WO2012088736A1 - 一种纤维状结构银基氧化物电触头材料的制备方法 - Google Patents
一种纤维状结构银基氧化物电触头材料的制备方法 Download PDFInfo
- Publication number
- WO2012088736A1 WO2012088736A1 PCT/CN2011/000634 CN2011000634W WO2012088736A1 WO 2012088736 A1 WO2012088736 A1 WO 2012088736A1 CN 2011000634 W CN2011000634 W CN 2011000634W WO 2012088736 A1 WO2012088736 A1 WO 2012088736A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- silver
- fibrous structure
- electrical contact
- based oxide
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/04—Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1078—Alloys containing non-metals by internal oxidation of material in solid state
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1084—Alloys containing non-metals by mechanical alloying (blending, milling)
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/021—Composite material
- H01H1/023—Composite material having a noble metal as the basic material
- H01H1/0237—Composite material having a noble metal as the basic material and containing oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/021—Composite material
- H01H1/023—Composite material having a noble metal as the basic material
- H01H1/0237—Composite material having a noble metal as the basic material and containing oxides
- H01H1/02372—Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/021—Composite material
- H01H1/023—Composite material having a noble metal as the basic material
- H01H1/0237—Composite material having a noble metal as the basic material and containing oxides
- H01H1/02372—Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
- H01H1/02374—Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te containing as major component CdO
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/021—Composite material
- H01H1/023—Composite material having a noble metal as the basic material
- H01H1/0237—Composite material having a noble metal as the basic material and containing oxides
- H01H1/02372—Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
- H01H1/02376—Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te containing as major component SnO2
Definitions
- the present invention relates to a method of preparing an electrical contact material in the field of material technology, and in particular to a method for preparing a fibrous structure silver-based oxide electrical contact material.
- a silver-based oxide electrical contact material for a fibrous structure there are two methods for preparing a silver-based oxide electrical contact material for a fibrous structure: one is a conventional powder metallurgy sintering extrusion method, and on the basis of the improvement of the extrusion method, the method for increasing the deformation amount of the processing, The main process flow is: mixing powder, one pressing, one sintering, one extrusion, one drawing, one annealing, one drawing, one drawing.
- the fibrous structure prepared by this method is not obvious, and is not suitable for the reinforcing phase with poor plasticity and ductility, and there are large particles of the reinforcing phase, which affect the product performance.
- the second method is a combination of pre-design and extrusion method of the blank, that is, a method of fixing a certain number of reinforcing phase wires in a matrix by a mold, and then sequentially isostatically pressing, sintering and extruding [document CN101707145A], this method
- a distinct and continuous fibrous structure can be obtained, the process is complicated, and a silver-based wire containing a reinforcing phase is prepared in advance and fixed in a matrix by a mold, and there is a demand for enhancing the plasticity and ductility of the phase wire. Large-scale production is more difficult. Summary of the invention
- the present invention provides a method for preparing a fibrous structure silver-based oxide electrical contact material according to the above-mentioned deficiencies and shortcomings of the prior art.
- the method has large or small deformation amount in processing, and poor phase plasticity and ductility are good or good.
- the silver-based oxide electrical contact material with obvious fibrous structure can be obtained, and the process is simple, the operation is convenient, the cost is low, and there is no special requirement for the equipment.
- the materials prepared by the method of the invention have greatly improved weld resistance, arc erosion resistance and electrical conductivity, and the processing performance is excellent.
- the invention provides a preparation method of a fibrous structure silver-based oxide electrical contact material, comprising the following steps:
- the silver-metal-additive alloy powder and the graphite powder are uniformly mixed and then placed in a high-energy ball-milling tank for ball milling, wherein: the metal in the alloy powder is an alloy capable of forming an alloy with a reduction ratio.
- Ag is a strong metal capable of spontaneous oxidation, and the metal species is one or more; the weight ratio of silver and other metals in the alloy powder is calculated according to the required material composition and subsequent processing requirements; the weight ratio of alloy powder and graphite powder is based on the material.
- the required porosity is calculated; the additive content is calculated according to the content of the metal to be oxidized and the subsequent process, and the additive is one or more of Bi, In, Cu and rare earth elements.
- the powder obtained in the first step is internally oxidized, including two steps, first decarburization in an air atmosphere; secondly, oxidizing in an oxygen atmosphere.
- the internally oxidized powder obtained in the second step is sieved, and then the large particle powder which has not passed through the sieve is placed in a high-energy ball mill for reprocessing, and then sieved.
- the composite powder obtained in the third step and the matrix silver powder are poured into a mixer for mixing, wherein: the weight ratio of the composite powder to the matrix silver powder is calculated according to the required preparation material composition and fiber size.
- the powder obtained in the fourth step is subjected to cold isostatic pressing.
- the body obtained by cold isostatic pressing is sintered.
- the obtained body obtained by sintering is subjected to hot pressing.
- the body obtained by hot pressing is subjected to hot extrusion to obtain a fibrous structure silver-based oxide electrical contact material.
- the fibrous structure silver-based oxide electrical contact material prepared by the above method of the invention has a distinct fibrous phase reinforcing phase (oxide) material, wherein the fiber structure of the reinforcing phase (oxide) material is oriented by its particles Arranged, and the reinforcing phase particulate material is a material or a mixture of materials, depending on The number of metal species in the silver-metal-additive alloy in the first step.
- the method adopted by the present invention is significantly different from the mechanical alloying of the conventional materials in combination with the large plastic processing deformation, and the simple pre-oxidation preparation method.
- the method adopted by the present invention is: First, the silver-metal-additive alloy powder and the graphite powder are subjected to the method. High-energy ball milling and high-energy ball milling make the alloy powder and graphite powder refine in large energy collision and form a uniform and ultra-fine composite powder. Secondly, the ball-milled composite powder is internally oxidized, and graphite powder in the atmosphere It will be first oxidized to form co 2 gas, and the discharge of co 2 gas will make the structure of the powder loose.
- the loose structure will facilitate the further diffusion of oxygen into the powder under the high pressure oxygen atmosphere, promote the complete oxidation of the metal, and finally form The loose structure of the silver oxide material; then the loose structure of the powder and the matrix Ag powder are uniformly mixed according to the amount of the material composition formulation, followed by cold isostatic pressing, sintering, hot pressing, hot extrusion. During the extrusion process, the particles of the loose structure powder are slowly pulled apart due to the flow of the softened matrix Ag, and are oriented in the extrusion direction to form a fibrous structure.
- the method has obvious fibrous reinforcing phase structure structure in the material structure, and the arc ablation resistance is 10-20% higher than that of the same material system contact material enhanced by the simple particle dispersion, and the conductivity is improved along the extrusion direction 5- 10%, the anti-melting property is increased by 10-20%, the electric life is increased by 10-25%; and the excellent processing performance is suitable for large-scale production.
- the invention provides a preparation method of the above-mentioned fibrous structure silver-based oxide electrical contact material, which is suitable for preparation of a general fiber-reinforced silver-based oxide composite material, whether the deformation amount is large or small, and the phase plasticity and elongation are enhanced. If the difference is good or good, the silver-based electrical contact material with obvious fibrous structure can be obtained, and the process is simple, the operation is convenient, the cost is low, and there is no special requirement for the equipment.
- the silver-based oxide electrical contact material obtained by the method of the invention has a distinct fibrous reinforcing phase (oxide) material, wherein the fibrous structure of the reinforcing phase (oxide) material is formed by aligning the particles thereof.
- the reinforcing phase (oxide) material is a material or a mixture of materials, depending on the type and proportion of the metal in the previous silver-metal-additive alloy powder.
- the Ag-metal-additive alloy powder can be obtained by sieving after atomization treatment, and the alloy powder may have a particle size of 80 mesh to 400 mesh, or may be obtained by other existing methods which can be obtained.
- the steps of ball milling, internal oxidation, sieving, powder mixing, cold isostatic pressing, sintering, hot pressing and hot extrusion are designed, and the parameters of the specific process operation are selectable, for example:
- the Ag-metal-additive alloy powder and the carbon powder are uniformly mixed, and then placed in a high-energy ball-milling tank for ball milling.
- the metal is a metal which can form an alloy with silver and has a reducing property stronger than Ag.
- the metal species is one or more; the additive is one of Bi, In, Cu, and a rare earth element.
- the parameters can be used: the ratio of silver to metal in the alloy powder is between 3-0.5; the proportion of graphite powder in the total weight is between 0.5% and 3%; the content of the additive metal is not more than the weight of the oxide in the silver-based oxide.
- the weight of the phase (metal oxide other than the additive oxide) is calculated; the ball milling speed is between 180 rpm and 300 rpm; the milling time is 5-10 hours; the ball ratio (ie the ball and powder) The weight ratio is between 10-20.
- the ball-milled powder obtained in the first step is internally oxidized, including two steps, first decarburization in an air atmosphere; secondly, oxidizing in an oxygen atmosphere.
- the parameters can be used: the oxidation temperature in the air atmosphere is between 250 ° C and 700 ° C, the oxidation time is between 5 and 15 hours; the oxidation temperature in the high pressure oxygen atmosphere is between 300 ° C and 70 (TC); the oxidation time is 5 Between -15 hours, the oxygen pressure is between 0.5 MPa and 3.5 MPa.
- the internally oxidized powder obtained in the second step is sieved, and then the large particle powder which fails to pass through the screen is placed in a high-energy ball mill for processing, and then sieved.
- the parameters can be used: ball milling speed between 180 rev / min and 280 rev / min; ball milling time is 5-15 hours; ball to material ratio (ie ball to powder weight ratio) between 10-20; The mesh number is between 100 and 400 mesh.
- the composite powder and the silver powder obtained in the third step are poured into a mixer for mixing, and the weight ratio of the composite powder and the matrix silver powder is calculated according to the required preparation of the material composition.
- the parameters can be used - the speed of the mixer is between 20 rpm and 40 rpm; the mixing time is between 2 and 6 hours, and the matrix silver powder is between 50 and 400 mesh.
- the powder obtained in the fourth step is subjected to cold isostatic pressing.
- the parameters can be used: Cold isostatic pressure is between 100-400Mpa.
- the body obtained by cold isostatic pressing is sintered.
- the parameters can be: sintering temperature between 600 ° C and 900 ° C; sintering time between 5-10 hours.
- the body obtained by sintering is subjected to hot pressing.
- the parameters can be used: hot pressing temperature between 600 ° C and 85 (TC; hot pressing pressure between 200 and 700 MPa; hot pressing time between 5 min and 30 min.
- the hot body obtained by hot pressing is hot extruded to obtain a fibrous structure silver-based oxide electrical contact.
- Head material The parameters can be used: the heating temperature of the blank is between 700-900 ° C; the extrusion ratio is between 60-400, and the extrusion speed is between 5-15 cm/min; the preheating temperature of the extrusion die is 300-500. Between °C.
- the first step 1262.5 g of an Ag-Sn-In alloy powder containing 262.5 g of an additive; an Ag to Sn weight ratio of 3:1 in the alloy was obtained, and the particle size was 400 mesh.
- the Ag ingot, the Sn ingot and the In 2 0 3 powder were melted into a metal liquid in a medium frequency induction furnace, and then subjected to a three-stage atomization treatment, and the atomized silver powder was passed through a 400 mesh sieve.
- the Ag-Sn-In alloy powder and the carbon powder 37.88g are uniformly mixed in the first step, and then placed in a high-energy ball mill tank for ball milling, the ball milling speed is 300 rpm; the ball milling time is 10 hours; Is 10.
- the ball-milled powder obtained in the second step is internally oxidized. In two steps, it was first oxidized in an air atmosphere for 15 hours, an oxidation temperature of 300 ° C, followed by oxidation in an oxygen atmosphere for 5 hours, an oxidation temperature of 700 ° C, and an oxygen pressure of 0.5 MPa.
- the internally oxidized powder obtained in the third step is sieved, and the large particle powder which has not passed through the sieve is returned to the ball mill for processing, and then sieved.
- the ball milling speed is 200 rpm; the ball milling time is 12 hours; the ball to material ratio is 15; the mesh size is 300 mesh.
- the composite powder obtained in the fourth step and 4960 g of 200 mesh silver powder are poured into a "V" type mixer to uniformly mix the powder.
- the speed of mixing is 40 rpm, and the time is 6 hours.
- the powder obtained in the third step is placed in a plastic cylinder having a diameter of 9 cm and a length of 20 cm, and subjected to cold isostatic pressing, and a cold isostatic pressing pressure of 100 MPa.
- the cold isostatic compact obtained in the fourth step is sintered, sintered at 900 ° C, and sintered for 5 hours.
- the sintered body obtained in the fifth step is subjected to hot pressing at a temperature of 850 Torr, a hot pressing pressure of 300 MPa, and a hot pressing time of 30 minutes.
- the hot pressed body is hot extruded, and the hot extrusion temperature is 90 (TC, extrusion ratio 300, extrusion speed 5 cm/min, and extrusion die preheating temperature 400 °C.
- the hot extrusion temperature is 90 (TC, extrusion ratio 300, extrusion speed 5 cm/min, and extrusion die preheating temperature 400 °C.
- an AgSn0 2 (10) material having a fibrous structure of distinct Sn0 2 and an additive oxide In 2 0 3 is finally obtained, wherein the fibrous structure of Sn0 2 and the additive oxide In 2 0 3 are respectively made of many small The Sn0 2 particles and the oxide In 2 0 3 particles are aligned and connected.
- the obtained material has a tensile strength of 288 MPa; the resistivity in the extrusion direction is 2.8 ⁇ . ( ⁇ ; hardness is 87 HV.
- the ball-milled powder obtained in the first step is internally oxidized.
- the oxidation was carried out in two steps, first in an air atmosphere for 5 hours, at an oxidation temperature of 250 ° C, followed by oxidation in an oxygen atmosphere for 5 hours, an oxidation temperature of 300 ° C, and an oxygen pressure of 1.5 MPa.
- the internally oxidized powder obtained in the second step is sieved, and the large particle powder which has not passed through the screen is placed in a ball mill for processing, and then sieved.
- the ball milling speed is 280 rpm; the ball milling time is 5 hours; the ball to material ratio is 20, and the mesh size is 100 mesh.
- the powder obtained in the third step and 4691 g of silver powder having a particle size of 400 mesh are poured into a "V" type powder mixing machine to uniformly mix the powder.
- the speed of mixing is 20 rpm, and the time is 4 hours.
- the powder obtained in the fourth step is placed in a plastic cylinder having a diameter of 9 cm and a length of 15 cm, and subjected to cold isostatic pressing, and a cold isostatic pressing pressure of 100 MPa.
- the cold isostatic compact obtained in the fifth step is sintered, sintered at 750 ° C, and sintered for 9 hours.
- the sintered body obtained in the sixth step is subjected to hot pressing at a temperature of 600 ° C, a hot pressing pressure of 200 MPa, and a hot pressing time of 20 min.
- the hot pressed body is hot extruded and extruded into a sheet
- the hot extrusion temperature is 900 ° C
- the extrusion ratio is 300
- the extrusion speed is 10 cm/min
- the preheating temperature of the extrusion die is 300 Torr.
- an AgCd012 material having a distinct CdO fibrous structure is finally obtained, wherein the CdO fibrous structure is formed by a plurality of fine CdO particles oriented and connected.
- the obtained material had a tensile strength of 292 MPa ; the resistivity in the extrusion direction was 2.1 ⁇ ; and the hardness was 83 HV.
- Embodiment 3
- the first step 1063 g of Ag-Zn-Bi (containing 63 g of the additive; 1:1 weight ratio of Ag and Zn in the alloy) alloy powder (particle size 200 mesh) and 10 g of carbon powder are uniformly mixed, and then placed in a high-energy ball mill. Ball milling was carried out in the tank, the ball milling speed was 300 rpm; the milling time was 5 hours; the ball ratio was 15.
- the ball-milled powder obtained in the first step is internally oxidized.
- the oxidation was carried out for 6 hours in an air atmosphere for 6 hours, at an oxidation temperature of 700 ° C, followed by oxidation in an oxygen atmosphere for 12 hours, an oxidation temperature of 500 ° C, and an oxygen pressure of 1 MPa.
- the internally oxidized powder obtained in the second step is sieved, and the large particle powder which has not passed through the sieve is placed in a high-energy ball mill ball mill for reprocessing, and then sieved.
- the ball milling speed was 180 rpm; the milling time was 15 hours; the ball to ball ratio was 10; the mesh number was 400 mesh.
- the composite powder obtained in the third step and 6595 g of silver powder having a particle size of 50 mesh are poured into a "V" type powder mixing machine, and the powder is mixed.
- the speed of mixing is 30 rpm, and the time is 2 hours.
- the powder obtained in the fourth step is placed in a plastic cylinder having a diameter of 9 cm and a length of 30 cm, and subjected to cold isostatic pressing, and a cold isostatic pressing pressure of 400 MPa.
- the cold isostatic compact obtained in the fifth step is sintered, sintered at 600 ° C, and sintered for 8 hours.
- the sintered body obtained in the sixth step is subjected to hot pressing at a temperature of 830 ° C, a hot pressing pressure of 700 MPa, and a hot pressing time of 5 min.
- the hot pressed body is hot extruded, the hot extrusion temperature is 700 ° C, the extrusion ratio is 60, the extrusion speed is 15 cm/min, and the extrusion mold preheating temperature is 500 ° C.
- an AgZnO (8) material having a distinct ZnO fibrous structure is obtained, wherein the ZnO fibrous structure is formed by aligning and connecting a plurality of fine ZnO particles.
- the obtained material had a tensile strength of 285 MPa; the resistivity in the extrusion direction was 2.0 ⁇ ; and the hardness was 86 HV.
- Embodiment 4
- the first step 950 g of Ag-Zn-Sn (containing 30 g of In and 20 g of Ce; an alloy, Ag, Zn and Sn in a weight ratio of 1:0.51:1) alloy powder (particle size 200 mesh) and 18 g of carbon powder Evenly mixed, Then, it was placed in a high-energy ball mill jar for ball milling, the ball milling speed was 280 rpm; the ball milling time was 10 hours; and the ball-to-batch ratio was 20.
- the ball milling speed was 280 rpm
- the ball milling time was 10 hours
- the ball-to-batch ratio was 20.
- the ball-milled powder obtained in the first step is internally oxidized.
- the oxidation was carried out for 6 hours in an air atmosphere for 6 hours, at an oxidation temperature of 450 ° C, followed by oxidation in an oxygen atmosphere for 15 hours, an oxidation temperature of 500 ° C, and an oxygen pressure of 3.5 MPa.
- the internally oxidized powder obtained in the second step is sieved, and the large particle powder which has not passed through the sieve is placed in a high-energy ball mill for reprocessing, and then sieved.
- the ball milling speed was 280 rpm; the ball milling time was 15 hours; the ball-to-batch ratio was 20; and the mesh number was 400 mesh.
- the composite powder obtained in the third step and 4644 g of silver powder having a particle size of 300 mesh are poured into a "V" type mixer to uniformly mix the powder.
- the speed of mixing is 30 rpm, and the time is 4 hours.
- the powder obtained in the fourth step is placed in a plastic cylinder having a diameter of 9 cm and a length of 15 cm, and subjected to cold isostatic pressing, and a cold isostatic pressing pressure of 300 MPa.
- the cold isostatic compact obtained in the fifth step is sintered, sintered at 800 ° C, and sintered for 10 hours.
- the sintered body obtained in the sixth step is subjected to hot pressing at a temperature of 850 ° C, a hot pressing pressure of 700 MPa, and a hot pressing time of 10 min.
- the hot pressed body is hot extruded, the hot extrusion temperature is 900 ° C, the extrusion ratio is 400, the extrusion speed is 5 cm/min, and the extrusion mold preheating temperature is 500 ° C.
- the present embodiment finally obtained Ag-4ZnO-8Sn0 2 contact with the material of ZnO, and Sn0 2 significantly fibrous structure, wherein, ZnO, and Sn0 2 are arranged in a fibrous tissue structures connected by many small particles oriented ZnO, and Sn0 2 Made of.
- the obtained material has a tensile strength of 260 MPa; the resistivity in the extrusion direction is 2.2 ⁇ . ( ⁇ ; hardness is 88 HV.
- the above description is only a part of the preferred embodiment of the present invention, and does not impose any limitation on the technical scope of the present invention.
- the present invention can also be applied to the preparation of other fibrous structure silver-based oxide composite materials having a distribution ratio. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the present invention. Within the scope of protection of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Description
一种纤维状结构银基氧化物电触头材料的制备方法 技术领域
本发明涉及一种材料技术领域的电触头材料的制备方法,具体地说,涉及的 是一种纤维状结构银基氧化物电接触材料的制备方法。
背景技术
随着电器行业的快速发展,对说银基电触头材料性能的要求越来越高,传统的 银基材料触头在电气性能和力学性能等方面逐渐暴露出不足之处。为此, 不断有 新的银基复合材料被研发。纤维状组织结构银书基氧化物复合材料因具有优良的抗 熔焊性和耐电弧烧蚀能力及良好的加工性能, 成为近年来研究的热点。 当前, 由 于纤维状组织结构银基氧化物材料制备工艺复杂,成本高,且连续纤维银基氧化 物材料难以二次加工等缺点,大大限制了纤维状组织银基氧化物材料的推广和应 用。 因此, 开发一种简单、实用及能规模化生产的纤维状结构的银基氧化物电接 触材料的制备方法是当前研究的一个热点, 也是一个难点。
经检索,国内外关于纤维状结构银基氧化物电接触材料方面的研究报道,如: 中国发明专利: 纤维结构性银基电触头材料及其制备方法, 申请号-
200910196283.0, 公开号: CN101707145A。
目前,关于纤维状结构的银基氧化物电接触材料的制备方法大体有两种:一 是传统的粉末冶金烧结挤压法以及在此基础上改进挤压方式,增大加工变形量的 方法, 主要工艺流程为: 混粉一压锭一烧结一挤压一拉拔一退火一拉拔一成品。 此方法所制备的纤维状结构不明显,不适合用于塑性和延展性较差的增强相,且 会有增强相的大颗粒存在, 影响产品使用性能。二是坯体预先设计与挤压方法相 结合方法, 即预先将一定数量的增强相丝材用模具固定于基体中,然后依次等静 压、 烧结和挤压的方法【文献 CN101707145A】, 此方法虽然可以获得明显且连 续的纤维状结构,但是工艺较为复杂,要预先制备含增强相的银基的丝材并用模 具固定于基体中,且对于增强相丝材的塑性和延展性的有要求,规模化生产较为 困难。
发明内容
本发明针对上述现有技术存在的不足和缺陷,提供一种纤维状结构银基氧化 物电接触材料的制备方法, 该方法无论在加工变形量大或小,及增强相塑性和延 展性差或好,都可以得到具有明显纤维状结构银基氧化物电触头材料,且工艺简 单,操作方便,成本低廉,对设备无特殊要求。本发明方法制备的材料抗熔焊性、 耐电弧烧蚀性能及电导率均有较大的提高, 并且加工性能十分优良。
为实现上述的目的, 本发明采用的技术方案是:
本发明提供一种纤维状结构银基氧化物电接触材料的制备方法,包括以下步 骤:
第一步, 将银-金属-添加剂的合金粉和石墨粉均匀混合, 然后置于高能球磨 罐中进行球磨, 其中: 合金粉中所述金属为一切能够与银形成合金、 还原性比
Ag强能够自发氧化的金属, 且金属种类为一种或多种; 合金粉中银和其它金属 重量比例根据所需制备材料成份及后续加工要求所需计算获得;合金粉和石墨粉 重量比例根据材料所需的疏松度计算获得;添加剂含量根据待氧化的金属含量及 后续工艺所需计算获得, 且添加剂为 Bi、 In, Cu及稀土元素中的一种或多种。
第二步, 将第一步获得的粉体进行内氧化, 包括两步, 首先在空气气氛下脱 碳; 其次在氧气气氛下内氧化。
第三步,将第二步获得的内氧化后的粉体进行过筛,然后将未能通过筛网的 大颗粒粉体置于高能球磨机中进行再加工, 然后再过筛。
第四步,将第三步获得的复合粉体和基体银粉倒入混粉机中进行混粉,其中: 复合粉体和基体银粉重量比例根据所需制备材料成份及纤维尺寸所需计算获得。
第五步, 将第四步获得的粉体进行冷等静压。
第六步, 将冷等静压获得的坯体进行烧结。
第七步, 将烧结获得的坯体进行热压。
第八步,将热压获得的坯体进行热挤压,得到纤维状结构银基氧化物电触头 材料。
本发明上述方法制备的纤维状结构银基氧化物电触头材料,具有明显的纤维 状排列的增强相 (氧化物)材料, 其中增强相 (氧化物)材料的纤维组织结构是由其 颗粒定向排列而成的,且增强相颗粒材料为一种材料或多种材料混合物,取决于
第一步中银-金属-添加剂合金中的金属种类数。
本发明所采用方法与以往传统材料的机械合金化结合大塑性加工变形,以及 单纯预氧化制备方法都有显著不同, 本发明采用的方法是: 首先对银 -金属 -添加 剂合金粉和石墨粉进行高能球磨,高能球磨使合金粉和石墨粉在大能量碰撞碾压 得到细化,形成了均匀且超细的复合粉体;其次将球磨后的复合粉体进行内氧化, 在大气气氛下石墨粉将首先被氧化形成 co2气体, co2气体的排出使得粉体的结 构变得疏松, 疏松的结构在高压氧气气氛下有利于氧气进一步扩散到粉体内部, 促进金属彻底的氧化,最终形成具有疏松结构的银氧化物材料; 然后将有疏松结 构的粉体和基体 Ag粉按材料成分配方所需量进行均匀混合,依次进行冷等静压, 烧结, 热压, 热挤压。 在挤压过程中由于软化的基体 Ag的流动使得疏松结构粉 体的颗粒被缓慢拉开,并且沿着挤压方向定向排列而成纤维状结构。此方法使得 材料结构中具有明显的纤维状增强相组织结构,其耐电弧烧蚀能力比单纯的颗粒 分散增强的相同材料体系触头材料提高 10-20%,沿挤压方向导电率提高 5-10%, 抗熔悍性提高 10-20%, 电寿命提高了 10-25%; 并且具有优良的加工性能适用于 规模化生产。 具体实施方式
以下对本发明的技术方案作进一步的说明,以下的说明仅为理解本发明技术 方案之用, 不用于限定本发明的范围, 本发明的保护范围以权利要求书为准。
本发明提供上述纤维状结构的银基氧化物电触头材料的制备方法,适用于通 常的纤维增强银基氧化物复合材料的制备,无论在加工变形量大或小,及增强相 塑性和延展性差或好,都可以得到具有明显纤维状结构的银基电触头材料, 且工 艺简单, 操作方便, 成本低廉, 对设备无特殊要求。
根据本发明方法得到的银基氧化物电触头材料, 具有明显的纤维状增强相 (氧化物)材料, 其中增强相 (氧化物)材料的纤维组织结构是由其颗粒定向排列而 成的,且增强相 (氧化物)材料为一种材料或多种材料混合物,取决于前期银 -金属 -添加剂合金粉中的金属的种类及配比。
本发明中, Ag-金属 -添加剂合金粉可以采用雾化处理后过筛得到, 合金粉粒 度可以是 80目一 400目, 也可以采用其它现有能够获得的其他途径得到。
本发明中, 设计的球磨、 内氧化、 过筛、 混粉、 冷等静压、 烧结、 热压以及 热挤压等步骤, 具体工艺操作的参数是可以选择的, 比如:
第一步中, 将 Ag-金属-添加剂的合金粉和碳粉均匀混合, 然后置于高能球 磨罐中进行球磨, 其金属为一切能够与银形成合金、 还原性比 Ag强能够自发氧 化的金属, 且金属种类为一种或多种; 添加剂为 Bi、 In、 Cu及稀土元素中的一 种多种。 其中参数可以采用: 合金粉中银和金属重量比例在 3-0.5之间; 石墨粉 占总重量比例在 0.5%-3%之间;添加剂金属含量根据其氧化物重量不超过银基氧 化物中增强相 (除添加剂氧化物外的金属氧化物)的重量计算获得; 球磨转速在 180转 /分钟一 300转 /分钟之间; 球磨时间在 5-10小时; 球料比 (即球珠和粉体重 量比例)在 10-20之间。
第二步中, 将第一步获得的球磨后的粉体进行内氧化, 包括两步, 首先在空 气气氛下脱碳; 其次在氧气气氛下内氧化。其中参数可以采用: 空气气氛下氧化 温度在 250°C-700°C, 氧化时间在 5-15 小时之间; 高压氧气气氛下氧化温度在 300°C-70(TC之间; 氧化时间在 5-15小时之间, 氧压在 0.5MPa-3.5MPa。
第三步中,将第二步获得的内氧化后的粉体进行过筛,然后将未能通过筛网 的大颗粒粉体置于高能球磨机中进行加工, 然后再过筛。其中参数可以采用: 球 磨转速在 180转 /分钟一 280转 /分钟之间; 球磨时间在 5-15小时; 球料比 (即球 珠和粉体重量比例)在 10-20之间; 所过筛目数在 100-400目之间。
第四步中,将第三步获得的复合粉体和银粉倒入混粉机中进行混粉, 复合粉 体和基体银粉重量比例根据所需制备材料成份所需计算获得。 其中参数可以采 用- 混粉机转速在 20转 /分钟一 40转 /分钟之间; 混粉时间在 2-6小时之间, 基 体银粉粒度在 50-400目之间。
第五步中, 将第四步获得的粉体进行冷等静压。其中参数可以采用: 冷等静 压压强在 100-400Mpa之间。
第六步中, 将冷等静压获得的坯体进行烧结。其中参数可以采用: 烧结温度 在 600°C-900°C之间; 烧结时间在 5-10小时之间。
第七步中, 将烧结获得的坯体进行热压。 其中参数可以采用: 热压温度在 600°C-85(TC之间; 热压压强在 200-700MPa之间; 热压时间为 5min-30min之间。
第八步中,将热压获得的坯体进行热挤压,得到纤维状结构银基氧化物电触.
头材料。 其中参数可以采用: 坯体加热温度在 700-900°C之间; 挤压比在 60-400 之间, 挤压速度在 5-15cm/min之间; 挤压模具预热温度在 300-500°C之间。 以下通过具体应用的实施例来对本发明详细的技术操作进行说明。
实施例一
以制备 AgSn02(5)In203(5)触头材料为例
第一步, 获得 1262.5g 的 Ag-Sn-In合金粉末 (其中含有添加剂 262.5g的 In; 合金中 Ag和 Sn重量比例 3:1), 粒度 400目。 将 Ag锭、 Sn锭和 In203粉置于中 频感应炉中熔化成金属液体, 然后进行三级雾化处理, 把雾化好的银粉过 400 目筛。
第二步, 将第一步获得 Ag-Sn-In合金粉末和碳粉 37.88g均匀混合, 然后置 于高能球磨罐中进行球磨, 球磨转速在 300转 /分钟; 球磨时间 10小时; 球料比 为 10。
第三步中, 将第二步获得的球磨后的粉体进行内氧化。分两步, 首先在空气 气氛下氧化 15小时, 氧化温度 300°C, 其次在氧气气氛下氧化 5小时, 氧化温 度 700°C, 氧压 0.5MPa。
第四步中,将第三步获得的内氧化后的粉体进行过筛,未能通过筛网的大颗 粒粉体再重新返回到球磨机中进行加工, 然后再过筛。 球磨转速 200转 /分钟; 球磨时间 12小时; 球料比为 15; 所过筛目为 300目。
第五步, 将第四步获得的复合粉体和 200目银粉 4960g倒入 "V"型混粉机 中, 进行均匀混粉。 混粉时转速速度 40转 /分钟, 时间 6小时。
第六步, 将第三步获得的粉体装入直径为 9cm, 长度 20cm塑胶筒中, 进行 冷等静压, 冷等静压压强 100MPa。
第七步, 将第四步获得的冷等静压坯体进行烧结, 烧结温度 900°C, 烧结 5 小时。
第八步,将第五步获得的烧结坯体进行热压,温度 850Ό,热压压强 300MPa, 热压时间 30分钟。
第九步, 将热压好的坯体进行热挤压, 热挤压温度 90(TC, 挤压比 300, 挤 压速度 5cm/min, 挤压模具预热温度 400°C。
本实施例最终获得具有明显 Sn02和添加剂氧化物 In203纤维状结构的 AgSn02(l 0)材料, 其中, Sn02和添加剂氧化物 In203纤维状组织结构是分别由很 多细小的 Sn02颗粒和氧化物 In203颗粒定向排列连接而成的。 获得的材料抗拉 强度为 288Mpa; 沿挤压方向电阻率为 2.8μΩ.(Μη; 硬度为 87HV。 实施例二
以制备 AgCd012触头材料为例
第一步, 将 930g的 Ag-Cd-Cu (其中含有添加剂 30g的 Cu; 合金中 Ag和 Cd 重量比例 1:2)合金粉末 (粒度 80目)和 4.65g碳粉均勾混合, 然后置于高能球磨罐 中进行球磨, 球磨转速在 180转 /分钟; 球磨时间 10小时; 球料比 12。
第二步中, 将第一步获得的球磨后的粉体进行内氧化。分两步, 首先在空气 气氛下氧化 5小时, 氧化温度 250°C, 其次在氧气气氛下氧化 5小时, 氧化温度 300 °C , 氧压 1.5MPa。
第三步中,将第二步获得的内氧化后的粉体进行过筛,未能通过筛网的大颗 粒粉体再置于球磨机中进行加工, 然后再过筛。 球磨转速 280转 /分钟; 球磨时 间 5小时; 球料比 20, 所过筛目为 100目。
第四步, 将第三步获得的粉体和粒度为 400目的银粉 4691g—起倒入 "V" 型混粉机中, 进行均匀混粉。 混粉时转速速度 20转 /分钟, 时间 4小时。
第五步, 将第四步获得的粉体装入直径为 9cm, 长度 15cm塑胶筒中, 进行 冷等静压, 冷等静压压强 100MPa。
第六步, 将第五步获得的冷等静压坯体进行烧结, 烧结温度 750°C, 烧结 9 小时。
第七步,将第六步获得的烧结坯体进行热压,温度 600°C,热压压强 200MPa, 热压时间 20min。
第八步, 将热压好的坯体进行热挤压, 挤压成片材, 热挤压温度 900°C, 挤 压比 300, 挤压速度 10cm/min, 挤压模具预热温度 300Ό。
本实施例最终获得具有明显 CdO纤维状结构的 AgCd012材料, 其中, CdO 纤维状组织结构是由很多细小的 CdO颗粒定向排列连接而成的。 获得的材料抗 拉强度为 292Mpa; 沿挤压方向电阻率为 2.1μΩ.αη; 硬度为 83HV。
实施例三
以制备 AgZnO(8)触头材料为例
第一步, 将 1063g的 Ag-Zn-Bi (其中含有添加剂 63g的 Bi; 合金中 Ag和 Zn 重量比例 1:1)合金粉末 (粒度 200目)和 10g碳粉均匀混合, 然后置于高能球磨罐 中进行球磨, 球磨转速在 300转 /分钟; 球磨时间 5小时; 球料比 15。
第二步中, 将第一步获得的球磨后的粉体进行内氧化。分两步, 首先在空气 气氛下氧化 6小时, 氧化温度 700°C, 其次在氧气气氛下氧化 12小时, 氧化温 度 500°C, 氧压 lMPa。
第三步中,将第二步获得的内氧化后的粉体进行过筛,未能通过筛网的大颗 粒粉体置于高能球磨球磨机中进行再加工, 然后再过筛。 球磨转速 180转 /分钟; 球磨时间 15小时; 球料比 10; 所过筛目数为 400目。
第四步,将第三步获得的复合粉体和粒度为 50目的银粉 6595g—起倒入" V" 型混粉机中, 进行均勾混粉。 混粉时转速速度 30转 /分钟, 时间 2小时。
第五步, 将第四步获得的粉体装入直径为 9cm, 长度 30cm塑胶筒中, 进行 冷等静压, 冷等静压压强 400MPa。
第六步, 将第五步获得的冷等静压坯体进行烧结, 烧结温度 600°C, 烧结 8 小时。
第七步,将第六步获得的烧结坯体进行热压,温度 830°C,热压压强 700MPa, 热压时间 5min。
第八步, 将热压好的坯体进行热挤压, 热挤压温度 700°C, 挤压比 60, 挤压 速度 15cm/min, 挤压模具预热温度 500°C。
本实施例最终获得具有明显 ZnO纤维状结构的 AgZnO(8)材料, 其中, ZnO 纤维状组织结构是由很多细小的 ZnO颗粒定向排列连接而成的。 获得的材料抗 拉强度为 285Mpa; 沿挤压方向电阻率为 2.0μΩ.αη; 硬度为 86HV。 实施例四
以制备 Ag-4ZnO-8Sn02触头材料为例
第一步, 将 950g的 Ag-Zn-Sn (其中含有添加剂 30g的 In和 20g的 Ce; 合金 中 Ag、 Zn和 Sn重量比例 1 :0.51:1)合金粉末 (粒度 200目)和 18g碳粉均匀混合,
然后置于高能球磨罐中进行球磨, 球磨转速在 280转 /分钟; 球磨时间 10小时; 球料比为 20。
第二步中, 将第一步获得的球磨后的粉体进行内氧化。分两步, 首先在空气 气氛下氧化 6小时, 氧化温度 450°C, 其次在氧气气氛下氧化 15小时, 氧化温 度 500°C, 氧压 3.5MPa。
第三步中,将第二步获得的内氧化后的粉体进行过筛,未能通过筛网的大颗 粒粉体置于高能球磨机中进行再加工, 然后再过筛。 球磨转速 280转 /分钟; 球 磨时间 15小时; 球料比为 20; 所过筛目数为 400目。
第四步, 将第三步获得的复合粉体和粒度为 300 目的银粉 4644g—起倒入 "V"型混粉机中, 进行均匀混粉。 混粉时转速速度 30转 /分钟, 时间 4小时。
第五步, 将第四步获得的粉体装入直径为 9cm, 长度 15cm塑胶筒中, 进行 冷等静压, 冷等静压压强 300MPa。
第六步, 将第五步获得的冷等静压坯体进行烧结, 烧结温度 800°C, 烧结 10 小时。
第七步,将第六步获得的烧结坯体进行热压,温度 850°C,热压压强 700MPa, 热压时间 10min。
第八步, 将热压好的坯体进行热挤压, 热挤压温度 900°C, 挤压比 400, 挤 压速度 5cm/min, 挤压模具预热温度 500°C。
本实施例最终获得具有明显 ZnO和 Sn02纤维状结构的 Ag-4ZnO-8Sn02触 头材料材料, 其中, ZnO和 Sn02纤维状组织结构分别是由很多细小的 ZnO和 Sn02颗粒定向排列连接而成的。获得的材料抗拉强度为 260Mpa; 沿挤压方向电 阻率为 2.2μΩ.(Μη; 硬度为 88HV。 以上所述仅为本发明的部分较佳实施例而已,并非对本发明的技术范围做任 何限制,本发明还可以适用于其他成分配比的纤维状结构银基氧化物复合材料的 制备。凡在本发明的精神和原则之内做的任何修改, 等同替换和改进等, 均应包 含在本发明的保护范围之内。
Claims
1. 一种纤维状结构银基氧化物电触头材料的制备方法, 其特征在于包括以 下步骤:
第一步, 将银-金属-添加剂的合金粉和石墨粉均匀混合, 然后置于高能球磨 罐中进行球磨, 其中: 合金粉中所述金属为一切能够与银形成合金、 还原性比
Ag强能够自发氧化的金属, 且金属种类为一种或多种; 所述合金粉中银和其它 金属重量比例根据所需制备材料成份及后续加工要求所需计算;合金粉和石墨重 量比例根据材料所需的疏松度计算获得;添加剂含量按金属含量及后续工艺所需 计算获得, 且添加剂为 Bi、 In、 Cu及稀土元素中的一种或多种;
第二步, 将第一步获得的粉体进行内氧化, 包括两步, 首先在空气气氛下脱 碳, 其次在氧气气氛下内氧化;
第三步,将第二步获得的内氧化后的粉体依次进行球磨造粒和过筛, 未能通 过筛网的大颗粒粉体再重新返回到球磨机中进行加工, 然后再过筛;
第四步,将第三步获得的复合粉体和基体银粉倒入混粉机中进行混粉,其中: 复合粉体和基体银粉重量比例根据所需制备材料成份及纤维尺寸所需计算获得; 第五步, 将第四步获得的粉体进行冷等静压;
第六步, 将冷等静压获得的坯体进行烧结;
第七步, 将烧结获得的坯体进行热压;
第八步, 将热压获得的坯体进行热挤压, 得到纤维状结构银基电触头材料。
2.如权利要求 1所述的一种纤维状结构银基氧化物电触头材料的制备方法, 其特征在于, 第一步中, 所述合金粉粒度在 80-400 目之间; 合金粉中银和金属 重量比例在 3-0.5之间; 石墨粉占混合粉末总重量含量在 0.5%-3%之间; 添加剂 金属含量根据其氧化物重量不超过银基氧化物中增强相的重量计算获得,且添加 剂为 Bi、 In、 Cu及稀土元素中的一种多种; 所述球磨转速在 180转 /分钟一 300 转 /分钟之间, 球磨时间在 5-10小时, 球料比在 10-20之间。
3.如权利要求 1所述的一种纤维状结构银基氧化物电触头材料的制备方法, 其特征在于, 第二步中, 所述内氧化包括两步, 首先在空气气氛下氧化, 温度在 250°C-700°C ,氧化时间在 5-15小时之间;其次在氧气气氛下氧化,温度在 300°C -700°C之间, 氧化时间在 5-15小时之间, 氧压在 0.5MPa-3
4.如权利要求 1所述的一种纤维状结构银基氧化物电触头材料的制备方法, 其特征在于, 第三步中, 所述高能球磨, 其转速在 180转 /分钟一 280转 /分钟之 间,球磨时间在 5-15小时,球料比在 10-20之间,所过筛目数在 100-400目之间。
5.如权利要求 1所述的一种纤维状结构银基氧化物电触头材料的制备方法, 其特征在于, 第四步中, 所述混粉机转速在 20转 /分钟一 40转 /分钟之间, 混粉 时间在 2-6小时之间, 基体银粉粒度在 50-400目之间。
6.如权利要求 1所述的一种纤维状结构银基氧化物电触头材料的制备方法, 其特征在于, 第五步中, 所述冷等静压压强在 100-400Mpa之间。。
7.如权利要求 1所述的一种纤维状结构银基氧化物电触头材料的制备方法, 其特征在于, 第六步中, 所述烧结, 其中: 烧结温度在 600°C-900°C之间, 烧结 时间在 5-10小时之间。
8.如权利要求 1所述的一种纤维状结构银基氧化物电触头材料的制备方法, 其特征在于, 第七步中, 所述热压, 其中: 热压温度在 600°C-85(TC之间, 热压 压强在 200-700MPa之间, 热压时间为 5min-30min之间。
9.如权利要求 1所述的一种纤维状结构银基氧化物电触头材料的制备方法, 其特征在于, 第八步中, 所述热挤压, 其中: 坯体加热温度在 700-900Ό之间, 挤压比在 60-400 之间, 挤压速度在 5-15cm/min之间; 挤压模 ^¾预热温度在 300-500 °C之间。
10.—种采用权利要求 1所述方法制备的纤维状结构银基氧化物电触头材料, 其特征在于,所述纤维状结构的银基氧化物电触头材料具有明显的纤维状增强相 材料,其中增强相材料的纤维状组织结构是由其颗粒定向排列而成的;增强相材 料为一种材料或多种材料混合物, 取决于前期银-金属合金粉中的未氧化金属的 种类数及配比。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/578,253 US9761342B2 (en) | 2010-12-30 | 2011-04-11 | Method of preparing silver-based oxide electrical contact materials with fiber-like arrangement |
EP11853724.0A EP2537948B1 (en) | 2010-12-30 | 2011-04-11 | Method for manufacturing ag based oxide electrical contact materials with fibrous structure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010106199203A CN102176336B (zh) | 2010-12-30 | 2010-12-30 | 一种纤维状结构银基氧化物电触头材料的制备方法 |
CN201010619920.3 | 2010-12-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012088736A1 true WO2012088736A1 (zh) | 2012-07-05 |
Family
ID=44519498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/000634 WO2012088736A1 (zh) | 2010-12-30 | 2011-04-11 | 一种纤维状结构银基氧化物电触头材料的制备方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9761342B2 (zh) |
EP (1) | EP2537948B1 (zh) |
CN (1) | CN102176336B (zh) |
WO (1) | WO2012088736A1 (zh) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103586470B (zh) * | 2013-11-22 | 2016-02-17 | 福达合金材料股份有限公司 | 银金属氧化物石墨复合电触头材料的制备方法及其产品 |
CN103681015B (zh) * | 2013-11-28 | 2015-12-02 | 昆明理工大学 | 一种复相金属氧化物增强银基电触头材料的制备方法 |
CN105575684A (zh) * | 2015-12-24 | 2016-05-11 | 周懿涵 | 一种银基电触头复合材料及其制备方法 |
CN105679560B (zh) * | 2016-02-26 | 2018-06-01 | 济南大学 | 一种镀镍石墨烯增强银基电触头材料的制备方法 |
CN105551861B (zh) * | 2016-02-26 | 2018-06-05 | 周懿涵 | 一种石墨烯增强银基电触头材料的制备方法 |
CN107282929B (zh) * | 2017-07-11 | 2019-05-07 | 大连大学 | 纤维定向增强复合材料电流直加热粉末热挤压制备方法及装置 |
CN107755686A (zh) * | 2017-10-12 | 2018-03-06 | 上海交通大学 | 一种纳米银碳复合材料及其制备方法 |
CN108080644B (zh) * | 2017-12-08 | 2021-06-25 | 中国科学院金属研究所 | 一种高强韧化金属基复合材料的粉末冶金制备方法 |
CN108067612B (zh) * | 2017-12-15 | 2019-09-06 | 桂林金格电工电子材料科技有限公司 | 一种可焊片状平行结构银石墨触头的制备工艺 |
CN107999747B (zh) * | 2017-12-15 | 2019-09-06 | 桂林金格电工电子材料科技有限公司 | 一种可焊平行结构银石墨带状触头材料的制备方法 |
CN111618297B (zh) * | 2020-04-21 | 2022-06-07 | 陕西斯瑞新材料股份有限公司 | 一种快速烧结成型银基触头制备方法 |
CN111961910B (zh) * | 2020-07-24 | 2022-07-12 | 浙江耐迩合金科技有限公司 | 一种银氧化锡电接触材料的制备方法 |
CN111822308B (zh) * | 2020-07-27 | 2021-02-26 | 南京工程学院 | 一种CeO2改性纳米Ag晶须掺杂石墨烯薄膜及其制备方法 |
CN112151291B (zh) * | 2020-08-18 | 2023-06-06 | 浙江福达合金材料科技有限公司 | 一种高寿命的银金属氧化物电接触材料及其制备方法 |
CN112239350B (zh) * | 2020-10-19 | 2022-08-05 | 西安工程大学 | 一种铜氧化锡触头材料的制备方法 |
CN114000006B (zh) * | 2021-10-15 | 2022-05-10 | 昆明贵研新材料科技有限公司 | 一种银基复合材料及其制备方法 |
CN114438366A (zh) * | 2021-12-28 | 2022-05-06 | 温州中希电工合金有限公司 | 一种银氧化锡氧化铟电接触材料的制备方法 |
CN118905239B (zh) * | 2024-10-11 | 2024-12-17 | 陕西陕煤启远科技有限公司 | 一种银基材料及其制备方法、阴极组件和等离子发生器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100999789A (zh) * | 2006-01-12 | 2007-07-18 | 沈阳金纳新材料有限公司 | 一种银氧化锡电触头材料的制备方法 |
CN101071687A (zh) * | 2007-06-05 | 2007-11-14 | 桂林电器科学研究所 | 银-纳米氧化锡电触头材料及其制备工艺 |
CN101217074A (zh) * | 2008-01-14 | 2008-07-09 | 中希合金有限公司 | 银氧化锡/铜复合电触头及其制备方法 |
CN101649399A (zh) * | 2009-07-20 | 2010-02-17 | 温州宏丰电工合金有限公司 | 银氧化锡电接触材料的制备方法 |
CN101707146A (zh) * | 2009-09-24 | 2010-05-12 | 温州宏丰电工合金有限公司 | Ag基电触头材料及其制备方法 |
CN101707145A (zh) | 2009-09-24 | 2010-05-12 | 温州宏丰电工合金有限公司 | 纤维结构性银基电触头材料及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2291793A1 (fr) * | 1974-11-20 | 1976-06-18 | Alcan Aluminium France | Procede de broyage de particules de matiere et broyeur a billes perfectionne pour la mise en oeuvre de ce procede |
CN1167835A (zh) * | 1997-03-17 | 1997-12-17 | 江阴市宏发合金材料厂 | 银氧化锡氧化铟电触点用线材及其生产工艺 |
CN101608272A (zh) * | 2009-07-20 | 2009-12-23 | 温州宏丰电工合金有限公司 | AgNi电触头材料及其制备方法 |
CN101608279B (zh) * | 2009-07-20 | 2012-10-03 | 温州宏丰电工合金股份有限公司 | 银氧化物电触点材料及其制备方法 |
CN101707153B (zh) * | 2009-09-24 | 2011-12-28 | 温州宏丰电工合金股份有限公司 | 细颗粒氧化锡增强银基电触头材料的制备方法 |
CN101707144B (zh) * | 2009-09-24 | 2011-09-28 | 温州宏丰电工合金股份有限公司 | 纤维结构AgNi电触头材料及其制备方法 |
-
2010
- 2010-12-30 CN CN2010106199203A patent/CN102176336B/zh active Active
-
2011
- 2011-04-11 WO PCT/CN2011/000634 patent/WO2012088736A1/zh active Application Filing
- 2011-04-11 EP EP11853724.0A patent/EP2537948B1/en active Active
- 2011-04-11 US US13/578,253 patent/US9761342B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100999789A (zh) * | 2006-01-12 | 2007-07-18 | 沈阳金纳新材料有限公司 | 一种银氧化锡电触头材料的制备方法 |
CN101071687A (zh) * | 2007-06-05 | 2007-11-14 | 桂林电器科学研究所 | 银-纳米氧化锡电触头材料及其制备工艺 |
CN101217074A (zh) * | 2008-01-14 | 2008-07-09 | 中希合金有限公司 | 银氧化锡/铜复合电触头及其制备方法 |
CN101649399A (zh) * | 2009-07-20 | 2010-02-17 | 温州宏丰电工合金有限公司 | 银氧化锡电接触材料的制备方法 |
CN101707146A (zh) * | 2009-09-24 | 2010-05-12 | 温州宏丰电工合金有限公司 | Ag基电触头材料及其制备方法 |
CN101707145A (zh) | 2009-09-24 | 2010-05-12 | 温州宏丰电工合金有限公司 | 纤维结构性银基电触头材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US9761342B2 (en) | 2017-09-12 |
EP2537948A1 (en) | 2012-12-26 |
US20130266468A1 (en) | 2013-10-10 |
EP2537948B1 (en) | 2018-06-06 |
CN102176336B (zh) | 2012-11-14 |
CN102176336A (zh) | 2011-09-07 |
EP2537948A4 (en) | 2016-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012088736A1 (zh) | 一种纤维状结构银基氧化物电触头材料的制备方法 | |
CN103695682B (zh) | 一种带增强基体性能添加物的银氧化物触点材料及制备方法及其产品 | |
WO2011003225A1 (zh) | 一种银-金属氧化物电触头材料的制备方法 | |
WO2012071767A1 (zh) | 纤维状结构银基电接触材料的制备方法 | |
CN101195879B (zh) | 一种Al2O3弥散强化铜合金及其制备方法 | |
CN101241804B (zh) | 一种银-氧化锌电触头及其制备方法 | |
CN101649399B (zh) | 银氧化锡电接触材料的制备方法 | |
CN105200262B (zh) | 一种高氧化锡含量银基片状电触头材料的制备方法 | |
WO2012088734A1 (zh) | 颗粒定向排列增强银基氧化物电触头材料的制备方法 | |
CN109207766B (zh) | 一种组织可控高铝含量Cu-Al2O3纳米弥散铜合金制备工艺 | |
CN103589897B (zh) | 银金属氧化物钨复合电触头材料的制备方法及其产品 | |
CN102660696A (zh) | 一种弥散强化铜基复合材料及其制备方法 | |
WO2012088735A1 (zh) | 纤维状组织结构银基氧化物电触头材料的制备方法 | |
CN104245976A (zh) | 触点材料 | |
CN103589898B (zh) | 银金属氧化物碳化钨复合电触头材料的制备方法及其产品 | |
CN114496621B (zh) | 一种银钨复铜合金电接触材料的制备方法 | |
CN110423908A (zh) | 一种可快速氧化银氧化锡氧化铟电接触材料及制备方法 | |
CN102509654B (zh) | 一种银氧化锡丝材制备方法 | |
CN109609794A (zh) | 一种高延性银氧化锡触头材料的制备方法 | |
US9287018B2 (en) | Method of preparing silver-based electrical contact materials with fiber-like arrangement of reinforcing nanoparticles | |
CN117026004B (zh) | 一种ZnO@In2O3增强银基复合材料及其制备方法 | |
CN115747699B (zh) | 一种高氧化物含量银氧化锡片状触点材料的制备方法 | |
CN102304658A (zh) | 一种交流接触器用铜合金触头材料及其制备方法 | |
CN117646135A (zh) | 一种含弥散氧化物添加剂的银镍电接触材料 | |
CN117089738A (zh) | 一种SnO2@In2O3CuO增强银基复合材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 13578253 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11853724 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011853724 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |