WO2011126329A2 - 캐리어 접합 시스템에서 pdcch 모니터링 방법 및 장치 - Google Patents
캐리어 접합 시스템에서 pdcch 모니터링 방법 및 장치 Download PDFInfo
- Publication number
- WO2011126329A2 WO2011126329A2 PCT/KR2011/002462 KR2011002462W WO2011126329A2 WO 2011126329 A2 WO2011126329 A2 WO 2011126329A2 KR 2011002462 W KR2011002462 W KR 2011002462W WO 2011126329 A2 WO2011126329 A2 WO 2011126329A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pdcch
- dci
- search space
- component carrier
- carrier
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 155
- 238000012544 monitoring process Methods 0.000 title claims abstract description 87
- 230000002776 aggregation Effects 0.000 claims description 36
- 238000004220 aggregation Methods 0.000 claims description 36
- 239000000969 carrier Substances 0.000 claims description 22
- 238000004891 communication Methods 0.000 claims description 16
- 230000005540 biological transmission Effects 0.000 description 24
- 238000010586 diagram Methods 0.000 description 21
- 238000001514 detection method Methods 0.000 description 13
- 230000015654 memory Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 230000011664 signaling Effects 0.000 description 10
- 238000010295 mobile communication Methods 0.000 description 8
- 238000013468 resource allocation Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 238000013507 mapping Methods 0.000 description 7
- 230000003595 spectral effect Effects 0.000 description 7
- 208000029632 chronic intestinal failure Diseases 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 4
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 4
- 230000008054 signal transmission Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- TVZRAEYQIKYCPH-UHFFFAOYSA-N 3-(trimethylsilyl)propane-1-sulfonic acid Chemical compound C[Si](C)(C)CCCS(O)(=O)=O TVZRAEYQIKYCPH-UHFFFAOYSA-N 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 241000760358 Enodes Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
- H04W72/232—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0036—Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
- H04L1/0038—Blind format detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0046—Code rate detection or code type detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signalling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/30—Definitions, standards or architectural aspects of layered protocol stacks
- H04L69/32—Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
- H04L69/322—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
- H04L69/324—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
Definitions
- TECHNICAL FIELD This disclosure relates to carrier bonding systems, and more particularly, to a method and apparatus for monitoring PDCCH in a carrier bonding system.
- a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution, hereinafter referred to as 'LTE'), and an LTE-Advanced (hereinafter referred to as 'LTE-A') communication system are outlined.
- 'LTE' 3rd Generation Partnership Project Long Term Evolution
- 'LTE-A' LTE-Advanced
- the cell is set to one of the bandwidth of 1.25MHz, 2.5MHz, 5MHz, 10MHz, 15MHz, 20MHz, etc. for one carrier to provide a downlink / uplink transmission service to multiple terminals. In this case, different cells may be configured to provide different bandwidths.
- the base station controls data transmission and reception for a plurality of terminals.
- the base station transmits downlink scheduling information for downlink data and informs the user equipment of time / frequency domain, encoding, data size, and hybrid automatic repeat and reQuest (HARQ) related information.
- HARQ hybrid automatic repeat and reQuest
- the base station transmits uplink scheduling information to the corresponding terminal for uplink (UL) data and informs the user of the time / frequency domain, encoding, data size, and hybrid automatic retransmission request related information.
- An interface for transmitting user traffic or control traffic may be used between base stations.
- Wireless communication technology has been developed up to LTE based on Wideband Code Division Multiple Access (WCDMA), but the needs and expectations of users and operators continue to increase.
- WCDMA Wideband Code Division Multiple Access
- new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
- LTE-A LTE-A
- One of the major differences between LTE and LTE-A systems is the difference in system bandwidth and the introduction of repeaters.
- the LTE-A system aims to support broadband of up to 100 MHz, and for this purpose, carrier aggregation (or carrier aggregation) or bandwidth aggregation (or bandwidth aggregation) (which achieves broadband using multiple frequency blocks) ( carrier aggregation or bandwidth aggregation) technology is used.
- Carrier aggregation allows the use of multiple frequency blocks as one large logical frequency band to use a wider frequency band.
- the bandwidth of each frequency block may be defined based on the bandwidth of the system block used in the LTE system.
- Each frequency block is transmitted using a component carrier.
- LTE-A As carrier aggregation technology is adopted in the LTE-A system, which is a next-generation communication system, a method for a terminal to receive a signal from a base station or a repeater in a system supporting a plurality of carriers is required.
- a plurality of PDCCHs having the same size are detected in a section in which PDCCH search spaces overlap (completely or partially), thereby solving ambiguity for downlink control information (DCI) detection in a terminal.
- DCI downlink control information
- a method for monitoring a PDCCH in a carrier conjugation system comprising: monitoring a plurality of candidate PDCCHs in a section where a PDCCH search space of a first component carrier and a PDCCH search space of a second component carrier overlap ; And receiving downlink control information through a PDCCH having successfully decoded from among the plurality of candidate PDCCHs, wherein the successfully decoded PDCCH does not include a common PDCCH including common control information and a carrier indicator field (CIF). And PDCCH for a self-scheduling component carrier or PDCCH for a primary component carrier.
- the monitoring may include performing blind decoding on a plurality of candidate PDCCHs, and performing blind decoding on each candidate PDCCH using a unique identifier (RNTI). It is done.
- RNTI unique identifier
- the monitoring may include monitoring the plurality of candidate PDCCHs based on PDCCHs having priorities set in the overlapping sections.
- the method may further include receiving information on the PDCCH having the priority set from the base station.
- the priority is set PDCCH is characterized in that the successful PDCCH decoding.
- the PDCCH search space of the first component carrier is a common search space monitored by all terminals in a cell
- the PDCCH search space of the second component carrier is monitored by at least one terminal in a cell.
- the PDCCH that has been successfully decoded is a common PDCCH.
- the PDCCH having successfully decoded is a PDCCH that does not include a carrier indicator field.
- the common PDCCH may be transmitted in a common search space of the first component carrier.
- the first component carrier is characterized in that the primary component carrier (Primary Component Carrier).
- the primary component carrier is an uplink component carrier linked with a PDCCH monitoring component carrier to which a PDCCH is transmitted, a component carrier having a first linkage with the PDCCH monitoring component carrier, or the PDCCH monitoring component carrier. Characterized in that it is a downlink or uplink component carrier of the self-scheduling.
- the primary component carriers are defined for each of the plurality of PDCCH monitoring component carriers.
- the present specification provides a terminal in a carrier aggregation system, the wireless communication unit for transmitting and receiving a radio signal; And a controller connected to the wireless communication unit, wherein the controller controls to monitor a plurality of candidate PDCCHs in a section where a PDCCH search space of a first component carrier and a PDCCH search space of a second component carrier overlap. And controlling the wireless communication unit to receive downlink control information through a PDCCH successfully decoded among the plurality of candidate PDCCHs, wherein the successfully decoded PDCCH includes a common PDCCH including common control information and a carrier indicator field (CIF). It is characterized in that it is a PDCCH for a self-scheduling component carrier that does not or a PDCCH for a primary component carrier.
- a carrier indicator field CIF
- the control unit may control to monitor the plurality of candidate PDCCHs using blind decoding, and the blind decoding may perform CRC demasking on each candidate PDCCH using a unique identifier (RNTI).
- RNTI unique identifier
- the control unit may control to monitor the plurality of candidate PDCCHs based on PDCCHs having priorities set in the overlapping sections.
- the control unit may control the wireless communication unit to receive information on the PDCCH having the priority set from the base station.
- the priority is set PDCCH is characterized in that the successful PDCCH decoding.
- the PDCCH search space of the first component carrier is a common search space monitored by all terminals in a cell
- the PDCCH search space of the second component carrier is monitored by at least one terminal in a cell.
- the PDCCH that has been successfully decoded is a common PDCCH.
- the PDCCH having successfully decoded is a PDCCH that does not include a carrier indicator field.
- the first component carrier is characterized in that the primary component carrier (Primary Component Carrier).
- blind decoding is performed on a plurality of candidate PDCCHs based on a predetermined PDCCH using a priority or the like in a section in which a PDCCH search space is overlapped or shared, so that the DCI having the same size in the overlapping or sharing section is performed.
- 1 is a view for explaining a physical channel used in the 3GPP system and a general signal transmission method using the same.
- FIG. 2 is a diagram illustrating a structure of a radio frame used in a 3GPP LTE system that is an example of a mobile communication system.
- 3 (a) and (b) is a view showing the structure of a downlink and uplink subframe of the 3GPP LTE system which is an example of a mobile communication system.
- FIG. 4 illustrates a downlink time-frequency resource grid structure used in the present invention.
- 5 is a block diagram showing a configuration of a PDCCH.
- FIG. 6 illustrates an example of resource mapping of a PDCCH.
- FIG. 8 is an exemplary diagram illustrating monitoring of a PDCCH.
- FIG. 9A illustrates a concept of managing multiple carriers by multiple MACs in a base station
- FIG. 9B illustrates a concept of managing multiple carriers by multiple MACs in a terminal.
- FIG. 10A is a diagram for describing a concept in which a single MAC manages a multicarrier in a base station
- FIG. 10B is a view for explaining a concept in which a single MAC manages a multicarrier in a terminal. .
- 11 illustrates an example of a multicarrier.
- FIG. 13 illustrates an example of a component carrier (CC) set.
- 15A and 15B are diagrams illustrating Method 3 (Modified Method 1) described later.
- FIG. 16A illustrates an example in which ambiguity of DCI occurs when a common search space (CSS) for CC # 1 and a terminal specific search space (USS) for CC # 2 overlap.
- CSS common search space
- USS terminal specific search space
- FIG. 16B illustrates an example in which ambiguity of DCI occurs when the UE-specific search space CSS for CC # 1 and the UE-specific search space USS for CC # 2 completely overlap.
- FIG. 16C illustrates an example in which ambiguity of DCI occurs when a terminal specific search space (CSS) for CC # 1 and a terminal specific search space (USS) for CC # 2 overlap partially.
- SCS terminal specific search space
- USS terminal specific search space
- FIG. 16 (d) illustrates an example in which ambiguity of DCI occurs when the UE-specific search space CSS for CC # 1 and the UE-specific search space USS for CC # 2 are shared.
- FIG. 17 is a diagram illustrating a case where CSS and USS do not overlap by shifting by overlapping sections when CSS and USS overlap according to one embodiment of the present specification.
- FIG. 18 is a diagram illustrating a search space configured such that a search space for each CC does not overlap according to another embodiment of the present specification.
- 19 (a) illustrates a method of detecting a DCI corresponding to CSS in an overlapping section when CSS and USS overlap.
- 19 (b) illustrates a method of detecting DCI for self-scheduling CC in the overlapping section when the search space between USSs is completely overlapped.
- 19 (c) illustrates a method of detecting DCI for a self-scheduling CC in an overlapping section when some search spaces between USS overlap.
- 19 (d) illustrates a method of detecting DCI for a self-scheduling CC in a shared section when sharing USSs of different CCs.
- 20 is a block diagram illustrating a wireless communication system according to an exemplary embodiment of the present specification.
- a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), and an advanced mobile station (AMS).
- the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
- the repeater may be referred to as a relay node (RN), a relay station (RS), a relay, or the like.
- a user equipment and a repeater may receive information from a base station through downlink, and the terminal and repeater may also transmit information through uplink.
- the information transmitted or received by the terminal and the repeater includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal and the repeater.
- FIG. 1 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
- the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S101). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
- P-SCH Primary Synchronization Channel
- S-SCH Secondary Synchronization Channel
- DL RS downlink reference signal
- the UE Upon completion of the initial cell search, the UE obtains more specific system information by receiving a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the information on the PDCCH. It may be (S102).
- a physical downlink control channel (PDCCH)
- a physical downlink control channel (PDSCH)
- S102 physical downlink control channel
- the terminal may perform a random access procedure (RACH) for the base station (steps S103 to S106).
- RACH random access procedure
- the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S103 and S105), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S104 and S106).
- PRACH physical random access channel
- a contention resolution procedure may be additionally performed.
- the UE After performing the procedure described above, the UE performs a PDCCH / PDSCH reception (S107) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
- Control Channel (PUCCH) transmission (S108) may be performed.
- Information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). Include.
- the terminal may transmit the above-described information, such as CQI / PMI / RI through the PUSCH and / or PUCCH.
- FIG. 2 is a diagram illustrating a structure of a radio frame used in a 3GPP LTE system as an example of a mobile communication system.
- one radio frame has a length of 10 ms (327200 Ts) and consists of 10 equally sized subframes.
- Each subframe has a length of 1 ms and consists of two slots.
- Each slot has a length of 0.5 ms (15360 Ts).
- the slot includes a plurality of OFDM symbols or SC-FDMA symbols in the time domain and a plurality of resource blocks in the frequency domain.
- one resource block includes 12 subcarriers x 7 (6) OFDM symbols or a SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbol.
- Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
- the structure of the above-described radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe, the number of OFDM symbols or SC-FDMA symbols included in the slot may be variously changed. have.
- 3 is a diagram illustrating a structure of downlink and uplink subframes of a 3GPP LTE system as an example of a mobile communication system.
- one downlink subframe includes two slots in the time domain. Up to three OFDM symbols of the first slot in the downlink subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which a Physical Downlink Shared Channel (PDSCH) is allocated.
- PDSCH Physical Downlink Shared Channel
- Downlink control channels used in 3GPP LTE systems include a PCFICH (Physical Control Format Indicator Channel), PDCCH (Physical Downlink Control Channel), PHICH (Physical Hybrid-ARQ Indicator Channel).
- the PCFICH transmitted in the first OFDM symbol of the subframe carries information about the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
- Control information transmitted through the PDCCH is called downlink control information (DCI).
- DCI indicates uplink resource allocation information, downlink resource allocation information, and uplink transmission power control command for arbitrary UE groups.
- the PHICH carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for an uplink HARQ (Hybrid Automatic Repeat Request). That is, the ACK / NACK signal for the uplink data transmitted by the terminal is transmitted on the PHICH.
- ACK Acknowledgement
- NACK Not-Acknowledgement
- the PDCCH which is a downlink physical channel will be briefly described. A detailed description of the PDCCH will be described below with reference to FIGS. 5 to 8.
- the base station sets a resource allocation and transmission format of the PDSCH (also referred to as a DL grant), a resource allocation information of the PUSCH (also referred to as a UL grant) through a PDCCH, a set of transmission power control commands for an arbitrary terminal and individual terminals in a group. And activation of Voice over Internet Protocol (VoIP).
- a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
- the PDCCH consists of an aggregation of one or several consecutive Control Channel Elements (CCEs).
- the PDCCH composed of one or several consecutive CCEs may be transmitted through the control region after subblock interleaving.
- CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
- the CCE corresponds to a plurality of resource element groups.
- the format of the PDCCH and the number of possible bits of the PDCCH are determined by the correlation between the number of CCEs and the coding rate provided by the CCEs.
- DCI Downlink control information
- DCI format 0 indicates uplink resource allocation information
- DCI formats 1 to 2 indicate downlink resource allocation information
- DCI formats 3 and 3A indicate uplink transmit power control (TPC) commands for arbitrary UE groups. .
- the base station may transmit scheduling assignment information and other control information through the PDCCH.
- the physical control channel may be transmitted in one aggregation or a plurality of continuous control channel elements (CCEs).
- CCEs continuous control channel elements
- One CCE includes nine Resource Element Groups (REGs).
- the number of RBGs not allocated to the Physical Control Format Indicator CHhannel (PCFICH) or the Physical Hybrid Automatic Repeat Request Indicator Channel (PHICH) is NREG.
- the available CCEs in the system are from 0 to N CCE -1 (where to be).
- the PDCCH supports multiple formats as shown in Table 3 below.
- the base station may determine the PDCCH format according to how many areas, such as control information, to send.
- the UE may reduce overhead by reading control information in units of CCE.
- the repeater can also read control information and the like in units of R-CCE.
- a resource element RE
- R-CCE relay-control channel element
- an uplink subframe may be divided into a control region and a data region in the frequency domain.
- the control region is allocated to a physical uplink control channel (PUCCH) that carries uplink control information.
- the data area is allocated to a Physical Uplink Shared CHannel (PUSCH) for carrying user data.
- PUCCH Physical Uplink Shared CHannel
- PUSCH Physical Uplink Shared CHannel
- PUCCH for one UE is allocated to an RB pair in one subframe. RBs belonging to the RB pair occupy different subcarriers in each of two slots. The RB pair assigned to the PUCCH is frequency hopped at the slot boundary.
- FIG. 4 illustrates a downlink time-frequency resource grid structure used in the present invention.
- the downlink signal transmitted in each slot Subcarriers and It is used as a resource grid structure composed of orthogonal frequency division multiplexing (OFDM) symbols.
- OFDM orthogonal frequency division multiplexing
- Represents the number of resource blocks (RBs) in downlink Represents the number of subcarriers constituting one RB, Denotes the number of OFDM symbols in one downlink slot.
- the number of OFDM symbols included in one slot may vary depending on the length of a cyclic prefix (CP) and the interval of subcarriers. In case of multi-antenna transmission, one resource grid may be defined per one antenna port.
- CP cyclic prefix
- Each element in the resource grid for each antenna port is called a resource element (RE) and is uniquely identified by an index pair (k, l) in the slot.
- k is the index in the frequency domain
- l is the index in the time domain and k is 0, ..., Has any one of the values l is 0, ..., Has any one of the values.
- the resource block shown in FIG. 4 is used to describe a mapping relationship between certain physical channels and resource elements.
- the RB may be divided into a physical resource block (PRB) and a virtual resource block (VRB).
- PRB physical resource block
- VRB virtual resource block
- the one PRB is a time domain Contiguous OFDM symbols and frequency domain It is defined as two consecutive subcarriers. here and May be a predetermined value. E.g and Can be given as Table 1 below. So one PRB It consists of four resource elements.
- One PRB may correspond to one slot in the time domain and 180 kHz in the frequency domain, but is not limited thereto.
- PRB is at 0 in the frequency domain It has a value up to -1.
- the size of the VRB is equal to the size of the PRB.
- the VRB may be defined by being divided into a localized VRB (LVRB) and a distributed VRB (DVRB). For each type of VRB, a pair of VRBs in two slots in one subframe are assigned together with a single VRB number nVRB.
- LVRB localized VRB
- DVRB distributed VRB
- the VRB may have the same size as the PRB.
- Two types of VRBs are defined, the first type being a localized VRB (LVRB) and the second type being a distributed VRB (DVRB).
- LVRB localized VRB
- DVRB distributed VRB
- a pair of VRBs are allocated over two slots of one subframe with a single VRB index (hereinafter may also be referred to as VRB number).
- VRB number belonging to the first slot of the two slots constituting one subframe VRBs from 0 each Is assigned an index of any one of -1, and belongs to the second one of the two slots VRBs likewise start with 0
- the index of any one of -1 is allocated.
- the radio frame structure, the downlink subframe and the uplink subframe, and the downlink time-frequency resource lattice structure described in FIGS. 2 to 4 may also be applied between the base station and the repeater.
- 5 is a block diagram showing the configuration of a PDCCH.
- the base station determines the PDCCH format according to the DCI to be sent to the terminal, attaches a cyclic redundancy check (CRC) to the DCI, and unique identifier according to the owner or purpose of the PDCCH (this is called a Radio Network Temporary Identifier) Mask the CRC (510).
- CRC cyclic redundancy check
- a unique identifier of the terminal for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
- a paging indication identifier for example, P-RNTI (P-RNTI)
- P-RNTI P-RNTI
- SI-RNTI system information-RNTI
- RARNTI random access-RNTI
- TPC-RNTI may be masked to the CRC to indicate a transmit power control (TPC) command for a plurality of terminals.
- the PDCCH carries control information for the corresponding specific UE (called UE-specific control information), and if another RNTI is used, the PDCCH is shared by all or a plurality of terminals in the cell. (common) carries control information.
- the DCC added with the CRC is encoded to generate coded data (520).
- Encoding includes channel encoding and rate matching.
- the coded data is modulated to generate modulation symbols (530).
- the modulation symbols are mapped to a physical resource element (RE) (540). Each modulation symbol is mapped to an RE.
- RE physical resource element
- FIG. 6 shows an example of resource mapping of a PDCCH.
- R0 represents a reference signal of the first antenna
- R1 represents a reference signal of the second antenna
- R2 represents a reference signal of the third antenna
- R3 represents a reference signal of the fourth antenna.
- the control region in the subframe includes a plurality of control channel elements (CCEs).
- the CCE is a logical allocation unit used to provide a coding rate according to the state of a radio channel to a PDCCH and corresponds to a plurality of resource element groups (REGs).
- the REG includes a plurality of resource elements.
- the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
- One REG (denoted as quadruplet in the figure) contains four REs and one CCE contains nine REGs.
- ⁇ 1, 2, 4, 8 ⁇ CCEs may be used to configure one PDCCH, and each element of ⁇ 1, 2, 4, 8 ⁇ is called a CCE aggregation level.
- a control channel composed of one or more CCEs performs interleaving in units of REGs and is mapped to physical resources after a cyclic shift based on a cell ID.
- a plurality of logically continuous CCEs are input to an interleaver.
- the interleaver performs a function of mixing input CCEs in REG units.
- frequency / time resources constituting one CCE are physically dispersed in the entire frequency / time domain in the control region of the subframe.
- the control channel is configured in units of CCE, but interleaving is performed in units of REGs, thereby maximizing frequency diversity and interference randomization gain.
- FIG. 8 is an exemplary diagram illustrating monitoring of a PDCCH.
- blind decoding is used to detect the PDCCH.
- Blind decoding is a method of demasking a desired identifier in a CRC of a received PDCCH (which is called a PDCCH candidate), and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
- the UE does not know where its PDCCH is transmitted using which CCE aggregation level or DCI format at which position in the control region.
- a plurality of PDCCHs may be transmitted in one subframe.
- the UE monitors the plurality of PDCCHs in every subframe.
- the monitoring means that the UE attempts to decode the PDCCH according to the monitored PDCCH format.
- a search space is used to reduce the burden of blind decoding.
- the search space may be referred to as a monitoring set of the CCE for the PDCCH.
- the UE monitors the PDCCH in the corresponding search space.
- the search space is divided into a common search space and a UE-specific search space.
- the common search space is a space for searching for a PDCCH having common control information.
- the common search space includes 16 CCEs up to CCE indexes 0 to 15 and supports a PDCCH having a CCE aggregation level of ⁇ 4, 8 ⁇ .
- PDCCHs (DCI formats 0 and 1A) carrying UE specific information may also be transmitted in the common search space.
- the UE-specific search space supports a PDCCH having a CCE aggregation level of ⁇ 1, 2, 4, 8 ⁇ .
- Table 4 below shows the number of PDCCH candidates monitored by the UE.
- the size of the search space is determined by Table 4, and the starting point of the search space is defined differently from the common search space and the terminal specific search space.
- the starting point of the common search space is fixed irrespective of the subframe, but the starting point of the UE-specific search space is for each subframe according to the terminal identifier (eg, C-RNTI), the CCE aggregation level and / or the slot number in the radio frame. Can vary.
- the terminal specific search space and the common search space may overlap.
- the search space S (L) k is defined as a set of PDCCH candidates.
- the CCE corresponding to the PDCCH candidate m in the search space S (L) k is given as follows.
- N CCE, k can be used for transmission of the PDCCH in the control region of subframe k.
- the control region includes a set of CCEs numbered from 0 to N CCE, k ⁇ 1.
- M (L) is the number of PDCCH candidates at CCE aggregation level L in a given search space.
- the variable Yk is defined as follows.
- a DCI format and a search space to be monitored are determined according to a transmission mode of the PDSCH.
- Table 5 below shows an example of PDCCH monitoring configured with C-RNTI.
- a DCI format and a search space to be monitored are determined according to a transmission mode of the PDSCH.
- Table 6 below shows an example of PDCCH monitoring configured with SPS C-RNTI.
- Table 7 below shows an example of PDCCH monitoring configured with SPS C-RNTI.
- the 3GPP LTE system supports a case where the downlink bandwidth and the uplink bandwidth are set differently, but this assumes one component carrier (CC).
- CC component carrier
- 3GPP LTE is supported only when the bandwidth of the downlink and the bandwidth of the uplink are the same or different in the situation where one CC is defined for the downlink and the uplink, respectively.
- the 3GPP LTE system supports up to 20MHz and may be different in uplink bandwidth and downlink bandwidth, but only one CC is supported in the uplink and the downlink.
- Spectrum aggregation supports a plurality of CCs.
- Spectral aggregation is introduced to support increased throughput, to prevent cost increases due to the introduction of wideband radio frequency (RF) devices, and to ensure compatibility with existing systems. For example, if five CCs are allocated as granularity in a carrier unit having a 20 MHz bandwidth, a bandwidth of up to 100 MHz may be supported.
- RF radio frequency
- Spectral aggregation can be divided into contiguous spectral aggregation where aggregation is between successive carriers in the frequency domain and non-contiguous spectral aggregation where aggregation is between discontinuous carriers.
- the number of CCs aggregated between the downlink and the uplink may be set differently. The case where the number of downlink CCs and the number of uplink CCs are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.
- the component carrier may be referred to as a 'cell'.
- 'cell' may mean a pair of downlink component carrier and uplink component carrier.
- the uplink component carrier refers to a component carrier in which a linkage is set with the downlink component carrier.
- 'Cell' may mean only a downlink component carrier.
- 'cell' may be used as a concept for a pair of DL CC and UL CC or as a term meaning DL CC.
- the term 'cell' should be distinguished from the 'cell' as an area covered by a generally used base station.
- the 'cell' and the component carrier CC are used interchangeably, and in this case, the same meaning may be interpreted.
- the size (ie bandwidth) of the CC may be different. For example, assuming that 5 CCs are used to configure a 70 MHz band, a 5 MHz carrier (CC # 0) + 20 MHz carrier (CC # 1) + 20 MHz carrier (CC # 2) + 20 MHz carrier (CC # 3) It may also be configured as a + 5MHz carrier (CC # 4).
- PHY physical layer
- MAC layer 2
- FIG. 9A illustrates a concept of managing a multicarrier by a plurality of MACs in a base station
- FIG. 9B illustrates a concept of managing a multicarrier by a plurality of MACs in a terminal.
- each carrier may control 1: 1 by each MAC.
- each carrier may be used contiguously or non-contiguous. This can be applied to the uplink / downlink irrespective.
- the TDD system is configured to operate N multiple carriers including downlink and uplink transmission in each carrier, and the FDD system is configured to use multiple carriers for uplink and downlink, respectively.
- asymmetric carrier merging may be supported in which the number of carriers and / or the bandwidth of the carriers are merged in uplink and downlink.
- FIG. 10 (a) is a diagram for explaining a concept of managing a multicarrier by one MAC in a base station
- FIG. 10 (b) is a diagram for explaining a concept in which one MAC manages a multicarrier in a terminal. .
- one MAC manages and operates one or more frequency carriers to perform transmission and reception. Frequency carriers managed in one MAC do not need to be contiguous with each other, which is advantageous in terms of resource management.
- one PHY means one component carrier for convenience.
- one PHY does not necessarily mean an independent radio frequency (RF) device.
- RF radio frequency
- one independent RF device means one PHY, but is not limited thereto, and one RF device may include several PHYs.
- channel, PDCCH may be transmitted by mapping to a physical resource in an individual component carrier.
- the PDCCH for channel allocation or grant-related control information related to PDSCH or PUSCH (Physical Uplink Shared Channel) transmission unique to each UE is classified and encoded according to component carriers to which the corresponding physical shared channel is transmitted. It can be generated as a PDCCH. This is referred to as separate coded PDCCH.
- control information for physical shared channel transmission of various component carriers may be configured and transmitted as one PDCCH, which is referred to as a joint coded PDCCH.
- a base station In order to support downlink or uplink carrier aggregation, a base station is configured such that a PDCCH and / or PDSCH for transmitting control information and / or data transmission can be transmitted uniquely for a specific terminal or repeater, or the PDCCH And / or component carriers that are subject to measurement and / or reporting as preparation for performing connection establishment for PDSCH transmission. This is expressed as component carrier allocation for any purpose.
- the base station controls the component carrier allocation information in the L3 RRM (radio resource management)
- the RRC signaling terminal-specific or repeater-specific RRC signaling
- the base station controls the component carrier allocation information in the L3 RRM (radio resource management)
- the RRC signaling terminal-specific or repeater-specific RRC signaling
- the base station controls the component carrier allocation information in the L3 RRM (radio resource management)
- the RRC signaling terminal-specific or repeater-specific RRC signaling
- the base station controls the component carrier allocation information in the L3 RRM (radio resource management)
- the RRC signaling terminal-specific or repeater-specific RRC signaling
- dynamic dynamic
- FIG. 11 shows an example of a multicarrier.
- PDCCH and PDSCH are independently transmitted in each DL CC
- PUCCH and PUSCH are independently transmitted in each UL CC.
- a multiple carrier system refers to a system supporting multiple carriers based on spectral aggregation, as described above.
- Adjacent spectral and / or non-adjacent spectral aggregation may be used in a multi-carrier system, and either symmetric or asymmetric aggregation may be used.
- linkage between a DL CC and a UL CC may be defined.
- the linkage may be configured through EARFCN information included in the downlink system information, and is configured using a fixed DL / UL Tx / Rx separation relationship.
- the linkage refers to a mapping relationship between a DL CC through which a PDCCH carrying an UL grant is transmitted and a UL CC using the UL grant.
- the linkage may be a mapping relationship between a DL CC (or UL CC) in which data for HARQ is transmitted and a UL CC (or DL CC) in which HARQ ACK / NACK signal is transmitted.
- the linkage information may be informed to the terminal by the base station as part of a higher layer message or system information such as an RRC message.
- the linkage between the DL CC and the UL CC may be fixed but may be changed between cells / terminals.
- the split coded PDCCH means that the PDCCH can carry control information such as resource allocation for PDSCH / PUSCH for one carrier. That is, the PDCCH and PDSCH, the PDCCH and the PUSCH correspond to 1: 1 respectively.
- a joint coded PDCCH means that one PDCCH can carry resource allocation for PDSCH / PUSCH of a plurality of CCs.
- One PDCCH may be transmitted through one CC or may be transmitted through a plurality of CCs.
- split coding will be described based on the downlink channel PDSCH-PDSCH. However, this may also be applied to the relationship of PDCCH-PUSCH.
- CC scheduling is possible in two ways.
- the first is that a PDCCH-PDSCH pair is transmitted in one CC.
- This CC is called a self-secheduling CC.
- the PDCCH allocates PDSCH resources on the same CC or allocates PUSCH resources on a linked UL CC.
- the DL CC on which the PDSCH is transmitted or the UL CC on which the PUSCH is transmitted is determined. That is, the PUSCH is transmitted on a DL CC in which the PDCCH and the PDSCH are different from each other, or on a UL CC not linked with the DL CC in which the PDCCH is transmitted. This is called cross-carrier scheduling.
- the CC on which the PDCCH is transmitted may be referred to as a PDCCH carrier, a monitoring carrier, or a scheduling carrier, and the CC on which the PDSCH / PUSCH is transmitted may be referred to as a PDSCH / PUSCH carrier or a scheduled carrier.
- Cross-carrier scheduling may be activated / deactivated for each terminal, and the terminal on which cross-carrier scheduling is activated may receive a DCI including CIF.
- the UE may know which scheduled CC the PDCCH received from the CIF included in the DCI is control information.
- the DL-UL linkage predefined by cross-carrier scheduling may be overriding. That is, cross-carrier scheduling may schedule a CC other than the linked CC regardless of the DL-UL linkage.
- the first PDCCH 1201 of the DL CC # 1 carries the DCI for the PDSCH 1202 of the same DL CC # 1.
- the second PDCCH 1211 of the DL CC # 1 carries the DCI for the PDSCH 1212 of the DL CC # 2.
- the third PDCCH 1221 of the DL CC # 1 carries the DCI for the PUSCH 1222 of the UL CC # 3 that is not linked.
- the DCI of the PDCCH may include a carrier indicator field (CIF).
- CIF indicates a DL CC or UL CC scheduled through DCI.
- the second PDCCH 1211 may include a CIF indicating DL CC # 2.
- the third PDCCH 1221 may include a CIF indicating the UL CC # 3.
- the CIF of the third PDCCH 1221 may be informed by the CIF value corresponding to the DL CC, not the CIF value corresponding to the UL CC.
- the CIF of the third PDCCH 1221 indicates the DL CC # 3 linked with the UL CC # 3, so that the PUSCH may indirectly indicate the scheduled UL CC # 3.
- the DCI of the PDCCH includes the PUSCH scheduling and the CIF indicates the DL CC
- the UE may determine that the PUSCH is scheduled on the UL CC linked with the DL CC.
- it is possible to indicate a larger number of CCs than a method of notifying all DL / UL CCs using a CIF having a limited bit length (for example, 3 bit length CIF).
- a UE using cross-carrier scheduling needs to monitor PDCCHs of a plurality of scheduled CCs for the same DCI format in a control region of one scheduling CC. For example, if a transmission mode of each of the plurality of DL CCs is different, a plurality of PDCCHs for different DCI formats may be monitored in each DL CC. Same transfer mode
- the UE needs to monitor PDCCHs for the plurality of DCIs in the control region of the monitoring CC according to the transmission mode and / or bandwidth for each CC. Therefore, it is necessary to configure the search space and PDCCH monitoring that can support this.
- UE DL CC set a set of DL CCs scheduled for the UE to receive PDSCH
- UE UL CC set a set of UL CCs scheduled for the UE to transmit a PUSCH
- PDCCH monitoring set A set of at least one DL CC that performs PDCCH monitoring.
- the PDCCH monitoring set may be the same as the UE DL CC set or may be a subset of the UE DL CC set.
- the PDCCH monitoring set may include at least one of DL CCs in the UE DL CC set. Alternatively, the PDCCH monitoring set may be defined separately regardless of the UE DL CC set.
- the DL CC included in the PDCCH monitoring set may be configured to always enable self-scheduling for the linked UL CC.
- the UE DL CC set, the UE UL CC set, and the PDCCH monitoring set may be set to cell-specific or UE-specific.
- DCI format the CIF can be included as follows.
- the DCI format does not contain CIF.
- DCI formats 0, 1, 1A, 1B, 1D, 2, 2A, 2B receivable in the UE specific search space may include CIF if the CRC is scrambled (or masked) by C-RNTI, SPS-RNTI. .
- FIG. 13 shows an example of a CC set. 4 DL CCs (DL CC # 1, # 2, # 3, # 4) as UE DL CC set, 2 UL CCs (UL CC # 1, # 2) as UE UL CC set, DL CC as PDCCH monitoring set Assume that two (DL CC # 2, # 3) are allocated to the terminal.
- the DL CC # 2 in the PDCCH monitoring set transmits the PDCCH for the PDSCH of the DL CC # 1 / # 2 in the UE DL CC set and the PDCCH for the PUSCH of the UL CC # 1 in the UE UL CC set.
- the DL CC # 3 in the PDCCH monitoring set transmits the PDCCH for the PDSCH of the DL CC # 3 / # 4 in the UE DL CC set and the PDCCH for the PUSCH of the UL CC # 2 in the UE UL CC set.
- Linkage may be set between CCs included in the UE DL CC set, the UE UL CC set, and the PDCCH monitoring set.
- a PDCCH-PDSCH linkage is configured between DL CC # 2 which is a scheduling CC and DL CC # 1 which is a scheduled CC
- a PDCCH-PUSCH linkage is configured for DL CC # 2 and UL CC # 1.
- the PDCCH-PDSCH linkage is set between the DL CC # 3 which is the scheduling CC and the DL CC # 4 which is the scheduled CC
- the PDCCH-PUSCH linkage is set for the DL CC # 3 and the UL CC # 2.
- the information about the scheduling CC or the PDCCH-PDSCH / PUSCH linkage information may be informed by the base station to the terminal through cell-specific signaling or terminal-specific signaling.
- both the DL CC and the UL CC may not be linked to each of the DL CCs in the PDCCH monitoring set.
- the UL CC for PUSCH transmission may be limited to the UL CC linked to the DL CC in the UE DL CC set.
- the CIF may be set differently according to linkages of the UE DL CC set, the UE UL CC set, and the PDCCH monitoring set.
- cross-carrier scheduling When cross-carrier scheduling is not activated in the carrier aggregation system, it means that the PDCCH monitoring CC set is always the same as the UE-specific DL CC set. In this case, the PDCCH monitoring CC set does not need to be indicated through separate signaling. On the other hand, when cross-carrier scheduling is activated, the PDCCH monitoring CC set should be defined within the UE-specific DL CC set. Therefore, in this case, separate signaling for the PDCCH monitoring CC set may be necessary.
- 14 (a) and (b) illustrate a link method between a DL CC included in a PDCCH monitoring CC set and a CC transmitting a PDSCH / PUSCH.
- 14 (a) and (b) assume that all DL CCs are paired with UL CCs.
- Method 1 is a method in which each CC (hereinafter, referred to as PDSCH / PUSCH CC) that transmits PDSCH / PUSCH is scheduled through one DL CC. That is, the UE needs to monitor only one DL CC for the PDSCH / PUSCH CC.
- the UE monitors a PDCCH, and the PDCCH of the DL CC may be scheduled for at least one of a PDSCH for the same DL CC and / or a PUSCH of an UL CC linked to the DL CC.
- Method 2 is a method in which a PDSCH / PUSCH CC may be scheduled through one or more DL CCs.
- the PDSCH / PUSCH CC may be scheduled through only one DL CC in each subframe, but may be scheduled through different DL CCs in different subframes.
- the PDCCH may be scheduled for at least one of a PDSCH of the same DL CC and / or a PUSCH of a linked UL CC.
- Method 2 does not increase the number of blind decoding of the PDCCH and / or the CRC false detection rate of the PDCCH compared to a system without CIF.
- the maximum number of blind decoding attempts per CC is 44 times. do.
- the maximum number of blind decoding attempts can be calculated as follows.
- M represents the number of DL CCs of the PDCCH monitoring CC set.
- PDCCH monitoring DL CCs there are two DL CCs (hereinafter referred to as PDCCH monitoring DL CCs) in a PDCCH monitoring CC set and four CCs (that is, PDSCH / PUSCH CCs) transmitting PDSCH / PUSCH.
- PDCCH monitoring DL CCs there are two DL CCs (hereinafter referred to as PDCCH monitoring DL CCs) in a PDCCH monitoring CC set and four CCs (that is, PDSCH / PUSCH CCs) transmitting PDSCH / PUSCH.
- the size of the common search space of the PDCCH monitoring DL CC for the PDSCH / PUSCH CC is the same as that of the non-cross carrier scheduling.
- non-carrier scheduling does not need to monitor a DL CC other than the PDCCH monitoring CC, and blind decoding overhead of Rel-8 is required for each DL CC.
- full flexible scheduling is difficult to support.
- full flexible scheduling may be supported, but excessive blind decoding complexity may occur from a terminal perspective.
- the base station preferentially sets only one DL CC transmitting the corresponding PDCCH for the PDSCH / PUSCH CC.
- a DL CC having a CIF (the terminal monitors the PDCCH) may schedule for at least one of the PDSCH of the same DL CC and / or the PUSCH of the linked UL CC.
- the search space may be shared.
- 15A and 15B are diagrams illustrating Method 3 (Modified Method 1) described above.
- the PDCCH monitoring DL CC # 1 transmits PDCCHs for CC # 1 and CC # 2
- the PDCCH monitoring DL CC # 2 transmits PDCCHs for CC # 3 and CC # 4.
- the search space for CC # 2 and CC # 3 is shared as shown in FIG. 15 (b). Can be.
- the DL CC for which the UE monitors the PDCCH is referred to as a monitoring CC.
- a DL CC through which the UE receives the PDSCH is called a PDSCH CC
- a UL CC through which the UE transmits a PUSCH is called a PUSCH CC.
- the PDSCH CC and the PUSCH CC are collectively called a scheduled CC.
- the terminal preferentially monitors monitoring CC # 1 to receive the PDCCH of the scheduled CC # 2, and preferentially monitors the monitoring CC # 2 to receive the PDCCH of the scheduled CC # 3.
- the search space can be shared. That is, when the DCI size is the same, the UE may monitor the PDCCH even in a DL CC other than the linked monitoring CC. For example, the terminal may monitor not only monitoring CC # 1 but also monitoring CC # 2 with respect to the scheduled CC # 2.
- the method shares the search space of the corresponding PDCCHs only when the PDCCHs for the scheduled CCs that can be received by the one or more monitoring CCs have the same DCI payload size. If the PDCCHs for the scheduled CCs that can be received by the one or more monitoring CCs have different DCI payload sizes, the link relationship is maintained as in Method 1 described above. In this way, the blind decoding complexity can be maintained while improving the scheduling flexibility of the base station.
- DCIs for one or more scheduled CCs may be detected in the monitoring CC at the cross carrier scheduling.
- DCIs for one or more scheduled CCs may be detected by search space sharing in two or more monitoring CCs, or one or more scheduled by search space sharing in one monitoring CC.
- DCIs for the CC may be detected.
- the search space is shared between PDCCHs having the same DCI size, a plurality of DCIs having the same DCI size may be detected.
- the PDCCH is its own through the CRC check included in the process of receiving the PDCCH from the UE's point of view, but it may be difficult to determine which scheduled CC is the DCI. This is called the ambiguity of DCI.
- a DCI including CIF and a DCI without CIF in a search space may have the same DCI payload size.
- the UE cannot distinguish whether the detected PDCCH is information about DCI including CIF or information about DCI not including CIF, and thus ambiguity occurs (when using cross carrier scheduling, all monitoring CC In the case of including the CIF in the DCI, ambiguity does not occur because the CIF may determine which scheduled CC the information is about.
- DCI Downlink Control Information
- DCI for self-scheduling CC without CIF and DCI for cross-scheduling CC with CIF are transmitted with the same size, but for UE-specific SS and cross-carrier scheduling for self-scheduling CC.
- control information for CC # 1 and CC # 2 that is, DCI is transmitted through CC # 1.
- FIG. 16A illustrates an example in which ambiguity of DCI occurs when a common search space (CSS) for CC # 1 and a terminal specific search space (USS) for CC # 2 overlap.
- CSS common search space
- USS terminal specific search space
- DCI transmitted to CSS without CIF and DCI transmitted to USS with CIF are transmitted in a section where a common search space for CC # 1 and a UE-specific search space for CC # 2 overlap.
- DCI ambiguity occurs.
- 16B illustrates an example in which ambiguity of DCI occurs when the UE-specific search space CSS for CC # 1 and the UE-specific search space USS for CC # 2 completely overlap.
- DCI for a CIF-attached cross-scheduling CC is transmitted with the same size, it can be seen that DCI ambiguity occurs.
- FIG. 16C illustrates an example in which ambiguity of DCI occurs when a terminal specific search space (CSS) for CC # 1 and a terminal specific search space (USS) for CC # 2 overlap partially.
- SCS terminal specific search space
- USS terminal specific search space
- DCI for a CIF-attached cross-scheduling CC is transmitted with the same size, it can be seen that DCI ambiguity occurs.
- FIG. 16D illustrates an example in which ambiguity of DCI occurs when a UE specific search space (CSS) for CC # 1 and a UE specific search space (USS) for CC # 2 are shared.
- SCS UE specific search space
- USS UE specific search space
- the search space (SS) of the DCI for the CC # 1 and the search space of the DCI for the CC # 2 may completely overlap each other or some regions.
- the search space may be a common search space (CSS), a UE-specific search space (USS), or may be different for each CC.
- the search space for CC # 1 may be a common search space
- the search space for CC # 2 may be a terminal-specific search space.
- the DCI of CC # 1 or CC # 2 may or may not include CIF.
- the payload sizes of the DCI of CC # 1 and the DCI of CC # 2 are the same, it is unclear whether the DCI detected in the overlapping search spaces includes or does not include CIF.
- Method 1 illustrates a method of resolving ambiguity of DCI detection in a section in which a PDCCH search space is overlapped or shared by adding a padding bit to one of the DCIs having the same size.
- Method 1 solves the DCI size ambiguity by applying an additional padding bit to one of the DCIs in which the DCI size ambiguity occurs.
- the padding bit may be attached to the UE-specific DCI transmitted in the UE-specific SS of the same size.
- the padding bit may be attached to the cross-carrier scheduling DCI or to the self-scheduling DCI.
- Method 2 illustrates a method of resolving DCI detection ambiguity by additional RNTI masking on either of the DCIs having the same size.
- an additional RNTI may be masked to a UE-specific DCI transmitted to a UE-specific SS of the same size.
- an additional RNTI may be masked to the cross-carrier scheduling DCI or to the self-scheduling DCI.
- Method 3 configure SS so that CSS and DSS do not overlap
- Method 3 represents a method for resolving ambiguity for DCI detection by configuring CSS and USS so as not to overlap, such that DCI of the same size is not transmitted in a specific search space.
- the method 3 is a method for configuring the UE-specific SS to transmit the DCI of the UE-specific SS having the same size as the DCI transmitted to the Common SS so as not to disjoint with the common SS.
- search space shifting may be used to configure the CSS and the USS so that they do not overlap each other.
- the UE calculates a starting point of a UE-specific SS (for example, using a hash function) and the result of configuring the USS overlaps with the common SS, the USS section moves the search section as much as the USS section does not overlap with the CSS. shifting). This method is applicable to the case of CASE 1 in which the DCI ambiguity occurs.
- FIG. 17 is a diagram illustrating a case where CSS and USS do not overlap by shifting by overlapping sections when CSS and USS overlap according to one embodiment of the present specification.
- CSS has a CCE level of 4
- USS has a CCE level of 4
- CSS and USS overlap at a CCE index of 7.
- the terminal shifts the starting point of the USS by 1 from the CCE index 7 to the CCE index 8 so that the CSS and the USS do not overlap.
- Method 4 configure not to nest specific search spaces by CC
- Method 4 illustrates a method of solving the ambiguity of DCI detection by configuring the search space of a specific CC so as not to overlap with the search space of another CC.
- DCI size ambiguity is that PDCCHs having the same DCI size (DCI without CIF and DCI with CIF) are transmitted in a shared or overlapping search space interval.
- DCI size ambiguity when configuring a CC-specific SS of a specific CC, it is set to always disjoint with the CC-specific SS of other CCs.
- Method 4 the same SS shifting as in Method 3 may be used in Method 4. Even if the DCI sizes are the same, DCI ambiguity can be resolved by not using the SS between different CCs such as modified method 1 or SS sharing.
- Method 4 can be applied to both CASE 1 and 2 where the DCI ambiguity occurs.
- FIG. 18 is a diagram illustrating a search space configured such that a search space for each CC does not overlap according to another embodiment of the present specification.
- a search space for CC # 1 is configured from CCE indexes 2 to 5
- a search space for CC # 2 is configured from CCE indexes 7 to 8
- a search space for CC # 3 is configured for CCE indexes. You can see that the search space for each CC is configured not to overlap by configuring 9 ⁇ 12.
- Method 5 solves DCI ambiguity by detecting DCI by giving priority to a UE-specific DCI transmitted from an overlapping or shared search space to a UE-specific search space, DCI for cross-scheduling, and DCI with CIF. Indicates.
- Method 5 is such that when the PDCCH search spaces overlap or are shared, the base station does not transmit the common DCI transmitted to the common SS in the overlapping or shared periods.
- the terminal determines that the DCI detected in the section where the CSS and the USS overlap is the DCI for the USS and receives a shared channel, that is, a PDSCH / PUSCH.
- the method 5 is to not transmit DCI for self-scheduling CC in the overlapping or shared PDCCH search space interval. Therefore, the UE determines that the DCI detected in the section in which the search space for the self-scheduling CC and the search space for the cross-scheduling overlap or is shared, is the DCI for the cross-scheduling CC, and then shared channel (PDSCH / PUSCH) Receive and feedback process.
- shared channel PDSCH / PUSCH
- Method 5 is to transmit DCIs having CIFs attached to overlapping or shared PDCCH search space intervals. Accordingly, the UE decodes the DCI detected in the SS section that overlaps or shares with priority to the DCI to which the CIF is attached, and then performs a shared channel reception and feedback process after decoding based on the DCI to which the CIF is attached.
- the above priority means that blind decoding is performed only for DCI with CIF or blind decoding for DCI with CIF first, and then blind decoding for DCI without CIF. It can mean.
- Method 6 resolves DCI ambiguity by prioritizing the DCI transmitted to the common search space in the interval where the PDCCH search space is overlapped or shared, the DCI for self-scheduling, and the DCI not attached to the CIF. Provide a method for That is, Method 6 is a method of detecting DCI with priority as opposed to Method 5 above.
- the method 6 is such that the base station does not transmit the UE-specific SS DCI in the overlapping or shared PDCCH search space interval. Therefore, the terminal receives the shared channel by determining that the DCI detected in the section where the CSS and the USS overlap is the DCI for the CSS.
- the method 6 is such that the base station does not transmit the DCI for the cross-scheduling CC in the overlapping or shared PDCCH SS interval. Accordingly, the UE determines that the DCI detected in the section in which the SS for the self-scheduling CC overlaps or is shared with the SS for the cross-scheduling is DCI for the self-scheduling CC, and then performs a shared channel reception and feedback process. .
- Method 6 is a method for transmitting DCIs without CIF attached to overlapping or shared PDCCH SS intervals. Therefore, the UE decodes the DCI detected in the overlapping or shared SS section with priority to the DCI to which the CIF is not attached, and then performs the shared channel reception and feedback process after decoding based on the DCI to which the CIF is not attached.
- blind decoding is performed only on DCI without CIF or blind decoding on DCI without CIF first, followed by CIF. It may mean that the blind decoding is performed on the DCI.
- FIG. 19 is a diagram illustrating a method of resolving DCI ambiguity when a PDCCH search space is overlapped or shared by giving priority to a DCI to which a CIF is not attached according to another embodiment of the present specification.
- FIG. 19A illustrates a method of detecting a DCI corresponding to CSS in an overlapping section when CSS and USS overlap.
- the UE determines that DCI corresponding to CSS is transmitted in the overlapping section and performs blind decoding on a plurality of candidate PDCCHs.
- the terminal receives the common downlink control information through the PDCCH corresponding to the CSS which has been successfully decoded.
- 19 (b) illustrates a method of detecting DCI for self-scheduling CC in the overlapping section when the search space between USSs is completely overlapped.
- the UE determines that DCI corresponding to self-scheduling is transmitted in the overlapping section. To perform blind decoding on the plurality of candidate PDCCHs. As a result of performing the blind decoding, the UE receives downlink control information through a PDCCH corresponding to self-scheduling successfully.
- 19 (c) illustrates a method of detecting DCI for a self-scheduling CC in an overlapping section when some search spaces between USS overlap.
- the terminal determines that DCI corresponding to self-scheduling is transmitted in the overlapping interval in the case where the search space of the USS for CC # 1 and the USS for CC # 2 partially overlap.
- the UE receives downlink control information through a PDCCH corresponding to self-scheduling successfully.
- 19 (d) illustrates a method of detecting DCI for a self-scheduling CC in a shared section when sharing USSs of different CCs.
- the terminal determines that DCI corresponding to self-scheduling is transmitted in the sharing interval, The blind decoding is performed on the candidate PDCCH.
- the UE receives downlink control information through a PDCCH corresponding to self-scheduling successfully.
- Method 7 provides a method of resolving DCI ambiguity by limiting DCIs transmitted in overlapping or shared PDCCH Search Space (SS) intervals to DCIs for primary CCs.
- SS Search Space
- the primary CC may be defined for each terminal, and when one or more PDCCH monitoring CCs are allocated to the terminal, primary DL / UL CCs may be defined for each PDCCH monitoring CC.
- the term is not necessarily a primary CC, when one PDCCH monitoring CC is used as a reference, one of the PDSCH / PUSCH CCs that can be scheduled in the corresponding PDCCH monitoring CC is set as the primary CC to be used for such DCI priority setting. You can try to resolve the size ambiguity.
- the primary CC for each PDCCH monitoring CC is either a PDCCH monitoring DL CC or a UL CC linked in the system configuration (since PDSCH is transmitted to the DL CC), or a CC having a primary linkage with the PDCCH monitoring CC or a PDCCH monitoring CC. It may be set to a target DL / UL CC or the like.
- the DCI detected in the overlapped or shared SS interval is determined to be the DCI for the primary CC, and then the shared channel reception and feedback process are performed.
- Method 8 Do not detect DCI in intervals where search space overlaps or is shared
- Method 8 provides a method in which a terminal does not search for a DCI when SS decodes an SS and an ambiguity occurs due to overlapping sizes of different DCIs.
- DCI without CIF and DCI with CIF for other CC have the same size
- DCI with CIF for other CC is included in the search candidate for the search interval of the corresponding SS.
- DCI with CIF for other CC is not included in the search. This prevents the terminal from generating ambiguity including the same length.
- whether to omit the DCI including the CIF from the search or include the DCI without the CIF may be configured through signaling or may be defined in advance (eg, a predefined selection).
- the common SS may include the same size DCI, but can be distinguished because the RNTI value for the DCI will be set differently.
- a DCI of the same length may overlap with each other without CIF.
- DCIs corresponding to fallbacks for different CCs do not have CIF. In this case, neither has CIF, so there is no way to tell them apart. Therefore, when defining DCI without CIF, it is desirable to define only SS regions where SS does not overlap as much as possible.
- the SS for that particular CC has priority.
- the above-described methods can be applied to the problem DCI without CIF.
- the SS used by the UE is commonly defined for all CCs, ambiguity should not exist with respect to the sizes of DCIs to be searched by the UE.
- the methods defined above can be applied.
- the shared SS can be defined disjoint.
- the corresponding region may be defined as scheduling only DCIs for the same carrier.
- corresponding CCs may be arbitrarily defined.
- Method 9 shows how to solve the DCI size ambiguity problem by using bit level scrambling.
- bit-level scrambling can be used to distinguish the no-CIF self-scheduling PDCCH from the SS of the self-scheduling PDCCH and the SS of the cross-scheduling PDCCH overlapping or shared. .
- the scrambling code for DCI without CIF and the scrambling code for DCI without CIF can be distinguished.
- bit level scrambling is applicable in various stages such as 1) information bits (before CRC attachment), 2) information bits + CRC (after CRC attachment), and 3) after channel encoding.
- Method 10 remove SS for any DCI in the interval where DCI size ambiguity occurs
- Method 10 illustrates a method of solving the problem by removing the SS for DCI with CIF or the SS for DCI without CIF in the DCI ambiguity section in FIGS. 16A to 16D.
- the CSS and the USS may be removed from the overlapped portion (or the CSS may be removed).
- SS for self-scheduling DCI or SS for cross-scheduling DCI may be removed or SS for cross-scheduling DCI is overlapped or shared.
- the UE interprets the PDDCCH DCI detected according to the promised or known rule when the DCI with CIF and DCI without CIF have the same payload size or based on DCI with CIF or with DCI without CIF. Can be interpreted
- Method 10 produces the same results as the priority solutions above (methods 5 and 6), but is configurable incorrectly.
- the blocking probability of the corresponding PDCCH may increase in terms of DCI transmitted to the SS to be removed.
- Method 11 Remove SS for any DCI in interval where DCI size ambiguity occurs and add SS sequentially
- Method 11 is a method for maintaining a blocking probability that is a problem in Method 10.
- the method of maintaining the SS for one of the DCIs having the same size and removing the SS for the remaining DCI is the same as the method 10.
- the USS can be added sequentially as much as the USS of the corresponding part is removed and removed (indexing can be a circular manner) or CSS can be added sequentially as much as the CSS is removed and removed.
- SS for self-scheduling DCI is sequentially added or cross-scheduling as much as the SS for self-scheduling DCI is removed and removed for the portion where SS for cross-scheduling DCI overlaps or is shared.
- SS for DCI can be removed and added again sequentially.
- the added SS may be configured in a CCE column other than an ambiguity section.
- Method 12 assigning an exclusive SS so that an ambiguity section does not occur and reflecting it in the SS configuration parameter
- Method 12 is similar to methods 3 and 4 above. Either set CSS and USS exclusively, set SS of self-scheduling DCI and SS of cross-scheduling DCI exclusive, or set SS of DCI with CIF and SS of DCI without CIF. Can be.
- the USS configuration parameter may include a value that can always set SS to disjoint with CSS. Since CSS is an SS that always exists only in a fixed location section, a method of moving the USS is effective.
- the cross-scheduling SS configuration parameter may include a value that can always set the SS to disjoint with the self-scheduling DCI SS. The same applies to the SS of DCI with CIF and the SS of DCI without CIF.
- this may be a parameter indicating shifting or hopping.
- the parameter for setting the SS exclusively is not always a fixed value but may be set to a different value every time according to the configuration of the SS.
- a bit indicating a corresponding DCI may be added to the DCI.
- a 1-bit indication may be indicated whether the corresponding DCI is a DCI transmitted to the USS or a DCI transmitted to the CSS.
- the UE can perform PDCCH decoding without size ambiguity by informing the DCI whether the DCI is a self-scheduling DCI or a cross-scheduling DCI, or whether the DCI is a DCI including CIF through a x-bit indication. You can do that.
- the x-bit included in the DCI can always know whether the DCI is a DCI attached to the CIF if the terminal must be able to determine the corresponding bit at a fixed position, the x-bit indication is always fixed on the DCI payload Should be sent to a location that has been
- the fixed position means that the position is always fixed regardless of the DCI size. For example, you can always use the first x-bit or the last x-bit.
- Method 14 problem solving through puncturing in the DCI transmitted in the section where the DCI size ambiguity occurs
- Method 14 is a method of solving a problem by incorrectly DCI size by bit puncturing among one or more DCIs transmitted in an ambiguity interval.
- At least one bit in the DCI transmitted in the USS transmitted in the overlapping SS interval is to puncturing.
- puncturing For example, in the case of one-bit puncturing, after CRC encoding the information bit, puncturing any one of the 16-bit CRCs, that is, if the information bit is 24 bits, it is originally 40 bits, which is 39 bits by CRC puncturing. . Let's do this channel encoding.
- a DCI with CIF and a DCI without CIF are shared but transmitted from an overlapping SS, at least one bit may be punctured at the DCI with CIF (or DCI without CIF). In this case, the false detection probability increases by 1/2.
- 20 is a block diagram illustrating a wireless communication system according to an exemplary embodiment of the present specification.
- the base station 2010 includes a control unit 2011, a memory 2012, and a radio frequency unit (RF) unit 2013.
- RF radio frequency unit
- the control unit 2011 implements the proposed function, process and / or method. Layers of the air interface protocol may be implemented by the control unit 2011.
- the control unit 2011 may operate a carrier concatenation and control to transmit a PDCCH corresponding to CSS or a PDCCH to which a CIF is not attached in a section where the PDCCH search space is overlapped or shared.
- the memory 2012 is connected to the control unit 2011 to store a protocol or parameter for carrier bonding.
- the RF unit 2013 is connected to the control unit 2011 to transmit and / or receive a radio signal.
- the terminal 2020 includes a controller 2021, a memory 2022, and a wireless communication (RF) unit 2023.
- RF wireless communication
- the controller 2021 implements the proposed function, process and / or method. Layers of the air interface protocol may be implemented by the controller 2021.
- the controller 2021 may operate a carrier concatenation and control to receive the PDCCH corresponding to the CSS or the PDCCH not attached to the CIF in the section where the PDCCH search space is overlapped or shared.
- the memory 2012 is connected to the control unit 2021 and stores a protocol or parameter for carrier splicing operation.
- the RF unit 2013 is connected to the control unit 2021 and transmits and / or receives a radio signal.
- the controllers 2011 and 2021 may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, and / or a data processing device.
- Memory 2012 and 2022 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media and / or other storage devices.
- the RF unit 2013 and 2023 may include a baseband circuit for processing a radio signal.
- the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
- the module may be stored in the memories 2012 and 2022 and executed by the controllers 2011 and 2021.
- the memories 2012 and 2022 may be inside or outside the controllers 2011 and 2021, and may be connected to the controllers 2011 and 2021 by various well-known means.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
- Time-Division Multiplex Systems (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
Abstract
Description
표 1
Claims (19)
- 캐리어 접합 시스템에서, PDCCH를 모니터링하는 방법에 있어서,제 1 컴포넌트 캐리어의 PDCCH 검색 공간(Search Space)과 제 2 컴포넌트 캐리어의 PDCCH 검색 공간이 중첩되는 구간에서 복수의 후보 PDCCH를 모니터링하는 단계; 및상기 복수의 후보 PDCCH 중 블라인드 디코딩에 성공한 PDCCH를 통해 하향링크 제어 정보를 수신하는 단계를 포함하되,상기 블라인드 디코딩에 성공한 PDCCH는 공용 제어 정보를 포함하는 공용 PDCCH, 캐리어 지시자 필드(CIF)를 포함하지 않는 자기-스케쥴링(self-scheduling) 컴포넌트 캐리어에 대한 PDCCH 또는 프라이머리 컴포넌트 캐리어에 대한 PDCCH인 것을 특징으로 하는 방법.
- 제 1항에 있어서,상기 모니터링하는 단계는 복수의 후보 PDCCH들에 대해 블라인드 디코딩(blind decoding)을 수행하되,상기 블라인드 디코딩은 고유 식별자(RNTI)를 이용하여 각각의 후보 PDCCH에 대해 CRC 디마스킹을 수행하는 것을 특징으로 하는 방법.
- 제 1항에 있어서, 상기 모니터링하는 단계는,상기 중첩되는 구간에서 우선 순위가 설정된 PDCCH를 기준으로 상기 복수의 후보 PDCCH를 모니터링하는 것을 특징으로 하는 방법.
- 제 3항에 있어서,기지국으로부터 상기 우선 순위가 설정된 PDCCH에 대한 정보를 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
- 제 3항에 있어서,상기 우선 순위가 설정된 PDCCH는 상기 디코딩에 성공한 PDCCH인 것을 특징으로 하는 방법.
- 제 1항에 있어서,상기 제 1 컴포넌트 캐리어의 PDCCH 검색 공간이 셀 내 모든 단말에 의해 모니터링되는 공용 검색 공간(common search space)이고, 상기 제 2 컴포넌트 캐리어의 PDCCH 검색 공간이 셀 내 적어도 하나의 단말에 의해 모니터링되는 단말 특정 검색 공간(UE-specific search space)인 경우, 상기 디코딩에 성공한 PDCCH는 공용 PDCCH인 것을 특징으로 하는 방법.
- 제 1항에 있어서,상기 제 1 컴포넌트 캐리어의 PDCCH 검색 공간 및 상기 제 2 컴포넌트 캐리어의 PDCCH 검색 공간이 모두 단말 특정 검색 공간인 경우, 상기 디코딩에 성공한 PDCCH는 캐리어 지시자 필드를 포함하지 않는 PDCCH인 것을 특징으로 하는 방법.
- 제 6항에 있어서,상기 공용 PDCCH는 상기 제 1 컴포넌트 캐리어의 공용 검색 공간에서 전송되는 것을 특징으로 하는 방법.
- 제 1항에 있어서,상기 제 1 컴포넌트 캐리어는 프라이머리 컴포넌트 캐리어(Primary Component Carrier)인 것을 특징으로 하는 방법.
- 제 1항에 있어서,상기 프라이머리 컴포넌트 캐리어는 PDCCH가 전송되는 PDCCH 모니터링 컴포넌트 캐리어와 링크된(linked) 상향링크 컴포넌트 캐리어, 상기 PDCCH 모니터링 컴포넌트 캐리어와 첫 번째 링키지(linkage)를 갖는 컴포넌트 캐리어 또는 상기 PDCCH 모니터링 컴포넌트 캐리어에서 자기-스케쥴링의 대상이 되는 하향링크 또는 상향링크 컴포넌트 캐리어인 것을 특징으로 하는 방법.
- 제 10항에 있어서,상기 PDCCH 모니터링 컴포넌트 캐리어가 복수인 경우, 상기 복수의 PDCCH 모니터링 컴포넌트 캐리어 별로 상기 프라이머리 컴포넌트 캐리어가 정의되는 것을 특징으로 하는 방법.
- 반송파 집성 시스템에서 단말에 있어서,무선신호를 송수신하는 무선통신부; 및상기 무선통신부에 연결되는 제어부를 포함하되, 상기 제어부는제 1 컴포넌트 캐리어의 PDCCH 검색 공간(Search Space)과 제 2 컴포넌트 캐리어의 PDCCH 검색 공간이 중첩되는 구간에서 복수의 후보 PDCCH를 모니터링하도록 제어하며, 상기 복수의 후보 PDCCH 중 블라인드 디코딩에 성공한 PDCCH를 통해 하향링크 제어 정보를 수신하도록 상기 무선통신부를 제어하되,상기 블라인드 디코딩에 성공한 PDCCH는 공용 제어 정보를 포함하는 공용 PDCCH, 캐리어 지시자 필드(CIF)를 포함하지 않는 자기-스케쥴링(self-scheduling) 컴포넌트 캐리어에 대한 PDCCH 또는 프라이머리 컴포넌트 캐리어에 대한 PDCCH인 것을 특징으로 하는 단말.
- 제 12항에 있어서, 상기 제어부는,블라인드 디코딩을 이용하여 상기 복수의 후보 PDCCH를 모니터링하도록 제어하며, 상기 블라인드 디코딩은 고유 식별자(RNTI)를 이용하여 각각의 후보 PDCCH에 대해 CRC 디마스킹을 수행하는 것을 특징으로 하는 단말.
- 제 12항에 있어서, 상기 제어부는,상기 중첩되는 구간에서 우선 순위가 설정된 PDCCH를 기준으로 상기 복수의 후보 PDCCH를 모니터링하도록 제어하는 것을 특징으로 하는 단말.
- 제 14항에 있어서, 상기 제어부는,기지국으로부터 상기 우선 순위가 설정된 PDCCH에 대한 정보를 수신하도록 상기 무선통신부를 제어하는 것을 특징으로 하는 단말.
- 제 14항에 있어서,상기 우선 순위가 설정된 PDCCH는 상기 디코딩에 성공한 PDCCH인 것을 특징으로 하는 단말.
- 제 12항에 있어서,상기 제 1 컴포넌트 캐리어의 PDCCH 검색 공간이 셀 내 모든 단말에 의해 모니터링되는 공용 검색 공간(common search space)이고, 상기 제 2 컴포넌트 캐리어의 PDCCH 검색 공간이 셀 내 적어도 하나의 단말에 의해 모니터링되는 단말 특정 검색 공간(UE-specific search space)인 경우, 상기 디코딩에 성공한 PDCCH는 공용 PDCCH인 것을 특징으로 하는 단말.
- 제 12항에 있어서,상기 제 1 컴포넌트 캐리어의 PDCCH 검색 공간 및 상기 제 2 컴포넌트 캐리어의 PDCCH 검색 공간이 모두 단말 특정 검색 공간인 경우, 상기 디코딩에 성공한 PDCCH는 캐리어 지시자 필드를 포함하지 않는 PDCCH인 것을 특징으로 하는 단말.
- 제 12항에 있어서,상기 제 1 컴포넌트 캐리어는 프라이머리 컴포넌트 캐리어(Primary Component Carrier)인 것을 특징으로 하는 단말.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180028192.1A CN102934383B (zh) | 2010-04-07 | 2011-04-07 | 在载波接合系统中的pdcch监视方法和设备 |
US13/640,278 US8867519B2 (en) | 2010-04-07 | 2011-04-07 | PDCCH monitoring method and apparatus in a carrier junction system |
EP11766180.1A EP2557710A4 (en) | 2010-04-07 | 2011-04-07 | Pdcch monitoring method and apparatus in a carrier junction system |
US14/484,035 US9516670B2 (en) | 2010-04-07 | 2014-09-11 | PDCCH monitoring method and apparatus in a carrier junction system |
US15/369,338 US9918335B2 (en) | 2010-04-07 | 2016-12-05 | PDCCH monitoring method and apparatus in a carrier junction system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32184510P | 2010-04-07 | 2010-04-07 | |
US61/321,845 | 2010-04-07 | ||
KR10-2011-0032138 | 2011-04-07 | ||
KR1020110032138A KR101435849B1 (ko) | 2010-04-07 | 2011-04-07 | 캐리어 접합 시스템에서 pdcch 모니터링 방법 및 장치 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/640,278 A-371-Of-International US8867519B2 (en) | 2010-04-07 | 2011-04-07 | PDCCH monitoring method and apparatus in a carrier junction system |
US14/484,035 Continuation US9516670B2 (en) | 2010-04-07 | 2014-09-11 | PDCCH monitoring method and apparatus in a carrier junction system |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011126329A2 true WO2011126329A2 (ko) | 2011-10-13 |
WO2011126329A3 WO2011126329A3 (ko) | 2012-01-26 |
Family
ID=44763426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/002462 WO2011126329A2 (ko) | 2010-04-07 | 2011-04-07 | 캐리어 접합 시스템에서 pdcch 모니터링 방법 및 장치 |
Country Status (5)
Country | Link |
---|---|
US (3) | US8867519B2 (ko) |
EP (1) | EP2557710A4 (ko) |
KR (1) | KR101435849B1 (ko) |
CN (2) | CN105162565A (ko) |
WO (1) | WO2011126329A2 (ko) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013113712A1 (en) * | 2012-01-30 | 2013-08-08 | Nokia Siemens Networks Oy | Search space arrangement for control channel |
CN103716274A (zh) * | 2012-09-29 | 2014-04-09 | 中兴通讯股份有限公司 | 下行控制信息的传输方法和装置 |
WO2014107611A3 (en) * | 2013-01-03 | 2014-08-28 | Qualcomm Incorporated | Enb pdcch implementation to avoid ambiguous dci information |
US20150280882A1 (en) * | 2012-11-06 | 2015-10-01 | Lg Electronics Inc. | Method of detecting control information in wireless communication system, and apparatus for same |
US20160014802A1 (en) * | 2013-03-13 | 2016-01-14 | Lg Electronics Inc. | Method for transmitting and receiving control channel and device therefor |
EP2942888A4 (en) * | 2013-01-07 | 2016-09-21 | Lg Electronics Inc | METHOD AND DEVICE FOR SENDING / RECEIVING SIGNALS |
CN109952804A (zh) * | 2017-04-27 | 2019-06-28 | 联发科技股份有限公司 | 有效的下行链路控制信息传输 |
CN111148260A (zh) * | 2018-11-02 | 2020-05-12 | 华为技术有限公司 | 发送和接收数据的方法以及通信装置 |
WO2021206446A1 (ko) * | 2020-04-07 | 2021-10-14 | 엘지전자 주식회사 | 무선 통신 시스템에서 블라인드 디코딩 기반 하향링크 채널 송수신 방법 및 장치 |
US11804937B2 (en) | 2018-04-16 | 2023-10-31 | Telefonaktiebolaget Lm Ericsson (Publ) | Physical uplink control channel (PUCCH) resource selection before radio resource control (RRC) configuration |
Families Citing this family (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101633955B1 (ko) | 2009-06-02 | 2016-07-08 | 블랙베리 리미티드 | 캐리어 집성을 위한 블라인드 디코딩을 감소시키는 시스템 및 방법 |
JP4862086B2 (ja) * | 2010-03-04 | 2012-01-25 | シャープ株式会社 | 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路 |
US8867519B2 (en) * | 2010-04-07 | 2014-10-21 | Lg Electronics Inc. | PDCCH monitoring method and apparatus in a carrier junction system |
EP2375619B1 (en) | 2010-04-08 | 2023-06-21 | Samsung Electronics Co., Ltd. | Channel state information request/feedback method and apparatus |
US20110255631A1 (en) * | 2010-04-20 | 2011-10-20 | Samsung Electronics Co., Ltd. | Methods and apparatus for fast synchronization using tail biting convolutional codes |
US9125068B2 (en) | 2010-06-04 | 2015-09-01 | Ixia | Methods, systems, and computer readable media for simulating realistic movement of user equipment in a long term evolution (LTE) network |
KR101468767B1 (ko) | 2010-06-08 | 2014-12-08 | 한국전자통신연구원 | 다중 캐리어 무선 통신 시스템에서의 송수신 방법 및 장치 |
JP5662448B2 (ja) * | 2010-07-21 | 2015-01-28 | パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America | 基地局装置、端末装置、送信方法及び受信方法 |
JP5569652B2 (ja) * | 2010-09-28 | 2014-08-13 | 富士通株式会社 | スケジューリングされているコンポーネントキャリアの確定方法、ユーザ端末、基地局及びシステム |
US9191098B2 (en) * | 2011-01-14 | 2015-11-17 | Telefonaktiebolaget L M Ericsson (Publ) | Capability reporting for relay nodes in wireless networks |
US9282556B2 (en) * | 2011-02-15 | 2016-03-08 | Kyocera Corporation | Base station and communication method thereof |
KR102031031B1 (ko) | 2011-06-20 | 2019-10-15 | 삼성전자 주식회사 | 무선 통신 시스템에서 시분할 복식 프레임 구성 정보 송수신 방법 및 장치 |
WO2013015632A2 (ko) * | 2011-07-26 | 2013-01-31 | 엘지전자 주식회사 | 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치 |
US8989121B2 (en) * | 2011-11-02 | 2015-03-24 | Qualcomm Incorporated | Blindly decoding interfering cell PDCCH to acquire interfering cell PDSCH transmission information |
JP5801694B2 (ja) * | 2011-11-09 | 2015-10-28 | 株式会社Nttドコモ | 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法 |
JP5809532B2 (ja) * | 2011-11-09 | 2015-11-11 | 株式会社Nttドコモ | 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法 |
US9154979B2 (en) | 2011-12-14 | 2015-10-06 | Ixia | Scalable architecture for long term evolution (LTE) multiple user equipment (multi-UE) simulation |
US8855070B2 (en) | 2011-12-14 | 2014-10-07 | Ixia | Methods, systems, and computer readable media for improved long term evolution (LTE) hybrid automatic repeat request (HARQ) processing |
US9204325B2 (en) * | 2011-12-20 | 2015-12-01 | Ixia | Methods, systems, and computer readable media for reducing the impact of false downlink control information (DCI) detection in long term evolution (LTE) physical downlink control channel (PDCCH) data |
KR101598523B1 (ko) * | 2012-01-13 | 2016-02-29 | 엘지전자 주식회사 | 하향링크 제어 신호 수신 방법 및 사용자기기와, 하향링크 제어 신호 전송 방법 및 기지국 |
US9071995B2 (en) | 2012-01-17 | 2015-06-30 | Ixia | Methods, systems, and computer readable media for long term evolution (LTE) uplink data processing |
US8908535B2 (en) | 2012-02-10 | 2014-12-09 | Ixia | Methods, traffic simulators, and computer readable media for validating long term evolution (LTE) code blocks and transport blocks |
US8724498B2 (en) | 2012-02-14 | 2014-05-13 | Ixia | Methods, systems, and computer readable media for performing long term evolution (LTE) channel delineation |
US8892829B2 (en) | 2012-02-29 | 2014-11-18 | Ixia | Methods, systems, and computer readable media for integrated sub-block interleaving and rate matching |
US8738985B2 (en) | 2012-03-28 | 2014-05-27 | Ixia | Methods, systems, and computer readable media for dynamically controlling a turbo decoding process in a long term evolution (LTE) multi-user equipment (UE) traffic simulator |
US9131000B2 (en) | 2012-04-13 | 2015-09-08 | Ixia | Methods, systems, and computer readable media for heuristics-based adaptive protocol parsing |
CN108173636B (zh) | 2012-05-09 | 2021-01-15 | 太阳专利信托公司 | 终端装置及通信方法 |
US9854570B2 (en) | 2012-06-07 | 2017-12-26 | Qualcomm Incorporated | Signaling of virtual cell ID |
KR101318144B1 (ko) * | 2012-07-20 | 2013-10-15 | 주식회사 이노와이어리스 | Lte 시스템에서 하향링크 제어정보 검출 방법 |
EP2893649B1 (en) * | 2012-09-06 | 2019-07-31 | Samsung Electronics Co., Ltd. | Method and apparatus for communicating downlink control information in an asymmetric multicarrier communication network environment |
US9107162B2 (en) | 2012-09-28 | 2015-08-11 | Intel Corporation | Determination of enhanced physical downlink control channel candidates in a wireless communication network |
CN103716144B (zh) * | 2012-09-28 | 2017-04-05 | 上海贝尔股份有限公司 | 一种进行ePDCCH相关配置和获取该配置的方法、装置和系统 |
US8937882B2 (en) | 2012-10-26 | 2015-01-20 | Ixia | Methods, systems, and computer readable media for automatically decoding uplink data |
US10116422B2 (en) * | 2012-11-02 | 2018-10-30 | Qualcomm Incorporated | Managing cross-carrier scheduling in carrier aggregation with EPDCCH in LTE |
US8929294B2 (en) | 2012-11-20 | 2015-01-06 | Ixia | Methods, systems, and computer readable media for rapid decoding of wireless communications network uplink data |
US9730207B2 (en) * | 2013-01-31 | 2017-08-08 | Lg Electronics Inc. | Communication method using carrier aggregation and apparatus for same |
US9705658B2 (en) * | 2013-02-04 | 2017-07-11 | Mbit Wireless, Inc. | Method and apparatus for detecting inconsistent control information in wireless communication systems |
WO2014136927A1 (ja) | 2013-03-08 | 2014-09-12 | シャープ株式会社 | 端末、基地局、通信システムおよび通信方法 |
US9198065B2 (en) | 2013-03-15 | 2015-11-24 | Ixia | Methods, systems, and computer readable media for utilizing adaptive symbol processing in a multiple user equipment (multi-UE) simulator |
CN111294190B (zh) * | 2013-07-16 | 2024-01-19 | 华为技术有限公司 | 控制信息的传输方法、用户设备和基站 |
WO2015026060A1 (ko) * | 2013-08-20 | 2015-02-26 | 엘지전자 주식회사 | 복수의 셀에 동시 접속하는 방법 및 사용자 장치 |
CN104717748A (zh) * | 2013-12-11 | 2015-06-17 | 北京三星通信技术研究有限公司 | 物理下行控制信道的资源分配方法和装置 |
US9973303B2 (en) * | 2013-12-20 | 2018-05-15 | Samsung Electronics Co., Ltd. | Determining timing for transmission or reception of signaling in a coverage enhanced operating mode |
CN110784919B (zh) | 2014-01-29 | 2022-10-11 | 三星电子株式会社 | 移动通信系统中基于多载波的数据发射方法和设备 |
US9681256B2 (en) * | 2014-03-15 | 2017-06-13 | Sierra Wireless, Inc. | Abbreviated blind detection in wireless communication systems including LTE |
CN113595699B (zh) * | 2014-08-01 | 2024-08-09 | 苹果公司 | 用于窄带部署的pdcch设计 |
CN104469962B (zh) * | 2014-11-14 | 2018-02-23 | 北京邮电大学 | 一种异构网络联合资源调度方法、装置及用户终端 |
US10063340B2 (en) * | 2014-11-25 | 2018-08-28 | Nokia Solutions And Networks Oy | Dynamic resource adaptation |
US9661513B2 (en) * | 2015-06-09 | 2017-05-23 | Ixia | Methods, systems, and computer readable media for enhanced channel control element (CCE) decoding in LTE networks |
WO2017059889A1 (en) * | 2015-10-05 | 2017-04-13 | Nokia Solutions And Networks Oy | Arrangement of measurement reporting groups |
WO2017099831A1 (en) * | 2015-12-08 | 2017-06-15 | Intel IP Corporation | Control signaling in multiple beam operation |
WO2017099526A1 (ko) * | 2015-12-11 | 2017-06-15 | 엘지전자 주식회사 | 하향링크 채널 수신 방법 및 사용자기기와, 하향링크 채널 전송 방법 및 기지국 |
WO2017171327A2 (ko) * | 2016-03-28 | 2017-10-05 | 엘지전자 주식회사 | 무선 통신 시스템에서 제어 정보를 송수신 하는 방법 및 이를 위한 장치 |
CN107306174B (zh) * | 2016-04-20 | 2021-07-27 | 西安中兴新软件有限责任公司 | 一种用于载波聚合的载波调度的方法、设备和系统 |
CN109644480B (zh) * | 2016-08-09 | 2022-04-26 | Lg 电子株式会社 | 在支持窄带物联网的无线通信系统中发送/接收数据的方法及其设备 |
TWI823210B (zh) * | 2016-08-10 | 2023-11-21 | 美商內數位專利控股公司 | 編碼控制資訊的方法及裝置 |
US10484156B2 (en) | 2016-11-16 | 2019-11-19 | Qualcomm Incorporated | Search space associated with physical downlink control channel based on channel quality indicators |
EP3529944B1 (en) * | 2016-11-25 | 2021-06-16 | LG Electronics Inc. | Method and apparatus for designing broadcast channel for nr in wireless communication system |
US10285120B2 (en) * | 2016-12-02 | 2019-05-07 | Qualcomm Incorporated | Techniques and apparatuses for common search space determination |
US10541771B2 (en) | 2016-12-02 | 2020-01-21 | Qualcomm Incorporated | Techniques for transmitting or using a pull-in signal to locate a synchronization channel |
KR102706395B1 (ko) * | 2016-12-06 | 2024-09-13 | 삼성전자주식회사 | 무선 셀룰라 통신 시스템에서 하향링크 제어신호 복호 방법 및 장치 |
US10440703B2 (en) | 2017-01-10 | 2019-10-08 | Mediatek Inc. | Physical downlink control channel design for 5G new radio |
US11601820B2 (en) * | 2017-01-27 | 2023-03-07 | Qualcomm Incorporated | Broadcast control channel for shared spectrum |
BR112019015948A2 (pt) * | 2017-02-02 | 2020-03-24 | Ntt Docomo, Inc. | Terminal e método de radiocomunicação para um terminal |
JP7010927B2 (ja) * | 2017-03-17 | 2022-01-26 | 株式会社Nttドコモ | 端末及び無線通信方法 |
CN110476377B (zh) * | 2017-04-05 | 2022-09-13 | 苹果公司 | 用于配置控制资源集的装置以及机器可读存储介质 |
CN118354428A (zh) * | 2017-05-03 | 2024-07-16 | 交互数字专利控股公司 | 用于新无线电(nr)中的寻呼过程的方法和设备 |
US10278168B2 (en) | 2017-05-04 | 2019-04-30 | At&T Intellectual Property I, L.P. | Multi-stage segmented downlink control information with reduced overhead |
US10897753B2 (en) * | 2017-05-04 | 2021-01-19 | Sharp Kabushiki Kaisha | Systems and methods for supporting multiple allocations in UL/DL grant for a 5G NR UE and gNB |
US10554363B2 (en) | 2017-05-04 | 2020-02-04 | At&T Intellectual Property I, L.P. | Facilitating incremental downlink control information design to support downlink control information scheduling |
US10270573B2 (en) | 2017-05-16 | 2019-04-23 | Qualcomm Incorporated | Techniques and apparatuses for reusing remaining minimum system information configuration bits to signal a synchronization signal block location |
US11096163B2 (en) | 2017-06-13 | 2021-08-17 | Lg Electronics Inc. | Method for receiving downlink control channel and device therefor |
CN109150199B (zh) | 2017-06-17 | 2024-06-25 | 华为技术有限公司 | 一种极化Polar码的交织处理方法及装置 |
WO2018228601A1 (zh) | 2017-06-16 | 2018-12-20 | 华为技术有限公司 | 一种数据处理方法及数据处理装置 |
CN109150378B (zh) * | 2017-06-16 | 2021-04-09 | 华为技术有限公司 | 一种数据处理方法及数据处理装置 |
KR102383274B1 (ko) | 2017-06-28 | 2022-04-07 | 삼성전자 주식회사 | 무선통신 시스템에서 제어 채널 송수신 방법 및 장치 |
WO2019004739A1 (ko) * | 2017-06-28 | 2019-01-03 | 삼성전자 주식회사 | 무선통신 시스템에서 제어 채널 송수신 방법 및 장치 |
US10791567B2 (en) * | 2017-07-28 | 2020-09-29 | Qualcomm Incorporated | Overlapping control resource sets with different priority levels |
CN109474384B (zh) * | 2017-09-08 | 2021-02-12 | 华为技术有限公司 | 通信方法、终端设备和网络设备 |
US11139941B2 (en) * | 2017-09-11 | 2021-10-05 | Qualcomm Incorporated | Uplink acknowledgment mapping and resource allocation |
US10542443B2 (en) | 2017-10-27 | 2020-01-21 | Keysight Technologies, Inc. | Methods, systems, and computer readable media for testing long term evolution (LTE) air interface device using emulated noise in unassigned resource blocks (RBs) |
CN111602353A (zh) | 2018-01-10 | 2020-08-28 | Idac控股公司 | 用于识别新无线电物理下行链路控制信道的已被超可靠低延时通信抢占的资源的方法 |
CN110167036B (zh) * | 2018-02-14 | 2022-05-24 | 华硕电脑股份有限公司 | 无线通信考虑波束故障恢复的监听控制资源的方法和设备 |
US11259294B2 (en) | 2018-02-23 | 2022-02-22 | Lg Electronics Inc. | Method and device for receiving signal in wireless communication system |
CN110266451B (zh) * | 2018-03-12 | 2021-12-24 | 上海朗帛通信技术有限公司 | 一种被用于非授权频谱的用户设备、基站中的方法和装置 |
CN110351002B (zh) * | 2018-04-03 | 2022-02-11 | 北京紫光展锐通信技术有限公司 | 候选pdcch的优先级确定及监听方法、装置、存储介质、基站、终端 |
WO2019216640A1 (ko) * | 2018-05-09 | 2019-11-14 | 엘지전자 주식회사 | 무선 통신 시스템에서 단말의 제어 채널 모니터링 방법 및 상기 방법을 이용하는 단말 |
SG11202011108QA (en) * | 2018-05-11 | 2020-12-30 | Guangdong Oppo Mobile Telecommunications Corp Ltd | Downlink channel receiving method and terminal device |
CN114157397B (zh) * | 2018-05-11 | 2024-11-19 | 维沃移动通信有限公司 | 确定下行控制信息的方法和设备 |
KR102736786B1 (ko) | 2018-05-24 | 2024-12-02 | 삼성전자 주식회사 | 무선 통신 시스템에서 빔포밍을 적용한 통신 방법 및 장치 |
WO2020009321A1 (ko) * | 2018-07-06 | 2020-01-09 | 엘지전자 주식회사 | 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치 |
CN110740512B (zh) * | 2018-07-19 | 2023-03-24 | 北京紫光展锐通信技术有限公司 | 候选pdcch和cce的监听个数的确定方法、终端及介质 |
WO2020022660A1 (ko) * | 2018-07-25 | 2020-01-30 | 엘지전자 주식회사 | 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치 |
CN110972515B (zh) | 2018-07-31 | 2022-06-14 | Lg电子株式会社 | 在无线通信系统中监测终端的控制信号的方法及其终端 |
CN112823486B (zh) * | 2018-08-08 | 2024-06-14 | 交互数字专利控股公司 | 下行链路通信中的可靠性增强 |
WO2020032732A1 (ko) * | 2018-08-09 | 2020-02-13 | 엘지전자 주식회사 | 협대역 사물 인터넷 시스템을 지원하는 무선 통신 시스템에서 미리 설정된 상향링크 자원을 이용하여 상향링크 데이터를 전송하는 방법 및 그 장치 |
CN110830216B (zh) * | 2018-08-10 | 2021-03-30 | 华为技术有限公司 | 确定载波聚合下监控pdcch候选数目的方法和装置 |
JP2020031353A (ja) * | 2018-08-23 | 2020-02-27 | シャープ株式会社 | 端末装置、基地局装置、および、通信方法 |
CN110876179B (zh) * | 2018-08-31 | 2021-06-15 | 华为技术有限公司 | 一种监测方法及设备 |
WO2020055075A1 (ko) * | 2018-09-10 | 2020-03-19 | 한국전자통신연구원 | 비면허 대역에서 신호의 송수신을 위한 방법 및 장치 |
GB201820174D0 (en) * | 2018-12-11 | 2019-01-23 | Nordic Semiconductor Asa | Radio communication |
CN114026939A (zh) | 2019-06-21 | 2022-02-08 | 夏普株式会社 | 用于下行链路控制信息(dci)格式的dci的用户设备、基站和方法 |
CN112242890B (zh) * | 2019-07-19 | 2022-04-26 | 大唐移动通信设备有限公司 | 下行控制信道的检测方法、传输方法及设备 |
WO2021014508A1 (ja) * | 2019-07-19 | 2021-01-28 | 株式会社Nttドコモ | 端末及び無線通信方法 |
EP4011022A1 (en) * | 2019-08-08 | 2022-06-15 | Telefonaktiebolaget LM Ericsson (publ) | Maximum number of non-overlapping cce and blind decode per-monitoring span |
WO2021034086A1 (ko) * | 2019-08-16 | 2021-02-25 | 엘지전자 주식회사 | 무선 통신 시스템에서 하향링크 제어 정보를 송수신 하는 방법 및 이에 대한 장치 |
EP4037398A4 (en) * | 2019-09-27 | 2023-06-28 | Ntt Docomo, Inc. | Terminal and wireless communication method |
JP7390480B2 (ja) * | 2019-10-15 | 2023-12-01 | アップル インコーポレイテッド | キャリアアグリゲーションのための接続された不連続受信 |
KR20220121809A (ko) * | 2019-12-31 | 2022-09-01 | 퀄컴 인코포레이티드 | 프라이머리 셀 크로스-캐리어 스케줄링 관리 |
CN113225751B (zh) * | 2020-02-06 | 2023-05-05 | 维沃移动通信有限公司 | 搜索空间的监听方法和设备 |
CN113316166A (zh) * | 2020-02-26 | 2021-08-27 | 北京三星通信技术研究有限公司 | Pdcch候选的盲检方法、用户设备、电子设备及存储介质 |
US11991716B2 (en) * | 2020-04-08 | 2024-05-21 | Apple Inc. | Methods and apparatus for DL control channel monitoring and candidates dropping in wireless communication |
CA3183448A1 (en) * | 2020-05-14 | 2021-06-10 | Zte Corporation | Resource determination in wireless communications |
US20220046673A1 (en) * | 2020-08-06 | 2022-02-10 | Qualcomm Incorporated | Multi-carrier scheduling for downlink and uplink |
CN114070531B (zh) * | 2020-08-07 | 2023-08-22 | 展讯通信(上海)有限公司 | Pdcch重复的配置确定方法及相关产品 |
CN115226237A (zh) * | 2021-04-21 | 2022-10-21 | 大唐移动通信设备有限公司 | 完全重叠物理下行控制信道候选的传输方法、装置及介质 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101448309B1 (ko) | 2007-09-28 | 2014-10-08 | 엘지전자 주식회사 | 무선통신 시스템에서 하향링크 제어채널 모니터링 방법 |
KR101459147B1 (ko) * | 2008-02-04 | 2014-11-10 | 엘지전자 주식회사 | 무선통신 시스템에서 전송 파워 제어 명령 전송 방법 |
KR100913473B1 (ko) | 2008-03-20 | 2009-08-25 | 엘지전자 주식회사 | 무선 통신 시스템에서 pdcch 모니터링 방법 |
US8374109B2 (en) | 2008-03-27 | 2013-02-12 | Qualcomm Incorporated | Methods of sending control information for users sharing the same resource |
US8619684B2 (en) | 2008-05-01 | 2013-12-31 | Qualcomm Incorporated | Method and apparatus for downlink data arrival |
CN101605023B (zh) * | 2008-06-10 | 2013-01-16 | 中兴通讯股份有限公司 | 控制信道资源映射方法及装置 |
CN101605375B (zh) * | 2008-06-11 | 2011-02-09 | 大唐移动通信设备有限公司 | 一种下行控制信道上的信令发送方法 |
KR20100011879A (ko) * | 2008-07-25 | 2010-02-03 | 엘지전자 주식회사 | 무선 통신 시스템에서 데이터 수신 방법 |
EP2308183A4 (en) * | 2008-07-30 | 2014-07-23 | Lg Electronics Inc | METHOD AND DEVICE FOR RECEIVING DATA IN A WIRELESS COMMUNICATION SYSTEM |
KR101441147B1 (ko) | 2008-08-12 | 2014-09-18 | 엘지전자 주식회사 | 무선 통신 시스템에서 sr 전송 방법 |
CN101527623B (zh) * | 2009-04-08 | 2014-06-11 | 中兴通讯股份有限公司 | 物理混合自动请求重传指示信道中信息的传输方法和系统 |
CN101610564B (zh) * | 2009-04-29 | 2015-04-01 | 中兴通讯股份有限公司 | 一种下行控制信息的发送和检测方法 |
US8432859B2 (en) * | 2009-06-22 | 2013-04-30 | Alcatel Lucent | Indicating dynamic allocation of component carriers in multi-component carrier systems |
US9306723B2 (en) * | 2010-02-20 | 2016-04-05 | Google Technology Holdings LLC | Multi-carrier control signaling in wireless communication system |
US8989026B2 (en) * | 2010-03-18 | 2015-03-24 | Qualcomm Incorporated | User-specific search space design for multi-carrier operation |
US8867519B2 (en) * | 2010-04-07 | 2014-10-21 | Lg Electronics Inc. | PDCCH monitoring method and apparatus in a carrier junction system |
-
2011
- 2011-04-07 US US13/640,278 patent/US8867519B2/en not_active Expired - Fee Related
- 2011-04-07 CN CN201510511675.7A patent/CN105162565A/zh active Pending
- 2011-04-07 WO PCT/KR2011/002462 patent/WO2011126329A2/ko active Application Filing
- 2011-04-07 EP EP11766180.1A patent/EP2557710A4/en not_active Withdrawn
- 2011-04-07 CN CN201180028192.1A patent/CN102934383B/zh not_active Expired - Fee Related
- 2011-04-07 KR KR1020110032138A patent/KR101435849B1/ko not_active IP Right Cessation
-
2014
- 2014-09-11 US US14/484,035 patent/US9516670B2/en active Active
-
2016
- 2016-12-05 US US15/369,338 patent/US9918335B2/en active Active
Non-Patent Citations (2)
Title |
---|
None |
See also references of EP2557710A4 |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104081710B (zh) * | 2012-01-30 | 2017-12-19 | 诺基亚通信公司 | 用于控制信道的搜索空间布置 |
US9054843B2 (en) | 2012-01-30 | 2015-06-09 | Nokia Solutions And Networks Oy | Search space arrangement for control channel |
WO2013113712A1 (en) * | 2012-01-30 | 2013-08-08 | Nokia Siemens Networks Oy | Search space arrangement for control channel |
RU2594982C2 (ru) * | 2012-01-30 | 2016-08-20 | Нокиа Солюшнс энд Нетуоркс Ой | Конфигурация пространства поиска для канала управления |
US9204439B2 (en) | 2012-01-30 | 2015-12-01 | Nokia Solutions And Networks Oy | Search space arrangement for control channel |
EP2884710A4 (en) * | 2012-09-29 | 2015-12-16 | Zte Corp | METHOD AND DEVICE FOR TRANSMITTING DOWNLINK CONTROL INFORMATION |
CN103716274A (zh) * | 2012-09-29 | 2014-04-09 | 中兴通讯股份有限公司 | 下行控制信息的传输方法和装置 |
US9930649B2 (en) | 2012-09-29 | 2018-03-27 | Zte Corporation | Method and apparatus for transmitting downlink control information |
US9667399B2 (en) * | 2012-11-06 | 2017-05-30 | Lg Electronics Inc. | Method of detecting control information in wireless communication system, and apparatus for same |
US20150280882A1 (en) * | 2012-11-06 | 2015-10-01 | Lg Electronics Inc. | Method of detecting control information in wireless communication system, and apparatus for same |
CN112996123A (zh) * | 2013-01-03 | 2021-06-18 | 高通股份有限公司 | 避免使dci信息模糊的enb pdcch实现 |
JP2016506203A (ja) * | 2013-01-03 | 2016-02-25 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | あいまいなDCI情報を回避するためのeNBPDCCH実装 |
US9320032B2 (en) | 2013-01-03 | 2016-04-19 | Qualcomm Incorporated | ENB PDCCH implementation to avoid ambiguous DCI information |
CN104995862A (zh) * | 2013-01-03 | 2015-10-21 | 高通股份有限公司 | 避免使dci信息模糊的enb pdcch 实现 |
US9930657B2 (en) | 2013-01-03 | 2018-03-27 | Qualcomm Incorporated | ENB PDCCH implementation to avoid ambiguous DCI information |
US9635659B2 (en) | 2013-01-03 | 2017-04-25 | Qualcomm Incorporated | ENB PDCCH implementation to avoid ambiguous DCI information |
EP3280088A1 (en) * | 2013-01-03 | 2018-02-07 | QUALCOMM Incorporated | Enb pdcch implementation to avoid ambiguous dci information |
WO2014107609A3 (en) * | 2013-01-03 | 2014-10-09 | Qualcomm Incorporated | Enb pdcch implementation to avoid ambiguous dci information |
WO2014107611A3 (en) * | 2013-01-03 | 2014-08-28 | Qualcomm Incorporated | Enb pdcch implementation to avoid ambiguous dci information |
EP3276872A1 (en) * | 2013-01-03 | 2018-01-31 | QUALCOMM Incorporated | Enb pdcch implementation to avoid ambiguous dci information |
EP3276871A1 (en) * | 2013-01-03 | 2018-01-31 | QUALCOMM Incorporated | Enb pdcch implementation to avoid ambiguous dci information |
US9674886B2 (en) | 2013-01-07 | 2017-06-06 | Lg Electronics Inc. | Method and apparatus for transmitting signals to a plurality of transmission points |
US9681482B2 (en) | 2013-01-07 | 2017-06-13 | Lg Electronics Inc. | Method and apparatus for transmitting/receiving signals with a value indicated by a TPC command being accumulated for all parameter sets |
EP2942888A4 (en) * | 2013-01-07 | 2016-09-21 | Lg Electronics Inc | METHOD AND DEVICE FOR SENDING / RECEIVING SIGNALS |
US10201005B2 (en) * | 2013-03-13 | 2019-02-05 | Lg Electronics Inc. | Method for transmitting and receiving control channel and device therefor |
US20160014802A1 (en) * | 2013-03-13 | 2016-01-14 | Lg Electronics Inc. | Method for transmitting and receiving control channel and device therefor |
CN109952804A (zh) * | 2017-04-27 | 2019-06-28 | 联发科技股份有限公司 | 有效的下行链路控制信息传输 |
CN109952804B (zh) * | 2017-04-27 | 2023-05-30 | 联发科技股份有限公司 | 用户设备的无线通信方法及用户设备、计算机可读介质 |
US11804937B2 (en) | 2018-04-16 | 2023-10-31 | Telefonaktiebolaget Lm Ericsson (Publ) | Physical uplink control channel (PUCCH) resource selection before radio resource control (RRC) configuration |
CN111148260A (zh) * | 2018-11-02 | 2020-05-12 | 华为技术有限公司 | 发送和接收数据的方法以及通信装置 |
US11956794B2 (en) | 2018-11-02 | 2024-04-09 | Huawei Technologies Co., Ltd. | Data sending and receiving method and communication apparatus |
WO2021206446A1 (ko) * | 2020-04-07 | 2021-10-14 | 엘지전자 주식회사 | 무선 통신 시스템에서 블라인드 디코딩 기반 하향링크 채널 송수신 방법 및 장치 |
Also Published As
Publication number | Publication date |
---|---|
WO2011126329A3 (ko) | 2012-01-26 |
EP2557710A4 (en) | 2017-07-26 |
US20150043496A1 (en) | 2015-02-12 |
CN102934383A (zh) | 2013-02-13 |
US8867519B2 (en) | 2014-10-21 |
EP2557710A2 (en) | 2013-02-13 |
US20130058240A1 (en) | 2013-03-07 |
US9918335B2 (en) | 2018-03-13 |
KR20110112789A (ko) | 2011-10-13 |
CN102934383B (zh) | 2015-09-16 |
KR101435849B1 (ko) | 2014-08-29 |
CN105162565A (zh) | 2015-12-16 |
US20170086220A1 (en) | 2017-03-23 |
US9516670B2 (en) | 2016-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011126329A2 (ko) | 캐리어 접합 시스템에서 pdcch 모니터링 방법 및 장치 | |
WO2011122852A2 (ko) | 무선통신 시스템에서 제어채널을 모니터링하기 위한 방법 및 장치 | |
WO2018174692A1 (ko) | 무선 통신시스템의 제어 채널의 전송 및 수신방법, 장치 및 시스템 | |
WO2018203722A1 (ko) | 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치 | |
WO2016114562A1 (ko) | 무선 통신 시스템에서 단말의 하향링크 제어 정보 수신 방법 및 장치 | |
WO2018159999A1 (ko) | 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치 | |
WO2018030793A1 (ko) | 협대역 사물인터넷을 지원하는 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치 | |
WO2019139444A1 (ko) | 무선 통신시스템의 자원 할당 방법, 장치 및 시스템 | |
WO2018084672A1 (ko) | 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치 | |
WO2020197215A9 (en) | Method and apparatus for control channel reception in wireless communication systems | |
WO2010068069A2 (ko) | 다중 반송파 시스템에서 제어채널 검출방법 | |
WO2013180521A1 (ko) | 제어 신호 송수신 방법 및 이를 위한 장치 | |
WO2016089185A1 (ko) | 기기 간 사이드링크를 이용하여 단말이 신호를 송수신하는 방법 및 장치 | |
WO2014069944A1 (ko) | 무선 통신 시스템에서 데이터를 송/수신하는 방법 및 장치 | |
WO2018169326A1 (ko) | 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치 | |
WO2018231036A1 (ko) | 무선 통신 시스템에서 데이터 채널 및 제어 채널의 송수신 방법, 장치, 및 시스템 | |
WO2018151564A1 (ko) | 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치 | |
WO2020222624A1 (ko) | 무선 통신 시스템에서 하향링크 데이터 수신 및 harq-ack 전송 방법, 장치 및 시스템 | |
WO2018203627A1 (ko) | 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2012086883A1 (ko) | 캐리어 접합 시스템에서, 컴포넌트 캐리어 할당 방법 및 장치 | |
WO2021118192A1 (ko) | 무선통신시스템에서 통신을 수행하는 방법 및 장치 | |
WO2019194545A1 (ko) | 무선 통신 시스템에서 임의 접속 프리앰블을 송수신하기 위한 방법 및 이를 위한 장치 | |
WO2016105129A1 (ko) | 비면허 대역을 지원하는 무선 접속 시스템에서 축약된 하향링크 물리 공유 채널을 송수신하는 방법 및 이를 지원하는 장치 | |
WO2016053057A1 (ko) | 무선 통신 시스템에서 소프트 버퍼를 관리하는 방법 및 이를 수행하는 장치 | |
WO2013043022A2 (ko) | 제어 정보를 전송하는 방법 및 이를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180028192.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11766180 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3047/KOLNP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011766180 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13640278 Country of ref document: US |