Nothing Special   »   [go: up one dir, main page]

WO2012070356A1 - Electrostatic induction type mechanical-electrical conversion element - Google Patents

Electrostatic induction type mechanical-electrical conversion element Download PDF

Info

Publication number
WO2012070356A1
WO2012070356A1 PCT/JP2011/074792 JP2011074792W WO2012070356A1 WO 2012070356 A1 WO2012070356 A1 WO 2012070356A1 JP 2011074792 W JP2011074792 W JP 2011074792W WO 2012070356 A1 WO2012070356 A1 WO 2012070356A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction type
coating layer
type electromechanical
region
electret
Prior art date
Application number
PCT/JP2011/074792
Other languages
French (fr)
Japanese (ja)
Inventor
武内 幸久
小林 伸行
隆太 杉浦
七瀧 努
克宏 今井
下河 夏己
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2012545663A priority Critical patent/JP5844741B2/en
Publication of WO2012070356A1 publication Critical patent/WO2012070356A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/02Electrets, i.e. having a permanently-polarised dielectric
    • H01G7/028Electrets, i.e. having a permanently-polarised dielectric having a heterogeneous dielectric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/004Electrostatic motors in which a body is moved along a path due to interaction with an electric field travelling along the path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines

Definitions

  • the present invention relates to an electrostatic induction type electromechanical transducer.
  • an apparatus using an electret in which an electric charge is injected into an insulating material such as a synthetic resin
  • an insulating material such as a synthetic resin
  • JP-A-2006-180450, JP-A-2007-298297, JP-A-2010-136598, etc. In order to improve the performance in such devices, it is necessary to increase the charge density in the electret.
  • polymer electrets surfaces of polymer materials disclosed in JP-A-58-6118, JP-A-2001-177899, JP-A-2006-180450, and JP-A-2010-136598 are disclosed.
  • a configuration using a device in which charges are injected in the vicinity there is a limit with respect to an increase in charge density.
  • such a configuration has a problem that heat resistance is low and a problem that the charge density deteriorates with time.
  • the configuration using a ferroelectric electret (the one obtained by polarization processing of a ferroelectric film) disclosed in Japanese Patent Laid-Open No. 2007-298297 is higher than the configuration using a polymer electret. Charge density and heat resistance are obtained.
  • depolarization occurs with time in the ferroelectric electret, so that it is difficult to stably maintain the polarization state for a long period of time.
  • the present invention has been made to solve such a problem. That is, the present invention is to provide an electrostatic induction type electromechanical transducer using electrets having more excellent durability.
  • the electrostatic induction electromechanical transducer of the present invention includes an electret made of a ferroelectric film (for example, lead zirconate titanate or lithium niobate).
  • the electrostatic induction type electromechanical transducer of the present invention includes the electret, a counter substrate, and a first region counter electrode.
  • the counter substrate is disposed so as to face the main surface of the electret, and is provided to be movable relative to the electret.
  • the counter substrate is provided to be movable relative to the electret along the main surface direction.
  • the “main surface” in the electret is a surface orthogonal to the thickness direction of the electret which is a film made of a ferroelectric material (the direction defining the thickness of the film).
  • the direction parallel to the “main surface” of the electret is hereinafter referred to as “main surface direction”.
  • the “film” may also be referred to as “thin film” or “thin plate”.
  • the first region counter electrode is a conductive film, and is provided corresponding to the first region on the surface of the counter substrate facing the main surface.
  • a second region counter electrode may be provided on the surface of the counter substrate facing the main surface so as to correspond to the second region.
  • the second region counter electrode is a conductive film, and is provided at a position different from the first region counter electrode so as not to be electrically connected to the first region counter electrode.
  • the feature of the present invention resides in that the electrostatic induction type electromechanical transducer has the following configuration.
  • the electret has a first region and a second region.
  • the first region is a region in which the polarization direction along the thickness direction is the first direction.
  • the second region is a region in which the polarization direction along the thickness direction is a second direction opposite to the first direction.
  • an angle formed by the polarization direction and the thickness direction is ⁇ 45 to +45 degrees.
  • the first region is polarized in the first direction parallel to the thickness direction, and the second region is in a second direction opposite to the first direction. Polarized.
  • the electret is configured such that the first region and the second region are adjacent to each other along the main surface direction. That is, in the electret of the present invention, a plurality of the first regions and a plurality of the second regions are provided so that the polarization direction is periodically reversed along the main surface direction. Specifically, for example, a plurality of the first regions and a plurality of the second regions may be provided so that the inversion period of the polarization direction is 3 to 200 ⁇ m.
  • the electrostatic induction type electromechanical transducer of the present invention is a polymer film formed on the main surface so as to be in close contact with the main surface of the electret on the side facing the first region counter electrode. Further, a coating layer may be further provided.
  • the coating layer may include, for example, a first coating layer provided on the main surface side of the electret, and a second coating layer that is more elastically deformed than the first coating layer.
  • the second coating layer is provided on the first region counter electrode side, and is formed on the first coating layer so as to be in close contact with the first coating layer.
  • the second coating layer has a Young's modulus of 0.01 to 5 GPa.
  • the first coating layer has a dense structure, and the second coating layer has voids.
  • the porosity of the second coating layer is preferably 10 to 90%.
  • the electrostatic induction electromechanical transducer of the present invention may further include a coating layer that is a polymer film provided on the counter substrate side so as to cover the first region counter electrode.
  • the electret in the electrostatic induction type electromechanical transducer according to the present invention since the positive and negative charges are alternated in each adjacent region, the polarization state can be stably maintained for a long time. . Therefore, according to the present invention, it is possible to provide an electrostatic induction type electromechanical transducer using electrets that has more excellent durability.
  • FIG. 1 is a sectional view showing a schematic configuration of an embodiment of an electrostatic induction type electromechanical transducer of the present invention.
  • the electrostatic induction type electromechanical transducer 1 of the present embodiment includes an electret support substrate 2, a back electrode 3, an electret 4, a coating layer 5, a counter substrate 6, and a first region facing. And an electrode 7.
  • the back electrode 3 is a uniform conductive film, and is formed on one surface (the upper surface in the drawing) of the electret support substrate 2.
  • the electret 4 is a ferroelectric (for example, lead zirconate titanate or lithium niobate) film, and is joined to the back electrode 3. That is, the electret support substrate 2, the back electrode 3, and the electret 4 are stacked in this order in the thickness direction (z-axis direction in the figure) orthogonal to the main surface MS of the electret 4 and provided so as to be in close contact with each other. It has been.
  • the electret 4 is supported on the above-described one surface of the electret support substrate 2 via the back electrode 3.
  • the electret 4 has a first region 41 and a second region 42.
  • the first region 41 and the second region 42 are polarized so that the components in the thickness direction of the polarization direction are opposite to each other.
  • the first region 41 is polarized in one direction (z-axis positive direction in the drawing) parallel to the thickness direction.
  • the second region 42 is polarized in another direction (z-axis negative direction in the drawing) parallel to the thickness direction. That is, the first region 41 and the second region 42 are provided such that the polarization direction is periodically reversed at a predetermined cycle (specifically, 3 to 200 ⁇ m).
  • the first region 41 and the second region 42 are alternately arranged in one direction parallel to the main surface MS (in the figure, the x-axis direction: hereinafter referred to as “main surface direction”).
  • the first region 41 and the second region 42 are each parallel to the main surface MS and perpendicular to the above-described main surface direction (in the figure, the y-axis direction: hereinafter referred to as “sub-main surface direction”). Is provided so as to have a longitudinal direction.
  • the coating layer 5 is a polymer film, and is formed on the main surface MS so as to be in close contact with the main surface MS of the electret 4.
  • the coating layer 5 is formed so that the Young's modulus is 0.01 to 5 GPa.
  • the counter substrate 6 is disposed so as to face the main surface MS of the electret 4 with the coating layer 5 interposed therebetween.
  • the counter substrate 6 is obtained by laminating the electret support substrate 2, the back electrode 3, the electret 4 and the coating layer 5 in this order in the thickness direction (hereinafter, simply referred to as “electret laminate”). ) With respect to the aforementioned main surface direction (x-axis positive direction and negative direction in the figure).
  • the first region counter electrode 7 is a comb-like electrode pattern having a planar shape in which one ends of a plurality of linear electrodes in the longitudinal direction are coupled to each other, and is a surface BS facing the above-described electret laminate on the counter substrate 6. Formed on top.
  • Each of the plurality of linear electrodes has a longitudinal direction in the sub-main surface direction described above, and corresponds to the first region 41 (a position facing the first region 41 with the coating layer 5 interposed therebetween). ) Only.
  • the plurality of first region counter electrodes 7 includes a period of polarization inversion along the principal surface direction (x-axis direction in the drawing) of the electret 4, that is, the first region 41 and the second region along the principal surface direction. Are arranged along the principal surface direction at a period that coincides with the arrangement period of the regions 42.
  • the electrostatic induction type electromechanical transducer 1 has the fluctuation of the charge induced in the first region counter electrode 7 with the relative movement of the electret 4 and the counter substrate 6 in the main surface direction.
  • the mechanical energy of the relative movement is converted into electric energy.
  • a uniform platinum electrode film is formed on a flat plate electret support substrate made of ZrO 2 stabilized with Y 2 O 3 by a screen printing method, and the electret support substrate and the platinum electrode film are subjected to heat treatment at 1300 ° C. for 2 hours. And integrated.
  • a lead zirconate titanate powder, a dispersion medium, a plasticizer, and a dispersant are mixed to form a paste, and the film thickness after drying is determined by screen printing. The film was formed to 75 ⁇ m.
  • a film obtained by forming (screen printing) a lead zirconate titanate powder paste on an electret support substrate was heat-treated (fired) at 1250 ° C. for 5 hours to obtain a sintered film having a thickness of 50 ⁇ m. During this heat treatment, lead zirconate titanate powder was allowed to coexist in the atmosphere.
  • a uniform electrode film (thickness 1000 ⁇ ) for polarization treatment made of tantalum was formed on the lead zirconate titanate film fixed on the electret support substrate by the above heat treatment.
  • the substrate after electrode formation was immersed in insulating oil (150 ° C.) and subjected to polarization treatment with an electric field strength of about 3 kV / mm (coercive electric field).
  • the uniform electrode after the polarization treatment was removed by acid treatment, and then a comb-shaped electrode film (thickness 1000 angstrom, electrode period 14 ⁇ m (main surface direction width 7 ⁇ m, main surface direction electrode spacing 7 ⁇ m)) was patterned.
  • the patterned material was immersed in insulating oil (150 ° C.), and a polarization treatment was performed by applying a rectangular pulse voltage having a width of about 1 msec with an electric field strength of about 3 kV / mm (coercive electric field).
  • the number of pulses applied depends on the area of the comb electrode pattern. For example, when it is 20 mm 2 , 20000 pulses were suitable.
  • the polarization comb electrode was removed by acid treatment. Thereafter, a polyimide film having a Young's modulus of 0.05 Gpa and a thickness of 50 ⁇ m was laminated on the lead zirconate titanate film (the surface from which the comb electrode for polarization treatment was removed by acid treatment) to obtain the above laminate. . The obtained laminate was heated to 400 ° C. to perform a charge removal process for removing surface charges.
  • a comb-shaped counter electrode (6 ⁇ m width in the main surface direction and 8 ⁇ m electrode distance in the main surface direction) was formed on the counter substrate made of polyimide film by a sputtering method.
  • electrostatic induction A mold electromechanical transducer was obtained.
  • the first regions 41 and the second regions 42 in which the polarization directions are reversed are arranged alternately along the main surface direction. For this reason, in the main surface MS, positive and negative charges are alternated for each adjacent region. Thereby, it becomes possible to hold
  • the inversion period of the polarization direction that is, the arrangement period of the first region 41 and the second region 42 is preferably 3 to 200 ⁇ m.
  • a neutralized coating layer 5 is provided between the main surface MS of the electret 4 and the first region counter electrode 7. Thereby, the adhesion of foreign matter on the main surface MS is suppressed as much as possible.
  • the Young's modulus of the coating layer 5 is relatively low, even when the coating layer 5 and the first region counter electrode 7 are brought into close contact with each other, the main surface direction (in the drawing) of the electret 4 and the counter substrate 6 The relative movement in the x-axis positive direction and negative direction) is performed well. Therefore, the gap between the main surface MS of the electret 4 and the first region counter electrode 7 is favorably managed by bringing the coating layer 5 and the first region counter electrode 7 into close contact with each other. Therefore, according to such a configuration, a stable power generation operation (mechanical electrical conversion operation) can be performed.
  • the Young's modulus of the coating layer 5 is preferably 0.01 to 5 GPa.
  • the present invention is not limited to the specific configurations and materials described above. That is, for example, the present invention is not limited to a power generation element (a mechanical / electrical conversion element that generates power by environmental vibration) as in the above-described embodiment, and can be used for a microphone, various sensors, and the like (in this case, an electrode or the like The shape and arrangement are appropriately changed.)
  • the vibration (relative movement) direction may also be the thickness direction.
  • the electret of the present invention is not limited to lead zirconate titanate (PZT), but is a curie such as lithium niobate, barium titanate, lead titanate, lead metaniobate, bismuth tungstate, bismuth lanthanum titanium oxide, etc. Any ferroelectric material having a temperature may be used.
  • the first region 41 and the second region 42 may have the same or different width in the principal surface direction (x-axis direction in the drawing). Further, the first region 41 and the second region 42 do not have to be so-called “striped” in plan view as in the above-described embodiment. Specifically, for example, a so-called “checkered pattern” may be used in a plan view. Specifically, the first region 41 and the second region 42 having a substantially rectangular shape (typically a substantially square shape) in plan view may be alternately arranged two-dimensionally.
  • the polarization direction may not be parallel to the thickness direction. That is, the angle ⁇ [°] formed by the polarization direction in the first region 41 and the positive z-axis direction is ⁇ 45 ⁇ ⁇ ⁇ + 45, and the polarization direction in the second region 42 and the negative z-axis direction are formed.
  • the angle ⁇ may be such that [°] is ⁇ 45 ⁇ ⁇ ⁇ + 45 (in this case, the absolute value of ⁇ may be the same as or different from the absolute value of ⁇ ).
  • coating layer 5 in addition to polyimide, polyamide, polyamideimide, polyetherimide, polyethersulfone, polysulfone, polyacetal, polyphenylene oxide, polyetheretherketone, PTFE, CYTOP (registered trademark), Teflon (registered trademark), It is possible to use organic materials such as It is also possible to use inorganic materials such as low dielectric constant glass, aluminum oxide, zirconium oxide, titanium oxide, and silica alumina.
  • the present invention is not limited to the specific manufacturing method described above. That is, for example, as the electret 4, it is possible to use a single crystal wafer, a film formed by the AD method, instead of a sheet molded body fired (ceramic film) as in the above-described embodiment. .
  • a (001) cut substrate made of lead zirconate titanate single crystal and having a thickness of 500 ⁇ m is prepared, and a comb-shaped electrode film (thickness 1000 ⁇ , electrode made of tantalum on the (001) plane thereof. While patterning a period of 7 ⁇ m (main surface direction width 3.5 ⁇ m, main surface direction electrode spacing 3.5 ⁇ m), the (00-1) surface (opposite surface) is a uniform electrode film (thickness) made of tantalum 1000 angstroms). Thereafter, a polarization process or the like is performed in the same manner as in the specific example described above. In this case, the electret support substrate 2 in FIG. 1 can be omitted.
  • an AD film having a thickness of 20 ⁇ m, which is formed by injecting lead zirconate titanate having a particle diameter of about 1 ⁇ m onto a substrate at a high speed is prepared.
  • Polarization processing or the like is performed as in the specific example.
  • the AD film may be heat-treated for the purpose of improving crystallinity.
  • a film formed by the AD method is denser and has a smaller primary particle diameter than a film formed by screen printing, and therefore, the insulating property can be increased and the durability can be increased.
  • the polarization comb electrode it is possible to use flake graphite powder patterned by, for example, screen printing. By forming the flake-shaped graphite on the ferroelectric film in a lying state, the adhesion strength can be lowered while lowering the contact resistance, so it can be easily removed by blowing off after the polarization treatment. it can.
  • the method for forming the coating layer 5 is not only film adhesion as in the above-described embodiment, but also screen printing, bar coating, spin coating, sol-gel, sputtering, CVD, thermal spraying, dipping, air gun coating Etc. can be used.
  • the static elimination treatment is performed by heat treatment up to the depolarization temperature near the Curie point.
  • the state where the polarization remains to some extent remains. It is preferable to set it in terms of increasing recovery of the polarization state after the temperature is lowered.
  • the static elimination treatment is performed by heat treatment up to the depolarization temperature near the Curie point, but the present invention is not limited to this.
  • the charge removal process may be performed by an acid etching process or the like. Further, it may be performed by ion shower irradiation or the like.
  • FIG. 2 is an enlarged view of a main part in another embodiment (modification) of the electrostatic induction type electromechanical transducer of the present invention.
  • the coating layer 5 includes a first coating layer 51 and a second coating layer 52.
  • the first coating layer 51 is provided on the main surface MS side.
  • the second coating layer 52 is formed on the first coating layer 51 so as to be in close contact with the first coating layer 51.
  • the first coating layer 51 has a dense structure in order to protect the main surface MS of the electret 4.
  • the second coating layer 52 is formed so as to have a Young's modulus of 0.01 to 5 GPa by having a large number of voids V so that the porosity is 10 to 90%.
  • the first coating layer 51 and the second coating layer 52 can be formed by a screen printing method, a bar coating method, a spin coating method, a sol-gel method, a sputtering method, a CVD method, thermal spraying, as well as film adhesion as in the above-described embodiment. It is possible to use a method, a dipping method, an air gun coating, or the like.
  • the porosity of the second coating layer 52 is preferably 10 to 90%.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of still another embodiment (modification) of the electrostatic induction type electromechanical transducer of the present invention.
  • the counter substrate 6 may be provided with a second region counter electrode 8 facing the second region 42 in addition to the first region counter electrode 7 facing the first region 41. Good. According to such a configuration, not only the first region 41 but also the second region 42 contributes to mechanical / electrical energy conversion, so that the energy conversion efficiency can be further improved.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of still another embodiment (modification) of the electrostatic induction type electromechanical transducer of the present invention.
  • the coating layer 5 may be provided on the counter substrate 6 side. Specifically, the coating layer 5 may be provided on the surface BS of the counter substrate 6 so as to cover the counter electrodes (the first region counter electrode 7 and the second region counter electrode 8).
  • the coating layer 5 covers the counter electrode and the first coating layer 51 formed on the surface BS of the counter substrate 6 so as to fill a gap between the adjacent counter electrodes. And a second coating layer 52 provided on the first coating layer 51, or a single layer structure as shown in FIG. Also good.
  • the counter electrode may be only the first region counter electrode 7.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of still another embodiment (modified example) of the electrostatic induction type electromechanical transducer of the present invention.
  • the coating layer 5 may be provided on both the electret 4 side and the counter substrate 6 side. That is, the coating layer 5 in this case includes an electret side coating layer 5a and a counter electrode side coating layer 5b.
  • the electret-side coating layer 5 a is formed on the main surface MS so as to be in close contact with the main surface MS of the electret 4.
  • the counter electrode side coating layer 5b is provided on the surface BS of the counter substrate 6 so as to cover the counter electrodes (the first region counter electrode 7 and the second region counter electrode 8).
  • the electret side coating layer 5a and the counter electrode side coating layer 5b are preferably made of the same material.
  • the material which comprises the electret side coating layer 5a and the material which comprises the counter electrode side coating layer 5b may be selected so that it may adjoin on a triboelectric row.
  • the electret-side coating layer 5a and / or the counter-electrode-side coating layer 5b are similarly laminated layers (the first coating layer 51 provided in close contact with the electret 4 or the counter substrate 6). And a second coating layer 52 formed thereon. Further, the counter electrode may be only the first region counter electrode 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

Disclosed is an electret which comprises a first region and a second region. The polarization direction of the first region along the thickness direction is in a first direction. The polarization direction of the second region along the thickness direction is in a second direction that is opposite to the first direction. The first region and the second region are provided adjacent to each other in a main surface direction that is parallel to a main surface, which is a surface perpendicular to the thickness direction.

Description

静電誘導型機械電気変換素子Electrostatic induction type electromechanical transducer
 本発明は、静電誘導型機械電気変換素子に関する。 The present invention relates to an electrostatic induction type electromechanical transducer.
 この種の装置として、エレクトレット(合成樹脂等の絶縁材料に電荷を注入したもの)を用いたものが知られている(例えば、特開昭58-6118号公報、特開2001-177899号公報、特開2006-180450号公報、特開2007-298297号公報、特開2010-136598号公報、等参照。)。かかる装置における性能を向上させるためには、エレクトレットにおける電荷密度を増加させることが必要である。 As this type of apparatus, an apparatus using an electret (in which an electric charge is injected into an insulating material such as a synthetic resin) is known (for example, JP-A-58-6118, JP-A-2001-177899, (See JP-A-2006-180450, JP-A-2007-298297, JP-A-2010-136598, etc.). In order to improve the performance in such devices, it is necessary to increase the charge density in the electret.
 この点、特開昭58-6118号公報、特開2001-177899号公報、特開2006-180450号公報及び特開2010-136598号公報に開示されている、高分子エレクトレット(高分子材料の表面近傍に電荷を注入したもの)を用いた構成においては、電荷密度の増加に関して限界がある。また、かかる構成においては、耐熱性が低いという問題や、電荷密度の経時劣化が大きいという問題がある。 In this regard, polymer electrets (surfaces of polymer materials) disclosed in JP-A-58-6118, JP-A-2001-177899, JP-A-2006-180450, and JP-A-2010-136598 are disclosed. In a configuration using a device in which charges are injected in the vicinity, there is a limit with respect to an increase in charge density. In addition, such a configuration has a problem that heat resistance is low and a problem that the charge density deteriorates with time.
 一方、特開2007-298297号公報に開示されている、強誘電体エレクトレット(強誘電体膜を分極処理したもの)を用いた構成においては、高分子エレクトレットを用いた構成と比べて、より高い電荷密度及び耐熱性が得られる。しかしながら、かかる構成においても、強誘電体エレクトレットにて時間経過とともに脱分極が発生するために、分極状態を長期間安定的に保持することが困難である。 On the other hand, the configuration using a ferroelectric electret (the one obtained by polarization processing of a ferroelectric film) disclosed in Japanese Patent Laid-Open No. 2007-298297 is higher than the configuration using a polymer electret. Charge density and heat resistance are obtained. However, even in such a configuration, depolarization occurs with time in the ferroelectric electret, so that it is difficult to stably maintain the polarization state for a long period of time.
 本発明は、かかる課題を解決するためになされたものである。すなわち、本発明は、エレクトレットを用いた静電誘導型機械電気変換素子において、より優れた耐久性を備えたものを提供することにある。 The present invention has been made to solve such a problem. That is, the present invention is to provide an electrostatic induction type electromechanical transducer using electrets having more excellent durability.
<構成>
 本発明の静電誘導型機械電気変換素子は、強誘電体(例えばチタン酸ジルコン酸鉛やニオブ酸リチウム)膜からなるエレクトレットを備えている。具体的には、例えば、本発明の静電誘導型機械電気変換素子は、前記エレクトレットと、対向基板と、第一領域対向電極と、を備えている。前記対向基板は、前記エレクトレットにおける主面と対向するように配置されていて、前記エレクトレットと相対移動可能に設けられている。具体的には、例えば、前記対向基板は、前記エレクトレットに対して、前記主面方向に沿って相対移動可能に設けられている。
<Configuration>
The electrostatic induction electromechanical transducer of the present invention includes an electret made of a ferroelectric film (for example, lead zirconate titanate or lithium niobate). Specifically, for example, the electrostatic induction type electromechanical transducer of the present invention includes the electret, a counter substrate, and a first region counter electrode. The counter substrate is disposed so as to face the main surface of the electret, and is provided to be movable relative to the electret. Specifically, for example, the counter substrate is provided to be movable relative to the electret along the main surface direction.
 ここで、前記エレクトレットにおける「主面」とは、強誘電体からなる膜である前記エレクトレットの厚さ方向(当該膜の厚さを規定する方向)と直交する表面である。なお、前記エレクトレットの「主面」と平行な方向を、以下「主面方向」と称する。また、「膜」は、「薄膜」あるいは「薄板」とも称され得る。 Here, the “main surface” in the electret is a surface orthogonal to the thickness direction of the electret which is a film made of a ferroelectric material (the direction defining the thickness of the film). The direction parallel to the “main surface” of the electret is hereinafter referred to as “main surface direction”. The “film” may also be referred to as “thin film” or “thin plate”.
 前記第一領域対向電極は、導電性膜であって、前記対向基板における前記主面と対向する面にて、前記第一の領域に対応して設けられている。なお、前記対向基板における前記主面と対向する面にて、前記第二の領域に対応するように、第二領域対向電極が設けられていてもよい。かかる第二領域対向電極は、導電性膜であって、前記第一領域対向電極とは異なる位置にて、当該第一領域対向電極と導通しないように設けられている。 The first region counter electrode is a conductive film, and is provided corresponding to the first region on the surface of the counter substrate facing the main surface. Note that a second region counter electrode may be provided on the surface of the counter substrate facing the main surface so as to correspond to the second region. The second region counter electrode is a conductive film, and is provided at a position different from the first region counter electrode so as not to be electrically connected to the first region counter electrode.
 本発明の特徴は、当該静電誘導型機械電気変換素子が、さらに以下の構成を備えたことにある。 The feature of the present invention resides in that the electrostatic induction type electromechanical transducer has the following configuration.
 本発明においては、前記エレクトレットは、第一の領域と第二の領域とを有している。前記第一の領域は、前記厚さ方向に沿った分極方向が第一の方向となる領域である。前記第二の領域は、前記厚さ方向に沿った前記分極方向が前記第一の方向と反対の第二の方向となる領域である。具体的には、前記分極方向と前記厚さ方向とのなす角度は、-45~+45度である。典型的には、前記第一の領域は、前記厚さ方向と平行な前記第一の方向に分極されていて、前記第二の領域は、前記第一の方向と反対の第二の方向に分極されている。 In the present invention, the electret has a first region and a second region. The first region is a region in which the polarization direction along the thickness direction is the first direction. The second region is a region in which the polarization direction along the thickness direction is a second direction opposite to the first direction. Specifically, an angle formed by the polarization direction and the thickness direction is −45 to +45 degrees. Typically, the first region is polarized in the first direction parallel to the thickness direction, and the second region is in a second direction opposite to the first direction. Polarized.
 そして、前記エレクトレットは、前記第一の領域と前記第二の領域とが前記主面方向に沿って互いに隣接するように構成されている。すなわち、本発明の前記エレクトレットにおいては、前記主面方向に沿って前記分極方向が周期的に反転するように、複数の前記第一の領域及び複数の前記第二の領域が設けられている。具体的には、例えば、前記分極方向の反転周期が3~200μmとなるように、複数の前記第一の領域及び複数の前記第二の領域が設けられ得る。 The electret is configured such that the first region and the second region are adjacent to each other along the main surface direction. That is, in the electret of the present invention, a plurality of the first regions and a plurality of the second regions are provided so that the polarization direction is periodically reversed along the main surface direction. Specifically, for example, a plurality of the first regions and a plurality of the second regions may be provided so that the inversion period of the polarization direction is 3 to 200 μm.
 本発明の静電誘導型機械電気変換素子は、前記第一領域対向電極と対向する側の、前記エレクトレットにおける前記主面と密着するように、当該主面上に形成された高分子膜である、コーティング層をさらに備えていてもよい。前記コーティング層は、例えば、前記エレクトレットにおける前記主面側に設けられた第一コーティング層と、前記第一コーティング層よりも弾性変形しやすい第二コーティング層と、を備えていてもよい。 The electrostatic induction type electromechanical transducer of the present invention is a polymer film formed on the main surface so as to be in close contact with the main surface of the electret on the side facing the first region counter electrode. Further, a coating layer may be further provided. The coating layer may include, for example, a first coating layer provided on the main surface side of the electret, and a second coating layer that is more elastically deformed than the first coating layer.
 この場合、前記第二コーティング層は、前記第一領域対向電極側に設けられていて、前記第一コーティング層と密着するように当該第一コーティング層上に形成されている。具体的には、例えば、前記第二コーティング層は、ヤング率が0.01~5GPaである。あるいは、前記第一コーティング層は緻密な構造を有していて、前記第二コーティング層は空隙を有している。この場合、前記第二コーティング層の空隙率は、10~90%であることが好適である。 In this case, the second coating layer is provided on the first region counter electrode side, and is formed on the first coating layer so as to be in close contact with the first coating layer. Specifically, for example, the second coating layer has a Young's modulus of 0.01 to 5 GPa. Alternatively, the first coating layer has a dense structure, and the second coating layer has voids. In this case, the porosity of the second coating layer is preferably 10 to 90%.
 本発明の静電誘導型機械電気変換素子は、第一領域対向電極を覆うように、前記対向基板側に設けられた高分子膜である、コーティング層をさらに備えていてもよい。 The electrostatic induction electromechanical transducer of the present invention may further include a coating layer that is a polymer film provided on the counter substrate side so as to cover the first region counter electrode.
<作用・効果>
 上述のように、特開2007-298297号公報に開示されている強誘電体エレクトレットにおいては、分極処理が単純に一様に行われており、一対の前記主面における同一側に、同極性の電荷が集中する。このため、かかる構成においては、電荷同士の反発によって分極構造が不安定になり、脱分極が発生する。
<Action and effect>
As described above, in the ferroelectric electret disclosed in Japanese Patent Application Laid-Open No. 2007-298297, the polarization process is simply performed uniformly, and the same polarity is provided on the same side of the pair of main surfaces. Charge concentrates. For this reason, in such a configuration, the polarization structure becomes unstable due to repulsion between charges, and depolarization occurs.
 これに対し、本発明の静電誘導型機械電気変換素子における前記エレクトレットにおいては、隣り合う領域毎に正負の電荷が互い違いになるため、分極状態を長期間安定的に保持することが可能になる。よって、本発明によれば、エレクトレットを用いた静電誘導型機械電気変換素子において、より優れた耐久性を備えたものを提供することが可能になる。 On the other hand, in the electret in the electrostatic induction type electromechanical transducer according to the present invention, since the positive and negative charges are alternated in each adjacent region, the polarization state can be stably maintained for a long time. . Therefore, according to the present invention, it is possible to provide an electrostatic induction type electromechanical transducer using electrets that has more excellent durability.
本発明の静電誘導型機械電気変換素子の一実施形態の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of one Embodiment of the electrostatic induction type | mold electromechanical conversion element of this invention. 本発明の静電誘導型機械電気変換素子の他の実施形態(変形例)における要部拡大図である。It is a principal part enlarged view in other embodiment (modification) of the electrostatic induction type electromechanical transducer of this invention. 本発明の静電誘導型機械電気変換素子のさらに他の実施形態(変形例)の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of other embodiment (modification) of the electrostatic induction type | mold electromechanical conversion element of this invention. 本発明の静電誘導型機械電気変換素子のさらに他の実施形態(変形例)の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of other embodiment (modification) of the electrostatic induction type | mold electromechanical conversion element of this invention. 本発明の静電誘導型機械電気変換素子のさらに他の実施形態(変形例)の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of other embodiment (modification) of the electrostatic induction type | mold electromechanical conversion element of this invention.
 以下、本発明の好適な実施形態を、実施例及び比較例を用いつつ説明する。なお、以下の実施形態に関する記載は、法令で要求されている明細書の記載要件(記述要件・実施可能要件)を満たすために、本発明の具体化の単なる一例を、可能な範囲で具体的に記述しているものにすぎない。 Hereinafter, preferred embodiments of the present invention will be described using examples and comparative examples. In addition, the description about the following embodiment is specific to the extent possible, merely an example of the embodiment of the present invention in order to satisfy the description requirement (description requirement / practicability requirement) of the specification required by law. It is only what is described in.
 よって、後述するように、本発明が、以下に説明する実施形態や実施例の具体的構成に何ら限定されるものではないことは、全く当然である。本実施形態や実施例に対して施され得る各種の変更の例示(変形例:modification)は、当該実施形態の説明中に挿入されると、一貫した実施形態の説明の理解が妨げられるので、主として末尾にまとめて記載されている。 Therefore, as will be described later, it is quite natural that the present invention is not limited to the specific configurations of the embodiments and examples described below. Examples of various modifications that can be made to the present embodiment and examples (modifications) are inserted during the description of the embodiment, so that understanding of the description of the consistent embodiment is hindered. It is mainly listed at the end.
<構成>
 図1は、本発明の静電誘導型機械電気変換素子の一実施形態の概略構成を示す断面図である。図1を参照すると、本実施形態の静電誘導型機械電気変換素子1は、エレクトレット支持基板2と、背面電極3と、エレクトレット4と、コーティング層5と、対向基板6と、第一領域対向電極7と、を備えている。
<Configuration>
Figure 1 is a sectional view showing a schematic configuration of an embodiment of an electrostatic induction type electromechanical transducer of the present invention. Referring to FIG. 1, the electrostatic induction type electromechanical transducer 1 of the present embodiment includes an electret support substrate 2, a back electrode 3, an electret 4, a coating layer 5, a counter substrate 6, and a first region facing. And an electrode 7.
 背面電極3は、一様な導電性膜であって、エレクトレット支持基板2の一表面(図中上側の表面)上に形成されている。エレクトレット4は、強誘電体(例えばチタン酸ジルコン酸鉛やニオブ酸リチウム)膜であって、背面電極3と接合されている。すなわち、エレクトレット支持基板2と背面電極3とエレクトレット4とは、エレクトレット4の主面MSと直交する厚さ方向(図中z軸方向)にこの順に積層されているとともに、互いに密着するように設けられている。そして、エレクトレット4は、背面電極3を介して、エレクトレット支持基板2の上述の一表面上に支持されている。 The back electrode 3 is a uniform conductive film, and is formed on one surface (the upper surface in the drawing) of the electret support substrate 2. The electret 4 is a ferroelectric (for example, lead zirconate titanate or lithium niobate) film, and is joined to the back electrode 3. That is, the electret support substrate 2, the back electrode 3, and the electret 4 are stacked in this order in the thickness direction (z-axis direction in the figure) orthogonal to the main surface MS of the electret 4 and provided so as to be in close contact with each other. It has been. The electret 4 is supported on the above-described one surface of the electret support substrate 2 via the back electrode 3.
 エレクトレット4は、第一の領域41と、第二の領域42と、を有している。第一の領域41と第二の領域42とは、分極方向の厚さ方向における成分が、互いに逆となるように分極されている。具体的には、本実施形態においては、第一の領域41は、厚さ方向と平行な一方向(図中z軸正方向)に分極されている。一方、第二の領域42は、厚さ方向と平行な他の一方向(図中z軸負方向)に分極されている。すなわち、第一の領域41及び第二の領域42は、分極方向が所定の周期(具体的には3~200μm)で周期的に反転するように設けられている。 The electret 4 has a first region 41 and a second region 42. The first region 41 and the second region 42 are polarized so that the components in the thickness direction of the polarization direction are opposite to each other. Specifically, in the present embodiment, the first region 41 is polarized in one direction (z-axis positive direction in the drawing) parallel to the thickness direction. On the other hand, the second region 42 is polarized in another direction (z-axis negative direction in the drawing) parallel to the thickness direction. That is, the first region 41 and the second region 42 are provided such that the polarization direction is periodically reversed at a predetermined cycle (specifically, 3 to 200 μm).
 本実施形態においては、第一の領域41及び第二の領域42は、主面MSと平行な一方向(図中x軸方向:以下これを「主面方向」と称する。)に互い違いに配列されている。また、第一の領域41及び第二の領域42は、それぞれ、主面MSと平行であって上述の主面方向と直交する方向(図中y軸方向:以下これを「副主面方向」と称する。)に長手方向を有するように設けられている。 In the present embodiment, the first region 41 and the second region 42 are alternately arranged in one direction parallel to the main surface MS (in the figure, the x-axis direction: hereinafter referred to as “main surface direction”). Has been. The first region 41 and the second region 42 are each parallel to the main surface MS and perpendicular to the above-described main surface direction (in the figure, the y-axis direction: hereinafter referred to as “sub-main surface direction”). Is provided so as to have a longitudinal direction.
 コーティング層5は、高分子膜であって、エレクトレット4の主面MSに密着するように、当該主面MS上に形成されている。本実施形態においては、コーティング層5は、ヤング率が0.01~5GPaとなるように形成されている。 The coating layer 5 is a polymer film, and is formed on the main surface MS so as to be in close contact with the main surface MS of the electret 4. In the present embodiment, the coating layer 5 is formed so that the Young's modulus is 0.01 to 5 GPa.
 対向基板6は、コーティング層5を挟んでエレクトレット4の主面MSと対向するように配置されている。本実施形態においては、この対向基板6は、エレクトレット支持基板2と背面電極3とエレクトレット4とコーティング層5とを厚さ方向にこの順に積層したもの(以下、単に「エレクトレット積層体」と称する。)に対して、上述の主面方向(図中x軸正方向及び負方向)に相対移動可能に設けられている。 The counter substrate 6 is disposed so as to face the main surface MS of the electret 4 with the coating layer 5 interposed therebetween. In the present embodiment, the counter substrate 6 is obtained by laminating the electret support substrate 2, the back electrode 3, the electret 4 and the coating layer 5 in this order in the thickness direction (hereinafter, simply referred to as “electret laminate”). ) With respect to the aforementioned main surface direction (x-axis positive direction and negative direction in the figure).
 第一領域対向電極7は、複数の線状電極の長手方向における一端を互いに結合した平面形状を有する、櫛状の電極パターンであって、対向基板6における上述のエレクトレット積層体と対向する表面BS上に形成されている。これら複数の線状電極のそれぞれは、上述の副主面方向に長手方向を有していて、第一の領域41に対応する位置(コーティング層5を挟んで第一の領域41と対向する位置)にのみ設けられている。すなわち、複数の第一領域対向電極7は、エレクトレット4の主面方向(図中x軸方向)に沿った分極反転の周期、すなわち、当該主面方向に沿った第一の領域41及び第二の領域42の配列周期と一致した周期で、当該主面方向に沿って配列されている。 The first region counter electrode 7 is a comb-like electrode pattern having a planar shape in which one ends of a plurality of linear electrodes in the longitudinal direction are coupled to each other, and is a surface BS facing the above-described electret laminate on the counter substrate 6. Formed on top. Each of the plurality of linear electrodes has a longitudinal direction in the sub-main surface direction described above, and corresponds to the first region 41 (a position facing the first region 41 with the coating layer 5 interposed therebetween). ) Only. In other words, the plurality of first region counter electrodes 7 includes a period of polarization inversion along the principal surface direction (x-axis direction in the drawing) of the electret 4, that is, the first region 41 and the second region along the principal surface direction. Are arranged along the principal surface direction at a period that coincides with the arrangement period of the regions 42.
 上述のように、本実施形態における静電誘導型機械電気変換素子1は、エレクトレット4と対向基板6との主面方向の相対移動に伴って第一領域対向電極7に誘起される電荷の変動によって、当該相対移動の機械的エネルギーを電気エネルギーに変換するように構成されている。 As described above, the electrostatic induction type electromechanical transducer 1 according to this embodiment has the fluctuation of the charge induced in the first region counter electrode 7 with the relative movement of the electret 4 and the counter substrate 6 in the main surface direction. Thus, the mechanical energy of the relative movement is converted into electric energy.
<製造方法の具体例>
 以下、本実施形態の静電誘導型機械電気変換素子1の製造方法の具体例について、詳細に説明する。
<Specific example of manufacturing method>
Hereinafter, a specific example of an electrostatic induction type machines manufacturing method of electromechanical transducer 1 of the embodiment will be described in detail.
 Yで安定化されたZrOからなる平板状のエレクトレット支持基板上に一様なプラチナ電極膜をスクリーン印刷法により形成し、1300℃・2時間の熱処理によりエレクトレット支持基板とプラチナ電極膜とを一体化させた。次に、上述のプラチナ電極膜の上に、チタン酸ジルコン酸鉛粉末、分散媒、可塑剤、及び分散剤を混合してペースト状としたものを、スクリーン印刷法により、乾燥後の膜厚が75μmとなるように製膜した。 A uniform platinum electrode film is formed on a flat plate electret support substrate made of ZrO 2 stabilized with Y 2 O 3 by a screen printing method, and the electret support substrate and the platinum electrode film are subjected to heat treatment at 1300 ° C. for 2 hours. And integrated. Next, on the platinum electrode film described above, a lead zirconate titanate powder, a dispersion medium, a plasticizer, and a dispersant are mixed to form a paste, and the film thickness after drying is determined by screen printing. The film was formed to 75 μm.
 このようにして、エレクトレット支持基板上にチタン酸ジルコン酸鉛粉末ペーストを製膜(スクリーン印刷)したものを、1250℃、5時間熱処理(焼成)することで、厚さ50μmの焼結膜とした。この熱処理に際しては、雰囲気中にチタン酸ジルコン酸鉛粉末を共存させた。 In this way, a film obtained by forming (screen printing) a lead zirconate titanate powder paste on an electret support substrate was heat-treated (fired) at 1250 ° C. for 5 hours to obtain a sintered film having a thickness of 50 μm. During this heat treatment, lead zirconate titanate powder was allowed to coexist in the atmosphere.
 上述の熱処理によってエレクトレット支持基板上に固着されたチタン酸ジルコン酸鉛膜上に、タンタルからなる分極処理用一様電極膜(厚さ1000オングストローム)を形成した。電極形成後の基板を絶縁オイル(150℃)に浸漬し、約3kV/mm(抗電界)の電界強度で分極処理を行った。分極処理後の一様電極を酸処理によって除去した後、櫛形電極膜(厚さ1000オングストローム、電極周期14μm(主面方向の幅7μm、主面方向の電極間隔7μm))をパターニングした。パターニング後のものを絶縁オイル(150℃)に浸漬し、約3kV/mm(抗電界)の電界強度で、約1msec幅の矩形パルスの電圧を印加することで、分極処理を行った。パルスの印加回数は、櫛形電極パターンの面積に依存するが、例えば20mmのとき、20000パルスが好適であった。 On the lead zirconate titanate film fixed on the electret support substrate by the above heat treatment, a uniform electrode film (thickness 1000 Å) for polarization treatment made of tantalum was formed. The substrate after electrode formation was immersed in insulating oil (150 ° C.) and subjected to polarization treatment with an electric field strength of about 3 kV / mm (coercive electric field). The uniform electrode after the polarization treatment was removed by acid treatment, and then a comb-shaped electrode film (thickness 1000 angstrom, electrode period 14 μm (main surface direction width 7 μm, main surface direction electrode spacing 7 μm)) was patterned. The patterned material was immersed in insulating oil (150 ° C.), and a polarization treatment was performed by applying a rectangular pulse voltage having a width of about 1 msec with an electric field strength of about 3 kV / mm (coercive electric field). The number of pulses applied depends on the area of the comb electrode pattern. For example, when it is 20 mm 2 , 20000 pulses were suitable.
 分極処理後、分極処理用櫛形電極を酸処理によって除去した。その後、ヤング率0.05Gpa、厚さ50μmのポリイミドフィルムを、チタン酸ジルコン酸鉛膜(分極処理用櫛形電極を酸処理によって除去した面)上に積層することで、上述の積層体を得た。得られた積層体を400℃まで加熱することで、表面電荷を取り除く除電処理を行った。 After the polarization treatment, the polarization comb electrode was removed by acid treatment. Thereafter, a polyimide film having a Young's modulus of 0.05 Gpa and a thickness of 50 μm was laminated on the lead zirconate titanate film (the surface from which the comb electrode for polarization treatment was removed by acid treatment) to obtain the above laminate. . The obtained laminate was heated to 400 ° C. to perform a charge removal process for removing surface charges.
 ポリイミドフィルムからなる対向基板上に、櫛形対向電極(主面方向の幅6μm、主面方向の電極間隔8μm)を、スパッタリング法にて形成した。得られた対向電極付き対向基板を、電極部分がチタン酸ジルコン酸鉛膜におけるz軸正方向(図1参照)に分極した領域と重なるように、上述の積層体と組み合わせることで、静電誘導型機械電気変換素子を得た。 A comb-shaped counter electrode (6 μm width in the main surface direction and 8 μm electrode distance in the main surface direction) was formed on the counter substrate made of polyimide film by a sputtering method. By combining the obtained counter substrate with the counter electrode with the above-described laminate so that the electrode portion overlaps the region polarized in the z-axis positive direction (see FIG. 1) in the lead zirconate titanate film, electrostatic induction A mold electromechanical transducer was obtained.
<実施形態の構成による作用・効果>
 かかる構成を有する、本実施形態の静電誘導型機械電気変換素子1においては、エレクトレット4と対向基板6との主面方向(図中x軸正方向及び負方向)の相対移動(往復移動)に伴って第一領域対向電極7に誘起される電荷の変動によって、当該相対移動の機械的エネルギーが電気エネルギーに変換される(特開2010-136598号公報等参照)。
<Operation / Effects of Configuration of Embodiment>
In the electrostatic induction type electromechanical transducer element 1 of this embodiment having such a configuration, the relative movement (reciprocal movement) of the electret 4 and the counter substrate 6 in the main surface direction (x-axis positive direction and negative direction in the figure). Along with this, the mechanical energy of the relative movement is converted into electric energy by the fluctuation of the charge induced in the first region counter electrode 7 (see Japanese Patent Application Laid-Open No. 2010-136598 etc.).
 この点、本実施形態の静電誘導型機械電気変換素子1においては、分極方向が反転した第一の領域41及び第二の領域42が、主面方向に沿って互い違いに配列されている。このため、主面MSにおいて、隣り合う領域毎に正負の電荷が互い違いになる。これにより、エレクトレット4の分極状態を長期間安定的に保持することが可能になる。したがって、本実施形態の構成によれば、より優れた耐久性を実現することが可能になる。 In this regard, in the electrostatic induction type electromechanical transducer 1 of the present embodiment, the first regions 41 and the second regions 42 in which the polarization directions are reversed are arranged alternately along the main surface direction. For this reason, in the main surface MS, positive and negative charges are alternated for each adjacent region. Thereby, it becomes possible to hold | maintain the polarization state of the electret 4 stably for a long period of time. Therefore, according to the configuration of the present embodiment, it is possible to achieve better durability.
 かかる観点からすれば、第一の領域41及び第二の領域42の配列周期が大きすぎると、第一の領域41又は第二の領域42の主面方向(図中x軸方向)におけるサイズが大きくなりすぎるため、分極構造の安定化の効果が小さくなる。一方、第一の領域41及び第二の領域42の配列周期が小さすぎる構成は、安定的に(工業的に)作成することが困難である。よって、分極方向の反転周期、すなわち、第一の領域41及び第二の領域42の配列周期は、3~200μmであることが好適である。 From this point of view, if the arrangement period of the first region 41 and the second region 42 is too large, the size of the first region 41 or the second region 42 in the main surface direction (x-axis direction in the drawing) is reduced. Since it becomes too large, the effect of stabilizing the polarization structure is reduced. On the other hand, a configuration in which the arrangement period of the first region 41 and the second region 42 is too small is difficult to produce stably (industrially). Therefore, the inversion period of the polarization direction, that is, the arrangement period of the first region 41 and the second region 42 is preferably 3 to 200 μm.
 また、本実施形態の静電誘導型機械電気変換素子1においては、エレクトレット4の主面MSと第一領域対向電極7との間には、除電されたコーティング層5が設けられている。これにより、主面MS上への異物の付着が、可及的に抑制される。 Further, in the electrostatic induction type electromechanical transducer 1 of the present embodiment, a neutralized coating layer 5 is provided between the main surface MS of the electret 4 and the first region counter electrode 7. Thereby, the adhesion of foreign matter on the main surface MS is suppressed as much as possible.
 また、このコーティング層5のヤング率が比較的低いため、コーティング層5と第一領域対向電極7とを密着させた場合であっても、エレクトレット4と対向基板6との主面方向(図中x軸正方向及び負方向)の相対移動が良好に行われる。よって、コーティング層5と第一領域対向電極7とを密着させることで、エレクトレット4の主面MSと第一領域対向電極7との間のギャップの管理が、良好に行われる。したがって、かかる構成によれば、安定した発電動作(機械電気変換動作)が行われ得る。 Further, since the Young's modulus of the coating layer 5 is relatively low, even when the coating layer 5 and the first region counter electrode 7 are brought into close contact with each other, the main surface direction (in the drawing) of the electret 4 and the counter substrate 6 The relative movement in the x-axis positive direction and negative direction) is performed well. Therefore, the gap between the main surface MS of the electret 4 and the first region counter electrode 7 is favorably managed by bringing the coating layer 5 and the first region counter electrode 7 into close contact with each other. Therefore, according to such a configuration, a stable power generation operation (mechanical electrical conversion operation) can be performed.
 かかる観点からすれば、コーティング層5のヤング率が高すぎると、コーティング層5と第一領域対向電極7とを密着させた場合に、コーティング層5のせん断変形が生じにくくなるため、エレクトレット4と対向基板6との主面方向(図中x軸正方向及び負方向)の相対移動が妨げられる。一方、コーティング層5のヤング率が低すぎると、コーティング層5が柔らかすぎて、エレクトレット4の主面MSと第一領域対向電極7との間のギャップの管理が良好に行われなくなる。よって、コーティング層5のヤング率は、0.01~5GPaであることが好適である。 From this point of view, if the Young's modulus of the coating layer 5 is too high, when the coating layer 5 and the first region counter electrode 7 are brought into close contact with each other, shear deformation of the coating layer 5 hardly occurs. Relative movement in the main surface direction (the x-axis positive direction and negative direction in the figure) with the counter substrate 6 is prevented. On the other hand, if the Young's modulus of the coating layer 5 is too low, the coating layer 5 is too soft and the management of the gap between the main surface MS of the electret 4 and the first region counter electrode 7 cannot be performed well. Therefore, the Young's modulus of the coating layer 5 is preferably 0.01 to 5 GPa.
<変形例の例示列挙>
 なお、上述の実施形態や具体例は、上述した通り、出願人が取り敢えず本願の出願時点において最良であると考えた本発明の具現化の一例を単に示したものにすぎないのであって、本発明はもとより上述の実施形態や具体例によって何ら限定されるべきものではない。よって、上述の実施形態や具体例に対して、本発明の本質的部分を変更しない範囲内において、種々の変形が施され得ることは、当然である。
<List of examples of modification>
It should be noted that the above-described embodiments and specific examples are merely examples of the realization of the present invention that the applicant considered to be the best at the time of filing of the present application, as described above. invention is not intended to be limited the embodiment described above and specific examples in any way as well. Therefore, it goes without saying that various modifications can be made to the above-described embodiments and specific examples without departing from the essential part of the present invention.
 以下、変形例について幾つか例示する。以下の変形例の説明において、上述の実施形態における各構成要素と同様の構成・機能を有する構成要素については、本変形例においても同一の名称及び同一の符号が付されているものとする。そして、当該構成要素の説明については、上述の実施形態における説明が、矛盾しない範囲で適宜援用され得るものとする。 Hereafter, some examples of modifications will be exemplified. In the following description of the modification, components having the same configurations and functions as the components in the above-described embodiment are given the same name and the same reference numerals in this modification. And about description of the said component, description in the above-mentioned embodiment shall be used suitably in the range which is not inconsistent.
 もっとも、変形例とて、下記のものに限定されるものではないことは、いうまでもない。本発明を、上述の実施形態や下記変形例の記載に基づいて限定解釈することは、(特に先願主義の下で出願を急ぐ)出願人の利益を不当に害する反面、模倣者を不当に利するものであって、許されない。 However, it goes without saying that the modifications are not limited to the following. The limited interpretation of the present invention based on the description of the above-described embodiment and the following modifications unfairly harms the interests of the applicant (especially rushing the application under the principle of prior application), but improperly imitates the imitator. It is beneficial and not allowed.
 また、上述の実施形態の構成、及び下記の各変形例に記載された構成の全部又は一部が、技術的に矛盾しない範囲において、適宜複合して適用され得ることも、いうまでもない。 It goes without saying that the configuration of the above-described embodiment and the configuration described in each of the following modifications can be combined in an appropriate manner within a technically consistent range.
 本発明は、上述の具体的な構成や材質に何ら限定されない。すなわち、例えば、本発明は、上述の実施形態のような発電素子(環境振動で発電する機械電気変換素子)に限定されず、マイクロフォンや各種センサ等にも用いられ得る(この場合、電極等の形状や配置等が適宜変更される。)。また、振動(相対移動)方向も、厚さ方向であってもよい。さらに、本発明のエレクトレットは、チタン酸ジルコン酸鉛(PZT)に限定されず、ニオブ酸リチウム、チタン酸バリウム、チタン酸鉛、メタニオブ酸鉛、タングステン酸ビスマス、ビスマスランタンチタン酸化物、等のキュリー温度を有する強誘電体であればよい。 The present invention is not limited to the specific configurations and materials described above. That is, for example, the present invention is not limited to a power generation element (a mechanical / electrical conversion element that generates power by environmental vibration) as in the above-described embodiment, and can be used for a microphone, various sensors, and the like (in this case, an electrode or the like The shape and arrangement are appropriately changed.) The vibration (relative movement) direction may also be the thickness direction. Furthermore, the electret of the present invention is not limited to lead zirconate titanate (PZT), but is a curie such as lithium niobate, barium titanate, lead titanate, lead metaniobate, bismuth tungstate, bismuth lanthanum titanium oxide, etc. Any ferroelectric material having a temperature may be used.
 図1を参照すると、第一の領域41及び第二の領域42は、主面方向(図中x軸方向)における幅が同じであってもよいし、異なっていてもよい。また、第一の領域41及び第二の領域42は、上述の実施形態のような、平面視にていわゆる「ストライプ状」でなくてもよい。具体的には、例えば、平面視にていわゆる「市松模様」であってもよい。具体的には、平面視にて略矩形状(典型的には略正方形状)の第一の領域41及び第二の領域42が、互い違いに二次元的に配置されていてもよい。 Referring to FIG. 1, the first region 41 and the second region 42 may have the same or different width in the principal surface direction (x-axis direction in the drawing). Further, the first region 41 and the second region 42 do not have to be so-called “striped” in plan view as in the above-described embodiment. Specifically, for example, a so-called “checkered pattern” may be used in a plan view. Specifically, the first region 41 and the second region 42 having a substantially rectangular shape (typically a substantially square shape) in plan view may be alternately arranged two-dimensionally.
 分極方向も、厚さ方向と平行でなくてもよい。すなわち、第一の領域41における分極方向とz軸正方向とのなす角度α[°]が-45≦α≦+45であって、第二の領域42における分極方向とz軸負方向とのなす角度βが[°]が-45≦β≦+45であればよい(このときαの絶対値とβの絶対値とは同じであってもよいし異なっていてもよい)。 The polarization direction may not be parallel to the thickness direction. That is, the angle α [°] formed by the polarization direction in the first region 41 and the positive z-axis direction is −45 ≦ α ≦ + 45, and the polarization direction in the second region 42 and the negative z-axis direction are formed. The angle β may be such that [°] is −45 ≦ β ≦ + 45 (in this case, the absolute value of α may be the same as or different from the absolute value of β).
 コーティング層5としては、ポリイミドの他に、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリスルホン、ポリアセタール、ポリフェニレンオキシド、ポリエーテルエーテルケトン、PTFE、CYTOP(登録商標)、テフロン(登録商標)、等の有機材料を用いることが可能である。また、低誘電率なガラス、酸化アルミ、酸化ジルコニウム、酸化チタン、シリカアルミナ等の無機材料を用いることも可能である。 As the coating layer 5, in addition to polyimide, polyamide, polyamideimide, polyetherimide, polyethersulfone, polysulfone, polyacetal, polyphenylene oxide, polyetheretherketone, PTFE, CYTOP (registered trademark), Teflon (registered trademark), It is possible to use organic materials such as It is also possible to use inorganic materials such as low dielectric constant glass, aluminum oxide, zirconium oxide, titanium oxide, and silica alumina.
 本発明は、上述の具体的な製造方法に何ら限定されない。すなわち、例えば、エレクトレット4として、上述の実施形態のような、シート成型体を焼成したもの(セラミックス膜)に代えて、単結晶ウエハ、AD法で製膜した膜、を用いることが可能である。 The present invention is not limited to the specific manufacturing method described above. That is, for example, as the electret 4, it is possible to use a single crystal wafer, a film formed by the AD method, instead of a sheet molded body fired (ceramic film) as in the above-described embodiment. .
 この場合、具体的には、チタン酸ジルコン酸鉛単結晶からなる、厚さ500μmの(001)カット基板を用意し、その(001)面にタンタルからなる櫛形電極膜(厚さ1000オングストローム、電極周期7μm(主面方向の幅3.5μm、主面方向の電極間隔3.5μm))をパターニングする一方、(00-1)面(反対面)にはタンタルからなる一様電極膜(厚さ1000オングストローム)を形成する。その後、上述の具体例と同様に分極処理等を行う。なお、この場合、図1におけるエレクトレット支持基板2は、省略され得る。 In this case, specifically, a (001) cut substrate made of lead zirconate titanate single crystal and having a thickness of 500 μm is prepared, and a comb-shaped electrode film (thickness 1000 Å, electrode made of tantalum on the (001) plane thereof. While patterning a period of 7 μm (main surface direction width 3.5 μm, main surface direction electrode spacing 3.5 μm), the (00-1) surface (opposite surface) is a uniform electrode film (thickness) made of tantalum 1000 angstroms). Thereafter, a polarization process or the like is performed in the same manner as in the specific example described above. In this case, the electret support substrate 2 in FIG. 1 can be omitted.
 AD法で製膜した膜を用いる場合、具体的には、粒径1μm程度のチタン酸ジルコン酸鉛を高速で基板に噴射して成形される、厚さ20μmのAD膜を用意し、上述の具体例と同様に分極処理等を行う。AD膜は、結晶性を向上する目的で、熱処理を行ったものでも良い。AD法で製膜した膜はスクリーン印刷で製膜した膜などに比べ、緻密かつ一次粒子径が小さいため、絶縁性を高くすることができ、耐久性を高めることが可能である。 In the case of using a film formed by the AD method, specifically, an AD film having a thickness of 20 μm, which is formed by injecting lead zirconate titanate having a particle diameter of about 1 μm onto a substrate at a high speed, is prepared. Polarization processing or the like is performed as in the specific example. The AD film may be heat-treated for the purpose of improving crystallinity. A film formed by the AD method is denser and has a smaller primary particle diameter than a film formed by screen printing, and therefore, the insulating property can be increased and the durability can be increased.
 分極処理用櫛型電極も、例えばスクリーン印刷などによりパターン形成したリン片状黒鉛粉末を用いることが可能である。リン片形状の黒鉛を強誘電体膜上に、寝た状態で形成することで、接触抵抗を低くしつつも、付着強度を低くできるため、分極処理の後に吹き飛ばすなどにより簡単に除去することができる。 As the polarization comb electrode, it is possible to use flake graphite powder patterned by, for example, screen printing. By forming the flake-shaped graphite on the ferroelectric film in a lying state, the adhesion strength can be lowered while lowering the contact resistance, so it can be easily removed by blowing off after the polarization treatment. it can.
 コーティング層5の形成方法も、上述の実施形態のようなフィルム接着の他、スクリーン印刷法、バーコート法、スピンコート法、ゾルゲル法、スパッタリング法、CVD法、溶射法、ディンピング法、エアガン塗装等を用いることが可能である。 The method for forming the coating layer 5 is not only film adhesion as in the above-described embodiment, but also screen printing, bar coating, spin coating, sol-gel, sputtering, CVD, thermal spraying, dipping, air gun coating Etc. can be used.
 上述の具体例では、除電処理を、キュリー点付近の脱分極温度まで熱処理することで行っているが、分極状態を完全に無くす(脱分極させる)よりは、ある程度分極が残った状態で留めておく方が、降温後の分極状態の回復が大きくなる点で好ましい。 In the above specific example, the static elimination treatment is performed by heat treatment up to the depolarization temperature near the Curie point. However, rather than eliminating the polarization state completely (depolarization), the state where the polarization remains to some extent remains. It is preferable to set it in terms of increasing recovery of the polarization state after the temperature is lowered.
 上述の具体例では、除電処理を、キュリー点付近の脱分極温度まで熱処理することで行っているが、本発明はこれに限定されない。具体的には、例えば、除電処理は、酸によるエッチング処理等によって行われてもよい。また、イオンシャワーの照射等によって行われてもよい。 In the specific example described above, the static elimination treatment is performed by heat treatment up to the depolarization temperature near the Curie point, but the present invention is not limited to this. Specifically, for example, the charge removal process may be performed by an acid etching process or the like. Further, it may be performed by ion shower irradiation or the like.
 図2は、本発明の静電誘導型機械電気変換素子の他の実施形態(変形例)における要部拡大図である。図2を参照すると、本実施形態においては、コーティング層5は、第一コーティング層51と第二コーティング層52とを有している。第一コーティング層51は、主面MS側に設けられている。第二コーティング層52は、第一コーティング層51と密着するように当該第一コーティング層51上に形成されている。 FIG. 2 is an enlarged view of a main part in another embodiment (modification) of the electrostatic induction type electromechanical transducer of the present invention. Referring to FIG. 2, in the present embodiment, the coating layer 5 includes a first coating layer 51 and a second coating layer 52. The first coating layer 51 is provided on the main surface MS side. The second coating layer 52 is formed on the first coating layer 51 so as to be in close contact with the first coating layer 51.
 第一コーティング層51は、エレクトレット4の主面MSを保護するために、緻密な構造を有している。一方、第二コーティング層52は、空隙率が10~90%となるように多数の空隙Vを有することで、ヤング率が0.01~5GPaとなるように形成されている。第一コーティング層51及び第二コーティング層52の形成方法も、上述の実施形態のようなフィルム接着の他、スクリーン印刷法、バーコート法、スピンコート法、ゾルゲル法、スパッタリング法、CVD法、溶射法、ディンピング法、エアガン塗装等を用いることが可能である。 The first coating layer 51 has a dense structure in order to protect the main surface MS of the electret 4. On the other hand, the second coating layer 52 is formed so as to have a Young's modulus of 0.01 to 5 GPa by having a large number of voids V so that the porosity is 10 to 90%. The first coating layer 51 and the second coating layer 52 can be formed by a screen printing method, a bar coating method, a spin coating method, a sol-gel method, a sputtering method, a CVD method, thermal spraying, as well as film adhesion as in the above-described embodiment. It is possible to use a method, a dipping method, an air gun coating, or the like.
 なお、第二コーティング層52の空隙率が低すぎると、コーティング層5のヤング率が高くなりすぎるため、コーティング層5と第一領域対向電極7とを密着させた場合に、コーティング層5のせん断変形が生じにくくなり、エレクトレット4と対向基板6との主面方向の相対移動が妨げられる。一方、コーティング層5の空隙率が高すぎると、コーティング層5が低ヤング率となりすぎる(柔らかくなりすぎる)ため、エレクトレット4の主面MSと第一領域対向電極7との間のギャップの管理が良好に行われなくなる。よって、第二コーティング層52の空隙率は、10~90%であることが好適である。 If the porosity of the second coating layer 52 is too low, the Young's modulus of the coating layer 5 becomes too high. Therefore, when the coating layer 5 and the first region counter electrode 7 are brought into close contact with each other, the coating layer 5 is sheared. Deformation hardly occurs, and relative movement of the electret 4 and the counter substrate 6 in the main surface direction is hindered. On the other hand, if the porosity of the coating layer 5 is too high, the coating layer 5 becomes too low in Young's modulus (too soft), so that the management of the gap between the main surface MS of the electret 4 and the first region counter electrode 7 can be controlled. It will not work well. Therefore, the porosity of the second coating layer 52 is preferably 10 to 90%.
 図3は、本発明の静電誘導型機械電気変換素子のさらに他の実施形態(変形例)の概略構成を示す断面図である。図3を参照すると、対向基板6には、第一の領域41と対向する第一領域対向電極7の他に、第二の領域42と対向する第二領域対向電極8が設けられていてもよい。かかる構成によれば、第一の領域41のみならず第二の領域42も機械電気エネルギー変換に寄与することになるため、エネルギー変換効率をよりいっそう向上させることが可能になる。 FIG. 3 is a cross-sectional view showing a schematic configuration of still another embodiment (modification) of the electrostatic induction type electromechanical transducer of the present invention. Referring to FIG. 3, the counter substrate 6 may be provided with a second region counter electrode 8 facing the second region 42 in addition to the first region counter electrode 7 facing the first region 41. Good. According to such a configuration, not only the first region 41 but also the second region 42 contributes to mechanical / electrical energy conversion, so that the energy conversion efficiency can be further improved.
 図4は、本発明の静電誘導型機械電気変換素子のさらに他の実施形態(変形例)の概略構成を示す断面図である。図4を参照すると、コーティング層5は、対向基板6側に設けられていてもよい。具体的には、コーティング層5は、対向基板6の表面BS上にて、対向電極(第一領域対向電極7及び第二領域対向電極8)を覆うように設けられていてもよい。 FIG. 4 is a cross-sectional view showing a schematic configuration of still another embodiment (modification) of the electrostatic induction type electromechanical transducer of the present invention. Referring to FIG. 4, the coating layer 5 may be provided on the counter substrate 6 side. Specifically, the coating layer 5 may be provided on the surface BS of the counter substrate 6 so as to cover the counter electrodes (the first region counter electrode 7 and the second region counter electrode 8).
 この場合、コーティング層5は、図4に示されているように、対向電極を覆うとともに隣り合う対向電極間の隙間を埋めるように対向基板6の表面BS上に形成された第一コーティング層51と、この第一コーティング層51上に設けられた第二コーティング層52と、を備えた積層構造を有していてもよいし、図1に示されているような一層構造を有していてもよい。また、この場合、対向電極は、第一領域対向電極7のみであってもよい。 In this case, as shown in FIG. 4, the coating layer 5 covers the counter electrode and the first coating layer 51 formed on the surface BS of the counter substrate 6 so as to fill a gap between the adjacent counter electrodes. And a second coating layer 52 provided on the first coating layer 51, or a single layer structure as shown in FIG. Also good. In this case, the counter electrode may be only the first region counter electrode 7.
 図5は、本発明の静電誘導型機械電気変換素子のさらに他の実施形態(変形例)の概略構成を示す断面図である。図5を参照すると、コーティング層5は、エレクトレット4側と対向基板6側との双方に設けられていてもよい。すなわち、この場合のコーティング層5は、エレクトレット側コーティング層5aと、対向電極側コーティング層5bと、を備えている。エレクトレット側コーティング層5aは、エレクトレット4の主面MSに密着するように、当該主面MS上に形成されている。対向電極側コーティング層5bは、対向基板6の表面BS上にて、対向電極(第一領域対向電極7及び第二領域対向電極8)を覆うように設けられている。但し、この場合、エレクトレット側コーティング層5aと、対向電極側コーティング層5bとは、同一の材質からなることが好ましい。あるいは、エレクトレット側コーティング層5aを構成する材質と、対向電極側コーティング層5bを構成する材質とは、摩擦帯電列上にて近接するように選択され得る。 FIG. 5 is a cross-sectional view showing a schematic configuration of still another embodiment (modified example) of the electrostatic induction type electromechanical transducer of the present invention. Referring to FIG. 5, the coating layer 5 may be provided on both the electret 4 side and the counter substrate 6 side. That is, the coating layer 5 in this case includes an electret side coating layer 5a and a counter electrode side coating layer 5b. The electret-side coating layer 5 a is formed on the main surface MS so as to be in close contact with the main surface MS of the electret 4. The counter electrode side coating layer 5b is provided on the surface BS of the counter substrate 6 so as to cover the counter electrodes (the first region counter electrode 7 and the second region counter electrode 8). However, in this case, the electret side coating layer 5a and the counter electrode side coating layer 5b are preferably made of the same material. Or the material which comprises the electret side coating layer 5a and the material which comprises the counter electrode side coating layer 5b may be selected so that it may adjoin on a triboelectric row.
 なお、この場合も同様に、エレクトレット側コーティング層5a及び/又は対向電極側コーティング層5bは、上述のような積層構造(エレクトレット4あるいは対向基板6に密着するように設けられた第一コーティング層51とその上に形成された第二コーティング層52とを備えた構造)を有していてもよい。また、対向電極は、第一領域対向電極7のみであってもよい。 In this case as well, the electret-side coating layer 5a and / or the counter-electrode-side coating layer 5b are similarly laminated layers (the first coating layer 51 provided in close contact with the electret 4 or the counter substrate 6). And a second coating layer 52 formed thereon. Further, the counter electrode may be only the first region counter electrode 7.
 その他、特段に言及されていない変形例についても、本発明の本質的部分を変更しない範囲内において、本発明の技術的範囲に含まれることは当然である。 Other modifications not specifically mentioned are naturally included in the technical scope of the present invention as long as the essential parts of the present invention are not changed.
 また、本発明の課題を解決するための手段を構成する各要素における、作用・機能的に表現されている要素は、上述の実施形態や変形例にて開示されている具体的構造の他、当該作用・機能を実現可能ないかなる構造をも含む。さらに、本明細書にて引用した先行出願や各公報の内容(明細書及び図面を含む)は、本明細書の一部を構成するものとして適宜援用され得る。 In addition, in each element constituting the means for solving the problems of the present invention, elements expressed functionally and functionally include the specific structures disclosed in the above-described embodiments and modifications, It includes any structure that can realize this action / function. Furthermore, the contents of the prior application and each publication (including the specification and the drawings) cited in the present specification may be incorporated as appropriate as part of the present specification.

Claims (11)

  1.  強誘電体膜からなるエレクトレットを備えた、静電誘導型機械電気変換素子であって、
     前記エレクトレットは、
     厚さ方向に沿った分極方向が第一の方向である第一の領域と、前記厚さ方向に沿った前記分極方向が前記第一の方向と反対の第二の方向である第二の領域と、が、前記厚さ方向と直交する表面である主面と平行な方向である主面方向に沿って、互いに隣接するように構成されたことを特徴とする、
     静電誘導型機械電気変換素子。
    With an electret made of a ferroelectric film, a static induction type electromechanical conversion element,
    The electret is
    A first region in which a polarization direction along the thickness direction is a first direction; and a second region in which the polarization direction along the thickness direction is a second direction opposite to the first direction. And are configured to be adjacent to each other along a principal surface direction that is a direction parallel to a principal surface that is a surface orthogonal to the thickness direction,
    Static induction type electromechanical transducer.
  2.  請求項1に記載の、静電誘導型機械電気変換素子であって、
     前記分極方向と前記厚さ方向とのなす角度が、-45~45度であることを特徴とする、
     静電誘導型機械電気変換素子。
    The electrostatic induction type electromechanical transducer according to claim 1,
    An angle between the thickness direction as the direction of polarization, characterized in that it is a -45 to 45 degrees,
    Static induction type electromechanical transducer.
  3.  請求項1又は請求項2に記載の、静電誘導型機械電気変換素子であって、
     前記主面方向に沿って、前記分極方向が周期的に反転するように、複数の前記第一の領域及び複数の前記第二の領域が設けられていることを特徴とする、
     静電誘導型機械電気変換素子。
    According to claim 1 or claim 2, an electrostatic induction type electromechanical conversion element,
    A plurality of the first regions and a plurality of the second regions are provided so that the polarization direction is periodically reversed along the main surface direction.
    Static induction type electromechanical transducer.
  4.  請求項3に記載の、静電誘導型機械電気変換素子であって、
     前記分極方向の反転構造が、3~200μm周期のストライプ状であることを特徴とする、
     静電誘導型機械電気変換素子。
    The electrostatic induction type electromechanical transducer according to claim 3,
    Reversals of the polarization direction, characterized in that, a stripe-shaped 3 ~ 200 [mu] m period,
    Static induction type electromechanical transducer.
  5.  請求項1~請求項4のうちのいずれか1項に記載の、静電誘導型機械電気変換素子において、
     前記エレクトレットにおける前記主面と対向するように配置されていて、前記エレクトレットと相対移動可能に設けられた、対向基板と、
     前記対向基板における前記主面と対向する面にて、前記第一の領域に対応して設けられた導電性膜である、第一領域対向電極と、
     をさらに備えたことを特徴とする、
     静電誘導型機械電気変換素子。
    According to any one of claims 1 to 4, in the electrostatic induction type electromechanical conversion element,
    An opposing substrate that is disposed so as to face the main surface of the electret and is provided so as to be relatively movable with the electret;
    A first region counter electrode, which is a conductive film provided corresponding to the first region on the surface of the counter substrate facing the main surface;
    Further comprising:
    Static induction type electromechanical transducer.
  6.  請求項5に記載の、静電誘導型機械電気変換素子であって、
     前記対向基板は、前記エレクトレットに対して、前記主面方向に沿って相対移動可能に設けられたことを特徴とする、
     静電誘導型機械電気変換素子。
    According to claim 5, a static induction type electromechanical conversion element,
    The counter substrate is provided to be movable relative to the electret along the principal surface direction.
    Static induction type electromechanical transducer.
  7.  請求項5又は請求項6に記載の、静電誘導型機械電気変換素子において、
     前記第一領域対向電極と対向する側の、前記エレクトレットにおける前記主面と密着するように、当該主面上に形成された高分子膜である、コーティング層
     をさらに備えたことを特徴とする、
     静電誘導型機械電気変換素子。
    According to claim 5 or claim 6, in the electrostatic induction type electromechanical conversion element,
    It further comprises a coating layer, which is a polymer film formed on the main surface so as to be in close contact with the main surface of the electret on the side facing the first region counter electrode,
    Static induction type electromechanical transducer.
  8.  請求項7に記載の、静電誘導型機械電気変換素子であって、
     前記コーティング層は、
     前記エレクトレットにおける前記主面側に設けられた、第一コーティング層と、
     前記第一コーティング層と密着するように当該第一コーティング層上に形成されていて、前記第一領域対向電極側に設けられた、前記第一コーティング層よりも弾性変形しやすい第二コーティング層と、
     を備えたことを特徴とする、
     静電誘導型機械電気変換素子。
    The electrostatic induction type electromechanical transducer according to claim 7,
    The coating layer is
    Provided on the main surface of the electret, a first coating layer,
    A second coating layer which is formed on the first coating layer so as to be in close contact with the first coating layer and which is provided on the first region counter electrode side and is more elastically deformable than the first coating layer; ,
    Characterized by comprising
    Static induction type electromechanical transducer.
  9.  請求項8に記載の、静電誘導型機械電気変換素子であって、
     前記第一コーティング層は、緻密な構造を有し、
     前記第二コーティング層は、空隙を有することを特徴とする、
     静電誘導型機械電気変換素子。
    The electrostatic induction type electromechanical transducer according to claim 8,
    The first coating layer has a dense structure;
    The second coating layer has voids,
    Static induction type electromechanical transducer.
  10.  請求項8又は請求項9に記載の、静電誘導型機械電気変換素子であって、
     前記第二コーティング層は、ヤング率が0.01~5GPaであることを特徴とする、
     静電誘導型機械電気変換素子。
    According to claim 8 or claim 9, a static induction type electromechanical conversion element,
    The second coating layer has a Young's modulus, characterized in that it is 0.01 ~ 5 GPa,
    Static induction type electromechanical transducer.
  11.  請求項5又は請求項6に記載の、静電誘導型機械電気変換素子において、
     第一領域対向電極を覆うように、前記対向基板側に設けられた高分子膜である、コーティング層
     をさらに備えたことを特徴とする、
     静電誘導型機械電気変換素子。
    According to claim 5 or claim 6, in the electrostatic induction type electromechanical conversion element,
    A coating layer, which is a polymer film provided on the counter substrate side so as to cover the first region counter electrode,
    Static induction type electromechanical transducer.
PCT/JP2011/074792 2010-11-25 2011-10-27 Electrostatic induction type mechanical-electrical conversion element WO2012070356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012545663A JP5844741B2 (en) 2010-11-25 2011-10-27 Electrostatic induction type electromechanical transducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010262014 2010-11-25
JP2010-262014 2010-11-25

Publications (1)

Publication Number Publication Date
WO2012070356A1 true WO2012070356A1 (en) 2012-05-31

Family

ID=46145710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074792 WO2012070356A1 (en) 2010-11-25 2011-10-27 Electrostatic induction type mechanical-electrical conversion element

Country Status (2)

Country Link
JP (1) JP5844741B2 (en)
WO (1) WO2012070356A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014217130A (en) * 2013-04-24 2014-11-17 株式会社ビスキャス Vibration generator
CN108347198A (en) * 2017-01-25 2018-07-31 北京纳米能源与系统研究所 Electret self-generating device and electret self power generation intelligent shoe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298297A (en) * 2006-04-27 2007-11-15 Saitama Univ Machine electric conversion element and its manufacturing method
JP2008161040A (en) * 2006-11-28 2008-07-10 Sanyo Electric Co Ltd Electrostatic actuator
JP2009148124A (en) * 2007-12-18 2009-07-02 Sanyo Electric Co Ltd Electrostatic action arrangement
WO2010035507A1 (en) * 2008-09-29 2010-04-01 パナソニック株式会社 Oscillating generator, oscillating generating device and communication device having oscillating generating device mounted thereon
JP2010136598A (en) * 2008-12-08 2010-06-17 Omron Corp Electrostatic induction type energy conversion element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298297A (en) * 2006-04-27 2007-11-15 Saitama Univ Machine electric conversion element and its manufacturing method
JP2008161040A (en) * 2006-11-28 2008-07-10 Sanyo Electric Co Ltd Electrostatic actuator
JP2009148124A (en) * 2007-12-18 2009-07-02 Sanyo Electric Co Ltd Electrostatic action arrangement
WO2010035507A1 (en) * 2008-09-29 2010-04-01 パナソニック株式会社 Oscillating generator, oscillating generating device and communication device having oscillating generating device mounted thereon
JP2010136598A (en) * 2008-12-08 2010-06-17 Omron Corp Electrostatic induction type energy conversion element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014217130A (en) * 2013-04-24 2014-11-17 株式会社ビスキャス Vibration generator
CN108347198A (en) * 2017-01-25 2018-07-31 北京纳米能源与系统研究所 Electret self-generating device and electret self power generation intelligent shoe

Also Published As

Publication number Publication date
JP5844741B2 (en) 2016-01-20
JPWO2012070356A1 (en) 2014-05-19

Similar Documents

Publication Publication Date Title
US8104693B2 (en) Multilayer piezoelectric element, injection device and fuel injection system using the same, and method of manufacturing multilayer piezoelectric element
CN103378286B (en) Membrane piezoelectric element and its manufacture method, magnetic head fold piece combination and disc driver
JP5859370B2 (en) Energy conversion element and manufacturing method thereof
JP5639738B2 (en) Method for manufacturing piezoelectric / electrostrictive element
Niu et al. Integration-friendly, chemically stoichiometric BiFeO3 films with a piezoelectric performance challenging that of PZT
US10147869B2 (en) Flexible piezoelectric composite and piezoelectric device including the same
KR101417855B1 (en) Cantilever type energy harverster
US11968904B2 (en) Flexible piezoceramic composites and method for fabricating thereof
WO2012105187A1 (en) Capacitance-varying type power-generation element
JP5844741B2 (en) Electrostatic induction type electromechanical transducer
US9093927B2 (en) Actuator with ionic liquid
US20080211353A1 (en) High temperature bimorph actuator
Verma et al. Interdependence of piezoelectric coefficient and film thickness in LiTaO3 cantilevers
KR20190011278A (en) Transparent piezoelectric device and manufacturing method thereof
KR102050954B1 (en) On-off actuator
JP4934924B2 (en) Ferroelectric actuator element and manufacturing method thereof
JP2000133852A (en) Stacked piezoelectric element and its manufacture
Zhang et al. High open-circuit voltage of a pyroelectric energy harvester based on KNN single crystals
US9818927B2 (en) Vibration element, method for manufacturing same, and vibration-type driving device
JPH03293980A (en) Magnetostrictive actuator
JP2021194638A (en) Driving method, driving circuit and displacement driving device
JP2015536580A (en) Manufacturing method of electronic parts
CN114709078B (en) Electret and printing method thereof
KR101188331B1 (en) Piezoelectric Element
JP2013179110A (en) Liquid injection head, liquid injection apparatus, piezoelectric element, and piezoelectric ceramic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012545663

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843743

Country of ref document: EP

Kind code of ref document: A1