WO2012057363A1 - 神経系細胞への遺伝子導入のためのアデノ随伴ウイルスビリオン - Google Patents
神経系細胞への遺伝子導入のためのアデノ随伴ウイルスビリオン Download PDFInfo
- Publication number
- WO2012057363A1 WO2012057363A1 PCT/JP2011/075240 JP2011075240W WO2012057363A1 WO 2012057363 A1 WO2012057363 A1 WO 2012057363A1 JP 2011075240 W JP2011075240 W JP 2011075240W WO 2012057363 A1 WO2012057363 A1 WO 2012057363A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- promoter
- amino acid
- protein
- sequence
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
- C12N15/861—Adenoviral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0008—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
- A61K38/1825—Fibroblast growth factor [FGF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
- A61K38/1833—Hepatocyte growth factor; Scatter factor; Tumor cytotoxic factor II
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
- A61K38/185—Nerve growth factor [NGF]; Brain derived neurotrophic factor [BDNF]; Ciliary neurotrophic factor [CNTF]; Glial derived neurotrophic factor [GDNF]; Neurotrophins, e.g. NT-3
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/44—Oxidoreductases (1)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/48—Hydrolases (3) acting on peptide bonds (3.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1137—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
- C12N2310/141—MicroRNAs, miRNAs
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/32—Special delivery means, e.g. tissue-specific
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14145—Special targeting system for viral vectors
Definitions
- the present invention relates to a recombinant adeno-associated virus (rAAV) virion used for gene transfer. More specifically, the present invention relates to a recombinant adeno-associated virus (rAAV) virion capable of crossing the blood brain barrier for introducing a gene of interest with high efficiency into neural cells, and a composition comprising the same It relates to things.
- rAAV recombinant adeno-associated virus
- CNS disorders are causing major public health problems. It is estimated that there are over 600,000 patients in Japan even with Alzheimer's disease that causes cognitive impairment due to degeneration of neurons.
- Currently, many central nervous disorders are treated by systemic administration of therapeutic agents. However, when administered systemically, drugs often cannot pass the blood brain barrier and are often inefficient, and many potentially useful therapeutic proteins and the like cannot be administered systemically.
- AAV adeno-associated virus
- Fust KD, et al. (Intravascular AAV9, preferentially targets, neuronals and adults, astrocycles. Nat. Biotechnol. 2009 Jan; 27 (1): 59-65.) Has an envelope protein of 9-type AAV (AAV9), i-ch A self-complementary (sc) type vector that expresses the fluorescent protein GFP by promoter (CB) is described. Also, Duque S, et al. (Intravenous Administration of Self-complementary AAV9 Enabled Transgene Delivery to Adult Motors.Neurons.Mol.Ther.2009 Jul; 17 (7): 1187-96. A self-complementary type vector (scAAV9-GFP) having a capsid protein of AAV9) and expressing the fluorescent protein GFP under the control of cytomegalovirus immediate early promoter (CMV) is disclosed.
- CMV cytomegalovirus immediate early promoter
- genes that can be incorporated into an sc-type vector are limited to a short 2 kb including a promoter and a poly (A) region. This limitation will also limit the therapeutic use of recombinant viral vectors.
- the target therapeutic gene can be delivered to nerve cells existing in the brain, spinal cord, etc. of the living body, particularly brain neurons, with high efficiency and simple administration means.
- Development of a viral vector (viral virion) capable of packaging a non-sc type viral genome has been desired in order to make the length selectable more widely.
- the present inventors have modified wild-type capsid proteins with respect to normal single-chain AAV, and further have oligodendrocyte-specific promoters or synapsin I promoters that are specific to nervous system cells.
- oligodendrocyte-specific promoters or synapsin I promoters that are specific to nervous system cells.
- rAAV adeno-associated virus
- the present invention relates to a recombinant adeno-associated virus (rAAV) virion capable of transducing a blood-brain barrier and capable of introducing a therapeutic gene into a nervous system cell such as the brain and spinal cord of a living body with high efficiency, and a pharmaceutical comprising the same.
- rAAV adeno-associated virus
- the viral virion according to [1] comprising a sequence.
- [4] Deletion of one to several amino acids at positions other than positions 444 to 446 of the amino acid sequence of SEQ ID NO: 8, 10, or 12, or the amino acid sequence of SEQ ID NO: 8, 10, or 12;
- the viral virion according to any one of [1] to [3], comprising an amino acid sequence including substitution, insertion and / or addition, and capable of forming a viral virion.
- the 5 ′ and 3 ′ ends of the polynucleotide comprise 5 ′ and 3 ′ end inverted terminal repeat (ITR) sequences derived from AAV1, AAV2, AAV3 or AAV4, respectively [1]
- ITR inverted terminal repeat
- the promoter sequence is synapsin I promoter sequence, myelin basic protein promoter sequence, neuron-specific enolase promoter sequence, calcium / calmodulin-dependent protein kinase II (CMKII) promoter, tubulin ⁇ I promoter, platelet-derived growth factor ⁇ Selected from the group consisting of a chain promoter, glial fibrillary acidic protein (GFAP) promoter sequence, L7 promoter sequence (cerebellar Purkinje cell specific promoter), and glutamate receptor delta2 promoter (cerebellar Purkinje cell specific promoter), [ [1] The virus virion according to any one of [6].
- a nucleotide sequence operably linked to the promoter sequence comprises an antibody, neurotrophic factor (NGF), growth factor (HGF), acidic fibroblast growth factor (aFGF), basic fibroblast growth factor ( bFGF), glial cell line-derived neurotrophic factor (GDNF), an aromatic amino acid decarboxylase (AADC), and a protein selected from the group consisting of amyloid ⁇ -protease (Neprilysin) according to [7] Virus virion.
- NGF neurotrophic factor
- HGF growth factor
- aFGF acidic fibroblast growth factor
- bFGF basic fibroblast growth factor
- GDNF glial cell line-derived neurotrophic factor
- AADC aromatic amino acid decarboxylase
- a protein selected from the group consisting of amyloid ⁇ -protease (Neprilysin) according to [7] Virus virion.
- Virion. [11] The viral virion according to [9], wherein the antibody is an antibody against an aggregating amyloid ⁇ protein.
- the viral virion according to [9] wherein the antibody is a single chain antibody against an aggregating amyloid ⁇ protein.
- [12] The viral virion according to any one of [1] to [11], which is capable of passing through a blood-brain barrier of a subject.
- [12a] The viral virion according to any one of [1] to [12], which is used for gene transfer into nerve cells by peripheral administration to a subject.
- [12b] The viral virion according to any one of [1] to [12], wherein the subject is a fetus in the mother and the gene is introduced into a fetal nerve cell by peripheral administration to the mother.
- a pharmaceutical composition comprising the viral virion according to any one of [1] to [13].
- [15] The pharmaceutical composition according to [14], which reduces aggregated amyloid ⁇ protein in the brain of a subject.
- [15a] The pharmaceutical composition according to [13], wherein the amount of ⁇ -synuclein in the brain neurons of the subject is reduced.
- the pharmaceutical composition according to [14] or [15] which is a therapeutic drug for Alzheimer's disease.
- the pharmaceutical composition according to [14] or [15a] which is useful for treating Parkinson's disease.
- [17] A method comprising peripherally administering the viral virion according to any one of [1] to [12] to a subject.
- [17a] The method according to [17], wherein the subject is a fetus in the mother and the viral virion is peripherally administered to the mother.
- the recombinant viral vector of the present invention can pass through the blood-brain barrier, it can be introduced into the nervous system cells of the brain by peripheral administration.
- the vector of the present invention can select a target therapeutic gene more broadly, particularly with respect to length, by utilizing a non-sc type genome.
- peripheral administration by using the rAAV vector of the present invention packaged with a viral genome containing a gene of interest encoding a useful protein (which may be one or more) such as an antibody, neurotrophic factor, etc. It is possible to introduce a gene into a nervous system cell such as a brain of a subject by a safer administration method such as.
- an rAAV vector for delivering and introducing a gene of interest with high efficiency into the brain or central nervous system cells by peripheral administration by using the viral vector preparation method of the present invention and / or the kit of the present invention. can be produced.
- the graph shows the number of GFP-positive cells in the cerebrum per head using the rAAV virion of the present invention.
- a coronal section photograph of a mouse brain tissue after peripheral administration of an rAAV vector containing yfAAV9-CAG-GFP and a partially enlarged photograph thereof are shown.
- Many of GFP positive cells are glial cells (arrowheads) (green: GFP, red: NeuN).
- the coronal section photograph of the mouse brain tissue after peripheral administration of the rAAV vector containing yfAAV9-SynI-GFP and a partially enlarged photograph thereof are shown.
- a coronal section photograph of a mouse brain tissue after peripheral administration of an rAAV vector containing yfAAV9-MBP-GFP and a partially enlarged photograph thereof are shown.
- the number of GFP positive cells per cerebral cortex 0.04 mm 3 using the rAAV virion of the present invention is shown.
- the photograph which shows the GFP and ChAT positive neuron in a spinal cord using the rAAV virion of this invention, and the partial enlarged photograph are shown.
- mouth using the rAAV virion of this invention, and the partial enlarged view (right figure) are shown.
- rAAV Recombinant Adeno-Associated Virus
- the present invention provides the following rAAV virions: (A) an amino acid sequence having 90% or more identity to the amino acid sequence of SEQ ID NO: 2, 4 or 6, wherein at least one surface exposed tyrosine residue is substituted with another amino acid residue A capsomere comprising a protein capable of forming a viral virion, and (b) a polynucleotide packaged in the capsomere comprising a neural cell-specific promoter sequence and an operation with the promoter sequence A recombinant adeno-associated virus virion comprising a polynucleotide comprising nucleotide sequences that are operably linked.
- Adeno-associated virus Natural adeno-associated virus (AAV) is a non-pathogenic virus. Utilizing this feature, various recombinant viral vectors have been produced to deliver a desired gene for gene therapy (for example, WO2003 / 018821, WO2003 / 053476, WO2007 / 001010, Pharmaceutical journal 126 (11) 1021-1028 etc.).
- the wild type AAV genome is a single-stranded DNA molecule having a nucleotide length of about 5 kb in total length, and is a sense strand or an antisense strand.
- the AAV genome generally has an inverted terminal repeat (ITR) sequence of approximately 145 nucleotides in length at both the 5 ′ and 3 ′ ends of the genome.
- ITR inverted terminal repeat
- This ITR is known to have various functions such as a function as an origin of replication of the AAV genome and a function as a packaging signal of this genome into a virion (for example, the above-mentioned document, the pharmaceutical journal 126). (11) See 1021-1028 etc.).
- the internal region (hereinafter referred to as internal region) of the wild type AAV genome sandwiched between ITRs includes an AAV replication (rep) gene and a capsid (cap) gene.
- rep gene and cap gene each encode a protein Rep that is involved in viral replication and a capsid protein that forms a capsomer that is the outer shell of an icosahedral structure (eg, at least one of VP1, VP2, and VP3).
- a capsid protein that forms a capsomer that is the outer shell of an icosahedral structure (eg, at least one of VP1, VP2, and VP3).
- the rAAV vector of the present invention is preferably derived from naturally occurring adeno-associated virus type 1 (AAV1), type 2 (AAV2), type 3 (AAV3), type 4 (AAV4), type 5 (AAV5), type 6 (AAV6) ), 7 type (AAV7), 8 type (AAV8), 9 type (AAV9), etc., but is not limited thereto. Nucleotide sequences of these adeno-associated virus genomes are known, and GenBank accession numbers: AF063497.1 (AAV1), AF043303 (AAV2), NC_001729 (AAV3), NC_001829.1 (AAV4), NC_006152.1 (AAV5), respectively.
- AAV6 AF028704.1
- NC_006260.1 AAV7
- NC_006261.1 AAV8
- AY530579 AAV9
- type 2 type 3
- type 5 and type 9 are human.
- AAV2 has already been clinically applied for gene therapy for Parkinson's disease (Kaplitt, et al., Lancet 369: 2097-2105, 2007, Marks, et al., Lancet Neurol 7: 400-408, 2008, Christine). et.al, Neurology 73: 1662-1669, 2009, Muramatsu, et al, Mol Ther 18: 1731-1735, 2010, etc.).
- Capsid protein in rAAV virion of the present invention has a surface exposed tyrosine residue (for example, an amino acid side chain on the surface of a viral virion) in the VP1 amino acid sequence (SEQ ID NO: 2, 4 or 6). At least one tyrosine residue is exposed to another amino acid.
- Such proteins include the amino acid sequence of SEQ ID NO: 2, 4 or 6 and about 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% Or more, 98% or more, 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4% or more, 99.5% or more, 99.6% or more, 99.7% As described above, it has an amino acid sequence having an identity of 99.8% or more and 99.9% or more, and at least one tyrosine residue exposed on the surface is substituted with another amino acid, and can form a viral virion
- proteins In general, the larger the value, the better.
- the capsid protein contained in the rAAV virion of the present invention forms a capsomere alone or together with other capsid protein members (for example, VP2 and / or VP3, etc.), and an AAV genome (or AAV vector) in the capsomere RAAV virions of the present invention that are packaged (genome) can be formed.
- Such rAAVs of the present invention can pass through the living blood brain barrier, including the unfinished fetal and neonatal blood brain barrier and the established adult blood brain barrier.
- the rAAV virion of the present invention can target nerve cells contained in the adult brain, spinal cord and the like by peripheral administration.
- peripheral administration means peripheral administration to those skilled in the art, such as intravenous administration, intraarterial administration, intraperitoneal administration, intracardiac administration, intramuscular administration, and intravascular administration of umbilical cord (for example, when targeting a fetus).
- routes of administration normally understood as administration.
- mutually replaceable amino acid residues include other residues included in a group of similar amino acid residues to which the residues belong (described later).
- Capsid proteins modified with mutually replaceable amino acid residues can be prepared according to methods known to those skilled in the art, such as ordinary genetic engineering techniques. Such genetic manipulation procedures are described in, for example, Molecular Cloning 3rd Edition, J. MoI. Sambrook et al. , Cold Spring Harbor Lab. Press. 2001, Current Protocols in Molecular Biology, John Wiley & Sons 1987-1997, and the like.
- the capsid protein contained in the rAAV virion of the present invention is preferably one of tyrosine residues at position 252, 273, 445, 701, 705, or 731 exposed on the surface in SEQ ID NO: 2. One or more is replaced with another amino acid, preferably a phenylalanine residue. Preferably, in the amino acid sequence of SEQ ID NO: 2, the tyrosine residue at position 445 is substituted with a phenylalanine residue.
- the capsid protein contained in the rAAV virion of the present invention is preferably a tyrosine residue at position 252, 272, 444, 500, 700, 704 or 730 that is surface-exposed in SEQ ID NO: 4.
- the tyrosine residue at position 444 is substituted with a phenylalanine residue.
- the capsid protein contained in the rAAV virion of the present invention is preferably at least one tyrosine of positions 252, 274, 446, 701, 705, 706 or 731 which is surface exposed in SEQ ID NO: 8.
- One or more of the residues are replaced with other amino acids, preferably phenylalanine residues.
- the tyrosine residue at position 446 is substituted with a phenylalanine residue.
- the rAAV virion capsomere of the present invention may comprise the above protein alone or together with other members (VP2 and / or VP3).
- the position of the amino acid residue to be substituted is the substitution of the amino acid residue at the corresponding position in each virus type VP2 and VP3, preferably the substitution of the corresponding tyrosine residue with the phenylalanine residue.
- modified capsid proteins can be prepared according to methods known to those skilled in the art, such as ordinary gene manipulation techniques. See, for example, Molecular Cloning 3rd Edition for such genetic manipulation procedures.
- the viral virions of the present invention containing these capsid proteins can cross the adult and fetal blood brain barrier as described above.
- a viral virion comprising a functionally equivalent capsid protein can infect neural cells contained in the adult brain, spinal cord, etc. by peripheral administration.
- the nervous system used in the present invention refers to an organ system composed of nerve tissue.
- the nervous system cell as a gene transfer target includes at least a nerve cell contained in the central nervous system such as the brain and spinal cord, and further includes a glial cell, a microglia, an astrocyte, an oligodendrocyte, Ventricular ependymal cells, cerebral vascular endothelial cells and the like may also be included.
- the proportion of nerve cells among the nervous system cells to be transfected is preferably 70% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4% or more, 99.5% or more, It is 99.6% or more, 99.7% or more, 99.8% or more, 99.9% or more, or 100%.
- the rAAV virion of the present invention further has an amino acid sequence of SEQ ID NO: 8, 10 or 12, or a deletion of one or more amino acids at positions other than positions 444 to 446 in the amino acid sequence of SEQ ID NO: 8, 10 or 12.
- the capsid protein contained in the rAAV virion of the present invention is contained in the capsomere of the rAAV virion of the present invention alone or together with other capsid protein members (for example, VP2 and / or VP3, etc.)
- the AAV genome (or recombinant AAV vector genome) is packaged in the capsomere.
- amino acid deletions, substitutions, insertions and additions may occur simultaneously.
- examples of such a protein include, for example, 1 to 50 amino acid sequences of SEQ ID NO: 8, 10, or 12, or positions other than positions 444 to 446 in the amino acid sequence of SEQ ID NO: 8, 10 or 12, 1-40, 1-39, 1-38, 1-37, 1-36, 1-35, 1-34, 1-33, 1-32, 1-31, 1-30, 1-29, 1-28, 1-27, 1-26, 1-25, 1-24, 1-23, 1-22, 1-21, 1-20, 1-19, 1-18, 1-17, 1-16, 1-15, 1-14, 1-13, 1-12, 1-11, 1 to 10, 1 to 9 (1 to several), 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 to 2 Or an amino acid in which one amino acid residue is deleted, substituted, inserted and / or added It comprises the sequence, and include proteins capable of forming a virion.
- the formed rAAV virion of the present invention can pass through the blood-brain barrier of adults and fetuses as described above, and can be preferably introduced into nerve cells such as the brain and spinal cord by peripheral administration. Further, the rAAV virion of the present invention can be introduced into a nervous system cell contained in the brain, spinal cord, etc. of a fetus in the mother by peripheral administration to the mother.
- These modified capsid proteins can be prepared according to methods known to those skilled in the art, such as ordinary gene manipulation techniques.
- amino acid residues that can be substituted with each other in the protein (polypeptide) of the present invention are shown below.
- Amino acid residues contained in the same group can be substituted for each other.
- Group A leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, o-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine
- Group B aspartic acid, glutamic acid, isoaspartic acid , Isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid
- Group C asparagine, glutamine
- Group D lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid
- Group E Proline, 3-hydroxyproline, 4-hydroxyproline
- the capsid proteins VP1, VP2 and / or VP3 contained in the rAAV virion of the present invention can be encoded by one or more kinds of polynucleotides.
- all capsid proteins in the present invention are encoded by one type of polynucleotide.
- the capsid protein is encoded by the polynucleotide of SEQ ID NO: 7, 9, or 11.
- the polynucleotide encoding the capsid protein contained in the rAAV virion of the present invention encodes a protein functionally equivalent to the capsid protein capable of forming the recombinant viral virion of the present invention.
- a polynucleotide is, for example, one or more (for example, 1 to 50, 1 to 40) in the polynucleotide sequence of SEQ ID NO: 7, 9, or 11, or the polynucleotide sequence of SEQ ID NO: 7, 9, or 11.
- Amino acid sequence of 8, 10 or 12 or an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and / or added at positions other than positions 444 to 446 in the amino acid sequence of SEQ ID NO: 8, 10 or 12 Can form viral virions Comprising a polynucleotide encoding the protein. Two or more of these deletions, substitutions, insertions and additions may occur simultaneously.
- the rAAV virions of the invention comprising capsid proteins encoded by such polynucleotides can cross the adult and fetal blood brain barrier as described above.
- the rAAV virion of the present invention can be introduced into a nervous system cell contained in an adult brain, spinal cord or the like, preferably by peripheral administration. Further, the rAAV virion of the present invention can be introduced into a nervous system cell contained in the brain, spinal cord, etc. of a fetus in the mother by peripheral administration to the mother. In general, the smaller the number of nucleotide deletions, substitutions, insertions and / or additions, the better.
- Such a polynucleotide is, for example, a polynucleotide capable of hybridizing under stringent hybridization conditions to SEQ ID NO: 7, 9, or 11 or a complementary sequence thereof, and can form the recombinant viral virion of the present invention.
- a protein for example, the amino acid sequence of SEQ ID NO: 8, 10 or 12, or the amino acid sequence of SEQ ID NO: 8, 10 or 12 has one or more amino acids deleted or substituted at positions other than positions 444 to 446;
- a polynucleotide encoding a protein comprising an inserted and / or added amino acid sequence may be included.
- Hybridization can be performed according to a known method or a method according thereto, for example, a method described in Molecular Cloning (Molding Cloning 3rd Edition, J. Sambrook et al., Cold Spring Harbor Lab. Press, 2001). Moreover, when using a commercially available library, it can carry out according to the method as described in the instruction manual provided by the manufacturer.
- the “stringent conditions” may be any of low stringent conditions, medium stringent conditions, and high stringent conditions.
- “Low stringent conditions” are, for example, conditions of 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, and 32 ° C.
- the “medium stringent conditions” are, for example, conditions of 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, and 42 ° C.
- “High stringent conditions” are, for example, conditions of 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 50 ° C. Under these conditions, it can be expected that DNA having higher homology can be efficiently obtained as the temperature is increased. However, multiple factors such as temperature, probe concentration, probe length, ionic strength, time, and salt concentration can be considered as factors that affect hybridization stringency. Those skilled in the art will select these factors as appropriate. It is possible to achieve similar stringency.
- hybridizable polynucleotide when calculated by homology search software such as FASTA, BLAST and the like using the default parameters, the nucleotide sequence of SEQ ID NO: 7, 9 or 11 and, for example, 70% or more, 80% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.1% or more, 99.2% or higher, 99.3% or higher, 99.4% or higher, 99.5% or higher, 99.6% or higher, 99.7% or higher, 99.8% or higher, 99.9% or higher Can be mentioned. In general, the larger the homology value, the better.
- the Rep protein used in the present invention has a function of recognizing an ITR sequence and performing genome replication depending on the sequence, a function of recruiting and packaging a wild type AAV genome (or rAAV genome) into a viral virion, As long as it has a known function such as the function of forming the rAAV virion of the present invention to the same extent, it may have the same number of amino acid sequence identities as described above, or a deletion of the same number of amino acid residues as described above Substitutions, insertions and / or additions may be included. Examples of the functionally equivalent range include the ranges described in the explanation regarding the specific activity.
- a known Rep protein derived from AAV3 is preferably used. More preferably, a protein having the amino acid sequence set forth in SEQ ID NO: 16 is used.
- the polynucleotide encoding the Rep protein used in the present invention has the function of recognizing the ITR sequence and performing genome replication depending on the sequence, recruiting the wild type AAV genome (or rAAV genome) into the viral virion. As long as it encodes a Rep protein having the same level of known functions such as the function of packaging and the function of forming the rAAV virion of the present invention, it may have the same number of identities as above or the same as above. Deletions, substitutions, insertions and / or additions of any number of nucleotides. Examples of the functionally equivalent range include the ranges described in the explanation regarding the specific activity.
- a rep gene derived from AAV3 is preferably used. More preferably, a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 15 is used.
- the capsid protein VP1 and the like encoded in the internal region of the wild-type AAV genome, and the Rep protein, the polynucleotide encoding the same is of the present invention.
- the capsid protein (VP1, VP2 and / or VP3) and Rep protein used in the present invention may be incorporated into one, two, three or more plasmids as necessary. In some cases, one or more of these capsid proteins and Rep proteins may be included in the AAV genome.
- the capsid protein (VP1, VP2 and / or VP3) and the Rep protein are all encoded by one polynucleotide and provided as an AAV helper plasmid. See, for example, the examples herein.
- the rAAV genome of the present invention The recombinant adeno-associated virus genome packaged in the rAAV virion of the present invention (hereinafter, the rAAV genome of the present invention) is between ITRs located 5 ′ and 3 ′ of the wild-type genome.
- a polynucleotide of an internal region located in (ie, one or both of the rep gene and the cap gene), a polynucleotide encoding a protein of interest (therapeutic gene), a promoter sequence for transcription of the polynucleotide, and the like It can be prepared by replacing with a gene cassette.
- the ITRs located on the 5 ′ side and 3 ′ side are located on the 5 ′ end and 3 ′ end of the AAV genome, respectively.
- the ITRs located at the 5 ′ end and the 3 ′ end include a 5 ′ ITR and a 3 ′ ITR contained in the AAV1, AAV2, AAV3 or AAV9 genome.
- the 5 ′ ITR is the polynucleotide of SEQ ID NO: 13 and the 3 ′ ITR is the polynucleotide of SEQ ID NO: 14.
- the ITR contained in the rAAV genome of the present invention may have the 5 ′ and 3 ′ directions reversed.
- the length of the polynucleotide (ie, therapeutic gene) replaced with the internal region is preferably about the same as the length of the original polynucleotide. That is, the full length of the rAAV genome of the present invention is about the same as 5 kb, which is the full length of the wild type, for example, about 2 to 6 kb, preferably about 4 to 6 kb.
- the length of the therapeutic gene integrated into the rAAV genome of the present invention is preferably obtained by subtracting the length of the transcriptional regulatory region including the promoter, polyadenylation, etc. (for example, assuming about 1 to 1.5 kb).
- the length is about 0.01 to 3.7 kb, more preferably about 0.01 to 2.5 kb, and still more preferably about 0.01 to 2 kb, but is not limited thereto.
- a known technique such as intervening a known internal ribosome entry site (IRES) sequence, as long as the total length of the rAAV genome is within the above range, two or more kinds of about 0.01 to 1.5 kb It is possible to incorporate multiple therapeutic genes simultaneously.
- IRS internal ribosome entry site
- the viral genome packaged in a recombinant adeno-associated virus virion takes several days to express the gene of interest contained in the genome due to the fact that this genome is single-stranded.
- the therapeutic gene to be introduced is designed to be self-complementary (referred to as a self-complementary (sc) type vector) to promote expression after viral vector infection.
- sc self-complementary
- the length of the above therapeutic gene is designed to be about half that of the non-sc type genomic vector due to the necessity of including the reverse sequence for duplex formation. It should be.
- the length of the target gene that can be integrated is designed to be about 2 kb including the region required for the promoter, polyadenylation, and the like.
- an sc-type genomic vector can also be used. That is, the rAAV genome used in the present invention may be non-sc type or sc type. In the case of the sc type, the entire expression cassette containing the target gene or a part thereof can form double-stranded DNA.
- the polynucleotide sequence encoding the polypeptide is operatively combined with various known promoter sequences.
- CMV promoter which is a commonly used strong promoter
- most of the target genes are introduced into glial-like cells instead of neurons (for example, in this specification) See Example 1). Therefore, the promoter sequence used in the rAAV virion of the present invention is specific to nervous system cells.
- the nervous system used in the present invention refers to an organ system composed of nerve tissue as described above.
- the neural cell-specific promoter sequences used in the present invention are derived from, for example, nerve cells, glial cells, oligodendrocytes, cerebrovascular endothelial cells, microglia cells, ventricular epithelial cells, etc. It is not limited. Specific examples of such promoter sequences include synapsin I promoter sequence, myelin basic protein promoter sequence, neuron specific enolase promoter sequence, glial fibrillary acidic protein promoter sequence, L7 promoter sequence (cerebellar Purkinje cell specific promoter ), Glutamate receptor delta2 promoter (cerebellar Purkinje cell specific promoter), but is not limited thereto.
- promoter sequences such as calcium / calmodulin-dependent protein kinase II (CMKII) promoter, tubulin ⁇ I promoter, platelet-derived growth factor ⁇ chain promoter and the like can also be used. These promoter sequences may be used alone or in any combination. Particularly preferred are the synapsin I promoter sequence and the myelin basic protein promoter sequence.
- the rAAV genome of the present invention may further contain known sequences such as an enhancer sequence that assists transcription of mRNA, translation into protein, Kozak sequence, an appropriate polyadenylation signal sequence, and the like.
- the target therapeutic gene is incorporated into the rAAV genome of the present invention.
- This therapeutic gene may encode a protein used to treat various diseases.
- the encoding protein may be one type or more, but the length of the rAAV genome packaged including the gene of interest is about 5 kb or less (about 4.7 kb or less excluding the ITR region) ) Should be.
- the length of the gene of interest integrated into the rAAV genome is substantially limited to about 3.5 kb or less.
- the length is further limited to half that length.
- the target therapeutic gene preferably uses a polynucleotide encoding a protein consisting of a short polypeptide.
- proteins include antibodies (including antigen-binding sites, Fab, Fab2, single chain antibodies (scFv), etc.), nerve growth factor (NGF), growth factor (HGF), acidic fibroblast growth factor (aFGF), brain-derived neurotrophic factor (BDNF), neurotrophins NT-3 and NT-4 / 5, ciliary neurotrophic factor (CNTF), glial cell-derived neurotrophic factor (GDNF), newturin, agrin Any one of the heregluin / neuregulin / ARIA / neu differentiation factor (NDF) family, semaphorin / collapsin, netulin-1 and netulin-2, basic fibroblast growth factor (bFGF), glial cell line Derived from neurotrophic factor (GDNF), aromatic amino acid decarboxylase (AADC), amyloid ⁇ protein Like enzyme (N
- genes related to metabolic enzyme diseases that exhibit neurological disorders eg, mucopolysaccharidosis including Gaucher disease, amino acid metabolism disorders including homocystinuria, lipid metabolism disorders including metachromatic leukodystrophy, etc.
- neurological disorders eg, mucopolysaccharidosis including Gaucher disease, amino acid metabolism disorders including homocystinuria, lipid metabolism disorders including metachromatic leukodystrophy, etc.
- glucocerebrosidase eg, cystathionine ⁇ -synthase, Alice sulfatase A or the like.
- the class of the antibody encoded by the rAAV genome of the present invention is not particularly limited, and includes antibodies having any isotype such as IgG, IgM, IgA, IgD, or IgE.
- the length of the polynucleotide encoding the antibody is practically limited.
- the term “antibody” is also meant to include any antibody fragment or derivative, eg, Fab, Fab′2, CDR, humanized antibody, chimeric antibody, multifunctional antibody, single chain antibody ( ScFv) and the like.
- the protein encoded by the rAAV genome of the present invention may include a protein variant containing insertion, deletion, substitution and / or addition of amino acid residues by genetic manipulation as long as it has the desired function.
- this protein variant two or more of these deletions, substitutions, insertions and additions may occur simultaneously.
- these protein variants have the same function (eg, antigen binding ability) as the original protein.
- such protein variants include, for example, 1 to 50, 1 to 40, 1 to 39 in the amino acid sequence of an anti-amyloid ⁇ protein (A ⁇ ) single chain antibody (scFv), 1-38, 1-37, 1-36, 1-35, 1-34, 1-33, 1-32, 1-31, 1-30, 1-39, 1 to 28, 1 to 27, 1 to 26, 1 to 25, 1 to 24, 1 to 23, 1 to 22, 1 to 21, 1 to 20, 1 to 19, 1-18, 1-17, 1-16, 1-15, 1-14, 1-13, 1-12, 1-11, 1-10, 1-9 ( 1 to several) 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 to 2, or 1 amino acid residue is missing Consisting of a deleted, substituted, inserted and / or added amino acid sequence and the original protein Proteins and the like having an equivalent antigen-binding to the.
- a ⁇ anti-amyloid ⁇ protein
- scFv single chain antibody
- having an equivalent function is included, for example, in a range where the specific activity is about 0.01 to 100 times, preferably about 0.5 to 20 times, more preferably about 0.5 to 2 times. It has the ability to bind to the antigen, but is not limited thereto.
- a therapeutic gene of interest incorporated into the rAAV genome of the present invention alters the function of a target endogenous gene, such as an antisense molecule, ribozyme, interfering RNA (iRNA), microRNA (miRNA) (eg, It may be a polynucleotide for disrupting, reducing), or a polynucleotide for changing (eg, reducing) the expression level of an endogenous protein.
- a target endogenous gene such as an antisense molecule, ribozyme, interfering RNA (iRNA), microRNA (miRNA) (eg, It may be a polynucleotide for disrupting, reducing), or a polynucleotide for changing (eg, reducing) the expression level of an endogenous protein.
- a target endogenous gene such as an antisense molecule, ribozyme, interfering RNA (iRNA), microRNA (miRNA) (eg, It may be
- the length of the antisense nucleic acid is preferably 10 bases or more, 15 bases or more, 20 bases or more, and 100 bases or more. And more preferably 500 bases or more.
- the length of the antisense nucleic acid used is shorter than 5 kb, preferably shorter than 2.5 kb.
- a ribozyme By using a ribozyme, the mRNA of the target protein can be specifically cleaved to suppress the expression of the protein.
- various known literatures can be referred to (for example, FEBS Lett. 228: 228, 1988; FEBS Lett. 239: 285, 1988; Nucl. Acids. Res. 17: 7059, 1989; Nature 323: 349, 1986; Nucl. Acids.Res.19: 6751, 1991; Protein Eng 3: 733,1990; Nucl.Acids Res.19: 3875, 1991; Nucl.Acids Res.19: 5125, 1991 Biochem Biophys Res Commun 186: 1271, 1992, etc.).
- RNAi is a phenomenon in which the expression of the introduced foreign gene and target endogenous gene is both suppressed when a double-stranded RNA having the same or similar sequence as the target gene sequence is introduced into the cell. Point to.
- RNA used here include double-stranded RNA that causes RNA interference of 21 to 25 bases in length, such as dsRNA (double strand RNA), siRNA (small interfering RNA), shRNA (short hairpin RNA), or miRNA. (MicroRNA).
- dsRNA double strand RNA
- siRNA small interfering RNA
- shRNA short hairpin RNA
- miRNA miRNA.
- Such RNA can be locally delivered to a desired site by a delivery system such as a liposome, and can be locally expressed using a vector capable of generating the double-stranded RNA.
- dsRNA, siRNA, shRNA or miRNA double-stranded RNA
- dsRNA, siRNA, shRNA or miRNA double-stranded RNA
- US Publication No. 2002 / 086356A Japanese Patent Publication No. 2002-516062; US Publication No. 2002 / 086356A
- virus virion As used herein, unless otherwise stated, the terms “virus virion”, “virus vector”, and “virus particle” are used interchangeably.
- nucleic acid As used herein, the term “polynucleotide” is used interchangeably with “nucleic acid”, “gene” or “nucleic acid molecule” and is intended to be a polymer of nucleotides.
- nucleotide sequence is used interchangeably with “nucleic acid sequence” or “base sequence” and refers to the sequence of deoxyribonucleotides (abbreviated A, G, C, and T). As shown.
- a polynucleotide comprising a nucleotide sequence of SEQ ID NO: 1 or a fragment thereof intends a polynucleotide comprising the sequence represented by each deoxynucleotide A, G, C and / or T of SEQ ID NO: 1 or a fragment thereof. Is done.
- viral genomes and polynucleotide may each exist in the form of DNA (for example, cDNA or genomic DNA), but may be in the form of RNA (for example, mRNA) in some cases.
- viral genomes and polynucleotides can each be double-stranded or single-stranded DNA.
- single-stranded DNA or RNA it may be the coding strand (also known as the sense strand) or the non-coding strand (also known as the antisense strand).
- coding strand also known as the sense strand
- non-coding strand also known as the antisense strand
- protein and “polypeptide” are used interchangeably, and are intended to be polymers of amino acids.
- the polypeptide used in the present specification has the N-terminus (amino terminus) at the left end and the C-terminus (carboxyl terminus) at the right end in accordance with the convention of peptide designation.
- the partial peptide of the polypeptide of the present invention (in the present specification, sometimes abbreviated as the partial peptide of the present invention) is the partial peptide of the polypeptide of the present invention described above, preferably the polypeptide of the present invention described above. It has the same properties as a peptide.
- plasmid means various known genetic elements such as plasmids, phages, transposons, cosmids, chromosomes and the like.
- a plasmid can replicate in a particular host and transport gene sequences between cells.
- a plasmid contains various known nucleotides (DNA, RNA, PNA and mixtures thereof) and may be single-stranded or double-stranded, but preferably double-stranded.
- rAAV vector plasmid is intended to include the duplex formed by the rAAV vector genome and its complementary strand, unless otherwise specified.
- the plasmid used in the present invention may be linear or circular.
- the target therapeutic gene to be incorporated into the rAAV genome of the present invention is delivered to the nervous system cell with higher efficiency than before, and is incorporated into the genome of the cell.
- the number of nerves is about 10 times or more, about 20 times or more, about 30 times or more, about 40 times or more, or about 50 times or more compared with the case of using a conventional rAAV vector.
- Genes can be introduced into cells.
- the number of transfected neurons can be determined by, for example, preparing an rAAV virion that packages an rAAV vector genome incorporating an arbitrary marker gene, and then administering the rAAV virion to a test animal, It can be measured by counting the number of neural cells that express the incorporated marker gene (or marker protein).
- Known marker genes can be selected. Examples of such a marker gene include a LacZ gene, a green fluorescent protein (GFP) gene, a photoprotein gene (such as firefly luciferase), and the like.
- an rAAV virion packaged with an rAAV vector genome can pass through the blood-brain barrier of a living body. Therefore, by peripheral administration to a subject, a target treatment can be applied to nervous system cells such as the brain and spinal cord of the subject. Gene can be introduced.
- a target treatment can be applied to nervous system cells such as the brain and spinal cord of the subject.
- Gene can be introduced.
- the rAAV genome of the present invention is a non-sc type, a promoter and a target gene having a wider range can be selected, and a plurality of target genes can be used.
- the term “packaging” includes events including preparation of a single-stranded viral genome, assembly of the coat protein (capsid), encapsidation of the viral genome, and the like. Say. When an appropriate plasmid vector (usually multiple plasmids) is introduced into a cell line that can be packaged under appropriate conditions, recombinant viral particles (ie, viral virions, viral vectors) are assembled and put into culture. Secreted.
- an appropriate plasmid vector usually multiple plasmids
- recombinant viral particles ie, viral virions, viral vectors
- rAAV virions of the invention are provided.
- the method comprises (a) a first polynucleotide encoding a capsid protein of the invention (commonly referred to as an AAV helper plasmid), and (b) a second packaged in an rAAV virion of the invention.
- a step of transfecting a cultured cell with a polynucleotide (including a therapeutic gene of interest) can be included.
- the preparation method in the present invention further includes (c) a step of transfecting a cultured cell with a plasmid encoding an adenovirus-derived factor called an adenovirus (AdV) helper plasmid, or a step of infecting the cultured cell with adenovirus.
- a step of transfecting a cultured cell with a plasmid encoding an adenovirus-derived factor called an adenovirus (AdV) helper plasmid or a step of infecting the cultured cell with adenovirus.
- AdV adenovirus
- the step of culturing the above-described transfected cultured cells and the step of collecting the recombinant adeno-associated virus vector from the culture supernatant can also be included. Such a method is already known and used in the examples of the present specification.
- the method for preparing rAAV virions of the present invention comprises (a) a first polynucleotide encoding a protein comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 8, 10, and 12, and (b) A second polynucleotide comprising a polynucleotide comprising a neural cell specific promoter sequence and a polynucleotide operably linked to said promoter sequence between the nucleotide sequence of SEQ ID NO: 13 and the nucleotide sequence of SEQ ID NO: 14. Transfecting the cultured cells with nucleotides.
- Such first and second polynucleotides include, for example, combinations of polynucleotides listed in Table 1 of the Examples.
- the nucleotide encoding the capsid protein of the present invention in the first polynucleotide is preferably operably linked to a known promoter sequence that is operable in cultured cells.
- a promoter sequence for example, cytomegalovirus (CMV) promoter, EF-1 ⁇ promoter, SV40 promoter and the like can be appropriately used.
- CMV cytomegalovirus
- EF-1 ⁇ promoter EF-1 ⁇ promoter
- SV40 promoter SV40 promoter
- a known enhancer sequence, Kozak sequence, poly A addition signal sequence and the like may be included as appropriate.
- the second polynucleotide contains a therapeutic gene at a position operable with a neural cell specific promoter. Furthermore, a known enhancer sequence, Kozak sequence, poly A addition signal sequence and the like may be included as appropriate.
- This first polynucleotide may further comprise a cloning site cleavable by various known restriction enzymes downstream of the nervous system cell specific promoter sequence. A multi-cloning site containing a plurality of restriction enzyme recognition sites is more preferred.
- One skilled in the art can incorporate a therapeutic gene of interest downstream of a neural cell-specific promoter according to known genetic engineering procedures. For such genetic manipulation procedures, see, for example, Molecular Cloning (Molecular Cloning 3rd Edition, J. Sambrook et al., Cold Spring Harbor Lab. Press. 2001).
- AAV is a helper-dependent virus
- a helper virus for example, adenovirus, herpes virus or vaccinia. Requires infection.
- AAV inserts the viral genome into the host cell chromosome, but infectious AAV virions derived from the inserted viral genome are not generated.
- the helper virus is required to be the same species as the host cell. For example, human AAV can replicate in canine cells co-infected with canine adenovirus.
- a helper virus plasmid for example, adenovirus, herpes virus or vaccinia
- the preparation method of the present invention further comprises a step of introducing an adenovirus (AdV) helper plasmid.
- AdV helper plasmid encodes a protein such as E1a, E1b, E2a, E4 orf4 required for replication of the AAV genome.
- recombinant viruses or non-viral vectors eg, plasmids, episomes, etc.
- Such recombinant viruses can be produced according to techniques known and published in the art.
- Various adenovirus strains are available from the ATCC (American Type Culture Collection) and are also commercially available.
- the sequences of many adenovirus strains are available, for example, from public databases (eg, PubMed, Genbank, etc.).
- the AdV helper is derived from the same type of virus as the cultured cells.
- a helper virus vector derived from human AdV can be used.
- an AdV helper vector a commercially available one (for example, AAV Helper-Free System (catalog number 240071) of Agilent Technologies) can be used.
- various known methods such as the calcium phosphate method, the lipofection method, the electroporation method, etc. can be used as a method for transfection of one or more plasmids into cultured cells. it can.
- Such a method is described in, for example, Molecular Cloning 3rd Ed. , Current Protocols in Molecular Biology, John Wiley & Sons 1987-1997, and the like.
- compositions comprising the rAAV virions of the invention are provided.
- a pharmaceutical composition containing the rAAV virion of the present invention hereinafter referred to as the pharmaceutical composition of the present invention
- gene can be introduced into a nervous system cell of a subject with high efficiency.
- Methods are provided that can treat a disease. Since the rAAV of the present invention can pass through the blood brain barrier of a living body, the rAAV of the present invention can be delivered to neural cells such as the brain and spinal cord by peripheral administration to a subject. That is, when the rAAV of the present invention is used, a higher safety can be expected because a dosage form requiring a more careful operation such as intracerebral administration is unnecessary.
- the rAAV virion of the present invention preferably comprises a neural cell specific promoter sequence and a therapeutic gene operably linked to the promoter sequence.
- the rAAV virion of the present invention is a neurological disease (eg, Parkinson's disease, Alzheimer's disease, triplet repeat disease, prion disease, amyotrophic lateral sclerosis, spinocerebellar degeneration, channel disease, epilepsy, etc.), congenital metabolic disorders ( Wilson disease, peroxisome disease, etc.), demyelinating diseases (eg, multiple sclerosis), central nervous system infections (eg, HIV encephalitis, bacterial meningitis, etc.), vascular disorders (cerebral infarction, cerebral hemorrhage, spinal cord infarction), It can contain genes that are useful for the treatment of trauma (brain contusion, spinal cord injury, etc.), retinal diseases (age-related macular degeneration, diabetic retinopathy, etc.), etc., and these genes cross the blood brain barrier, for example Can be a
- RAAV virions containing such therapeutic genes are included in the pharmaceutical composition of the present invention.
- a therapeutic gene for example, a polynucleotide encoding the antibody, neurotrophic factor (NGF), growth factor (HGF), acidic fiber cell growth factor (aFGF) and the like as described above can be selected.
- NGF neurotrophic factor
- HGF growth factor
- aFGF acidic fiber cell growth factor
- rAAV virions for treating Alzheimer's disease can be generated by selecting a polynucleotide encoding a single chain antibody capable of recognizing aggregated amyloid ⁇ protein.
- rAAV virions By peripherally administering such rAAV virions to a subject, it can be expected to treat neurological diseases such as Parkinson's disease and Alzheimer's disease.
- the pharmaceutical composition of the present invention is useful for treating Parkinson's disease, for example, by reducing the expression level of ⁇ -synuclein in a patient's brain nerve cells, or expressing an antibody against an aggregating amyloid ⁇ protein in a patient's brain. Is useful in the treatment of Alzheimer's disease by reducing the aggregated amyloid ⁇ protein in
- the pharmaceutical composition of the present invention can be, for example, oral, parenteral (intravenous), muscle, oral mucosa, rectal, vaginal, transdermal, nasal or inhalation. Is preferably administered. Intravenous administration is more preferred.
- the active ingredients of the pharmaceutical composition of the present invention may be blended singly or in combination.
- a pharmaceutically acceptable carrier or a pharmaceutical additive may be blended with the active ingredient and provided in the form of a pharmaceutical preparation. it can.
- the active ingredient of the present invention can be contained in the preparation in an amount of 0.1 to 99.9% by weight.
- Examples of pharmaceutically acceptable carriers or additives include excipients, disintegrants, disintegration aids, binders, lubricants, coating agents, dyes, diluents, solubilizers, solubilizers, isotonic agents. Agents, pH adjusters, stabilizers and the like can be used.
- preparations suitable for oral administration include powders, tablets, capsules, fine granules, granules, liquids or syrups.
- various excipients such as microcrystalline cellulose, sodium citrate, calcium carbonate, dipotassium phosphate, glycine are added to starch, preferably corn, potato or tapioca starch, and alginic acid and certain species. It can be used with various disintegrants such as silicate double salts and granulating binders such as polyvinylpyrrolidone, sucrose, gelatin, gum arabic.
- lubricants such as magnesium stearate, sodium lauryl sulfate, and talc are often very effective for tablet formation.
- the same kind of solid composition can also be used by filling gelatin capsules.
- suitable substances in this connection include lactose or lactose as well as high molecular weight polyethylene glycols.
- the active ingredient is used in combination with various sweeteners or flavors, colorants or dyes, and if necessary, an emulsifier and / or suspending agent is also used.
- an emulsifier and / or suspending agent is also used.
- preparations suitable for parenteral administration include injections and suppositories.
- parenteral administration a solution in which the active ingredient of the present invention is dissolved in either sesame oil or peanut oil or dissolved in an aqueous propylene glycol solution can be used.
- the aqueous solution should be appropriately buffered as necessary (preferably pH 8 or more), and the liquid diluent must first be made isotonic.
- physiological saline can be used.
- the prepared aqueous solution is suitable for intravenous injection, while the oily solution is suitable for intra-articular, intramuscular and subcutaneous injection. All these solutions can be prepared aseptically by standard pharmaceutical techniques well known to those skilled in the art.
- the active ingredient of the present invention can also be administered locally such as on the skin. In this case, topical administration in the form of creams, jellies, pastes, ointments is desirable according to standard pharmaceutical practice.
- the dose of the pharmaceutical composition of the present invention is not particularly limited, and an appropriate dose is selected according to various conditions such as the type of disease, the age and symptoms of the patient, the route of administration, the purpose of treatment, the presence or absence of a concomitant drug, etc. Is possible.
- the dose of the pharmaceutical composition of the present invention is, for example, 1 to 5000 mg, preferably 10 to 1000 mg per day for an adult (for example, body weight 60 kg), but is not limited thereto. These daily doses may be administered in two to four divided doses.
- vg vector genome
- administration in the range of 10 9 to 10 14 vg, preferably 10 10 to 10 13 vg, more preferably 10 10 to 10 12 vg per kg body weight.
- the amount can be selected, but is not limited thereto.
- the present invention provides a method for introducing a gene into a nervous system cell of a living body by using the rAAV virion of the present invention (hereinafter referred to as the method of the present invention).
- the method of the present invention includes the step of peripherally administering the rAAV virion of the present invention to a subject.
- the method of the present invention further includes the step of delivering the gene for treatment contained in the rAAV virion of the present invention to neural cells such as the brain and spinal cord.
- the rAAV virion of the present invention can pass through the blood brain barrier of living organisms (including adults and fetuses). Therefore, since a dosage form that requires more careful operation such as intracerebral administration is unnecessary, higher safety can be expected.
- an rAAV virion of the invention comprises a recombinant viral genome, preferably comprising a neural cell specific promoter sequence and a therapeutic gene operably linked to the promoter sequence (such viral genome is Packaged).
- a therapeutic gene for example, a polynucleotide encoding the antibody, neurotrophic factor (NGF), growth factor (HGF), acidic fiber cell growth factor (aFGF) and the like as described above can be selected.
- an rAAV virion comprising a polynucleotide encoding a single chain antibody capable of recognizing aggregated amyloid ⁇ protein, the agglutinability in the subject's brain It can be expected to reduce amyloid ⁇ protein and treat Alzheimer's disease. Moreover, it can be expected to treat (mitigate, improve, repair, etc.) genetic defects (including congenital and acquired) in nerve cells using the rAAV virion of the present invention.
- kits for producing the rAAV of the present invention can include, for example, the above (a) first polynucleotide and (b) second polynucleotide.
- the first polynucleotide comprises a polynucleotide that encodes the proteins of SEQ ID NOs: 8, 10, and 12.
- the second polynucleotide may or may not contain the therapeutic gene of interest, but preferably may contain various restriction enzyme cleavage sites for incorporating such therapeutic gene of interest. .
- the kit for producing the rAAV virion of the present invention can further include any configuration described in the present specification (for example, AdV helper).
- the kit of the present invention may also further comprise instructions describing a protocol for making rAAV virions using the kit of the present invention.
- AAV coat protein VP1 For three types of AAV, type 1 AAV (AAV1), type 2 AAV (AAV2), and type 9 AAV (AAV9), each coat protein VP1 Plasmids pAAV1-RC, pAAV2-RC, and pAAV9-RC containing the nucleotide sequence coding for were used as templates. These plasmids are derived from AAV3 Rep / VP described in the literature (Handa, et.al., J Gen Virol, 81: 2077-2084, 2000) and contain the AAV3 Rep sequence (Muramatsu, et al.,). Virology 221, 208-217 (1996)).
- the base sequences of these AAV VP1s are listed in GeneBank as Accession No. Already reported as AF063497, AF043303, AY530579 (shown in SEQ ID NOs: 1, 3 and 5, respectively).
- the primers shown below were synthesized, and using the Quick Change II XL site-directed mutagenesis kit (Stratagene), the VP1 amino acid sequence of AAV1 (SEQ ID NO: 2) and the VP1 amino acid sequence of AAV2 (SEQ ID NO: 2), respectively. : 4), the tyrosine (Y) residue located at position 444 of the VP1 amino acid sequence (SEQ ID NO: 6) of AAV9 was substituted with a phenylalanine (F) residue.
- Plasmids pAAV1-yfRC, pAAV2 comprising polynucleotides encoding the substituted amino acid sequences AAV1-yfVP1 (SEQ ID NO: 8), AAV2-yfVP1 (SEQ ID NO: 10) and AAV9-yfVP1-3 (SEQ ID NO: 12), respectively -YfRC and pAAV9-yfRC were prepared.
- PAAV1-yfRC, pAAV2-yfRC, and pAAV9-yfRC all include a nucleotide sequence (SEQ ID NO: 15) encoding AAV2 Rep.
- rAAV vector (2) Preparation of rAAV vector (a) Preparation of vector genome plasmid Synapsin I (Synapsin I (SynI) promoter (GeneBank Accession No. M550300.1, SEQ ID NO: 23) or oligodendrocyte as a neuron-specific promoter
- the myelin basic protein (MBP) promoter (GeneBank Accession No. M63599, SEQ ID NO: 24) was used as the (oligodendrome) -specific promoter, and the cytomegalovirus enhancer / chicken ⁇ -actin promoter (CAG) promoter (CAG) was used as a control.
- the base sequence of photoprotein (GFP) (TAKARA product code Z2468N) is called inverted terminal repeats (ITR) on the 5 ′ side and 3 ′ side of the plasmid pAAV3 containing the DNA sequence of type 3 AAV (AAV3).
- ITR inverted terminal repeats
- pAAV-SynI-GFP pAAV-MBP-GFP
- pAAV-CAG-GFP Three types of plasmids, pAAV-SynI-GFP, pAAV-MBP-GFP, and pAAV-CAG-GFP, were constructed by inserting between the hairpin DNA sequences, and the basic structure of these plasmids was Li et al., Mol Ther. 13: 160-166.2006.
- AAV vector plasmid + AAV helper plasmid AAV vector plasmid + AAV helper plasmid
- a helper plasmid pHelper AAV Helper-Free System (Agilent Technologies) (catalog number 240071)) containing an adenovirus (AdV) base sequence
- AdV adenovirus
- the culture solution in the flask was replaced with a medium supplemented with DNA-calcium phosphate, and the medium was exchanged after culturing for several hours.
- rAAV virions Ten types of recombinant virus virions obtained by the above combinations were collected.
- 0.5M EDTA was added, and the cells were detached from the culture dish and suspended in TBS (100 mM Tris HCl, pH 8.0, 150 mM NaCl).
- TBS 100 mM Tris HCl, pH 8.0, 150 mM NaCl
- the cells were disrupted by repeating freeze / thaw three times using dry ice ethanol and a 37 ° C. water bath. After centrifugation at 10,000 ⁇ g for 10 minutes, the supernatant was collected to remove coarse cell debris.
- the rAAV vector was purified by ultracentrifugation with a density gradient of cesium chloride CsCl according to the following procedure. A density gradient was created by overlaying 1.5 M and 1.25 M CsCl in an ultracentrifuge tube. The cell disruption solution containing the rAAV vector was overlaid and then subjected to ultracentrifugation (30,000 rpm, 2.5 hours). The fraction containing the rAAV vector of RI: 1.365 to 1.380 was collected by measuring the refractive index. This fraction was layered again on the CsCl solution and ultracentrifugated (36,000 rpm, 2.5 hours) to obtain a fraction containing rAAV.
- mice were refluxed using PBS followed by 4% ice-cold PFA.
- the brain and spinal cord were removed and then postfixed in 4% PFA for 4 hours.
- a coronal section (40 ⁇ m) of the brain was prepared in the range (3.2 mm) from the anterior apex (Bregma) to 0.7 mm forward to 2.5 mm backward.
- a horizontal section (40 ⁇ m) of cervical spinal cord was prepared. Blocking was performed for 1 hour in 0.3% Triton X-100 / PBS containing 2% Mouse IgG Blocking solution (MO Kit; Vector Laboratories, Burlingame, CA, USA).
- NeuN 100, mouse anti-Neuronucleo monoclonal antigen; Chemicon, Temecula, CA, USA
- GFP 1000, rabbit anti-GFP, polyAnaboidA, US, 4
- the cells were incubated with Alexa Fluor (registered trademark) 594 anti-mouse IgG and Alexa Fluor (registered trademark) 488 anti-rabbit IgG (1: 500, Invitrogen, Carlsbad, CA, USA) for 2 hours at room temperature for visualization.
- the cells were incubated with Alexa Fluor (registered trademark) 594 anti-rabbit IgG, followed by Alexa Fluor (registered trademark) 488 conjugated anti-GFP rabbit polyantibody (diluted to 1-400, Invitrogen) at room temperature for 2 hours. Observation was performed in the same manner as other fluorescent immunostaining, and the number of cells emitting fluorescence was counted.
- Alexa Fluor registered trademark
- Alexa Fluor 488 conjugated anti-GFP rabbit polyantibody diluted to 1-400, Invitrogen
- AAV1-CAG-GFP (sample ID: 1), yfAAV1-CAG-GFP (sample ID: 2), AAV1-SynI-GFP (sample ID: 3), AAV2-SynI-GFP (sample ID: 5), yfAAV2-SynI-GFP (sample ID: 6), AAV9-CAG-GFP (Sample ID: 7)
- a neuron-specific promoter or an oligodendrocyte-specific promoter sequence it has become possible to introduce genes efficiently into brain neurons and oligodendrocytes by peripherally administered rAAV vectors. Show.
- rAAV virions are injected directly into the brain rather than peripherally, even when the CAG promoter is used, the efficiency of introduction into neurons is sufficiently high, and the gene expression level is 2 to 4 times higher than the SynI promoter (Hoki et al., Gene Ther 14: 872-882, 2007, etc.).
- the rAAV vector of the present invention is capable of crossing the blood-brain barrier by peripheral administration to adult mice, and finally In addition, it was shown that gene transfer into the nervous system cells of the brain and spinal cord is possible with high efficiency.
- rAAV vector yfAAV9-SynI-AcGFP1 (sample ID: 9) Titer: 1.3 ⁇ 10 13 vector genome / ml Dosing volume: 50 ⁇ l Administration method
- the above rAAV vector was intracardially administered to mother mice (3 animals) on day 13 of gestation, and then born mice (total of 9 animals) were obtained at 1 day, 3 weeks, 4 weeks and 11 weeks after birth. Reflux fixation was performed with 4% paraformaldehyde (PFA), and coronal sections (thickness: 40 ⁇ m) were prepared near the hippocampus of each brain. In each prepared section sample, GFP expressed in nerve cells was detected in the same manner as described above.
- PFA paraformaldehyde
- AADC aromatic amino acid decarboxylase
- rAAV vector expressing fluorescent green protein were prepared and administered to mice to test whether AADC in brain neurons could be reduced.
- GFP fluorescent green protein
- the miRNA to be used the following sequence was synthesized targeting 5′-TGCCTTTATGTCCTGAATT-3 ′ (SEQ ID NO: 27) corresponding to base numbers 831 to 851 of mouse AADC (Genebank accession No. NM — 016672).
- PAAV-SynI-GFP-miAADC was prepared by incorporating this sequence downstream of the GFP gene in the rAAV vector genomic plasmid pAAV-SynI-GFP shown in Sample ID: 9 in Table 1 above (see SEQ ID NO: 29) ), RAAV virion yfAAV9-SynI-GFP-miAADC was prepared using AAV helper plasmid pAAV9-yfRC and AdV helper plasmid pHelper simultaneously, as in sample ID: 9.
- rAAV vector yfAAV9-SynI-GFP-miAADC Titer: 1.7 ⁇ 10 14 vector genome / ml
- Adult mouse C57BL / 6J 10-week-old male 4 mice
- Intracardial administration 50 ⁇ l / mouse Brain tissue analysis procedure 2 weeks after rAAV vector administration, fixed with reflux with 4% paraformaldehyde (PFA), and then the brain was removed. After 4 hours of fixation, 10% ⁇ 20% ⁇ 30% sucrose, a coronal section having a thickness of 40 ⁇ m was prepared on a slide glass.
- rabbit anti-AADC anti-AADC, diluted 1: 5000, provided by Dr.
- Anti-tyrosine hydroxylase (diluted to Dia Sorin 1: 800) was reacted with the section sample overnight at 4 ° C.
- Alexa Fluor (registered trademark) 594 anti-rabbit IgG and Alexa Fluor (registered trademark) 405 anti-mouse IgG both of which were diluted to Life Technologies, 1: 1000 were used.
- Alexa Fluor (registered trademark) 488 conjugate anti-GFP diluted in Life technologies, 1: 400.
- Each fluorescent substance in the section sample was imaged with a confocal laser scanning microscope (FV10i; Olympus, Tokyo) (FIG. 6).
- rAAV adeno-associated virus
- genes can be introduced into nervous system cells by simple administration means such as peripheral administration. Therefore, for example, by incorporating a polynucleotide encoding a useful protein such as an antibody or neurotrophic factor into the recombinant vector of the present invention, a pharmaceutical composition capable of introducing a gene into a nervous system cell can be provided.
- the recombinant vector of the present invention incorporating a gene encoding an antibody against an amyloid ⁇ protein aggregate that causes Alzheimer's disease can provide a safer therapeutic means for Alzheimer's disease.
- a virus particle for introducing a target gene into a nervous system cell can be produced.
- nucleotide sequence SEQ ID NO: 28 Nucleotide sequence SEQ ID NO: 29 to generate miRNA against mouse aromatic amino acid decarboxylase (AADC) miRNA against GFP and mouse aromatic amino acid decarboxylase (AADC) (SEQ ID NO: 28) Nucleotide sequence that expresses
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Virology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Hospice & Palliative Care (AREA)
- Psychology (AREA)
- Psychiatry (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
[1] (a)配列番号:2、4若しくは6のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列において、少なくとも1つの表面露出チロシン残基が他のアミノ酸残基に置換されているアミノ酸配列を含むタンパク質であって、ウイルスビリオンを形成可能であるタンパク質を含むキャプソメア、ならびに
(b)該キャプソメア内にパッケージングされるポリヌクレオチドであって、神経系細胞特異的プロモーター配列および該プロモーター配列と作動可能に連結されるヌクレオチド配列を含むポリヌクレオチド
を含む、組換えアデノ随伴ウイルスビリオン。
[1a] 前記神経系細胞特異的プロモーター配列が、神経細胞、神経膠細胞または乏突起膠細胞に由来する、[1]に記載のウイルスビリオン。
[2] 前記タンパク質は少なくとも、配列番号:2において445位のチロシン残基、配列番号:4において444位のチロシン残基、又は配列番号:6において446位のチロシン残基が置換されているアミノ酸配列を含む、[1]に記載のウイルスビリオン。
[3] 前記チロシン残基がフェニルアラニン残基に置換されている、請求項1又は2に記載のウイルスビリオン。
[4] 前記タンパク質が、配列番号:8、10若しくは12のアミノ酸配列、又は配列番号:8、10若しくは12のアミノ酸配列の444~446位以外の位置に1~数個のアミノ酸の欠失、置換、挿入及び/若しくは付加を含むアミノ酸配列を含み、ウイルスビリオンを形成可能である、[1]~[3]のいずれか1項に記載のウイルスビリオン。
[5] 前記ポリヌクレオチドの5’末端および3’末端が、それぞれ、AAV1、AAV2、AAV3またはAAV4に由来する5’末端および3’末端のインバーテッドターミナルリピート(ITR)配列を含む、[1]~[4]のいずれか1項に記載のウイルスビリオン。
[6] 前記ポリヌクレオチドの5’末端および3’末端が、それぞれ配列番号:13および配列番号:14のヌクレオチド配列を含む、[1]~[5]のいずれか1項に記載のウイルスビリオン。
[7] 前記ポリヌクレオチドが全長約2~6kbの長さを有し、センス鎖またはアンチセンス鎖の一本鎖DNAである、[1]~[5]のいずれか1項に記載のウイルスビリオン。
[8] 前記プロモーター配列が、シナプシンIプロモーター配列、ミエリン塩基性タンパク質プロモーター配列、ニューロン特異的エノラーゼプロモーター配列、カルシウム/カルモジュリン−依存性蛋白キナーゼII(CMKII)プロモーター、チュブリンαIプロモーター、血小板由来成長因子β鎖プロモーター、グリア線維性酸性タンパク質(GFAP)プロモーター配列、L7プロモーター配列(小脳プルキンエ細胞特異的プロモーター)、およびグルタミン酸受容体デルタ2プロモーター(小脳プルキンエ細胞特異的プロモーター)からなる群より選択される、[1]~[6]のいずれか1項に記載のウイルスビリオン。
[9] 前記プロモーター配列が配列番号:23または配列番号:24に記載のポリヌクレオチドを含む、[7]に記載のウイルスビリオン。
[10] 前記プロモーター配列と作動可能に連結されるヌクレオチド配列が、抗体、神経栄養因子(NGF)、成長因子(HGF)、酸性線維芽細胞増殖因子(aFGF)、塩基性維芽細胞増殖因子(bFGF)、膠細胞株由来神経栄養因子(GDNF)、芳香族アミノ酸脱炭酸酵素(AADC)、アミロイドβタンパク質分解酵素(Neprilysin)からなる群より選択されるタンパク質をコードする、[7]に記載のウイルスビリオン。
[10a] 前記プロモーター配列と作動可能に連結されるヌクレオチド配列が、芳香族アミノ酸脱炭酸酵素(AADC)又はα−シヌクレインに対するdsRNA、siRNA、shRNA、又はmiRNAを発現する、[7]に記載のウイルスビリオン。
[11] 前記抗体が凝集性アミロイドβタンパク質に対する抗体である、[9]に記載のウイルスビリオン。
[11a] 前記抗体が凝集性アミロイドβタンパク質に対する単鎖抗体である、[9]に記載のウイルスビリオン。
[11b] 前記ヌクレオチド配列が、アミロイドβタンパク質分解酵素(Neprilysin)である、請求項10に記載のウイルスビリオン。
[12] 被検体の血液脳関門を通過可能である、[1]~[11]のいずれか1項に記載のウイルスビリオン。
[12a] 被検体への末梢投与によって神経細胞に遺伝子導入するための、[1]~[12]のいずれか1項に記載のウイルスビリオン。
[12b] 被検体が母体中の胎児であり、母体への末梢投与によって胎児の神経細胞に遺伝子導入するための、[1]~[12]のいずれか1項に記載のウイルスビリオン。
[13] 前記ウイルスビリオンがアデノ随伴ウイルスベクターである、[1]~[12]のいずれかに記載のウイルスビリオン。
[14] [1]~[13]のいずれか1項に記載のウイルスビリオンを含む、医薬組成物。
[15] 被検体の脳における凝集性アミロイドβタンパク質を低減させる、[14]に記載の医薬組成物。
[15a] 被検体の脳神経細胞内のα−シヌクレインの量を低減させる、[13]に記載の医薬組成物。
[16] アルツハイマー病の治療薬である、[14]または[15]に記載の医薬組成物。
[16a] パーキンソン病の治療に有用である、[14]または[15a]に記載の医薬組成物。
[17] [1]~[12]のいずれか1項に記載のウイルスビリオンを被検体に末梢投与する工程を含む、方法。
[17a] 被検体が母体中の胎児であり、ウイルスビリオンが母体に末梢投与される、[17]に記載の方法。
[18] 被検体の脳における凝集性アミロイドβタンパク質を低減させる工程をさらに含む、[17]に記載の方法。
[18a] 被検体の脳神経細胞内のα−シヌクレインの量を低減させる工程をさらに含む、[17a]に記載の方法。
[19] アルツハイマー病を治療するための、[18]に記載の方法。
[19a] パーキンソン病の治療に有用である、[18a]に記載の方法。
本発明は、1実施形態において、以下のrAAVビリオンを提供する:
(a)配列番号:2、4若しくは6のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列において、少なくとも1つの表面露出チロシン残基が他のアミノ酸残基に置換されているアミノ酸配列を含むタンパク質であって、ウイルスビリオンを形成可能であるタンパク質を含むキャプソメア、ならびに
(b)該キャプソメア内にパッケージングされるポリヌクレオチドであって、神経系細胞特異的プロモーター配列および該プロモーター配列と作動可能に連結されるヌクレオチド配列を含むポリヌクレオチド
を含む、組換えアデノ随伴ウイルスビリオン。
天然のアデノ随伴ウイルス(AAV)は非病原性ウイルスである。この特徴を利用して、種々の組換ウイルスベクターを作製して、遺伝子治療のために所望の遺伝子を送達することが行われている(例えば、WO2003/018821、WO2003/053476、WO2007/001010、薬学雑誌126(11)1021−1028などを参照のこと)。野生型AAVゲノムは、全長が約5kbのヌクレオチド長を有する一本鎖DNA分子であり、センス鎖またはアンチセンス鎖である。AAVゲノムは、一般に、ゲノムの5’側および3’側の両末端に約145ヌクレオチド長のインバーテッドターミナルリピート(ITR)配列を有する。このITRは、AAVゲノムの複製起点としての機能及びこのゲノムのビリオン内へのパッケージングシグナルとしての機能等の多様な機能を有することが知られている(例えば、上記の文献である薬学雑誌126(11)1021−1028などを参照のこと)。ITRに挟まれた野生型AAVゲノムの内部領域(以下、内部領域)は、AAV複製(rep)遺伝子及びカプシド(cap)遺伝子を含む。これらrep遺伝子及びcap遺伝子は、それぞれ、ウイルスの複製に関与するタンパク質Rep及び正20面体構造の外殻であるキャプソメアを形成するカプシドタンパク質(例えば、VP1、VP2及びVP3の少なくとも1つ)をコードする。さらなる詳細については、例えば、Human Gene Therapy,13,pp.345−354,2002、Neuronal Development 45,pp.92−103,2001、実験医学20,pp.1296−1300,2002、薬学雑誌126(11)1021−1028、Hum Gene Ther,16,541−550,2005などを参照のこと。
本発明のrAAVビリオンが含むカプシドタンパク質は、VP1アミノ酸配列(配列番号:2、4又は6)において、表面露出チロシン残基(例えば、ウイルスビリオン表面にアミノ酸側鎖が露出されているチロシン残基)の少なくとも1つが別のアミノ酸に置換される。このようなタンパク質としては、配列番号:2、4又は6のアミノ酸配列と約90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、99.1%以上、99.2%以上、99.3%以上、99.4%以上、99.5%以上、99.6%以上、99.7%以上、99.8%以上、99.9%以上の同一性を有するアミノ酸配列を有し、表面露出されるチロシン残基の少なくとも1つが別のアミノ酸に置換されており、かつウイルスビリオンを形成できるタンパク質が挙げられる。上記数値は一般的に大きい程好ましい。本発明のrAAVビリオンに含まれるカプシドタンパク質は、単独で又は他のカプシドタンパク質メンバー(例えば、VP2および/またはVP3など)と一緒になってキャプソメアを形成し、該キャプソメア内にAAVゲノム(又はAAVベクターゲノム)がパッケージングされている本発明のrAAVビリオンを形成できる。このような本発明のrAAVは、生体の血液脳関門(未完成な胎児及び新生児の血液脳関門、および確立した成体の血液脳関門を含む)を通過できる。さらに、本発明のrAAVビリオンは、末梢投与によって成体の脳、脊髄などに含まれる神経細胞を標的とすることができる。本明細書において末梢投与とは、静脈内投与、動脈内投与、腹腔内投与、心腔内投与、筋肉内投与、臍帯血管内投与(例えば、胎児を対象とする場合)など、当業者に末梢投与として通常理解される投与経路をいう。相互に置換可能なアミノ酸残基としては、その残基が属する類似アミノ酸残基の群(後述)内に含まれる他の残基が挙げられる。相互に置換可能なアミノ酸残基によって改変されたカプシドタンパク質は、通常の遺伝子操作技術など、当業者に公知の方法に従って作製することができる。このような遺伝子操作手順については、例えば、Molecular Cloning 3rd Edition,J.Sambrook et al.,Cold Spring Harbor Lab.Press.2001、Current Protocols in Molecular Biology,John Wiley & Sons 1987−1997などを参照することができる。
本発明のrAAVビリオン中にパッケージングされる組換えアデノ随伴ウイルスゲノム(以下、本発明のrAAVゲノム)は、野生型ゲノムの5’側および3’側に位置するITRの間に位置する内部領域(すなわち、rep遺伝子及びcap遺伝子の一方または両方)のポリヌクレオチドを、目的のタンパク質をコードするポリヌクレオチド(治療用遺伝子)およびこのポリヌクレオチドを転写するためのプロモーター配列などを含む遺伝子カセットによって置換することにより作製できる。好ましくは、5’側および3’側に位置するITRは、それぞれAAVゲノムの5’末端および3’末端に位置する。好ましくは、本発明のrAAVゲノムは、5’末端および3’末端に位置するITRは、AAV1、AAV2、AAV3またはAAV9のゲノムに含まれる5’側ITRおよび3’側ITRを含む。特に好ましくは、本発明のrAAVビリオンにパッケージングされるウイルスゲノムは、5’側のITRは配列番号:13のポリヌクレオチドであり、3’側ITRは配列番号:14のポリヌクレオチドである。一般的に、ITR部分は容易に相補配列が入れ替わった配列(flip and flop structure)をとるため、本発明のrAAVゲノムに含まれるITRは、5’と3’の方向が逆転していてもよい。本発明のrAAVゲノムにおいて、内部領域と置き換えられるポリヌクレオチド(すなわち、治療用遺伝子)の長さは、元のポリヌクレオチドの長さと同程度が実用上好ましい。すなわち、本発明のrAAVゲノムは、全長が野生型の全長である5kbと同程度、例えば約2~6kb、好ましくは約4~6kbであることが好ましい。本発明のrAAVゲノムに組込まれる治療用遺伝子の長さは、プロモーター、ポリアデニレーションなどを含めた転写調節領域の長さ(例えば、約1~1.5kbと仮定する場合)を差し引くと、好ましくは長さが約0.01~3.7kb、より好ましくは長さが約0.01~2.5kb、さらに好ましく約0.01~2kbであるが、これに限定されない。さらに、公知のinternal ribosome entry site(IRES)配列を介在させるなどの公知の手法を用いて、rAAVゲノムの全長が上記の範囲内である限り、約0.01~1.5kbの二種類以上の複数の治療用遺伝子を同時に組み込むことが可能である。
本発明の別の実施形態において、本発明のrAAVビリオンを調製する方法が提供される。この方法は、(a)本発明のカプシドタンパク質をコードする第1のポリヌクレオチド(一般に、AAVヘルパープラスミドと称される)、および(b)本発明のrAAVビリオン内にパッケージングされる第2のポリヌクレオチド(目的の治療用遺伝子を含む)を、培養細胞にトランスフェクトする工程を含むことができる。本発明における調製方法はさらに、(c)アデノウイルス(AdV)ヘルパープラスミドと称されるアデノウイルス由来因子をコードするプラスミドを培養細胞にトランフェクトする工程、またはアデノウイルスを培養細胞に感染させる工程も含むことができる。さらに、上記のトランスフェクトされた培養細胞を培養する工程、および培養上清より組換えアデノ随伴ウイルスベクターを収集する工程を含むこともできる。このような方法は既に公知であり、本明細書の実施例においても利用される。
本発明のさらなる実施形態において、本発明のrAAVビリオン(rAAVベクター)を含む医薬組成物が提供される。本発明のrAAVビリオンを含む医薬組成物(以下、本発明の医薬組成物という)利用することによって、被検体の神経系細胞に高い効率で遺伝子導入可能であり、この導入される遺伝子によって目的の疾患を治療できる方法を提供する。本発明のrAAVは、生体の血液脳関門を通過可能であるので、被検体に末梢投与することによって、本発明のrAAVを脳、脊髄などの神経系細胞に遺伝子の送達が可能である。すなわち、本発明のrAAVを使用する場合、脳実質内投与などのより慎重な操作を必要とする投与形態が不要であるので、より高い安全性を期待できる。
本発明はさらなる実施形態において、本発明のrAAVビリオンを用いることによる生体の神経系細胞に遺伝子導入する方法(以下、本発明の方法という)を提供する。具体的には、本発明の方法において、被検体に本発明のrAAVビリオンを末梢投与する工程を含む。本発明の方法はさらに、本発明のrAAVビリオンが含む治療用遺伝子を脳、脊髄などの神経系細胞に遺伝子の送達する工程を含む。本発明のrAAVビリオンは、上記のとおり、生体(成体および胎児を含む)の血液脳関門を通過可能である。したがって、脳内投与などのより慎重な操作を必要とする投与形態が不要であるので、より高い安全性を期待できる。
本発明は別の実施形態において、本発明のrAAVを作製するためのキットを提供する。このようなキットは、例えば、上記の(a)第1のポリヌクレオチド、および(b)第2のポリヌクレオチドを含むことができる。例えば、第1のポリヌクレオチドは、配列番号:8、10および12のタンパク質をコードするポリヌクレオチドを含む。例えば、第2のポリヌクレオチドは、目的の治療用遺伝子を含んでも含まなくてもよいが、好ましくは、そのような目的の治療用遺伝子を組込むための種々の制限酵素切断部位を含むことができる。
(1)AAVの外被(カプシド)蛋白VP1の改変
1型AAV(AAV1)、2型AAV(AAV2)、9型AAV(AAV9)という3種類のAAVについて、それぞれの外被蛋白VP1をコードする塩基配列を含むプラスミドpAAV1−RC、pAAV2−RC、pAAV9−RCを鋳型として使用した。これらのプラスミドは文献(Handa,et.al.,J Gen Virol,81:2077−2084,2000)に記載されたAAV3 Rep/VPに由来し、AAV3のRep配列を含む(Muramatsu,et al.,Virology 221,208−217(1996))。これらのAAVのVP1の塩基配列はGeneBankにそれぞれAccession No.AF063497、AF043303、AY530579として既に報告されている(それぞれ、配列番号:1、3および5に示される)。以下に示すプライマーを合成し、Quick Change II XL site−directed mutagenesis kit(Stratagene社)を使用して、それぞれAAV1のVP1アミノ酸配列(配列番号:2)の445番目、AAV2のVP1アミノ酸配列(配列番号:4)の444番目、AAV9のVP1アミノ酸配列(配列番号:6)の446番目に位置するチロシン(Y)残基をフェニルアラニン(F)残基で置換した。置換されたアミノ酸配列AAV1−yfVP1(配列番号:8)、AAV2−yfVP1(配列番号:10)およびAAV9−yfVP1−3(配列番号:12)それぞれをコードするポリヌクレオチドを含むプラスミドpAAV1−yfRC、pAAV2−yfRC、pAAV9−yfRCを作製した。また、pAAV1−yfRC、pAAV2−yfRC、pAAV9−yfRCはいずれもAAV2のRepをコードするヌクレオチド配列(配列番号:15)を含む。
(a)ベクターゲノムプラスミドの作製
神経細胞特異的プロモーターとしてシナプシンI(Synapsin I(SynI)プロモーター(GeneBank Accession No.M55300.1、配列番号:23)、あるいは乏突起膠細胞(オリゴデンドログリア)特異的プロモーターとしてミエリン塩基性蛋白(MBP)プロモーター(GeneBank Accession No.M63599、配列番号:24)を使用した。また、対照としてcytomegalovirus enhancer/chicken β−actin promoter(CAG)プロモーター(Niwa H,et al.,Gene 108:193−200,1991)を使用した。これらのプロモーターと緑色蛍光蛋白質(GFP)の塩基配列(TAKARA製品コードZ2468N)を、3型AAV(AAV3)のDNA配列を含むプラスミドpAAV3の5’側と3’側のインバーテッドターミナルリピートinverted terminal repeats(ITR)と呼ばれるヘアピンDNA配列の間に挿入して、3種類のプラスミドpAAV−SynI−GFP、pAAV−MBP−GFP、pAAV−CAG−GFPを作製した。これらのプラスミドの基本構造は、Li et al.,Mol Ther 13:160−166.2006に記載される。
<第1日目>
225cm2フラスコに1.5×106のHEK293細胞をまき、10% FCS−DMEM/F12培地を使用して5%CO2、37℃で培養した。
<第3日目>
リン酸カルシウム法でトランスフェクションを行った。以下の10種類の組み合わせのプラスミド(AAVベクタープラスミド+AAVヘルパープラスミド)と、アデノウイルス(AdV)の塩基配列を含むヘルパープラスミドpHelper(Agilent Technologies社のAAV Helper−Free System(カタログ番号240071))とを、各25μgずつ(計75μg)0.3M CaCl2中で混合した。
<第6日目>
上述の組み合わせで得られる10種類の組換えウイルスビリオン(上記表中「rAAVビリオン」)を回収した。0.5M EDTAを加えて細胞を培養ディッシュより剥がし、TBS(100mM Tris HCl,pH8.0,150mM NaCl)に懸濁した。ドライアイスエタノールと37℃のウォーターバスを使用して凍結/融解を3回繰り返し、細胞を破砕した。10,000×gで10分間遠心した後、上清を回収して粗大な細胞破片を除去した。
以下の手順に従って、塩化セシウムCsClの密度勾配による超遠心を行いrAAVベクターを精製した。超遠心チューブ内に1.5Mおよび1.25MのCsClを重層し密度勾配を作製した。rAAVベクターを含む細胞破砕溶液を重層後、超遠心(30,000rpm、2.5時間)を行った。屈折率を計測してRI:1.365~1.380のrAAVベクターを含む画分を回収した。この分画を再度CsCl溶液上に重層し、超遠心(36,000rpm、2.5時間)を行ってrAAVを含む分画を得た。
精製したrAAVの10−2~10−6の希釈系列を作製した。GFP配列をスタンダードとしたプライマーセット(配列番号:25及び26)を使用して、Applied Biosystems 7900HT Fast リアルタイムPCRシステム(Applied Biosystems社)で定量した。
実施例1
(1)マウス心腔内へのrAAVベクターの投与
生後4か月齢の成体マウスC57BL6、雄、30頭(各ベクターにつき3頭)を使用した。ネンブタールを体重30gあたり200μl腹腔内投与して麻酔し、小動物固定装置に固定した。インスリン注射用の1mlシリンジを使用して、経皮的に左心室を穿刺し、PBSで希釈した上記の各ベクターを2×1012vg(投与容量:100μl)注入した。麻酔が覚醒するまでヒーティングパッド上に置いたケージで観察した。その後、マウスケージを感染動物用ラックに戻した。
深い麻酔下で、PBSを使用し、その後、4%氷冷PFAを使用して、マウスを還流した。脳と脊髄を取り出し、次いで4%PFA中で4時間、後固定した。前頂(Bregma)から前方0.7mm~後方2.5mmまでの範囲(3.2mm)の脳の冠状断面切片(40μm)を作製した。また、頚髄の水平断切片(40μm)を作製した。2% Mouse IgG Blocking solution(M.O.M Kit;Vector Laboratories,Burlingame,CA,USA)を含有する0.3% TritonX−100/PBS中で1時間ブロッキングした。次いでNeuN(1:100,mouse anti−Neuronal nuclei monoclonal antibody;Chemicon,Temecula,CA,USA)とGFP(1:1000,rabbit anti−GFP polyclonal antibody;Abcam,Cambridge,MA,USA)とともに4℃で一晩インキュベートした。その後、Alexa Fluor(登録商標)594 anti−mouse IgG,Alexa Fluor(登録商標)488 anti−rabbit IgG(1:500,Invitrogen,Carlsbad,CA,USA)とともに、室温で2時間インキュベーションし可視化した。共焦点レーザー顕微鏡(TCS NT;Leica,Heidelberg,Germany)のもとで観察し、200μm間隔の切片で、大脳皮質の0.04mm3(1mm×1mm×40μm)の範囲、および脊髄の一切片あたりのGFPおよびNeuN陽性細胞を計測した。また、脊髄のGFP陽性細胞を、以下に述べるGFP/ChAT二重免疫蛍光染色により同定した。頚髄の切片を同様にブロッキングした後ChAT(1:100に希釈、mouse anti−ChAT polyclonal antibody;Chemicon,Temecula,CA,USA)とGFP(1:1000に希釈,Abcam)とともに4℃で一晩インキュベートした。その後、Alexa Fluor(登録商標)594 anti−mouse IgG,Alexa Fluor(登録商標)488 anti−rabbit IgG(1:500,Invitrogen)とともに、室温で2時間インキュベーションし可視化、GFP/NeuN二重染色と同様に観察した。
GFP/Olig2二重免疫蛍光染色のために、切片を3%ヤギ血清を含有する0.3%TritonX−100/PBS中でブロッキングした後、Olig2(1:50に希釈、rabbit anti−Olig2 polyclonal antibody;IBL,Takasaki,Gunma,Japan)とともに4℃で一晩インキュベートした。その後Alexa Fluor(登録商標)594 anti−rabbit IgG、続いてAlexa Fluor(登録商標)488 conjugated anti−GFP rabbit polyclonal antibody(1−400に希釈,Invitrogen)とともに室温で2時間ずつインキュベートした。他の蛍光免疫染色と同様に観察し、蛍光を発する細胞数を計測した。
(1)上記表1に記載の組合せのうち、以下の6種類のrAAVベクターを生じる組合せでは、大脳皮質および脊髄の神経細胞にGFPの発現は認められなかった。
AAV1−CAG−GFP (サンプルID:1)、
yfAAV1−CAG−GFP (サンプルID:2)、
AAV1−SynI−GFP(サンプルID:3)、
AAV2−SynI−GFP(サンプルID:5)、
yfAAV2−SynI−GFP(サンプルID:6)、
AAV9−CAG−GFP (サンプルID:7)
rAAVビリオンを末梢投与するのではなく脳内へ直接注入する場合、CAGプロモーターを利用する場合であっても神経細胞への導入効率が十分高く、遺伝子発現レベルはSynIプロモーターより2~4倍以上高いことが具体的に示されている(Hioki et al.,Gene Ther 14:872−882,2007など)。しかし、本願のrAAVビリオンを末梢血管内投与する場合、CAGプロモーターを利用したrAAVビリオンは、神経細胞ではなくグリア様細胞で遺伝子発現の大部分が認められた。通常のCMVプロモーターを用いたrAAVベクターを用いた場合も同様に、成体では大部分のものが神経細胞ではなくグリア様細胞に導入された。
一方、神経細胞での遺伝子発現は神経細胞特異的プロモーターであるSynIの方がCAGプロモーターよりも優れていた。したがって、上記の結果は、本発明のrAAVビリオンと組み合わせるプロモーターとしては、CAGプロモーターのような非特異的な一般的に強力なプロモーターよりもむしろ、SynIなどの神経細胞特異的プロモーターがより有利であり、これらの組合せによって、末梢投与による神経細胞への遺伝子導入に対して相乗的な効果を発揮することを示している。
上記の結果より、野生型AAV1/2/9のカプシドタンパク質VP1のそれぞれ445/444/446位のチロシン(Y)残基をフェニルアラニン(F)残基で置換したこと、ならびに神経細胞特異的プロモーターであるSynIプロモーター配列又はMBPプロモーター配列を目的の治療用遺伝子と組合せて使用することにより、本発明のrAAVベクターは、成体マウスに対しする末梢投与によって、血液脳関門を通過可能であり、最終的に脳および脊髄の神経系細胞に高い効率で遺伝子導入可能であることを示した。
実施例2
母親マウスの羊膜血管内にrAAVベクターを投与することによって、胎仔に遺伝子導入を行ったことが報告されている(RAHIM ET AL.,FASEB Journal,pp1−14,Vol.25 October 2011)。そこで、本発明のrAAVベクターを母親マウスに末梢投与した場合における胎児への遺伝子導入について試験した。
rAAVベクター:yfAAV9−SynI−AcGFP1(サンプルID:9)
力価: 1.3 × 1013 vector genome/ml
投与容量: 50μl
投与方法
妊娠13日目に母マウス(3頭)に上記rAAVベクターを心腔内投与し、その後生まれた仔マウス(計9頭)について、生後1日、3週、4週および11週目に4%パラフォルムアルデヒド(PFA)により還流固定し、各脳の海馬付近について冠状断切片(厚さ40μm)を作製した。作製した各切片試料において、上記と同様に、神経細胞内に発現されるGFPを検出した。
5頭分の合計20枚の切片試料について発現されるGFPを計測したところ、平均して4.6個/切片のGFP陽性細胞が認められた(図5)。したがって、本発明のrAAVベクターは、母体に末梢投与する場合であっても、胎仔の脳神経細胞への遺伝子導入が可能であることを示した。
実施例3
本発明のrAAVベクターは、ウイルスゲノム中にmiRNAなどを組み込むことによって内在性遺伝子の発現制御を可能とする治療用ベクターとして有用であるかどうか試験した。具体的な手順としては、yfAAV9−SynI−GFP(サンプルID:9)をベースに、yfAAV9を外被蛋白として含み,神経細胞特異的Synapsin Iプロモーターによりマウス芳香族アミノ酸脱炭酸酵素(AADC)に対するmiRNAと蛍光緑色蛋白(GFP)とを発現するrAAVベクターを作製し、これをマウスに投与して、脳神経細胞内のAADCを低下できるかを試験した。
使用するmiRNAとしては,マウスAADC(Genebank accession No.NM_016672)の塩基番号831~851に相当する5’−TGCCTTTATGTCCTGAATT−3’(配列番号:27)を目標とした下記の配列を合成した。
この配列を、上記表1のサンプルID:9に示すrAAVベクターゲノムプラスミドpAAV−SynI−GFP中のGFP遺伝子の下流に組み込むことによってpAAV−SynI−GFP−miAADCを作製し(配列番号:29を参照)、サンプルID:9と同様に、AAVヘルパープラスミドpAAV9−yfRC及びAdVヘルパープラスミドpHelperを同時に使用して、rAAVビリオンyfAAV9−SynI−GFP−miAADCを調製した。
rAAVベクター:yfAAV9−SynI−GFP−miAADC
力価: 1.7×1014vector genome/ml
成体マウス: C57BL/6J 10週齢 雄性 4匹
心腔内投与: 50μl/匹
脳組織解析の手順
rAAVベクター投与2週間後に4%パラフォルムアルデヒド(PFA)で還流固定し,その後,脳を取り出し後、固定4時間,10% → 20% → 30%シュクロースを経て,スライドガラス上に厚さ40μmの冠状断切片を作製した。免疫染色のため,3% normal goat serumで切片試料をブロッキングした後,一次抗体として、ウサギ抗AADC(anti−AADC、1:5000に希釈、名古屋大学の永津 俊治博士より供与された)及びマウス抗チロシンヒドロキシラーゼ(anti−TH)(Dia Sorin 1:800に希釈)を切片試料と4℃で一晩反応させた。二次抗体としてAlexa Fluor(登録商標)594抗ウサギIgGとAlexa Fluor(登録商標)405抗マウスIgG(以上、共にLife technologies、1:1000に希釈)を用い、これら抗体の各々と各切片試料とを室温で2時間反応させた。その後Alexa Fluor(登録商標)488 conjugate anti−GFP(Life technologies,1:400に希釈)を用い、この抗体と各切片試料とを室温で1時間反応させた。切片試料中の各蛍光物質を、共焦点レーザー走査型顕微鏡(FV10i;Olympus,Tokyo)で画像化した(図6)。
図6の左図(anti−GFP)には、黒質緻密部に5個のGFP陽性の細胞がみられたことから、本発明のrAAVベクターが上記実施例と同様に神経細胞に遺伝子導入できたことを確認した。これら神経細胞についてanti−AADCを反応させた結果を見ると、バックグラウンド程度であり、有意には呈色されなかった(図6の中央図、anti−AADC)。したがって、本発明のrAAVベクターを用いて脳神経細胞においてAADCの発現を有意に低下させることができた。対照として、細胞内タンパク質であるチロシンヒドロキシラーゼ(Tyrosine hydroxylase:TH)の発現が維持されているのを確認した(図6の右図、anti−TH)。以上より、本発明のrAAVベクターは、脳神経細胞に対して遺伝子導入可能であり、ウイルスゲノム中にmiRNAなどを組み込むことによって内在性遺伝子を発現抑制させるなどの治療用ベクターとして有用であることを示した。
配列番号:2 野生型AAV1由来カプシドタンパク質AAV1−VP1アミノ酸配列(GenBank:NC_2077.1)
配列番号:3 野生型AAV2由来カプシドタンパク質AAV2−VP1ヌクレオチド配列(GenBank:NC_001401.2)
配列番号:4 野生型AAV2由来カプシドタンパク質AAV2−VP1アミノ酸配列(GenBank:NC_001401.2)
配列番号:5 野生型AAV9由来カプシドタンパク質AAV9−VP1ヌクレオチド配列(GenBank:AY530579.1)
配列番号:6 野生型AAV9由来カプシドタンパク質AAV9−VP1アミノ酸配列(GenBank:AY530579.1)
配列番号:7 AAV1由来カプシドタンパク質変異体AAV1−yfVP1ヌクレオチド配列
配列番号:8 AAV1由来カプシドタンパク質変異体AAV1−yfVP1アミノ酸配列
配列番号:9 AAV2由来カプシドタンパク質変異体AAV2−yfVP1ヌクレオチド配列
配列番号:10 AAV2由来カプシドタンパク質変異体AAV2−yfVP1アミノ酸配列
配列番号:11 AAV9由来カプシドタンパク質変異体AAV9−yfVP1ヌクレオチド配列
配列番号:12 AAV9由来カプシドタンパク質変異体AAV9−yfVP1アミノ酸配列
配列番号:13 AAV3由来5’側ITRヌクレオチド配列 (GenBank NC_001729由来)
配列番号:14 AAV3由来3’側ITRヌクレオチド配列
配列番号:15 AAV2由来rep遺伝子ヌクレオチド配列
配列番号:16 AAV2由来Repタンパク質アミノ酸配列
配列番号:17 変異導入プライマー1(yfAAV1−F)ヌクレオチド配列
配列番号:18 変異導入プライマー2(yfAAV1−R)ヌクレオチド配列
配列番号:19 変異導入プライマー3(yfAAV2−F)ヌクレオチド配列
配列番号:20 変異導入プライマー4(yfAAV2−R)ヌクレオチド配列
配列番号:21 変異導入プライマー5(yfAAV9−F)ヌクレオチド配列
配列番号:22 変異導入プライマー6(yfAAV9−R)ヌクレオチド配列
配列番号:23 シナプシンIプロモーター配列(GenBank:M55300.1)
配列番号:24 ミエリン塩基性タンパク質プロモーター配列(GenBank:M63599(ヒト)由来)
配列番号:25 GFP検出用プライマー1ヌクレオチド配列
配列番号:26 GFP検出用プライマー2ヌクレオチド配列
配列番号:27 マウス芳香族アミノ酸脱炭酸酵素(AADC:Genebank accession No.NM_016672)の831~851塩基に対して設計したヌクレオチド配列
配列番号:28 マウス芳香族アミノ酸脱炭酸酵素(AADC)に対するmiRNAを生じるためのヌクレオチド配列
配列番号:29 GFP及びマウス芳香族アミノ酸脱炭酸酵素(AADC)に対するmiRNA(配列番号:28)を発現するヌクレオチド配列
Claims (15)
- (a)配列番号:2、4若しくは6のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列において、少なくとも1つの表面露出チロシン残基が他のアミノ酸残基に置換されているアミノ酸配列を含むタンパク質であって、ウイルスビリオンを形成可能であるタンパク質を含むキャプソメア、ならびに
(b)該キャプソメア内にパッケージングされるポリヌクレオチドであって、神経系細胞特異的プロモーター配列および該プロモーター配列と作動可能に連結されるヌクレオチド配列を含むポリヌクレオチドを含む、組換えアデノ随伴ウイルスビリオン。 - 前記タンパク質は少なくとも、配列番号:2において445位のチロシン残基、配列番号:4において444位のチロシン残基、又は配列番号:6において446位のチロシン残基が置換されているアミノ酸配列を含む、請求項1に記載のウイルスビリオン。
- 前記チロシン残基がフェニルアラニン残基に置換されている、請求項1又は2に記載のウイルスビリオン。
- 前記タンパク質が、配列番号:8、10若しくは12のアミノ酸配列、又は配列番号:8、10若しくは12のアミノ酸配列の444~446位以外の位置に1~数個のアミノ酸の欠失、置換、挿入及び/若しくは付加を含むアミノ酸配列を含み、ウイルスビリオンを形成可能である、請求項1~3のいずれか1項に記載のウイルスビリオン。
- 前記ポリヌクレオチドの5’末端および3’末端が、それぞれ、AAV1、AAV2、AAV3またはAAV4に由来する5’末端および3’末端のインバーテッドターミナルリピート(ITR)配列を含む、請求項1~4のいずれか1項に記載のウイルスビリオン。
- 前記ポリヌクレオチドの5’末端および3’末端が、それぞれ配列番号:13および配列番号:14のヌクレオチド配列を含む、請求項1~5のいずれか1項に記載のウイルスビリオン。
- 前記ポリヌクレオチドが全長約2~6kbの長さを有し、センス鎖またはアンチセンス鎖の一本鎖DNAである、請求項1~5のいずれか1項に記載のウイルスビリオン。
- 前記プロモーター配列が、シナプシンIプロモーター配列、ミエリン塩基性タンパク質プロモーター配列、ニューロン特異的エノラーゼプロモーター配列、カルシウム/カルモジュリン−依存性蛋白キナーゼII(CMKII)プロモーター、チュブリンαIプロモーター、血小板由来成長因子β鎖プロモーター、グリア線維性酸性タンパク質(GFAP)プロモーター配列、L7プロモーター配列(小脳プルキンエ細胞特異的プロモーター)、およびグルタミン酸受容体デルタ2プロモーター(小脳プルキンエ細胞特異的プロモーター)からなる群より選択される、請求項1~6のいずれか1項に記載のウイルスビリオン。
- 前記プロモーター配列が配列番号:23または配列番号:24に記載のポリヌクレオチドを含む、請求項7に記載のウイルスビリオン。
- 前記プロモーター配列と作動可能に連結されるヌクレオチド配列が、抗体、神経栄養因子(NGF)、成長因子(HGF)、酸性線維芽細胞増殖因子(aFGF)、塩基性維芽細胞増殖因子(bFGF)、グリア細胞株由来神経栄養因子(GDNF)、芳香族アミノ酸脱炭酸酵素(AADC)およびアミロイドβタンパク質分解酵素(Neprilysin)からなる群より選択されるタンパク質をコードする、請求項7に記載のウイルスビリオン。
- 前記プロモーター配列と作動可能に連結されるヌクレオチド配列が、芳香族アミノ酸脱炭酸酵素(AADC)又はα−シヌクレインに対するdsRNA、siRNA、shRNA、又はmiRNAを発現する、請求項7に記載のウイルスビリオン。
- 前記抗体が凝集性アミロイドβタンパク質に対する抗体である、請求項9に記載のウイルスビリオン。
- 被検体の血液脳関門を通過可能である、請求項1~12のいずれか1項に記載のウイルスビリオン。
- 前記ウイルスビリオンがアデノ随伴ウイルスベクターである、請求項1~13のいずれかに記載のウイルスビリオン。
- 請求項1~14のいずれか1項に記載のウイルスビリオンを含む、医薬組成物。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711035823.8A CN107828820B (zh) | 2010-10-27 | 2011-10-26 | 用于向神经系统细胞导入基因的腺相关病毒粒子 |
EP11836494.2A EP2634253B1 (en) | 2010-10-27 | 2011-10-26 | Adeno-associated virus virions for transferring genes into neural cells |
US13/881,956 US10738326B2 (en) | 2010-10-27 | 2011-10-26 | Adeno-associated virus vector for gene transfer to nervous system cells |
JP2012540995A JP5704361B2 (ja) | 2010-10-27 | 2011-10-26 | 神経系細胞への遺伝子導入のためのアデノ随伴ウイルスビリオン |
CN2011800520443A CN103189507A (zh) | 2010-10-27 | 2011-10-26 | 用于向神经系统细胞导入基因的腺相关病毒粒子 |
US16/916,313 US11674156B2 (en) | 2010-10-27 | 2020-06-30 | Adeno-associated virus virion for gene transfer to nervous system cells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010240581 | 2010-10-27 | ||
JP2010-240581 | 2010-10-27 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/881,956 A-371-Of-International US10738326B2 (en) | 2010-10-27 | 2011-10-26 | Adeno-associated virus vector for gene transfer to nervous system cells |
US16/916,313 Continuation US11674156B2 (en) | 2010-10-27 | 2020-06-30 | Adeno-associated virus virion for gene transfer to nervous system cells |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012057363A1 true WO2012057363A1 (ja) | 2012-05-03 |
Family
ID=45994062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/075240 WO2012057363A1 (ja) | 2010-10-27 | 2011-10-26 | 神経系細胞への遺伝子導入のためのアデノ随伴ウイルスビリオン |
Country Status (5)
Country | Link |
---|---|
US (2) | US10738326B2 (ja) |
EP (1) | EP2634253B1 (ja) |
JP (2) | JP5704361B2 (ja) |
CN (2) | CN107828820B (ja) |
WO (1) | WO2012057363A1 (ja) |
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014160092A1 (en) * | 2013-03-13 | 2014-10-02 | The Children's Hospital Of Philadelphia | Adeno-associated virus vectors and methods of use thereof |
CN104470945A (zh) * | 2012-05-15 | 2015-03-25 | 佛罗里达大学研究基金会有限公司 | 高转导效率的rAAV载体、组合物及其使用方法 |
JP2015532095A (ja) * | 2012-09-28 | 2015-11-09 | ザ・ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル | 希突起神経膠細胞を標的とするアデノ随伴ウイルスベクター |
JP2017509632A (ja) * | 2014-03-21 | 2017-04-06 | ジェンザイム・コーポレーション | 網膜色素変性症のための遺伝子治療 |
JP2017513486A (ja) * | 2014-04-17 | 2017-06-01 | ウニヴェルズィテーツクリニクム ハンブルク−エッペンドルフUniversitaetsklinikum Hamburg−Eppendorf | 脳および脊髄に標的化遺伝子移入するためのウイルスベクター |
JP2017123840A (ja) * | 2016-01-07 | 2017-07-20 | 学校法人自治医科大学 | グルコーストランスポーター1発現用アデノ随伴ウイルスベクター |
WO2017122789A1 (ja) * | 2016-01-15 | 2017-07-20 | 学校法人自治医科大学 | てんかん治療のためのアデノ随伴ウイルスビリオン |
US9775918B2 (en) | 2007-04-09 | 2017-10-03 | University Of Florida Research Foundation, Incorporated | Capsid-modified rAAV vectors and methods of use |
JP2017532966A (ja) * | 2014-10-21 | 2017-11-09 | ユニバーシティ オブ マサチューセッツ | 組み換えaavバリアントおよびその使用 |
JP2017536116A (ja) * | 2014-11-21 | 2017-12-07 | ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル | 中枢神経系を標的化したaavベクター |
WO2018064098A1 (en) | 2016-09-28 | 2018-04-05 | Cohbar, Inc. | Therapeutic mots-c related peptides |
WO2018131551A1 (ja) | 2017-01-13 | 2018-07-19 | 学校法人自治医科大学 | 肝臓ゲノム上の凝固関連因子遺伝子を破壊するためのaavベクター |
WO2018156892A1 (en) | 2017-02-23 | 2018-08-30 | Adrx, Inc. | Peptide inhibitors of transcription factor aggregation |
WO2018226992A1 (en) | 2017-06-07 | 2018-12-13 | Adrx, Inc. | Tau aggregation inhibitors |
WO2019028306A2 (en) | 2017-08-03 | 2019-02-07 | Voyager Therapeutics, Inc. | COMPOSITIONS AND METHODS FOR ADMINISTRATION OF ADENO-ASSOCIATED VIRUSES |
US10294281B2 (en) | 2012-05-15 | 2019-05-21 | University Of Florida Research Foundation, Incorporated | High-transduction-efficiency rAAV vectors, compositions, and methods of use |
US10335466B2 (en) | 2014-11-05 | 2019-07-02 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of parkinson's disease |
WO2019146745A1 (ja) | 2018-01-26 | 2019-08-01 | 国立大学法人徳島大学 | テイ-サックス病及びザンドホッフ病治療用の新規アデノ随伴ウイルスビリオン |
US10426844B2 (en) | 2008-05-20 | 2019-10-01 | University Of Florida Research Foundation, Incorporated | Capsid-mutated rAAV vectors and methods of use |
JP2019529385A (ja) * | 2016-09-02 | 2019-10-17 | スパーク セラピューティクス インコーポレイテッドSpark Therapeutics, Inc. | Cns障害を治療するための方法及びベクター |
WO2019222444A2 (en) | 2018-05-16 | 2019-11-21 | Voyager Therapeutics, Inc. | Directed evolution |
WO2019222329A1 (en) | 2018-05-15 | 2019-11-21 | Voyager Therapeutics, Inc. | Compositions and methods for delivery of aav |
WO2019222328A1 (en) | 2018-05-15 | 2019-11-21 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of parkinson's disease |
WO2020026968A1 (ja) | 2018-07-30 | 2020-02-06 | 株式会社遺伝子治療研究所 | Aavベクターによる遺伝子発現を増強する方法 |
US10570395B2 (en) | 2014-11-14 | 2020-02-25 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
US10577627B2 (en) | 2014-06-09 | 2020-03-03 | Voyager Therapeutics, Inc. | Chimeric capsids |
US10584337B2 (en) | 2016-05-18 | 2020-03-10 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
US10597660B2 (en) | 2014-11-14 | 2020-03-24 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
WO2020069461A1 (en) | 2018-09-28 | 2020-04-02 | Voyager Therapeutics, Inc. | Frataxin expression constructs having engineered promoters and methods of use thereof |
WO2020071318A1 (ja) | 2018-10-01 | 2020-04-09 | 宮崎 徹 | 神経変性疾患治療剤 |
WO2020077165A1 (en) | 2018-10-12 | 2020-04-16 | Voyager Therapeutics, Inc. | Compositions and methods for delivery of aav |
JP2020068734A (ja) * | 2018-11-01 | 2020-05-07 | 国立大学法人東京工業大学 | Sprをコードするポリヌクレオチドを含む組換えベクター、及びそれを含む組成物 |
WO2020101042A1 (en) | 2018-11-16 | 2020-05-22 | Astellas Pharma Inc. | Method for treating muscular dystrophy by targeting utrophin gene |
WO2020150556A1 (en) | 2019-01-18 | 2020-07-23 | Voyager Therapeutics, Inc. | Methods and systems for producing aav particles |
WO2020160003A1 (en) | 2019-01-28 | 2020-08-06 | Cohbar, Inc. | Therapeutic peptides |
JP2020527333A (ja) * | 2017-06-15 | 2020-09-10 | ボイジャー セラピューティクス インコーポレイテッドVoyager Therapeutics,Inc. | パーキンソン病を治療するためのaadcポリヌクレオチド |
CN111825772A (zh) * | 2020-07-30 | 2020-10-27 | 中国科学院精密测量科学与技术创新研究院 | 具有变异衣壳蛋白的腺相关病毒及其应用 |
WO2020241903A1 (en) | 2019-05-28 | 2020-12-03 | Astellas Pharma Inc. | Method for treating muscular dystrophy by targeting dmpk gene |
JP2020537542A (ja) * | 2017-10-03 | 2020-12-24 | プリベイル セラピューティクス, インコーポレーテッドPrevail Therapeutics, Inc. | ライソゾーム病の遺伝子治療 |
WO2021009805A1 (ja) | 2019-07-12 | 2021-01-21 | 株式会社遺伝子治療研究所 | ヒト肝臓への遺伝子導入のためのアデノ随伴ウイルスビリオン |
US10927150B2 (en) | 2015-02-03 | 2021-02-23 | University Of Florida Research Foundation, Incorporated | Recombinant AAV1, AAV5, and AAV6 capsid mutants and uses thereof |
WO2021033635A1 (en) | 2019-08-16 | 2021-02-25 | Modalis Therapeutics Corporation | Method for treating muscular dystrophy by targeting lama1 gene |
WO2021046155A1 (en) | 2019-09-03 | 2021-03-11 | Voyager Therapeutics, Inc. | Vectorized editing of nucleic acids to correct overt mutations |
US11091777B2 (en) | 2013-09-26 | 2021-08-17 | University Of Florida Research Foundation, Incorporated | Synthetic combinatorial AAV capsid library for targeted gene therapy |
WO2021230385A1 (en) | 2020-05-15 | 2021-11-18 | Astellas Pharma Inc. | Method for treating muscular dystrophy by targeting utrophin gene |
WO2021247995A2 (en) | 2020-06-04 | 2021-12-09 | Voyager Therapeutics, Inc. | Compositions and methods of treating neuropathic pain |
WO2022026409A1 (en) | 2020-07-27 | 2022-02-03 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of neurological disorders related to glucosylceramidase beta deficiency |
WO2022026410A2 (en) | 2020-07-27 | 2022-02-03 | Voyager Therapeutics, Inc | Compositions and methods for the treatment of niemann-pick type c1 disease |
US11299751B2 (en) | 2016-04-29 | 2022-04-12 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
US11298041B2 (en) | 2016-08-30 | 2022-04-12 | The Regents Of The University Of California | Methods for biomedical targeting and delivery and devices and systems for practicing the same |
US11332502B2 (en) | 2017-02-21 | 2022-05-17 | University Of Florida Research Foundation, Incorporated | Modified AAV capsid proteins and uses thereof |
US11434502B2 (en) | 2017-10-16 | 2022-09-06 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
WO2022224372A1 (ja) | 2021-04-21 | 2022-10-27 | 学校法人自治医科大学 | オルニチントランスカルバミラーゼ欠損症の治療用アデノ随伴ウイルスビリオン |
US11497576B2 (en) | 2017-07-17 | 2022-11-15 | Voyager Therapeutics, Inc. | Trajectory array guide system |
WO2023008555A1 (ja) | 2021-07-30 | 2023-02-02 | 徹 宮崎 | 虚血性疾患の治療剤 |
US11578340B2 (en) | 2016-10-13 | 2023-02-14 | University Of Massachusetts | AAV capsid designs |
US11590210B2 (en) | 2011-06-08 | 2023-02-28 | Nationwide Children's Hospital, Inc. | Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US11603542B2 (en) | 2017-05-05 | 2023-03-14 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
WO2023091949A2 (en) | 2021-11-17 | 2023-05-25 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of neurological disorders related to glucosylceramidase beta deficiency |
WO2023106261A1 (ja) | 2021-12-06 | 2023-06-15 | 学校法人自治医科大学 | 鉄蓄積性神経変性疾患の治療のための組換えアデノ随伴ウイルスベクター |
US11697825B2 (en) | 2014-12-12 | 2023-07-11 | Voyager Therapeutics, Inc. | Compositions and methods for the production of scAAV |
US11752181B2 (en) | 2017-05-05 | 2023-09-12 | Voyager Therapeutics, Inc. | Compositions and methods of treating Huntington's disease |
US11834474B2 (en) | 2009-05-28 | 2023-12-05 | University Of Massachusetts | AAV's and uses thereof |
WO2023240236A1 (en) | 2022-06-10 | 2023-12-14 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of spinal muscular atrophy related disorders |
US11903985B2 (en) | 2019-04-10 | 2024-02-20 | Prevail Therapeutics, Inc. | Gene therapies for lysosomal disorders |
US11931375B2 (en) | 2017-10-16 | 2024-03-19 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
US11951121B2 (en) | 2016-05-18 | 2024-04-09 | Voyager Therapeutics, Inc. | Compositions and methods for treating Huntington's disease |
US11993790B2 (en) | 2017-10-03 | 2024-05-28 | Prevail Therapeutics, Inc. | Gene therapies for lysosomal disorders |
JP7496971B2 (ja) | 2017-11-29 | 2024-06-10 | コペルニクス セラピューティクス インコーポレーティッド | 眼の改善のための遺伝子治療の方法 |
WO2024145474A2 (en) | 2022-12-29 | 2024-07-04 | Voyager Therapeutics, Inc. | Compositions and methods for regulating mapt |
WO2024163737A1 (en) | 2023-02-02 | 2024-08-08 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of neurological disorders related to glucosylceramidase beta 1 deficiency |
US12146150B2 (en) | 2022-09-13 | 2024-11-19 | Voyager Therapeutics, Inc. | Rescue of central and peripheral neurological phenotype of friedreich's ataxia by intravenous delivery |
Families Citing this family (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11136557B2 (en) * | 2013-05-31 | 2021-10-05 | The Regents Of The University Of California | Adeno-associated virus variants and methods of use thereof |
AU2015364636B9 (en) | 2014-12-16 | 2021-12-02 | Board Of Regents Of The University Of Nebraska | Gene therapy for Juvenile Batten Disease |
EP3245221A4 (en) | 2015-01-16 | 2018-06-13 | Voyager Therapeutics, Inc. | Central nervous system targeting polynucleotides |
US10745447B2 (en) | 2015-09-28 | 2020-08-18 | The University Of North Carolina At Chapel Hill | Methods and compositions for antibody-evading virus vectors |
EP3368054A4 (en) | 2015-10-28 | 2019-07-03 | Voyager Therapeutics, Inc. | REGULATORY EXPRESSION USING THE ADENO-ASSOCIATED VIRUS (AAV) |
EP3380622A4 (en) | 2015-11-23 | 2019-08-07 | Sangamo Therapeutics, Inc. | METHODS AND COMPOSITIONS FOR MODIFYING IMMUNITY |
KR102574810B1 (ko) | 2016-04-15 | 2023-09-08 | 더 트러스티스 오브 더 유니버시티 오브 펜실베니아 | 습성 연령 관련 황반 변성의 치료를 위한 조성물 |
CA3031095A1 (en) * | 2016-07-21 | 2018-01-25 | Spark Therapeutics, Inc. | Scalable high recovery methods for producing high yield recombinant adeno-associated viral (raav) vector and recombinant adeno-associated viral (raav) vectors produced thereby |
EP3607073B1 (en) | 2017-04-03 | 2024-06-05 | Encoded Therapeutics, Inc. | Tissue selective transgene expression |
BR112019021569A2 (pt) | 2017-04-14 | 2020-05-12 | Regenxbio Inc. | Precursor de iduronato-2-sulfatase humana recombinante glicosilada (ids), método para tratar um sujeito humano diagnosticado com mucopolissacaridose tipo ii (mps ii) |
WO2019079494A1 (en) | 2017-10-18 | 2019-04-25 | Regenxbio, Inc. | TREATMENT OF OCULAR DISEASES AND METASTATIC COLON CANCER WITH A VEGF TRAP WITH HUMAN POST-TRANSLATIONAL MODIFICATION |
KR20200067195A (ko) | 2017-10-18 | 2020-06-11 | 리젠엑스바이오 인크. | 완전-인간 번역후 변형된 항체 치료제 |
CN111727259B (zh) | 2017-12-01 | 2024-04-19 | 编码治疗公司 | 工程化的dna结合蛋白 |
GB201800903D0 (en) * | 2018-01-19 | 2018-03-07 | Oxford Genetics Ltd | Vectors |
SG11202009452WA (en) | 2018-04-03 | 2020-10-29 | Stridebio Inc | Antibody-evading virus vectors |
BR112020020341A2 (pt) | 2018-04-03 | 2021-01-05 | Stridebio, Inc. | Vetores de vírus direcionados a tecidos oftálmicos |
AU2019247746B2 (en) | 2018-04-03 | 2024-08-15 | Ginkgo Bioworks, Inc. | Antibody-evading virus vectors |
WO2019212921A1 (en) | 2018-04-29 | 2019-11-07 | Regenxbio Inc. | Scalable clarification process for recombinant aav production |
CA3098566A1 (en) | 2018-04-29 | 2019-11-07 | Zhuchun WU | Systems and methods of spectrophotometry for the determination of genome content, capsid content and full/empty ratios of adeno-associated virus particles |
CA3102817A1 (en) | 2018-06-14 | 2019-12-19 | Claire G. ZHANG | Anion exchange chromatography for recombinant aav production |
JP2021530548A (ja) | 2018-07-24 | 2021-11-11 | ボイジャー セラピューティクス インコーポレイテッドVoyager Therapeutics, Inc. | 遺伝子治療製剤を生産するための系および方法 |
AU2019319976A1 (en) | 2018-08-10 | 2021-01-28 | Regenxbio Inc. | Scalable method for recombinant AAV production |
UY38407A (es) | 2018-10-15 | 2020-05-29 | Novartis Ag | Anticuerpos estabilizadores de trem2 |
US20210324483A1 (en) | 2018-10-15 | 2021-10-21 | Regenxbio Inc. | Method for measuring the infectivity of replication defective viral vectors and viruses |
KR20210130158A (ko) * | 2019-01-31 | 2021-10-29 | 오레곤 헬스 앤드 사이언스 유니버시티 | Aav 캡시드의 전사 의존적 유도 진화를 사용하는 방법 |
JP2022525564A (ja) * | 2019-03-21 | 2022-05-17 | ピーティーシー セラピューティクス, インコーポレイテッド | アンジェルマン症候群を治療するためのベクターおよび方法 |
MX2021011468A (es) | 2019-03-21 | 2021-12-15 | Vectores de virus adenoasociados recombinantes. | |
MX2021011889A (es) | 2019-04-03 | 2021-10-26 | Regenxbio Inc | Tratamiento genico para patologias oculares. |
TW202102526A (zh) | 2019-04-04 | 2021-01-16 | 美商銳進科斯生物股份有限公司 | 重組腺相關病毒及其用途 |
PL3953483T3 (pl) | 2019-04-11 | 2024-04-22 | Regenxbio Inc. | Sposoby chromatografii wykluczania do charakteryzowania kompozycji rekombinowanych wirusów towarzyszących adenowirusom |
TW202332458A (zh) | 2019-04-19 | 2023-08-16 | 美商銳進科斯生物股份有限公司 | 腺相關病毒載體調配物及方法 |
EP3959323A1 (en) | 2019-04-24 | 2022-03-02 | REGENXBIO Inc. | Fully-human post-translationally modified antibody therapeutics |
KR20220035107A (ko) * | 2019-06-10 | 2022-03-21 | 호몰로지 메디슨, 인크. | Arsa 유전자 전달을 위한 아데노-연관 바이러스 조성물 및 이의 사용 방법 |
WO2021005223A1 (en) | 2019-07-10 | 2021-01-14 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for the treatment of epilepsy |
WO2021021661A1 (en) | 2019-07-26 | 2021-02-04 | Regenxbio Inc. | Engineered nucleic acid regulatory element and methods of uses thereof |
TW202122419A (zh) | 2019-08-26 | 2021-06-16 | 美商銳進科斯生物股份有限公司 | 以全人類轉譯後修飾之抗VEGF Fab治療糖尿病性視網膜病變 |
BR112022006718A2 (pt) | 2019-10-07 | 2022-07-12 | Regenxbio Inc | Composição farmacêutica e métodos de vetor de vírus adeno-associado |
AU2020367532A1 (en) | 2019-10-17 | 2022-05-12 | Ginkgo Bioworks, Inc. | Adeno-associated viral vectors for treatment of Niemann-Pick disease type C |
MX2022004771A (es) * | 2019-10-22 | 2022-10-07 | Applied Genetic Tech Corporation | Vectores de virus adeno-asociados (aav) de triple funcion para el tratamiento de enfermedades asociadas a c9orf72. |
CN110724673B (zh) * | 2019-10-31 | 2021-08-06 | 上海爱尔眼科医院有限公司 | 嗜外层视网膜的腺相关病毒病毒体及其应用 |
WO2021099394A1 (en) | 2019-11-19 | 2021-05-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antisense oligonucleotides and their use for the treatment of cancer |
JP2023503637A (ja) | 2019-11-28 | 2023-01-31 | リジェネックスバイオ インコーポレイテッド | マイクロジストロフィン遺伝子治療コンストラクト及びその使用 |
IL294625A (en) | 2020-01-22 | 2022-09-01 | Regenxbio Inc | Treatment of mucopolysaccharidosis i with human fully glycosylated human alpha-l-iduronidase (idua) |
BR112022015036A2 (pt) | 2020-01-29 | 2022-10-11 | Regenxbio Inc | Vírus adenoassociado recombinante (raav), composição farmacêutica, polinucleotídeo, plasmídeo de raav, célula ex vivo, método de produção de um raav, método para tratar um sujeito humano diagnosticado com mucopolissacaridose tipo iva (mps iva) |
KR20220148162A (ko) | 2020-01-29 | 2022-11-04 | 리젠엑스바이오 인크. | 인간 신경 또는 신경아교 세포에 의해 생성된 재조합 인간 이두로네이트-2-설파타아제 (ids)를 사용한 점액다당류증 ii의 치료 |
IL299771A (en) | 2020-07-10 | 2023-03-01 | Inst Nat Sante Rech Med | Methods and compounds for the treatment of epilepsy |
US20230304038A1 (en) | 2020-08-19 | 2023-09-28 | Sarepta Therapeutics, Inc. | Adeno-associated virus vectors for treatment of rett syndrome |
EP4213890A1 (en) | 2020-09-15 | 2023-07-26 | RegenxBio Inc. | Vectorized lanadelumab and administration thereof |
WO2022060916A1 (en) | 2020-09-15 | 2022-03-24 | Regenxbio Inc. | Vectorized antibodies for anti-viral therapy |
US20230372538A1 (en) | 2020-10-07 | 2023-11-23 | Regenxbio Inc. | Formulations for suprachoroidal administration such as formulations with aggregate formation |
JP2023544797A (ja) | 2020-10-07 | 2023-10-25 | レジェンクスバイオ インコーポレーテッド | 脈絡膜上投与用の、高粘度製剤などの製剤 |
TW202228646A (zh) | 2020-10-07 | 2022-08-01 | 美商銳進科斯生物股份有限公司 | 諸如凝膠調配物之用於脈絡膜上投與之調配物 |
WO2022076750A2 (en) | 2020-10-07 | 2022-04-14 | Regenxbio Inc. | Recombinant adeno-associated viruses for cns or muscle delivery |
IL301647A (en) | 2020-10-07 | 2023-05-01 | Regenxbio Inc | Adeno-associated viruses for ocular delivery of gene therapy |
AU2021371307A1 (en) | 2020-10-28 | 2023-06-01 | Regenxbio, Inc. | VECTORIZED ANTI-TNF-α ANTIBODIES FOR OCULAR INDICATIONS |
WO2022094157A1 (en) | 2020-10-28 | 2022-05-05 | Regenxbio Inc. | Vectorized anti-cgrp and anti-cgrpr antibodies and administration thereof |
CA3196964A1 (en) | 2020-10-29 | 2022-05-05 | Xu Wang | Vectorized tnf-alpha antagonists for ocular indications |
WO2022094255A2 (en) | 2020-10-29 | 2022-05-05 | Regenxbio Inc. | Vectorized factor xii antibodies and administration thereof |
CN112680443B (zh) * | 2020-12-10 | 2023-06-16 | 深圳市恩辑生物科技有限公司 | 一种启动子pCalm1及其应用 |
KR20230120128A (ko) | 2020-12-16 | 2023-08-16 | 리젠엑스바이오 인크. | 재조합 바이러스 입자의 생산 방법 |
TW202241943A (zh) | 2020-12-29 | 2022-11-01 | 美商銳進科斯生物股份有限公司 | Tau特異性抗體基因療法組合物、方法及其用途 |
US20240084329A1 (en) | 2021-01-21 | 2024-03-14 | Regenxbio Inc. | Improved production of recombinant polypeptides and viruses |
BR112023016075A2 (pt) | 2021-02-10 | 2023-11-21 | Regenxbio Inc | Método para tratar hepatoesplenomegalia, método de distribuição de um raav que codifica hids, método para tratar um sujeito humano, método de tratamento de um sujeito humano, método para determinar a eficácia do tratamento, método para identificar um sujeito como tendo mps ii |
WO2022192708A1 (en) * | 2021-03-11 | 2022-09-15 | Temple University- Of The Commonwealth System Of Higher Education | Noninvasive aav vectors for highly efficient gene delivery to the nervous system |
KR20240004564A (ko) | 2021-04-26 | 2024-01-11 | 리젠엑스바이오 인크. | 디스트로핀병증의 치료를 위한 마이크로디스트로핀 유전자 치료법 투여 |
EP4334454A2 (en) | 2021-05-04 | 2024-03-13 | RegenxBio Inc. | Novel aav vectors and methods and uses thereof |
WO2022241030A1 (en) | 2021-05-11 | 2022-11-17 | Regenxbio Inc. | Treatment of duchenne muscular dystrophy and combinations thereof |
AU2022313258A1 (en) | 2021-07-19 | 2024-02-08 | New York University | Auf1 combination therapies for treatment of muscle degenerative disease |
WO2023060113A1 (en) | 2021-10-05 | 2023-04-13 | Regenxbio Inc. | Compositions and methods for recombinant aav production |
CN118202060A (zh) | 2021-10-05 | 2024-06-14 | 再生生物股份有限公司 | 用于重组aav生产的组合物和方法 |
EP4413019A2 (en) | 2021-10-07 | 2024-08-14 | RegenxBio Inc. | Recombinant adeno-associated viruses for cns tropic delivery |
WO2023060269A1 (en) | 2021-10-07 | 2023-04-13 | Regenxbio Inc. | Recombinant adeno-associated viruses for targeted delivery |
EP4423285A1 (en) | 2021-10-28 | 2024-09-04 | RegenxBio Inc. | Engineered nucleic acid regulatory elements and methods and uses thereof |
CN118525098A (zh) | 2021-11-29 | 2024-08-20 | 上海瑞宏迪医药有限公司 | Aadc、gdnf多核苷酸及其用于治疗帕金森病 |
CN118660913A (zh) | 2022-02-21 | 2024-09-17 | 上海瑞宏迪医药有限公司 | Vegf结合分子及其医药用途 |
CN114516901B (zh) * | 2022-03-11 | 2023-01-17 | 上海勉亦生物科技有限公司 | 一种神经系统高亲和性的aav载体及其应用 |
WO2023178053A1 (en) | 2022-03-13 | 2023-09-21 | Regenxbio Inc. | Modified muscle-specific promoters |
WO2023183623A1 (en) | 2022-03-25 | 2023-09-28 | Regenxbio Inc. | Dominant-negative tumor necrosis factor alpha adeno-associated virus gene therapy |
TW202404651A (zh) | 2022-04-06 | 2024-02-01 | 美商銳進科斯生物股份有限公司 | 用於脈絡膜上投與之調配物諸如形成聚集體之調配物 |
TW202345913A (zh) | 2022-04-06 | 2023-12-01 | 美商銳進科斯生物股份有限公司 | 用於脈絡膜上投與之調配物諸如凝膠調配物 |
AU2023250660A1 (en) | 2022-04-06 | 2024-10-24 | Regenxbio Inc. | Pharmaceutical composition comprising a recombinant adenoassociated virus vector with an expression cassette encoding a transgene for suprachoroidal administration |
WO2023201277A1 (en) | 2022-04-14 | 2023-10-19 | Regenxbio Inc. | Recombinant adeno-associated viruses for cns tropic delivery |
WO2023201308A1 (en) | 2022-04-14 | 2023-10-19 | Regenxbio Inc. | Gene therapy for treating an ocular disease |
WO2023202637A1 (en) * | 2022-04-19 | 2023-10-26 | Shanghai Vitalgen Biopharma Co., Ltd. | Recombinant aav vectors for treating neurodegenerative disorders |
WO2023215807A1 (en) | 2022-05-03 | 2023-11-09 | Regenxbio Inc. | VECTORIZED ANTI-TNF-α INHIBITORS FOR OCULAR INDICATIONS |
TW202400803A (zh) | 2022-05-03 | 2024-01-01 | 美商銳進科斯生物股份有限公司 | 載體化抗補體抗體與補體劑及其投與 |
WO2023214346A1 (en) | 2022-05-06 | 2023-11-09 | Novartis Ag | Novel recombinant aav vp2 fusion polypeptides |
WO2023239627A2 (en) | 2022-06-08 | 2023-12-14 | Regenxbio Inc. | Methods for recombinant aav production |
WO2024017990A1 (en) | 2022-07-21 | 2024-01-25 | Institut National de la Santé et de la Recherche Médicale | Methods and compositions for treating chronic pain disorders |
WO2024044725A2 (en) | 2022-08-24 | 2024-02-29 | Regenxbio Inc. | Recombinant adeno-associated viruses and uses thereof |
WO2024073669A1 (en) | 2022-09-30 | 2024-04-04 | Regenxbio Inc. | Treatment of ocular diseases with recombinant viral vectors encoding anti-vegf fab |
WO2024081746A2 (en) | 2022-10-11 | 2024-04-18 | Regenxbio Inc. | Engineered nucleic acid regulatory elements and methods and uses thereof |
WO2024146935A1 (en) | 2023-01-06 | 2024-07-11 | Institut National de la Santé et de la Recherche Médicale | Intravenous administration of antisense oligonucleotides for the treatment of pain |
WO2024192281A2 (en) | 2023-03-15 | 2024-09-19 | Regenxbio Inc. | Exon skipping gene therapy constructs, vectors and uses thereof |
WO2024211780A1 (en) | 2023-04-07 | 2024-10-10 | Regenxbio Inc. | Compositions and methods for recombinant aav production |
WO2024216244A2 (en) | 2023-04-13 | 2024-10-17 | Regenxbio Inc. | Targeting aav capsids, methods of manufacturing and using same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000028061A2 (en) * | 1998-11-05 | 2000-05-18 | The Trustees Of The University Of Pennsylvania | Adeno-associated virus serotype 1 nucleic acid sequences, vectors and host cells containing same |
JP2002516062A (ja) | 1997-12-23 | 2002-06-04 | ザ カーネギー インスチチューション オブ ワシントン | 二本鎖rnaによる遺伝子阻害 |
US20020086356A1 (en) | 2000-03-30 | 2002-07-04 | Whitehead Institute For Biomedical Research | RNA sequence-specific mediators of RNA interference |
WO2003018821A2 (en) | 2001-08-29 | 2003-03-06 | Tanabe Seiyaku Co., Ltd. | Compositions and methods for treating neurodegenerative diseases |
WO2003053476A1 (en) | 2001-12-19 | 2003-07-03 | Lijun Wang | Adeno-associated virus-mediated delivery of gdnf to skeletal muscles |
WO2007001010A1 (ja) | 2005-06-29 | 2007-01-04 | National University Corporation Kanazawa University | パーキンソン病の治療のための医薬 |
JP2007524386A (ja) * | 2003-06-19 | 2007-08-30 | アビジェン, インコーポレイテッド | 減少した免疫反応性を有するaavビリオン、およびその使用 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995028493A1 (en) * | 1994-04-13 | 1995-10-26 | The Rockefeller University | Aav-mediated delivery of dna to cells of the nervous system |
JP3816111B2 (ja) * | 1997-04-09 | 2006-08-30 | インテレクト・ニューロサイエンシズ・インコーポレーテッド | β−アミロイド末端に特異的な組換え抗体、それをコードするDNA及びその使用法 |
US20020086847A1 (en) * | 1997-04-09 | 2002-07-04 | Mindset Biopharmaceuticals (Usa) | Recombinant antibodies specific for beta-amyloid ends, DNA encoding and methods of use thereof |
US6156303A (en) * | 1997-06-11 | 2000-12-05 | University Of Washington | Adeno-associated virus (AAV) isolates and AAV vectors derived therefrom |
DE19910464A1 (de) | 1999-03-10 | 2000-09-14 | Bayer Ag | Verfahren zur Herstellung von Cyclobutanon |
WO2003093479A1 (en) | 2002-05-01 | 2003-11-13 | University Of Florida Research Foundation, Inc. | Improved raav expression systems and methods for enhancing transduction of mammalian neural cells |
NZ545628A (en) * | 2003-09-30 | 2009-04-30 | Univ Pennsylvania | Adeno-associated virus (AAV) clades, sequences, vectors containing same, and uses therefor |
CN100356982C (zh) * | 2004-12-02 | 2007-12-26 | 中国药品生物制品检定所 | 腺相关病毒载体制剂和含有该制剂的药物组合物及其用途 |
WO2006078221A1 (en) * | 2005-01-20 | 2006-07-27 | Agency For Science, Technology And Research | Method of delivery of nucleic acids to peripheral neurons |
EP4234687A2 (en) * | 2005-04-07 | 2023-08-30 | The Trustees of the University of Pennsylvania | Method of increasing the function of an aav vector |
ES2714007T3 (es) | 2007-04-09 | 2019-05-24 | Univ Florida | Composiciones de vectores rAAV que tienen proteínas de la cápside modificadas en tirosina y métodos para su uso |
EP2058401A1 (en) * | 2007-10-05 | 2009-05-13 | Genethon | Widespread gene delivery to motor neurons using peripheral injection of AAV vectors |
US8586558B2 (en) | 2008-05-16 | 2013-11-19 | The Mclean Hospital Corporation | RAB3B for treatment and prevention of Parkinson's disease |
-
2011
- 2011-10-26 WO PCT/JP2011/075240 patent/WO2012057363A1/ja active Application Filing
- 2011-10-26 US US13/881,956 patent/US10738326B2/en active Active
- 2011-10-26 EP EP11836494.2A patent/EP2634253B1/en active Active
- 2011-10-26 CN CN201711035823.8A patent/CN107828820B/zh active Active
- 2011-10-26 CN CN2011800520443A patent/CN103189507A/zh active Pending
- 2011-10-26 JP JP2012540995A patent/JP5704361B2/ja active Active
-
2014
- 2014-10-22 JP JP2014215618A patent/JP5907579B2/ja active Active
-
2020
- 2020-06-30 US US16/916,313 patent/US11674156B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002516062A (ja) | 1997-12-23 | 2002-06-04 | ザ カーネギー インスチチューション オブ ワシントン | 二本鎖rnaによる遺伝子阻害 |
WO2000028061A2 (en) * | 1998-11-05 | 2000-05-18 | The Trustees Of The University Of Pennsylvania | Adeno-associated virus serotype 1 nucleic acid sequences, vectors and host cells containing same |
US20020086356A1 (en) | 2000-03-30 | 2002-07-04 | Whitehead Institute For Biomedical Research | RNA sequence-specific mediators of RNA interference |
WO2003018821A2 (en) | 2001-08-29 | 2003-03-06 | Tanabe Seiyaku Co., Ltd. | Compositions and methods for treating neurodegenerative diseases |
JP2005501127A (ja) * | 2001-08-29 | 2005-01-13 | 田辺製薬株式会社 | 神経変性疾患治療のための組成物及び方法 |
WO2003053476A1 (en) | 2001-12-19 | 2003-07-03 | Lijun Wang | Adeno-associated virus-mediated delivery of gdnf to skeletal muscles |
JP2007524386A (ja) * | 2003-06-19 | 2007-08-30 | アビジェン, インコーポレイテッド | 減少した免疫反応性を有するaavビリオン、およびその使用 |
WO2007001010A1 (ja) | 2005-06-29 | 2007-01-04 | National University Corporation Kanazawa University | パーキンソン病の治療のための医薬 |
Non-Patent Citations (50)
Title |
---|
"Current Protocols in Molecular Biology", 1987, JOHN WILEY & SONS |
"Current Protocols in Molecular Biology", 1987, JOHN WILEY & SONS, article "Molecular Cloning" |
ALTSCHUL S. F. ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 |
BIOCHEM. BIOPHYS. RES. COMMUN, vol. 186, 1992, pages 1271 |
CHRISTINE ET AL., NEUROLOGY, vol. 73, 2009, pages 1662 - 1669 |
DUQUE S. ET AL.: "Intravenous Administration of Self-complementary AAV9 Enables Transgene Delivery to Adult Motor Neurons", MOL. THER., vol. 17, no. 7, July 2009 (2009-07-01), pages 1187 - 96 |
FEBS LETT., vol. 228, 1988, pages 228 |
FEBS LETT., vol. 239, 1988, pages 285 |
FOUST K. D. ET AL.: "Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes", NAT. BIOTECHNOL., vol. 27, no. 1, January 2009 (2009-01-01), pages 59 - 65 |
GAO, G ET AL., CURR. GENE THER., vol. 5, 2005, pages 285 - 297 |
GENES & DEV., vol. 16, no. 8, 15 April 2002 (2002-04-15), pages 948 - 958 |
GENESIS, vol. 26, no. 4, April 2000 (2000-04-01), pages 240 - 244 |
GRAY S.J. ET AL.: "Directed Evolution of a Novel Adeno-associated Virus (AAV) Vector That Crosses the Seizure-compromised Blood-Brain Barrier (BBB)", MOLECULAR THERAPY, vol. 18, no. 3, March 2010 (2010-03-01), pages 570 - 578, XP055086790 * |
HANDA ET AL., J GEN VIROL, vol. 81, 2000, pages 2077 - 2084 |
HELLSTROEM, M. ET AL., GENE THER., vol. 16, 2009, pages 521 - 32 |
HIOKI ET AL., GENE THER, vol. 14, 2007, pages 872 - 882 |
HUM. GENE THER., vol. 16, 2005, pages 541 - 550 |
HUMAN GENE THERAPY, vol. 13, 2002, pages 345 - 354 |
J. SAMBROOK ET AL.: "Molecular Cloning", 2001, COLD SPRING HARBOR LAB. PRESS |
JIKKEN IGAKU, vol. 20, 2002, pages 1296 - 1300 |
KAPLITT, LANCET, vol. 369, 2007, pages 2097 - 2105 |
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 2264 - 2268 |
LI ET AL., MOL THER, vol. 13, 2006, pages 160 - 166 |
MARKS ET AL., LANCET NEUROL., vol. 7, 2008, pages 400 - 408 |
MURAMATSU ET AL., MOL. THER., vol. 18, 2010, pages 1731 - 1735 |
MURAMATSU ET AL., VIROLOGY, vol. 221, 1996, pages 208 - 217 |
NAKAI H. ET AL.: "Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice", J. VIROL, vol. 79, no. 1, January 2005 (2005-01-01), pages 214 - 24 |
NAT BIOTECHNOL., vol. 27, no. 1, January 2009 (2009-01-01), pages 59 - 65 |
NATURE BIOTECHNOLOGY, vol. 20, no. 5, May 2002 (2002-05-01), pages 497 - 500 |
NATURE BIOTECHNOLOGY, vol. 20, no. 5, May 2002 (2002-05-01), pages 500 - 505 |
NATURE GENETICS, vol. 24, no. 2, February 2000 (2000-02-01), pages 180 - 183 |
NATURE, vol. 323, 1986, pages 349 |
NATURE, vol. 407, no. 6802, 21 September 2002 (2002-09-21), pages 319 - 20 |
NEURONAL DEVELOPMENT, vol. 45, 2001, pages 92 - 103 |
NIWA H. ET AL., GENE, vol. 108, 1991, pages 193 - 200 |
NUCL. ACIDS RES., vol. 19, 1991, pages 3875 |
NUCL. ACIDS RES., vol. 19, 1991, pages 5125 |
NUCL. ACIDS. RES., vol. 17, 1989, pages 7059 |
NUCL. ACIDS. RES., vol. 19, 1991, pages 6751 |
NUCLEIC ACIDS RES., vol. 30, no. 10, 15 May 2002 (2002-05-15), pages E46 |
PROC NATL. ACAD. SCI. USA, vol. 99, no. 9, 30 April 2002 (2002-04-30), pages 6047 - 6052 |
PROC. NAIL ACAD. SCI. USA, vol. 90, 1993, pages 5873 |
PROC. NATL. ACAD. SCI. USA, vol. 99, no. 8, 16 April 2002 (2002-04-16), pages 5515 - 5520 |
PROTEIN ENG, vol. 3, 1990, pages 733 |
RAHIM ET AL., FASEB JOURNAL, vol. 25, October 2011 (2011-10-01), pages L-14 |
SCIENCE, vol. 296, no. 5567, 19 April 2002 (2002-04-19), pages 550 - 553 |
See also references of EP2634253A4 |
TAYMANS ET AL., HUM GENE THER, vol. 18, 2007, pages 195 - 206 |
XIN, K-Q ET AL., J. VIROL., vol. 80, 2006, pages 11899 - 910 |
YAKUGAKU ZASSHI, vol. 126, no. 11, pages 1021 - 1028 |
Cited By (118)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9775918B2 (en) | 2007-04-09 | 2017-10-03 | University Of Florida Research Foundation, Incorporated | Capsid-modified rAAV vectors and methods of use |
US10723768B2 (en) | 2007-04-09 | 2020-07-28 | University Of Florida Research Foundation, Incorporated | Capsid modified rAAV vectors and methods of use |
US9920097B2 (en) | 2007-04-09 | 2018-03-20 | University Of Florida Research Foundation, Incorporated | Capsid-modified rAAV vector compositions having improved transduction efficiencies, and methods of use |
US10934327B2 (en) | 2007-04-09 | 2021-03-02 | University Of Florida Research Foundation, Incorporated | Capsid-modified, RAAV3 vector compositions and uses in gene therapy of human liver cancer |
US10426844B2 (en) | 2008-05-20 | 2019-10-01 | University Of Florida Research Foundation, Incorporated | Capsid-mutated rAAV vectors and methods of use |
US11834474B2 (en) | 2009-05-28 | 2023-12-05 | University Of Massachusetts | AAV's and uses thereof |
US11590210B2 (en) | 2011-06-08 | 2023-02-28 | Nationwide Children's Hospital, Inc. | Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US10815279B2 (en) | 2012-05-15 | 2020-10-27 | University Of Florida Research Foundation, Incorporated | Capsid-modified rAAV vector compositions and methods therefor |
US12065467B2 (en) | 2012-05-15 | 2024-08-20 | University Of Florida Research Foundation, Incorporated | High-transduction-efficiency rAAV vectors, compositions, and methods of use |
US10294281B2 (en) | 2012-05-15 | 2019-05-21 | University Of Florida Research Foundation, Incorporated | High-transduction-efficiency rAAV vectors, compositions, and methods of use |
US10011640B2 (en) | 2012-05-15 | 2018-07-03 | University Of Florida Research Foundation, Incorporated | Capsid-modified rAAV vector compositions and methods therefor |
CN104470945A (zh) * | 2012-05-15 | 2015-03-25 | 佛罗里达大学研究基金会有限公司 | 高转导效率的rAAV载体、组合物及其使用方法 |
US11434260B2 (en) | 2012-05-15 | 2022-09-06 | University Of Florida Research Foundation, Incorporated | High-transduction-efficiency rAAV vectors, compositions, and methods of use |
US11124544B2 (en) | 2012-05-15 | 2021-09-21 | University Of Florida Research Foundation, Incorporated | AAV vectors with high transduction efficiency and uses thereof for gene therapy |
JP2015532095A (ja) * | 2012-09-28 | 2015-11-09 | ザ・ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル | 希突起神経膠細胞を標的とするアデノ随伴ウイルスベクター |
JP2019000114A (ja) * | 2012-09-28 | 2019-01-10 | ザ・ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル | 希突起神経膠細胞を標的とするアデノ随伴ウイルスベクター |
WO2014160092A1 (en) * | 2013-03-13 | 2014-10-02 | The Children's Hospital Of Philadelphia | Adeno-associated virus vectors and methods of use thereof |
US11091777B2 (en) | 2013-09-26 | 2021-08-17 | University Of Florida Research Foundation, Incorporated | Synthetic combinatorial AAV capsid library for targeted gene therapy |
JP7048563B2 (ja) | 2014-03-21 | 2022-04-05 | ジェンザイム・コーポレーション | 網膜色素変性症のための遺伝子治療 |
JP2017509632A (ja) * | 2014-03-21 | 2017-04-06 | ジェンザイム・コーポレーション | 網膜色素変性症のための遺伝子治療 |
JP2020059737A (ja) * | 2014-03-21 | 2020-04-16 | ジェンザイム・コーポレーション | 網膜色素変性症のための遺伝子治療 |
US11103598B2 (en) | 2014-03-21 | 2021-08-31 | Genzyme Corporation | Gene therapy for retinitis pigmentosa |
JP2017513486A (ja) * | 2014-04-17 | 2017-06-01 | ウニヴェルズィテーツクリニクム ハンブルク−エッペンドルフUniversitaetsklinikum Hamburg−Eppendorf | 脳および脊髄に標的化遺伝子移入するためのウイルスベクター |
US10577627B2 (en) | 2014-06-09 | 2020-03-03 | Voyager Therapeutics, Inc. | Chimeric capsids |
US11542525B2 (en) | 2014-10-21 | 2023-01-03 | University Of Massachusetts | Recombinant AAV variants and uses thereof |
JP7212378B2 (ja) | 2014-10-21 | 2023-01-25 | ユニバーシティ オブ マサチューセッツ | 組み換えaavバリアントおよびその使用 |
JP7023108B2 (ja) | 2014-10-21 | 2022-02-21 | ユニバーシティ オブ マサチューセッツ | 組み換えaavバリアントおよびその使用 |
JP2017532966A (ja) * | 2014-10-21 | 2017-11-09 | ユニバーシティ オブ マサチューセッツ | 組み換えaavバリアントおよびその使用 |
JP2021010372A (ja) * | 2014-10-21 | 2021-02-04 | ユニバーシティ オブ マサチューセッツ | 組み換えaavバリアントおよびその使用 |
US11027000B2 (en) | 2014-11-05 | 2021-06-08 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of Parkinson's disease |
US11975056B2 (en) | 2014-11-05 | 2024-05-07 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of Parkinson's disease |
US10335466B2 (en) | 2014-11-05 | 2019-07-02 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of parkinson's disease |
US10570395B2 (en) | 2014-11-14 | 2020-02-25 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
US12123002B2 (en) | 2014-11-14 | 2024-10-22 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
US11198873B2 (en) | 2014-11-14 | 2021-12-14 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
US12071625B2 (en) | 2014-11-14 | 2024-08-27 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
EP3907287A1 (en) | 2014-11-14 | 2021-11-10 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
US10597660B2 (en) | 2014-11-14 | 2020-03-24 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
US11542506B2 (en) | 2014-11-14 | 2023-01-03 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
US10920227B2 (en) | 2014-11-14 | 2021-02-16 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
JP2021097675A (ja) * | 2014-11-21 | 2021-07-01 | ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル | 中枢神経系を標的化したaavベクター |
US11491242B2 (en) | 2014-11-21 | 2022-11-08 | The University Of North Carolina At Chapel Hill | AAV vectors targeted to the central nervous system |
JP2017536116A (ja) * | 2014-11-21 | 2017-12-07 | ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル | 中枢神経系を標的化したaavベクター |
US11697825B2 (en) | 2014-12-12 | 2023-07-11 | Voyager Therapeutics, Inc. | Compositions and methods for the production of scAAV |
US10927150B2 (en) | 2015-02-03 | 2021-02-23 | University Of Florida Research Foundation, Incorporated | Recombinant AAV1, AAV5, and AAV6 capsid mutants and uses thereof |
JP2017123840A (ja) * | 2016-01-07 | 2017-07-20 | 学校法人自治医科大学 | グルコーストランスポーター1発現用アデノ随伴ウイルスベクター |
JP2022058346A (ja) * | 2016-01-07 | 2022-04-12 | 学校法人自治医科大学 | グルコーストランスポーター1発現用アデノ随伴ウイルスベクター |
JP6996728B2 (ja) | 2016-01-07 | 2022-01-17 | 学校法人自治医科大学 | グルコーストランスポーター1発現用アデノ随伴ウイルスベクター |
JP7334996B2 (ja) | 2016-01-07 | 2023-08-29 | 学校法人自治医科大学 | グルコーストランスポーター1発現用アデノ随伴ウイルスベクター |
WO2017122789A1 (ja) * | 2016-01-15 | 2017-07-20 | 学校法人自治医科大学 | てんかん治療のためのアデノ随伴ウイルスビリオン |
JPWO2017122789A1 (ja) * | 2016-01-15 | 2018-11-29 | 学校法人自治医科大学 | てんかん治療のためのアデノ随伴ウイルスビリオン |
US11299751B2 (en) | 2016-04-29 | 2022-04-12 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
US11951121B2 (en) | 2016-05-18 | 2024-04-09 | Voyager Therapeutics, Inc. | Compositions and methods for treating Huntington's disease |
US12084659B2 (en) | 2016-05-18 | 2024-09-10 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
US11193129B2 (en) | 2016-05-18 | 2021-12-07 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
US10584337B2 (en) | 2016-05-18 | 2020-03-10 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
US11298041B2 (en) | 2016-08-30 | 2022-04-12 | The Regents Of The University Of California | Methods for biomedical targeting and delivery and devices and systems for practicing the same |
JP2022050574A (ja) * | 2016-09-02 | 2022-03-30 | スパーク セラピューティクス インコーポレイテッド | Cns障害を治療するための方法及びベクター |
JP2019529385A (ja) * | 2016-09-02 | 2019-10-17 | スパーク セラピューティクス インコーポレイテッドSpark Therapeutics, Inc. | Cns障害を治療するための方法及びベクター |
WO2018064098A1 (en) | 2016-09-28 | 2018-04-05 | Cohbar, Inc. | Therapeutic mots-c related peptides |
US11578340B2 (en) | 2016-10-13 | 2023-02-14 | University Of Massachusetts | AAV capsid designs |
WO2018131551A1 (ja) | 2017-01-13 | 2018-07-19 | 学校法人自治医科大学 | 肝臓ゲノム上の凝固関連因子遺伝子を破壊するためのaavベクター |
US11332502B2 (en) | 2017-02-21 | 2022-05-17 | University Of Florida Research Foundation, Incorporated | Modified AAV capsid proteins and uses thereof |
US11767346B2 (en) | 2017-02-21 | 2023-09-26 | University Of Florida Research Foundation, Incorporated | Modified AAV capsid proteins and uses thereof |
US11117930B2 (en) | 2017-02-23 | 2021-09-14 | Adrx, Inc. | Peptide inhibitors of transcription factor aggregation |
WO2018156892A1 (en) | 2017-02-23 | 2018-08-30 | Adrx, Inc. | Peptide inhibitors of transcription factor aggregation |
US11752181B2 (en) | 2017-05-05 | 2023-09-12 | Voyager Therapeutics, Inc. | Compositions and methods of treating Huntington's disease |
US11603542B2 (en) | 2017-05-05 | 2023-03-14 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
WO2018226992A1 (en) | 2017-06-07 | 2018-12-13 | Adrx, Inc. | Tau aggregation inhibitors |
JP2020527333A (ja) * | 2017-06-15 | 2020-09-10 | ボイジャー セラピューティクス インコーポレイテッドVoyager Therapeutics,Inc. | パーキンソン病を治療するためのaadcポリヌクレオチド |
US11759506B2 (en) | 2017-06-15 | 2023-09-19 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of Parkinson's disease |
US11497576B2 (en) | 2017-07-17 | 2022-11-15 | Voyager Therapeutics, Inc. | Trajectory array guide system |
EP3808849A1 (en) | 2017-08-03 | 2021-04-21 | Voyager Therapeutics, Inc. | Compositions and methods for delivery of aav |
US11512327B2 (en) | 2017-08-03 | 2022-11-29 | Voyager Therapeutics, Inc. | Compositions and methods for delivery of AAV |
WO2019028306A2 (en) | 2017-08-03 | 2019-02-07 | Voyager Therapeutics, Inc. | COMPOSITIONS AND METHODS FOR ADMINISTRATION OF ADENO-ASSOCIATED VIRUSES |
US11993790B2 (en) | 2017-10-03 | 2024-05-28 | Prevail Therapeutics, Inc. | Gene therapies for lysosomal disorders |
JP2022060228A (ja) * | 2017-10-03 | 2022-04-14 | プリベイル セラピューティクス,インコーポレーテッド | ライソゾーム病の遺伝子治療 |
JP2020537542A (ja) * | 2017-10-03 | 2020-12-24 | プリベイル セラピューティクス, インコーポレーテッドPrevail Therapeutics, Inc. | ライソゾーム病の遺伝子治療 |
US12049626B2 (en) | 2017-10-03 | 2024-07-30 | Prevail Therapeutics, Inc. | Gene therapy for neurodegenerative disorders |
US11434502B2 (en) | 2017-10-16 | 2022-09-06 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
US11931375B2 (en) | 2017-10-16 | 2024-03-19 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
US12116589B2 (en) | 2017-10-16 | 2024-10-15 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
JP7496971B2 (ja) | 2017-11-29 | 2024-06-10 | コペルニクス セラピューティクス インコーポレーティッド | 眼の改善のための遺伝子治療の方法 |
JP7134444B2 (ja) | 2018-01-26 | 2022-09-12 | 国立大学法人徳島大学 | テイ-サックス病及びザンドホッフ病治療用の新規アデノ随伴ウイルスビリオン |
JPWO2019146745A1 (ja) * | 2018-01-26 | 2021-03-04 | 国立大学法人徳島大学 | テイ−サックス病及びザンドホッフ病治療用の新規アデノ随伴ウイルスビリオン |
US12064460B2 (en) | 2018-01-26 | 2024-08-20 | Tokushima University | Adeno-associated virus virion for treatment of Tay-Sachs disease and Sandhoff disease |
WO2019146745A1 (ja) | 2018-01-26 | 2019-08-01 | 国立大学法人徳島大学 | テイ-サックス病及びザンドホッフ病治療用の新規アデノ随伴ウイルスビリオン |
WO2019222328A1 (en) | 2018-05-15 | 2019-11-21 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of parkinson's disease |
WO2019222329A1 (en) | 2018-05-15 | 2019-11-21 | Voyager Therapeutics, Inc. | Compositions and methods for delivery of aav |
WO2019222444A2 (en) | 2018-05-16 | 2019-11-21 | Voyager Therapeutics, Inc. | Directed evolution |
WO2020026968A1 (ja) | 2018-07-30 | 2020-02-06 | 株式会社遺伝子治療研究所 | Aavベクターによる遺伝子発現を増強する方法 |
WO2020069461A1 (en) | 2018-09-28 | 2020-04-02 | Voyager Therapeutics, Inc. | Frataxin expression constructs having engineered promoters and methods of use thereof |
WO2020071318A1 (ja) | 2018-10-01 | 2020-04-09 | 宮崎 徹 | 神経変性疾患治療剤 |
WO2020077165A1 (en) | 2018-10-12 | 2020-04-16 | Voyager Therapeutics, Inc. | Compositions and methods for delivery of aav |
JP2020068734A (ja) * | 2018-11-01 | 2020-05-07 | 国立大学法人東京工業大学 | Sprをコードするポリヌクレオチドを含む組換えベクター、及びそれを含む組成物 |
WO2020101042A1 (en) | 2018-11-16 | 2020-05-22 | Astellas Pharma Inc. | Method for treating muscular dystrophy by targeting utrophin gene |
WO2020150556A1 (en) | 2019-01-18 | 2020-07-23 | Voyager Therapeutics, Inc. | Methods and systems for producing aav particles |
WO2020160003A1 (en) | 2019-01-28 | 2020-08-06 | Cohbar, Inc. | Therapeutic peptides |
US11903985B2 (en) | 2019-04-10 | 2024-02-20 | Prevail Therapeutics, Inc. | Gene therapies for lysosomal disorders |
WO2020241903A1 (en) | 2019-05-28 | 2020-12-03 | Astellas Pharma Inc. | Method for treating muscular dystrophy by targeting dmpk gene |
WO2021009805A1 (ja) | 2019-07-12 | 2021-01-21 | 株式会社遺伝子治療研究所 | ヒト肝臓への遺伝子導入のためのアデノ随伴ウイルスビリオン |
WO2021033635A1 (en) | 2019-08-16 | 2021-02-25 | Modalis Therapeutics Corporation | Method for treating muscular dystrophy by targeting lama1 gene |
WO2021046155A1 (en) | 2019-09-03 | 2021-03-11 | Voyager Therapeutics, Inc. | Vectorized editing of nucleic acids to correct overt mutations |
WO2021230385A1 (en) | 2020-05-15 | 2021-11-18 | Astellas Pharma Inc. | Method for treating muscular dystrophy by targeting utrophin gene |
WO2021247995A2 (en) | 2020-06-04 | 2021-12-09 | Voyager Therapeutics, Inc. | Compositions and methods of treating neuropathic pain |
WO2022026410A2 (en) | 2020-07-27 | 2022-02-03 | Voyager Therapeutics, Inc | Compositions and methods for the treatment of niemann-pick type c1 disease |
WO2022026409A1 (en) | 2020-07-27 | 2022-02-03 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of neurological disorders related to glucosylceramidase beta deficiency |
CN111825772A (zh) * | 2020-07-30 | 2020-10-27 | 中国科学院精密测量科学与技术创新研究院 | 具有变异衣壳蛋白的腺相关病毒及其应用 |
CN111825772B (zh) * | 2020-07-30 | 2023-10-20 | 中国科学院精密测量科学与技术创新研究院 | 具有变异衣壳蛋白的腺相关病毒及其应用 |
WO2022224372A1 (ja) | 2021-04-21 | 2022-10-27 | 学校法人自治医科大学 | オルニチントランスカルバミラーゼ欠損症の治療用アデノ随伴ウイルスビリオン |
WO2023008555A1 (ja) | 2021-07-30 | 2023-02-02 | 徹 宮崎 | 虚血性疾患の治療剤 |
WO2023091949A2 (en) | 2021-11-17 | 2023-05-25 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of neurological disorders related to glucosylceramidase beta deficiency |
WO2023106261A1 (ja) | 2021-12-06 | 2023-06-15 | 学校法人自治医科大学 | 鉄蓄積性神経変性疾患の治療のための組換えアデノ随伴ウイルスベクター |
WO2023240236A1 (en) | 2022-06-10 | 2023-12-14 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of spinal muscular atrophy related disorders |
US12146150B2 (en) | 2022-09-13 | 2024-11-19 | Voyager Therapeutics, Inc. | Rescue of central and peripheral neurological phenotype of friedreich's ataxia by intravenous delivery |
WO2024145474A2 (en) | 2022-12-29 | 2024-07-04 | Voyager Therapeutics, Inc. | Compositions and methods for regulating mapt |
WO2024163012A1 (en) | 2023-02-02 | 2024-08-08 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of neurological disorders related to glucosylceramidase beta deficiency |
WO2024163737A1 (en) | 2023-02-02 | 2024-08-08 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of neurological disorders related to glucosylceramidase beta 1 deficiency |
Also Published As
Publication number | Publication date |
---|---|
CN103189507A (zh) | 2013-07-03 |
CN107828820B (zh) | 2022-06-07 |
JP5907579B2 (ja) | 2016-04-26 |
EP2634253A4 (en) | 2014-04-09 |
JP5704361B2 (ja) | 2015-04-22 |
US20130224836A1 (en) | 2013-08-29 |
US10738326B2 (en) | 2020-08-11 |
US20200325493A1 (en) | 2020-10-15 |
JPWO2012057363A1 (ja) | 2014-05-12 |
JP2015051009A (ja) | 2015-03-19 |
CN107828820A (zh) | 2018-03-23 |
US11674156B2 (en) | 2023-06-13 |
EP2634253B1 (en) | 2016-05-11 |
EP2634253A1 (en) | 2013-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5704361B2 (ja) | 神経系細胞への遺伝子導入のためのアデノ随伴ウイルスビリオン | |
US11975043B2 (en) | Gene therapy for neurodegenerative disorders | |
EP3702466B1 (en) | Products and methods for treatment of amyotrophic lateral sclerosis | |
US20160361440A1 (en) | Widespread gene delivery of gene therapy vectors | |
US20140050701A1 (en) | CAPSID-MODIFIED rAAV VECTOR COMPOSITIONS HAVING IMPROVED TRANSDUCTION EFFICIENCIES, AND METHODS OF USE | |
WO2017122789A1 (ja) | てんかん治療のためのアデノ随伴ウイルスビリオン | |
CA3190309A1 (en) | Compositions and methods for the treatment of neurological disorders related to glucosylceramidase beta deficiency | |
TW202120690A (zh) | 腺相關病毒血清型5(aav5)的衣殼的分離的修飾的vp1蛋白、基於其的衣殼及載體 | |
CA3185281A1 (en) | Compositions useful for treatment of charcot-marie-tooth disease | |
JP7334996B2 (ja) | グルコーストランスポーター1発現用アデノ随伴ウイルスベクター | |
WO2021009805A1 (ja) | ヒト肝臓への遺伝子導入のためのアデノ随伴ウイルスビリオン | |
JP7134444B2 (ja) | テイ-サックス病及びザンドホッフ病治療用の新規アデノ随伴ウイルスビリオン | |
WO2021151012A1 (en) | Zinc finger protein transcription factors for repressing tau expression | |
JP2022552014A (ja) | Irf2bpl遺伝子の変異に関連する障害の治療のための材料および方法 | |
RU2825667C2 (ru) | Выделенный модифицированный белок VPI капсида аденоассоциированного вируса 9 серотипа (AAV9), капсид и вектор на его основе | |
WO2024160761A1 (en) | An aav2-vector variant for targeted transfer of genes | |
TW202434733A (zh) | 重組腺相關病毒載體 | |
EA045824B1 (ru) | Выделенный модифицированный белок vp1 капсида aav5 | |
JP2021527418A (ja) | ジストログリカノパチーおよびラミニン欠損筋ジストロフィーを治療するための組換えアデノ随伴ウイルス生成物および方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11836494 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012540995 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13881956 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011836494 Country of ref document: EP |