Nothing Special   »   [go: up one dir, main page]

WO2012090411A1 - 液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品 - Google Patents

液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品 Download PDF

Info

Publication number
WO2012090411A1
WO2012090411A1 PCT/JP2011/006987 JP2011006987W WO2012090411A1 WO 2012090411 A1 WO2012090411 A1 WO 2012090411A1 JP 2011006987 W JP2011006987 W JP 2011006987W WO 2012090411 A1 WO2012090411 A1 WO 2012090411A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystalline
polyester resin
crystalline polyester
resin composition
fiber length
Prior art date
Application number
PCT/JP2011/006987
Other languages
English (en)
French (fr)
Inventor
松原 知史
梅津 秀之
隆行 長谷
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201180012502.0A priority Critical patent/CN102782042B/zh
Priority to JP2012506031A priority patent/JP5241956B2/ja
Priority to EP11852365.3A priority patent/EP2540777B1/en
Priority to US13/637,738 priority patent/US8784683B2/en
Priority to KR1020127023028A priority patent/KR101305633B1/ko
Publication of WO2012090411A1 publication Critical patent/WO2012090411A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition

Definitions

  • the present invention relates to a liquid crystalline polyester resin composition, a method for producing the same, and a molded product comprising the same.
  • liquid crystalline resins such as liquid crystalline polyesters exhibiting optical anisotropy characterized by parallel arrangement of molecular chains are attracting attention because of their excellent moldability and mechanical properties. Applications are expanding to parts.
  • the liquid crystalline resin is particularly suitably used for electrical and electronic parts such as connectors that require good fluidity.
  • liquid crystalline polyester resin composition filled with a fibrous inorganic filler is used for the purpose of improving product strength and reducing anisotropy.
  • This liquid crystalline resin composition contains 20 to 80 parts by weight of a fibrous filler having a maximum fiber length of 1000 ⁇ m or less and a weight average fiber length of 200 ⁇ m to 450 ⁇ m with respect to 100 parts by weight of the liquid crystalline resin.
  • This liquid crystalline resin composition comprises (i) 5 to 50% by weight of glass fibers having a number average fiber length of 50 to 120 ⁇ m and a fiber length of 20 to 150 ⁇ m of 80% or more, and (ii) a liquid crystalline polymer.
  • This liquid crystalline polymer composition has been disclosed for the purpose of reducing mechanical deformation and reducing warpage deformation for asymmetric electronic components (see, for example, Patent Document 3).
  • This liquid crystalline polymer composition (i) has a weight average fiber length of 250 to 350 ⁇ m excluding those having an average fiber diameter of 5 to 30 ⁇ m and a fiber length of 10 ⁇ m or less, and a ratio of fibers having a fiber length of 700 ⁇ m or more is 5%.
  • % Of a fibrous filler and (ii) a plate-like filler having an average particle diameter of 0.5 to 200 ⁇ m.
  • Patent Documents 1 and 2 have a low glass fiber content with a long fiber length, low weld strength, poor toughness, and poor snap fit required for parts having a fitting portion. It was enough. Further, the resin composition disclosed in Patent Document 3 has problems in self-tapping properties, weld strength, and snap-fit properties required for molded products having a screw structure because glass fiber breakage increases.
  • the present invention provides a liquid crystalline polyester resin composition that solves at least a part of the above-mentioned problems, has a small flow variation, and can obtain a molded product with high snap fit, self-tapping property, and weld strength. Let it be an issue.
  • Embodiment of this invention has at least one part of the structure mentioned below in order to solve at least one part of the said subject.
  • Liquid crystallinity containing at least 100 parts by weight of a liquid crystalline polyester resin composed of the following structural units (I), (II), (III), (IV) and (V) and 10 to 100 parts by weight of glass fibers. It is a polyester resin composition.
  • the glass fiber has a weight average fiber length (Mw) of 200 to 500 ⁇ m.
  • This liquid crystalline resin composition contains 0.1 to 5.0% by weight of glass fibers having a fiber length of 1500 ⁇ m or more in all glass fibers.
  • This liquid crystalline polyester resin composition has a ratio (D90 / D10) of 90% cumulative fiber length (D90) to 10% cumulative fiber length (D10) in the weight cumulative particle size distribution curve of the glass fiber of 5.0 or less. It is.
  • the ratio (D90 / D10) may be greater than 5.0.
  • the liquid crystalline polyester resin composition according to the above (1) or (2) The mode fiber length in the fiber length frequency distribution of the glass fibers in this liquid crystalline polyester resin composition is 0.25 times or more and less than 0.90 times the weight average fiber length.
  • the mode fiber length in the fiber length frequency distribution of the glass fiber is less than 0.25 times the weight average fiber length. It may be 0.90 times or more of the weight average fiber length.
  • the structural unit (I) is 65 to 80 mol% based on the total of the structural units (I), (II) and (III).
  • the structural unit (II) is 55 to 85 mol% with respect to the total of the structural units (II) and (III).
  • the structural unit (IV) is 50 to 95 mol% with respect to the total of the structural units (IV) and (V).
  • the structural unit (I) is 65 mol with respect to the total of the structural units (I), (II) and (III). % Or may exceed 80 mol%. And structural unit (II) may be less than 55 mol% with respect to the sum total of structural unit (II) and (III), and is good also as exceeding 85 mol%.
  • the structural unit (IV) may be less than 50 mol% relative to the total of the structural units (IV) and (V), and may exceed 95 mol%.
  • a method for producing a liquid crystalline polyester resin composition according to any one of (1) to (4) above an extruder having a plurality of supply ports for a liquid crystalline polyester resin and glass fibers composed of at least the following structural units (I), (II), (III), (IV) and (V) To melt knead.
  • the liquid crystalline polyester resin is supplied from the first supply port on the extruder driving side.
  • Glass fiber is supplied from a second supply port located downstream of the first supply port.
  • the melt viscosity of the liquid crystalline polyester resin in the glass fiber supply section at a shear rate of 100 s ⁇ 1 is set to 100 to 5000 Pa ⁇ s.
  • the melt viscosity at a shear rate of 100 s ⁇ 1 of the liquid crystalline polyester resin in the glass fiber supply section is 100 Pa ⁇ s. It may be less than 5000 Pa ⁇ s.
  • liquid crystalline polyester resin composition described in any one of (1) to (4) above may be formed by other methods.
  • the molded product described in the above (6) can be used as a member other than the connector.
  • the liquid crystalline polyester resin composition of the embodiment of the present invention has less flow variation. According to the liquid crystalline polyester resin composition of the embodiment of the present invention, a molded product excellent in snap fit, self-tapping and weld strength can be obtained.
  • the liquid crystalline polyester resin composition of the embodiment of the present invention is suitably used for thin-walled electric / electronic parts and machine parts having a complicated shape and is particularly useful for molded parts having fitting parts and screw structures.
  • the liquid crystalline polyester resin composition of the embodiment of the present invention is based on 100 parts by weight of the liquid crystalline polyester resin composed of the following structural units (I), (II), (III), (IV) and (V). And 10 to 100 parts by weight of glass fiber having a specific fiber length.
  • the liquid crystalline polyester resin comprises a structural unit selected from, for example, an aromatic oxycarbonyl unit, an aromatic and / or aliphatic dioxy unit, an aromatic and / or aliphatic dicarbonyl unit.
  • the liquid crystalline polyester resin forms an anisotropic molten phase.
  • the liquid crystalline polyester resin is composed of the following structural units (I), (II), (III), (IV) and (V).
  • Such a liquid crystalline polyester resin has a low solidification rate and improves the adhesion between the resins, so that the weld strength can be improved.
  • the structural unit (I) is a structural unit generated from p-hydroxybenzoic acid.
  • the structural unit (II) is a structural unit formed from 4,4'-dihydroxybiphenyl.
  • the structural unit (III) is a structural unit generated from hydroquinone.
  • the structural unit (IV) represents a structural unit generated from terephthalic acid.
  • the structural unit (V) represents a structural unit generated from isophthalic acid.
  • the structural unit (I) contributes to improvement of snap fit.
  • the structural units (II) to (V) contribute to the improvement of weld strength.
  • the structural unit (I) is preferably 65 to 80 mol% with respect to the total of the structural units (I), (II) and (III).
  • the structural unit (I) is more preferably 68 to 78 mol% with respect to the total of the structural units (I), (II) and (III).
  • the structural unit (II) is preferably 55 to 85 mol% with respect to the total of the structural units (II) and (III). More preferably, the structural unit (II) is 55 to 78 moles with respect to the total of the structural units (II) and (III) because the crystallinity is reduced and the toughness is improved and the self-tapping property is further improved. %, And most preferably 58 to 73 mol%.
  • the structural unit (IV) is preferably 50 to 95 mol% with respect to the total of the structural units (IV) and (V). More preferably, the structural unit (IV) is 55 to 90 moles with respect to the total of the structural units (IV) and (V) because the crystallinity is reduced and the toughness is improved and the self-tapping property is further improved. %, And most preferably 60 to 85 mol%.
  • the total of the structural units (II) and (III) and the total of (IV) and (V) are preferably equimolar.
  • “substantially equimolar” indicates that the structural unit constituting the polymer main chain excluding the terminal is equimolar. For this reason, the aspect which does not necessarily become equimolar when it includes even the structural unit which comprises the terminal can satisfy the requirement of “substantially equimolar”. An excess of dicarboxylic acid component or dihydroxy component may be added to adjust the end groups of the polymer.
  • the liquid crystalline polyester resin used in the embodiment of the present invention can be produced according to a known polyester polycondensation method.
  • the following production method is preferable.
  • a predetermined amount of diphenyl carbonate is reacted with p-hydroxybenzoic acid and aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid to form diphenyl esters, respectively, and then aromatics such as 4,4′-dihydroxybiphenyl and hydroquinone.
  • aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid
  • aromatics such as 4,4′-dihydroxybiphenyl and hydroquinone.
  • p-hydroxybenzoic acid and 4,4′-dihydroxybiphenyl, hydroquinone, terephthalic acid, and isophthalic acid are reacted with acetic anhydride to acylate the phenolic hydroxyl group, and then liquid crystalline polyester by deacetic acid polycondensation reaction.
  • the method of producing is preferred.
  • the total amount of 4,4'-dihydroxybiphenyl and hydroquinone used and the total amount of terephthalic acid and isophthalic acid are preferably equimolar.
  • the amount of acetic anhydride to be used is preferably 1.15 equivalents or less, more preferably 1.10 equivalents or less of the total of the phenolic hydroxyl groups of p-hydroxybenzoic acid, 4,4′-dihydroxybiphenyl and hydroquinone. preferable.
  • the lower limit is preferably 1.0 equivalent or more.
  • the reaction is carried out under reduced pressure at a temperature at which the liquid crystalline polyester resin is melted to complete the polycondensation reaction.
  • a temperature at which the liquid crystalline polyester resin is melted to complete the polycondensation reaction.
  • the following methods are mentioned. That is, in a reaction vessel having a predetermined amount of p-hydroxybenzoic acid and 4,4′-dihydroxybiphenyl, hydroquinone, terephthalic acid, isophthalic acid, acetic anhydride, a stirring blade, a distillation pipe, and a discharge port at the bottom Prepare. Then, they are heated under stirring in a nitrogen gas atmosphere to acetylate the hydroxyl group, and then heated to the melting temperature of the liquid crystalline polyester resin and polycondensed under reduced pressure to complete the reaction.
  • the inside of the reaction vessel can be pressurized, for example, to approximately 1.0 kg / cm 2 (0.1 MPa). And the obtained polymer can be discharged in strand form from the discharge outlet provided in the reaction container lower part.
  • the melt polymerization method is an advantageous method for producing a uniform polymer, and is preferable in that an excellent polymer with less gas generation can be obtained.
  • the polycondensation reaction of the liquid crystalline polyester resin proceeds even without catalyst, but metal compounds such as stannous acetate, tetrabutyl titanate, potassium acetate and sodium acetate, antimony trioxide, and magnesium metal can also be used.
  • the content of each structural unit in the liquid crystalline polyester resin can be calculated by the following treatment. That is, the liquid crystalline polyester resin is weighed into an NMR (nuclear magnetic resonance) test tube, dissolved in a solvent in which the liquid crystalline polyester resin is soluble (for example, a pentafluorophenol / heavy tetrachloroethane-d 2 mixed solvent), and 1 The H-NMR spectrum is measured. The content of each structural unit can be calculated from the peak area ratio derived from each structural unit.
  • the melting point (Tm) can be measured as follows using a differential scanning calorimeter. After the endothermic peak temperature (Tm1) observed when the liquid crystalline polyester resin is measured from room temperature under a temperature rising condition of 40 ° C./min, it is held at a temperature of Tm1 + 20 ° C. for 5 minutes. Then, it is once cooled to room temperature under a temperature drop condition of 20 ° C./min. And it heats up again on the temperature rising conditions of 20 degree-C / min. The endothermic peak temperature (Tm2) observed at the temperature rise is calculated as the melting point (Tm).
  • the melt viscosity of the liquid crystalline polyester resin in the embodiment of the present invention is preferably 1 to 200 Pa ⁇ s, more preferably 10 to 200 Pa ⁇ s, and particularly preferably 10 to 100 Pa ⁇ s.
  • the melt viscosity is a value measured with a Koka flow tester under the condition of the melting point of the liquid crystalline polyester resin + 10 ° C. and the shear rate of 1,000 / s.
  • the liquid crystalline polyester resin composition of the embodiment of the present invention contains 10 to 100 parts by weight of glass fiber with respect to 100 parts by weight of the liquid crystalline polyester resin.
  • the amount of glass fiber contained in the liquid crystalline polyester resin composition is preferably 20 parts by weight or more, and more preferably 30 parts by weight or more.
  • the glass fiber content of the liquid crystalline polyester resin composition is preferably 90 parts by weight or less, and more preferably 80 parts by weight or less.
  • the weight average fiber length (Mw) of the glass fiber is 200 to 500 ⁇ m. It is important that (ii) glass fibers having a fiber length of 1500 ⁇ m or more are contained in an amount of 0.1 to 5.0% by weight in all glass fibers.
  • the weight average fiber length (Mw) of the glass fiber is preferably 250 ⁇ m or more, and more preferably 300 ⁇ m or more.
  • the weight average fiber length (Mw) of the glass fiber is larger than 500 ⁇ m, the fluidity is deteriorated and the surface appearance is poor.
  • the weight average fiber length (Mw) of the glass fiber is preferably 450 ⁇ m or less, and more preferably 430 ⁇ m or less.
  • the weight average fiber length (Mw) is in the range of 200 to 500 ⁇ m
  • the glass fiber having a fiber length of 1500 ⁇ m or more is less than 0.1% by weight
  • the snap fit and weld strength are lowered.
  • the amount of glass fiber having a fiber length of 1500 ⁇ m or more is preferably 0.3% by weight or more, and more preferably 0.5% by weight or more.
  • the glass fiber having a fiber length of 1500 ⁇ m or more exceeds 5.0% by weight, the toughness is impaired and brittle, so that the snap fit property, the self-tapping property, and the weld strength are lowered.
  • the amount of glass fiber having a fiber length of 1500 ⁇ m or more is preferably 3.0% by weight or less, and more preferably 2.0% by weight or less.
  • the ratio (D90) of 90% cumulative fiber length (D90) and 10% cumulative fiber length (D10). / D10) is preferably 5.0 or less.
  • the ratio (D90 / D10) of the 90% cumulative fiber length (D90) and the 10% cumulative fiber length (D10) is more preferably 4.5 or less. Most preferably, it is 4.0 or less.
  • the mode length (S) fiber length is 0.25 times the weight average fiber length (Mw) or more 0 It is preferably less than 90 times. From the viewpoint of improving the weld strength, the mode length (S) fiber length is preferably 0.35 times or more, more preferably 0.45 times or more the weight average fiber length (Mw). On the other hand, from the viewpoint of improving flow variation, the fiber length of the mode (S) is preferably less than 0.80 times the weight average fiber length (Mw), and more preferably less than 0.70.
  • the weight average fiber length (Mw) of the glass fiber and the glass fiber content with a fiber length of 1500 ⁇ m or more can be measured by the following method. 10 g of a pellet made of a composition containing a liquid crystalline polyester resin and glass fiber is heated in air at 550 ° C. for 8 hours to remove the resin. The remaining glass fibers are observed using an optical microscope at a magnification of 120 times, and the fiber lengths of 1000 or more randomly selected glass fibers are measured.
  • the weight average fiber length (Mw) is represented by ( ⁇ ni ⁇ Li 2 ) / ( ⁇ ni ⁇ Li).
  • Li is the range (section) of the fiber length of the glass fiber.
  • ni is calculated by (fiber length is the number of glass fibers contained in Li) / (total number of measured glass fibers).
  • the glass fiber content (% by weight) having a fiber length of 1500 ⁇ m or more is represented by ( ⁇ na ⁇ La) / ( ⁇ ni ⁇ Li) ⁇ 100.
  • La is the range (section) of the fiber length of the glass fiber included in the range of 1500 ⁇ m or more.
  • na was calculated by (the number of glass fibers whose fiber length is included in La) / (total number of measured glass fibers).
  • the ratio (D90 / D10) was calculated from the 90% cumulative fiber length (D90) and the 10% cumulative fiber length (D10) in the weight cumulative particle size distribution curve of the glass fiber.
  • the mode value (S) can be read from the fiber length frequency distribution.
  • the ratio (S / Mw) was calculated from the mode value (S) and the weight average fiber length (Mw).
  • the liquid crystalline polyester resin composition of the embodiment of the present invention contains a fibrous filler other than glass fiber and a filler other than the fibrous filler within a range not to impair the object of the present invention.
  • a fibrous filler include carbon fiber, aromatic polyamide fiber, potassium titanate fiber, gypsum fiber, brass fiber, stainless steel fiber, steel fiber, ceramic fiber, boron whisker fiber, and asbestos fiber.
  • fillers other than fibrous fillers include, for example, pulverized, granular, or plate-like inorganic fillers such as talc, graphite, calcium carbonate, glass beads, glass microballoons, clay, wollastonite, titanium oxide, and molybdenum disulfide. Can be mentioned. Two or more of these may be contained.
  • liquid crystalline polyester resin composition includes an antioxidant and a heat stabilizer (for example, hindered phenol, hydroquinone, phosphites and substituted products thereof), an ultraviolet absorber (for example, resorcinol).
  • a heat stabilizer for example, hindered phenol, hydroquinone, phosphites and substituted products thereof
  • an ultraviolet absorber for example, resorcinol
  • lubricants and mold release agents eg, montanic acid and its salts, its esters, its half esters, stearyl alcohol, stearamide and polyethylene waxes
  • dyes eg, nitrocin
  • pigments It contains ordinary additives such as colorants, plasticizers, antistatic agents, and other thermoplastic resins (for example, cadmium sulfide, phthalocyanine, carbon black, etc.) in a range that does not impair the purpose of the present invention. Can give predetermined characteristics .
  • the liquid crystalline polyester resin composition of the embodiment of the present invention can be obtained, for example, by melt-kneading the above liquid crystalline polyester resin, glass fiber, and other components as required.
  • the melt kneading method include a melt kneading method at a temperature of 200 to 350 ° C. using a Banbury mixer, a rubber roll machine, a kneader, a single screw or twin screw extruder, and the like.
  • an extruder more preferably a twin screw extruder, and more preferably a twin screw extruder having an intermediate supply port.
  • Examples of a method for bringing the weight average fiber length (Mw) of glass fibers contained in the liquid crystalline polyester resin composition and the content of glass fibers having a fiber length of 1500 ⁇ m or more into the desired range described above include, for example, The method can be adopted. This means that glass fibers of different lengths are blended in advance and supplied to the extruder, or one glass fiber is supplied together with the liquid crystalline polyester resin from the supply port on the extruder drive side, and the other is an intermediate supply port. The method of supplying from can be adopted.
  • a combination of milled fibers and glass fibers can be considered. Specifically, milled fibers having a weight average fiber length (Mw) of 30 to 80 ⁇ m and chopped fibers having an average cut length of 3 to 4 mm. Examples include a combination of strands.
  • a method of blending the pellets of the liquid crystalline polyester resin composition containing milled fibers and the pellets of the liquid crystalline polyester resin composition filled with chopped strand glass fibers in advance and supplying them to the extruder A method of supplying the pellets together with the liquid crystalline polyester resin from the supply port on the extruder driving side and supplying the other pellets from the intermediate supply port can also be adopted.
  • a method of adjusting the degree of breakage of the glass fiber by screw arrangement, or a method of adjusting the degree of breakage of the glass fiber by adjusting the shearing force applied to the glass fiber can be adopted.
  • a means for adjusting the shearing force for example, a method of adjusting the melt viscosity of the molten resin by controlling the screw rotation speed and the cylinder temperature can be adopted.
  • the shear rate in the extruder is usually about 1000 to 10,000 s ⁇ 1 .
  • the zone with the intermediate supply port is opened at the connecting portion between the extruder and the feeder, so the shear rate is estimated to be about 100 s ⁇ 1 .
  • the melt viscosity of the liquid crystalline polyester resin at a shear rate of 100 s ⁇ 1 is important.
  • a liquid crystalline polyester resin and glass fiber composed of the structural units (I), (II), (III), (IV) and (V) are extruded having a plurality of supply ports. It is preferable to melt and knead with a machine. In the melt kneading, it is preferable to supply the liquid crystalline polyester resin from the first supply port on the extruder driving side and supply the glass fiber from the second supply port on the downstream side of the first supply port.
  • the melt viscosity of the liquid crystalline polyester resin in the glass fiber supply section at a shear rate of 100 s ⁇ 1 is preferably 100 to 5000 Pa ⁇ s.
  • the glass fiber is appropriately broken to improve the fluidity, and the surface appearance of the resulting molded product is obtained. Can be improved.
  • the weight average fiber length (Mw) of the glass fiber in the obtained liquid crystalline polyester resin composition can be easily adjusted to 500 ⁇ m or less, and the glass fiber content of the fiber length of 1500 ⁇ m or more to 5.0% by weight or less. it can.
  • the melt viscosity at a shear rate of 100 s ⁇ 1 of the liquid crystalline polyester resin in the glass fiber supply section is more preferably 200 Pa ⁇ s or more, and more preferably 300 Pa ⁇ s or more.
  • glass fiber breakage can be moderately suppressed by setting the melt viscosity at a shear rate of 100 s ⁇ 1 of the liquid crystalline polyester resin in the glass fiber supply section to 5000 Pa ⁇ s or less.
  • the weight average fiber length (Mw) of the glass fiber in the obtained liquid crystalline polyester resin composition is easily adjusted to 200 ⁇ m or more, and the glass fiber content of the fiber length of 1500 ⁇ m or more to 0.1% by weight or more. Can do.
  • the melt viscosity at a shear rate of 100 s ⁇ 1 of the liquid crystalline polyester resin in the glass fiber supply section is preferably 4000 Pa ⁇ s or less, and more preferably 3000 Pa ⁇ s or less.
  • Examples of a method for adjusting the melt viscosity of the liquid crystalline polyester resin in the glass fiber supply section at a shear rate of 100 s ⁇ 1 include a method for increasing or decreasing the molecular weight of the liquid crystalline polyester resin used, a method for increasing or decreasing the temperature of the glass fiber supply section, and the like. Is mentioned. From the viewpoint of easily adjusting the fiber length of the glass fiber to the above-mentioned desired range, the temperature of the glass fiber supply part is preferably the melting point of the liquid crystalline polyester resin ⁇ 40 ° C. to the melting point ⁇ 10 ° C., more preferably The melting point is -35 ° C to the melting point -15 ° C.
  • a glass fiber having a weight average fiber length (Mw) of 300 to 3500 ⁇ m is preferable.
  • Mw weight average fiber length
  • the weight average fiber length (Mw) is more preferably 400 ⁇ m or more, and more preferably 500 ⁇ m or more.
  • the glass fiber content having a fiber length of 1500 ⁇ m or more in the liquid crystalline polyester resin composition is easily adjusted to 5.0% by weight or less. can do.
  • the snap fit property, self-tapping property, and weld strength of the molded product can be further improved.
  • the contents of glass fiber and other additives in the liquid crystalline polyester resin composition obtained by the above method generally coincide with the charged amount at the time of manufacturing the liquid crystalline polyester resin composition.
  • the liquid crystalline polyester resin composition of the embodiment of the present invention can be molded into various molded products by a known molding method.
  • the liquid crystalline polyester resin composition of the embodiment of the present invention is preferably injection-molded taking advantage of its excellent thin-wall fluidity.
  • the molded product thus obtained is excellent in snap fit and improved in tapping strength and weld strength, and can be suitably used for a composite molded body with metal.
  • Specific examples of composite moldings with metal include various gears, various cases, sensors, LED components, liquid crystal backlight bobbins, connectors, sockets, resistors, relay cases, relay spools and bases, switches, coil bobbins, capacitors , Variable capacitor case, optical pickup, oscillator, various terminal boards, transformer, plug, printed wiring board, tuner, speaker, microphone, headphones, small motor, magnetic head base, power module, housing, semiconductor, liquid crystal display component, FDD Carriage, FDD chassis, HDD parts, motor brush holder, parabolic antenna, electric / electronic parts represented by computer-related parts; VTR parts, TV parts (plasma, organic EL, liquid crystal), iron, hair Ears, rice cooker parts, microwave oven parts, acoustic parts, audio equipment parts such as audio / laser discs / compact discs, lighting parts, refrigerator parts, air
  • film applications include magnetic recording medium films
  • sheet applications include door trims, bumper and side frame cushioning materials, seat materials, and pillars.
  • slidable parts such as camera module parts, optical pickup lens holders, and autofocus camera lens modules.
  • this molded product is used for connectors, sockets, relay cases, variable capacitor cases, optical pickups, motor brush holders, radiator brush holders, cases and starters, especially for applications that require snap fit and self-tapping.
  • the molded product is not limited to a composite molded body with the above metal, but is used for films such as photographic film, capacitor film, electrical insulating film, packaging film, drafting film, ribbon film, automobile interior ceiling, etc. It is useful for sheet applications such as pad materials for instrument panels and sound absorbing pads such as the back of bonnets.
  • composition analysis and characteristic evaluation of the liquid crystalline polyester were performed by the following methods.
  • composition analysis liquid crystalline polyester resin of the liquid crystalline polyester resin was carried out by 1 H- nuclear magnetic resonance spectrum (1 H-NMR) measurement.
  • the composition of the liquid crystalline polyester resin was analyzed from the peak area ratio derived from each structural unit observed in the vicinity of 7 to 9.5 ppm.
  • Tm Melting Point
  • Tm2 The endothermic peak temperature observed during the temperature increase of 20 ° C./min was defined as the melting point (Tm).
  • liquid crystalline polyester resin and glass fiber used in each example and comparative example are shown below.
  • the polymerization temperature is maintained at 320 ° C.
  • the pressure is reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction is continued for another 90 minutes, and the polycondensation is completed when the torque required for stirring reaches 15 kg ⁇ cm. It was.
  • the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a base having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter. As a result, a liquid crystalline polyester resin (A-1) was obtained.
  • This liquid crystalline polyester resin (A-1) comprises p-oxybenzoate units (structural units (I)), 4,4′-dioxybiphenyl units (structural units (II)), 1,4-dioxybenzene units. (Structural unit (III)), terephthalate unit (structural unit (IV)) and isophthalate unit (structural unit (V)).
  • This liquid crystalline polyester resin (A-1) comprises a p-oxybenzoate unit (structural unit (I)), a p-oxybenzoate unit (structural unit (I)), and a 4,4′-dioxybiphenyl unit (structure). Unit (II)) and 1,4-dioxybenzene unit (structural unit (III)).
  • This liquid crystalline polyester resin (A-1) comprises 4,4′-dioxybiphenyl units (structural unit (II)), 4,4′-dioxybiphenyl units (structural unit (II)) and 1,4 -It had 70 mol% with respect to the sum total of the dioxybenzene unit (structural unit (III)).
  • This liquid crystalline polyester resin (A-1) has a terephthalate unit (structural unit (IV)) in an amount of 65 mol with respect to the total of terephthalate unit (structural unit (IV)) and isophthalate unit (structural unit (V)). %.
  • the melting point (Tm) of the liquid crystalline polyester resin (A-1) was 314 ° C.
  • the melt viscosity measured using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm) at a temperature of 324 ° C. and a shear rate of 1,000 / s was 20 Pa ⁇ s.
  • the polymerization temperature is maintained at 360 ° C.
  • the pressure is reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction is continued for another 90 minutes, and the polycondensation is completed when the torque required for stirring reaches 10 kg ⁇ cm. It was.
  • the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a base having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter. As a result, a liquid crystalline polyester resin (A-2) was obtained.
  • This liquid crystalline polyester resin (A-2) comprises p-oxybenzoate units (structural units (I)), 4,4′-dioxybiphenyl units (structural units (II)), and 1,4-dioxybenzene units. (Structural unit (III)), terephthalate unit (structural unit (IV)) and isophthalate unit (structural unit (V)).
  • This liquid crystalline polyester resin (A-2) comprises a p-oxybenzoate unit (structural unit (I)), a p-oxybenzoate unit (structural unit (I)), and a 4,4′-dioxybiphenyl unit (structure).
  • This liquid crystalline polyester resin (A-2) comprises 4,4′-dioxybiphenyl units (structural unit (II)), 4,4′-dioxybiphenyl units (structural unit (II)) and 1,4 -It had 80 mol% with respect to the sum total of the dioxybenzene unit (structural unit (III)).
  • terephthalate units (structural units (IV)) are 45 mol% based on the total of terephthalate units (structural units (IV)) and isophthalate units (structural units (V)). I had it.
  • the melting point (Tm) of the liquid crystalline polyester resin (A-2) was 340 ° C.
  • the melt viscosity measured using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm) at a temperature of 350 ° C. and a shear rate of 1,000 / s was 32 Pa ⁇ s.
  • This liquid crystalline polyester resin is composed of 66.7 mol% of p-oxybenzoate unit (structural unit (I)), 6.3 mol% of 4,4′-dioxybiphenyl unit (structural unit (II)), ethylene dioxy
  • the unit had 10.4 mol%, terephthalate unit (structural unit (IV)) 16.6 mol%, and the melting point (Tm) was 314 ° C.
  • Tm melting point
  • B Glass fiber (B-1) “Chopped strand ECS03 T-747H” manufactured by Nippon Electric Glass Co., Ltd. (number average fiber length 3.0 mm, number average fiber diameter 10.5 ⁇ m) (B-2) “Chopped Strand CS 3DE-256S” manufactured by Nittobo Co., Ltd. (Number average fiber length 3.0 mm, number average fiber diameter 6.5 ⁇ m) (B-3) “Milled fiber EPG40M-10A” (number average fiber length 40 ⁇ m, number average fiber diameter 9 ⁇ m) manufactured by Nippon Electric Glass Co., Ltd.
  • the glass fiber content (% by weight) of the fiber length of 1500 ⁇ m or more is represented by ( ⁇ na ⁇ La) / ( ⁇ ni ⁇ Li) ⁇ 100.
  • La is the range (section) of the fiber length of the glass fiber included in the range of 1500 ⁇ m or more.
  • na is calculated by (the number of glass fibers whose fiber length is included in La) / (total number of measured glass fibers). Further, the ratio (D90 / D10) was calculated from the cumulative 90% fiber length (D90) and the cumulative 10% fiber length (D10) in the weight cumulative particle size distribution curve of the glass fiber.
  • the mode value (S) can be read from the fiber length frequency distribution.
  • the ratio (S / Mw) was calculated from the mode value (S) and the weight average fiber length (Mw).
  • the liquid crystalline polyester resin composition obtained in each example and comparative example was molded using FANUC ROBOSHOT ⁇ -30C (manufactured by FANUC CORPORATION). At that time, a mold capable of simultaneously molding a molded product having a width of 12.7 mm ⁇ a length of 100 mm ⁇ 0.3 mm and a molded product having a width of 12.7 mm ⁇ length of 100 mm ⁇ 0.5 mm was used.
  • the cylinder temperature was set to the melting point Tm + 10 ° C. of the liquid crystalline polyester resin composition, and the mold temperature was set to 90 ° C.
  • the flow length in a cavity having a width of 12.7 mm ⁇ 0.3 mm was measured under molding conditions under which a molded product having a width of 12.7 mm ⁇ 0.5 mm was formed with a length of 100 mm. Molding was performed for 20 shots, and the difference between the maximum flow length and the minimum flow length during 20 shots was measured. The smaller the difference between the maximum flow length and the minimum flow length, the smaller the flow variation.
  • An intermediate supply port is installed in C3 part of cylinders C1 (original feeder side heater) to C6 (die side heater) in TEM35B type twin screw extruder (meshing type, same direction) manufactured by Toshiba Machine. A vacuum vent was installed.
  • (A) liquid crystalline polyester resin (A-1) shown in Table 1 is added from the original storage part (supply port 1), and (B) glass The fiber was introduced from the intermediate supply port (supply port 2).
  • the temperature of the zone to which the glass fiber is supplied is set to 284 ° C.
  • the other zones are set to 324 ° C.
  • the screw rotation speed is 250 r. p.
  • pellets were obtained with a strand cutter.
  • the liquid crystalline polyester resin (A-1) was retained at a temperature of 334 ° C. for 3 minutes using a Koka type flow tester (orifice 0.5 ⁇ ⁇ 10 mm), then cooled to a temperature of 284 ° C., and then shear rate
  • the melt viscosity measured at 100 s ⁇ 1 was 1187 Pa ⁇ s. From this, the melt viscosity at a shear rate of 100 s ⁇ 1 of the liquid crystalline polyester resin in the zone to which the glass fiber was supplied at this time was estimated to be 1187 Pa ⁇ s.
  • the obtained pellets were dried with hot air, and snap fit, self-tapping, weld strength, and flow variation were evaluated by the above methods. Table 1 shows the results.
  • Example 5 The liquid crystalline polyester resin is changed to the liquid crystalline polyester resin (A-2), the temperature of the zone where the glass fiber is supplied is set to 310 ° C., the other zones are set to 350 ° C., and the screw rotation speed is 250 r. p. Pellets were obtained in the same manner as in Example 1 except that melt kneading was performed under the conditions of m. And snap fit property, self-tapping property, weld strength, and flow variation were evaluated. The liquid crystalline polyester resin (A-2) was retained at a temperature of 360 ° C.
  • the melt viscosity was measured at 1 .
  • the melt viscosity was 683 Pa ⁇ s.
  • Example 6 and 9 The temperature of the zone to which the glass fiber is supplied is set to 304 ° C., the other zones are set to 324 ° C., and the screw rotation speed is 250 r. p. Pellets were obtained in the same manner as in Example 1 or 2 except that melt kneading was performed under the conditions of m. And snap fit property, self-tapping property, weld strength, and flow variation were evaluated. The liquid crystalline polyester resin (A-1) was retained at a temperature of 334 ° C.
  • melt viscosity was measured at 1 . Since the melt viscosity was 286 Pa ⁇ s, the melt viscosity at a shear rate of 100 s ⁇ 1 of the liquid crystalline polyester resin in the zone to which the glass fiber was supplied at this time was estimated to be 286 Pa ⁇ s.
  • Example 7 The temperature of the zone to which the glass fiber is supplied is set to 274 ° C., the other zones are set to 324 ° C., and the screw rotation speed is 250 r. p. Pellets were obtained in the same manner as in Example 1 except that melt kneading was performed under the conditions of m. And snap fit property, self-tapping property, weld strength, and flow variation were evaluated. The liquid crystalline polyester resin (A-1) was retained at a temperature of 334 ° C.
  • melt viscosity was measured at 1 . Since the melt viscosity was 2022 Pa ⁇ s, the melt viscosity at a shear rate of 100 s ⁇ 1 of the liquid crystalline polyester resin in the zone to which the glass fiber was supplied at this time was estimated to be 2022 Pa ⁇ s.
  • the melt viscosity was measured at 1 .
  • the melt viscosity was 2080 Pa ⁇ s.
  • the melt viscosity was measured at 1 .
  • the melt viscosity was 702 Pa ⁇ s.
  • Example 7 The temperature of the zone to which the glass fiber is supplied is set to 334 ° C., the other zones are set to 324 ° C., and the screw rotation speed is 250 r. p. Pellets were obtained in the same manner as in Example 1 except that melt kneading was performed under the conditions of m. And snap fit property, self-tapping property, weld strength, and flow variation were evaluated.
  • the liquid crystalline polyester resin (A-1) was retained at a temperature of 334 ° C. for 3 minutes using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm), and the melt viscosity was measured at a shear rate of 100 s ⁇ 1 . The melt viscosity was 48 Pa ⁇ s.
  • Example 8 The temperature of the zone to which the glass fiber is supplied is set to 274 ° C., the other zones are set to 324 ° C., and the screw rotation speed is 250 r. p. Pellets were obtained in the same manner as in Example 1 except that melt kneading was performed under the conditions of m. And snap fit property, self-tapping property, weld strength, and flow variation were evaluated. The liquid crystalline polyester resin (A-1) was retained at a temperature of 334 ° C.
  • the melt viscosity was measured at 1 .
  • the melt viscosity was 4093 Pa ⁇ s.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Reinforced Plastic Materials (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

下記構造単位(I)、(II)、(III)、(IV)および(V)から構成される液晶性ポリエステル樹脂100重量部およびガラス繊維10~100重量部を少なくとも含有する液晶性樹脂組成物であって、前記ガラス繊維の重量平均繊維長(Mw)が200~500μmであり、繊維長1500μm以上のガラス繊維を全ガラス繊維中0.1~5.0重量%含有することを特徴とする液晶性ポリエステル樹脂組成物。

Description

液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品
 本発明は、液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品に関する。
 近年、プラスチックの高性能化に対する要求がますます高まり、種々の新規性能を有するポリマーが数多く開発され、市場に供されている。中でも分子鎖の平行な配列を特徴とする光学異方性を示す液晶性ポリエステルなどの液晶性樹脂は、優れた成形性と機械的性質を有する点で注目されており、機械部品、電気・電子部品などに用途が拡大されつつある。液晶性樹脂は、特に、良流動性を必要とするコネクターなどの電気・電子部品に好適に用いられている。
 これら、機械部品、電機・電子部品は小型化・精密化が進んでおり、成形品の肉厚も非常に薄肉になっている。このため、製品強度の向上、異方性の低減を目的として、繊維状無機充填材を充填した液晶性ポリエステル樹脂組成物が使用されている。
 例えば、ウェルド強度と成形品表面の平滑性を改善することを目的として、以下のような液晶性樹脂組成物が提案されている(例えば、特許文献1参照)。この液晶性樹脂組成物は、液晶性樹脂100重量部に対して、最大繊維長が1000μm以下で、かつ重量平均繊維長が200μm以上450μm以下である繊維状充填剤を、20~80重量部配合してなる液晶性樹脂組成物である。
 また、ブリスターの抑制、ゲート部および流動末端部のガラス繊維の突出しを抑制することを目的として、以下のような液晶性樹脂組成物が提案されている(例えば、特許文献2参照)。この液晶性樹脂組成物は、(i)数平均繊維長が50~120μm、かつ繊維長20~150μmの含有率が80%以上であるガラス繊維5~50重量%と、(ii)液晶性ポリマー95~5重量%と、を含有する液晶性樹脂組成物である。
 また、非対称電子部品向けに機械的性質が良好で、そり変形を少なくすることを目的として、以下のような液晶性ポリマー組成物が開示されている(例えば、特許文献3参照)。この液晶性ポリマー組成物は、(i)平均繊維径が5~30μm、繊維長10μm以下のものを除外した重量平均繊維長が250~350μmであり、かつ繊維長700μm以上のものの割合が5重量%以内である繊維状充填材と、(ii)平均粒子径が0.5~200μmである板状充填材と、を配合してなる液晶性ポリマー組成物である。
特開2009-215530(特許請求の範囲、実施例) 特開2009-191088(特許請求の範囲、実施例) WO2008-023839(特許請求の範囲、実施例)
 機械部品、電機・電子部品の中には、スナップフィット部やネジ構造を有するものが多数あり、近年の部品の小型化・精密化に伴い、材料に求められるスナップフィット性、セルフタッピング性が高くなっている。前記特許文献1~2に開示される樹脂組成物は、長繊維長のガラス繊維含有量が少なく、ウェルド強度が低く、靭性に劣り、嵌合部を有する部品などに求められるスナップフィット性が不十分であった。また、特許文献3に開示される樹脂組成物は、ガラス繊維の折損が大きくなることから、ネジ構造を持つ成形品などに求められるセルフタッピング性、ウェルド強度、スナップフィット性に課題があった。
 本発明は、上述の課題の少なくとも一部を解決し、流動バラツキが少なく、スナップフィット性やセルフタッピング性、ウェルド強度の高い成形品を得ることができる液晶性ポリエステル樹脂組成物を提供することを課題とする。
 本発明の実施形態は、上記課題の少なくとも一部を解決するため、以下に挙げる構成の少なくとも一部を有する。
(1)下記構造単位(I)、(II)、(III)、(IV)および(V)から構成される液晶性ポリエステル樹脂100重量部およびガラス繊維10~100重量部を少なくとも含有する液晶性ポリエステル樹脂組成物である。この液晶性樹脂組成物においては、前記ガラス繊維の重量平均繊維長(Mw)が200~500μmである。この液晶性樹脂組成物は、繊維長1500μm以上のガラス繊維を全ガラス繊維中0.1~5.0重量%含有する。
Figure JPOXMLDOC01-appb-C000001
(2)上記(1)記載の液晶性ポリエステル樹脂組成物である。この液晶性ポリエステル樹脂組成物は、前記ガラス繊維の重量累積粒度分布曲線における累積度90%繊維長(D90)と累積度10%繊維長(D10)の比(D90/D10)が5.0以下である。
 ただし、上記(1)記載の液晶性ポリエステル樹脂組成物において、比(D90/D10)は、5.0より大きくてもよい。
(3)上記(1)もしくは(2)に記載の液晶性ポリエステル樹脂組成物である。この液晶性ポリエステル樹脂組成物中のガラス繊維の繊維長度数分布における最頻値の繊維長が重量平均繊維長の0.25倍以上0.90倍未満である。
 ただし、上記(1)もしくは(2)に記載の液晶性ポリエステル樹脂組成物において、ガラス繊維の繊維長度数分布における最頻値の繊維長は、重量平均繊維長の0.25倍未満であってもよく、重量平均繊維長の0.90倍以上であってもよい。
(4)上記(1)~(3)のいずれか記載の液晶性ポリエステル樹脂組成物である。この液晶性ポリエステル樹脂組成物においては、構造単位(I)が構造単位(I)、(II)および(III)の合計に対して65~80モル%である。構造単位(II)が構造単位(II)および(III)の合計に対して55~85モル%である。構造単位(IV)が構造単位(IV)および(V)の合計に対して50~95モル%である。
 ただし、上記(1)~(3)のいずれか記載の液晶性ポリエステル樹脂組成物においては、構造単位(I)が構造単位(I)、(II)および(III)の合計に対して65モル%未満であってもよく、80モル%を超えることとしてもよい。そして、構造単位(II)が構造単位(II)および(III)の合計に対して55モル%未満であってもよく、85モル%を超えることとしてもよい。構造単位(IV)が構造単位(IV)および(V)の合計に対して50モル%未満であってもよく、95モル%を超えることとしてもよい。
(5)上記(1)~(4)のいずれか記載の液晶性ポリエステル樹脂組成物の製造方法である。この製造方法においては、少なくとも下記構造単位(I)、(II)、(III)、(IV)および(V)から構成される液晶性ポリエステル樹脂およびガラス繊維を、複数の供給口を有する押出機により溶融混練する。押出機駆動側の第1供給口から液晶性ポリエステル樹脂を供給する。第1供給口よりも下流側にある第2供給口からガラス繊維を供給する。ガラス繊維供給部における液晶性ポリエステル樹脂の剪断速度100s-1における溶融粘度を100~5000Pa・sとする。
Figure JPOXMLDOC01-appb-C000002
 ただし、上記(1)~(4)のいずれか記載の液晶性ポリエステル樹脂組成物の製造方法においては、ガラス繊維供給部における液晶性ポリエステル樹脂の剪断速度100s-1における溶融粘度は、100Pa・s未満であってもよく、5000Pa・sを超えることとしてもよい。
(6)上記(1)~(4)のいずれか記載の液晶性ポリエステル樹脂組成物を射出成形してなる成形品。
 ただし、上記(1)~(4)のいずれか記載の液晶性ポリエステル樹脂組成物は、他の方法で成形されてもよい。
(7)成形品がコネクターであることを特徴とする上記(6)記載の成形品。
 ただし、上記(6)記載の成形品は、コネクター以外の部材として用いられるものとすることもできる。
 本発明の実施形態の液晶性ポリエステル樹脂組成物は、流動バラツキが少ない。本発明の実施形態の液晶性ポリエステル樹脂組成物によれば、スナップフィット性やセルフタッピング性、ウェルド強度に優れた成形品を得ることができる。本発明の実施形態の液晶性ポリエステル樹脂組成物は、形状が複雑で薄肉の電気・電子部品や機械部品に好適に用いられ、嵌合部品やネジ構造を持つ成形品に特に有用である。
実施例においてスナップフィット性の評価に用いたスナップフィット部を有する成形品を示す概略図である。 図1におけるスナップフィット部の拡大図(正面)である。 図1におけるスナップフィット部の拡大図(側面)である。 実施例においてスナップフィット性の評価に用いたスナップフィット部を有する成形品と基板の取り付けを示す概略図である。
 本発明の実施形態の液晶性ポリエステル樹脂組成物は、下記構造単位(I)、(II)、(III)、(IV)および(V)から構成される液晶性ポリエステル樹脂100重量部に対して、特定の繊維長をもつガラス繊維を10~100重量部含有する。
 液晶性ポリエステル樹脂は、例えば芳香族オキシカルボニル単位、芳香族および/または脂肪族ジオキシ単位、芳香族および/または脂肪族ジカルボニル単位などから選ばれた構造単位からなる。液晶性ポリエステル樹脂は、異方性溶融相を形成する。
 本発明の実施形態において、液晶性ポリエステル樹脂は、下記構造単位(I)、(II)、(III)、(IV)および(V)から構成される。かかる液晶性ポリエステル樹脂は、固化速度が低く樹脂同士の密着性が向上することから、ウェルド強度を向上させることができる。
Figure JPOXMLDOC01-appb-C000003
 上記構造単位(I)はp-ヒドロキシ安息香酸から生成した構造単位を示す。構造単位(II)は4,4’-ジヒドロキシビフェニルから生成した構造単位を示す。構造単位(III)はハイドロキノンから生成した構造単位を示す。構造単位(IV)はテレフタル酸から生成した構造単位を示す。構造単位(V)はイソフタル酸から生成した構造単位を示す。構造単位(I)はスナップフィット性の向上に寄与する。構造単位(II)~構造単位(V)はウェルド強度の向上に寄与する。
 構造単位(I)は、構造単位(I)、(II)および(III)の合計に対して65~80モル%が好ましい。特にガラス繊維との濡れ性が向上することから、より好ましくは、構造単位(I)は、構造単位(I)、(II)および(III)の合計に対して68~78モル%である。
 また、構造単位(II)は、構造単位(II)および(III)の合計に対して55~85モル%が好ましい。結晶性を低減して靭性が向上し、セルフタッピング性がより向上することから、より好ましくは、構造単位(II)は、構造単位(II)および(III)の合計に対して55~78モル%であり、最も好ましくは58~73モル%である。
 また、構造単位(IV)は、構造単位(IV)および(V)の合計に対して50~95モル%が好ましい。結晶性を低減して靭性が向上し、セルフタッピング性がより向上することから、より好ましくは、構造単位(IV)は、構造単位(IV)および(V)の合計に対して55~90モル%であり、最も好ましくは60~85モル%である。
 構造単位(II)および(III)の合計と(IV)および(V)の合計は等モルであることが好ましい。ここで、「実質的に等モル」とは、末端を除くポリマー主鎖を構成する構造単位が等モルであることを示す。このため、末端を構成する構造単位まで含めた場合には必ずしも等モルとはならない態様も、「実質的に等モル」の要件を満たしうる。ポリマーの末端基を調節するために、ジカルボン酸成分またはジヒドロキシ成分を過剰に加えてもよい。
 本発明の実施形態において使用する上記液晶性ポリエステル樹脂は、公知のポリエステルの重縮合法に準じて製造できる。例えば、次の製造方法が好ましく挙げられる。
(1)p-アセトキシ安息香酸および4,4’-ジアセトキシビフェニル、ジアセトキシベンゼンとテレフタル酸、イソフタル酸から脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法。
(2)p-ヒドロキシ安息香酸および4,4’-ジヒドロキシビフェニル、ハイドロキノンとテレフタル酸、イソフタル酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法。
(3)p-ヒドロキシ安息香酸のフェニルエステルおよび4,4’-ジヒドロキシビフェニル、ハイドロキノンとテレフタル酸、イソフタル酸のジフェニルエステルから脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。
(4)p-ヒドロキシ安息香酸およびテレフタル酸、イソフタル酸などの芳香族ジカルボン酸に所定量のジフェニルカーボネートを反応させて、それぞれジフェニルエステルとした後、4,4’-ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物を加え、脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。
 なかでも、p-ヒドロキシ安息香酸および4,4’-ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸、イソフタル酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法が好ましい。さらに、4,4’-ジヒドロキシビフェニルおよびハイドロキノンの合計使用量とテレフタル酸およびイソフタル酸の合計使用量は、等モルであることが好ましい。
 無水酢酸の使用量は、p-ヒドロキシ安息香酸、4,4’-ジヒドロキシビフェニルおよびハイドロキノンのフェノール性水酸基の合計の1.15当量以下であることが好ましく、1.10当量以下であることがより好ましい。なお、下限については1.0当量以上であることが好ましい。
 本発明の実施形態において、液晶性ポリエステル樹脂を脱酢酸重縮合反応により製造する際には、液晶性ポリエステル樹脂が溶融する温度で、減圧下で反応させ、重縮合反応を完了させる、溶融重合法を用いることが好ましい。例えば、以下のような方法が挙げられる。すなわち、所定量のp-ヒドロキシ安息香酸および4,4’-ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸、イソフタル酸、無水酢酸を、撹拌翼、留出管を備え、下部に吐出口を備えた反応容器中に仕込む。そして、それらを窒素ガス雰囲気下で撹拌しながら加熱して水酸基をアセチル化させた後、液晶性ポリエステル樹脂の溶融温度まで昇温し、減圧により重縮合して反応を完了させる。
 得られたポリマーが溶融する温度下で、反応容器内を、例えば、およそ1.0kg/cm2(0.1MPa)に加圧することができる。そして、反応容器下部に設けられた吐出口より、得られたポリマーをストランド状に吐出させることができる。溶融重合法は、均一なポリマーを製造するために有利な方法であり、ガス発生量がより少ない優れたポリマーを得ることができる点で、好ましい。
 液晶性ポリエステル樹脂の重縮合反応は無触媒でも進行するが、酢酸第一錫、テトラブチルチタネート、酢酸カリウムおよび酢酸ナトリウム、三酸化アンチモン、金属マグネシウムなどの金属化合物を使用することもできる。
 本発明の実施形態において、液晶性ポリエステル樹脂における各構造単位の含有量は、以下の処理によって算出することができる。すなわち、液晶性ポリエステル樹脂をNMR(核磁気共鳴)試験管に量りとり、液晶性ポリエステル樹脂が可溶な溶媒(例えば、ペンタフルオロフェノール/重テトラクロロエタン-d2混合溶媒)に溶解して、1H-NMRスペクトル測定を行う。各構造単位の含有量は、各構造単位由来のピーク面積比から算出することができる。
 本発明の実施形態において、融点(Tm)は、示差走査熱量計を使用して以下のように測定することができる。液晶性ポリエステル樹脂を室温から40℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、Tm1+20℃の温度で5分間保持する。その後、20℃/分の降温条件で室温まで一旦冷却する。そして、再度20℃/分の昇温条件で昇温する。その昇温において観測される吸熱ピーク温度(Tm2)を融点(Tm)として算出する。
 また、本発明の実施形態における液晶性ポリエステル樹脂の溶融粘度は、1~200Pa・sが好ましく、10~200Pa・sがより好ましく、10~100Pa・sが特に好ましい。なお、溶融粘度は、液晶性ポリエステル樹脂の融点+10℃の条件で、ずり速度1,000/sの条件下で高化式フローテスターによって測定した値である。
 本発明の実施形態の液晶性ポリエステル樹脂組成物は、液晶性ポリエステル樹脂100重量部に対して、ガラス繊維を10~100重量部含有する。ガラス繊維含有量が10重量部未満であると、ガラス繊維による補強効果が低下するためスナップフィット性、ウェルド強度が低下する。また、ガラス繊維含有量が10重量部未満であると、寸法変化量が大きくなるためセルフタッピング性が著しく低下する。液晶性ポリエステル樹脂組成物に含有されるガラス繊維の量は、20重量部以上が好ましく、30重量部以上がより好ましい。一方、ガラス繊維含有量が100重量部を超えると、靭性が損なわれ、もろくなることから、スナップフィット性、セルフタッピング性が低下する。また、ガラス繊維含有量が100重量部を超えると、組成物中の樹脂量が相対的に少なくなるため、ウェルド強度が低下する。また、ガラス繊維含有量が100重量部を超えると、ガラス繊維による流動阻害により流動バラツキが大きくなる。液晶性ポリエステル樹脂組成物のガラス繊維含有量は、90重量部以下が好ましく、80重量部以下がより好ましい。
 また、本発明の実施形態の液晶性ポリエステル樹脂組成物においては、(i)ガラス繊維の重量平均繊維長(Mw)が200~500μmである。そして、(ii)1500μm以上の繊維長のガラス繊維を全ガラス繊維中0.1~5.0重量%含むことが重要である。ガラス繊維の重量平均繊維長(Mw)が200μm未満であると、セルフタッピング性が低下する。ガラス繊維の重量平均繊維長(Mw)は、250μm以上が好ましく、300μm以上がより好ましい。一方、ガラス繊維の重量平均繊維長(Mw)が500μmよりも大きいと、流動性の低下や表面外観不良が発生する。ガラス繊維の重量平均繊維長(Mw)は、450μm以下が好ましく、430μm以下がより好ましい。
 また、重量平均繊維長(Mw)が200~500μmの範囲内にあっても、繊維長が1500μm以上のガラス繊維が0.1重量%未満であると、スナップフィット性およびウェルド強度が低下する。繊維長が1500μm以上のガラス繊維の量は、0.3重量%以上が好ましく、0.5重量%以上がより好ましい。一方、繊維長が1500μm以上のガラス繊維が5.0重量%よりも多くなると、靭性が損なわれ、もろくなることから、スナップフィット性、セルフタッピング性、およびウェルド強度が低下する。また、流動性の低下や表面外観不良が発生する。繊維長が1500μm以上のガラス繊維の量は、3.0重量%以下が好ましく、2.0重量%以下がより好ましい。
 また、本発明の実施形態の液晶性ポリエステル樹脂組成物に含まれるガラス繊維の重量累積粒度分布曲線において、累積度90%繊維長(D90)と累積度10%繊維長(D10)の比(D90/D10)が5.0以下であることが好ましい。そのような態様とすることにより、成形品のセルフタッピング性、ウェルド強度をより改善することができる。さらに、スナップフィット性をより向上させる観点から、累積度90%繊維長(D90)と累積度10%繊維長(D10)の比(D90/D10)は、4.5以下であることがより好ましく、4.0以下であることが最も好ましい。
 また、本発明の実施形態の液晶性ポリエステル樹脂組成物に含まれるガラス繊維の繊維長度数分布において、最頻値(S)の繊維長が重量平均繊維長(Mw)の0.25倍以上0.90倍未満であることが好ましい。ウェルド強度を向上させる観点から、最頻値(S)の繊維長が重量平均繊維長(Mw)の0.35倍以上であることが好ましく、0.45倍以上であることがより好ましい。一方、流動バラツキを改善させる観点から、最頻値(S)の繊維長が重量平均繊維長(Mw)の0.80倍未満であることが好ましく、0.70未満であることがより好ましい。
 ここで、ガラス繊維の重量平均繊維長(Mw)および繊維長が1500μm以上のガラス繊維含有量は、以下の方法により測定することができる。液晶性ポリエステル樹脂およびガラス繊維を含有する組成物からなるペレット10gを、空気中において550℃で8時間加熱して樹脂を除去する。残存したガラス繊維を、光学式顕微鏡を用いて倍率120倍にて観察し、無作為に選択した1000個以上のガラス繊維の繊維長を測定する。重量平均繊維長(Mw)は(Σni・Li2)/(Σni・Li)で示される。ここで、Liは、ガラス繊維の繊維長の範囲(区分)である。niは、(繊維長がLiに含まれるガラス繊維の本数)/(測定したガラス繊維の全本数)で算出される。また、繊維長1500μm以上のガラス繊維含有量(重量%)は、(Σna・La)/(Σni・Li)×100で示される。ここで、Laは、1500μm以上の範囲に含まれるガラス繊維の繊維長の範囲(区分)である。naは、(繊維長がLaに含まれるガラス繊維の本数)/(測定したガラス繊維の全本数)で算出した。
 また、ガラス繊維の重量累積粒度分布曲線における累積度90%繊維長(D90)と、累積度10%繊維長(D10)と、から比(D90/D10)を算出した。
 また、繊維長度数分布から最頻値(S)を読み取ることができる。最頻値(S)と重量平均繊維長(Mw)から比(S/Mw)を算出した。
 また、本発明の実施形態の液晶性ポリエステル樹脂組成物は、本発明の目的を損なわない程度の範囲で、ガラス繊維以外の繊維状充填材や、繊維状充填材以外の充填材を含有してもよい。繊維状充填材としては、例えば、炭素繊維、芳香族ポリアミド繊維、チタン酸カリウム繊維、石膏繊維、黄銅繊維、ステンレス繊維、スチール繊維、セラミック繊維、ボロンウィスカー繊維、アスベスト繊維などを挙げることができる。繊維状充填材以外の充填材としては、例えば、タルク、グラファイト、炭酸カルシウム、ガラスビーズ、ガラスマイクロバルーン、クレー、ワラステナイト、酸化チタン、二硫化モリブデン等の粉状、粒状あるいは板状の無機フィラーを挙げることができる。これらを2種以上含有してもよい。
 また、本発明の実施形態の液晶性ポリエステル樹脂組成物は、酸化防止剤および熱安定剤(例えば、ヒンダードフェノール、ヒドロキノン、ホスファイト類およびこれらの置換体など)、紫外線吸収剤(例えば、レゾルシノール、サリシレート、ベンゾトリアゾール、ベンゾフェノンなど)、滑剤および離型剤(例えば、モンタン酸およびその塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなど)、染料(例えば、ニトロシンなど)および顔料(例えば、硫化カドミウム、フタロシアニン、カーボンブラックなど)を含む着色剤、可塑剤、帯電防止剤などの通常の添加剤や他の熱可塑性樹脂を本発明の目的を損なわない程度の範囲で含有して、所定の特性を付与することができる。
 本発明の実施形態の液晶性ポリエステル樹脂組成物は、例えば、上記液晶性ポリエステル樹脂、ガラス繊維および必要により他の成分を溶融混練することにより得ることができる。溶融混練する方法としては、例えば、バンバリーミキサー、ゴムロール機、ニーダー、単軸もしくは二軸押出機などを用いて、200~350℃の温度で溶融混練する方法を挙げることができる。ガラス繊維を均質に分散性良く混練するため、押出機を用いることが好ましく、二軸押出機を用いることがより好ましく、中間供給口を有する二軸押出機を用いることがより好ましい。
 液晶性ポリエステル樹脂組成物中に含まれるガラス繊維の重量平均繊維長(Mw)と、繊維長1500μm以上のガラス繊維の含有量とを、前述した所望の範囲にする方法としては、例えば、以下の方法を採用しうる。すなわち、長さの異なるガラス繊維をあらかじめブレンドして押出機に供給する方法や、一方のガラス繊維を押出機駆動側の供給口から液晶性ポリエステル樹脂と一緒に供給し、もう一方を中間供給口から供給する方法を採用しうる。長さの異なるガラス繊維としては、例えば、ミルドファイバーとガラス繊維の組み合わせが考えられ、具体的には重量平均繊維長(Mw)が30~80μmのミルドファイバーと平均カット長が3~4mmのチョップドストランドの組み合わせなどが挙げられる。
 また、ミルドファイバーを含有する液晶性ポリエステル樹脂組成物のペレットと、チョップドストランドのガラス繊維を充填した液晶性ポリエステル樹脂組成物のペレットとを、あらかじめブレンドして押出機に供給する方法や、一方のペレットを押出機駆動側の供給口から液晶性ポリエステル樹脂と一緒に供給し、もう一方のペレットを中間供給口から供給する方法も採用しうる。
 また、スクリューアレンジメントによってガラス繊維の折損程度を調整する方法や、ガラス繊維にかかるせん断力を調整することによってガラス繊維の折損程度を調整する方法も採用しうる。剪断力を調整する手段としては、例えば、スクリュー回転数やシリンダ温度を制御することにより、溶融樹脂の溶融粘度を調整する方法を採用しうる。
 押出機内のせん断速度は通常1000~10000s-1程度である。中間供給口を有する押出機の場合、中間供給口のあるゾーンは押出機とフィーダーの接続部で開放されるため、せん断速度は100s-1程度と見積もられる。このため、中間供給口からガラス繊維を供給する場合には、せん断速度100s-1における液晶性ポリエステル樹脂の溶融粘度が重要である。
 本発明の実施形態においては、前記構造単位(I)、(II)、(III)、(IV)および(V)から構成される液晶性ポリエステル樹脂およびガラス繊維を、複数の供給口を有する押出機により溶融混練することが好ましい。その溶融混練においては、押出機駆動側の第1供給口から液晶性ポリエステル樹脂を供給し、第1供給口よりも下流側にある第2供給口からガラス繊維を供給することが好ましい。そして、ガラス繊維供給部における液晶性ポリエステル樹脂の剪断速度100s-1における溶融粘度を、100~5000Pa・sとすることが好ましい。ガラス繊維供給部の液晶性ポリエステル樹脂のせん断速度100s-1における溶融粘度を100Pa・s以上とすることにより、ガラス繊維を適度に折損させて流動性をより向上させ、得られる成形品の表面外観を向上させることができる。また、得られる液晶性ポリエステル樹脂組成物におけるガラス繊維の重量平均繊維長(Mw)を500μm以下に、繊維長1500μm以上のガラス繊維含有量を5.0重量%以下に、容易に調整することができる。ガラス繊維供給部の液晶性ポリエステル樹脂のせん断速度100s-1における溶融粘度は、200Pa・s以上がより好ましく、300Pa・s以上がより好ましい。一方、ガラス繊維供給部の液晶性ポリエステル樹脂のせん断速度100s-1における溶融粘度を5000Pa・s以下とすることにより、ガラス繊維の折損を適度に抑えることができる。その結果、得られる液晶性ポリエステル樹脂組成物におけるガラス繊維の重量平均繊維長(Mw)を200μm以上に、繊維長1500μm以上のガラス繊維含有量を0.1重量%以上に、容易に調整することができる。その結果、得られる成形品のスナップフィット性やウェルド強度をより向上させることができる。ガラス繊維供給部の液晶性ポリエステル樹脂のせん断速度100s-1における溶融粘度をは、4000Pa・s以下が好ましく、3000Pa・s以下がより好ましい。
 ガラス繊維供給部の液晶性ポリエステル樹脂のせん断速度100s-1における溶融粘度を調整する方法としては、例えば、用いる液晶性ポリエステル樹脂の分子量を増減させる方法、ガラス繊維供給部の温度を上下させる方法などが挙げられる。ガラス繊維の繊維長を前述の所望の範囲に容易に調整する観点から、ガラス繊維供給部の温度は、液晶性ポリエステル樹脂の融点-40℃~融点-10℃であることが好ましく、より好ましくは融点-35℃~融点-15℃である。
 溶融混練に供する原料であるガラス繊維としては、重量平均繊維長(Mw)が300~3500μmのガラス繊維が好ましい。重量平均繊維長(Mw)が300μm以上のガラス繊維を溶融混練することにより、成形品への補強効果が高く、スナップフィット性、セルフタッピング性、およびウェルド強度をより向上することができる。重量平均繊維長(Mw)は、400μm以上がより好ましく、500μm以上がより好ましい。一方、重量平均繊維長(Mw)が3500μm以下のガラス繊維を溶融混練ることにより、液晶性ポリエステル樹脂組成物における繊維長が1500μm以上のガラス繊維含有量を5.0重量%以下に容易に調整することができる。その結果、成形品のスナップフィット性、セルフタッピング性、およびウェルド強度をより向上させることができる。
 以上の方法で得られた液晶性ポリエステル樹脂組成物中のガラス繊維およびその他添加剤の含有量は、一般的に液晶性ポリエステル樹脂組成物製造時の仕込み量と一致する。
 本発明の実施形態の液晶性ポリエステル樹脂組成物は、公知の成形法により各種成形品に成形され得る。ただし、本発明の実施形態の液晶性ポリエステル樹脂組成物は、その優れた薄肉流動性を活かして、射出成形することが好ましい。
 かくして得られる成形品は、スナップフィット性に優れタッピング強度、ウェルド強度が改善されていることから、金属との複合成形体に好適に用いることができる。金属との複合成形体の具体例としては、各種ギヤー、各種ケース、センサー、LED用部品、液晶バックライトボビン、コネクター、ソケット、抵抗器、リレーケース、リレー用スプールおよびベース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント配線板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、ハウジング、半導体、液晶ディスプレー部品、FDDキャリッジ、FDDシャーシ、HDD部品、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品などに代表される電気・電子部品;VTR部品、テレビ部品(プラズマ、有機EL、液晶)、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク・コンパクトディスクなどの音声機器部品、照明部品、冷蔵庫部品、エアコン部品などに代表される家庭、事務電気製品部品、オフィスコンピューター関連部品、電話機関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、オイルレス軸受、船尾軸受、水中軸受などの各種軸受、モーター部品、ライター、タイプライターなどに代表される機械関連部品、顕微鏡、双眼鏡、カメラ、時計などに代表される光学機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディマー用ポテンショメーターベース、排気ガスバルブなどの各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、燃料タンク、ブレーキホース、エアコン冷媒用チューブ、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキバット磨耗センサー、エアコン用サーモスタットベース、エアコン用モーターインシュレーター、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンべイン、ワイパーモーター関係部品、デュストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウオッシャーノズル、エアコンパネルスィッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、ECUコネクター、ホーンターミナル、電装部品絶縁板、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケースなどの自動車・車両関連部品などを挙げることができる。フィルムとして用途としては磁気記録媒体用フィルム、シート用途としてはドアトリム、バンパーやサイドフレームの緩衝材、座席用材、ピラーなどを挙げることができる。また、表面外観に優れることから、カメラモジュール部品、光ピックアップレンズホルダー、オートフォーカスカメラレンズモジュールなどの摺動性部品にも好適に用いることができる。
 この成形品は、これらの中でも、特にスナップフィット性、セルフタッピング性を必要とする用途として、コネクター、ソケット、リレーケース、バリコンケース、光ピックアップ、モーターブラッシュホルダー、ラジエーターモーター用ブラッシュホルダー、ケース、スターターリレー、ヒューズ用コネクター、ECUコネクター、ランプソケット、ランプリフレクター、光ピックアップレンズホルダーに有用である。
 この成形品は、そのほか、上記金属との複合成形体に限らず、写真用フィルム、コンデンサー用フィルム、電気絶縁用フィルム、包装用フィルム、製図用フィルム、リボン用フィルムなどのフィルム用途、自動車内部天井、インストロメントパネルのパッド材、ボンネット裏等の吸音パッドなどのシート用途に有用である。
 以下、実施例により本発明の効果をさらに詳細に説明する。
 液晶性ポリエステルの組成分析および特性評価は以下の方法により行った。
 (1)液晶性ポリエステル樹脂の組成分析
 液晶性ポリエステル樹脂の組成分析は、1H-核磁気共鳴スペクトル(1H-NMR)測定により実施した。液晶性ポリエステル樹脂をNMR試料管に50mg秤量し、溶媒(ペンタフルオロフェノール/1,1,2,2-テトラクロロエタン-d2=65/35(重量比)混合溶媒)800μLに溶解して、UNITY INOVA500型NMR装置(バリアン社製)を用いて観測周波数500MHz、温度80℃で1H-NMR測定を実施した。7~9.5ppm付近に観測される各構造単位由来のピーク面積比から液晶性ポリエステル樹脂の組成を分析した。
(2)液晶性ポリエステル樹脂および液晶性ポリエステル樹脂組成物の融点(Tm)の測定
 示差走査熱量計DSC-7(パーキンエルマー製)により、以下の方法で液晶性ポリエステル樹脂および液晶性ポリエステル樹脂組成物の融点(Tm)を測定した。液晶性ポリエステル樹脂または液晶性樹脂ポリエステル樹脂組成物を室温から40℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、Tm1+20℃の温度で5分間保持した。その後、20℃/分の降温条件で室温まで一旦冷却し、再度20℃/分の昇温条件で昇温させた。その20℃/分の昇温の際に観測される吸熱ピーク温度(Tm2)を融点(Tm)とした。
(3)液晶性ポリエステル樹脂の溶融粘度測定
 高化式フローテスターCFT-500D(オリフィス0.5φ×10mm)(島津製作所製)を用い、温度は液晶性ポリエステル樹脂の融点+10℃、剪断速度は1000/秒で測定した。
 各実施例および比較例に用いた液晶性ポリエステル樹脂とガラス繊維を以下に示す。
 (A)液晶性ポリエステル樹脂
 [参考例1] 液晶性ポリエステル樹脂(A-1)の合成
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸870g(6.30モル)、4,4’-ジヒドロキシビフェニル327g(1.89モル)、ハイドロキノン89g(0.81モル)、テレフタル酸292g(1.76モル)、イソフタル酸157g(0.95モル)および無水酢酸1367g(フェノール性水酸基合計の1.03当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で2時間反応させた後、320℃まで4時間で昇温した。その後、重合温度を320℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に90分間反応を続け、撹拌に要するトルクが15kg・cmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1個持つ口金を経由してポリマーをストランド状物に吐出させ、カッターによりペレタイズして、液晶性ポリエステル樹脂(A-1)を得た。
 この液晶性ポリエステル樹脂(A-1)は、p-オキシベンゾエート単位(構造単位(I))、4,4’-ジオキシビフェニル単位(構造単位(II))、1,4-ジオキシベンゼン単位(構造単位(III))、テレフタレート単位(構造単位(IV))およびイソフタレート単位(構造単位(V))からなるものであった。この液晶性ポリエステル樹脂(A-1)は、p-オキシベンゾエート単位(構造単位(I))を、p-オキシベンゾエート単位(構造単位(I))、4,4’-ジオキシビフェニル単位(構造単位(II))および1,4-ジオキシベンゼン単位(構造単位(III))の合計に対して70モル%有するものであった。この液晶性ポリエステル樹脂(A-1)は、4,4’-ジオキシビフェニル単位(構造単位(II))を、4,4’-ジオキシビフェニル単位(構造単位(II))および1,4-ジオキシベンゼン単位(構造単位(III))の合計に対して70モル%有するものであった。この液晶性ポリエステル樹脂(A-1)は、テレフタレート単位(構造単位(IV))を、テレフタレート単位(構造単位(IV))およびイソフタレート単位(構造単位(V))の合計に対して65モル%有するものであった。この液晶性ポリエステル樹脂(A-1)の融点(Tm)は314℃であった。高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度324℃、剪断速度1,000/sで測定した溶融粘度は、20Pa・sであった。
  [参考例2] 液晶性ポリエステル樹脂(A-2)の合成
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸1129g(8.18モル)、4,4’-ジヒドロキシビフェニル267g(1.54モル)、ハイドロキノン40g(0.36モル)、テレフタル酸134g(0.81モル)、イソフタル酸165g(1.00モル)および無水酢酸1310g(フェノール性水酸基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、360℃まで4時間で昇温した。その後、重合温度を360℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に90分間反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1個持つ口金を経由してポリマーをストランド状物に吐出させ、カッターによりペレタイズして、液晶性ポリエステル樹脂(A-2)を得た。
 この液晶性ポリエステル樹脂(A-2)は、p-オキシベンゾエート単位(構造単位(I))、4,4’-ジオキシビフェニル単位(構造単位(II))、1,4-ジオキシベンゼン単位(構造単位(III))、テレフタレート単位(構造単位(IV))およびイソフタレート単位(構造単位(V))からなるものであった。この液晶性ポリエステル樹脂(A-2)は、p-オキシベンゾエート単位(構造単位(I))を、p-オキシベンゾエート単位(構造単位(I))、4,4’-ジオキシビフェニル単位(構造単位(II))および1,4-ジオキシベンゼン単位(構造単位(III))の合計に対して82モル%有するものであった。この液晶性ポリエステル樹脂(A-2)は、4,4’-ジオキシビフェニル単位(構造単位(II))を、4,4’-ジオキシビフェニル単位(構造単位(II))および1,4-ジオキシベンゼン単位(構造単位(III))の合計に対して80モル%有するものであった。この液晶性ポリエステル樹脂(A-2)は、テレフタレート単位(構造単位(IV))をテレフタレート単位(構造単位(IV))およびイソフタレート単位(構造単位(V))の合計に対して45モル%有するものであった。液晶性ポリエステル樹脂(A-2)の融点(Tm)は340℃であった。高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度350℃、剪断速度1,000/sで測定した溶融粘度は32Pa・sであった。
 [参考例3] 液晶性ポリエステル樹脂(A-3)の合成
 p-ヒドロキシ安息香酸994g(7.20モル)、4,4’-ジヒドロキシビフェニル126g(0.68モル)、テレフタル酸112g(0.68モル)、固有粘度が約0.6dl/gのポリエチレンテレフタレート159g(1.13モル)および無水酢酸960g(フェノール性水酸基合計の1.10当量)を重合容器に仕込み、窒素ガス雰囲気下で撹拌しながら150℃まで昇温視ながら3時間反応させた。その後、150℃から250℃まで2時間で昇温し、250℃から330℃まで1.5時間で昇温させた後、325℃、1.5時間で1.0mmHg(133Pa)に減圧し、更に0.25時間撹拌を続けた。そして、撹拌に要するトルクが12kg・cmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1個持つ口金を経由してポリマーをストランド状物に吐出させ、カッターによりペレタイズして、液晶性ポリエステル樹脂(A-3)を得た。
 この液晶性ポリエステル樹脂は、p-オキシベンゾエート単位(構造単位(I))66.7モル%、4,4’-ジオキシビフェニル単位(構造単位(II))6.3モル%、エチレンジオキシ単位10.4モル%、テレフタレート単位(構造単位(IV))16.6モル%を有し、融点(Tm)は314℃であった。高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度324℃、剪断速度1,000/sで測定した溶融粘度は25Pa・sであった。
 [参考例4] 液晶性ポリエステル樹脂(A-4)の合成
 特開昭54-77691号公報に従って、p-アセトキシ安息香酸921重量部と6-アセトキシ-ナフトエ酸435重量部を、撹拌翼、留出管を備えた反応容器に仕込み、重縮合を行った。得られた液晶性ポリエステル樹脂(A-4)は、p-アセトキシ安息香酸から生成した構造単位(構造単位(I))57モル当量、および6-アセトキシ-ナフトエ酸から生成した構造単位22モル当量からなり、融点(Tm)は283℃であった。高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度293℃、剪断速度1,000/sで測定した溶融粘度は、30Pa・sであった。
 (B)ガラス繊維
(B-1)日本電気硝子(株)社製“チョップドストランド ECS03 T-747H”(数平均繊維長3.0mm、数平均繊維径10.5μm)
(B-2)日東紡(株)社製“チョップドストランド CS 3DE-256S”
(数平均繊維長3.0mm、数平均繊維径6.5μm)
(B-3)日本電気硝子(株)社製“ミルドファイバー EPG40M-10A”(数平均繊維長40μm、数平均繊維径9μm)
 また、各特性の評価方法は以下の通りである。
 (1)液晶性ポリエステル組成物中のガラス繊維長
 各実施例および比較例で得られた液晶性ポリエステル樹脂組成物からなるペレット10gを、空気中において550℃で8時間加熱して、樹脂を除去した。残存したガラス繊維を、光学式顕微鏡を用いて倍率120倍にて観察し、無作為に選択した1000個以上のガラス繊維の繊維長を倍率120倍にて測定した。重量平均繊維長(Mw)は(Σni・Li2)/(Σni・Li)で示される。ここで、Liは、ガラス繊維の繊維長の範囲(区分)である。niは、(繊維長がLiに含まれるガラス繊維の本数)/(測定したガラス繊維の全本数)で算出される。繊維長1500μm以上のガラス繊維含有量(重量%)は(Σna・La)/(Σni・Li)×100で示される。ここで、Laは、1500μm以上の範囲に含まれるガラス繊維の繊維長の範囲(区分)である。naは、(繊維長がLaに含まれるガラス繊維の本数)/(測定したガラス繊維の全本数)で算出される。また、ガラス繊維の重量累積粒度分布曲線における累積度90%繊維長(D90)と、累積度10%繊維長(D10)から比(D90/D10)を算出した。
 また、繊維長度数分布から最頻値(S)を読み取ることができる。最頻値(S)と重量平均繊維長(Mw)から比(S/Mw)を算出した。
 (2)スナップフィット性
 各実施例および比較例で得られた液晶性ポリエステル樹脂組成物を、ファナックロボショットα-30C(ファナック(株)製)を用いて、射出成形し、成形品を得た。その際、シリンダ温度を液晶性ポリエステル樹脂組成物の融点+10℃に設定し、金型温度を90℃とした。その射出成形により、図1に示すスナップフィット部1を有する成形品を得た。スナップフィット部1の拡大図を図2~図3に示す。この成形品20個について、図4に示す基板への取り付け・取り外しを10回繰り返し、スナップフィット部の破損個数を調べた。
 (3)セルフタッピング性
 各実施例および比較例で得られた液晶性ポリエステル樹脂組成物を、住友SG-75 MIII(住友重機械社製)を用いて、射出成形し、光学部品用スライドベース(シャーシ)成形品を得た。その際、シリンダ温度を液晶性ポリエステル樹脂組成物の融点+10℃に設定し、金型温度を90℃とした。その射出成形により、光学部品用スライドベース(シャーシ)成形品(内径1.0mm径のネジ穴を2箇所備えた30mm×30mm×3mm厚の平板状の外周に高さ5mm×厚み1mmのたて壁付きの成形品)を得た。その後、傘型トルクドライバー(中村製作所社製”カノン空転式トルクドライバー”1.5LTDK)を使用して、タッピングネジ(BIT SPH1.2×3.0荒先)をその成形品の穴に挿入し、ネジ込みトルク(ネジを完全に締め付けるトルクの最小値)とネジバカトルク(成形品内部が破損し、空転するトルクの最小値)を評価した。ネジ込みトルクとネジバカトルクの差が大きいほど、セルフタッピング性は良好である。
 (4)ウェルド強度
 各実施例および比較例で得られた液晶性ポリエステル樹脂組成物を、成形機として、ファナックロボショットα-30C(ファナック(株)製)を用い、金型として、ゲートがダンベルの両端にあるウェルド金型を用いて、ASTM No.4ダンベルを成形した。その後、成形したダンベルについて、ASTM D790に準拠し、曲げ強度を測定した。
 (5)流動バラツキ
 各実施例および比較例で得られた液晶性ポリエステル樹脂組成物を、ファナックロボショットα-30C(ファナック(株)製)を用いて、成形した。その際、幅12.7mm×長さ100mm×0.3mm厚の成形品と、幅12.7mm×長さ100mm×0.5mm厚の成形品とを同時に成形できる金型を用いた。シリンダ温度を液晶性ポリエステル樹脂組成物の融点Tm+10℃に設定し、金型温度を90℃に設定した。そして、幅12.7mm×0.5mm厚の成形品が100mmの長さで成形できる成形条件のもとで、幅12.7mm×0.3mm厚のキャビティにおける流動長を測定した。成形を20ショット行い、20ショット中の最大流動長と最小流動長の差を測定した。最大流動長と最小流動長の差が小さいものほど流動バラツキが少ないことを示している。
 [実施例1~4、8、比較例1、2、6]
 東芝機械製TEM35B型2軸押出機(噛み合い型、同方向)に、シリンダC1(元込めフィーダー側ヒーター)~C6(ダイ側ヒーター)のうち、C3部に中間供給口を設置し、C5部に真空ベントを設置した。ニーディングブロックをC2部、C4部に組み込んだスクリューアレンジメントを用い、表1に示す(A)液晶性ポリエステル樹脂(A-1)を元込め部(供給口1)から添加し、(B)ガラス繊維を中間供給口(供給口2)から投入した。その後、ガラス繊維が供給されるゾーンの温度を284℃、その他のゾーンを324℃に設定し、スクリュー回転数250r.p.mの条件で溶融混練した後、ストランドカッターによりペレットを得た。液晶性ポリエステル樹脂(A-1)を、高化式フローテスター(オリフィス0.5φ×10mm)を用いて、温度334℃で3分間滞留させた後、温度284℃まで降温させてから、剪断速度100s-1で測定した溶融粘度は、1187Pa・sであった。このことから、このときのガラス繊維が供給されるゾーンの液晶性ポリエステル樹脂のせん断速度100s-1の溶融粘度は、1187Pa・sと見積もられた。
 得られたペレットを熱風乾燥後、前記の方法によりスナップフィット性、セルフタッピング性、ウェルド強度、流動バラツキを評価した。表1にその結果を示した。
 [実施例5]
 (A)液晶性ポリエステル樹脂を液晶性ポリエステル樹脂(A-2)に変更し、ガラス繊維が供給されるゾーンの温度を310℃、その他のゾーンを350℃に設定し、スクリュー回転数250r.p.mの条件で溶融混練した点以外は、実施例1と同様にしてペレットを得た。そして、スナップフィット性、セルフタッピング性、ウェルド強度、流動バラツキを評価した。液晶性ポリエステル樹脂(A-2)を、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度360℃で3分間滞留させた後、温度310℃まで降温させてから剪断速度100s-1で溶融粘度を測定した。溶融粘度は683Pa・sであった。
 [実施例6、9]
 ガラス繊維が供給されるゾーンの温度を304℃、その他のゾーンを324℃に設定し、スクリュー回転数250r.p.mの条件で溶融混練した点以外は、実施例1または2とそれぞれ同様にしてペレットを得た。そして、スナップフィット性、セルフタッピング性、ウェルド強度、流動バラツキを評価した。液晶性ポリエステル樹脂(A-1)を、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度334℃で3分間滞留させた後、温度304℃まで降温させてから剪断速度100s-1で溶融粘度を測定した。溶融粘度が286Pa・sであったことから、このときのガラス繊維が供給されるゾーンの液晶性ポリエステル樹脂のせん断速度100s-1の溶融粘度は286Pa・sと見積もられた。
 [実施例7]
 ガラス繊維が供給されるゾーンの温度を274℃、その他のゾーンを324℃に設定し、スクリュー回転数250r.p.mの条件で溶融混練した点以外は、実施例1と同様にしてペレットを得た。そして、スナップフィット性、セルフタッピング性、ウェルド強度、流動バラツキを評価した。液晶性ポリエステル樹脂(A-1)を、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度334℃で3分間滞留させた後、温度274℃まで降温させてから剪断速度100s-1で溶融粘度を測定した。溶融粘度が2022Pa・sであったことから、このときのガラス繊維が供給されるゾーンの液晶性ポリエステル樹脂のせん断速度100s-1の溶融粘度は、2022Pa・sと見積もられた。
 [比較例3]
 (A)液晶性ポリエステル樹脂を液晶性ポリエステル樹脂(A-3)に変更し、ガラス繊維が供給されるゾーンの温度を334℃、その他のゾーンを324℃に設定し、スクリュー回転数250r.p.mの条件で溶融混練した点以外は、実施例1と同様にしてペレットを得た。そして、スナップフィット性、セルフタッピング性、ウェルド強度、流動バラツキを評価した。液晶性ポリエステル樹脂(A-3)を、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度334℃で3分間滞留させた後、剪断速度100s-1で溶融粘度を測定した。溶融粘度は1263Pa・sであった。
 [比較例4]
 (A)液晶性ポリエステル樹脂を液晶性ポリエステル樹脂(A-3)に変更し、シリンダ温度を全て324℃に設定し、スクリュー回転数250r.p.mの条件で溶融混練した点以外は、実施例2と同様にしてペレットを得た。そして、スナップフィット性、セルフタッピング性、ウェルド強度、流動バラツキを評価した。液晶性ポリエステル樹脂(A-3)を、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度334℃で3分間滞留させた後、温度324℃まで降温させてから剪断速度100s-1で溶融粘度を測定した。溶融粘度は2080Pa・sであった。
 [比較例5]
 (A)液晶性ポリエステル樹脂を液晶性ポリエステル樹脂(A-4)に変更し、ガラス繊維が供給されるゾーンの温度を253℃、その他のゾーンを293℃に設定し、スクリュー回転数250r.p.mの条件で溶融混練した点以外は、実施例1と同様にしてペレットを得た。そして、スナップフィット性、セルフタッピング性、ウェルド強度、流動バラツキを評価した。液晶性ポリエステル樹脂(A-3)を、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度303℃で3分間滞留させた後、温度253℃まで降温させてから剪断速度100s-1で溶融粘度を測定した。溶融粘度は702Pa・sであった。
 [比較例7]
 ガラス繊維が供給されるゾーンの温度を334℃、その他のゾーンを324℃に設定し、スクリュー回転数250r.p.mの条件で溶融混練した点以外は、実施例1と同様にしてペレットを得た。そして、スナップフィット性、セルフタッピング性、ウェルド強度、流動バラツキを評価した。液晶性ポリエステル樹脂(A-1)を高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度334℃で3分間滞留させた後、剪断速度100s-1で溶融粘度を測定した。溶融粘度は48Pa・sであった。
 [比較例8]
 ガラス繊維が供給されるゾーンの温度を274℃、その他のゾーンを324℃に設定し、スクリュー回転数250r.p.mの条件で溶融混練した点以外は、実施例1と同様にしてペレットを得た。そして、スナップフィット性、セルフタッピング性、ウェルド強度、流動バラツキを評価した。液晶性ポリエステル樹脂(A-1)を、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度334℃で3分間滞留させた後、温度274℃まで降温させてから剪断速度100s-1で溶融粘度を測定した。溶融粘度は4093Pa・sであった。
Figure JPOXMLDOC01-appb-T000001
 表1からも明らかなように、実施例1~8の液晶性ポリエステル樹脂組成物は、比較例1~8に示した液晶性ポリエステル樹脂組成物と比較して、スナップフィット性、セルフタッピング性、ウェルド強度に優れ、流動バラツキが小さいことがわかる。
1 スナップフィット部
2 基板

Claims (7)

  1.  下記構造単位(I)、(II)、(III)、(IV)および(V)から構成される液晶性ポリエステル樹脂100重量部およびガラス繊維10~100重量部を少なくとも含有する液晶性樹脂組成物であって、
     前記ガラス繊維の重量平均繊維長(Mw)が200~500μmであり、
     繊維長1500μm以上のガラス繊維を、全ガラス繊維中0.1~5.0重量%含有することを特徴とする液晶性ポリエステル樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
  2.  前記ガラス繊維の重量累積粒度分布曲線における累積度90%繊維長(D90)と累積度10%繊維長(D10)の比(D90/D10)が、5.0以下であることを特徴とする請求項1記載の液晶性ポリエステル樹脂組成物。
  3.  請求項1もしくは2に記載の液晶性ポリエステル樹脂組成物中のガラス繊維の繊維長度数分布における最頻値(S)の繊維長が、重量平均繊維長(Mw)の0.25倍以上0.90倍未満であることを特徴とする請求項1もしくは2記載の液晶性ポリエステル樹脂組成物。
  4.  構造単位(I)が、構造単位(I)、(II)および(III)の合計に対して65~80モル%であり、
     構造単位(II)が、構造単位(II)および(III)の合計に対して55~85モル%であり、
     構造単位(IV)が、構造単位(IV)および(V)の合計に対して50~95モル%であることを特徴とする請求項1~3のいずれか記載の液晶性ポリエステル樹脂組成物。
  5.  少なくとも下記構造単位(I)、(II)、(III)、(IV)および(V)から構成される液晶性ポリエステル樹脂およびガラス繊維を、複数の供給口を有する押出機により溶融混練する液晶性ポリエステル樹脂組成物の製造方法であって、
     押出機駆動側の第1供給口から液晶性ポリエステル樹脂を供給し、
     第1供給口よりも下流側にある第2供給口からガラス繊維を供給し、
     ガラス繊維供給部における液晶性ポリエステル樹脂の剪断速度100s-1における溶融粘度を100~5000Pa・sとすることを特徴とする請求項1~4のいずれか記載の液晶性ポリエステル樹脂組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000005
  6.  請求項1~4のいずれか記載の液晶性ポリエステル樹脂組成物を射出成形してなる成形品。
  7.  成形品がコネクターであることを特徴とする請求項6記載の成形品。
PCT/JP2011/006987 2010-12-28 2011-12-14 液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品 WO2012090411A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180012502.0A CN102782042B (zh) 2010-12-28 2011-12-14 液晶性聚酯树脂组合物及其制造方法以及由该组合物形成的成型品
JP2012506031A JP5241956B2 (ja) 2010-12-28 2011-12-14 液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品
EP11852365.3A EP2540777B1 (en) 2010-12-28 2011-12-14 Liquid-crystalline polyester resin composition, method for producing same, and molded article made thereof
US13/637,738 US8784683B2 (en) 2010-12-28 2011-12-14 Liquid crystalline polyester composition, method of producing the same and molded product manufactured from the same
KR1020127023028A KR101305633B1 (ko) 2010-12-28 2011-12-14 액정성 폴리에스테르 수지 조성물 및 그 제조 방법과 그로부터 이루어진 성형품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010292446 2010-12-28
JP2010-292446 2010-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/409,713 Continuation US8647274B2 (en) 2010-09-08 2012-03-01 Ultrasound diagnosis apparatus, image processing apparatus, and image processing method

Publications (1)

Publication Number Publication Date
WO2012090411A1 true WO2012090411A1 (ja) 2012-07-05

Family

ID=46382553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006987 WO2012090411A1 (ja) 2010-12-28 2011-12-14 液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品

Country Status (7)

Country Link
US (1) US8784683B2 (ja)
EP (1) EP2540777B1 (ja)
JP (2) JP5241956B2 (ja)
KR (1) KR101305633B1 (ja)
CN (1) CN102782042B (ja)
TW (1) TWI422641B (ja)
WO (1) WO2012090411A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199159A1 (ja) * 2017-04-28 2018-11-01 住友化学株式会社 液晶ポリエステル組成物の製造方法および液晶ポリエステル組成物
WO2021029267A1 (ja) * 2019-08-09 2021-02-18 住友化学株式会社 液晶ポリエステル樹脂成形体
WO2022107715A1 (ja) * 2020-11-19 2022-05-27 東洋紡株式会社 無機強化熱可塑性ポリエステル樹脂組成物及びその製造方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101305878B1 (ko) * 2010-12-28 2013-09-09 도레이 카부시키가이샤 액정성 폴리에스테르 수지 조성물 및 그 제조 방법과 그로부터 이루어진 성형품
WO2013074470A2 (en) 2011-11-15 2013-05-23 Ticona Llc Fine pitch electrical connector and a thermoplastic composition for use therein
JP2014533325A (ja) 2011-11-15 2014-12-11 ティコナ・エルエルシー 低ナフテン系液晶ポリマー組成物
CN103930465B (zh) 2011-11-15 2016-05-04 提克纳有限责任公司 用于具有小尺寸公差的模塑部件的低环烷液晶聚合物组合物
KR102098411B1 (ko) 2011-11-15 2020-04-07 티코나 엘엘씨 콤팩트 카메라 모듈
US8906259B2 (en) 2011-11-15 2014-12-09 Ticona Llc Naphthenic-rich liquid crystalline polymer composition with improved flammability performance
TWI646135B (zh) 2012-10-16 2019-01-01 美商堤康那責任有限公司 抗靜電液晶聚合物組合物
WO2014088700A1 (en) 2012-12-05 2014-06-12 Ticona Llc Conductive liquid crystalline polymer composition
KR102465221B1 (ko) 2013-03-13 2022-11-09 티코나 엘엘씨 컴팩트 카메라 모듈
CN114989431A (zh) 2014-04-09 2022-09-02 提克纳有限责任公司 抗静电聚合物组合物
US9822254B2 (en) 2014-04-09 2017-11-21 Ticona Llc Camera module
JP6046080B2 (ja) * 2014-06-02 2016-12-14 株式会社栃木屋 連結部材
CN106715521B (zh) * 2014-09-19 2019-07-23 上野制药株式会社 液晶聚合物
CN109790381B (zh) * 2016-10-21 2020-07-31 宝理塑料株式会社 复合树脂组合物、及由该复合树脂组合物成形而成的连接器
TWM543308U (zh) * 2017-01-19 2017-06-11 J-Star Motor Industrial Co Ltd 線性致動器結構(一)
US10829634B2 (en) 2017-12-05 2020-11-10 Ticona Llc Aromatic polymer composition for use in a camera module
JP7461959B2 (ja) 2019-03-20 2024-04-04 ティコナ・エルエルシー カメラモジュールのためのアクチュエータアセンブリ
JP2022524720A (ja) 2019-03-20 2022-05-10 ティコナ・エルエルシー カメラモジュールにおいて使用するためのポリマー組成物
CN115151414A (zh) 2020-02-26 2022-10-04 提克纳有限责任公司 用于电子器件的聚合物组合物
WO2021173408A1 (en) 2020-02-26 2021-09-02 Ticona Llc Electronic device
WO2021173412A1 (en) 2020-02-26 2021-09-02 Ticona Llc Circuit structure
US11728065B2 (en) 2020-07-28 2023-08-15 Ticona Llc Molded interconnect device
CN112126243B (zh) * 2020-09-09 2022-06-07 金发科技股份有限公司 一种液晶聚合物组合物
JP7281023B2 (ja) * 2021-02-05 2023-05-24 ポリプラスチックス株式会社 ファンインペラ用液晶性樹脂組成物及びそれを用いたファンインペラ
CN113201229A (zh) * 2021-05-14 2021-08-03 金发科技股份有限公司 一种液晶聚合物复合材料及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477691A (en) 1977-10-20 1979-06-21 Celanese Corp Polyester composed of 66hydroxyy 22naphtoic acid and pphydroxy benzoic acid* which enable melt processing to be easy
JPH11322910A (ja) * 1998-05-19 1999-11-26 Nippon Petrochem Co Ltd 全芳香族サーモトロピック液晶コポリエステルおよびその組成物
JP2001288342A (ja) * 2000-04-04 2001-10-16 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂組成物、その製造方法およびその成形体
JP2007169379A (ja) * 2005-12-20 2007-07-05 Toray Ind Inc 全芳香族液晶性ポリエステルおよびその組成物
WO2008023839A1 (fr) 2006-08-24 2008-02-28 Polyplastics Co., Ltd. Composant électronique asymétrique
JP2008143996A (ja) * 2006-12-08 2008-06-26 Toray Ind Inc 液晶性ポリエステル組成物
JP2009191088A (ja) 2008-02-12 2009-08-27 Toray Ind Inc 液晶性樹脂組成物および成形品
JP2009215530A (ja) 2007-09-28 2009-09-24 Toray Ind Inc 液晶性樹脂組成物およびそれからなる成形品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101305878B1 (ko) * 2010-12-28 2013-09-09 도레이 카부시키가이샤 액정성 폴리에스테르 수지 조성물 및 그 제조 방법과 그로부터 이루어진 성형품

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477691A (en) 1977-10-20 1979-06-21 Celanese Corp Polyester composed of 66hydroxyy 22naphtoic acid and pphydroxy benzoic acid* which enable melt processing to be easy
JPH11322910A (ja) * 1998-05-19 1999-11-26 Nippon Petrochem Co Ltd 全芳香族サーモトロピック液晶コポリエステルおよびその組成物
JP2001288342A (ja) * 2000-04-04 2001-10-16 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂組成物、その製造方法およびその成形体
JP2007169379A (ja) * 2005-12-20 2007-07-05 Toray Ind Inc 全芳香族液晶性ポリエステルおよびその組成物
WO2008023839A1 (fr) 2006-08-24 2008-02-28 Polyplastics Co., Ltd. Composant électronique asymétrique
JP2008143996A (ja) * 2006-12-08 2008-06-26 Toray Ind Inc 液晶性ポリエステル組成物
JP2009215530A (ja) 2007-09-28 2009-09-24 Toray Ind Inc 液晶性樹脂組成物およびそれからなる成形品
JP2009191088A (ja) 2008-02-12 2009-08-27 Toray Ind Inc 液晶性樹脂組成物および成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2540777A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199159A1 (ja) * 2017-04-28 2018-11-01 住友化学株式会社 液晶ポリエステル組成物の製造方法および液晶ポリエステル組成物
WO2021029267A1 (ja) * 2019-08-09 2021-02-18 住友化学株式会社 液晶ポリエステル樹脂成形体
WO2022107715A1 (ja) * 2020-11-19 2022-05-27 東洋紡株式会社 無機強化熱可塑性ポリエステル樹脂組成物及びその製造方法
JP7548302B2 (ja) 2020-11-19 2024-09-10 東洋紡エムシー株式会社 無機強化熱可塑性ポリエステル樹脂組成物及びその製造方法

Also Published As

Publication number Publication date
US8784683B2 (en) 2014-07-22
EP2540777A1 (en) 2013-01-02
JP5241956B2 (ja) 2013-07-17
CN102782042A (zh) 2012-11-14
EP2540777A4 (en) 2013-09-18
JP2013122063A (ja) 2013-06-20
KR101305633B1 (ko) 2013-09-09
KR20130079318A (ko) 2013-07-10
US20130015400A1 (en) 2013-01-17
TWI422641B (zh) 2014-01-11
EP2540777B1 (en) 2014-10-01
TW201231548A (en) 2012-08-01
CN102782042B (zh) 2014-02-12
JPWO2012090411A1 (ja) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5241956B2 (ja) 液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品
JP5241955B2 (ja) 液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品
JP5136719B2 (ja) 液晶性ポリエステル樹脂組成物およびそれを用いた金属複合成形品
JP5136720B2 (ja) 液晶性ポリエステル樹脂組成物およびそれを用いた金属複合成形品
WO2012090407A1 (ja) 全芳香族液晶ポリエステルおよびその製造方法
JP2008013702A (ja) 液晶性ポリエステル組成物
JP2004256656A (ja) 液晶性ポリエステルおよびその組成物
JP2015063641A (ja) 液晶性ポリエステル樹脂組成物およびそれからなる成形品
JP5098168B2 (ja) 全芳香族液晶性ポリエステルおよびその組成物
JP6206174B2 (ja) 液晶性ポリエステル樹脂組成物およびその成形品
JP3562122B2 (ja) ガラスビーズ強化液晶性樹脂組成物
JP6255978B2 (ja) 液晶性ポリエステル樹脂組成物およびそれを用いた金属複合成形品
JP2016089154A (ja) 液晶性ポリエステル樹脂組成物およびそれを用いた成形品
JP2005248052A (ja) 液晶性ポリエステル組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012502.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012506031

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127023028

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011852365

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13637738

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE