Nothing Special   »   [go: up one dir, main page]

WO2012002063A1 - 非接触給電システム及び非接触給電システムの金属異物検出装置 - Google Patents

非接触給電システム及び非接触給電システムの金属異物検出装置 Download PDF

Info

Publication number
WO2012002063A1
WO2012002063A1 PCT/JP2011/061636 JP2011061636W WO2012002063A1 WO 2012002063 A1 WO2012002063 A1 WO 2012002063A1 JP 2011061636 W JP2011061636 W JP 2011061636W WO 2012002063 A1 WO2012002063 A1 WO 2012002063A1
Authority
WO
WIPO (PCT)
Prior art keywords
oscillation
circuit
signal
power feeding
antenna coil
Prior art date
Application number
PCT/JP2011/061636
Other languages
English (en)
French (fr)
Inventor
秀明 安倍
Original Assignee
パナソニック電工 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工 株式会社 filed Critical パナソニック電工 株式会社
Priority to CN201180041459.0A priority Critical patent/CN103069689B/zh
Priority to KR1020147034635A priority patent/KR101568769B1/ko
Priority to EP11800532.1A priority patent/EP2590300B1/en
Priority to US13/806,799 priority patent/US9099239B2/en
Priority to KR1020127033795A priority patent/KR20130038885A/ko
Publication of WO2012002063A1 publication Critical patent/WO2012002063A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices

Definitions

  • the present invention relates to a contactless power supply system and a metal foreign object detection device of the contactless power supply system.
  • electromagnetic induction using high-frequency magnetic flux is used for non-contact power supply to mobile phones and home appliances.
  • the same electromagnetic induction is used not only in proximity-type electromagnetic induction power supply that has already been put into practical use, but also in a spatial power supply technology that supplies power at a certain distance, called the magnetic resonance type, which has been attracting attention in recent years.
  • the high frequency magnetic flux generates an induced electromotive force also in the metal foreign object, resulting in temperature rise due to eddy current loss. If the metal foreign object becomes hot, it may cause deformation of the power supply device or the housing of the device, or if it is accidentally touched by a person, it may cause burns.
  • Patent Document 1 Various inventions for preventing induction heating of this metal have been proposed (for example, Patent Document 1 and Patent Document 2).
  • the high-frequency inverter circuit on the power feeding device side oscillates intermittently and stands by. Even if a metal foreign object is placed alone during this standby, the average output is extremely small, so that there is almost no temperature rise and it is safe.
  • the secondary side (device side) When a correct device is placed, a small amount of power is transmitted to the secondary coil through the primary coil during this intermittent oscillation period. Using this power, the secondary side (device side) generates a special signal and sends it back through the antenna on the power feeding device side. By detecting this signal, the power supply apparatus determines whether or not a regular device is attached and controls the high-frequency inverter.
  • the metal foreign object detection device used for the non-contact power supply device not only the detection when the metal foreign object is placed alone, but also in the gap between the power primary coil and the power secondary coil during use. It must be possible to detect thin metal pieces that are sandwiched.
  • the power feeding coil and the power receiving coil for power transmission are used as they are, and the output of the power receiving coil is modulated from the device side at the time of data communication.
  • a method of causing a change in voltage or current appearing at the terminal of the power transmission coil is considered. In this case, if there is a metal foreign object between the power receiving coil and the power transmitting coil, the data communication signal is attenuated. Therefore, by using this mechanism, the metal sandwiched is detected.
  • Recent power supply devices tend to have higher output per unit area in order to cope with high-power devices, and detection of smaller thin metal pieces is increasingly required.
  • an expensive and large-scale dedicated high-sensitivity high-precision metal detection sensor must be provided, which leads to an increase in the size and cost of the power supply system.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a non-contact power feeding system and a non-contact power feeding system capable of detecting a metal foreign object with high sensitivity and high accuracy with an inexpensive and simple configuration.
  • An object of the present invention is to provide a metal foreign object detection device.
  • the first aspect of the present invention is a non-contact power supply system.
  • the non-contact power feeding system generates an induced electromotive force via a power feeding device including a primary coil, a high frequency inverter for flowing a high frequency current through the primary coil, and an alternating magnetic field generated by the current flowing through the primary coil.
  • a device that includes a secondary coil that generates power and supplies power to a load using an electromotive force generated in the secondary coil, and a metal foreign object detection device that passes a high-frequency current through the antenna coil and the antenna coil
  • the metal foreign object detection device including an oscillation circuit and a detection circuit that detects a change in voltage or current observed in any of the oscillation circuit and the antenna coil, the oscillation circuit in the oscillation circuit Including components that have design values that cause oscillation under oscillation conditions within the range from the oscillation condition immediately after oscillation begins to before the stable continuous oscillation condition
  • the metal foreign object detection device causes the detection circuit to stop the oscillation of the oscillation circuit or attenuate the oscillation amplitude based on a change in electrical characteristics of the antenna coil caused by the metal foreign object placed on the power supply device. And control the power feeding device.
  • a primary coil of the power feeding device is excited, an induced electromotive force is generated by electromagnetic induction in a secondary coil of a device disposed on the power feeding device, and the dielectric electromotive force is generated.
  • the metal foreign object detection device includes an antenna coil, an oscillation circuit that allows a high-frequency current to flow through the antenna coil, and a detection circuit that detects a change in voltage or current observed in any of the oscillation circuit and the antenna coil unit.
  • the oscillation circuit includes a component having a design value that causes oscillation under an oscillation condition within a range from an oscillation condition immediately after oscillation starts to occur in the oscillation circuit to a level before a stable continuous oscillation condition,
  • the detection circuit detects stop of oscillation of the oscillation circuit or attenuation of oscillation amplitude based on a change in electrical characteristics of the antenna coil caused by a metal foreign object placed on the power supply device. To control.
  • metallic foreign objects can be detected with high sensitivity and high accuracy with an inexpensive and simple configuration.
  • FIG. It is an output waveform diagram of the oscillation signal of the oscillation circuit. It is an output waveform diagram of the detection signal of the oscillation circuit under another oscillation condition. It is a circuit diagram of a high frequency inverter circuit. It is an output waveform diagram of the first excitation synchronization signal and the second excitation synchronization signal. It is an output waveform figure of a high frequency inverter circuit. It is an output waveform figure of a high frequency inverter circuit.
  • FIG. 5F is a diagram illustrating a state in which the placement surface of the power supply device and the device are separated from each other and power is supplied thereto, and FIG.
  • 5G is a diagram illustrating a space in which the placement surface of the power supply device is separated from the metal piece. It is a figure which shows the state by which the metal piece is also placed. It is an output waveform diagram of the oscillation signal of the oscillation circuit. It is a perspective view which shows another example of a metal foreign material detection apparatus.
  • FIG. 1 is an overall perspective view of a power supply device 1 and a device E that is contactlessly powered from the power supply device 1.
  • a housing 2 of the power feeding device 1 includes a quadrangular bottom plate 3, a quadrangular frame 4 that extends upward from the four sides of the bottom plate 3, and a tempered glass that closes an opening above the quadrangular frame 4.
  • the top plate 5 is formed. And the upper surface of the top plate 5 becomes the mounting surface 6 as a power feeding surface on which the device E is mounted.
  • a primary coil L ⁇ b> 1 is disposed in a space (inside the housing 2) formed by the bottom plate 3, the square frame body 4, and the top plate 5.
  • the number of primary coils L1 is one, and the primary coil L1 is disposed in parallel with the placement surface 6 of the top plate 5.
  • the primary coil L ⁇ b> 1 is arranged and fixed at a position close enough to contact the lower surface of the top plate 5.
  • a power supply module M for controlling the excitation drive of the primary coil L1 is mounted on the bottom plate 3 below the primary coil L1.
  • the power supply module M is connected to the primary coil L1, is driven to excite the primary coil L1, and performs non-contact power supply to the device E placed on the placement surface 6.
  • the signal receiving antenna coil AT1 is arranged and fixed outside the primary coil L1 so as to surround the primary coil L1. Data and information are exchanged between the device E placed on the placement surface 6 and the power supply module M by wireless communication via the signal receiving antenna coil AT1.
  • a metal detection antenna coil AT2 is formed on the top surface (mounting surface 6) of the top plate 5 at a position opposite to the primary coil L1.
  • the metal detection antenna coil AT2 is formed in a spiral shape, and is formed on the mounting surface 6 by a known printed wiring technique.
  • the metal detection antenna coil AT2 is connected to a metal foreign object detection device 7 provided in the housing 2 and constitutes a part of the metal foreign object detection device 7.
  • the metal foreign object detection device 7 is configured to detect the metal piece 8 on the placement surface 6 through the metal detection antenna coil AT2.
  • the metal foreign object detection device 7 outputs a metal presence signal ST to the power supply module M when detecting the metal piece 8 on the placement surface 6.
  • a system control unit 9 including a microcomputer that performs overall control of the power feeding module M is mounted.
  • the data / information received by the signal receiving antenna coil AT1 is output to the system control unit 9 via the power supply module M.
  • a metal presence signal ST detected by the metal detection antenna coil AT2 and output from the metal foreign object detection device 7 is output to the system control unit 9 via the power supply module M.
  • the device E placed on the placement surface 6 of the power feeding device 1 has a secondary coil L2.
  • the secondary coil L ⁇ b> 2 of the device E is energized and fed via the excitation of the primary coil L ⁇ b> 1 of the power feeding device 1, and the fed power, that is, the secondary power is converted to the load Z of the device E. To supply.
  • a transmission / reception antenna coil AT3 is wound around the secondary coil L2 of the device E so as to surround the secondary coil L2. Then, when the device E is placed on the placement surface 6 of the power feeding device 1, the power feeding that controls the excitation of the primary coil L ⁇ b> 1 via the signal receiving antenna coil AT ⁇ b> 1 that surrounds the primary coil L ⁇ b> 1 located immediately below the device E. Data and information are exchanged with the module M by wireless communication.
  • the device E is provided with a device-side transmission / reception circuit 10.
  • the device-side transmitting / receiving circuit 10 is connected to the transmitting / receiving antenna coil AT3.
  • the device-side transmission / reception circuit 10 generates a device authentication signal ID indicating that the device E can receive power from the power supply device 1 and an excitation request signal RQ requesting the power supply device 1 to supply power.
  • the device-side transmitting / receiving circuit 10 transmits the device authentication signal ID and the excitation request signal RQ to the power feeding device 1 through the transmitting / receiving antenna coil AT3.
  • the device E is a device that is driven by the power (secondary power) generated in the secondary coil L2, and can generate the device authentication signal ID and the excitation request signal RQ and transmit them to the power supply apparatus 1. Any device can be used. Therefore, the device E is a device that rectifies the secondary power generated in the secondary coil L2 by the rectifier circuit and is driven on the mounting surface 6 using the rectified DC power source, It may be a device driven on the mounting surface 6 as it is as an AC power source. The device E may be a device that rectifies secondary power generated in the secondary coil L2 by a rectifier circuit and charges a built-in rechargeable battery (secondary battery) using the rectified DC power supply. .
  • the device-side transmission / reception circuit 10 may have a function of causing the excitation request signal RQ to disappear and transmitting only the device authentication signal ID.
  • the device authentication that has been transmitted until the time elapses when the device E is driven for the time set by the timer after receiving power supply and the set time elapses.
  • the excitation request signal RQ may be lost and the device-side transmission / reception circuit 10 may have a function of transmitting only the device authentication signal ID.
  • the power supply module M to which the primary coil L1 is connected includes an excitation request receiving circuit 11, a device authentication receiving circuit 12, an excitation control circuit 13, and a high frequency inverter circuit.
  • the excitation request receiving circuit 11 is connected to the signal receiving antenna coil AT1 of the power supply module M, and receives the transmission signal transmitted from the device E mounted on the mounting surface 6 via the signal receiving antenna coil AT1.
  • the excitation request receiving circuit 11 extracts an excitation request signal RQ for requesting power supply from the received transmission signal.
  • the excitation request signal RQ is output to the excitation control circuit 13.
  • the device authentication receiving circuit 12 is connected to the signal receiving antenna coil AT1 of the power supply module M, and receives a transmission signal transmitted from the device E mounted on the mounting surface 6 via the signal receiving antenna coil AT1.
  • the device authentication receiving circuit 12 extracts a device authentication signal ID indicating that the device E can be fed from the received transmission signal.
  • the device authentication signal receiving circuit 12 outputs the device authentication signal ID to the excitation control circuit 13.
  • the excitation control circuit 13 is connected to the metal foreign object detection device 7.
  • the metal foreign object detection device 7 detects a change in the oscillation circuit 7 a that applies a high-frequency current to the metal detection antenna coil AT2 and the voltage or current (oscillation signal Vo) of the metal detection antenna coil AT2. And a detection circuit 7b. Then, the metal foreign object detection device 7 detects whether or not the metal piece 8 is placed on the placement surface 6 via the metal detection antenna coil AT2, and the metal piece 8 is placed on the placement surface 6. When this is detected, a metal presence signal ST is output from the detection circuit 7b to the excitation control circuit 13.
  • the oscillation circuit 7a is configured by a Colpitts oscillation circuit as shown in FIG. 4, and the metal detection antenna coil AT2 is also used as one of the components of the inductance of the oscillation circuit 7a.
  • the oscillation circuit 7a includes a bipolar transistor Q1, a metal detection antenna coil AT2, first to third capacitors C1 to C3, and first and second resistors R1 and R2.
  • the collector terminal of the transistor Q1 is connected to one end of the metal detection antenna coil AT2, and the other end of the metal detection antenna coil AT2 is connected to the plus terminal of the DC power source B.
  • the other end of the metal detection antenna coil AT2 is connected to the emitter terminal of the transistor Q1 via the first capacitor C1. Further, a second capacitor C2 is connected between the collector terminal and the emitter terminal of the transistor Q1.
  • the base terminal of the transistor Q1 is connected to the plus terminal of the DC power source B through a parallel circuit composed of the third capacitor C3 and the first resistor R1.
  • the emitter terminal of the transistor Q1 is connected to the negative terminal of the DC power source B through the second resistor R2.
  • the oscillation circuit 7a outputs the oscillation signal Vo from the oscillation circuit 7a to the detection circuit 7b from the collector terminal of the transistor Q1.
  • the oscillation circuit 7a configured as described above includes components constituting the oscillation circuit 7a, that is, the transistor Q1, the metal detection antenna coil AT2, the first to third capacitors C1 to C3, the first and second resistors R1,
  • the circuit constant of R2 is set in advance, and an oscillation signal Vo that can detect a metallic foreign object with high sensitivity is output.
  • the components constituting the oscillation circuit 7a are stable when the oscillation circuit 7a is driven from the state immediately after the oscillation starts exceeding the limit value at which no oscillation occurs when the oscillation circuit 7a is driven. It is set to a design value that causes oscillation within the range of oscillation conditions up to the vicinity of the state where the oscillation amplitude settles at the maximum amplitude.
  • the design value of the oscillation circuit 7a is not a value capable of maintaining continuous oscillation with a stable amplitude, but oscillates under an oscillation condition within the range from the oscillation condition immediately after the oscillation can be started to before the stable continuous oscillation condition. Is set to a value that causes As a result, a large change in the oscillation amplitude of the oscillation signal Vo can be made with a small change in the electromagnetic parameter related to oscillation.
  • the electrical characteristics of the metal detection antenna coil AT2 of the oscillation circuit 7a are changed by the metal piece 8 placed on the mounting surface 6 of the power feeding device 1. Then, the oscillation of the oscillation circuit 7a is stopped or the oscillation amplitude of the oscillation signal Vo is greatly attenuated using the change in the electrical characteristics of the metal detection antenna coil AT2.
  • FIGS. 5 (a) to 5 (e) the case where the mounting surface 6 of the power feeding device 1 is shown in FIGS. 5 (a) to 5 (e) can be considered.
  • FIG. 5A shows a state in which nothing is placed on the placement surface 6 of the power feeding device 1.
  • FIG. 5B shows a state in which only the metal piece 8 is placed on the placement surface 6 of the power feeding device 1.
  • FIG. 5C shows a state in which only the device E is placed on the placement surface 6 of the power feeding device 1.
  • FIG. 5D shows a state in which the metal piece 8 is sandwiched between the mounting surface 6 of the power feeding device 1 and the device E.
  • FIG. 5E shows a state in which the metal piece 8 is placed on the placement surface 6 of the power supply device 1 at a position away from the device E.
  • the oscillation signal Vo of the oscillation circuit 7a needs to have a maximum amplitude waveform as shown in the period A1 in FIG. There is.
  • the amplitude of the oscillation signal Vo becomes zero as shown in the period A3 in FIG. 6, and in the state shown in FIG.
  • the oscillation signal Vo needs to have zero amplitude as shown in the period A4 in FIG.
  • the design value of the component that constitutes the oscillation circuit 7a is set to a value in the vicinity of the condition that the oscillation is finally started by changing the value and type of the component.
  • the oscillation signal Vo of the oscillation circuit 7a is realized.
  • the oscillation circuit 7a when only the device E is placed, the amplitude of the oscillation signal Vo is slightly attenuated, whereas only the metal piece 8 or the metal piece 8 is placed on the device E and the mounting surface. 6, or when placed in the vicinity of the device E, the oscillation is stopped.
  • the oscillation circuit 7a is a sensor that is highly sensitive to distance, and can accurately detect even a metal piece 8 that is placed close to or in close contact with a distance shorter than the thickness of the housing of the device E. .
  • the device E having a certain housing thickness cannot be in close contact with the metal detection antenna coil AT2, and thus the device E having the secondary coil L2, the metal and the magnetic material in the housing The metal piece 8 can be clearly distinguished and detected.
  • the design value of the oscillation circuit 7a is selected to be a value in the vicinity of the conditions that can finally oscillate. An extremely sensitive state has been created.
  • the oscillation signal Vo shown in FIG. 7 is obtained in each state of FIGS. 5 (a) to 5 (e). That is, when only the metal piece 8 is present on the placement surface 6, or when the metal piece 8 is sandwiched between the device E and the placement surface 6, or the metal piece 8 is placed in the vicinity of the device E. In this case, it was confirmed that the amplitude of the oscillation signal Vo showed a large attenuation even if the oscillation was not stopped.
  • the oscillation signal Vo output from the oscillation circuit 7a is output to the detection circuit 7b.
  • the detection circuit 7b when the amplitude value of the oscillation signal Vo is less than a predetermined reference value, only the metal piece 8 is placed on the mounting surface 6, or the metal piece 8 is sandwiched between the devices E. Alternatively, it is determined that it is placed on the placement surface 6 in the vicinity of the device E, and a metal presence signal ST is output.
  • the detection circuit 7b (metal foreign object detection device 7) outputs this metal presence signal ST to the excitation control circuit 13.
  • the detection circuit 7b (the metal foreign object detection device 7) is not placed on the placement surface 6 or the device E on the placement surface 6 Therefore, the metal presence signal ST is not output to the excitation control circuit 13.
  • the excitation control circuit 13 receives the excitation request signal RQ from the excitation request receiving circuit 11 output from time to time, the device authentication signal ID from the device authentication receiving circuit 12, and the metal presence signal ST from the metal foreign object detection device 7. To do.
  • the excitation control circuit 13 outputs an excitation request signal RQ, a device authentication signal ID, and a metal presence signal ST that are input from time to time to the system control unit 9. Then, the excitation control circuit 13 waits for the permission signal EN from the system control unit 9 by outputting the excitation request signal RQ, the device authentication signal ID, and the metal presence signal ST to the system control unit 9.
  • the system controller 9 is (1) when the excitation request signal RQ is input, and (2) when the device authentication signal ID is input, the primary coil L1 connected to the power supply module M. Is output to the excitation control circuit 13.
  • the excitation control circuit 13 When receiving the permission signal EN from the system controller 9, the excitation control circuit 13 outputs a drive control signal CT for exciting the primary coil L1 to the high frequency inverter circuit 14 for power feeding.
  • the system control unit 9 outputs the permission signal EN when the metal presence signal ST is input from the metal foreign object detection device 7 via the excitation control circuit 13. Do not output. Accordingly, the excitation control circuit 13 does not output the drive control signal CT for exciting the primary coil L1 to the high frequency inverter circuit 14.
  • system control unit 9 stops outputting the permission signal EN when at least one of the excitation request signal RQ and the device authentication signal ID from the excitation control circuit 13 is not input while the permission signal EN is being output. . Accordingly, also in this case, the excitation control circuit 13 does not output the drive control signal CT to the high frequency inverter circuit 14.
  • the high frequency inverter circuit 14 is connected to the primary coil L1 of the power supply module M.
  • the high frequency inverter circuit 14 drives the primary coil L1 to be excited based on the drive control signal CT.
  • the high frequency inverter circuit 14 drives the primary coil L1 to be excited for power supply.
  • the device E that can be fed by the power feeding device 1 is placed on the placement surface 6, and the device authentication signal ID and the excitation request signal RQ are transmitted from the device E.
  • the primary coil L1 is driven to be excited by the high-frequency inverter circuit 14 for power feeding. That is, the primary coil L1 is excited and driven to supply secondary power to the device E by non-contact power feeding.
  • the high frequency inverter circuit 14 includes a high frequency oscillation circuit 14a and an excitation synchronization signal generation circuit 14b.
  • the high-frequency oscillation circuit 14a is connected to the primary coil L1 and excites the primary coil L1.
  • FIG. 8 shows a circuit configuration of the high-frequency oscillation circuit 14a.
  • the high-frequency oscillation circuit 14a is a half-bridge type partial resonance circuit, and a voltage dividing circuit formed by a series circuit of a fourth capacitor C4 and a fifth capacitor C5 between the power supply voltage G provided in the power feeding device 1 and the ground. Circuits are provided in parallel.
  • a driving circuit composed of a series circuit of a first power transistor Q11 and a second power transistor Q12 is connected in parallel to the voltage dividing circuit.
  • the first power transistor Q11 and the second power transistor Q12 are formed of MOSFETs, and flywheel diodes D1 and D2 are connected between the source terminal and the drain terminal, respectively. .
  • the primary coil L1 is connected between a connection point (node N1) between the fourth capacitor C4 and the fifth capacitor C5 and a connection point (node N2) between the first power transistor Q11 and the second power transistor Q12. Connected.
  • a sixth capacitor C6 is connected in parallel to the primary coil L1.
  • the first power transistor Q11 and the second power transistor Q12 are N-channel MOSFETs, and the first AND circuit 21 is connected to the gate terminal of the first power transistor Q11, and the gate of the second power transistor Q12. A second AND circuit 22 is connected to the terminal.
  • the first AND circuit 21 is an AND circuit having two input terminals, and a first excitation synchronization signal Vs1 that is a high / low signal is input to one input terminal.
  • the first excitation synchronization signal Vs1 is a high / low signal having a predetermined period Ts1, and as shown in FIG. 9, the high time ta1 is set shorter than the low time tb1.
  • the first excitation synchronization signal Vs1 is output from a signal generation circuit (not shown) provided in the system control unit 9.
  • the first output signal Vrs1 from the first OR circuit 23 is inputted to the other input terminal of the first AND circuit 21.
  • the first OR circuit 23 is an OR circuit having two input terminals, and an intermittent high signal Vst that is intermittently at a high level as shown in FIG. 10 is input to one input terminal. ing.
  • the intermittent high signal Vst rises to high after the first excitation synchronization signal Vs1 falls from high to low, then rises to high, and then goes low immediately before the second first excitation synchronization signal Vs1 rises. Fall down. Then, after the fifth first excitation synchronization signal Vs1 output after falling low, the next intermittent high signal Vst rises high.
  • the time during which the intermittent high signal Vst is at the high level is referred to as a high time tx.
  • the intermittent high signal Vst is output from a signal generation circuit (not shown) provided in the system control unit 9.
  • an inverter control signal Vss as shown in FIGS. 10 and 11 is inputted to the other input terminal of the first OR circuit 23 from the excitation synchronization signal generating circuit 14b.
  • the excitation control signal generation circuit 14b When the excitation control signal generation circuit 14b receives the drive control signal CT from the excitation control circuit 13, the excitation synchronization signal generation circuit 14b generates a high-level inverter control signal Vss for exciting the primary coil L1 for power supply. The signal is output to the 1-or circuit 23.
  • the excitation synchronization signal generation circuit 14b When the drive control signal CT is not input from the excitation control circuit 13 to the excitation synchronization signal generation circuit 14b, the excitation synchronization signal generation circuit 14b does not output the high-level inverter control signal Vss.
  • the excitation synchronization signal generation circuit 14b when the device E is not mounted on the mounting surface 6 (when the excitation request signal RQ and the device authentication signal ID are not received), the excitation synchronization signal generation circuit 14b generates the high level inverter control signal Vss. Is not output to the first OR circuit 23.
  • the first OR circuit 23 outputs the first output signal Vrs1 that is at the high level for the same period as the high time tx for each period Tst of the intermittent high signal Vst input to one input terminal. 1 and output to the AND circuit 21. In other words, at this time, the first OR circuit 23 outputs the intermittent high signal Vst as the first output signal Vrs1.
  • the first excitation synchronization signal Vs1 is set to the first on / off signal Vg1 every cycle Tst. Output to the gate.
  • the first power transistor Q11 is intermittently turned on in response to the first on / off signal Vg1 (first excitation synchronization signal Vs1) during the high time tx of the intermittent high signal Vst every cycle Tst. .
  • the excitation synchronization signal generation circuit 14b receives the drive control signal CT and outputs a high level signal.
  • the inverter control signal Vss is output to the first OR circuit 23.
  • the first OR circuit 23 outputs the high-level inverter control signal Vss to the first AND circuit 21 at the next stage as the first output signal Vrs1.
  • the first AND circuit 21 outputs the first excitation synchronization signal Vs1 output at the predetermined cycle Ts1 while the high-level inverter control signal Vss is output.
  • a 1 on / off signal Vg1 is output to the gate of the first power transistor Q11.
  • the first power transistor Q11 is turned on / off at the cycle Ts1 of the first excitation synchronization signal Vs1.
  • the second AND circuit 22 is connected to the gate terminal of the second power transistor Q12.
  • the second AND circuit 22 is an AND circuit having two input terminals, and a second excitation synchronization signal Vs2 that is a high / low signal is input to one input terminal.
  • the second excitation synchronization signal Vs2 is a high / low signal having a predetermined period Ts2, and has the same period as the period Ts1 of the first excitation synchronization signal Vs1, as shown in FIG.
  • the signal Vs1 is substantially inverted.
  • the second excitation synchronization signal Vs2 when the first excitation synchronization signal Vs1 is high, the second excitation synchronization signal Vs2 is low, and when the first excitation synchronization signal Vs1 is low, the second excitation synchronization signal Vs2 is high.
  • the high times ta1 and ta2 of the first and second excitation synchronization signals Vs1 and Vs2 are set shorter than the low times tb1 and tb2. Therefore, the first excitation synchronization signal Vs1 falls from high to low, the second excitation synchronization signal Vs2 rises from low to high, and the second excitation synchronization signal Vs2 falls from high to low. There is a dead time td during which the first and second excitation synchronization signals Vs1 and Vs2 are both at low level until the first excitation synchronization signal Vs1 rises from low to high. By providing this dead time td, the first power transistor Q11 and the second power transistor Q12 can be soft-switched.
  • the second excitation synchronization signal Vs2 is output from a signal generation circuit (not shown) provided in the system control unit 9 in this embodiment.
  • the second output signal Vrs2 from the second OR circuit 24 is inputted to the other input terminal of the second AND circuit 22.
  • the second OR circuit 24 is an OR circuit having two input terminals, and the intermittent high signal Vst is input to one input terminal. Similarly, the inverter control signal Vss is input from the excitation synchronization signal generation circuit 14b to the other input terminal of the second OR circuit 24.
  • the excitation synchronization signal generation circuit 14b receives the drive control signal CT from the excitation control circuit 13 (when the conditions (1) and (2) are satisfied), the second OR circuit 24 A level inverter control signal Vss is input.
  • the second OR circuit 24 is high when the excitation synchronization signal generation circuit 14b does not input the drive control signal CT from the excitation control circuit 13 (when the conditions (1) and (2) are not satisfied).
  • a level inverter control signal Vss is not input.
  • the second OR circuit 24 outputs the second output signal Vrs2 that is at the high level for the same time as the high time tx for each period Tst of the intermittent high signal Vst input to one of the input terminals in the second stage. Output to the AND circuit 22. In other words, at this time, the second OR circuit 24 outputs the intermittent high signal Vst as the second output signal Vrs2.
  • the second AND circuit 22 sets the second excitation synchronization signal Vs2 as the second on / off signal Vg2 for each cycle Tst as shown in FIG. Output to the gate.
  • the second power transistor Q12 is intermittently turned on in response to the second on / off signal Vg2 (second excitation synchronization signal Vs2) during the high time tx of the intermittent high signal Vst every cycle Tst. .
  • the first power transistor Q11 of the high-frequency oscillation circuit 14a is The first excitation synchronization signal Vs1 determined by the intermittent high signal Vst is turned on / off, and the second power transistor Q12 is turned on / off by the second excitation synchronization signal Vs2 determined by the intermittent high signal Vst.
  • the waveform of the first excitation synchronization signal Vs1 is inverted with respect to the waveform of the second excitation synchronization signal Vs2, the first power transistor Q11 and the second power transistor Q12 are alternately and intermittently. Turn on and off. As a result, the primary coil L1 is intermittently excited and driven.
  • the primary coil L1 of the power feeding device 1 is intermittently driven instead of being continuously excited.
  • the excitation synchronization signal generating circuit 14b sends the high-level inverter control signal Vss to the second OR circuit 24. Output. Then, the second OR circuit 24 outputs the high-level inverter control signal Vss to the second AND circuit 22 in the next stage as the second output signal Vrs2.
  • the second AND circuit 22 outputs the second excitation synchronization signal Vs2 having a predetermined cycle Ts2 as the second on / off signal as shown in FIG. Vg2 is output to the gate of the second power transistor Q12. As a result, the second power transistor Q12 is turned on / off at the cycle Ts2 of the second excitation synchronization signal Vs2.
  • the metal piece 8 when the metal piece 8 is not placed and the above conditions (1) and (2) are satisfied, that is, while the high-level inverter control signal Vss is being output, the first power transistor Q11. Is turned on / off by the first excitation synchronization signal Vs1, and the second power transistor Q12 is turned on / off by the second excitation synchronization signal Vs2.
  • the waveforms of the first and second excitation synchronization signals Vs1 and Vs2 output as the first and second on / off signals Vg1 and Vg2 are in an inverted relationship with each other. Therefore, the first power transistor Q11 and the second power transistor Q12 of the high-frequency oscillation circuit 14a are alternately turned on and off while the conditions (1) and (2) are satisfied.
  • excitation voltages VD1 and VD2 are generated between the source and drain of the first power transistor Q11 and the second power transistor Q12, respectively.
  • the primary coil L1 at the position where the device E is placed is continuously excited and driven.
  • the system control unit 9 includes a microcomputer and is electrically connected to the power supply module M. As described above, the system control unit 9 inputs the excitation request signal RQ, the device authentication signal ID, and the metal presence signal ST from the excitation control circuit 13. Then, the system control unit 9 determines whether or not the device E requesting power supply is placed based on the excitation request signal RQ and the device authentication signal ID from the excitation control circuit 13.
  • the system control unit 9 outputs the permission signal EN to the excitation control circuit 13 when the excitation request signal RQ and the device authentication signal ID are input from the excitation control circuit 13. That is, the system control unit 9 determines that the device E requesting power supply is placed and outputs the permission signal EN to the excitation control circuit 13.
  • the system control unit 9 determines that the metal piece 8 is placed on the placement surface 6 based on the metal presence signal ST output from the metal foreign object detection device 7 via the excitation control circuit 13. .
  • the system control unit 9 does not output the permission signal EN to the excitation control circuit 13 when the metal presence signal ST is input from the excitation control circuit 13. That is, the system control unit 9 determines that the metal piece 8 is placed on the placement surface 6 and does not output the permission signal EN to the excitation control circuit 13.
  • the device E requesting power feeding is placed on the placement surface 6 of the power feeding device 1 and the power feeding device 1 can feed power, the device E is placed in the state shown in FIGS.
  • the system control unit 9 does not output the enabling signal EN. This is to prevent induction heating of the metal piece 8.
  • the system control unit 9 includes a signal generation circuit (not shown) that generates the first excitation synchronization signal Vs1, the second excitation synchronization signal Vs2, and the intermittent high signal Vst.
  • the system control unit 9 drives the signal generation circuit to generate the first excitation synchronization signal Vs1, the second excitation synchronization signal Vs2, and the intermittent high signal Vst. Generate. Then, the system control unit 9 outputs the generated first excitation synchronization signal Vs1, second excitation synchronization signal Vs2, and intermittent high signal Vst to the high-frequency inverter circuits 14 of all power supply modules M.
  • the high frequency inverter circuit 14 of the power supply module M performs the first excitation synchronization signal Vs1, the second excitation synchronization signal Vs2, and the intermittent high signal. Since Vst is continuously input, the primary coil L1 of the power supply apparatus 1 is not continuously excited but is intermittently driven.
  • the system control unit 9 causes the high-frequency inverter circuit 14 to intermittently drive the primary coil L ⁇ b> 1 to be excited.
  • the first excitation synchronization signal Vs1, the second excitation synchronization signal Vs2, and the intermittent high signal Vst are output.
  • the high frequency inverter circuit 14 of the power supply module M excites the primary coil L1 intermittently. Then, the system control unit 9 waits for the excitation request signal RQ and the device authentication signal ID from the power supply module M, and intermittently activates the primary coil L1 until the excitation request signal RQ and the device authentication signal ID are input from the power supply module M. Continue excitation. At this time, the power supply module M is in a standby state.
  • the device E obtains a small amount of secondary power by the intermittent excitation of the primary coil L ⁇ b> 1 of the power supply device 1 to operate the device-side transmitting / receiving circuit 10.
  • the device E generates a device authentication signal ID and an excitation request signal RQ in the device-side transmitting / receiving circuit 10 and transmits them to the signal receiving antenna coil AT1 of the power supply module M via the transmitting / receiving antenna coil AT3.
  • the excitation request signal RQ is extracted by the excitation request receiving circuit 11
  • the device authentication signal ID is extracted by the device authentication receiving circuit 12.
  • the excitation request signal RQ and the device authentication signal ID are supplied to the system control unit 9 via the excitation control circuit 13.
  • the system control unit 9 determines that the device E requesting power supply is placed, and sends a permission signal to the excitation control circuit 13.
  • Output EN Based on the excitation request signal RQ and the device authentication signal ID from the excitation control circuit 13, the system control unit 9 determines that the device E requesting power supply is placed, and sends a permission signal to the excitation control circuit 13.
  • Output EN Based on the excitation request signal RQ and the device authentication signal ID from the excitation control circuit 13, the system control unit 9 determines that the device E requesting power supply is placed, and sends a permission signal to the excitation control circuit 13.
  • the excitation control circuit 13 outputs a drive control signal CT to the high frequency inverter circuit 14 (excitation synchronization signal generation circuit 14b) in response to the permission signal EN.
  • the inverter control signal Vss is output from the excitation synchronization signal generation circuit 14b, and continuous excitation for the primary coil L1 is started.
  • the system control unit 9 determines whether or not the excitation request signal RQ has disappeared, and if the excitation request signal RQ does not disappear, continues the continuous excitation of the primary coil L1. That is, power supply to the device E is continued. Therefore, the device E receives non-contact power supply from the power supply device 1 and drives the load Z with the supplied power.
  • the system control unit 9 determines that the excitation request signal RQ has disappeared and permits the power supply module M. Stop output of signal EN.
  • the system control unit 9 waits for a new excitation request signal RQ and device authentication signal ID from the power supply module M, and continues until the excitation request signal RQ and device authentication signal ID from the power supply module M are input. The intermittent excitation of the coil L1 is continued.
  • the metal foreign object detection device 7 detects the metal piece 8 by causing the oscillation circuit 7a to oscillate from when the power switch (not shown) of the power supply device 1 is turned on until it is turned off.
  • the oscillation amplitude of the oscillation circuit 7a increases from the state immediately after the oscillation starts exceeding the limit value at which oscillation does not occur when the oscillation circuit 7a is driven to the stable maximum amplitude of the oscillation circuit 7a.
  • the design values of the components of the oscillation circuit 7a are set so as to satisfy the oscillation condition that causes oscillation within the range up to the vicinity of the calm state.
  • the oscillation condition is set in the vicinity of the condition where oscillation finally starts in a state where nothing is placed on the placement surface 6 as shown in FIG. .
  • the oscillation signal Vo of the oscillation circuit 7a is realized as indicated by a period A1 in FIG.
  • the amplitude of the oscillation signal Vo of the oscillation circuit 7a fluctuates even if the electromagnetic characteristics of the metal detection antenna coil AT2 slightly change due to the metal piece 8.
  • the metal piece 8 placed on the mounting surface 6 of the power feeding device 1 can be detected with high sensitivity by the oscillation circuit 7a.
  • the system control unit 9 receives the metal presence signal ST via the excitation control circuit 13 and receives a notification lamp or a not-illustrated lamp for a certain period of time.
  • the notification buzzer is driven to notify the user to that effect, and the output of the permission signal EN to the power supply module M is stopped.
  • system controller 9 intermittently excites the primary coil L1 until the metal presence signal ST disappears.
  • the contactless power supply system of the present embodiment has the following advantages.
  • the design values of the components of the oscillation circuit 7a that is, the design of the transistor Q1, the metal detection antenna coil AT2, the first to third capacitors C1 to C3, and the first and second resistors R1 and R2 A range of oscillation conditions from a state immediately after the value starts exceeding the limit value where oscillation does not occur in the oscillation circuit 7a to a state where the oscillation amplitude settles to the stable maximum amplitude of the oscillation circuit 7a Is set to oscillate.
  • the design value of the oscillation circuit 7a is not a value capable of maintaining continuous oscillation with a stable amplitude, but oscillates under an oscillation condition within the range from the oscillation condition immediately after the oscillation can be started to before the stable continuous oscillation condition. Is set to a value that causes As a result, a large change in the oscillation amplitude can be made with a small change in the electromagnetic parameter related to the oscillation.
  • the metal foreign object detection device 7 (oscillation circuit 7a) has high sensitivity and can detect a smaller metal piece 8.
  • the metal foreign object detection device 7 since the metal foreign object detection device 7 is provided in the power feeding device 1, the metal piece 8 placed on the placement surface 6 of the power feeding device 1 or between the device E and the placement surface 6.
  • the sandwiched metal piece 8 can be detected independently on the power feeding device 1 side. Therefore, power supply can be controlled based on the detection of the metal piece 8.
  • the metal detection antenna coil AT2 formed on the mounting surface 6 of the power feeding device 1 is formed in a spiral shape.
  • the coil AT2 can be developed in the surface direction of the mounting surface 6, and the thickness can be reduced.
  • the shape can be various shapes such as a circular shape and a rectangular shape.
  • the metal detection antenna coil AT2 is a component constituting the oscillation circuit 7a of the metal foreign object detection device 7, the number of components can be reduced.
  • the metal detection antenna coil AT ⁇ b> 2 is formed on the mounting surface 6 of the top plate 5. That is, the metal detection antenna coil AT2 is formed at a position closest to the metal piece 8. Thereby, metal detection sensitivity can be raised with higher accuracy.
  • 2nd Embodiment is described according to FIG.12, FIG.13, FIG.14.
  • the number of metal detection antenna coils AT2 provided in the power feeding device 1 is one.
  • the present embodiment is characterized in that this is provided with a plurality of metal detection antenna coils AT2 in the power feeding device 1.
  • a plurality (20 in FIG. 12) of metal detection antenna coils AT2 are formed on the mounting surface 6 of the power feeding device 1.
  • the metal detection antenna coil AT2 of the present embodiment is one size in 20 minutes of the metal detection antenna coil AT2 of the first embodiment, and is five in the X direction and four in the Y direction with respect to the mounting surface 6. It is arranged.
  • Each metal detection antenna coil AT2 is formed in a spiral shape and is formed on the mounting surface 6 by a known printed wiring technique.
  • Each metal detection antenna coil AT2 is connected to a metal foreign object detection device 7 provided in the housing 2. Then, as shown in FIG. 13, the metal foreign object detection device 7 detects the metal piece 8 placed on the placement surface 6 via each metal detection antenna coil AT2.
  • Metal foreign matter detection device 7 includes an oscillation circuit 7a and a detection circuit 7b.
  • the oscillation circuit 7a is configured by a Colpitts oscillation circuit as in the first embodiment. As shown in FIG. 14, the metal detection antenna coils AT2 are connected in parallel, and the parallel circuit is connected to the oscillation circuit 7a.
  • the oscillation circuit 7a connected to the plurality of metal detection antenna coils AT2 started to oscillate over a limit value at which no oscillation occurs when the oscillation circuit 7a is driven, as in the first embodiment.
  • the design values of the components constituting the oscillation circuit 7a are set so as to oscillate within the range of the oscillation condition from the state immediately after that to the vicinity of the state where the oscillation amplitude settles to the stable maximum amplitude of the oscillation circuit 7a. Yes.
  • the oscillation condition is set in the vicinity of the condition where oscillation finally starts in a state where nothing is placed on the placement surface 6 as shown in FIG. .
  • the oscillation signal Vo of the oscillation circuit 7a is realized as indicated by a period A1 in FIG.
  • the amplitude of the oscillation signal Vo of the oscillation circuit 7a slightly attenuates as shown by the period A2 in FIG.
  • This embodiment has the following advantages in addition to the advantages of the first embodiment.
  • the metal detection antenna coil AT2 is composed of a plurality of small area antenna coils. That is, a plurality of small-area metal detection antenna coils AT2 are arranged in the mounting surface 6 having the same area. Therefore, the resolution is improved, and the smaller metal piece 8 can be detected.
  • the detection area can be easily expanded, and a wide power feeding surface can be freely supported.
  • a plurality of metal detection antenna coils AT2 are connected in parallel, and the parallel circuit is connected to one oscillation circuit 7a.
  • a plurality of metal detection antenna coils AT2 may be divided into a plurality of groups, and a metal foreign object detection device 7 (one oscillation circuit 7a and one detection circuit 7b) may be provided for each group. .
  • a plurality of metal detection antenna coils AT2 belonging to the set may be connected in parallel, and the parallel circuit may be connected to the set oscillation circuit 7a.
  • the metal foreign object detection device 7 is provided in the power supply device 1.
  • the present embodiment is characterized in that this is provided in the device E.
  • a plurality (four in this embodiment) of metal detection antenna coils AT2 are formed on the lower surface of the housing of the device E, that is, on the power receiving surface that contacts the mounting surface 6 of the power feeding device 1.
  • Each metal detection antenna coil AT2 is formed in a spiral shape as in the first and second embodiments, and is formed on the lower surface by a known printed wiring technique. In the present embodiment, the metal detection antenna coil AT2 is not formed on the mounting surface 6 of the power feeding device 1.
  • a metal foreign object detection device 7 including an oscillation circuit 7a and a detection circuit 7b is provided.
  • the plurality of metal detection antenna coils AT2 formed on the lower surface of the device E are connected in parallel, and the parallel circuit is connected to the oscillation circuit 7a of the metal foreign object detection device 7.
  • the plurality of metal detection antenna coils AT2 constitute a part of the metal foreign object detection device 7.
  • the metal foreign material detection apparatus 7 detects the metal piece 8 pinched
  • the oscillation circuit 7a of the metal foreign object detection device 7 is configured by a Colpitts oscillation circuit as in the first embodiment. Then, as in the first embodiment, the oscillation circuit 7a is stable from the state immediately after the oscillation circuit 7a starts to oscillate beyond the limit value at which oscillation does not occur when the oscillation circuit 7a is driven.
  • the design values of the components constituting the oscillation circuit 7a are set so as to oscillate within the range of the oscillation condition up to the vicinity of the state where the oscillation amplitude settles at the maximum amplitude.
  • the electromagnetic characteristics of the metal detection antenna coil AT2 can be quickly changed by the metal piece 8, and the oscillation operation of the oscillation circuit 7a can be stopped and the output of the oscillation signal Vo can be stopped.
  • the metal piece 8 placed on the mounting surface 6 of the power feeding device 1 can be detected with high sensitivity by the oscillation circuit 7a.
  • the oscillation signal Vo output from the oscillation circuit 7a is output to the detection circuit 7b.
  • the detection circuit 7b holds the metal piece 8 between the devices E or places the metal piece 8 on the placement surface 6 near the device E. It is determined that the metal is present, and a metal presence signal ST is output.
  • the detection circuit 7b determines that only the device E is placed on the placement surface 6 and does not output the metal presence signal ST.
  • the detection circuit 7b outputs the metal presence signal ST to the device side transmission / reception circuit 10. And the apparatus side transmission / reception circuit 10 transmits the input metal presence signal ST to the electric power feeder 1 via transmission / reception antenna coil AT3.
  • the DC power source B of the oscillation circuit 7a is an auxiliary power source (secondary battery) built in the device E.
  • This auxiliary power source (secondary battery) is charged with the secondary power generated in the secondary coil L2 when the device E is placed on the placement surface 6 of the power feeding device 1 that is intermittently excited. Accordingly, when the device E is mounted on the mounting surface 6 of the power supply device 1 that is intermittently excited and the auxiliary power source (secondary battery) is charged with the secondary power generated in the secondary coil L2, the device side While the transmission / reception circuit 10 is driven, the oscillation circuit 7a also starts an oscillation operation.
  • the power supply module M of the power supply apparatus 1 is provided with a metal signal receiving circuit 7c.
  • the metal signal receiving circuit 7c is connected to the signal receiving antenna coil AT1 of the power supply module M.
  • the metal signal receiving circuit 7c receives a transmission signal transmitted from the device E placed on the placement surface 6, and extracts a metal presence signal ST from the received transmission signal.
  • the metal presence signal ST is output to the excitation control circuit 13.
  • the excitation control circuit 13 outputs a metal presence signal ST to the system control unit 9.
  • the system controller 9 does not output the permission signal EN when the metal presence signal ST is input. Therefore, the excitation control circuit 13 does not output the drive control signal CT for exciting the primary coil L1 to the high frequency inverter circuit 14 for power feeding.
  • This embodiment has the following advantages.
  • the metal foreign object detection device 7 is provided in the device E.
  • the design value of the component of the oscillation circuit 7a provided in the device E is not a value that can maintain continuous oscillation with a stable amplitude. From the oscillation condition immediately after the oscillation can be started, the stable continuous oscillation condition is changed. It is set to a value that causes oscillation under the oscillation conditions within the previous range. Therefore, a large change in the oscillation amplitude can be made by a small change in the electromagnetic parameter related to the oscillation.
  • the metal foreign object detection device 7 (oscillation circuit 7a) has high sensitivity and can detect a smaller metal piece 8.
  • the metal foreign object detection device 7 is provided in the device E. Accordingly, since the device E has a detection function, the detection accuracy of the metal piece 8 attached or placed near the device E or the metal piece 8 sandwiched between the power feeding device and the device E can be further increased. .
  • the metal detection antenna coil AT2 is formed on the lower surface of the housing of the device E. That is, the metal detection antenna coil AT2 is formed at a position closest to the metal piece 8 when the device E is placed on the placement surface 6. Therefore, the metal detection sensitivity can be increased with higher accuracy.
  • 4th Embodiment is described according to FIG.18, FIG.19, FIG.20 and FIG.
  • the metal foreign object detection device 7 is provided in the power supply device 1, and in the third embodiment, the metal foreign object detection device 7 is provided in the device E.
  • the present embodiment is characterized in that this is distributed between the power supply apparatus 1 and the device E.
  • a plurality (four in this embodiment) of metal detection antenna coils AT2 are formed on the lower surface of the housing of the device E, that is, the power receiving surface that contacts the mounting surface 6 of the power feeding device 1.
  • Each metal detection antenna coil AT2 is formed in a spiral shape as in the third embodiment, and is formed on the lower surface of the housing of the device E by a known printed wiring technique.
  • the metal detection antenna coil AT2 is connected in parallel, and the parallel circuit is connected to an oscillation circuit 7a constituting the metal foreign object detection device 7 provided in the device E.
  • the oscillation circuit 7a shown in FIG. 19 is configured by a Colpitts oscillation circuit as in the third embodiment.
  • the design values of the components constituting the oscillation circuit 7a are set so as to oscillate within the oscillation condition range from the state to the vicinity of the state where the oscillation amplitude settles to the stable maximum amplitude of the oscillation circuit 7a.
  • the electromagnetic characteristics of the metal detection antenna coil AT2 can be quickly changed by the metal piece 8, and the oscillation operation of the oscillation circuit 7a can be stopped and the output of the oscillation signal Vo can be stopped.
  • the metal piece 8 placed on the mounting surface 6 of the power feeding device 1 can be detected with high sensitivity by the oscillation circuit 7a.
  • the device-side transmission / reception circuit 10 stops transmitting the device authentication signal ID.
  • the DC power source B of the oscillation circuit 7a is an auxiliary power source (secondary battery) built in the device E.
  • This auxiliary power source (secondary battery) is charged with the secondary power generated in the secondary coil L2 when the device E is placed on the placement surface 6 of the power feeding device 1 that is intermittently excited.
  • the auxiliary power supply may be a power storage device such as a capacitor. Accordingly, when the device E is mounted on the mounting surface 6 of the power supply device 1 that is intermittently excited and the auxiliary power source (secondary battery) is charged with the secondary power generated in the secondary coil L2, the device side While the transmission / reception circuit 10 is driven, the oscillation circuit 7a also starts an oscillation operation. At this time, until the auxiliary power source (secondary battery) is completely charged, the device-side transmitting / receiving circuit 10 and the oscillation circuit 7a perform an intermittent operation in synchronization with the intermittent excitation of the primary coil L1.
  • a plurality (20 in FIG. 18) of reception antenna coils AT4 are formed on the mounting surface 6 of the power feeding device 1.
  • the receiving antenna coil AT4 of this embodiment is arranged with respect to the mounting surface 6 in the X direction and in the Y direction by four.
  • Each receiving antenna coil AT4 is formed in a spiral shape and formed on the mounting surface 6 by a known printed wiring technique.
  • the reception antenna coil AT4 is connected to a detection circuit 7b that constitutes the metal foreign object detection device 7 provided in the power feeding device 1 (housing 2).
  • Each reception antenna coil AT4 detects a change in magnetic flux emitted by each metal detection antenna coil AT2 formed on the device E placed on the mounting surface 6, and detects a detection signal having a voltage waveform corresponding to the change in magnetic flux to the detection circuit 7b. Output.
  • the oscillation circuit 7a stops oscillation, or attenuates to an amplitude value where the amplitude of the oscillation signal Vo is close to zero.
  • the reception antenna coil AT4 detects a change in magnetic flux from the metal detection antenna coil AT2, and outputs a detection signal having an amplitude value smaller than a specified value to the detection circuit 7b.
  • the detection circuit 7b detects the presence of the metal piece 8 from the amplitude level of the detection signal received by the reception antenna coil AT4, and outputs a metal presence signal ST.
  • FIGS. 20A to 20G can be considered between the power supply apparatus 1 and the device E.
  • FIG. 20A shows a state in which nothing is placed on the placement surface 6 of the power feeding device 1.
  • FIG. 20B shows a state in which only the metal piece 8 is placed on the placement surface 6 of the power feeding device 1.
  • FIG. 20C shows a state in which only the device E is placed on the placement surface 6 of the power feeding device 1.
  • FIG. 20D shows a state in which the metal piece 8 is sandwiched between the mounting surface 6 of the power feeding device 1 and the device E.
  • FIG. 20 (e) shows a state in which the metal piece 8 is placed on the mounting surface 6 of the power feeding device 1 and at a position away from the device E.
  • FIG. 20 (f) shows a state in which the mounting surface 6 of the power supply device 1 and the device E are separated and power is supplied.
  • FIG. 20G shows a state in which the placement surface 6 of the power supply device 1 and the metal piece 8 are separated from each other, and the metal piece 8 is also placed in the separated space or in the vicinity thereof.
  • the device-side transceiver circuit 10 and the oscillation circuit 7a are secondary as shown in the period A1 of FIG. Since the secondary power from the coil L2 is not received, the device-side transmitting / receiving circuit 10 does not transmit the device authentication signal ID and the oscillation circuit 7a does not oscillate. As a result, the terminal voltages of the metal detection antenna coil AT2 and the reception antenna coil AT4 become zero. Further, since the device authentication signal ID is not transmitted from the device E, the power feeding device 1 (primary coil L1) performs intermittent excitation.
  • the device-side transmitting / receiving circuit 10 and the oscillation circuit 7a Does not receive the secondary power from the secondary coil L2, the device-side transmitting / receiving circuit 10 does not transmit the device authentication signal ID, and the oscillation circuit 7a does not oscillate. As a result, the terminal voltages of the metal detection antenna coil AT2 and the reception antenna coil AT4 become zero.
  • the power feeding device 1 primary coil L1 performs intermittent excitation to such an extent that the metal piece 8 is not induction-heated.
  • the device E (device-side transmission / reception circuit 10) transmits a device authentication signal ID, and the oscillation circuit 7a performs continuous oscillation with the maximum amplitude.
  • the terminal voltage of the receiving antenna coil AT4 of the power feeding device 1 also becomes a continuous oscillation signal having the maximum amplitude.
  • the metal presence signal ST is not generated, and the power feeding device 1 (primary coil L1) is also continuously excited.
  • the oscillation circuit 7a receives the secondary power from the secondary coil L2, the device E (device-side transmission / reception circuit 10) transmits the device authentication signal ID, and the oscillation circuit 7a becomes continuous oscillation with the maximum amplitude.
  • the terminal voltage of the receiving antenna coil AT4 of the power feeding device 1 also becomes a continuous oscillation signal although the amplitude is slightly reduced.
  • the metal presence signal ST is not generated, and the power feeding device 1 (primary coil L1) is also continuously excited.
  • the device E In the state where the metal piece 8 is sandwiched between the mounting surface 6 of the power feeding device 1 and the device E as shown in FIG. 20D, the device E to the device as shown in a period A6 in FIG.
  • the authentication signal ID is intermittently transmitted
  • the oscillation signal Vo of the oscillation circuit 7a also intermittently oscillates or stops oscillating with an amplitude value close to zero. The same applies to FIG.
  • a metal presence signal ST is generated, and the power feeding device 1 (primary coil L1) is intermittently excited so that the metal piece 8 is not induction-heated.
  • the placement surface 6 of the power feeding device 1 and the metal piece 8 are separated from each other, and the period A6 in FIG.
  • the oscillation signal Vo of the oscillation circuit 7a also intermittently oscillates or stops oscillating with an amplitude value close to zero.
  • the terminal voltage of the receiving antenna coil AT4 that detects the change in magnetic flux from the metal detecting antenna coil AT2 is attenuated by the electromagnetic wave from the metal detecting antenna coil AT2 being absorbed by the intervening metal piece 8.
  • a metal presence signal ST is generated, and the power feeding device 1 (primary coil L1) is intermittently excited so that the metal piece 8 is not induction-heated.
  • This embodiment has the following advantages.
  • the metal foreign object detection device 7 is provided with the metal detection antenna coil AT2 and the oscillation circuit 7a in the power feeding device 1 and the reception antenna coil AT4 and the detection circuit 7b in the device E. It is configured. That is, the metal foreign object detection device 7 is divided into the power feeding device 1 and the device E.
  • the presence of a metal foreign object sandwiched between the power feeding device 1 and the device E is used to attenuate the magnetic flux transmitted to the receiving antenna coil AT4 provided in the power feeding device 1 in addition to the stop or attenuation of the oscillation circuit on the device side. Therefore, the smaller metal piece 8 can be detected.
  • the secondary coil L2 or the electromagnetic induction method having a resonance circuit in the secondary coil L2, the space in which the primary coil L1 and the secondary coil L2 are separated from each other by several cm to several tens of cm or more is supplied. Applicable also in power supply.
  • the oscillation circuit 7a of the metal foreign object detection device 7 is configured by a Colpitts oscillation circuit, but is not limited thereto, and may be implemented by other oscillation circuits such as a Hartley oscillation circuit, for example. .
  • the spiral metal detection antenna coil AT2 is formed in a square shape, but the present invention is not limited to this.
  • the spiral metal detection antenna coil AT2 may be implemented in other shapes such as a circular shape and an elliptical shape. Also good.
  • the oscillation frequency of the oscillation circuit 7a of the metal foreign object detection device 7 is not particularly limited. Even if this is set so that the oscillation frequency of the oscillation circuit 7a (oscillation signal Vo) is higher than the high-frequency inverter circuit 14 (oscillation frequency of the high-frequency oscillation circuit 14a) that excites the primary coil L1 for power supply. Good.
  • the frequency at which the metal detection antenna coil AT2 is excited higher than the frequency at which the primary coil L1 is excited, the influence of the magnetic flux of the primary coil L1 is reduced, and the detection accuracy can be increased.
  • the number of turns of the metal detection antenna coil AT2 can be reduced, or the wire length of the coil can be shortened.
  • the metal detection antenna coil AT2 is formed on the mounting surface 6 of the power feeding device 1, and the oscillation circuit 7a and the detection circuit 7b constituting the metal foreign object detection device 7 are disposed in the housing 2.
  • a spiral metal detection antenna coil AT2 is formed on the surface of a thin insulating flexible substrate 30 (which may be a thin hard substrate), and the oscillation circuit 7a is formed on one surface of the flexible substrate 30.
  • the independent metal foreign material detection apparatus 7 which mounted the detection circuit 7b is formed.
  • the metal foreign object detection device 7 is wired so that the signal line and the power supply line can be connected to the power supply device 1.
  • the existing power supply device can be a non-contact power supply system with a metal detection function.
  • a spiral receiving antenna coil AT4 is formed on the surface of a thin insulating flexible substrate (which may be a thin hard substrate), and the detection circuit 7b is mounted on one side of the surface of the substrate.
  • the power supply device 1 is wired so that the signal line and the power line can be connected.
  • the existing electric power feeder can be used as the non-contact electric power feeding system with a metal detection function similar to 4th Embodiment.
  • the detection circuit 7b determines the presence / absence of the metal piece 8 based on the amplitude value of the oscillation signal Vo. However, the detection circuit 7b determines the presence / absence of the metal piece 8 based on a change in frequency. It may be.
  • the design value of the component of the oscillation circuit 7a is not a design value that can maintain continuous oscillation at a stable oscillation frequency, but from a state where the frequency is unstable to a state before a continuous oscillation condition at a stable oscillation frequency. Set to value. Then, it is necessary to make a large change in the oscillation frequency with a small change in the electromagnetic parameters related to oscillation.
  • the metal detection antenna coil AT2 is formed in one of the power feeding device 1 and the device E, and the oscillation circuit 7a and the detection circuit 7b are formed on the side where the metal detection antenna coil AT2 is formed.
  • This may be implemented by forming the metal detection antenna coil AT2 in both the power feeding device 1 and the device E, and providing the oscillation circuit 7a and the detection circuit 7b. In this case, it is possible to perform finer and more accurate detection.
  • the metal detection antenna coil AT2 is formed in a spiral shape, but may be formed in other shapes such as a loop shape and a helical shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

 非接触給電システムの金属異物検出装置(7)は、アンテナコイル(AT2)と、アンテナコイルに高周波電流を流す発振回路(7a)と、発振回路及びアンテナコイルのいずれかで観測される電圧あるいは電流の変化を検出する検出回路(7b)とを含む。発振回路(7a)は、発振が生じ始めた直後の発振条件から、安定した継続発振条件の手前までの範囲内の発振条件で発振を生じさせる設計値に設定された構成部品を含む。金属異物検出装置(7)は、給電装置(1)上に置かれた金属異物に起因するアンテナコイル(AT2)の電気的特性の変化に基づいて、発振回路(7a)の発振停止または発振振幅の減衰を検出回路(7b)にて検知する。

Description

非接触給電システム及び非接触給電システムの金属異物検出装置
 本発明は、非接触給電システム及び非接触給電システムの金属異物検出装置に関するものである。
 携帯電話や家電機器等への非接触給電には、高周波の磁束による電磁誘導が利用される場合が多い。既に、実用化されている近接型の電磁誘導給電だけでなく、近年注目されている磁気共鳴式と呼ばれるある程度の離間した距離で給電する空間給電技術でも同じ電磁誘導を利用している。
 高周波の磁束は、金属異物にも誘導起電力を発生させて渦電流損による温度上昇をもたらす。金属異物が高温になった場合には、給電装置や機器のハウジングを変形させる原因になったり、人が誤って触ってしまった場合、やけどをしたりする虞がある。
 この金属への誘導加熱を防ぐための発明が種々提案されている(例えば、特許文献1、及び特許文献2)。これら提案されたシステムでは、給電装置側の高周波インバータ回路が間欠的に発振して待機している。この待機時に金属異物が単独に置かれても、平均出力が極めて小さいために、温度上昇がほとんどなく安全である。
 正しい機器が置かれた場合には、この間欠の発振期間に僅かな電力が1次コイルを通じて2次コイルに伝えられる。この電力を利用して2次側(機器側)は特別の信号を生成し、これを給電装置側のアンテナを通じて送り返す。給電装置は、この信号を検出することで、正規の機器が装着されたか否かを判断して高周波インバータを制御する。
 すなわち、給電装置は正しい機器かどうかの認証を行うため、金属異物のみが置かれた場合には間欠発振のままであり、安全というわけである。
特許3392103号公報 特許3306675号公報
 ところで、非接触給電装置に使用される金属異物検出装置においては、金属異物が単独で置かれている場合の検出は勿論のこと、使用時に電力用1次コイルと電力用2次コイルの隙間に挟まれる薄い金属片等の検出ができなくてはならない。
 このコイル間に挟まれる金属を検出する方法として、給電部と機器との間の信号送受信時に、挟まれた金属により減衰あるいは反射して送信側から受信側に届く信号のレベルの低下を検出する方法が考えられる。これは、機器を認証するときに、送受信アンテナ間に金属異物が介在すると、認証時の信号振幅が受信アンテナ側で通常より減衰する仕組みを利用して検出する。
 また、この挟まれた金属異物の他の検出方法の例として、電力伝送のための給電コイルと受電コイルをそのまま使い、データ通信時に機器側から受電コイルの出力を変調することで、給電装置側の送電コイルの端子にあらわれる電圧あるいは電流の変化を起こす方法が考えられる。これは、受電コイルと送電コイルとの間に金属異物があると、データ通信の信号が減衰するため、この仕組みを用いることで、挟みこまれた金属を検知するものである。
 しかし、これらの方法では、金属異物が小さいあるいは薄いと信号の減衰は小さいため、異物がない場合の信号レベルのばらつきであるとして金属異物が検知されない可能性もある。よって、挟まれた金属異物の検知に限界があった。
 近年の給電装置は、高出力の機器に対応するために単位面積当たりの出力が大きくなる傾向にあり、より小さな薄い金属片の検出が益々必要となっている。通常、これに対応するには、高価で大がかりな専用の高感度高精度の金属検知センサを設けなければならず、給電システムの大型化やコストアップを招く。
 本発明は、上記問題を解決するためになされたものであり、その目的は、安価で簡単な構成で金属異物を高感度高精度に検出することができる非接触給電システム、及び非接触給電システムの金属異物検出装置を提供することにある。
 本発明の第1の態様は、非接触給電システムである。該非接触給電システムは、1次コイルと、前記1次コイルに高周波電流を流すための高周波インバータとを含む給電装置と、前記1次コイルに流れる電流により発生する交番磁界を介して誘導起電力を発生する2次コイルを含み、前記2次コイルで発生した起電力を利用して負荷に電力を供給する機器と、金属異物検出装置であって、アンテナコイルと、前記アンテナコイルに高周波電流を流す発振回路と、前記発振回路及び前記アンテナコイルのいずれかで観測される電圧あるいは電流の変化を検出する検出回路とを含む前記金属異物検出装置と、を備え、前記発振回路は、同発振回路において発振が生じ始めた直後の発振条件から、安定した継続発振条件の手前までの範囲内の発振条件で発振を生じさせる設計値を有する構成部品を含み、前記金属異物検出装置は、前記給電装置上に置かれた金属異物に起因する前記アンテナコイルの電気的特性の変化に基づいて、前記発振回路の発振の停止または発振振幅の減衰を前記検出回路にて検知し、前記給電装置を制御する。
 本発明の第2の態様は、前記給電装置の1次コイルを励磁し、前記給電装置上に配置された機器の2次コイルに電磁誘導にて誘導起電力を発生させ、該誘電起電力を前記機器の負荷に供給する非接触給電システムの金属異物検出装置である。該金属異物検出装置は、アンテナコイルと、前記アンテナコイルに高周波電流を流す発振回路と、前記発振回路及びアンテナコイル部のいずれかで観測される電圧あるいは電流の変化を検出する検出回路と、を備え、前記発振回路は、同発振回路において発振が生じ始めた直後の発振条件から、安定した継続発振条件の手前までの範囲内の発振条件で発振を生じさせる設計値を有する構成部品を含み、前記検出回路は、前記給電装置上に置かれた金属異物に起因する前記アンテナコイルの電気的特性の変化に基づいて、前記発振回路の発振の停止または発振振幅の減衰を検知して前記給電装置を制御する。
 本発明によれば、安価で簡単な構成で金属異物を高感度高精度に検出ことができる。
第1実施形態の給電装置の全体斜視図である。 1次コイル、金属検知アンテナコイルの配置位置を示す説明図である。 給電装置と機器の電気的構成を示す電気ブロック回路図である。 金属異物検出装置の発振回路図である。 (a)は給電装置に何も置かれていない状態を示す図、(b)は給電装置に金属片のみが置かれた状態を示す図、(c)は給電装置に機器のみが置かれた状態を示す図、(d)は給電装置の載置面と機器との間に金属片が挟み込まれた状態を示す図、(e)は機器から離れた位置に金属片が置かれた状態を示す図である。 発振回路の発振信号の出力波形図である。 別の発振条件における発振回路の検出信号の出力波形図である。 高周波インバータ回路の回路図である。 第1励磁同期信号及び第2励磁同期信号の出力波形図である。 高周波インバータ回路の出力波形図である。 高周波インバータ回路の出力波形図である。 第2実施形態の給電装置の全体斜視図である。 第2実施形態の給電装置と機器の電気的構成を示す電気ブロック回路図である。 第2実施形態の金属検知アンテナコイルの電気的構成を示す回路である。 第2実施形態の別例を示す電気回路図である。 第3実施形態の給電装置と機器の全体斜視図である。 第3実施形態の給電装置と機器の電気的構成を示す電気ブロック回路図である。 第4実施形態の給電装置と機器の全体斜視図である。 第4実施形態の給電装置と機器の電気的構成を示す電気ブロック回路図である。 (a)は給電装置に何も置かれていない状態を示す図、(b)は給電装置に金属片のみが置かれた状態を示す図、(c)は給電装置に機器のみが置かれた状態を示す図、(d)は給電装置の載置面と機器との間に金属片が挟み込まれた状態を示す図、(e)は機器から離れた位置に金属片が置かれた状態を示す図、(f)は給電装置の載置面と機器とが離間して給電される状態を示す図、(g)は給電装置の載置面と金属片とが離間し、その離間した空間にも金属片が置かれている状態を示す図である。 発振回路の発振信号の出力波形図である。 金属異物検出装置の別例を示す斜視図である。
 以下、本発明の非接触給電システムを具体化した第1実施形態を図面に従って説明する。
 図1は、給電装置1とその給電装置1から非接触給電される機器Eの全体斜視図を示す。給電装置1のハウジング2は、四角形状の底板3と、その底板3の四方から上方に延出形成される四角枠体4と、その四角枠体4の上方の開口部を閉塞する強化ガラスよりなる天板5とによって形成されている。そして、天板5の上面が、機器Eを載置する給電面としての載置面6となる。
 底板3、四角枠体4、天板5で形成される空間(ハウジング2内)には、図2に示すように、1次コイルL1が配設されている。1次コイルL1は、本実施形態では1つであって、天板5の載置面6と平行に配置されている。そして、1次コイルL1は、天板5の下面に接触するくらいに近接した位置に配置固定されている。
 1次コイルL1の下方位置の底板3には、1次コイルL1を励磁駆動制御するための給電モジュールMが実装配置されている。給電モジュールMは、1次コイルL1と接続され、1次コイルL1を励磁駆動し、載置面6に載置された機器Eに対して非接触給電をするようになっている。
 また、図2に示すように、1次コイルL1の外側には、1次コイルL1を囲むように信号受信アンテナコイルAT1が、配置固定されている。そして、載置面6に載置された機器Eと給電モジュールMとの間で、信号受信アンテナコイルAT1を介して無線通信にてデータ・情報の授受をそれぞれ行うようになっている。
 また、図2に示すように、天板5の上面(載置面6)であって1次コイルL1と相対向する位置に、金属検知アンテナコイルAT2が形成されている。金属検知アンテナコイルAT2はスパイラル形状に形成され、公知の印刷配線技術で載置面6上に形成されている。
 金属検知アンテナコイルAT2は、ハウジング2内に設けた金属異物検出装置7に接続され、金属異物検出装置7の一部を構成している。金属異物検出装置7は、金属検知アンテナコイルAT2を介して、載置面6上の金属片8を検知するようになっている。そして、金属異物検出装置7は、載置面6上の金属片8を検出すると、金属有り信号STを給電モジュールMに出力するようになっている。
 また、ハウジング2内には、給電モジュールMを統括制御するマイクロコンピュータよりなるシステム制御部9が実装されている。そして、信号受信アンテナコイルAT1にて受信したデータ・情報は、給電モジュールMを介してシステム制御部9に出力される。また、金属検知アンテナコイルAT2にて検知し金属異物検出装置7から出力される金属有り信号STは、給電モジュールMを介してシステム制御部9に出力される。
 給電装置1の載置面6に載置される機器Eは、2次コイルL2を有している。機器Eの2次コイルL2は、図2に示すように、給電装置1の1次コイルL1の励磁を介して励磁給電され、その給電された電力、すなわち2次電力を、機器Eの負荷Zに供給する。
 また、図2に示すように、機器Eの2次コイルL2の外側には、当該2次コイルL2を囲むように送受信アンテナコイルAT3が、巻回されている。そして、機器Eは、給電装置1の載置面6に載置したとき、その直下に位置する1次コイルL1を囲む信号受信アンテナコイルAT1を介して該1次コイルL1を励磁駆動制御する給電モジュールMとの間で、無線通信にてデータ・情報の授受を行うようになっている。
 次に、給電装置1と機器Eの電気的構成を図3に従って説明する。
 図3において、機器Eには、機器側送受信回路10が備えられている。機器側送受信回路10は、送受信アンテナコイルAT3と接続されている。機器側送受信回路10は、給電装置1にて給電を受けられる機器Eである旨を示す機器認証信号ID、及び、給電装置1に対して給電を要求する励磁要求信号RQを生成する。そして、機器側送受信回路10は、その機器認証信号ID及び励磁要求信号RQを、送受信アンテナコイルAT3を介して給電装置1に送信するようになっている。
 ここで、機器Eは、2次コイルL2に発生する電力(2次電力)にて駆動する機器であって、前記した機器認証信号ID及び励磁要求信号RQを生成し、給電装置1に送信できる機器であればよい。従って、機器Eは、2次コイルL2に発生する2次電力を整流回路にて整流し、その整流した直流電源を使って載置面6上で駆動される機器であったり、2次電力をそのまま交流電源として使って載置面6上で駆動される機器であったりしてもよい。また、機器Eは、2次コイルL2に発生する2次電力を整流回路にて整流し、その整流した直流電源を使って内蔵する充電電池(2次電池)を充電する機器であってもよい。
 尚、内蔵した2次電池を充電する携帯電話、ノート型パソコン等の機器Eにおいては、その充電が完了した時、充電完了前まで送信していた機器認証信号ID及び励磁要求信号RQのうち、励磁要求信号RQを消失させ、機器認証信号IDだけを送信させる機能を機器側送受信回路10に持たせるようにしてもよい。
 また、タイマを備えた機器Eにおいては、給電を受けてタイマでセットされた時間だけ機器Eを駆動し、そのセットされた時間が経過した時、時間が経過する前まで送信していた機器認証信号ID及び励磁要求信号RQのうち、励磁要求信号RQを消失させ、機器認証信号IDだけを送信させる機能を機器側送受信回路10に持たせるようにしてもよい。
 一方、図3において、1次コイルL1が接続された給電モジュールMは、励磁要求受信回路11、機器認証受信回路12、励磁制御回路13、高周波インバータ回路14を備えている。
 励磁要求受信回路11は、給電モジュールMの信号受信アンテナコイルAT1と接続され、載置面6に載置された機器Eから送信された送信信号を、信号受信アンテナコイルAT1を介して受信する。励磁要求受信回路11は、受信した送信信号から給電を要求する励磁要求信号RQを抽出する。そして、励磁要求受信回路11は、送信信号から励磁要求信号RQを抽出すると、その励磁要求信号RQを励磁制御回路13に出力するようになっている。
 機器認証受信回路12は、給電モジュールMの信号受信アンテナコイルAT1と接続され、載置面6に載置された機器Eから送信された送信信号を、信号受信アンテナコイルAT1を介して受信する。機器認証受信回路12は、受信した送信信号から給電が受けられる機器Eであることを示す機器認証信号IDを抽出する。そして、機器認証受信回路12は、送信信号から機器認証信号IDを抽出すると、その機器認証信号IDを励磁制御回路13に出力するようになっている。
 また、励磁制御回路13は、金属異物検出装置7と接続されている。金属異物検出装置7は、図4に示すように、金属検知アンテナコイルAT2に対して高周波電流を流す発振回路7aと、金属検知アンテナコイルAT2の電圧あるいは電流(発振信号Vo)の変化を検出する検出回路7bとを備えている。そして、金属異物検出装置7は、載置面6に金属片8が載置されているかどうかを金属検知アンテナコイルAT2を介して検知し、載置面6に金属片8が載置されていることを検知すると、検出回路7bから金属有り信号STを励磁制御回路13に出力する。
 発振回路7aは、本実施形態では、図4に示すように、コルピッツ発振回路で構成され、金属検知アンテナコイルAT2を同発振回路7aのインダクタンスの構成部品の1つとして兼用している。
 発振回路7aは、バイポーラのトランジスタQ1、金属検知アンテナコイルAT2、第1~第3コンデンサC1~C3、第1及び第2抵抗R1,R2を含む。
 トランジスタQ1は、そのコレクタ端子が金属検知アンテナコイルAT2の一端に接続され、その金属検知アンテナコイルAT2の他端は直流電源Bのプラス端子に接続されている。また、金属検知アンテナコイルAT2の他端は、第1コンデンサC1を介してトランジスタQ1のエミッタ端子に接続されている。さらに、トランジスタQ1のコレクタ端子とエミッタ端子との間には、第2コンデンサC2が接続されている。
 さらにまた、トランジスタQ1のベース端子は、第3コンデンサC3と第1抵抗R1からなる並列回路を介して直流電源Bのプラス端子に接続されている。また、トランジスタQ1のエミッタ端子は、第2抵抗R2を介して直流電源Bのマイナス端子に接続されている。そして、発振回路7aは、トランジスタQ1のコレクタ端子から発振回路7aの発振信号Voを検出回路7bに出力する。
 このように構成された発振回路7aは、同発振回路7aを構成する構成部品、即ち、トランジスタQ1、金属検知アンテナコイルAT2、第1~第3コンデンサC1~C3、第1及び第2抵抗R1,R2の回路定数が予め設定されていて、高感度に金属異物の検出ができる発振信号Voを出力するようになっている。
 詳述すると、発振回路7aを構成する構成部品は、同発振回路7aを駆動させたときにおいて発振が生じない限界値を超えて発振が生じ始めた直後の状態から、同発振回路7aの安定した最大振幅に発振振幅が落ち着く状態の近傍までの発振条件の範囲内で発振を生じさせる設計値に設定されている。
 つまり、発振回路7aの設計値は、安定した振幅で継続的発振を維持できる値ではなく、発振を開始できる直後の発振条件から、安定した継続発振条件の手前までの範囲内の発振条件で発振が生じる値に設定されている。その結果、発振に関わる電磁気的パラメータの小さな変化で発振信号Voの発振振幅の大きな変化を作ることができる。
 言い換えれば、発振回路7aの金属検知アンテナコイルAT2の電気的特性が、給電装置1の載置面6上に置かれた金属片8により変化するものとなる。そして、この金属検知アンテナコイルAT2の電気的特性の変化を利用して、発振回路7aの発振を停止または発振信号Voの発振振幅を大きく減衰させるようにしている。
 因みに、給電装置1の載置面6は、図5(a)~(e)に示す場合が考えられる。
 図5(a)は、給電装置1の載置面6に何も置かれていない状態を示す。
 図5(b)は、給電装置1の載置面6に金属片8のみが置かれた状態を示す。
 図5(c)は、給電装置1の載置面6に機器Eのみが置かれた状態を示す。
 図5(d)は、給電装置1の載置面6と機器Eとの間に金属片8が挟み込まれた状態を示す。
 図5(e)は、給電装置1の載置面6上であって機器Eから離れた位置に金属片8が置かれた状態を示す。
 この各状態において、図5(a)に示す載置面6に何も置かれていない状態では、図6の期間A1に示すように、発振回路7aの発振信号Voが最大振幅波形となる必要がある。その前提の上で、図5(b)に示す状態では、図6の期間A3に示すように、発振信号Voの振幅がゼロとなり、図5(c)に示す状態では、発振信号Voは、図6の期間A2に示すように、何も置かれていない状態の最大振幅より僅かに小さくなった振幅波形となることが必要となる。
 さらに、図5(d)及び図5(e)に示す状態では、図6の期間A4に示すように、発振信号Voは、振幅がゼロとなることが必要である。
 そこで、本実施形態では、上記したように、発振回路7aを構成する構成部品の設計値を、構成部品の値や種類を変えて、意図的に発振がやっと始まる条件の近傍の値に設定することによって、発振回路7aの発振信号Voを実現させている。
 これによって、発振回路7aにおいては、機器Eのみが置かれた場合には僅かに発振信号Voの振幅が減衰するのに対し、金属片8のみ、又は、金属片8が機器Eと載置面6との間に挟まれた場合、若しくは機器Eの近傍に置かれた場合においては発振が停止されるようにしている。
 機器Eと金属検知アンテナコイルAT2との間では、金属片8と金属検知アンテナコイルAT2との距離が近くなっているものの、この距離の少しの差異でも発振の有無が影響されるものとなっている。
 言い換えれば、発振回路7aは、距離に対して高感度なセンサであり、機器Eのハウジングの厚さより短い距離に置かれた近接又は密接されるような金属片8でも精度よく検知することができる。
 そして、金属片8があるとき、一定のハウジングの厚さを有する機器Eは金属検知アンテナコイルAT2に密接することはできないため、ハウジング内に2次コイルL2、金属及び磁性体を有する機器Eと金属片8とを明確に区別して検知することが可能となっている。
 結果的に、発振回路7aの設計値をやっと発振ができる条件の近傍の値に選んだことで、金属検知アンテナコイルAT2の上方に置かれた近接した金属片8による電磁気特性の変化に対して極めて高感度の状態が作り出されている。
 ところで、実際の回路では、高周波動作に起因する、配線のインダクタンスやキャパシタンス、使用するトランジスタの増幅率に関わる特性が上記発振条件に複雑に絡み合っている。そのため、本実施形態では、各構成部品のパラメータを実験等である範囲で変化させるとともにそれらを組み合わせて、安定した発振状態を確認した上で構成部品の設計値を設定するようにしている。
 尚、発振回路7aを構成する構成部品の設計値を、より少し安定発振の状態に近付けてもよい。
 このようにすると、図5(a)~(e)の各状態において、図7に示す発振信号Voが得られる。つまり、載置面6上に金属片8のみが存在する場合、または、金属片8が機器Eと載置面6との間に挟まれた場合、もしくは機器Eの近傍に金属片8が置かれた場合においては、発振停止とはいかなくても発振信号Voの振幅が大きな減衰を示すことが確認された。
 発振回路7aから出力される発振信号Voは、検出回路7bに出力される。検出回路7bは、発振信号Voの振幅値が予め定めた基準値未満のとき、載置面6に金属片8のみが置かれている、又は、金属片8が機器Eに挟まれている、若しくは機器Eの近傍の載置面6に置かれていると判断して、金属有り信号STを出力する。検出回路7b(金属異物検出装置7)は、この金属有り信号STを励磁制御回路13に出力する。
 反対に、検出回路7b(金属異物検出装置7)は、発振信号Voの振幅値が予め定めた基準値以上のとき、載置面6に何も置かれていない又は載置面6に機器Eのみが置かれていると判断して、金属有り信号STを励磁制御回路13に出力しない。
 励磁制御回路13は、その時々に出力される励磁要求受信回路11からの励磁要求信号RQ、機器認証受信回路12からの機器認証信号ID、及び金属異物検出装置7からの金属有り信号STを入力する。励磁制御回路13は、その時々で入力される励磁要求信号RQ、機器認証信号ID及び金属有り信号STを、システム制御部9に出力する。そして、励磁制御回路13は、システム制御部9に励磁要求信号RQ、機器認証信号ID及び金属有り信号STを出力することにより、システム制御部9から許可信号ENを待つ。
 システム制御部9は、(1)励磁要求信号RQを入力している場合であって、(2)機器認証信号IDを入力している場合には、給電モジュールMに接続された1次コイルL1を励磁駆動させる許可信号ENを励磁制御回路13に出力する。励磁制御回路13は、システム制御部9からの許可信号ENを入力すると、給電のために1次コイルL1を励磁駆動させる駆動制御信号CTを高周波インバータ回路14に出力する。
 尚、システム制御部9は、上記(1)(2)条件が成立していても、励磁制御回路13を介して金属異物検出装置7から金属有り信号STが入力されたときには、許可信号ENを出力しない。従って、励磁制御回路13は、1次コイルL1を励磁駆動せるための駆動制御信号CTを高周波インバータ回路14に出力しない。
 さらに、システム制御部9は、許可信号ENを出力中に、励磁制御回路13からの励磁要求信号RQ及び機器認証信号IDの少なくともいずれかを入力しなくなったときには、許可信号ENの出力を停止する。従って、この場合にも、励磁制御回路13は、駆動制御信号CTを高周波インバータ回路14に出力しない。
 高周波インバータ回路14は、給電モジュールMの1次コイルL1と接続されている。そして、高周波インバータ回路14は、駆動制御信号CTに基づいて1次コイルL1を励磁駆動させるようになっている。
 つまり、高周波インバータ回路14は、励磁制御回路13から駆動制御信号CTを入力すると、給電のために1次コイルL1を励磁駆動させるようになっている。
 従って、給電装置1にて給電が受けられる機器Eが載置面6に載置され、同機器Eから機器認証信号ID及び励磁要求信号RQが送信されている場合であって、載置面6に金属片8が無い場合には、1次コイルL1は、高周波インバータ回路14にて給電のための励磁駆動が行われる。即ち、1次コイルL1は、非接触給電により機器Eに2次電力を供給すべく励磁駆動される。
 図3に示すように、高周波インバータ回路14は、高周波発振回路14aと励磁同期信号発生回路14bを備えている。高周波発振回路14aは、1次コイルL1と接続され同1次コイルL1を励磁駆動する。
 図8に高周波発振回路14aの回路構成を示す。
 高周波発振回路14aは、ハーフブリッジ型の部分共振回路であって、給電装置1に設けられた電源電圧Gとグランドとの間に第4コンデンサC4と第5コンデンサC5との直列回路よりなる分圧回路が並列に設けられている。この分圧回路に対して、第1パワートランジスタQ11と第2パワートランジスタQ12との直列回路よりなる駆動回路が並列に接続されている。また、第1パワートランジスタQ11と第2パワートランジスタQ12は、本実施形態では、MOSFETよりなり、そのソース端子とドレイン端子との間には、それぞれフライホイール用のダイオードD1,D2が接続されている。
 そして、第4コンデンサC4と第5コンデンサC5との接続点(ノードN1)と、第1パワートランジスタQ11と第2パワートランジスタQ12との接続点(ノードN2)との間に、1次コイルL1が接続される。尚、1次コイルL1には、第6コンデンサC6が並列接続されている。
 第1パワートランジスタQ11及び第2パワートランジスタQ12は、本実施形態では、NチャネルMOSFETよりなり、第1パワートランジスタQ11のゲート端子には第1アンド回路21が接続され、第2パワートランジスタQ12のゲート端子には第2アンド回路22が接続されている。
 第1アンド回路21は、2入力端子のアンド回路であって、一方の入力端子には、ハイ・ロー信号である第1励磁同期信号Vs1が入力されるようになっている。
 詳述すると、第1励磁同期信号Vs1は、予め定められた周期Ts1のハイ・ロー信号であって、図9に示すように、ハイの時間ta1がローの時間tb1より短く設定されている。そして、この第1励磁同期信号Vs1は、本実施形態では、システム制御部9に設けた信号生成回路(図示しない)から出力されている。
 また、第1アンド回路21の他方の入力端子には、第1オア回路23からの第1出力信号Vrs1が入力されるようになっている。
 第1オア回路23は、2入力端子のオア回路であって、一方の入力端子には、図10に示すような、間欠的にハイ・レベルとなる間欠ハイ信号Vstが入力されるようになっている。
 詳述すると、間欠ハイ信号Vstは、本実施形態では、図9及び図10に示すように、第1励磁同期信号Vs1の周期Ts1より6倍長い周期Tst(=6Ts1)である。この間欠ハイ信号Vstは、第1励磁同期信号Vs1がハイからローに立ち下がった後、ハイに立ち上がり、そのハイに立ち上がった後、2個目の第1励磁同期信号Vs1が立ち上がる直前にローに立ち下がる。そして、ローに立ち下がった後に出力される5個目の第1励磁同期信号Vs1が立ち下がった後に、次の間欠ハイ信号Vstがハイに立ち上がるようになっている。ここで、間欠ハイ信号Vstがハイ・レベルになっている時間をハイ時間txという。
 そして、この間欠ハイ信号Vstは、本実施形態では、システム制御部9に設けた信号生成回路(図示しない)から出力されている。
 また、第1オア回路23の他方の入力端子には、励磁同期信号発生回路14bから図10及び図11に示すような、インバータ制御信号Vssが入力されるようになっている。
 励磁同期信号発生回路14bは、励磁制御回路13からの駆動制御信号CTを入力しているときに、給電のために1次コイルL1を励磁駆動させるためのハイ・レベルのインバータ制御信号Vssを第1オア回路23に出力するようになっている。
 尚、励磁制御回路13から励磁同期信号発生回路14bに駆動制御信号CTが入力されていない時、励磁同期信号発生回路14bはハイ・レベルのインバータ制御信号Vssを出力しない。
 例えば、載置面6に機器Eが載置されていない時(励磁要求信号RQ及び機器認証信号IDを受信していないとき)、励磁同期信号発生回路14bは、ハイ・レベルのインバータ制御信号Vssを第1オア回路23に出力しない。このとき、第1オア回路23は、一方の入力端子に入力される間欠ハイ信号Vstの周期Tstごとに、ハイ時間txと同じ時間だけハイ・レベルとなる第1出力信号Vrs1を次段の第1アンド回路21に出力する。言い換えれば、このとき、第1オア回路23は、間欠ハイ信号Vstを第1出力信号Vrs1として出力する。
 従って、図10に示すように、第1アンド回路21は、間欠ハイ信号Vstを入力している時には、周期Tst毎に第1励磁同期信号Vs1を第1オンオフ信号Vg1として第1パワートランジスタQ11のゲートに出力する。その結果、第1パワートランジスタQ11は、周期Tst毎に間欠ハイ信号Vstのハイ時間txの間、第1オンオフ信号Vg1(第1励磁同期信号Vs1)に応答して間欠的にオンすることになる。
 因みに、金属片8が載置されておらず、上記(1)(2)の条件が成立している場合、励磁同期信号発生回路14bは、駆動制御信号CTを入力して、ハイ・レベルのインバータ制御信号Vssを第1オア回路23に出力する。そして、第1オア回路23は、このハイ・レベルのインバータ制御信号Vssを第1出力信号Vrs1として次段の第1アンド回路21に出力する。
 従って、図11に示すように、第1アンド回路21は、ハイ・レベルのインバータ制御信号Vssが出力されている間、予め決められた周期Ts1で出力されている第1励磁同期信号Vs1を第1オンオフ信号Vg1として第1パワートランジスタQ11のゲートに出力する。その結果、第1パワートランジスタQ11は第1励磁同期信号Vs1の周期Ts1でオンオフすることになる。
 一方、第2パワートランジスタQ12のゲート端子には第2アンド回路22が接続されている。第2アンド回路22は、2入力端子のアンド回路であって、一方の入力端子には、ハイ・ロー信号である第2励磁同期信号Vs2が入力されるようになっている。
 詳述すると、第2励磁同期信号Vs2は、予め定められた周期Ts2のハイ・ロー信号であって、図9に示すように、第1励磁同期信号Vs1の周期Ts1と同じ周期を有する。また、第2励磁同期信号Vs2は、第1励磁同期信号Vs1と同様に、ハイの時間ta2(=ta1)がローの時間tb2(=tb1)より短く設定されて、かつ、前記第1励磁同期信号Vs1をほぼ反転した関係にある。
 すなわち、第1励磁同期信号Vs1がハイのとき、第2励磁同期信号Vs2はローであり、第1励磁同期信号Vs1がローのとき、第2励磁同期信号Vs2はハイである。
 また、ここでは、上記のように、第1及び第2励磁同期信号Vs1,Vs2のハイ時間ta1,ta2は、ロー時間tb1,tb2より短く設定されている。従って、第1励磁同期信号Vs1がハイからローに立ち下がって、第2励磁同期信号Vs2がローからハイに立ち上がるまでの間、及び、第2励磁同期信号Vs2がハイからローに立ち下がって、第1励磁同期信号Vs1がローからハイに立ち上がるまでの間、第1及び第2励磁同期信号Vs1,Vs2が共にロー・レベルになるデッドタイムtdが存在する。このデッドタイムtdを設けることによって、第1パワートランジスタQ11と第2パワートランジスタQ12のソフトスイッチングが可能になっている。
 尚、この第2励磁同期信号Vs2は、本実施形態では、システム制御部9に設けた信号生成回路(図示しない)から出力されている。
 また、第2アンド回路22の他方の入力端子には、第2オア回路24からの第2出力信号Vrs2が入力されるようになっている。
 第2オア回路24は、2入力端子のオア回路であって、一方の入力端子には、前記した間欠ハイ信号Vstが入力されるようになっている。また、第2オア回路24の他方の入力端子には、同様に、励磁同期信号発生回路14bから前記したインバータ制御信号Vssが入力されるようになっている。
 従って、第2オア回路24は、励磁同期信号発生回路14bが励磁制御回路13から駆動制御信号CTを入力しているとき(上記(1)(2)条件が成立しているとき)、ハイ・レベルのインバータ制御信号Vssを入力するようになっている。
 また、第2オア回路24は、励磁同期信号発生回路14bが励磁制御回路13から駆動制御信号CTを入力していないとき(上記(1)(2)条件が成立していないとき)、ハイ・レベルのインバータ制御信号Vssを入力しないようになっている。
 そして、第2オア回路24は、一方の入力端子に入力される間欠ハイ信号Vstの周期Tst毎に、ハイ時間txと同じ時間だけハイ・レベルとなる第2出力信号Vrs2を次段の第2アンド回路22に出力する。言い換えれば、このとき、第2オア回路24は、間欠ハイ信号Vstを第2出力信号Vrs2として出力する。
 従って、第2アンド回路22は、間欠ハイ信号Vstを入力している時には、図10に示すように、周期Tst毎に第2励磁同期信号Vs2を第2オンオフ信号Vg2として第2パワートランジスタQ12のゲートに出力する。その結果、第2パワートランジスタQ12は、周期Tst毎に間欠ハイ信号Vstのハイ時間txの間、第2オンオフ信号Vg2(第2励磁同期信号Vs2)に応答して間欠的にオンすることになる。
 これによって、たとえば、載置面6に機器Eが載置されていない時(励磁要求信号RQ及び機器認証信号IDを受信していないとき)には、高周波発振回路14aの第1パワートランジスタQ11は、間欠ハイ信号Vstで決まる第1励磁同期信号Vs1でオンオフし、第2パワートランジスタQ12は、間欠ハイ信号Vstで決まる第2励磁同期信号Vs2でオンオフすることになる。
 ここで、第1励磁同期信号Vs1の波形は、第2励磁同期信号Vs2の波形と反転した関係にあることから、第1パワートランジスタQ11と第2パワートランジスタQ12は交互に、しかも、間欠的にオンオフする。これによって、1次コイルL1は、間欠的に励磁駆動される。
 従って、載置面6に機器Eが載置されていない待機状態においては、給電装置1の1次コイルL1は、連続励磁されるのではなく間欠的に励磁駆動される。
 因みに、金属片8が載置されておらず上記(1)(2)条件が成立している場合、励磁同期信号発生回路14bは、ハイ・レベルのインバータ制御信号Vssを第2オア回路24に出力する。そして、第2オア回路24は、このハイ・レベルのインバータ制御信号Vssを第2出力信号Vrs2として次段の第2アンド回路22に出力する。
 従って、第2アンド回路22は、ハイ・レベルのインバータ制御信号Vssが出力されている間、予め決められた周期Ts2の第2励磁同期信号Vs2を、図11に示すように、第2オンオフ信号Vg2として第2パワートランジスタQ12のゲートに出力する。その結果、第2パワートランジスタQ12は第2励磁同期信号Vs2の周期Ts2でオンオフすることになる。
 これによって、金属片8が載置されておらず上記(1)(2)条件が成立している場合、つまり、ハイ・レベルのインバータ制御信号Vssが出力されている間、第1パワートランジスタQ11は、第1励磁同期信号Vs1でオンオフし、第2パワートランジスタQ12は、第2励磁同期信号Vs2でオンオフすることになる。
 ここで、第1及び第2オンオフ信号Vg1,Vg2として出力される第1及び第2励磁同期信号Vs1,Vs2の波形は互いに反転した関係にある。そのため、高周波発振回路14aの第1パワートランジスタQ11と第2パワートランジスタQ12は、(1)(2)条件が成立している間、交互にオンオフする。
 そして、第1パワートランジスタQ11と第2パワートランジスタQ12のソース・ドレイン間にそれぞれ励磁電圧VD1,VD2を発生させる。
 従って、給電のために機器Eが給電装置1の載置面6に載置された時には、機器Eが載置された位置にある1次コイルL1は、連続的に励磁駆動される。
 システム制御部9は、マイクロコンピュータを備え、給電モジュールMと電気的に接続されている。システム制御部9は、前記したように、励磁制御回路13から励磁要求信号RQ、機器認証信号ID、及び金属有り信号STを入力する。そして、システム制御部9は、励磁制御回路13からの励磁要求信号RQ、機器認証信号IDに基づいて、給電を要求している機器Eが載置されているかどうかを判断する。
 システム制御部9は、励磁制御回路13から励磁要求信号RQ及び機器認証信号IDを入力したとき、励磁制御回路13に許可信号ENを出力する。つまり、システム制御部9は、給電を要求している機器Eが載置されたことを判断して、励磁制御回路13に対して許可信号ENを出力する。
 また、システム制御部9は、励磁制御回路13を介して金属異物検出装置7から出力された金属有り信号STに基づいて、載置面6に金属片8が載置されていることを判断する。システム制御部9は、励磁制御回路13から金属有り信号STを入力しているとき、励磁制御回路13に許可信号ENを出力しない。つまり、システム制御部9は、載置面6に金属片8が載置されていると判断して、励磁制御回路13に許可信号ENを出力しない。
 従って、給電を要求している機器Eが給電装置1の載置面6に載置されていて給電装置1が給電可能であっても、図5(d)(e)に示す状態で載置面6に金属片8が存在している場合には、システム制御部9は許可信号ENを出力しない。これは、金属片8の誘導加熱を防止するためである。
 システム制御部9は、前記した第1励磁同期信号Vs1、第2励磁同期信号Vs2、及び間欠ハイ信号Vstを生成する図示しない信号発生回路を備えている。システム制御部9は、給電装置1の電源スイッチ(図示せず)がオンされたとき、信号発生回路を駆動させて第1励磁同期信号Vs1、第2励磁同期信号Vs2、及び間欠ハイ信号Vstを生成させる。そして、システム制御部9は、生成した第1励磁同期信号Vs1、第2励磁同期信号Vs2及び間欠ハイ信号Vstを、全ての給電モジュールMの高周波インバータ回路14に出力する。
 従って、給電モジュールMが許可信号ENを入力していない状態(例えば待機状態)においては、給電モジュールMの高周波インバータ回路14が第1励磁同期信号Vs1、第2励磁同期信号Vs2、及び間欠ハイ信号Vstを入力し続けることから、給電装置1の1次コイルL1は、連続励磁されているのではなく間欠的に励磁駆動されている。
 次に、上記のように構成した給電装置1の作用について説明する。
 今、図示しない電源スイッチがオンされて、給電装置1に電源が供給されると、システム制御部9は、高周波インバータ回路14に対して、1次コイルL1を間欠的に励磁駆動させるための第1励磁同期信号Vs1、第2励磁同期信号Vs2及び間欠ハイ信号Vstを出力する。
 これによって、給電モジュールMの高周波インバータ回路14は、1次コイルL1を間欠的に励磁する。そして、システム制御部9は、給電モジュールMからの励磁要求信号RQ及び機器認証信号IDを待ち、給電モジュールMから励磁要求信号RQ及び機器認証信号IDが入力されるまで、1次コイルL1の間欠励磁を継続する。このとき、給電モジュールMは待機状態にある。
 やがて、機器Eが置かれると、機器Eは、給電装置1の1次コイルL1の間欠励磁によって僅かな2次電力を得て機器側送受信回路10を働かせる。機器Eは、機器側送受信回路10にて機器認証信号ID及び励磁要求信号RQを生成し、それらを送受信アンテナコイルAT3を介して給電モジュールMの信号受信アンテナコイルAT1に向かって送信する。
 そして、信号受信アンテナコイルAT1が機器Eから機器認証信号ID及び励磁要求信号RQを受信すると、励磁要求受信回路11で励磁要求信号RQが、機器認証受信回路12で機器認証信号IDがそれぞれ抽出され、それら励磁要求信号RQ及び機器認証信号IDが励磁制御回路13を介してシステム制御部9に供給される。
 システム制御部9は、励磁制御回路13からの励磁要求信号RQ及び機器認証信号IDに基づいて、給電を要求している機器Eが載置されたと判断し、励磁制御回路13に対して許可信号ENを出力する。
 励磁制御回路13は、許可信号ENに応答して、高周波インバータ回路14(励磁同期信号発生回路14b)に駆動制御信号CTを出力する。これによって、励磁同期信号発生回路14bからインバータ制御信号Vssが出力され、1次コイルL1に対する連続励磁が開始される。
 連続励磁中、システム制御部9は、励磁要求信号RQが消失したかどうかの判断をして、励磁要求信号RQが消失しない場合、1次コイルL1の連続励磁を継続する。即ち、機器Eに対して給電を継続する。従って、機器Eは、給電装置1から非接触給電を受け、その給電電力にて負荷Zを駆動させる。
 ここで、機器Eが載置面6から取り外されたとき、又は、励磁要求信号RQが消失したとき、システム制御部9は、励磁要求信号RQが消失したと判断して、給電モジュールMに対する許可信号ENの出力を停止する。
 そして、システム制御部9は、該給電モジュールMからの新たな励磁要求信号RQ及び機器認証信号IDを待ち、給電モジュールMからの励磁要求信号RQ及び機器認証信号IDが入力されるまで、1次コイルL1の間欠励磁を継続する。
 また、金属異物検出装置7は、給電装置1の図示しない電源スイッチがオンされたときからオフされるまでの間、発振回路7aを発振動作させて、金属片8の検出を行う。
 このとき、発振回路7aは、同発振回路7aを駆動させたときにおいて発振が生じない限界値を超えて発振が生じ始めた直後の状態から、同発振回路7aの安定した最大振幅に発振振幅が落ち着く状態の近傍までの範囲内で発振を生じさせる発振条件となるように、発振回路7aの構成部品の設計値が設定されている。
 即ち、構成部品の値や種類を変えて、図5(a)に示すように載置面6に何も載置されていない状態において発振がやっと始まる条件の近傍に発振条件が設定されている。このとき、図6の期間A1で示すように、発振回路7aの発振信号Voが実現される。
 言い換えれば、金属片8によって金属検知アンテナコイルAT2の電磁気特性が僅かに変化しても、発振回路7aの発振信号Voの振幅が変動するようにした。
 そして、図5(c)に示すように機器Eのみが置かれた場合には、図6の期間A2で示すように、発振回路7aの発振信号Voは、僅かに振幅が減衰する。
 これに対して、図5(b)に示すように金属片8のみが置かれた場合には、金属片8によって金属検知アンテナコイルAT2の電磁気特性は素早く変化し、図6の期間A3で示すように、発振回路7aの発振動作が停止して発振信号Voの出力が停止される。
 同様に、図5(d)に示すように金属片8が機器Eに挟まれた場合、または、図5(e)に示すように金属片8が機器Eの近傍に置かれた場合にも、金属片8によって金属検知アンテナコイルAT2の電磁気特性が素早く変化し、図6の期間A4で示すように、発振回路7aの発振動作が停止して発振信号Voの出力が停止される。
 従って、発振回路7aによって、給電装置1の載置面6に置かれた金属片8を高感度に検出することができる。
 そして、金属異物検出装置7が金属片8を検出し金属有り信号STを出力すると、システム制御部9は、励磁制御回路13を介して金属有り信号STを受け取り、一定時間、図示しない報知ランプ又は報知ブザーを駆動してユーザにその旨を報知するとともに、当該給電モジュールMに対して許可信号ENの出力を停止する。
 以後、システム制御部9は、金属有り信号STが消失するまで、1次コイルL1に対して間欠的に励磁を行う。
 従って、本実施形態では、間欠励磁により金属片8が誘導加熱されるのを防止することができる。
 本実施形態の非接触給電システムは、以下の利点を有する。
 (1)この実施形態では、発振回路7aの構成部品の設計値、即ち、トランジスタQ1、金属検知アンテナコイルAT2、第1~第3コンデンサC1~C3、第1及び第2抵抗R1,R2の設計値が、同発振回路7aにおいて発振が生じない限界値を超えて発振が生じ始めた直後の状態から、同発振回路7aの安定した最大振幅に発振振幅が落ち着く状態の近傍までの発振条件の範囲内で発振が生じるように設定されている。
 つまり、発振回路7aの設計値は、安定した振幅で継続的発振を維持できる値ではなく、発振を開始できる直後の発振条件から、安定した継続発振条件の手前までの範囲内の発振条件で発振が生じる値に設定されている。その結果、発振に関わる電磁気的パラメータの小さな変化で発振振幅の大きな変化を作ることができる。
 これによって、小さなあるいは薄い金属片8が金属検知アンテナコイルAT2の近傍に置かれたとき、アンテナコイルAT2の電磁気特性の小さな変化が、発振回路7aの発振の有無に影響を与えるものとなり、発振信号Voの発振振幅の大きな変化に変換される。従って、金属異物検出装置7(発振回路7a)は高感度となり、より小さな金属片8の検出が可能となる。
 (2)この実施形態では、金属異物検出装置7を給電装置1に設けたので、給電装置1の載置面6に置かれた金属片8や、機器Eと載置面6との間に挟まれた金属片8を、給電装置1側で単独に検知することができる。よって、金属片8の検知に基づいて給電の制御が可能となる。
 (3)この実施形態では、給電装置1の載置面6に形成した金属検知アンテナコイルAT2を、スパイラル形状にした。スパイラル形状にすることで、載置面6の面方向にコイルAT2を展開でき、また、その厚さも薄くできる。また、印刷配線等で簡単に形成できるため、天板5の両面に形成することもでき、しかも、形も円形や方形状等の様々な形にすることが可能である。
 (4)この実施形態では、金属検知アンテナコイルAT2が、金属異物検出装置7の発振回路7aを構成する部品としたので、構成部品の低減を図ることができる。
 (5)この実施形態では、天板5の載置面6上に金属検知アンテナコイルAT2を形成した。即ち、金属片8に最も近くなる位置に金属検知アンテナコイルAT2を形成した。これにより、金属検出感度をより高精度に上げることができる。
(第2実施形態)
 次に、第2実施形態について、図12、図13、図14に従って説明する。
 上記第1実施形態の給電装置1においては、給電装置1に設けた金属検知アンテナコイルAT2は1つであった。本実施形態では、これを給電装置1に複数の金属検知アンテナコイルAT2を設けた点に特徴を有している。
 尚、説明の便宜上、第1実施形態と共通の部分については、同じ符号を付して詳細な説明を省略する。
 図12において、給電装置1の載置面6には、複数個(図12では20個)の金属検知アンテナコイルAT2が形成されている。本実施形態の金属検知アンテナコイルAT2は、第1実施形態の金属検知アンテナコイルAT2の20分に1のサイズであって、載置面6に対し、X方向に5個、Y方向に4個配列されている。そして、各金属検知アンテナコイルAT2はスパイラル形状に形成され、公知の印刷配線技術で載置面6上に形成されている。
 各金属検知アンテナコイルAT2は、ハウジング2内に設けた金属異物検出装置7に接続されている。そして、金属異物検出装置7は、図13に示すように、各金属検知アンテナコイルAT2を介して、載置面6に置かれた金属片8を検知するようになっている。
 金属異物検出装置7は、発振回路7aと検出回路7bとを含む。発振回路7aは、第1実施形態と同様に、コルピッツ発振回路にて構成されている。そして、図14に示すように、各金属検知アンテナコイルAT2は並列に接続され、その並列回路が発振回路7aに接続されている。
 そして、複数の金属検知アンテナコイルAT2に接続された発振回路7aは、第1実施形態と同様に、同発振回路7aを駆動させたときにおいて発振が生じない限界値を超えて発振が生じ始めた直後の状態から、同発振回路7aの安定した最大振幅に発振振幅が落ち着く状態の近傍までの発振条件の範囲内で発振するように、発振回路7aを構成する構成部品の設計値が設定されている。
 即ち、構成部品の値や種類を変えて、図5(a)に示すように載置面6に何も載置されていない状態において発振がやっと始まる条件の近傍に発振条件が設定されている。このとき、図6の期間A1で示すように、発振回路7aの発振信号Voが実現される。
 また、図5(c)に示すように機器Eのみが置かれた場合には、図6の期間A2で示すように、発振回路7aの発振信号Voは、僅かに振幅が減衰する。
 これに対して、図5(b)に示すように金属片8のみが置かれた場合には、金属片8によって金属検知アンテナコイルAT2の電磁気特性が素早く変化し、図6の期間A3で示すように、発振回路7aの発振動作が停止して発振信号Voの出力が停止される。
 同様に、図5(d)に示すように金属片8が機器Eに挟まれた場合、または、図5(e)に示すように金属片8が機器Eの近傍に置かれた場合にも、金属片8によって金属検知アンテナコイルAT2の電磁気特性が素早く変化し、図6の期間A4で示すように、発振回路7aの発振動作が停止して発振信号Voの出力が停止される。
 本実施形態は、第1実施形態の利点に加えて、以下の利点を有する。
 (1)この実施形態では、金属検知アンテナコイルAT2が複数の小面積のアンテナコイルで構成される。つまり、同じ広さの載置面6内に、複数個の小面積の金属検知アンテナコイルAT2が配置されている。従って、分解能が上がり、より小さな金属片8の検知が可能になる。
 また、1つの発振回路7aに対し複数の金属検知アンテナコイルAT2が並列に接続されていることで、検知感度の低下を抑制できる。このため、1つの発振回路7aで広い面積の検知エリアを確保しつつ小さな金属片8の検出が可能となる。
 さらに、1つの発振回路7aで広い面積の検知が可能になるので、省電力、省部品にできる。さらに、この複数のアンテナコイルAT2を持つ1つの発振回路7aを複数配置することで検知エリアを簡単に拡大でき、広い給電面に自在に対応できる。
 尚、この実施形態では、複数の金属検知アンテナコイルAT2を並列接続し、その並列回路を1つの発振回路7aに接続した。これを、図15に示すように、複数の金属検知アンテナコイルAT2を複数の組みに分け、各組に金属異物検出装置7(1つの発振回路7aと1つの検出回路7b)を設けてもよい。この場合、各組に対して、その組みに属する複数の金属検知アンテナコイルAT2を並列接続し、その並列回路をその組の発振回路7aに接続してもよい。
 つまり、発振回路7aと検出回路7bとの組(即ち、金属異物検出装置7)を複数設けることで、検知エリアを容易に拡大でき、広い載置面6に対して自在に対応できる。
(第3実施形態)
 次に、第3実施形態について、図16、図17に従って説明する。
 上記第1及び第2実施形態では、金属異物検出装置7を給電装置1に設けた。本実施形態では、これを機器Eに設けた点に特徴を有している。
 尚、説明の便宜上、第1実施形態と共通の部分については、同じ符号を付して詳細な説明を省略する。
 図16において、機器Eのハウジングの下面、即ち給電装置1の載置面6と当接する受電面に、複数個(この実施形態では4個)の金属検知アンテナコイルAT2が形成されている。各金属検知アンテナコイルAT2は、第1及び第2実施形態と同様に、スパイラル形状に形成され、公知の印刷配線技術で下面に形成されている。そして、本実施形態では、給電装置1の載置面6には、金属検知アンテナコイルAT2が形成されないようになっている。
 また、機器E内には、発振回路7aと検出回路7bとを含む金属異物検出装置7が設けられている。そして、機器Eの下面に形成された複数の金属検知アンテナコイルAT2は並列に接続され、その並列回路が金属異物検出装置7の発振回路7aに接続されている。これら複数の金属検知アンテナコイルAT2は、金属異物検出装置7の一部を構成している。そして、金属異物検出装置7は、金属検知アンテナコイルAT2を介して、載置面6に載置された機器Eとの間に挟まれた金属片8を検知するようになっている。
 金属異物検出装置7の発振回路7aは、第1実施形態と同様に、コルピッツ発振回路にて構成されている。そして、発振回路7aは、第1実施形態と同様に、同発振回路7aを駆動させたときにおいて発振が生じない限界値を超えて発振が生じ始める直後の状態から、同発振回路7aの安定した最大振幅に発振振幅が落ち着く状態の近傍までの発振条件の範囲内で発振するように、発振回路7aを構成する構成部品の設計値が設定されている。
 これによって、給電装置1の載置面6に機器Eを載置した場合であって、金属片8が該機器Eに挟まれた場合、または、該機器Eの近傍に金属片8が置かれた場合には、金属片8によって、金属検知アンテナコイルAT2の電磁気特性が素早く変化し、発振回路7aの発振動作を停止させ、発振信号Voの出力を停止させることができる。
 従って、発振回路7aによって、給電装置1の載置面6に置かれた金属片8を高感度に検出することができる。
 発振回路7aから出力される発振信号Voは、検出回路7bに出力される。検出回路7bは、発振信号Voの振幅値が予め定めた基準値未満のとき、金属片8が機器Eに挟まれている、又は、金属片8が機器Eの近傍の載置面6に置かれていると判断して、金属有り信号STを出力する。
 反対に、検出回路7bは、発振信号Voの振幅値が予め定めた基準値以上のとき、載置面6に機器Eのみが置かれていると判断して、金属有り信号STを出力しない。
 検出回路7bは、この金属有り信号STを機器側送受信回路10に出力する。そして、機器側送受信回路10は、入力した金属有り信号STを、送受信アンテナコイルAT3を介して給電装置1に送信するようになっている。
 尚、発振回路7aの直流電源Bは、機器Eに内蔵された補助電源(2次電池)である。この補助電源(2次電池)は、間欠励磁している給電装置1の載置面6に機器Eが載置されたとき、2次コイルL2に発生する2次電力にて充電される。従って、間欠励磁している給電装置1の載置面6に機器Eが載置され、2次コイルL2に発生する2次電力にて補助電源(2次電池)が充電されると、機器側送受信回路10が駆動するとともに、発振回路7aも発振動作を開始する。
 一方、給電装置1の給電モジュールMには、金属信号受信回路7cが設けられている。金属信号受信回路7cは、給電モジュールMの信号受信アンテナコイルAT1と接続されている。金属信号受信回路7cは、載置面6に載置された機器Eから送信された送信信号を受信し、その受信した送信信号から金属有り信号STを抽出する。そして、金属信号受信回路7cは、送信信号から金属有り信号STを抽出すると、その金属有り信号STを励磁制御回路13に出力するようになっている。
 励磁制御回路13は、金属有り信号STをシステム制御部9に出力する。システム制御部9は、金属有り信号STを入力したときには、許可信号ENを出力しない。従って、励磁制御回路13は、給電のために1次コイルL1の励磁駆動させるための駆動制御信号CTを高周波インバータ回路14に出力しない。
 本実施形態は、以下の利点を有する。
 (1)この実施形態では、機器E内に金属異物検出装置7が設けられている。そして、機器E内に設けられた発振回路7aの構成部品の設計値が、安定した振幅で継続的発振を維持できる値ではなく、発振を開始できる直後の発振条件から、安定した継続発振条件の手前までの範囲内の発振条件で発振が生じる値に設定されている。よって、発振に関わる電磁気的パラメータの小さな変化で発振振幅の大きな変化を作ることができる。
 これによって、小さなあるいは薄い金属片8が金属検知アンテナコイルAT2の近傍に置かれたとき、アンテナコイルAT2の電磁気特性の小さな変化が、発振回路7aの発振の有無に影響を与えるものとなり、発振信号Voの発振振幅の大きな変化に変換される。従って、金属異物検出装置7(発振回路7a)は高感度となり、より小さな金属片8の検出が可能となる。
 (2)この実施形態では、金属異物検出装置7を機器E内に設けた。従って、機器Eが検知機能を有するため、機器Eの近傍に付着し又は置かれた金属片8、あるいは、給電装置と機器Eとの間に挟まれた金属片8の検知精度をより高くできる。
 (3)この実施形態では、機器Eのハウジングの下面に金属検知アンテナコイルAT2が形成されている。即ち、機器Eを載置面6に載置したときに金属片8に最も近くなる位置に金属検知アンテナコイルAT2が形成されている。よって、金属検出感度をより高精度に上げることができる。
(第4実施形態)
 次に、第4実施形態について、図18、図19、図20、図21に従って説明する。
 上記第1及び第2実施形態では、金属異物検出装置7を給電装置1に設け、第3実施形態では、金属異物検出装置7を機器Eに設けた。本実施形態では、これを給電装置1と機器Eとに分散させて設けた点に特徴を有している。
 尚、説明の便宜上、第1実施形態と共通の部分については、同じ符号を付して詳細な説明を省略する。
 図18において、機器Eのハウジングの下面、即ち給電装置1の載置面6と当接する受電面には、複数個(この実施形態では4個)の金属検知アンテナコイルAT2が形成されている。各金属検知アンテナコイルAT2は、第3実施形態と同様に、スパイラル形状に形成され、公知の印刷配線技術で機器Eのハウジングの下面に形成されている。金属検知アンテナコイルAT2は並列に接続されており、その並列回路が、機器E内に設けた金属異物検出装置7を構成する発振回路7aに接続されている。
 図19に示す発振回路7aは、第3実施形態と同様に、コルピッツ発振回路にて構成されている。そして、金属検知アンテナコイルAT2に接続された発振回路7aは、第3実施形態と同様に、同発振回路7aを駆動させたときにおいて発振が生じない限界値を超えて発振が生じ始めた直後の状態から、同発振回路7aの安定した最大振幅に発振振幅が落ち着く状態の近傍までの発振条件の範囲内で発振するように、発振回路7aを構成する構成部品の設計値が設定されている。
 これによって、給電装置1の載置面6に機器Eを載置した場合であって、金属片8が該機器Eに挟まれた場合、または、該機器Eの近傍に金属片8が置かれた場合には、金属片8によって、金属検知アンテナコイルAT2の電磁気特性が素早く変化し、発振回路7aの発振動作を停止させ、発振信号Voの出力を停止させることができる。
 従って、発振回路7aによって、給電装置1の載置面6に置かれた金属片8を高感度に検出することができる。
 また、発振回路7aの発振動作が停止したとき、機器側送受信回路10は機器認証信号IDの送信を停止するようになっている。
 尚、発振回路7aの直流電源Bは、機器Eに内蔵された補助電源(2次電池)である。この補助電源(2次電池)は、間欠励磁している給電装置1の載置面6に機器Eが載置されたとき、2次コイルL2に発生する2次電力にて充電される。なお、補助電源は、コンデンサ等の蓄電デバイスであってもよい。従って、間欠励磁している給電装置1の載置面6に機器Eが載置され、2次コイルL2に発生する2次電力にて補助電源(2次電池)が充電されると、機器側送受信回路10が駆動するとともに、発振回路7aも発振動作を開始する。このとき、補助電源(2次電池)が完全に充電されるまでは、1次コイルL1の間欠励磁に同期して、機器側送受信回路10及び発振回路7aが間欠動作を行う。
 一方、給電装置1の載置面6には、複数個(図18では20個)の受信アンテナコイルAT4が形成されている。本実施形態の受信アンテナコイルAT4は、載置面6に対し、X方向に5個、Y方向に4個配列されている。そして、各受信アンテナコイルAT4はスパイラル形状に形成され、公知の印刷配線技術で載置面6に形成されている。受信アンテナコイルAT4は、給電装置1(ハウジング2)内に設けた金属異物検出装置7を構成する検出回路7bに接続されている。
 各受信アンテナコイルAT4は、載置面6に置かれた機器Eに形成された各金属検知アンテナコイルAT2が放す磁束変化を検知しその磁束変化に相対した電圧波形の検出信号を検出回路7bに出力する。
 つまり、機器Eを載置面6に置いた場合であって、金属片8が機器Eに挟まれている、又は、金属片8が機器Eの近傍に置かれている場合には、発振回路7aは発振を停止し、又は、発振信号Voの振幅がゼロに近い振幅値まで減衰する。受信アンテナコイルAT4は、この金属検知アンテナコイルAT2からの磁束変化を検知し、規定値より小さな振幅値の検出信号を検出回路7bに出力することになる。その結果、検出回路7bは、受信アンテナコイルAT4で受信された検知信号の振幅レベルから金属片8があることを検出して金属有り信号STを出力する。
 ここで、給電装置1と機器Eとの間において、図20(a)~(g)に示す状態が考えられる。
 図20(a)は、給電装置1の載置面6に何も置かれていない状態を示す。
 図20(b)は、給電装置1の載置面6に金属片8のみが置かれた状態を示す。
 図20(c)は、給電装置1の載置面6に機器Eのみが置かれた状態を示す。
 図20(d)は、給電装置1の載置面6と機器Eとの間に金属片8が挟み込まれた状態を示す。
 図20(e)は、給電装置1の載置面6であって機器Eから離れた位置に金属片8が置かれた状態を示す。
 図20(f)は、給電装置1の載置面6と機器Eとが離間して給電される状態を示す。
 図20(g)は、給電装置1の載置面6と金属片8とが離間し、その離間した空間若しくは近傍にも金属片8が置かれている状態を示す。
 この各状態において、図20(a)に示すように載置面6に何も置かれていない状態では、図21の期間A1に示すように、機器側送受信回路10及び発振回路7aは2次コイルL2からの2次電力を受けないことから、機器側送受信回路10は機器認証信号IDを送信しないとともに、発振回路7aは発振しない。その結果、金属検知アンテナコイルAT2及び受信アンテナコイルAT4の端子電圧はゼロとなる。また、機器Eから機器認証信号IDが送信されていないことから、給電装置1(1次コイルL1)は間欠的な励磁を行う。
 また、図20(b)に示すように給電装置1の載置面6に金属片8のみが置かれた状態では、図21の期間A3に示すように、機器側送受信回路10及び発振回路7aは2次コイルL2からの2次電力を受けないことから、機器側送受信回路10は機器認証信号IDを送信しないとともに、発振回路7aは発振しない。その結果、金属検知アンテナコイルAT2及び受信アンテナコイルAT4の端子電圧はゼロとなる。また、機器Eから機器認証信号IDが送信されていないことから、給電装置1(1次コイルL1)は、金属片8が誘導加熱されない程度の間欠励磁を行う。
 さらに、図20(c)に示すように給電装置1の載置面6に機器Eのみが置かれた状態では、図21の期間A2に示すように、機器側送受信回路10及び発振回路7aは2次コイルL2からの2次電力を受け、機器E(機器側送受信回路10)は機器認証信号IDを送信し、発振回路7aは最大振幅の連続発振となる。
 その結果、給電装置1の受信アンテナコイルAT4の端子電圧も最大振幅の連続発振信号となる。その結果、金属有り信号STは生成されず、給電装置1(1次コイルL1)も連続励磁となる。
 さらにまた、図20(f)に示すように給電装置1の載置面6と機器Eとが離間して給電される状態では、図21の期間A5に示すように、機器側送受信回路10及び発振回路7aは2次コイルL2からの2次電力を受け、機器E(機器側送受信回路10)は機器認証信号IDを送信し、発振回路7aは最大振幅の連続発振となる。
 その結果、給電装置1の受信アンテナコイルAT4の端子電圧も、若干振幅が小さくなるものの連続発振信号となる。その結果、金属有り信号STは生成されず、給電装置1(1次コイルL1)も連続励磁となる。
 また、図20(d)に示すように給電装置1の載置面6と機器Eとの間に金属片8が挟み込まれた状態では、図21の期間A6に示すように、機器Eから機器認証信号IDが間欠的に送信されるものの、発振回路7aの発振信号Voもゼロに近い振幅値の間欠発振又は発振停止となる。図20(e)についても同様である。
 その結果、金属有り信号STが生成され、給電装置1(1次コイルL1)は、金属片8が誘導加熱されない程度の間欠励磁となる。
 また、図20(g)に示すように給電装置1の載置面6と金属片8とが離間し、その離間した空間若しくは近傍に金属片8が置かれた状態でも、図21の期間A6に示すように、機器Eから機器認証信号IDが間欠的に送信されるものの、発振回路7aの発振信号Voもゼロに近い振幅値の間欠発振又は発振停止となる。また、この金属検知アンテナコイルAT2からの磁束変化を検知する受信アンテナコイルAT4の端子電圧は、介在する金属片8にて金属検知アンテナコイルAT2からの電磁波が吸収され減衰される。
 その結果、金属有り信号STが生成され、給電装置1(1次コイルL1)は、金属片8が誘導加熱されない程度の間欠励磁となる。
 本実施形態は、以下の利点を有する。
 (1)この実施形態によれば、金属異物検出装置7は、給電装置1に金属検知アンテナコイルAT2と発振回路7aとを設け、機器Eに受信アンテナコイルAT4と検出回路7bとを設けることによって構成されている。つまり、金属異物検出装置7が給電装置1と機器Eとに分かれて配置されている。
 従って、給電装置1と機器Eとに挟まれた金属異物の存在を、機器側の発振回路の停止又は減衰に加えて、給電装置1に設けた受信アンテナコイルAT4まで伝達する磁束の減衰を利用できるため、より小さな金属片8の検出が可能となる。
 また、磁気共鳴式や2次コイルL2や2次コイルL2に共振回路を持つ電磁誘導方式のように、1次コイルL1と2次コイルL2が数cm~数十cm以上、離して給電する空間給電においても適応可能になる。
 尚、上記実施形態は以下のように変更してもよい。
 ・上記各実施形態では、金属異物検出装置7の発振回路7aをコルピッツ発振回路で構成したが、これに限定されるものではなく、例えば、ハートレー発振回路等、その他発振回路で実施してもよい。
 ・上記各実施形態では、スパイラル状の金属検知アンテナコイルAT2を方形状に形に形成したが、これに限定されるものではなく、例えば、円形状、楕円形状等、その他形状にて実施してもよい。
 ・上記各実施形態では、金属異物検出装置7の発振回路7aの発振周波数を特に限定をしなかった。これを、発振回路7a(発振信号Vo)の発振周波数を、給電のために1次コイルL1を励磁する高周波インバータ回路14(高周波発振回路14a)の発振周波数)より高くなるように設定してもよい。
 このように、金属検知アンテナコイルAT2が励磁される周波数を、1次コイルL1が励磁される周波数より高くすることで、1次コイルL1の磁束の影響が低減され、検出精度を上げることができる。また、この構成によれば、金属検知アンテナコイルAT2の巻き数を少なくすることができるか、又は、コイルの線長を短くすることができる。
 ・上記第1実施形態及び第2実施形態では、給電装置1の載置面6に金属検知アンテナコイルAT2を形成し、金属異物検出装置7を構成する発振回路7a及び検出回路7bをハウジング2内に設けた。これを、図22に示すように、薄い絶縁性のフレキシブル基板30(薄い硬質基板でもよい)の表面にスパイラル状の金属検知アンテナコイルAT2を形成し、フレキシブル基板30の表面一側に発振回路7a及び検出回路7bを実装した独立した金属異物検出装置7を形成する。そして、金属異物検出装置7に、給電装置1に対して信号線と電源線が接続できる配線をする。
 このように構成した金属異物検出装置7を、既存の給電装置の載置面に載せることで、既存の給電装置を金属検知機能付きの非接触給電システムとすることができる。
 また、薄い絶縁性のフレキシブル基板(薄い硬質基板でもよい)の表面にスパイラル状の受信アンテナコイルAT4を形成し、該基板の表面一側に検出回路7bを実装するとともに、検出回路7bが既存の給電装置1に対して信号線と電源線が接続できる配線をする。
 そして、該基板を既存の給電装置の載置面に載せることで、既存の給電装置を、第4実施形態と同様な金属検知機能付きの非接触給電システムとすることができる。
 ・上記各実施形態では、検出回路7bは、発振信号Voの振幅値の大きさで金属片8の有無を判断してきたが、検出回路7bを周波数の変化で金属片8の有無を判定するようにしてもよい。この場合、発振回路7aの構成部品の設計値を、安定した発振周波数の継続的発振を維持できる設計値ではなく、周波数が不安定な状態から、安定した発振周波数の継続発振条件の手前までの値に設定する。そして、発振に関わる電磁気的パラメータの小さな変化で発振周波数の大きな変化を作る必要がある。
 ・上記第1~第3各実施形態では、給電装置1と機器Eのいずれか一方に金属検知アンテナコイルAT2を形成し、その金属検知アンテナコイルAT2を形成した方に発振回路7aと検出回路7bを設けた。これを、給電装置1と機器Eの両方に金属検知アンテナコイルAT2を形成するとともに、発振回路7aと検出回路7bを設けて実施してもよい。この場合、より極め細かい高精度な検知ができる。
 ・上記各実施形態では、金属検知アンテナコイルAT2を、スパイラル状にしたが、ループ状、ヘリカル状等、それ以外の形状で形成してもよい。

Claims (11)

  1.  非接触給電システムであって、
     1次コイルと、前記1次コイルに高周波電流を流すための高周波インバータとを含む給電装置と、
     前記1次コイルに流れる電流により発生する交番磁界を介して誘導起電力を発生する2次コイルを含み、前記2次コイルで発生した起電力を利用して負荷に電力を供給する機器と、
     金属異物検出装置であって、
      アンテナコイルと、
      前記アンテナコイルに高周波電流を流す発振回路と、
      前記発振回路及び前記アンテナコイルのいずれかで観測される電圧あるいは電流の変化を検出する検出回路と
    を含む前記金属異物検出装置と、を備え、
     前記発振回路は、同発振回路において発振が生じ始めた直後の発振条件から、安定した継続発振条件の手前までの範囲内の発振条件で発振を生じさせる設計値を有する構成部品を含み、
     前記金属異物検出装置は、前記給電装置上に置かれた金属異物に起因する前記アンテナコイルの電気的特性の変化に基づいて、前記発振回路の発振の停止または発振振幅の減衰を前記検出回路にて検知し、前記給電装置を制御することを特徴とする非接触給電システム。
  2.  請求項1に記載の非接触給電システムにおいて、
     前記アンテナコイルが、前記発振回路を構成する部品であることを特徴とする非接触給電システム。
  3.  請求項1又は2に記載の非接触給電システムにおいて、
     前記アンテナコイルは、複数の小面積のコイルで構成されていることを特徴とする非接触給電システム。
  4.  請求項3に記載の非接触給電システムにおいて、
     前記アンテナコイルは、前記複数の小面積のコイルが並列接続されて構成されていることを特徴とする非接触給電システム。
  5.  請求項1~4のいずれか1項に記載の非接触給電システムにおいて、
     前記金属異物検出装置が、前記給電装置に設けられていることを特徴とする非接触給電システム。
  6.  請求項1~4のいずれか1項に記載の非接触給電システムにおいて、
     前記金属異物検出装置が、前記機器に設けられており、前記給電装置に前記検出回路の信号を送信して、前記給電装置を制御することを特徴とする非接触給電システム。
  7.  請求項1~4のいずれか1項に記載の非接触給電システムにおいて、
     前記機器に前記アンテナコイルと前記発振回路とが設けられ、前記給電装置に前記検出回路が設けられており、
     前記検出回路は、前記機器の前記アンテナコイルからの信号を受信する受信アンテナコイルを含むことを特徴とする非接触給電システム。
  8.  請求項1~7のいずれか1項に記載の非接触給電システムにおいて、
     前記アンテナコイルが、前記給電装置のハウジングによって形成された給電面と、前記機器のハウジングによって形成された受電面とのうちの少なくともいずれか一方に配置されていることを特徴とする非接触給電システム。
  9.  請求項1~8のいずれか1項に記載の非接触給電システムにおいて、
     前記発振回路の発振周波数が、前記高周波インバータの発振周波数よりも高いことを特徴とする非接触給電システム。
  10.  請求項1~9のいずれか1項に記載の非接触給電システムにおいて、
     前記アンテナコイルが、スパイラル状に形成されていることを特徴とする非接触給電システム。
  11.  前記給電装置の1次コイルを励磁し、前記給電装置上に配置された機器の2次コイルに電磁誘導にて誘導起電力を発生させ、該誘電起電力を前記機器の負荷に供給する非接触給電システムの金属異物検出装置であって、
     アンテナコイルと、
     前記アンテナコイルに高周波電流を流す発振回路と、
     前記発振回路及びアンテナコイル部のいずれかで観測される電圧あるいは電流の変化を検出する検出回路と、
    を備え、
     前記発振回路は、同発振回路において発振が生じ始めた直後の発振条件から、安定した継続発振条件の手前までの範囲内の発振条件で発振を生じさせる設計値を有する構成部品を含み、
     前記検出回路は、前記給電装置上に置かれた金属異物に起因する前記アンテナコイルの電気的特性の変化に基づいて、前記発振回路の発振の停止または発振振幅の減衰を検知して前記給電装置を制御することを特徴とする非接触給電システムの金属異物検出装置。
PCT/JP2011/061636 2010-06-30 2011-05-20 非接触給電システム及び非接触給電システムの金属異物検出装置 WO2012002063A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180041459.0A CN103069689B (zh) 2010-06-30 2011-05-20 非接触供电系统以及非接触供电系统的金属异物检测装置
KR1020147034635A KR101568769B1 (ko) 2010-06-30 2011-05-20 비접촉 급전 시스템 및 비접촉 급전 시스템의 금속 이물질 검출 장치
EP11800532.1A EP2590300B1 (en) 2010-06-30 2011-05-20 Non-contact electric power feeding system and metal foreign-object detection apparatus for non-contact electric power feeding system
US13/806,799 US9099239B2 (en) 2010-06-30 2011-05-20 Contactless power supplying system and metal foreign object detection device of contactless power supplying system
KR1020127033795A KR20130038885A (ko) 2010-06-30 2011-05-20 비접촉 급전 시스템 및 비접촉 급전 시스템의 금속 이물질 검출 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-148913 2010-06-30
JP2010148913A JP2012016125A (ja) 2010-06-30 2010-06-30 非接触給電システム及び非接触給電システムの金属異物検出装置

Publications (1)

Publication Number Publication Date
WO2012002063A1 true WO2012002063A1 (ja) 2012-01-05

Family

ID=45401797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061636 WO2012002063A1 (ja) 2010-06-30 2011-05-20 非接触給電システム及び非接触給電システムの金属異物検出装置

Country Status (7)

Country Link
US (1) US9099239B2 (ja)
EP (1) EP2590300B1 (ja)
JP (1) JP2012016125A (ja)
KR (2) KR20130038885A (ja)
CN (1) CN103069689B (ja)
TW (1) TWI459676B (ja)
WO (1) WO2012002063A1 (ja)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145835A1 (ja) * 2012-03-28 2013-10-03 ソニー株式会社 受電装置、電気回路、および、給電装置
CN103368277A (zh) * 2012-04-10 2013-10-23 索尼公司 电力接收装置及其控制方法以及电力输送系统
WO2014018971A1 (en) * 2012-07-27 2014-01-30 Thoratec Corporation Resonant power transfer systems with protective algorithm
KR101372970B1 (ko) 2012-10-11 2014-03-11 파나소닉 주식회사 비접촉 급전 장치의 금속 이물질 검출 방법, 비접촉 급전 장치, 수전 장치 및 비접촉 급전 시스템
DE102012019584A1 (de) * 2012-10-04 2014-04-10 Panasonic Corporation Verfahren zum Detektieren metallischer Fremdkörper auf kontaktloser Leistungsversorgungsvorrichtung, kontaktlose Leistungsversorgungsvorrichtung, und kontaktlose Leistungsempfangsvorrichtung und kontaktloses Leistungsversorgungssystem
WO2014011776A3 (en) * 2012-07-13 2014-04-10 Qualcomm Incorporated Systems, methods, and apparatus for detection of metal objects in a predetermined space
CN104395131A (zh) * 2012-06-20 2015-03-04 西门子公司 识别导电异体的探测线圈组件、能量传输线圈组件和探测系统
WO2015083202A1 (ja) * 2013-12-05 2015-06-11 パナソニックIpマネジメント株式会社 アレーコイルシステム
CN105075062A (zh) * 2013-02-19 2015-11-18 松下知识产权经营株式会社 异物检测装置、异物检测方法以及非接触充电系统
US9229069B2 (en) 2011-05-19 2016-01-05 Panasonic Intellectual Property Management Co., Ltd. Method for detecting metal foreign object on contactless power supply device, contactless power supply device, contactless power reception device, and contactless power supply system
EP2824484A4 (en) * 2012-03-09 2016-01-06 Panasonic Ip Man Co Ltd METAL DETECTION METHOD, METAL DETECTOR, METAL DETECTING METHOD FOR A WIRELESS POWER SUPPLY DEVICE AND WIRELESS POWER SUPPLY DEVICE
EP2940829A4 (en) * 2012-12-28 2016-01-27 Panasonic Ip Man Co Ltd CONTACTLESS POWER SUPPLY
US9287040B2 (en) 2012-07-27 2016-03-15 Thoratec Corporation Self-tuning resonant power transfer systems
CN104395131B (zh) * 2012-06-20 2016-11-30 西门子公司 识别导电异体的探测线圈组件、能量传输线圈组件和探测系统
US9583874B2 (en) 2014-10-06 2017-02-28 Thoratec Corporation Multiaxial connector for implantable devices
US9592397B2 (en) 2012-07-27 2017-03-14 Thoratec Corporation Thermal management for implantable wireless power transfer systems
DE102012020670B4 (de) 2011-08-25 2017-03-30 Panasonic Intellectual Property Management Co., Ltd. Verfahren zum Detektieren eines metallischen Fremdkörpers in einem kontaktlosen Leistungsversorgungssystem, kontaktlose Leistungsversorgungsvorrichtung, Leistungsempfangsvorrichtung und kontaktloses Leistungsversorgungssystem
US9680310B2 (en) 2013-03-15 2017-06-13 Thoratec Corporation Integrated implantable TETS housing including fins and coil loops
US9805863B2 (en) 2012-07-27 2017-10-31 Thoratec Corporation Magnetic power transmission utilizing phased transmitter coil arrays and phased receiver coil arrays
WO2017209381A1 (ko) * 2016-05-31 2017-12-07 엘지이노텍 주식회사 무선 전력 송신 방법 및 그를 위한 장치
US9855437B2 (en) 2013-11-11 2018-01-02 Tc1 Llc Hinged resonant power transfer coil
US10148126B2 (en) 2015-08-31 2018-12-04 Tc1 Llc Wireless energy transfer system and wearables
US10177604B2 (en) 2015-10-07 2019-01-08 Tc1 Llc Resonant power transfer systems having efficiency optimization based on receiver impedance
US10186760B2 (en) 2014-09-22 2019-01-22 Tc1 Llc Antenna designs for communication between a wirelessly powered implant to an external device outside the body
WO2019031748A1 (ko) * 2017-08-07 2019-02-14 엘지이노텍(주) 무선 충전을 위한 이물질 검출 방법 및 그를 위한 장치
US10251987B2 (en) 2012-07-27 2019-04-09 Tc1 Llc Resonant power transmission coils and systems
US10291067B2 (en) 2012-07-27 2019-05-14 Tc1 Llc Computer modeling for resonant power transfer systems
US10365426B2 (en) * 2012-05-18 2019-07-30 Reald Spark, Llc Directional backlight
US10373756B2 (en) 2013-03-15 2019-08-06 Tc1 Llc Malleable TETs coil with improved anatomical fit
US10383990B2 (en) 2012-07-27 2019-08-20 Tc1 Llc Variable capacitor for resonant power transfer systems
US10525181B2 (en) 2012-07-27 2020-01-07 Tc1 Llc Resonant power transfer system and method of estimating system state
US10610692B2 (en) 2014-03-06 2020-04-07 Tc1 Llc Electrical connectors for implantable devices
US10615642B2 (en) 2013-11-11 2020-04-07 Tc1 Llc Resonant power transfer systems with communications
EP2779363B1 (en) * 2013-03-08 2020-06-17 Samsung Electronics Co., Ltd. Wireless power transmitter and method for controlling same
US10695476B2 (en) 2013-11-11 2020-06-30 Tc1 Llc Resonant power transfer systems with communications
US10770923B2 (en) 2018-01-04 2020-09-08 Tc1 Llc Systems and methods for elastic wireless power transmission devices
US10898292B2 (en) 2016-09-21 2021-01-26 Tc1 Llc Systems and methods for locating implanted wireless power transmission devices
US11197990B2 (en) 2017-01-18 2021-12-14 Tc1 Llc Systems and methods for transcutaneous power transfer using microneedles
CN114460655A (zh) * 2022-02-09 2022-05-10 杭州天纵智慧科技有限责任公司 一种药物片剂的检测装置及方法

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5625723B2 (ja) * 2010-10-15 2014-11-19 ソニー株式会社 電子機器、給電方法および給電システム
US9600021B2 (en) 2011-02-01 2017-03-21 Fu Da Tong Technology Co., Ltd. Operating clock synchronization adjusting method for induction type power supply system
TWI669880B (zh) * 2018-04-27 2019-08-21 富達通科技股份有限公司 感應式電源供應器之金屬異物檢測方法及其供電模組
US9831687B2 (en) 2011-02-01 2017-11-28 Fu Da Tong Technology Co., Ltd. Supplying-end module for induction-type power supply system and signal analysis circuit therein
TWI577108B (zh) * 2016-05-13 2017-04-01 富達通科技股份有限公司 感應式電源供應器及其金屬異物檢測方法
US10038338B2 (en) 2011-02-01 2018-07-31 Fu Da Tong Technology Co., Ltd. Signal modulation method and signal rectification and modulation device
US10615645B2 (en) 2011-02-01 2020-04-07 Fu Da Tong Technology Co., Ltd Power supply device of induction type power supply system and NFC device identification method of the same
US10312748B2 (en) 2011-02-01 2019-06-04 Fu Da Tong Techology Co., Ltd. Signal analysis method and circuit
US10630113B2 (en) 2011-02-01 2020-04-21 Fu Da Tong Technology Co., Ltd Power supply device of induction type power supply system and RF magnetic card identification method of the same
TWI570427B (zh) 2015-10-28 2017-02-11 富達通科技股份有限公司 感應式電源供應器及其金屬異物檢測方法
US10289142B2 (en) 2011-02-01 2019-05-14 Fu Da Tong Technology Co., Ltd. Induction type power supply system and intruding metal detection method thereof
TWI568125B (zh) 2015-01-14 2017-01-21 富達通科技股份有限公司 感應式電源供應器之供電模組及其電壓測量方法
US9671444B2 (en) 2011-02-01 2017-06-06 Fu Da Tong Technology Co., Ltd. Current signal sensing method for supplying-end module of induction type power supply system
US10630116B2 (en) 2011-02-01 2020-04-21 Fu Da Tong Technology Co., Ltd. Intruding metal detection method for induction type power supply system and related supplying-end module
US10056944B2 (en) 2011-02-01 2018-08-21 Fu Da Tong Technology Co., Ltd. Data determination method for supplying-end module of induction type power supply system and related supplying-end module
US11128180B2 (en) 2011-02-01 2021-09-21 Fu Da Tong Technology Co., Ltd. Method and supplying-end module for detecting receiving-end module
US9628147B2 (en) 2011-02-01 2017-04-18 Fu Da Tong Technology Co., Ltd. Method of automatically adjusting determination voltage and voltage adjusting device thereof
JP5071574B1 (ja) 2011-07-05 2012-11-14 ソニー株式会社 検知装置、受電装置、非接触電力伝送システム及び検知方法
JP5838333B2 (ja) * 2011-08-01 2016-01-06 パナソニックIpマネジメント株式会社 非接触給電装置
US10778045B2 (en) * 2012-01-30 2020-09-15 Triune Ip, Llc Method and system of wireless power transfer foreign object detection
JP2013192391A (ja) * 2012-03-14 2013-09-26 Sony Corp 検知装置、受電装置、送電装置及び非接触給電システム
DE102012205285A1 (de) 2012-03-30 2013-10-02 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur induktiven Leistungsübertragung
DE102012205283A1 (de) 2012-03-30 2013-10-02 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur induktiven Leistungsübertragung
JP5884610B2 (ja) 2012-04-10 2016-03-15 ソニー株式会社 受電装置、受電装置の制御方法、および、給電システム
JP2013219972A (ja) 2012-04-11 2013-10-24 Ihi Corp 水中電力供給システム
JP5976385B2 (ja) * 2012-05-07 2016-08-23 ソニー株式会社 検知装置、受電装置、送電装置及び非接触給電システム
JP5929493B2 (ja) 2012-05-17 2016-06-08 ソニー株式会社 受電装置、および、給電システム
JP5927429B2 (ja) * 2012-06-08 2016-06-01 パナソニックIpマネジメント株式会社 アレーコイルシステム
JP5954690B2 (ja) * 2012-06-18 2016-07-20 日本電気硝子株式会社 非接触給電用支持部材
JP2014007863A (ja) * 2012-06-25 2014-01-16 Canon Inc 給電装置、制御方法及びプログラム
JP6079026B2 (ja) * 2012-07-26 2017-02-15 Tdk株式会社 コイルユニットおよびそれを用いたワイヤレス給電装置
JP5958170B2 (ja) * 2012-08-13 2016-07-27 トヨタ自動車株式会社 送電装置、受電装置および電力伝送システム
CN104584372B (zh) * 2012-08-31 2017-07-04 西门子公司 用于给蓄电池无线充电的蓄电池充电系统和方法
US9293251B2 (en) 2012-10-11 2016-03-22 Panasonic Intellectual Property Management Co., Ltd. Method of exciting primary coils in contactless power supplying device and contactless power supplying device
TWI462424B (zh) * 2012-10-15 2014-11-21 Panasonic Corp 非接觸式供電裝置的一次線圈之激磁方法及非接觸式供電裝置
KR101383731B1 (ko) * 2012-11-02 2014-04-08 파나소닉 주식회사 비접촉 급전 장치
JP2014103808A (ja) * 2012-11-21 2014-06-05 Nec Engineering Ltd 非接触充電監視システム、非接触充電システム、及び非接触充電方法
JP2016034169A (ja) * 2012-12-26 2016-03-10 日産自動車株式会社 非接触給電装置及び非接触給電システム
US9841524B2 (en) 2012-12-27 2017-12-12 Denso Corporation Metal object detection device
JP5910490B2 (ja) * 2012-12-27 2016-04-27 株式会社デンソー 金属物体検知装置
EP2961037B1 (en) 2013-02-19 2017-06-28 Panasonic Intellectual Property Management Co., Ltd. Foreign object detection device, foreign object detection method, and non-contact charging system
JP6145864B2 (ja) * 2013-03-05 2017-06-14 パナソニックIpマネジメント株式会社 非接触電力伝達装置
US20140253026A1 (en) * 2013-03-08 2014-09-11 O2 Micro Inc. Apparatus, Method, and System for Wirelessly Charging an Electronic Device
WO2014156655A1 (ja) * 2013-03-29 2014-10-02 日産自動車株式会社 非接触電力伝送装置
JPWO2014185035A1 (ja) * 2013-05-17 2017-02-23 日本電気株式会社 電力ネットワークシステム並びに電力調整装置及び方法
GB2517679A (en) 2013-06-25 2015-03-04 Bombardier Transp Gmbh Object detection system and method for operating an object detection system
JP6172567B2 (ja) * 2013-07-23 2017-08-02 株式会社Ihi 非接触給電装置用の異物検出装置と方法
WO2015008662A1 (ja) 2013-07-16 2015-01-22 株式会社Ihi 非接触給電装置用の異物検出装置と方法
JP2015023595A (ja) * 2013-07-16 2015-02-02 株式会社Ihi 非接触給電装置用の異物検出装置と方法
US20160164333A1 (en) * 2013-07-18 2016-06-09 Panasonic Intellectual Property Management Co., Ltd. Contactless charger, program therefor, and automobile equipped with same
CN103427500B (zh) * 2013-08-19 2015-04-08 广西电网公司电力科学研究院 一种ipt系统非法负载检测装置及检测方法
EP3046208B1 (en) * 2013-08-21 2018-11-28 Panasonic Intellectual Property Management Co., Ltd. Portable terminal charging device and automobile equipped with same
DE202014011252U1 (de) 2013-08-28 2018-11-06 Sony Corporation Leistungseinspeisungsvorrichtung, Leistungsempfangsvorrichtung und Leistungseinspeisungssystem
JP6387222B2 (ja) 2013-08-28 2018-09-05 ソニー株式会社 給電装置、受電装置、給電システム、および、給電装置の制御方法
US9882437B2 (en) 2013-08-28 2018-01-30 Sony Corporation Power feeding apparatus, power receiving apparatus, power feeding system, and method of controlling power feeding
JP6160701B2 (ja) * 2013-09-27 2017-07-12 日産自動車株式会社 非接触給電システムの導電体配索構造
US9921045B2 (en) 2013-10-22 2018-03-20 Qualcomm Incorporated Systems, methods, and apparatus for increased foreign object detection loop array sensitivity
WO2015064915A1 (ko) * 2013-10-31 2015-05-07 엘지전자 주식회사 무선 전력 전송 장치 및 그 제어 방법
US10097041B2 (en) 2013-10-31 2018-10-09 Lg Electronics Inc. Wireless power transmission device and control method therefor
US9985463B2 (en) 2013-11-01 2018-05-29 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal charging device and vehicle equipped with same
JP2015104161A (ja) 2013-11-21 2015-06-04 トヨタ自動車株式会社 非接触送電装置および非接触電力伝送システム
JP5904250B2 (ja) * 2013-11-28 2016-04-13 Tdk株式会社 コイルユニットおよび非接触電力伝送装置
JP5904251B2 (ja) * 2013-11-28 2016-04-13 Tdk株式会社 コイルユニットおよび非接触電力伝送装置
US9935488B2 (en) 2013-12-25 2018-04-03 Panasonic Intellectual Property Management Co., Ltd. Portable terminal charging apparatus and automobile having portable terminal charging apparatus mounted therein
US9939539B2 (en) * 2014-04-04 2018-04-10 Texas Instruments Incorporated Wireless power receiver and/or foreign object detection by a wireless power transmitter
DE102014207427A1 (de) 2014-04-17 2015-10-22 Bombardier Transportation Gmbh Vorrichtung und Verfahren zur Detektion eines Störkörpers in einem System zur induktiven Energieübertragung sowie System zur induktiven Energieübertragung
DE102014207890A1 (de) * 2014-04-28 2015-07-30 Continental Automotive Gmbh Fremdkörpererfassungsvorrichtung und Leistungs-Induktivladevorrichtung
DE102014207885A1 (de) * 2014-04-28 2015-10-29 Continental Automotive Gmbh Fremdkörpererfassungsvorrichtung und Leistungs-Induktivladevorrichtung
CN106489082B (zh) 2014-05-07 2021-09-21 无线电力公司 无线能量传送系统中的异物检测
US10295693B2 (en) * 2014-05-15 2019-05-21 Witricity Corporation Systems, methods, and apparatus for foreign object detection loop based on inductive thermal sensing
US10141775B2 (en) 2014-05-19 2018-11-27 Panasonic Intellectual Property Management Co., Ltd. Mobile-terminal-charging device and vehicle in which same is mounted
CN107257167B (zh) * 2014-05-27 2020-01-21 松下知识产权经营株式会社 送电装置以及无线电力传输系统
CN105137489B (zh) * 2014-06-09 2020-03-17 中兴通讯股份有限公司 异物检测方法及装置、无线充电控制方法及装置
EP3322101B1 (en) * 2014-06-19 2019-09-11 Koninklijke Philips N.V. Wireless inductive power transfer
JP6633066B2 (ja) 2014-06-20 2020-01-22 アップル インコーポレイテッドApple Inc. 誘導型電力伝送フィールドにおける異物検出
JP6166227B2 (ja) 2014-07-04 2017-07-19 トヨタ自動車株式会社 送電装置及び受電装置
JP6708123B2 (ja) * 2014-07-09 2020-06-10 ソニー株式会社 受電装置、給電装置、および電子機器
US20160028265A1 (en) * 2014-07-23 2016-01-28 Ford Global Technologies, Llc Ultrasonic and infrared object detection for wireless charging of electric vehicles
JP6122402B2 (ja) * 2014-08-05 2017-04-26 パナソニック株式会社 送電装置および無線電力伝送システム
DE102014219964A1 (de) * 2014-10-01 2016-04-07 Robert Bosch Gmbh Verfahren zur Fremdobjekterkennung für eine Induktionsladevorrichtung und Induktionsladevorrichtung
TWI565178B (zh) * 2014-10-03 2017-01-01 致伸科技股份有限公司 無線充電方法及無線充電系統
JP6660531B2 (ja) * 2014-10-31 2020-03-11 パナソニックIpマネジメント株式会社 異物検出装置
CN104374782B (zh) * 2014-11-18 2017-10-17 惠州硕贝德无线科技股份有限公司 一种基于天线特性参数监测的异物检测系统
US10324215B2 (en) * 2014-12-30 2019-06-18 Witricity Corporation Systems, methods, and apparatus for detecting ferromagnetic foreign objects in a predetermined space
US10302795B2 (en) 2014-12-30 2019-05-28 Witricity Corporation Systems, methods, and apparatus for detecting ferromagnetic foreign objects in a predetermined space
US10153665B2 (en) 2015-01-14 2018-12-11 Fu Da Tong Technology Co., Ltd. Method for adjusting output power for induction type power supply system and related supplying-end module
JP2016140179A (ja) * 2015-01-27 2016-08-04 トヨタ自動車株式会社 金属異物検知装置、送電装置および受電装置
JP2016138783A (ja) * 2015-01-27 2016-08-04 トヨタ自動車株式会社 金属異物検知装置
US20160241061A1 (en) * 2015-02-17 2016-08-18 Qualcomm Incorporated Clover leaf and butterfly coil structures for flat wireless coupling profiles in wireless power transfer applications
JP6732779B2 (ja) * 2015-03-04 2020-07-29 アップル インコーポレイテッドApple Inc. 誘導電力送信器
KR20170008617A (ko) * 2015-07-14 2017-01-24 삼성전기주식회사 무선 전력 수신 장치 및 그 제조방법
JP6639204B2 (ja) * 2015-11-27 2020-02-05 キヤノン株式会社 送電装置
JP7557260B2 (ja) * 2016-07-01 2024-09-27 エルジー イノテック カンパニー リミテッド 異物質検出方法及びそのための装置及びシステム
KR102617560B1 (ko) 2016-08-23 2023-12-27 엘지이노텍 주식회사 이물질 검출 방법 및 그를 위한 장치 및 시스템
WO2018038531A1 (ko) * 2016-08-23 2018-03-01 엘지이노텍(주) 이물질 검출 방법 및 그를 위한 장치 및 시스템
KR102605047B1 (ko) 2016-12-08 2023-11-24 엘지이노텍 주식회사 무선 충전을 위한 이물질 검출 방법 및 그를 위한 장치
KR102605844B1 (ko) 2017-01-13 2023-11-27 주식회사 위츠 이물질 검출 회로 및 그를 이용한 무선 전력 송신 장치
WO2018184230A1 (zh) 2017-04-07 2018-10-11 Oppo广东移动通信有限公司 无线充电系统、装置、方法及待充电设备
WO2018184581A1 (zh) 2017-04-07 2018-10-11 Oppo广东移动通信有限公司 待充电设备、无线充电装置、无线充电方法及系统
JP7059290B2 (ja) 2017-04-07 2022-04-25 オッポ広東移動通信有限公司 無線充電装置、無線充電方法及び被充電機器
KR102318241B1 (ko) 2017-04-13 2021-10-27 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 충전 대기 설비 및 충전 방법
JP6822568B2 (ja) 2017-07-05 2021-01-27 株式会社Ihi コイル装置
NL2019616B1 (en) * 2017-09-22 2019-03-28 Prodrive Tech Bv Device and method for foreign object detection in wireless energy transfer
WO2019088760A1 (ko) 2017-11-02 2019-05-09 엘지이노텍 주식회사 무선 충전 방법 및 그를 위한 장치
CN109917468A (zh) * 2017-12-13 2019-06-21 中惠创智(深圳)无线供电技术有限公司 检测金属异物的系统、无线发射机及无线供电系统
CN109917467A (zh) * 2017-12-13 2019-06-21 中惠创智(深圳)无线供电技术有限公司 检测金属异物的系统、无线发射机及无线供电系统
US12090880B2 (en) 2018-04-19 2024-09-17 Ge Intellectual Property Licensing, Llc System and method for determining an alignment of an apparatus coil
KR102731611B1 (ko) 2018-04-19 2024-11-15 제네럴 일렉트릭 컴퍼니 이물질 검출 디바이스, 시스템 및 방법
US20190326782A1 (en) * 2018-04-24 2019-10-24 Apple Inc. Wireless Charging System With Metallic Object Detection
US10992392B2 (en) * 2018-09-06 2021-04-27 Nxp B.V. Near-field electromagnetic induction (NFEMI) ratio control
JP2019097383A (ja) * 2019-01-09 2019-06-20 ソニー株式会社 受電装置及び電力伝送システム
KR102715378B1 (ko) * 2019-04-18 2024-10-11 삼성전자주식회사 무선 충전을 수행하기 위한 방법, 무선 전력 송신 장치 및 저장 매체
US11336127B2 (en) 2019-08-15 2022-05-17 Mediatek Singapore Pte. Ltd. Calibration of foreign object detection in wireless power systems with authentication
JP2023041072A (ja) * 2019-12-27 2023-03-24 Tdk株式会社 異物検出装置、送電装置、受電装置および電力伝送システム
JP2023041074A (ja) * 2019-12-27 2023-03-24 Tdk株式会社 異物検出装置、送電装置、受電装置および電力伝送システム
CN111292970B (zh) * 2020-02-05 2021-10-29 国网山东省电力公司新泰市供电公司 一种带验电器的绝缘操作杆
JP2024506666A (ja) * 2021-02-16 2024-02-14 ゼネラル・エレクトリック・カンパニイ 無線電力伝送システムにおける異物検出
CN115005861A (zh) * 2021-03-05 2022-09-06 临沂凯行医疗科技有限公司 一种听诊器型体内金属异物检测告警装置及其制作方法
CN117572511B (zh) * 2023-10-20 2024-05-24 南京理工大学 目标物探测装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215530A (ja) * 1997-01-28 1998-08-11 Matsushita Electric Works Ltd 非接触電力伝送装置
JP3306675B2 (ja) 1993-04-21 2002-07-24 九州日立マクセル株式会社 小型電気機器
JP3392103B2 (ja) 1993-04-21 2003-03-31 九州日立マクセル株式会社 小型電気機器
JP2008206231A (ja) * 2007-02-16 2008-09-04 Seiko Epson Corp 受電制御装置、送電制御装置、無接点電力伝送システム、受電装置、送電装置および電子機器
JP2009219177A (ja) * 2008-03-07 2009-09-24 Canon Inc 給電装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2414120B (en) * 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
JP2009027781A (ja) * 2007-07-17 2009-02-05 Seiko Epson Corp 受電制御装置、受電装置、無接点電力伝送システム、充電制御装置、バッテリ装置および電子機器
KR101645736B1 (ko) 2007-12-21 2016-08-04 액세스 비지니스 그룹 인터내셔날 엘엘씨 유도 전력 전송 회로
JP4725612B2 (ja) 2008-07-16 2011-07-13 セイコーエプソン株式会社 送電制御装置、送電装置、受電制御装置、受電装置及び電子機器
JP4893755B2 (ja) * 2009-01-14 2012-03-07 セイコーエプソン株式会社 送電制御装置、送電装置、電子機器及び負荷状態検出回路
JP5484843B2 (ja) 2009-09-24 2014-05-07 パナソニック株式会社 非接触充電システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306675B2 (ja) 1993-04-21 2002-07-24 九州日立マクセル株式会社 小型電気機器
JP3392103B2 (ja) 1993-04-21 2003-03-31 九州日立マクセル株式会社 小型電気機器
JPH10215530A (ja) * 1997-01-28 1998-08-11 Matsushita Electric Works Ltd 非接触電力伝送装置
JP2008206231A (ja) * 2007-02-16 2008-09-04 Seiko Epson Corp 受電制御装置、送電制御装置、無接点電力伝送システム、受電装置、送電装置および電子機器
JP2009219177A (ja) * 2008-03-07 2009-09-24 Canon Inc 給電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2590300A4

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9229069B2 (en) 2011-05-19 2016-01-05 Panasonic Intellectual Property Management Co., Ltd. Method for detecting metal foreign object on contactless power supply device, contactless power supply device, contactless power reception device, and contactless power supply system
DE102012020670B4 (de) 2011-08-25 2017-03-30 Panasonic Intellectual Property Management Co., Ltd. Verfahren zum Detektieren eines metallischen Fremdkörpers in einem kontaktlosen Leistungsversorgungssystem, kontaktlose Leistungsversorgungsvorrichtung, Leistungsempfangsvorrichtung und kontaktloses Leistungsversorgungssystem
EP2824484A4 (en) * 2012-03-09 2016-01-06 Panasonic Ip Man Co Ltd METAL DETECTION METHOD, METAL DETECTOR, METAL DETECTING METHOD FOR A WIRELESS POWER SUPPLY DEVICE AND WIRELESS POWER SUPPLY DEVICE
WO2013145835A1 (ja) * 2012-03-28 2013-10-03 ソニー株式会社 受電装置、電気回路、および、給電装置
US11101702B2 (en) 2012-03-28 2021-08-24 Sony Corporation Power receiving device, electric circuit, and power supply device
US9709690B2 (en) 2012-03-28 2017-07-18 Sony Corporation Power receiving device, electric circuit, and power supply device
CN104247207A (zh) * 2012-03-28 2014-12-24 索尼公司 电力接收装置、电路及供电装置
JPWO2013145835A1 (ja) * 2012-03-28 2015-12-10 ソニー株式会社 受電装置、電気回路、および、給電装置
US10381882B2 (en) 2012-03-28 2019-08-13 Sony Corporation Power receiving device, electric circuit, and power supply device
CN107769392A (zh) * 2012-04-10 2018-03-06 索尼公司 电力接收装置及其控制方法以及电力输送系统
JP2013219945A (ja) * 2012-04-10 2013-10-24 Sony Corp 受電装置、受電装置の制御方法、および、給電システム
CN103368277A (zh) * 2012-04-10 2013-10-23 索尼公司 电力接收装置及其控制方法以及电力输送系统
US10365426B2 (en) * 2012-05-18 2019-07-30 Reald Spark, Llc Directional backlight
CN104395131A (zh) * 2012-06-20 2015-03-04 西门子公司 识别导电异体的探测线圈组件、能量传输线圈组件和探测系统
CN104395131B (zh) * 2012-06-20 2016-11-30 西门子公司 识别导电异体的探测线圈组件、能量传输线圈组件和探测系统
US11077762B2 (en) 2012-07-13 2021-08-03 Witricity Corporation Systems, methods, and apparatus for detection of metal objects in a predetermined space
US9410823B2 (en) 2012-07-13 2016-08-09 Qualcomm Incorporated Systems, methods, and apparatus for detection of metal objects in a predetermined space
US10627257B2 (en) 2012-07-13 2020-04-21 Witricity Corporation Systems, methods, and apparatus for detection of metal objects in a predetermined space
WO2014011776A3 (en) * 2012-07-13 2014-04-10 Qualcomm Incorporated Systems, methods, and apparatus for detection of metal objects in a predetermined space
US9726518B2 (en) 2012-07-13 2017-08-08 Qualcomm Incorporated Systems, methods, and apparatus for detection of metal objects in a predetermined space
US11919407B2 (en) 2012-07-13 2024-03-05 Witricity Corporation Systems, methods, and apparatus for detection of metal objects in a predetermined space
US10668197B2 (en) 2012-07-27 2020-06-02 Tc1 Llc Resonant power transmission coils and systems
US10291067B2 (en) 2012-07-27 2019-05-14 Tc1 Llc Computer modeling for resonant power transfer systems
US9592397B2 (en) 2012-07-27 2017-03-14 Thoratec Corporation Thermal management for implantable wireless power transfer systems
US9805863B2 (en) 2012-07-27 2017-10-31 Thoratec Corporation Magnetic power transmission utilizing phased transmitter coil arrays and phased receiver coil arrays
US9825471B2 (en) 2012-07-27 2017-11-21 Thoratec Corporation Resonant power transfer systems with protective algorithm
US10693299B2 (en) 2012-07-27 2020-06-23 Tc1 Llc Self-tuning resonant power transfer systems
WO2014018971A1 (en) * 2012-07-27 2014-01-30 Thoratec Corporation Resonant power transfer systems with protective algorithm
US10644514B2 (en) 2012-07-27 2020-05-05 Tc1 Llc Resonant power transfer systems with protective algorithm
US10637303B2 (en) 2012-07-27 2020-04-28 Tc1 Llc Magnetic power transmission utilizing phased transmitter coil arrays and phased receiver coil arrays
US10525181B2 (en) 2012-07-27 2020-01-07 Tc1 Llc Resonant power transfer system and method of estimating system state
US9997928B2 (en) 2012-07-27 2018-06-12 Tc1 Llc Self-tuning resonant power transfer systems
US10434235B2 (en) 2012-07-27 2019-10-08 Tci Llc Thermal management for implantable wireless power transfer systems
US10383990B2 (en) 2012-07-27 2019-08-20 Tc1 Llc Variable capacitor for resonant power transfer systems
US9287040B2 (en) 2012-07-27 2016-03-15 Thoratec Corporation Self-tuning resonant power transfer systems
US10277039B2 (en) 2012-07-27 2019-04-30 Tc1 Llc Resonant power transfer systems with protective algorithm
US10251987B2 (en) 2012-07-27 2019-04-09 Tc1 Llc Resonant power transmission coils and systems
DE102012019584A1 (de) * 2012-10-04 2014-04-10 Panasonic Corporation Verfahren zum Detektieren metallischer Fremdkörper auf kontaktloser Leistungsversorgungsvorrichtung, kontaktlose Leistungsversorgungsvorrichtung, und kontaktlose Leistungsempfangsvorrichtung und kontaktloses Leistungsversorgungssystem
KR101372970B1 (ko) 2012-10-11 2014-03-11 파나소닉 주식회사 비접촉 급전 장치의 금속 이물질 검출 방법, 비접촉 급전 장치, 수전 장치 및 비접촉 급전 시스템
US9906048B2 (en) 2012-12-28 2018-02-27 Panasonic Intellectual Property Management Co., Ltd. Non-contact power supply apparatus
EP2940829A4 (en) * 2012-12-28 2016-01-27 Panasonic Ip Man Co Ltd CONTACTLESS POWER SUPPLY
CN105075062A (zh) * 2013-02-19 2015-11-18 松下知识产权经营株式会社 异物检测装置、异物检测方法以及非接触充电系统
US9831711B2 (en) 2013-02-19 2017-11-28 Panasonic Intellectual Property Management Co., Ltd. Foreign object detection device, foreign object detection method, and non-contact charging system
EP2779363B1 (en) * 2013-03-08 2020-06-17 Samsung Electronics Co., Ltd. Wireless power transmitter and method for controlling same
US10636566B2 (en) 2013-03-15 2020-04-28 Tc1 Llc Malleable TETS coil with improved anatomical fit
US10476317B2 (en) 2013-03-15 2019-11-12 Tci Llc Integrated implantable TETs housing including fins and coil loops
US9680310B2 (en) 2013-03-15 2017-06-13 Thoratec Corporation Integrated implantable TETS housing including fins and coil loops
US10373756B2 (en) 2013-03-15 2019-08-06 Tc1 Llc Malleable TETs coil with improved anatomical fit
US9855437B2 (en) 2013-11-11 2018-01-02 Tc1 Llc Hinged resonant power transfer coil
US10695476B2 (en) 2013-11-11 2020-06-30 Tc1 Llc Resonant power transfer systems with communications
US10615642B2 (en) 2013-11-11 2020-04-07 Tc1 Llc Resonant power transfer systems with communications
US11179559B2 (en) 2013-11-11 2021-11-23 Tc1 Llc Resonant power transfer systems with communications
US10873220B2 (en) 2013-11-11 2020-12-22 Tc1 Llc Resonant power transfer systems with communications
WO2015083202A1 (ja) * 2013-12-05 2015-06-11 パナソニックIpマネジメント株式会社 アレーコイルシステム
US10610692B2 (en) 2014-03-06 2020-04-07 Tc1 Llc Electrical connectors for implantable devices
US11245181B2 (en) 2014-09-22 2022-02-08 Tc1 Llc Antenna designs for communication between a wirelessly powered implant to an external device outside the body
US10186760B2 (en) 2014-09-22 2019-01-22 Tc1 Llc Antenna designs for communication between a wirelessly powered implant to an external device outside the body
US10265450B2 (en) 2014-10-06 2019-04-23 Tc1 Llc Multiaxial connector for implantable devices
US9583874B2 (en) 2014-10-06 2017-02-28 Thoratec Corporation Multiaxial connector for implantable devices
US10770919B2 (en) 2015-08-31 2020-09-08 Tc1 Llc Wireless energy transfer system and wearables
US10148126B2 (en) 2015-08-31 2018-12-04 Tc1 Llc Wireless energy transfer system and wearables
US10804744B2 (en) 2015-10-07 2020-10-13 Tc1 Llc Resonant power transfer systems having efficiency optimization based on receiver impedance
US10177604B2 (en) 2015-10-07 2019-01-08 Tc1 Llc Resonant power transfer systems having efficiency optimization based on receiver impedance
CN109196753A (zh) * 2016-05-31 2019-01-11 Lg伊诺特有限公司 无线电力传输方法及其设备
WO2017209381A1 (ko) * 2016-05-31 2017-12-07 엘지이노텍 주식회사 무선 전력 송신 방법 및 그를 위한 장치
US10898292B2 (en) 2016-09-21 2021-01-26 Tc1 Llc Systems and methods for locating implanted wireless power transmission devices
US11317988B2 (en) 2016-09-21 2022-05-03 Tc1 Llc Systems and methods for locating implanted wireless power transmission devices
US11197990B2 (en) 2017-01-18 2021-12-14 Tc1 Llc Systems and methods for transcutaneous power transfer using microneedles
US11038382B2 (en) 2017-08-07 2021-06-15 Lg Innotek Co., Ltd. Foreign object detecting method for wireless charging and device therefor
WO2019031748A1 (ko) * 2017-08-07 2019-02-14 엘지이노텍(주) 무선 충전을 위한 이물질 검출 방법 및 그를 위한 장치
US10770923B2 (en) 2018-01-04 2020-09-08 Tc1 Llc Systems and methods for elastic wireless power transmission devices
CN114460655A (zh) * 2022-02-09 2022-05-10 杭州天纵智慧科技有限责任公司 一种药物片剂的检测装置及方法

Also Published As

Publication number Publication date
KR20130038885A (ko) 2013-04-18
CN103069689A (zh) 2013-04-24
US9099239B2 (en) 2015-08-04
KR101568769B1 (ko) 2015-11-12
TW201208225A (en) 2012-02-16
EP2590300B1 (en) 2016-09-14
EP2590300A1 (en) 2013-05-08
KR20150003408A (ko) 2015-01-08
JP2012016125A (ja) 2012-01-19
TWI459676B (zh) 2014-11-01
CN103069689B (zh) 2016-07-13
EP2590300A4 (en) 2014-05-21
US20130099592A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
WO2012002063A1 (ja) 非接触給電システム及び非接触給電システムの金属異物検出装置
US9843196B2 (en) Wireless power transmitter, wireless power receiver and wireless charging system in home appliances
JP5689682B2 (ja) 誘導電力供給装置
CN101272063B (zh) 非接触电力传送装置
KR101967341B1 (ko) 차량용 무선 전력 송신기 및 수신기
JP5689587B2 (ja) 電力伝送装置
US8310107B2 (en) Power transmission control device, power transmitting device, non-contact power transmission system, and secondary coil positioning method
JP6122402B2 (ja) 送電装置および無線電力伝送システム
JP6279452B2 (ja) 非接触電力伝送装置
US12074462B2 (en) Wireless charging device, a receiver device, and an associated method thereof
KR102554226B1 (ko) 무선 전력 전송 장치 및 방법
WO2013047260A1 (ja) 電池内蔵機器と充電台、及び電池内蔵機器
JP2012178916A (ja) 非接触電力伝送装置
JP2015231329A (ja) 無線電力伝送装置
US20230238836A1 (en) Apparatus and method for transmitting power wirelessly
KR20220085442A (ko) 무선 전력 전송 장치 및 방법
JP2015104141A (ja) 無接点給電方法
JP2019022263A (ja) 送電装置
JP2018207670A (ja) ワイヤレス電力伝送システムの送電装置および前記ワイヤレス電力伝送システム
JP2019004566A (ja) 送電装置
KR20220102869A (ko) 무선 전력 수신 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180041459.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800532

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011800532

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011800532

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13806799

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127033795

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE