがセパレータ層11に接合されて固定されているため、製造過程及び製品化後における正極21と負極31の位置ずれが防止できる。
 これにより、製造過程におけるシートの取り扱い及び多層化が容易となり、製品化後における容量変化等の特性変化を抑えることができる。
 また、以上の実施形態1の製造方法では、一方の表面に活物質層が形成された集電体の他方の表面同士を向かい合わせて配置しているので、集電体の両面に活物質層が形成された状態を容易に実現でき、体積容量比率の高い電気化学素子用積層ブロックを作製することが可能になる。
 また、実施形態1の製造方法によれば、パターニングされた複数の正極集電体電極21a及び/又は負極集電体電極31aと、複数の正極活物質層21b及び/又は負極活物質層31bとがセパレータ層11と一体化されているので、電気化学素子用積層ブロック1を小型化しても、製造過程におけるハンドリングが容易となり、より小さい電気化学素子用積層ブロック1を製造することが可能になる。
 また、実施形態1の製造方法によれば、反りが抑えられた正極・負極一体化シート50Aを積層していくので、積層された電気化学素子用積層ブロック1全体の反りも抑えられる。
 なお、本実施形態においては、正極複合シート20Aと負極複合シート30Aのセパレータ層11間を接合することで正極・負極一体化シート50Aを作製し、該正極・負極一体化シート50Aを積層することで電気化学素子用積層シートLB1を作製した。しかし、電気化学素子用積層シートの作製方法はこれに限るものではなく、次の様にして作製してもよい。
例えば、基材フィルム100が剥離された2つの正極複合シート20Aの基材フィルムが剥離された面間を正極集電体電極21a同士を対向させて接合して、正極・正極一体化シートを作製する。同様に、基材フィルム100が剥離された2つの負極複合シート30Aの基材フィルムが剥離された面間を負極集電体電極31a同士を対向させて接合して、負極・負極一体化シートを作製する。これら正極・正極一体化シートと負極・負極一体化シートとをそれぞれのセパレータ層11同士を対向させて接合することで積層シートを作製する。この積層シートの正極・正極一体化シート側に、別の負極・負極一体化シートをセパレータ層11同士を対向させて接合する。この積層工程を必要回数繰り返して、電気化学素子用積層シートを作製する。
 実施形態2.
 実施形態2では、実施形態1で作製した正極複合シート20A及び負極複合シート30Aを用いて、実施形態1とは異なる方法で電気化学素子用積層ブロックを作製する。
 1.正極・負極一体化シート50ABの作製
 まず、図9に示すように、実施形態1のステップPS1~PS6と同様のステップで、基材フィルム100上に正極複合シート20Aを作製する。
 <ステップ2NS7>
 次に、図10(1)に示すように、正極複合シート20Aのセパレータ層11上に、負極活物質層32bを形成する。
 負極活物質層32bは、セパレータ層11を介して正極活物質層21bにそれぞれ対向するように形成する。
 また、負極活物質層32bは、例えば、スクリーン印刷により、負極活物質パターンを印刷した後、例えば、乾燥して形成する。
 <ステップ2NS8>
 次に、図10(2)に示すように、負極活物質層32bが形成されておらず、セパレータ層11が表面に露出している部分に、負極活物質層32bを形成したことによりできた段差を埋めるように埋込層42を形成して、平坦化する。
 <ステップ2NS9>
 そして、平坦化された表面に負極集電体電極32aを形成する。
 負極集電体電極32aは、図10(3)に示すように、正極複合シート20Aにおける隣接する正極集電体電極21aの上方に形成された負極活物質層32bに跨って形成される。
このように、負極集電体電極32aが形成される表面が埋込層42によって平坦化されているため、表面が平坦で穴などの欠陥のない集電体電極を精度よく容易に形成することが可能となる。
 以上のステップPS1~2NS9により、正極・負極一体化シート50ABが作製される。
 <ステップ2NS10>
 以下、ステップPS1~2NS9を繰り返して必要枚数分の正極・負極一体化シート50ABを作製する。
 上下の最外層にセパレータ層が配置された電気化学素子用積層ブロックを作製する場合には、基材フィルム上に例えば、所定の厚み(例えば、6μm)のセパレータ層のみが形成されたセパレータ用シートを用い、正極・負極一体化シート50ABの上下にセパレータ用シートのセパレータ層を対向させて接合すればよい。
 <ステップ2MS1>
 基材フィルムを剥離した正極・負極一体化シート50ABを裁断線D2に沿って裁断し、電気化学素子用積層ブロック2を作製する。
 尚、このステップでは、正極・負極一体化シート50ABを裁断した後、基材フィルムを剥離するようにしてもよい。
 <ステップ2MS2>
 そして、裁断された電気化学素子用積層ブロック2の裁断面のうち、正極集電体電極21aが露出された側面に正極端子電極21tを形成し、負極集電体電極32aが露出された側面に負極端子電極31tを形成する。
 以上のようにして、1層のセパレータ層11を含んでなる実施形態2の電気化学素子は作製される。
 その後、実施形態1と同様にして、蓄電デバイスが作製される。
 以上の実施形態2の製造方法では、隣接する正極22と負極32とがセパレータ層11に接合されて固定されているため、製造過程及び製品化後における正極22と負極32の位置ずれが防止できる。
 これにより、製造過程におけるシートの取り扱いが容易となり、製品化後における容量変化等の特性変化を抑えることができる。
 また、以上の実施形態2の製造方法は、セパレータ層11に正極と負極が一体化された正極・負極一体化シート50ABを基材フィルム100上に作製することを含んでいる。
 これにより、連続した1つのセパレータ層11にパターニングされた複数の正極集電体電極21a、正極活物質層21b及び負極集電体電極32a、負極活物質層32bを一体化して作製することが可能になり、多数の電気化学素子用積層ブロック2を一括して作製することができる。
 したがって、実施形態2の製造方法によれば、電気化学素子用積層ブロック2を個別に1つずつ作製、ハンドリングする従来の方法に比較して生産性を向上させることができる。
 また、本実施形態2の製造方法では、正極・負極一体化シート50ABを裁断する前に、図10(5)に示す正極・負極一体化シート50BAを作製して以下のようにしてさらに多層化してもよい。
 2.正極・負極一体化シート50BAの作製
 図11に示すステップ2PS7~2PS9において、図9のステップ2NS7~2NS9における負極活物質層32b、負極集電体電極32aに代えてそれぞれ正極活物質層22b、正極集電体電極22aを形成する他は、正極・負極一体化シート50ABと同様にして、図10(5)に示す、正極・負極一体化シート50BAを作製する。
 以下、実施形態1と同様にして、2つの正極・負極一体化シート50ABを、負極集電体電極32a同士を対向させて接合した後、一方の正極側の基材フィルム100を剥離してその正極集電体電極21aに正極集電体電極22aが接合されるように、正極・負極一体化シート50BAを積層し、その正極・負極一体化シート50BAの負極側の基材フィルム100を剥離してその負極集電体電極31aに負極集電体電極32aが接合されるように、正極・負極一体化シート50ABを積層することを交互に繰り返して、電気化学素子用積層シートを作製する。
 尚、上下最外層にセパレータ層が配置されるようにするには、基材フィルム上に所定の厚みのセパレータ層のみが形成されたセパレータ用シートを用い、最初の積層は、そのセパレータ用シートのセパレータ層の上に正極・負極一体化シート50ABを積層するようにし、積層の最後にセパレータ用シートのセパレータ層を対向させて接合するようにすればよい。
 この電気化学素子用積層シートの作製において、積層数の少ない段階では、接合により形成された積層体はまだ厚みが薄いが、その貼り合わせ面の両側の正極・負極一体化シート50ABがほぼ同等の熱に対する伸縮特性を有しているので、接合後の反りが抑えられ、以下の製造工程における取り扱いが容易になる。
 また、一方の表面に活物質層が形成された集電体電極の他方の表面同士を向かい合わせて配置しているので、集電体電極の両面に活物質層が形成された状態を容易に実現でき、体積容量比率の高い電気化学素子用積層ブロックを作製することが可能になる。
 そして、実施形態1と同様にして、電気化学素子用積層シートを裁断して、電気化学素子用積層ブロックを作製し、実施形態1と同様に正極端子電極と負極端子電極を形成する。
 以上のように構成された実施形態2の製造方法は、実施形態1と同様の作用効果を有し、さらにセパレータ層同士を接合していないので、セパレータ層を薄くすることが可能になる。
 実施形態3.
 実施形態3では、実施形態1で作製した正極複合シート20A及び負極複合シート30Aを用いて、実施形態1とは異なる方法で電気化学素子用積層ブロックを作製する。
 図12は、本発明に係る実施形態3の製造工程を示す工程フロー図である。以下、図12の工程フロー図にしたがって各工程を説明する。
 1.正極・正極一体化シート20Dの作製
 実施形態1のステップPS1~PS6と同様のステップで、基材フィルム100上に正極複合シート20Aを作製した後、以下のステップ3PS7~3PS13を行う。
 <ステップ3PS7>
 まず、図13(1)に示すように、正極複合シート20Aのセパレータ層11に対向するように、表面に離型層(図示せず)が形成されたポリエチレンテレフタレートからなる転写フィルム300を配置して加圧し、図13(2)に示すように、正極複合シート20Aに転写フィルム300を接合する。
 転写フィルム300としては、例えば、ポリプロピレン、ポリエステル、ポリカーボネート、ポリアミド、ポリアミドイミド、ポリエチレン、フッ素樹脂、セルロースアセテートなどのプラスチツクフイルムをはじめ、セロハン、紙なども用いることができる。
 <ステップ3PS8>
 次に、図13(3)に示すように、正極複合シート20Aの基材フィルム100を剥離する。
 <ステップ3PS9>
 そして、図13(4)に示すように、正極複合シート20Aの基材フィルム100が接合されていた面に、正極集電体電極23aを正極集電体電極21aに対向するように形成する。
 尚、ステップ3PS8において、正極複合シート20Aの基材フィルム100を剥離する際、離型層101が正極複合シート20A側に残らないように基材フィルム100を剥離して、ステップ3PS9における正極集電体電極23aの形成を省略して、工程数を減らすこともできる。
 <ステップ3PS10>
 次に、図13(5)に示すように、正極集電体電極23a上に、正極活物質層21bと同じ大きさの正極活物質層23bをそれぞれ正極活物質層21bに対向するように形成する。
 このように、正極集電体電極23aが形成されることによって、正極集電体電極21aの基材フィルム100が接合されていた面に、離型層101が残っていたり、集電体の酸化膜が形成されているような場合であっても、正極活物質層23bと正極集電体電極との電気的接続が確保され、蓄電デバイスの抵抗を下げることができる。
 <ステップ3PS11>
 次に、図13(6)に示すように、正極活物質層23bが形成されていない部分に、埋込層43を形成して、正極活物質層23bを形成された表面を平滑にする。
 <ステップ3PS12>
 次に、図14(7)に示すように、平滑にした表面にセパレータ層13を形成する。
 以上のステップ3PS7~3PS12により、正極複合シート20Aと正極複合シート20Aの上に形成された正極複合シート20Cとによって構成された正極・正極一体化シート20Dが作製される。
 尚、正極複合シート20Aと正極複合シート20Cとは、正極集電体電極21aと正極集電体電極23aとが対向するように接合される。
 <ステップ3PS13>
 以上のステップPS1~3PS12を繰り返すことにより、必要な枚数の正極・正極一体化シート20Dを作製する。
 2.負極・負極一体化シート30Dの作製
 図12のステップNS1~3NS13にしたがって負極・負極一体化シート30Dを作成する。
 正極集電体電極23a及び正極活物質層23bに代えてそれぞれ負極集電体電極33a、負極活物質層33bを形成する他は、正極・正極一体化シート20Dと同様にして、図14(8)に示す、負極・負極一体化シート30Dを必要な枚数作製する。
 ここで、負極集電体電極33aは、図14(9)に示すように、正極・正極一体化シート20Dにおける隣接する正極集電体電極23aの上方に形成された正極活物質層23bに跨って形成される。
 このようにすることで、集電体電極の両面に活物質層が形成された状態を容易に実現でき、体積容量比率の高い電気化学素子用積層ブロックを作製することが可能になる。
 すなわち、小型化のため集電体電極を薄くしようとした場合、例えば集電体箔のような集電体電極の両面に活物質層を形成するのは容易ではないが、本実施形態3の方法では容易である。
 3.積層
 <ステップ3MS1>
 次に、図14(9)に示すように、正極・正極一体化シート20Dと負極・負極一体化シート30Dとをセパレータ層13とセパレータ層14を貼り合わせることにより接合して、接合した正極・正極一体化シート20Dの転写フィルム300を剥離する。
 このようにセパレータ層13とセパレータ層14を接合することにより、その貼り合わせ面の両側の正極・正極一体化シート20Dと負極・負極一体化シート30Dとがほぼ同等の熱に対する伸縮特性を有しているので、接合後の反りが抑えられ、以下の製造工程における取り扱いが容易になる。
 また、セパレータ層が二重となるので、一方のセパレータ層に意図せず欠陥があった場合でも、他方のセパレータ層で電極間の絶縁性は確保される。また、両方のセパレータ層に欠陥があった場合でも、両方の欠陥部位が同じ位置で重なることはほとんど生じないので、正極と負極間のショートを防止することができる。
 <ステップ3MS1>
 転写フィルム300を剥離した正極・正極一体化シート20D側に負極・負極一体化シート30Dのセパレータ層14側を接合して転写フィルム300を剥離する。
 <ステップ3MS1>
 転写フィルム300を剥離した負極・負極一体化シート30D側に正極・正極一体化シート20Dのセパレータ層13側を接合して転写フィルム300を剥離する。
 <ステップ3MS1>
 ステップ3MS1を必要回数繰り返して、電気化学素子用積層シートLB3を作製する。
 <ステップ3MS2>
 電気化学素子用積層シートLB3の最下層に配置されている基材フィルムを剥がした後、図15に示す裁断線D3で、電気化学素子用積層シートLB3を裁断して、電気化学素子用積層ブロック3を作製する。
 尚、このステップでは、電気化学素子用積層シートLB3を裁断した後、基材フィルムを剥離するようにしてもよい。
 <ステップ3MS3>
 そして、実施形態1と同様に正極端子電極と負極端子電極を形成する。
 その後、実施形態1と同様にして、蓄電デバイスが作製される。
 以上説明した実施形態3の製造方法では、基材フィルム上に例えば、所定の厚み(例えば、6μm)のセパレータ層のみが形成されたセパレータ用シートを準備して、電気化学素子用積層ブロック3を作製する積層の際、以下のようにしてもよい。
 最初の積層として、セパレータ用シートのセパレータ層上に、図13(3)に示す基材フィルム100が剥離された正極複合シート20Aを、正極集電体電極21aがセパレータ用シートのセパレータ層に接合するように積層し、転写フィルム300を剥がして、その上に負極・負極一体化シート30Dや正極・正極一体化シート20Dを積層していく。
 そして、最後の積層は、図13(1)に示すような正極複合シート20Aまたは負極複合シート30Aを積層した後、その基材フィルム100を剥離し、その剥離した面にセパレータ用シートのセパレータ層が対向するように接合して、セパレータ用シートの基材フィルムを剥離する。
 このようにすると、電気化学素子用積層ブロック3の上下の最外層に、容量にあまり寄与しない活物質層が形成されることがないので好ましい。
 以上のように構成された実施形態3の蓄電デバイスの製造方法は、実施形態1と同様の作用効果を有し、さらに転写フィルム300を接合して基材フィルム100を剥離するので、基材フィルム100を剥離した後の正極複合シート20A及び負極複合シート30Aの取り扱いを容易にできる。
 すなわち、以上の実施形態3の製造方法では、複数のパターニングされた正極集電体電極21a又は負極集電体電極31aが連続したセパレータ層11で一体化され、複数のパターニングされた正極集電体電極23aがセパレータ層13で一体化され、複数のパターニングされた負極集電体電極33aがセパレータ層14で一体化されているため、電極の取り扱いが容易となり、基材フィルム100を剥離した後であっても、転写フィルム300が接合されていることで電極の取り扱いが更に容易となる。
 また、以上の実施形態3の製造方法では、一方の面に活物質層が形成された集電体電極がセパレータ層で一体化されてなる複合シートの前記集電体電極の他方の面に、前記活物質層にそれぞれ対向して活物質層を形成するので、集電体電極の両面に活物質層が形成された状態を容易に実現でき、体積容量比率の高い電気化学素子用積層ブロックを作製することが可能になる。
 これに対して、従来の製造方法では、集電体箔の両面に活物質層を形成することは、ハンドリング上容易ではなく、困難である。
 以上の実施形態1~3では、埋込層の形成とセパレータ層の形成をそれぞれの機能の違いを考慮して別の工程で行ったが、本発明では、埋込層とセパレータ層とを同一材料で同時に形成することもできる。
 実施形態4.
 まず、図16(1)に示す表面にシリコーン系の離型層101が形成された矩形の基材フィルム100を準備する。
 次に、図16(2a)(2b)に示すように、基材フィルム100の離型層101上に、正極集電体電極24aを形成する。この正極集電体電極24aは、4辺のうち3辺については、図16(2b)に示すように、その外周が基材フィルム100の外周に一致するように、1つの辺24eについては基材フィルム100の1つの辺100eから内側に離して形成する。
 次に、図16(3a)(3b)に示すように、正極集電体電極24a上に正極活物質層24bを形成する。この正極活物質層24bは、4辺のうち3辺については、図16(3b)に示すように、その外周が正極集電体電極24aの外周に一致するように、1つの辺24gについては正極集電体電極24aの1つの辺24fから内側に離して形成する。
 ここで、正極集電体電極24aにおいて、辺24eと辺24fは対向する辺である。
 そして、正極集電体電極24aと正極活物質層24bからなる正極24を覆うようにセパレータ層61を形成する。
 以上のようにして、正極集電体電極24aと正極活物質層24bからなる正極24がセパレータ層61と一体化されてなる正極複合シート70Aを作製する。
 同様にして、図17(1)に示す表面にシリコーン系の離型層101が形成された矩形の基材フィルム100を準備して、図17(2a)(2b)に示すように、基材フィルム100の離型層101上に、負極集電体電極34aを形成する。この負極集電体電極34aは、図17(2b)に示すように、1つの辺34eのみ基材フィルム100の表面の辺100eに一致し、他の3辺は基材フィルム100の外周より内側に離して形成する。
 次に、図17(3a)(3b)に示すように、負極集電体電極34a上に負極活物質層34bを形成する。この負極活物質層34bは、負極集電体電極34aの一辺34eより内側に離して形成する。
 そして、負極集電体電極34aと負極活物質層34bからなる負極34を覆うようにセパレータ層62を形成する。
 以上のようにして、負極集電体電極34aと負極活物質層34bからなる負極34がセパレータ層62と一体化されてなる負極複合シート70Bを作製する。
 次に、図18(5)に示すように、正極複合シート70Aと負極複合シート70Bとを、正極複合シート70Aを下にしてセパレータ面同士を向かい合わせて配置し、全面を均等に加圧することにより接合して、正極・負極一体化シート70ABを作製する。これにより、正極24と負極34とがセパレータ層61,62によって一体化された正極・負極一体化シート70ABが作製される。
 この正極・負極一体化シート70ABを必要枚数作製する。
 このようにセパレータ層61とセパレータ層62を接合することにより作製された正極・負極一体化シート70ABは、その貼り合わせ面の両側の正極複合シート70Aと負極複合シート70Bとがほぼ同等の熱に対する伸縮特性を有しているので、接合後の反りが抑えられ、以下の製造工程における取り扱いが容易になる。
 また、セパレータ層がセパレータ層61とセパレータ層62の二重構造となるので、一方のセパレータ層に意図せず欠陥があった場合でも、他方のセパレータ層で電極間の絶縁性は確保される。また、両方のセパレータ層に欠陥があった場合でも、両方の欠陥部位が同じ位置で重なることはほとんど生じないので、正極と負極間のショートを防止することができる。
 図18(6)に示すように、吸引盤80に正極・負極一体化シート70ABの負極側を接触させて吸引して持ち上げた後、正極側の基材フィルム100を剥離する。
 次に、吸引盤80に吸引された正極・負極一体化シート70ABの下に、別の正極・負極一体化シート70ABを負極側の基材フィルムが下になるように配置し、その別の正極側の基材フィルムを剥離した後、図18(7)に示すように、接触させて全面を均等に加圧して接合した。
 このようにすることで、集電体電極の両面に活物質層が形成された状態を容易に実現でき、体積容量比率の高い電気化学素子用積層ブロックを作製することが可能になる。
 すなわち、小型化のため集電体電極を薄くしようとした場合、集電体電極の両面に活物質層を形成するのは容易ではないが、本実施形態4の方法では容易である。
 次に、図18(8)に示すように、吸引盤80に吸引された基材フィルム100を正極・負極一体化シート70ABから剥離して、図19(9)に示すように、その剥離した側に別の正極・負極一体化シート70ABを負極側を接合して、その基材フィルム100剥離する。
 以上の工程を繰り返して、必要枚数の正極・負極一体化シート70ABを積層する。
 以上の実施形態4では、正極集電体電極24a、負極集電体電極34aを一枚の基材フィルム100上に集合状態で形成するのではなく個別に形成することにより埋込層を形成する工程と裁断工程を削減することができ、工程数を減らすことが可能になる。
 すなわち、本実施形態4では、実施形態1等の埋込層に相当する要素をセパレータ層と同時に形成している。
 また、本実施形態1~4の製造方法では、セパレータ層には接合機能を付加、すなわち、セパレータ層を構成する物質自体に接合機能を持たせたり、セパレータ層の面上に接合物質を配置するなどが可能である。
 また、セパレータ層同士の接合は、セパレータ層と正極集電体電極又は負極集電体電極間、正極集電体電極間又は負極集電体電極間に比較して、接合に寄与する面積が大きくでき、強固な接合が得られる。
 尚、上下の最外層にセパレータ層を配置する場合は、基材PETフィルム上にセパレータ層のみを形成したものを準備し、このセパレータ層を上下最外層に配置するようにすればよい。
 実施形態5.
 まず、本実施形態5の蓄電デバイスの製造方法では、実施形態1のステップPS1~ステップPS7と同様にして、図20(1)に示す正極複合シート20Aを必要枚数作製する。尚、図面上右側の一方の端部側に位置する正極集電体電極21a1は、その上に1箇所のみ正極活物質層21bが形成されている点で、2箇所に正極活物質層21bが形成されている他の正極集電体電極21aとは異なっている。
 また、実施形態1のステップNS1~ステップNS7と同様にして、図20(2)に示す負極複合シート30Aを必要枚数作製する。尚、図面上左側の他方の端部側に位置する負極集電体電極31a1は、その上に1箇所のみ負極活物質層31bが形成されている点で、2箇所に負極活物質層31bが形成されている他の負極集電体電極31aとは異なっている。
 さらに、本実施形態5の製造方法では、図20(3)に示すように、基材フィルム100上にセパレータ層10を形成したセパレータ用シート60を必要枚数作製する。
 そして、本実施形態5の製造方法では、以上のようにして作製した正極複合シート20A、負極複合シート30A及びセパレータ用シート60を以下のように積層する。
 第1に、例えば、正極複合シート20Aのセパレータ層11側の面を吸着して持ち上げて、図20(4)に示すように、正極複合シート20Aの基材フィルム100を剥離する。
 次に、図20(5)に示すように、基材フィルム100を剥離した面がセパレータ用シート60のセパレータ層10に対向するように、吸着した正極複合シート20Aを配置して、セパレータ用シート60上に正極複合シート20Aを接合する。
 次に、図20(6)に示すように、セパレータ用シート60に接合された正極複合シート20Aの上に負極複合シート30Aを接合する。具体的には、基材フィルム100の上に形成された負極複合シート30Aの基材フィルム100側を吸引盤に吸着して持ち上げて、セパレータ層同士を対向させて、正極複合シート20Aの上に負極複合シート30Aを接合する。
 このようにして、正極複合シート20Aの上に負極複合シート30Aを接合した後、図21(7)に示すように、接合した負極複合シート30Aの基材フィルム100を剥離する。
 次に、例えば、負極複合シート30Aのセパレータ層側の面を吸着して持ち上げて、図21(8)に示すように、負極複合シート30Aの基材フィルム100を剥離して、その基材フィルム100を剥離した負極複合シート30Aの剥離した面を、図21(9)に示すように、図21(7)に示した負極複合シート30Aの基材フィルム100を剥離した面に接合する。この接合の際、一方の負極複合シート30Aの負極集電体電極31aと他方の負極複合シート30Aの負極集電体電極31aとが対向するように接合される。
 次いで、図22(10)に示すように、接合された負極複合シート30Aの上に正極複合シート20Aを接合する。具体的には、基材フィルム100の上に形成された正極複合シート20Aの基材フィルム100側を吸引盤に吸着して持ち上げて、セパレータ層同士を対向させて、負極複合シート30Aの上に正極複合シート20Aを接合する。
 さらに、図22(11)に示すように、接合した正極複合シート20Aの基材フィルム100を剥離して、以下、同様に、正極複合シート20A、負極複合シート30A、負極複合シート30A、正極複合シート20A、正極複合シート20A、負極複合シート30A、負極複合シート30A、・・・の順に必要枚数繰り返し積層し、最後は、正極複合シート20A又は負極複合シート30Aの基材フィルム100を剥離した面にセパレータ用シート60のセパレータ層10側を接合する。
 以上のようにして、作製された電気化学素子用積層シートを、実施形態1等と同様に切断して電気化学素子を作製し、実施形態1等と同様にして蓄電デバイスを製造する。
 以上の実施形態5の蓄電デバイスは、実施形態1~3と同様の作用効果を有する。
 実施形態5の変形例
 以上説明した実施形態5の蓄電デバイスの製造方法では、図20(4)及び(5)を参照しながら説明したように、正極複合シート20Aの基材フィルム100を剥離して、その基材フィルム100を剥離した面をセパレータ用シート60のセパレータ層10に対向させて接合するようにしたが、本発明では、以下のようにしてもよい。
 すなわち、図23(1)に示すように、正極複合シート20Aを基材フィルム100に接合した状態で、その正極複合シート20Aのセパレータ層11側に転写フィルム300を接合した後、図23(2)に示すように基材フィルム100を正極複合シート20Aから剥離する。
 そして、その基材フィルム100を剥離した面に、図23(3)に示すように、セパレータ用シート60のセパレータ層10側を接合した後、図23(4)に示すように、転写フィルムを剥がす。
 このように転写フィルムを用いることで、正極複合シートや負極複合シートに吸引盤等が直接接することがなくなり、電気化学素子への異物の混入を防止できる。
 また、この転写フィルムを用いる方法は、実施形態4において、図20(4)に示すように、正極複合シート20Aのセパレータ層11側の面を吸着して持ち上げて、正極複合シート20Aの基材フィルム100を剥離して、図20(5)に示すように、基材フィルム100を剥離した面がセパレータ用シート60のセパレータ層10に対向するように、吸着した正極複合シート20Aを配置して、セパレータ用シート60上に正極複合シート20Aを接合する際にも、適用することもできる。
 さらに、図21(8)に示すように、負極複合シート30Aのセパレータ層11側の面を吸着して持ち上げて、負極複合シート30Aの基材フィルム100を剥離して、図21(9)に示すように、その基材フィルム100を剥離した負極複合シート30Aの剥離した面を、負極複合シート30Aの基材フィルム100を剥離した面に接合する際にも、適用することができる。
 以降の工程は、図20(6)~図22(11)を参照しながら説明した工程を経て実施形態5と同様に蓄電デバイスを製造する。
 以上の実施形態5では、埋込層の形成とセパレータ層の形成をそれぞれの機能の違いを考慮して別の工程で行ったが、本発明では、埋込層とセパレータ層とを同一材料で同時に形成することもできる。
 尚、以上の実施形態において、製造工程を説明するために参照した図面では、作図上の制約により、セパレータ層、正極及び負極等を厚く描いているが、実寸法を正確に拡大又は縮小したものではない。
 また、明細書に添付した他の図面についても、大きさ又は位置関係を作図上の制約又は理解し易いように適宜変形又は誇張して示している。
 実施形態6
(1)蓄電デバイス
 図30は、実施形態6に係る蓄電デバイスに用いる電気化学素子用積層ブロック1を示す斜視図である。
 図31は、電気化学素子用積層ブロック1を含む蓄電デバイスの例として示す、電気二重層キャパシタ80Aの断面図である。
 なお、図30では、電気化学素子用積層ブロック1の前面(ハッチングにより示した面)は、正極21(正極集電体電極21aと正極活物質層21b)と負極31(負極集電体電極31aと負極活物質層31b)の配置の概略を理解できるように断面を示しているが、実際は、後述する製造方法において詳細を示すように、接着性を有するセパレータ層42により覆われており、このセパレータ層42に設けられた切れ込み25(図25(7b)参照)を介して、電解液が電気化学素子用積層ブロック1内の蓄電ユニットに供給される。すなわち、切れ込み25は、電解液を電気化学素子用積層ブロック1内に導入することができる電解液誘導路として機能する。
 また、電気化学素子用積層ブロック1の後面(前面に平行な面)も同様に、図示しないセパレータ層42により覆われており、この後面を覆うセパレータ層42にも切れ込み25を設けてよい。
 他の実施形態と同じ符号を付した要素は、特に断りがない限り他の実施形態と同じ材料を用いてよい。
 後述するように電気化学素子用積層ブロック1を正極パッケージ電極及び負極パッケージ電極を備えたパッケージ内に電解液とともに収納することで例えば電気二重層キャパシタ、リチウムイオン二次電池またはリチウムイオンキャパシタのような蓄電デバイスを形成することができる。
 電気化学素子用積層ブロック1は、正極活物質層21bと負極活物質層31bとが対向している1組の正極21(正極集電体電極21aと正極活物質層21b)と負極31(負極集電体電極31aと負極活物質層31b)および当該正極と当該負極の間に配置され、当該正極の表面の一部および当該負極の表面の一部と接着しているセパレータ層42(図30では詳細部の記載を省略)とを有する蓄電ユニットが複数積層した積層体を有する。
 そして、セパレータ層42は、電解液を内部に誘導できる電解液誘導路を正極活物質層21bと負極活物質層31bとの間に形成している。
 従って、パッケージ内に電気化学素子用積層ブロック1を配置し、電解液をパッケージ内に供給することで、容易に電解液を蓄電ユニット内に供給(注液)することができる。
 この結果、蓄電ユニットの積層時の熱等の影響による電解液の変質、揮発等の問題を防止することができる。
 また、電解液の注液を積層体形成後に行えることから蓄電ユニットの積層時に蓄電ユニットを電解液を含んだ状態でハンドリングする必要がなく、工程が簡略化され、効率的である。
 さらに、電解液がより短い時間で蓄電ユニット内に到達するため、電解液の注液が容易であるという利点を有する。
 なお、これは、電気化学素子用積層ブロック1を用いた蓄電デバイスの製造において、電解液の電気化学素子用積層ブロック1への注液を蓄電ユニットの積層後に限定するものではない。蓄電ユニットの積層前および/または蓄電ユニットの積層中に注液しておいてもよいし、蓄電ユニットの積層後に追加で注液してもよい。
 上述のようにセパレータ層42は、当該正極の表面の一部もしくは当該負極の表面の一部と接着できる、またはセパレータ層42同士で接着できるように接着性を有している。
 セパレータ層42としては熱可塑性樹脂(PVDF(ポリフッ化ビニリデン)及びその六フッ化プロピレンとの共重合体、ポリエチレンオキサイドなど)および、ポリイミド、ポリアミドイミド、ポリアミドなどの熱硬化性樹脂を使用することができる。
 これらの中で、熱可塑性樹脂はガラス転移温度または融点まで加熱することによって軟らかくなるため、加熱又は加熱しながら圧着することで被接着物である正極活物質層21b、負極活物質層31b、正極集電体電極21aもしくは負極集電体電極31aまたはセパレータ層との接触面積が大きくなり、強い接着強度(接合強度)が得られるため好ましい。
 また、熱可塑性樹脂であるPVDFを用いた場合、耐熱性及び耐溶剤性に優れる。
 一方、熱硬化性樹脂は耐熱性が高く、結着力が強く、化学的安定性に優れ、熱可塑性樹脂と比較して高強度であるため、積層体の強度が向上する。
 セパレータ層42を上述の被接着物に接着する方法としては、例えばセパレータ層42を設けた各電極を圧着または加熱することが挙げられ、圧着または加熱することにより被接着物(正極、負極等)に接着されて一体化する。また圧着時に加熱することにより、より強固に接着することができる。
 セパレータ層42を設けた各電極を積層して積層体を作製する際、積層体においては、電極の逐次積層時は、加熱などにより仮接着を行うことで仮積層体を形成し、仮積層体に加熱などにより本接着を施す。
 このようにすると、積層時に、正極と負極間の位置を精度よく逐次積層することが可能になる。
 また、本接着は、積層体が複数個まとめて仮接着された積層集合体に施してもよいし、仮接着された積層集合体を個片化した後に、積層体毎に行ってもよい。
 セパレータ層42は、粒子状絶縁体を含んでもよい。セパレータ層42に粒子状絶縁体を含むことにより、セパレータ層42の強度を向上することができ、積層時の潰れを抑制し、電極間ショートを防ぐことができる。
 セパレータ層42は充分な接着性を確保し、かつ電気化学素子用積層ブロック1トの形状を堅固に維持するために、好ましくは1250sec/100cc以上の透気度を有する。
 なお、透気度とは、気体の透過しやすさを表すのに用いる尺度であり、日本工業規格(JIS)のP 8117に準拠した方法により、デジタル型王研式透気度試験機(例えば、旭精工株式会社製「EG01-5-1MR」)を使用し、シリンダー圧0.25MPa、測定圧0.05MPa、測定内部径30mmの条件で測定できる。
 透気度の値が大きいと気体を通し難く、これは同時に電解液のような液体も通し難いことを示している。
 次に、図31を用いて、電気化学素子用積層ブロック1を含む電気二重層キャパシタ80Aについて説明する。
 電気化学素子用積層ブロック1は、パッケージベース部11bとパッケージ蓋部11aからなるパッケージ内に配置されている。パッケージベース部11bとパッケージ蓋部11aは例えば液晶ポリマーのような耐熱樹脂により形成され得る。
 パッケージベース部11bには、例えばアルミニウムのような金属より成る正極パッケージ電極122bと負極パッケージ電極132bとが分離して配置されている。
 複数の正極集電体電極21aと電気的に接続している電気化学素子用積層ブロック1の正極端子電極21tと、正極パッケージ電極122bとが、導電性接着剤122aにより電気的に接続されている。同様に、複数の負極集電体電極31aと電気的に接続している電気化学素子用積層ブロック1の負極端子電極31tと、負極パッケージ電極132bとが、導電性接着剤132aにより電気的に接続されている。
 パッケージベース部11bとパッケージ蓋部11aからなるパッケージ内に電解液が配置されている。
 この電解液をパッケージ内に電気化学素子用積層ブロック1を配置した後に供給した場合、上述のように、切れ込み25を介して電解液が蓄電ユニット内に到達する。
(2)製造方法
 次に、実施形態6に係る蓄電デバイス(電気化学素子用積層ブロック1)の製造方法を説明する。
 図33は、本発明に係る実施形態6の蓄電デバイス(電気化学素子用積層ブロック1)の製造方法の工程フロー図である。以下、図33の工程フローにしたがって各工程を説明する。
 i)正極複合シート20A作製
 <ステップPS1>
 まず、図24(1)に示すように、例えば、表面にシリコーン系の離型層101が形成されたポリエチレンテレフタレートからなる基材フィルム100を準備する。
 基材フィルムそのものが離型性を有するものは離型性付与処理をすることなく用いることができる。
 基材フィルムが離型性を有しないもの、又はより離型性を高めるために、離型層101を形成する等、離型性付与処理をして使用することが好ましい。
 基材フィルム100としては、例えば、ポリプロピレン、ポリエステル、ポリカーボネート、ポリアミド、ポリアミドイミド、ポリエチレン、フッ素樹脂、セルロースアセテートなどのプラスチックフィルムをはじめ、セロハン、紙なども用いることができる。
 離型性付与処理法としては、たとえばシリコーン樹脂、ワックス、界面活性剤、金属酸化物、フッ素樹脂などを基材フィルム上にコーティングする方法が挙げられる。
 離型層101としては、その他にたとえばニトロセルロース、硬質ポリ塩化ビニル、ポリアミド、ポリエステル、メラミン樹脂、尿素樹脂、エポキシ樹脂、ウレタン樹脂などの樹脂の1種または2種以上を主体とするものが適宜用いられ、それらの離型性付与処理法としては、基材フィルム上にたとえばグラビア方式によりコーティングして形成することが挙げられる。
 さらに、基材フィルム100(または離型層101)の上に接着層121を形成する。
 接着層121として、ウレタン樹脂、ポリフッ化ビニリデン樹脂(PVDF)、ポリアミドイミド樹脂(PAI)、ポリイミド樹脂、ポリアミド樹脂またはシリコーン等を使用することができる。
 <ステップPS2>
 次に、図24(2)に示すように、接着層121上に、正極集電体膜102を例えば蒸着により形成する。
 このように、表面が平滑な接着層121上に正極集電体膜102を形成することで、高い連続性を有し、薄膜でありながら低抵抗の正極集電体膜102を得ることが容易となり、その結果、蓄電デバイスの小型低背化を効果的に進めることができる。
また、正極集電体膜102の形成方法としては蒸着の他、スパッタリングや塗布など公知の技術を用いることができる。蒸着やスパッタリングは、膜の連続性が良いため低抵抗で、膜厚が薄い集電体膜の形成が容易であり、蓄電デバイスの小型低背化が容易となる。
 <ステップPS3>
 図24(3)に示すように正極集電体膜102上に、複数のレジストパターンR102を所定の間隔で印刷して、乾燥させる。このレジストパターンR102は、例えば、マトリクス状に配置され、それぞれ正極集電体電極21aと同様の矩形形状に形成される。
 次に、図24(4)に示すように、レジストパターンR102をエッチングマスクとして、正極集電体膜102をエッチングした後、図24(5)に示すように、レジストパターンR102を剥離する。以上のようにして、矩形形状の正極集電体電極21aを形成する。
 マスキング方法としてはスクリーン印刷によりレジストを印刷する方法の他、グラビア印刷によるレジストの印刷、塗布型レジストを用いたフォトリソ、ドライフィルムレジストを用いたフォトリソなどを用いてもよい。コストが安いことを重視するのであれば、スクリーン印刷、グラビア印刷が好ましく、精度を重視するのであれば、フォトリソが好ましい。
 また、集電体電極を形成する方法として、集電体膜をエッチングする方法の他に、離型層が形成された基材フィルム上にメタルマスクを用いて直接集電体膜を蒸着する方法やオイルマスクを用いて直接集電体膜を蒸着してプラズマアッシング処理を行う方法などを用いてもよい。
 また、正極集電体電極21aが表面に酸化膜を形成するような場合は、正極集電体電極21aを形成した後、正極集電体電極21aの酸化膜を除去する工程を含むことが好ましい。正極集電体電極21aの酸化膜の除去は、例えば、アルミニウム(Al)により正極集電体電極21aを形成した場合には、フッ酸と硫酸の混酸に通して、アルミニウム表面の酸化膜を除去することができる。
 <ステップPS4>
 図24(6a)(6b)に示すように、正極集電体電極21a上の2箇所に、正極活物質層21bを形成する。
 正極活物質層21bは、正極集電体電極21a上に、例えば、活物質スラリーをスクリーン印刷することにより形成することができ、例えば、正極集電体電極21aの長手方向に直交する中心線L1に対して対称に、中心線L1から所定の間隔を開けて形成される。正極活物質層21bにおいて、中心線L1を挟んで対向する内側側面を除く側面はそれぞれ、正極集電体電極21aの外周に一致するように形成することが好ましい。
 <ステップPS5>
 次に、図25の(7a)(7b)に示すように、正極活物質層21bを取り囲むように接着層121および正極集電体電極21a上にセパレータ層42を形成する。この際、(7b)に示すように、正極活物質層21bに接するように切れ込み25をセパレータ層42に設ける。切れ込み25は、(7b)においてセパレータ層42を貫通している。
 上述したように、図30には図示しないが、電気化学素子用積層ブロック1の前面(図30においてハッチングを施した面)は、セパレータ層42により覆われている。同様に、電気化学素子用積層ブロック1の後面(前面に平行な面)もセパレータ層42により覆われている。
 後述するステップMS3までに、図25の7(b)において縦方向に複数ならぶ蓄電ユニット(正極活物質層21bと負極活物質層31bとが対向している1組の正極(正極集電体電極21aと正極活物質層21b)と負極(負極集電体電極31aと負極活物質層31b)および当該正極と当該負極の間に配置され、当該正極の一部および当該負極の一部と接着しているセパレータ層42とを合わせて「蓄電ユニット」と呼ぶ場合がある。)または蓄電ユニットを得るための中間品を縦方向に1つずつ切り離す際に、例えば、図25(7b)のC1、C2線およびC3線に相当する部位で切り離すことにより、電気化学素子用積層ブロック1の前面および後面をそれぞれセパレータ層42により覆うことができる。
 電気化学素子用積層ブロック1の前面および後面を覆うセパレータ層42は、それぞれ切れ込み25を有している。そして、切れ込み25が電解液誘導路として機能するため、電解液がこの切れ込み25を通って、電気化学素子用積層ブロック1に入ることができる。
 また、電気化学素子用積層ブロック1のそれぞれの蓄電ユニットで発生したガスを、それぞれの蓄電ユニットの電解液誘導路を通過させることにより、蓄電ユニットの外部(電気化学素子用積層ブロック1の外部)に排出できる。
 以上のステップPS1~ステップPS5の工程を経て、正極複合シート20Aが作製される。
 <ステップPS6>
 ステップPS6では、ステップPS1~ステップPS5を繰り返して、必要な枚数の正極複合シート20Aを作製する。
 ii)負極複合シート30A作製
 図33に示すように、正極複合シート20Aを製造する際のステップPS1~ステップPS6と同様のステップNS1~ステップNS6にしたがって、負極複合シート30Aを作製する。
 負極複合シート30Aにおいて、負極集電体電極31aは、その長手方向に直交する中心線L2が、図25(8a)および図26(8b)に示すように、正極複合シート20Aにおける正極集電体電極21aの中心線L1の中央に位置するように配置され、負極活物質層31bはそれぞれ中心線L2に対して対称に、かつ正極活物質層21bに重なるような位置に形成される。
 また、ステップNS2~NS4において、ステップPS2~ステップPS4における正極集電体膜102、正極集電体電極21a、正極活物質層21bに代えてそれぞれ負極集電体膜、負極集電体電極31a、負極活物質層31bを形成するが、蓄電デバイスとして電気二重層キャパシタを作製する際には、正極集電体膜102と負極集電体膜、正極集電体電極21aと負極集電体電極31a及び正極活物質層21bと負極活物質層31bとはそれぞれ同様のものを用いることができる。
 なお、正極集電体電極21aと負極集電体電極31aの形状及び面積は同一であってもよいし、異なっていてもよい。また、正極活物質層21bと負極活物質層31bの形状及び面積は同一であってもよいし、異なっていてもよい。正極21や負極31の位置ずれを考慮して、正極21又は負極31の一方の面積を大きくして、正極21や負極31が位置ずれしたような場合でも正極21と負極31の対向面積が変化しないようにでき、電気二重層キャパシタの抵抗や容量の変化を抑制することができる。
 また、本実施形態において、正極と負極に共通する事項を、特に両者を区別することなく説明するときには、正極複合シート20A及び負極複合シート30Aは複合シートといい、正極集電体電極21a及び負極集電体電極31aは単に集電体電極といい、正極活物質層21b及び負極活物質層31bは単に活物質層という場合がある。
 本実施形態6で示したように、集電体電極上に活物質層を塗工するようにした場合には、活物質層中のバインダが活物質層/集電体電極の界面付近に堆積するため、活物質層/集電体電極間の結着力を高くできる。
 また、本実施形態6で示したように、高い連続性を有し、薄膜化された集電体電極上に活物質層を塗工するようにすると、より一層の小型低背化が可能になる。
 また、活物質層上に集電体電極を形成するようにすると、集電体電極のエッチングや集電体電極の酸化膜の除去が困難となるが、本実施形態6では、集電体電極上に活物質層を形成するようにしているので、集電体電極のエッチングや集電体電極の酸化膜の除去後に活物質層を形成することが可能となり、エッチングや酸化膜の除去が容易となる。
 iii)正極・負極一体化シートの作製及び積層
 <ステップMS1>
 まず、図26(10)に示すように、正極複合シート20Aと負極複合シート30Aをセパレータ層42が形成されている面が対向するように配置して、正極複合シート20Aと負極複合シート30Aの両側から、例えば、図示しない加圧板により均等に加圧して加熱することにより、図26(11)に示すように、セパレータ層42間を接合する。以上のようにして、正極・負極一体化シート50Aが作製される。
 このとき、例えば、加圧板の温度は150℃とし、加圧の圧力は20MPa、加圧時間は30秒に設定する。
 このようにセパレータ層42間を接合することにより作製された正極・負極一体化シート50Aは、その貼り合わせ面の両側の正極複合シート20Aと負極複合シート30Aとがほぼ同等の熱に対する伸縮特性を有しているので、接合後の反りが抑えられ、以下の製造工程における取り扱いが容易になる。
 また、正極複合シート20Aと負極複合シート30Aが接合され正極・負極一体化シート50Aとされているため、正極複合シート20Aと負極複合シート30Aが薄層化されたような場合でも、正極複合シート20Aと負極複合シート30Aを破壊することなく、正規の配列・所定の位置を保持したままハンドリングすることが更に容易となり、デバイスの更なる小型低背化が可能となる。
 そして、正極・負極一体化シート50A内には、横方向に複数の蓄電ユニットが整列して形成されている。
 なお、本実施形態6で示すように、正極・負極一体化シート50Aにおいて、正極活物質層21bと負極活物質層31bとの間に形成される空隙は、切れ込み25を通じて正極・負極一体化シート50Aの外部と連通していることが好ましい。これにより、正極複合シート20Aと負極複合シート30Aを接合して正極・負極一体化シート50Aを作製する際に、気体(空気など)が余分に正極複合シート20Aと負極複合シート30Aとの間に封止され、正極・負極一体化シート50Aが膨れて形状が変形するのを防止することができる。
 セパレータ層間を接合した後、負極複合シート30A側又は正極複合シート20A側の基材フィルム100のいずれか一方を剥離する。
 例えば、正極側の基材フィルム100を剥離するときには、図26(12)に示すように、図示しない吸引盤に、正極・負極一体化シート50Aの負極側を接触させて吸引して、正極・負極一体化シート50Aを持ち上げて、正極側の基材フィルム100を剥離する。
 正極側の基材フィルム100を剥離しようとする場合、基材フィルム100と正極複合シート20A間の接合力よりも強い接合力を正極複合シート20Aと負極複合シート30A間で確保する必要があるが、両者の接合力の差は、基材フィルム100と正極複合シート20Aの間に離型層がある場合は、比較的容易に実現できる。
 一方、基材フィルム100と正極複合シート20Aの間(すなわち、基材フィルム100と接着層121との間)に離型層がない場合は、上記接合力の差は、例えば、高温・高圧で正極複合シート20Aと負極複合シート30Aを接合することにより実現できる。しかしながら、高温・高圧下での接合では、活物質層やセパレータ層の空隙が潰れてしまうことがないように、また、正極複合シート20Aや負極複合シート30Aの形状が変形してしまうことがないように留意する必要がある。
 また、集電体電極を接着層121上に蒸着により形成した場合などは、基材フィルムへの熱ダメージおよび蒸着粒子の運動エネルギーによるめり込みのため、基材フィルムとの密着力がより強くなり、離型層がないと剥離が困難となることがある。したがって、本発明では、基材フィルムへのダメージを防止できる厚みの離型層を形成しておくことが好ましい。
 負極側の基材フィルム100を剥離するときには、正極・負極一体化シート50Aの正極側を吸引盤に接触させて吸引して、正極・負極一体化シート50Aを持ち上げて、負極側の基材フィルム100を剥離する。
 このようにして、正極複合シート20A側又は負極複合シート30A側のいずれか一方に基材フィルム100が接合された、正極・負極一体化シート50Aを必要枚数作製する。
 iv)正極・負極一体化シートの積層
 <ステップMS2>
 最初の積層は、例えば、図27(13)に示すように、負極側が吸引盤に吸引された正極・負極一体化シート50Aの下に、負極複合シート30A側に基材フィルム100が接合された正極・負極一体化シート50Aを、基材フィルム100が下になるように配置した後、図27(14)に示すように、その2枚の正極・負極一体化シート50Aを接触させて、図示しない加圧板により全面を均等に加圧して接合する。
 このとき、例えば、加圧板の温度は150℃とし、加圧の圧力は20MPa、加圧時間は30秒に設定する。
 尚、図30に示すような上下最外層にセパレータ層が配置された電気化学素子用積層ブロック1を作製する場合には、基材フィルム上に例えば、所定の厚み(例えば、6μm)のセパレータ層のみが形成されたセパレータ層用シートを用い、最初の積層は、そのセパレータ層用シートのセパレータ層の上に正極・負極一体化シート50Aを積層するようにする。
 次に、図27(15)に示すように、吸引盤に吸引された正極・負極一体化シート50Aの負極側の基材フィルム100を剥離する。
 そして、その負極側の基材フィルム100が剥離された正極・負極一体化シート50Aの上に、図27(16)に示すように、負極側の基材フィルム100が剥離された別の正極・負極一体化シート50Aを、負極側が対向するように配置して、図28(17)に示すように、負極側同士を接合する。
 次に、積層された別の正極・負極一体化シート50Aの正極側の基材フィルム100を剥離して、その上に、正極側の基材フィルム100が剥離された正極・負極一体化シート50Aを正極側が対向するように配置して、正極側同士をそれぞれの接着層121を互いに接着させることにより接合する。
 以降、ステップMS1及びステップMS2を必要回数繰り返して、図29に示すような、正極・負極一体化シート50Aが積層された電気化学素子用積層シートLB1を作製する。
 尚、図30に示すような最外層にセパレータ層が配置された電気化学素子用積層ブロック1を作製する場合には、最初の積層に用いたものと同じ、セパレータ層のみが形成されたセパレータ層用シートを用い、積層の最後にそのセパレータ層用シートのセパレータ層を対向させて接合する。
 また、以上の工程により作製される電気化学素子用積層ブロック1では、図29に示すように、最外層の正極集電体電極21a及び負極集電体電極31aは1層であり、正極集電体電極21a又は負極集電体電極31aが2層重ねられてなる内側の集電体電極より薄くなるが、図30では、作図上の制約により、全ての正極集電体電極及び負極集電体電極を同じ厚さに描いている。
 しかしながら、本発明では、例えば、集電体電極や活物質層の厚さを形成場所によらず同一にしてもよいし、形成場所や製造方法に応じて適宜変更することも可能である。
 なお、本実施形態6では、基材フィルム100の表面に形成された離型層101上に接着層121を形成し、この接着層121上に正極集電体電極21aおよび負極集電体電極31aを形成している。
 これにより、接着層121を介して、正極集電体電極同士や負極集電体電極同士がより確実に接合されることになり、さらに信頼性の高い蓄電デバイスを作製することができる。
 <ステップMS3>
 次に、電気化学素子用積層シートLB1の上下最外層に配置されている基材フィルム100を剥がした後、電気化学素子用積層シートLB1を裁断線D1に沿って裁断して、電気化学素子用積層ブロック1を作製する。
 すなわち、縦方向に積層した蓄電ユニットが横方向に複数整列している状態から単一の積層した蓄電ユニットに裁断することにより電気化学素子用積層ブロック1を作製する。
 尚、このステップでは、電気化学素子用積層シートLB1を裁断した後、基材フィルム100を剥離するようにしてもよい。
 <ステップMS4>
 そして、図30に示すように、裁断された電気化学素子用積層ブロック1の裁断面のうち、正極集電体電極21aが露出された側面に正極端子電極21tを形成し、負極集電体電極31aが露出された側面に負極端子電極31tを形成する。
 ここで、正極端子電極21t及び負極端子電極31tは、電気化学素子用積層ブロック1の側面に、例えば、スパッタリングによりアルミニウムを付着させることにより形成することができる。
 正極端子電極21t及び負極端子電極31tは、スパッタリングの他、蒸着、イオンプレーティング、溶射、コールドスプレー、めっきなどにより電気化学素子用積層ブロック1の側面に直接導電皮膜を形成することで作製してもよい。
 また、正極端子電極21t及び負極端子電極31tは、電気化学素子用積層ブロック1の側面に直接導電性接着剤をディッピングにより塗布するようにして形成してもよい。
 正極端子電極21tまたは負極端子電極31tが形成される電気化学素子用積層ブロック1の側面には、電解液誘導路が露出していない方が好ましい。電解液誘導路が露出している場合、正極端子電極21tまたは負極端子電極31tが蓄電ユニット内部に入り込んで、正極または負極と短絡する場合があるからである。
 側面に正極端子電極21t及び負極端子電極31tが形成された電気化学素子用積層ブロック1は、図31に例示するように、正極パッケージ電極122b及び負極パッケージ電極132bを備えたパッケージ内に電解液とともに収納され、例えば、電気二重層キャパシタ80Aのような蓄電デバイスが作製される。
 パッケージ内に電気化学素子用積層ブロック1を収納する際、例えば、正極端子電極21t及び負極端子電極31t上に、導電性粒子として金を含有する導電性接着剤122a、132aをディッピングにより塗布し、導電性接着剤122a及び導電性接着剤132aが、それぞれ正極パッケージ電極122b及び負極パッケージ電極132bに接続されるように、電気化学素子用積層ブロック1を配置する。
 そして、電気化学素子用積層ブロック1が配置されたパッケージを例えば、170℃で10分加熱して、導電性接着剤122a、132aを硬化させて、電気化学素子用積層ブロック1をパッケージ電極122b、132bに固定するとともに、正極端子電極21t及び負極端子電極31tをそれぞれ正極パッケージ電極122b及び負極パッケージ電極132bに電気的に接続する。
 導電性粒子としては、金の他にカーボン、銀、銅、アルミニウムなどが用途によって用いられる。
 そしてパッケージ内に入れられた、電気化学素子用積層ブロック1は上述のように前面および後面に切れ込み25を有し、かつここ個々の蓄電ユニットが電解液誘導路を有することから、電解液が迅速に蓄電ユニット内で正極活物質層21aと負極活物質層31bとの間に供給される。
 以上の実施形態6に係る電気化学素子用積層ブロック1の製造方法は、基材フィルム100上に正極複合シート20A又は負極複合シート30Aを作製して、その正極複合シート20A又は負極複合シート30Aを基材フィルム100から剥がす工程を含んでいる。
 これにより、連続した1つのセパレータ層にパターニングされた複数の正極集電体電極21aと、正極活物質層21bとを一体化して作製することが可能になる。
 同様に、連続した1つのセパレータ層にパターニングされた複数の負極集電体電極31aと負極活物質層31bとを一体化して作製することが可能になる。
 したがって、実施形態6の製造方法では、多数の電気化学素子用積層ブロック1を一括して作製することができ、電気二重層キャパシタを個別に1つずつハンドリングする従来の方法に比較して生産性を向上させることができる。
 また、以上の実施形態6の製造方法では、複数のパターニングされた正極集電体電極21a又は負極集電体電極31aが連続した1つのセパレータ層42で一体化されているため、電極の取り扱いが容易となる。また、積層されるまで、正極複合シート20A及び負極複合シート30Aが基材フィルム100に支持されているので、さらに電極の取り扱いが容易となる。
 したがって、例えば、正極集電体電極21a又は負極集電体電極31aを薄くしてもそれらの電極の取り扱いが容易である。したがって、より小型の電気化学素子用積層ブロック1を作製することができる。
 また、実施形態6の製造方法によれば、パターニングされた複数の正極集電体電極21a及び/又は負極集電体電極31aと、複数の正極活物質層21b及び/又は負極活物質層31bとがセパレータ層42と一体化されているので、電気化学素子用積層ブロック1を小型化しても、製造過程におけるハンドリングが容易となり、より小さい電気化学素子用積層ブロック1を製造することが可能になる。
 さらに、以上の実施形態6の製造方法では、隣接する正極21と負極31とがセパレータ層42に接合されて固定されているため、製造過程及び製品化後における正極21と負極31の位置ずれが防止できる。
 これにより、製造過程におけるシートの取り扱い及び多層化が容易となり、製品化後における容量変化等の特性変化を抑えることができる。
 また、以上の実施形態6の製造方法では、一方の表面に活物質層が形成された集電体電極の他方の表面同士を向かい合わせて配置しているので、集電体電極の両面に活物質層が形成された状態を容易に実現でき、体積容量比率の高い電気化学素子用積層ブロック1を作製することが可能になる。
 すなわち、従来の製造方法では、集電体箔の両面に活物質層を形成することは、ハンドリング上容易ではなく、困難である。
 なお、本実施形態においては、正極複合シート20Aと負極複合シート30Aのセパレータ層42間を接合することで正極・負極一体化シート50Aを作製し、該正極・負極一体化シート50Aを積層することで電気化学素子用積層シートLB1を作製した。しかし、電気化学素子用積層シートの作製方法はこれに限るものではなく、次の様にして作製してもよい。
 例えば、基材フィルム100が剥離された2つの正極複合シート20Aの基材フィルムが剥離された面間を正極集電体電極21a同士を対向させて接合して、正極・正極一体化シートを作製する。同様に、基材フィルム100が剥離された2つの負極複合シート30Aの基材フィルムが剥離された面間を負極集電体電極31a同士を対向させて接合して、負極・負極一体化シートを作製する。これら正極・正極一体化シートと負極・負極一体化シートとをそれぞれのセパレータ層42同士を対向させて接合することで積層シートを作製する。この積層シートの正極・正極一体化シート側に、別の負極・負極一体化シートをセパレータ層42同士を対向させて接合する。この積層工程を必要回数繰り返して、電気化学素子用積層シートを作製する。
 なお、本実施形態における電気化学素子用積層ブロック1および電気二重層キャパシタ80Aは、図30および図31に示すような蓄電ユニットが積層された形態に限定されるものではない。例えば、蓄電ユニットが積層されていない電気化学素子用積層ブロック1および電気二重層キャパシタ80Aも本願発明に含まれる。
 このような電気化学素子用積層ブロック1および電気二重層キャパシタ80Aは、例えば、正極・負極一体化シート50Aを積層することなく、一枚だけで用いることにより得ることができる。
なお、本実施形態においては、正極活物質層21bおよび負極活物質層31b上にセパレータ層42よりも透気度の低い多孔性絶縁層を形成してもよく、この場合は漏れ電流をより確実に抑制できる。
 実施例1.
 実施例1では、実施形態1の製造方法にしたがって、電気二重層コンデンサブロックを作製した。
 まず、基材フィルム100として、表面にシリコーン系の離型層101が形成された基材PETフィルムを準備した。
 基材PETフィルムに、正極集電体膜102として真空蒸着法により厚み500nmのAl膜を形成した。
 この成膜条件は、真空度3×10-4Pa、電流値800mA、成膜レート30Å/s、基材冷却温度-10℃とした。
 このAl膜が形成された基材PETフィルムに、スクリーン印刷により、20mm×10mmの矩形パターンが隣接パターン間距離5mmで縦5列、横10列に配列したレジストパターンR102を印刷した後、100℃の熱風炉中で15分間乾燥させた。
 レジストパターンR102が印刷された基材PETフィルムを、45℃の塩化第二鉄水溶液槽中に30秒間浸漬して、レジストによりマスキングされている部分以外のAl膜をウェットエッチングして除去することにより、正極集電体電極21aとして正極集電体Al電極を形成した。その後、水洗シャワーにて基材表面に残った塩化第二鉄水溶液を除去した。
 尚、実施例1では、安価な塩化第二鉄を用いたが、その他、塩酸、硫酸、硝酸またはその混酸を用いることもできるし、フッ酸塩系中性水溶液を用いることもできる。
 正極集電体Al電極が形成された基材PETフィルムを、酢酸ブチルシャワーに通して、レジストを剥離した。その後、60℃の熱風炉中で基材表面に残った酢酸ブチルを蒸発させた。
 レジスト剥離には、酢酸ブチル以外に、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、アミン系溶剤などの有機溶剤を用いることもできる。
 レジストを剥離した後、正極集電体Al電極の表面処理として、フッ酸/硫酸の混酸による正極集電体Al電極表面の酸化膜の除去及び表面フッ化を行った。表面処理の方法としては、この他に、他の酸又はアルカリ処理による集電体表面の酸化膜の除去やフッ素系の液体やガス、プラズマによる表面フッ化、化学的または機械的な研磨による表面の粗面化、導電性塗料の塗布による表面コーティングなどを施してもよい。
 1つの大きさが20mm×10mmの矩形の正極集電体Al電極上にそれぞれスクリーン印刷により、厚み10μmの2個の6mm×10mm矩形形状の活物質層パターンを図2(6a)示す配置で印刷した後、80℃の熱風炉中で20分間乾燥させることで正極活物質層21bを形成した。
 基材PETフィルム上の正極活物質層が形成されていない部分に、スクリーン印刷により、シリカ粉末を溶剤としてのメチルエチルケトン中に分散させたものに、PVDFのバインダ溶液(クレハ製 L#1120、分子量28万、12wt%溶液)を混合して作製したペーストを印刷し、120℃の熱風炉中で30分間乾燥させて、厚みが正極集電体Al電極上で10μm、その他の部分で10.5μmの格子状シリカ層を埋込層41として形成した。
 格子状シリカ層は、シート上で活物質層厚みの段差をレべリングする役割を担う。
 段差がレべリングされた表面に、スクリーン印刷により、シリカ粉末を溶剤としてのメチルエチルケトン中に分散させたものに、PVDFのバインダ溶液(クレハ製 L#1120、分子量28万、12wt%溶液)を混合して作製したペーストを活物質パターン群を覆うように印刷し、120℃の熱風炉中で30分間乾燥させて、厚み6μmのセパレータ層を形成して、セパレータ層11とした。
 以上のようにして作製された正極複合シート20Aを10枚準備した。
 同様にして、負極複合シート30Aを10枚作製し、準備した。
 次に、正極複合シートと負極複合シートを、正極複合シートを下にしてセパレータ層同士を向かい合わせて配置し、両側から全面を均等に加圧板で加圧して接合した。このとき、加圧板の温度は150℃とし、加圧の圧力は0.05MPa、加圧時間は1分に設定した。
 以上のようにして正極・負極一体化シートを更に9枚作製して、正極・負極一体化シート50Aとした。
 以上のようにして準備した正極・負極一体化シート50Aを、以下のように、適宜、基材PETフィルムを剥離しながら積層した。
 まず、吸引盤に1枚の正極・負極一体化シートの負極側を接触させて吸引して、正極・負極一体化シートを持ち上げた後、正極側の基材PETフィルムを剥離した。
 その吸引盤に吸引して正極側の基材PETフィルムを剥離した正極・負極一体化シートの下に、基材PETフィルム上にセパレータ層のみを形成したシートを基材PETフィルム側が下になるように配置して接合した。
 そして、吸引盤に吸引されていた正極・負極一体化シートの負極側の基材PETフィルムを剥離した。
 次に、吸引盤に別の1枚の正極・負極一体化シートの正極側を接触させて吸引して、正極・負極一体化シートを持ち上げた後、負極側の基材PETフィルムを剥離した。
 その負極側の基材PETフィルムを剥離した上記別の正極・負極一体化シートの下に、基材PETフィルム上にセパレータ層のみを形成したシートが接合された正極・負極一体化シートを配置して接合した。接合後、上記別の正極・負極一体化シートの正極側の基材PETフィルムを剥離した。
 そして、その正極側の基材PETフィルムを剥離した別の正極・負極一体化シートの上に、吸引盤に負極側を吸引して正極側の基材PETフィルムを剥離したさらに別の1枚の正極・負極一体化シートを接合した。
 以上工程を繰り返して、基材PETフィルム上にセパレータ層のみを形成したシートの上に、10枚の正極・負極一体化シートを積層して、その最上層の基材PETフィルムを剥離した。
 最後に、別に準備した基材PETフィルム上にセパレータ層のみを形成したシートの基材PETフィルム側を吸引盤に接触させて吸引して、そのセパレータ層を上記最上層の基材PETフィルムを剥離した正極・負極一体化シートの上に接合することで電気化学素子用積層シートを作製した。
 上記接合はそれぞれ、基材PETフィルム上にセパレータ層と正極・負極一体化シート間、又は2つの正極・負極一体化シート間を接触させて全面を均等に加圧板で加圧することにより行った。このとき、加圧板の温度は150℃とし、加圧の圧力は0.05MPa、加圧時間は1分に設定した。
 以上のようにして作製した実施例1の電気化学素子用積層シートを、上下に接着している基材PETフィルムを剥離した後、裁断して、電気二重層コンデンサブロックを作製した。
 以上のようにして作製した電気二重層コンデンサブロックの側面に、Alスパッタにより正極及び負極端子電極を形成して、正極及び負極端子電極上にそれぞれ導電性粒子として金を含有する導電性接着剤をディッピングにより塗布した。
 そして、塗布した導電性接着剤が、それぞれ正極パッケージ電極及び負極パッケージ電極に接続されるように、電気二重層コンデンサブロックを別途準備したパッケージ内に配置して、170℃で10分加熱した。
 以上のようにして、パッケージ内への固定及び電気的接続が完了した後、電解液を注液して、パッケージを封止した。
 以上のように作製した実施例1の電気二重層コンデンサの電気特性は、直流容量が112mFであった。
 実施例2.
 実施例2では、実施形態2の製造方法にしたがって、電気二重層コンデンサブロックを作製した。
 実施例2では、実施例1と同様にして作製した正極複合シートを用いて、その正極複合シートのセパレータ層上に、スクリーン印刷により、負極活物質パターン群を印刷した後、80℃の熱風炉中で20分間乾燥させて、厚み10μmの負極活物質層を形成して、負極活物質層32bとした。
 次に、負極活物質層が形成されていないセパレータ層の表面が露出している部分に、スクリーン印刷により、シリカ粉末を溶剤としてのメチルエチルケトン中に分散させたものに、PVDFのバインダ溶液(クレハ製 L#1120、分子量28万、12wt%溶液)を混合して作製したペーストを印刷し、120℃の熱風炉中で30分間乾燥させて、厚み10μmの格子状シリカ層を埋込層42として形成して表面を平坦化した。
 表面が平坦化された表面に負極集電体Al電極群を形成するためのメタルマスクを配置した後、真空蒸着法により厚み500nmの負極集電体Al電極を形成して、負極集電体電極32aとした。成膜条件は、真空度3×10-4Pa、電流値800mA、成膜レート30Å/s、基材冷却温度-10℃とした。この正極側に基材PETフィルムが接合された正極・負極一体化シート50ABを5枚作製した。
 同様にして、実施例1と同様にして作製した負極複合シートを用いて負極側に基材PETフィルムが接合された正極・負極一体化シート50BAを5枚作製した。
 このようにして作製した正極・負極一体化シート50ABと正極・負極一体化シート50BAとを以下のように積層した。
 まず、吸引盤に1枚の正極・負極一体化シート50BAの負極側を接触させて吸引して、正極・負極一体化シート50BAを持ち上げて、その下に、基材PETフィルム上にセパレータ層のみを形成したシートを基材PETフィルム側が下になるように配置して接合した。その後、吸引盤に吸引されていた正極・負極一体化シート50BAの負極側の基材PETフィルムを剥離した。
 次に、吸引盤に1枚の正極・負極一体化シート50ABの正極側を接触させて吸引して、正極・負極一体化シート50ABを持ち上げ、その下に、基材PETフィルム上にセパレータ層のみを形成したシートが接合された正極・負極一体化シート50BAを配置して接合した。接合後、上記正極・負極一体化シート50ABの正極側の基材PETフィルムを剥離した。
 以後、正極・負極一体化シート50BAと正極・負極一体化シート50ABとを同様にして交互に接合し、基材PETフィルム上にセパレータ層のみを形成したシートの上に、正極・負極一体化シート50BAと正極・負極一体化シート50ABとを交互に合計10枚積層して、その最上層の基材PETフィルムを剥離した。
最後に、基材PETフィルム上にセパレータ層のみを形成したシートの基材PETフィルム側を吸引盤に接触させて吸引して、そのセパレータ層を上記最上層の基材PETフィルムを剥離した正極・負極一体化シート50ABの上に接合することで電気化学素子用積層シートを作製した。
 上記接合はそれぞれ、基材PETフィルム上にセパレータ層と正極・負極一体化シート間、又は2つの正極・負極一体化シート間を接触させて全面を均等に加圧板で加圧することにより行った。このとき、加圧板の温度は150℃とし、加圧の圧力は0.05MPa、加圧時間は1分に設定した。
 以上のようにして作製した実施例2の電気化学素子用積層シートを、上下に接着している基材PETフィルムを剥離した後、裁断して、電気二重層コンデンサブロックを作製した。
 その後、実施例1と同様にして、実施例2の電気二重層コンデンサを作製した。
 以上のようにして作製した実施例2の電気二重層コンデンサの電気特性は、直流容量が123mFであった。
 実施例3.
 実施例3では、実施例1で作製した基材PETフィルム上に形成された正極複合シートのセパレータ層に転写フィルムを配置して加圧し、正極複合シートに転写フィルムを接合した。このとき、加圧板の温度は150℃、加圧の圧力は0.05MPa、加圧時間は1分であった。その後、正極複合シートの基材PETフィルムを剥離した。
 正極複合シートの基材PETフィルムが接合されていた面に、正極集電体電極を形成するためのメタルマスクを配置した後、真空蒸着法により厚み500nmの正極集電体Al電極を形成して、正極集電体電極23aとした。成膜条件は、真空度3×10-4Pa、電流値800mA、成膜レート30Å/s、基材冷却温度-10℃であった。正極集電体Al電極は、実施例1と同様、1個の大きさが20mm×10mmの矩形パターンとした。
 そして、正極集電体Al電極上に、スクリーン印刷により、厚み10μmの2個の6mm×10mm矩形の正極活物質層を印刷した後、80℃の熱風炉中で20分間乾燥させて、正極活物質層をそれぞれ形成して、正極活物質層23bとした。
 正極活物質層が形成されていない部分に、スクリーン印刷により、シリカ粉末を溶剤としてのメチルエチルケトン中に分散させたものに、PVDFのバインダ溶液(クレハ製 L#1120、分子量28万、12wt%溶液)を混合して作製したペーストを印刷し、120℃の熱風炉中で30分間乾燥させて、厚みが正極集電体Al電極上の薄い部分で10μm、その他の厚い部分が10.5μmの格子状シリカ層を埋込層43として形成した。この格子状シリカ層は、シート上で活物質層厚みの間を埋め、表面を平坦化する役割を担う。
 平坦化された表面に、スクリーン印刷により、シリカ粉末を溶剤としてのメチルエチルケトン中に分散させたものに、PVDFのバインダ溶液(クレハ製 L#1120、分子量28万、12wt%溶液)を混合して作製したペーストを活物質パターン群を覆うように印刷し、120℃の熱風炉中で30分間乾燥させて、厚み6μmのセパレータ層を形成して、セパレータ層13とした。このようにして、表面・裏面ともに正極である、正極・正極一体化シートを作製して、正極・正極一体化シート20Dとした。
 この正極・正極一体化シートを更に3枚作製した。
 同様の方法で、負極・負極一体化シート30Dを5枚作製した。
 さらに、基材PETフィルム上に例えば、厚み6μmのセパレータ層のみが形成されたセパレータ用シートを2枚準備し、さらに実施例1と同様にして正極複合シート20Aを2枚準備した。
 以上ように準備した正極・正極一体化シート20D、負極・負極一体化シート30D、セパレータ用シート及び正極複合シート20Aを以下のように積層した。
 まず、セパレータ用シートのセパレータ層上に、転写フィルムに接合して基材フィルム100を剥離した正極複合シート20Aを、正極集電体電極21aがセパレータ用シートのセパレータ層に接合するように積層し、転写フィルムを剥がした。
 次に、吸引盤に1枚の負極・負極一体化シートの転写フィルム面を接触させて吸引して、その負極・負極一体化シートを持ち上げた。
 吸引盤に吸引された負極・負極一体化シートの下に、セパレータ用シートのセパレータ層上に、基材フィルム100を剥離した正極複合シート20Aを、正極集電体電極21aがセパレータ用シートのセパレータ層に接合するように積層して、転写フィルムを剥がしたものを配置して、そのセパレータ層に吸引された負極・負極一体化シートを接触させて、全面を均等に加圧板で加圧して接合した。このとき、加圧板の温度は150℃、加圧の圧力は0.05MPa、加圧時間は1分とした。その後、転写フィルムを剥離した。
 更に正極・正極一体化シートの加圧接合、転写フィルムの剥離、負極・負極一体化シートの加圧接合、転写フィルムの剥離を繰り返した。
 そして、最後に、正極複合シート20Aを積層した後、その基材フィルム100を剥離し、その剥離した面にセパレータ用シートのセパレータ層が対向するように接合して、セパレータ用シートの基材PETフィルムを剥離した。
 以上のようにして、電気化学素子用積層シートLB3を作製し、電気化学素子用積層シートLB3を裁断することにより、電気二重層コンデンサブロックを作製した。
 尚、裁断前に、電気化学素子用積層シートLB3の最下層に配置されている基材フィルムは剥離した。
 その後、実施例1と同様にして、実施例3の電気二重層コンデンサを作製した。
 以上のようして作製した実施例3の電気二重層コンデンサの電気特性は、直流容量が108mFであった。
 実施例4.
 実施例4では、実施形態4の製造方法にしたがって、電気二重層コンデンサブロックを作製した。
 まず、基材フィルム100として、表面にシリコーン系の離型層101が形成された基材PETフィルムを準備した。尚、基材PETフィルムの大きさは、50mm×30mmのものを用いた。
 基材PETフィルム上に真空蒸着法により厚み500nmの正極集電体電極24aとして、正極集電体Al電極を形成した。この成膜条件は、真空度は、3×10-4Pa、電流値は、800mA、成膜レートは、30Å/s、基材冷却温度は、-10℃とした。
 また、正極集電体Al電極は、45mm×30mmとし、基材PETフィルム上にその一辺からは内側に5mmだけ離して形成した。
 正極集電体Al電極の上に、スクリーン印刷により活物質ペーストを塗工した後、80℃の熱風炉中で20分間乾燥させて、厚み10μmの活物質層を形成して、正極活物質層24bとした。その正極活物質層の寸法は、40mm×30mmとし、基材PETフィルム上の配置は、図16、17に示す配置とした。
 さらに、スクリーン印刷を用いて、シリカ粉末を溶剤としてのメチルエチルケトン中に分散させたものに、PVDFのバインダ溶液(クレハ製 L#1120、分子量28万、12wt%溶液)を混合して作製したペーストを塗工し、120℃の熱風炉中で30分間乾燥させて、厚み6μmのセパレータ層を形成して、セパレータ層61とした。
 以上のようにして、図16(4b)に示すパターンの正極複合シートを作製して、正極複合シート70Aとした。
 同様にして、図17(4b)に示すパターンの負極複合シートを作製して、負極複合シート70Bとした。
 また、負極集電体電極34aの寸法は、45mm×20mmとした。
 負極活物質層34bの寸法は、40mm×20mmとした。
 以上ようにして作製した正極複合シートと負極複合シートとを、正極用複合シートを下にしてセパレータ面同士を向かい合わせて配置し、両側から全面を均等に加圧して接合して、正極・負極一体化シートを作製し、正極・負極一体化シート70ABとした。
 このとき、加圧板の温度は150℃とし、加圧の圧力は0.05MPa、加圧時間は1分とした。
 この正極・負極一体化シートを更に9枚作製した。
 吸引盤に1枚の正極・負極一体化シートの負極側を接触させて吸引して、一体化シートを持ち上げた後、正極側の基材PETフィルムを剥離した。
 吸引盤に吸引された正極・負極一体化シートの下に、別の正極・負極一体化シートを負極側の基材PETフィルムが下になるように配置し、正極側の基材PETフィルムを剥離した後、接触させて全面を均等に加圧して接合した。このとき、加圧板の温度は150℃、加圧の圧力は0.05MPa、加圧時間は1分であった。その後、吸引盤と接していた基材PETフィルムを剥離した。
 同様の操作を繰り返して、10枚の正極・負極一体化シートを積層し、最後に、別途準備した基材PETフィルム上に厚み6μmのセパレータ層のみを形成したシートを用いて、上下の最外層にセパレータ層を配置して、電気二重層コンデンサ用積層ブロックを作製した。
 その後、実施例1と同様にして、実施例4の電気二重層コンデンサを作製した。
 以上のようして作製した実施例4の電気二重層コンデンサの電気特性は、直流容量が1480mFであった。
 実施例5.
 実施例5では、実施形態6の製造方法にしたがって、電気二重層コンデンサブロック(電気化学素子用積層ブロック1)を作製した。
  まず、基材フィルム100として、表面にシリコーン系の離型層101が形成された基材PETフィルムの表面にウレタンを塗布し、膜厚1μmの接着層121を形成し、その後、正極集電体膜102として真空蒸着法により膜厚500nmのAl膜を形成した。
 アルミニウム膜の成膜条件は、真空度3×10-4Pa、電流値800mA、成膜レート30Å/秒、基材冷却温度-10℃とした。
 アルミニウム膜102が形成された基材PETフィルム100(接着層121を介して)に、スクリーン印刷により、20mm×10mmの矩形パターンを隣接パターン間距離8mmで縦5列、横10列に配列したレジストパターンR102を印刷した後、100℃の熱風炉中で15分間乾燥させた。
 レジストパターンR102が印刷された基材PETフィルム100を、45℃の塩化第二鉄水溶液槽中に30秒間浸漬して、レジストによりマスキングされている部分以外のアルミニウム膜をウェットエッチングして除去することにより、正極集電体電極21aとして正極集電体アルミニウム電極を形成した。その後、水洗シャワーにて基材表面に残った塩化第二鉄水溶液を除去した。
 なお、実施例5では、安価な塩化第二鉄を用いたが、その他、塩酸、硫酸、硝酸またはその混酸を用いることもできるし、フッ酸塩系中性水溶液を用いることもできる。
 正極集電体電極21a(アルミニウム電極)が形成された基材PETフィルム100を、酢酸ブチルシャワーに通して、レジストを剥離した。その後、60℃の熱風炉中で基材表面に残った酢酸ブチルを蒸発させた。
 レジスト剥離には、酢酸ブチル以外に、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、アミン系溶剤などの有機溶剤を用いることもできる。
・活物質層
 (i)活性炭(BET比表面積1668m/g、平均細孔直径1.83nm、平均粒径D50=1.26μm)29.0g、
 (ii)カーボンブラック(東海カーボン株式会社製トーカブラック(登録商標)#3855、BET比表面積90m/g)2.7g、
 (iii)カルボキシメチルセルロース(ダイセル化学工業株式会社製CMC2260)3.0g、
 (iv)38.8重量%のポリアクリレート樹脂水溶液2.0g、
 (v)脱イオン水286g、
 を秤量して、表1に示す条件で一次分散及び二次分散を行い混合して、活性炭ペーストを作製した。
Figure JPOXMLDOC01-appb-T000001
 作製した活性炭ペーストを使用して、1つの大きさが20mm×10mmの矩形の正極集電体電極(アルミニウム電極)上にスクリーン印刷により、それぞれ6mm×10mm矩形形状の2つの活物質層パターンを図24(6a)に示す配置で印刷した後、80℃の熱風炉中で20分間乾燥させることで厚さ4μmの正極活物質層21bを形成した。
・セパレータ層の形成
i)バインダ溶液調整
 容量1LのポットにPVDF-HFP(ポリフッ化ビニリデン-六フッ化プロピレン共重合体)を160g加え、さらにNMP(1-メチル-2-ピロリドン)溶媒を640g加えた後、ポットをポット架に入れて混合した。混合は、回転速度150rpmで24時間行い、これによりNMP中に20質量%PVDF-HFPが存在するバインダ溶液を得た。
ii)セパレータ層用ペーストの作成
・1次調合
 次に容量500mLのポットに粉体状のアルミナ(D50=0.3μm)を25g加えた後、ポットに玉石(ジルコニアボール φ5mm)を175g加え、さらに溶媒としてNMPを25g加えた。そして、ポットをポット架に入れて解砕(回転速度150rpmで16時間)して一次調合を行った。
・2次調合
 そして、さらにこれに上記のバインダ溶液を236g加え、ポット架で混合(回転速度150rpmで4時間)して約250mLのセパレータ層用スラリーを得た。
 このセパレータ層用スラリーを用いて、図25の(7a)、(7b)に示す正極複合シート20Aを50枚作製した。形成したセパレータ層42の厚さ(接着層121の表面からセパレータ層42の表面までの距離)は15μmであった。
 同様にして、負極複合シート30Aを50枚作製し、準備した。
 次に、正極複合シート20Aと負極複合シート30Aを、正極複合シート20Aを下にしてセパレータ層42同士を向かい合わせて配置し、両側から全面を均等に加圧板で加圧して接合した。このとき、加圧板の温度は150℃とし、加圧の圧力は20MPa、加圧時間は30秒に設定した。
 以上のようにして正極・負極一体化シートを更に49枚作製して、正極・負極一体化シート50Aとした。
 正極・負極一体化シート50Aを、以下のように、適宜、基材PETフィルム100を剥離しながら積層した。
 まず、吸引盤に1枚の正極・負極一体化シート50Aの負極側を接触させて吸引して、正極・負極一体化シート50Aを持ち上げた後、正極側の基材PETフィルム100を剥離した。
 その吸引盤に吸引して正極側の基材PETフィルム100を剥離した正極・負極一体化シート50Aの下に、基材PETフィルム100上に8μm厚のセパレータ層42を形成したシートを基材PETフィルム100側が下になるように配置して接合した。
 そして、吸引盤に吸引されていた正極・負極一体化シート50Aの負極側の基材PETフィルム100を剥離した。
 次に、吸引盤に別の1枚の正極・負極一体化シート50Aの正極側を接触させて吸引して、正極・負極一体化シートを持ち上げた後、負極側の基材PETフィルム100を剥離した。
 その負極側の基材PETフィルム100を剥離した上記別の正極・負極一体化シート50Aの下に、基材PETフィルム100上にセパレータ層42のみを形成したシートが接合された正極・負極一体化シート50を配置して互いの接着層121同士を接着することにより接合した。接合後、上記別の正極・負極一体化シート50Aの正極側の基材PETフィルム100を剥離した。
 そして、その正極側の基材PETフィルム100を剥離した別の正極・負極一体化シート50Aの上に、吸引盤に負極側を吸引して正極側の基材PETフィルム100を剥離したさらに別の1枚の正極・負極一体化シート50Aを同様に接合した。
 以上の工程を繰り返して、基材PETフィルム100上にセパレータ層42のみを形成したシートの上に、50枚の正極・負極一体化シート50Aを積層して、その最上層の基材PETフィルム100を剥離した。
 最後に、別に準備した基材PETフィルム100上にセパレータ層42のみを形成したシートの基材PETフィルム100側を吸引盤に接触させて吸引して、そのセパレータ層42を上記最上層の基材PETフィルム100を剥離した正極・負極一体化シート50Aの上に接合することで電気化学素子用積層シートを作製した。
 上記接合はそれぞれ、基材PETフィルム100上でセパレータ層42と正極・負極一体化シート50Aとの間、又は2つの正極・負極一体化シート50Aの間を接触させて全面を均等に加圧板で加圧することにより行った。このとき、加圧板の温度は150℃とし、加圧の圧力は20MPa、加圧時間は30秒に設定した。
 以上のようにして作製した電気化学素子用積層シートLB1を、上下に接着している基材PETフィルム100を剥離した後、裁断して、電気二重層コンデンサブロック(電気化学素子用積層ブロック)1を作製した。
 裁断された電気二重層コンデンサブロック1の側面にスパッタリングによりアルミニウムを付着させることにより正極端子電極21t、負極端子電極31tを形成した。
 これを、図31に示すように正極パッケージ電極及122bおよび負極パッケージ電極132bを備えたパッケージベース部11bとパッケージ蓋部11aとからなる、液晶ポリマー製のパッケージ内に収納した。パッケージ内に収納する際、正極端子電極21t及び負極端子電極31t上に、それぞれ導電性粒子として金を含有する導電性接着剤122aおよび導電性接着剤132aをディッピングにより塗布して、その導電性接着剤122aおよび導電性接着剤132aが、それぞれ正極パッケージ電極122b及び負極パッケージ電極132bに接続されるように、電気化学素子用積層ブロック1を配置した。
 これを170℃で10分加熱して、導電性接着剤を硬化させて、電気二重層コンデンサブロック1をパッケージ電極に固定するとともに、端子電極をパッケージ電極に電気的に接続した。
 以上のようにして、パッケージ内への固定及び電気的接続が完了した後、電解液として90μLの1-エチル-3-メチルイミダゾリウムテトラフルオロボレートを注液して、レーザ溶接にてパッケージを封止した。
 これにより実施例5の作電気二重層キャパシタを得た。
・容量および電気抵抗
 得られた、電気二重層キャパシタの容量(CAP)、および電気抵抗(ESR)を測定した。
 図32(a)は、容量(CAP)の測定方法を示す概略図であり、図32(b)は、電気抵抗(ESR)の測定方法を示す概略図である。
 電気二重層キャパシタの容量(CAP)は、以下のように測定した。
 電気二重層キャパシタを充電電流3Aで2.75Vまで定電流充電した後、2.75Vで10秒保持した。その後、I=3Aで定電流放電を行った。この定電流放電時の電圧(V)と時間(t)の関係を測定し、放電開始後30ミリ秒~60ミリ秒間の時間に対する電圧の関係を直線近似し、この近似直線の傾きΔV/Δt(負の値となる)を求めた。そして、容量(CAP)は、以下の(1)式より算出した。
  CAP=-I・Δt/ΔV   (1)
 電気二重層キャパシタの電気抵抗(ESR)は、以下のように測定した。
 電気二重層キャパシタを充電電流3Aで2.75Vまで定電流充電した後、2.75Vで10秒保持した。その後、I=3Aで定電流放電を行った。図32(b)に示すように、放電開始直後、電気抵抗(ESR)の影響で電圧が2.75VよりΔVだけ急激に低下する。
 このΔVを次のようにして求めた。
 定電流放電時の電圧(V)と時間(t)の関係を測定し、放電開始後30ミリ秒~60ミリ秒間の時間に対する電圧の関係を直線近似により求めた。この近似直線より放電開始直後すなわちt=0での電圧値Vtを求めた。
 そして、以下の(2)式よりΔVを算出した。
  ΔV=2.75-Vt   (2)
 このようにしてΔVを求めた後、ESRを以下の(3)式より求めた。
  ESR=ΔV/I   (3)
 実施例5の電気二重層キャパシタの容量は476mFであり、電気抵抗は18mΩであった。
  1,2,3 電気化学素子用積層ブロック
  10,11,13,14,42,61,62 セパレータ層
  20A,70A 正極複合シート(正極セパレータ/電極複合シート)
  20D 正極・正極一体化シート
  21a,22a,23a,24a 正極集電体電極
  21b,22b,23b,24b 正極活物質層
  21t 正極端子電極
  30A,70B 負極複合シート(負極セパレータ/電極複合シート)
  30D 負極・負極一体化シート
  31a,32a,33a,34a 負極集電体電極
  31b,32b,33b,34b 負極活物質層
  31t 負極端子電極
  41 埋込層
  50A,70AB 正極・負極一体化シート
  50AB,50BA 正極・負極一体化シート
  80 吸引盤
  100 基材フィルム
  101 離型層
  102 正極集電体膜
  R102 レジストパターン
  121 接着層
  122a,132a 導電性接着剤
  122b 正極パッケージ電極
  132b 負極パッケージ電極
  LB1,LB2,LB3 電気化学素子用積層シート
  D1,D2,D3 裁断線
  300 転写フィルム

Claims (12)

  1.  正極又は負極の一方の第1極と他方の第2極との間にセパレータ層が設けられてなる積層体と電解質と前記積層体と前記電解質を収納したパッケージを有してなる蓄電デバイスであって、
     第1極集電体電極とその第1極集電体電極の一方の主面に設けられた第1極活物質層と前記一方の主面の少なくとも一部を覆うセパレータ層とが一体化されてなる第1極複合シートを少なくとも2つ含んでなり、
     前記少なくとも2つの第1極複合シートの一方の第1極複合シートの第1極集電体電極の他方の主面と他方の第1極複合シートの第1極集電体電極の他方の主面とが対向して接合されたことを特徴とする蓄電デバイス。
  2.  第2極集電体電極とその第2極集電体電極の一方の主面に設けられた第2極活物質層と前記第2極集電体電極の前記一方の主面の少なくとも一部を覆うセパレータ層とが一体化されてなる第2極複合シートを含んでなる請求項1記載の蓄電デバイス。
  3.  第2極集電体電極とその第2極集電体電極の一方の主面に設けられた第2極活物質層と前記第2極集電体電極の前記一方の主面の少なくとも一部を覆うセパレータ層とが一体化されてなる第2極複合シートを少なくとも2つ含んでなり、
     前記少なくとも2つの第2極複合シートの一方の第2極複合シートの第2極集電体電極の他方の主面と他方の第2極複合シートの第2極集電体電極の他方の主面とが対向して接合された請求項1又は2記載の蓄電デバイス。
  4.  前記第1極複合シートのセパレータ層と前記第2極複合シートのセパレータ層とが接合された請求項2又は3記載の蓄電デバイス。
  5.  前記セパレータ層が無機フィラーを含む請求項1~4のうちのいずれか1つに記載の蓄電デバイス。
  6.  正極又は負極の一方の第1極と他方の第2極との間にセパレータ層が設けられてなる積層体と電解質と前記積層体と前記電解質を収納したパッケージを有してなる蓄電デバイスの製造方法において、
     第1極集電体電極とその第1極集電体電極の一方の主面に設けられた第1極活物質層と前記一方の主面の少なくとも一部を覆うセパレータ層とが一体化されてなる第1極複合シートを少なくとも2つ作製する第1極複合シート作製工程と、
     前記少なくとも2つの第1極複合シートを、その一方の第1極複合シートの第1極集電体電極の他方の主面と他方の第1極複合シートの第1極集電体電極の他方の主面とが対向して接合されるように接合する第1極複合シート接合工程とを含むことを特徴とする蓄電デバイスの製造方法。
  7.  前記第1極複合シート作製工程は、
     基材上に前記第1極集電体電極を形成する第1極集電体電極形成工程と、
     前記基材上に形成された前記第1極集電体電極の表面である前記一方の主面に前記第1極活物質層を形成する工程と、前記一方の主面の少なくとも一部を覆うセパレータ層を形成する工程を含み、
     前記第1極複合シート接合工程の前に、接合する第1極複合シートを基材から剥離する基材剥離工程を含む請求項6記載の蓄電デバイスの製造方法。
  8.  第2極集電体電極とその第2極集電体電極の一方の主面に設けられた第2極活物質層と前記第2極集電体電極の前記一方の主面の少なくとも一部を覆うセパレータ層とが一体化されてなる第2極複合シートを作製する第2極複合シート作製工程と、
     前記第1極複合シートのセパレータ層と前記第2極複合シートのセパレータ層とを接合するセパレータ層間接合工程と、
     を含む請求項6又は7記載の蓄電デバイスの製造方法。
  9.  第2極集電体電極とその第2極集電体電極の一方の主面に設けられた第2極活物質層と前記第2極集電体電極の前記一方の主面の少なくとも一部を覆うセパレータ層とが一体化されてなる第2極複合シートを少なくとも2つ作製する第2極複合シート作製工程と、
     前記少なくとも2つの第2極複合シートを、その一方の第2極複合シートの第2極集電体電極の他方の主面と他方の第2極複合シートの第2極集電体電極の他方の主面とが対向して接合されるように接合する第2極複合シート接合工程と、
     前記第1極複合シートのセパレータ層と前記第2極複合シートのセパレータ層とを接合するセパレータ層間接合工程と、
     を含む請求項6~8のうちいずれか1つに記載の蓄電デバイスの製造方法。
  10.  前記セパレータ層間接合工程を、第1極複合シート接合工程及び/又は第2極複合シート接合工程の前に含む請求項8又は9記載の蓄電デバイスの製造方法。
  11.  前記第2極複合シート作製工程は、
     基材上に前記第2極集電体電極を形成する第2極集電体電極形成工程と、
     前記基材上に形成された前記第2極集電体電極の表面である前記一方の主面に前記第2極活物質層を形成する工程と、前記第2極集電体電極の前記一方の主面の少なくとも一部を覆うセパレータ層を形成する工程を含み、
     前記第2極複合シートを前記基材から剥離する基材剥離工程を含む請求項8~10のうちのいずれか1つに記載の蓄電デバイスの製造方法。
  12.  前記セパレータ層に無機フィラーを含有させる請求項6~11のうちのいずれか1つに記載の蓄電デバイスの製造方法。
PCT/JP2011/064751 2010-06-28 2011-06-28 蓄電デバイス及びその製造方法 WO2012002358A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012522630A JP5435131B2 (ja) 2010-06-28 2011-06-28 蓄電デバイス及びその製造方法
CN201180032391.XA CN102971816B (zh) 2010-06-28 2011-06-28 蓄电设备及其制造方法
US13/729,094 US9368776B2 (en) 2010-06-28 2012-12-28 Power storage device and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010146551 2010-06-28
JP2010-146551 2010-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/729,094 Continuation US9368776B2 (en) 2010-06-28 2012-12-28 Power storage device and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2012002358A1 true WO2012002358A1 (ja) 2012-01-05

Family

ID=45402065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064751 WO2012002358A1 (ja) 2010-06-28 2011-06-28 蓄電デバイス及びその製造方法

Country Status (4)

Country Link
US (1) US9368776B2 (ja)
JP (1) JP5435131B2 (ja)
CN (1) CN102971816B (ja)
WO (1) WO2012002358A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002119A1 (ja) * 2011-06-28 2013-01-03 株式会社 村田製作所 蓄電デバイスとその製造方法
WO2013099541A1 (ja) * 2011-12-27 2013-07-04 株式会社村田製作所 蓄電デバイス及びその製造方法
JP2015082372A (ja) * 2013-10-22 2015-04-27 トヨタ自動車株式会社 二次電池
KR101735251B1 (ko) 2016-12-26 2017-05-12 주식회사 엘지화학 이차전지 및 이의 제조 방법
JP2017199664A (ja) * 2016-04-25 2017-11-02 パナソニックIpマネジメント株式会社 電池、および、電池製造方法、および、電池製造装置
JP2018046005A (ja) * 2016-09-09 2018-03-22 ユニチカ株式会社 蓄電素子電極用積層体および蓄電素子用電極の製造方法
JP2018511144A (ja) * 2015-06-23 2018-04-19 エルジー・ケム・リミテッド 湾曲型電極組立体の製造方法
JPWO2021145345A1 (ja) * 2020-01-17 2021-07-22

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105788878A (zh) * 2014-12-16 2016-07-20 哈尔滨市三和佳美科技发展有限公司 片封式超级电容
MY194849A (en) 2016-05-20 2022-12-19 Kyocera Avx Components Corp Ultracapacitor for use at high temperatures
KR101998194B1 (ko) * 2016-06-13 2019-07-09 주식회사 엘지화학 전극 제조 장치 및 방법
WO2018055960A1 (ja) * 2016-09-26 2018-03-29 株式会社村田製作所 蓄電デバイス
RU168096U1 (ru) * 2016-10-24 2017-01-18 Общество С Ограниченной Ответственностью "Товарищество Энергетических И Электромобильных Проектов" Электрохимический модуль
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process
JP6586969B2 (ja) * 2016-12-20 2019-10-09 株式会社豊田自動織機 蓄電モジュール
FR3061610B1 (fr) * 2017-01-05 2021-07-02 Commissariat Energie Atomique Accumulateur electrochimique, a architecture plane obtenue en partie par impression
US10903672B2 (en) * 2017-03-30 2021-01-26 International Business Machines Corporation Charge method for solid-state lithium-based thin-film battery
US10622680B2 (en) 2017-04-06 2020-04-14 International Business Machines Corporation High charge rate, large capacity, solid-state battery
JP7067512B2 (ja) * 2019-03-22 2022-05-16 株式会社村田製作所 固体電解コンデンサ
CN113690061B (zh) * 2021-09-03 2022-05-06 北京航空航天大学 一种碳基超级电容器电极及其激光-酸改性协同制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305426A (ja) * 1989-05-19 1990-12-19 Murata Mfg Co Ltd 電気二重層コンデンサとその製造方法
JPH06231796A (ja) * 1993-02-05 1994-08-19 Tdk Corp 積層型電池とその製造方法
WO1999040645A1 (fr) * 1998-02-05 1999-08-12 Mitsubishi Denki Kabushiki Kaisha Batterie au lithium et son procede de fabrication
JP2005063978A (ja) * 2003-08-19 2005-03-10 Samsung Sdi Co Ltd リチウム金属アノードの製造方法
JP2005093859A (ja) * 2003-09-19 2005-04-07 Nichicon Corp 電気二重層キャパシタ
JP2005243303A (ja) * 2004-02-24 2005-09-08 Tomoegawa Paper Co Ltd 電気化学素子用部材及びその製造方法、並びにそれを用いた電気化学素子
JP2007273738A (ja) * 2006-03-31 2007-10-18 Tomoegawa Paper Co Ltd 多孔質絶縁膜、分極性電極ならびにその製造方法、電気二重層キャパシタ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882721A (en) 1997-05-01 1999-03-16 Imra America Inc Process of manufacturing porous separator for electrochemical power supply
JPH11274004A (ja) * 1998-03-23 1999-10-08 Asahi Glass Co Ltd 電気化学素子
US6576365B1 (en) 1999-12-06 2003-06-10 E.C.R. - Electro Chemical Research Ltd. Ultra-thin electrochemical energy storage devices
US7005214B2 (en) * 2001-11-02 2006-02-28 Wilson Greatbatch Technologies, Inc. Noble metals coated on titanium current collectors for use in nonaqueous Li/CFx cells
JP2003197198A (ja) 2001-12-26 2003-07-11 Kakogawa Plastic Kk 非水系電池ならびにこれを構成する電極フィルムおよび電池素子
JP2003243038A (ja) 2002-02-19 2003-08-29 Matsushita Electric Ind Co Ltd 正極板およびこれを用いたリチウム二次電池
US9793523B2 (en) * 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
JP2004164898A (ja) 2002-11-11 2004-06-10 Nissan Motor Co Ltd バイポーラ電池の製造方法、およびバイポーラ電池
KR100647966B1 (ko) 2004-02-24 2006-11-23 가부시키가이샤 도모에가와 세이시쇼 전자부품용 세퍼레이터 및 그 제조방법
US20050233209A1 (en) * 2004-04-19 2005-10-20 Anthony Sudano Electrical contact for current collectors of electrochemical cells and method therefor
JP2006196235A (ja) 2005-01-12 2006-07-27 Hitachi Ltd 電池・キャパシタ複合素子
JP4208007B2 (ja) * 2006-11-15 2009-01-14 トヨタ自動車株式会社 集電体の製造方法及び蓄電装置の製造方法
CN101232104B (zh) * 2007-01-22 2011-09-14 万向集团公司 磷酸铁锂动力聚合物锂离子电池的制造方法
KR101716907B1 (ko) * 2008-08-19 2017-03-15 데이진 가부시키가이샤 비수계 2 차 전지용 세퍼레이터
US20100261049A1 (en) * 2009-04-13 2010-10-14 Applied Materials, Inc. high power, high energy and large area energy storage devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305426A (ja) * 1989-05-19 1990-12-19 Murata Mfg Co Ltd 電気二重層コンデンサとその製造方法
JPH06231796A (ja) * 1993-02-05 1994-08-19 Tdk Corp 積層型電池とその製造方法
WO1999040645A1 (fr) * 1998-02-05 1999-08-12 Mitsubishi Denki Kabushiki Kaisha Batterie au lithium et son procede de fabrication
JP2005063978A (ja) * 2003-08-19 2005-03-10 Samsung Sdi Co Ltd リチウム金属アノードの製造方法
JP2005093859A (ja) * 2003-09-19 2005-04-07 Nichicon Corp 電気二重層キャパシタ
JP2005243303A (ja) * 2004-02-24 2005-09-08 Tomoegawa Paper Co Ltd 電気化学素子用部材及びその製造方法、並びにそれを用いた電気化学素子
JP2007273738A (ja) * 2006-03-31 2007-10-18 Tomoegawa Paper Co Ltd 多孔質絶縁膜、分極性電極ならびにその製造方法、電気二重層キャパシタ

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002119A1 (ja) * 2011-06-28 2013-01-03 株式会社 村田製作所 蓄電デバイスとその製造方法
US9911547B2 (en) 2011-12-27 2018-03-06 Murata Manufacturing Co., Ltd. Electric storage device and method for manufacturing the same
JPWO2013099541A1 (ja) * 2011-12-27 2015-04-30 株式会社村田製作所 蓄電デバイス及びその製造方法
WO2013099541A1 (ja) * 2011-12-27 2013-07-04 株式会社村田製作所 蓄電デバイス及びその製造方法
JP2015082372A (ja) * 2013-10-22 2015-04-27 トヨタ自動車株式会社 二次電池
JP2018511144A (ja) * 2015-06-23 2018-04-19 エルジー・ケム・リミテッド 湾曲型電極組立体の製造方法
JP2017199664A (ja) * 2016-04-25 2017-11-02 パナソニックIpマネジメント株式会社 電池、および、電池製造方法、および、電池製造装置
JP7018577B2 (ja) 2016-04-25 2022-02-14 パナソニックIpマネジメント株式会社 電池、および、電池製造方法、および、電池製造装置
JP2018046005A (ja) * 2016-09-09 2018-03-22 ユニチカ株式会社 蓄電素子電極用積層体および蓄電素子用電極の製造方法
JP7166579B2 (ja) 2016-09-09 2022-11-08 ユニチカ株式会社 蓄電素子電極用積層体および蓄電素子用電極の製造方法
KR101735251B1 (ko) 2016-12-26 2017-05-12 주식회사 엘지화학 이차전지 및 이의 제조 방법
JPWO2021145345A1 (ja) * 2020-01-17 2021-07-22
JP7386265B2 (ja) 2020-01-17 2023-11-24 富士フイルム株式会社 非水電解質二次電池、集電体、及びこれらの製造方法
EP4092780A4 (en) * 2020-01-17 2024-09-18 Fujifilm Corp SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE AND METHOD FOR THE PRODUCTION THEREOF

Also Published As

Publication number Publication date
US20130122347A1 (en) 2013-05-16
CN102971816B (zh) 2015-10-07
JPWO2012002358A1 (ja) 2013-08-22
JP5435131B2 (ja) 2014-03-05
CN102971816A (zh) 2013-03-13
US9368776B2 (en) 2016-06-14

Similar Documents

Publication Publication Date Title
JP5435131B2 (ja) 蓄電デバイス及びその製造方法
JP5742512B2 (ja) 蓄電デバイスの製造方法
JP5804087B2 (ja) 蓄電デバイス及びその製造方法
JP5610076B2 (ja) 蓄電デバイスおよびその製造方法
JP5578282B2 (ja) 蓄電デバイスおよびその製造方法
TWI566942B (zh) 製造電極組之方法
JP5768881B2 (ja) 蓄電デバイス用素子および蓄電デバイス
JP5782634B2 (ja) ナノ多孔性セパレータ層を利用するリチウム電池
KR101595643B1 (ko) 전극조립체 및 이를 포함하는 폴리머 이차전지 셀
JP6038329B2 (ja) 電極組立体及び電極組立体の製造方法
JP5477609B2 (ja) 蓄電デバイスとその製造方法
WO2012002359A1 (ja) 蓄電デバイスとその製造方法
JP2004253243A (ja) 板型電池およびその製造方法
WO2013001962A1 (ja) 絶縁性接着層組成物、蓄電デバイス用素子、蓄電デバイス、およびそれらの製造方法
JP2013131675A (ja) 蓄電デバイスのセパレータ、絶縁性接着層、それに用いられる組成物、蓄電デバイス用素子、蓄電デバイス、および蓄電デバイス用素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032391.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800822

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522630

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800822

Country of ref document: EP

Kind code of ref document: A1