WO2011118994A2 - 간암 진단 마커 및 치료제로서의 엔엘케이 - Google Patents
간암 진단 마커 및 치료제로서의 엔엘케이 Download PDFInfo
- Publication number
- WO2011118994A2 WO2011118994A2 PCT/KR2011/002031 KR2011002031W WO2011118994A2 WO 2011118994 A2 WO2011118994 A2 WO 2011118994A2 KR 2011002031 W KR2011002031 W KR 2011002031W WO 2011118994 A2 WO2011118994 A2 WO 2011118994A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nlk
- liver cancer
- gene
- expression
- protein
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57438—Specifically defined cancers of liver, pancreas or kidney
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1137—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/11—Protein-serine/threonine kinases (2.7.11)
- C12Y207/11024—Mitogen-activated protein kinase (2.7.11.24), i.e. MAPK or MAPK2 or c-Jun N-terminal kinase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/178—Oligonucleotides characterized by their use miRNA, siRNA or ncRNA
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/91—Transferases (2.)
- G01N2333/912—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
Definitions
- the present invention relates to a novel liver cancer diagnostic marker, a diagnostic kit, a microarray, a liver cancer diagnostic composition, and a diagnostic method for liver cancer using the liver cancer diagnostic marker and a composition for preventing or treating liver cancer, which can effectively diagnose and predict liver cancer.
- HCC Hepatocellular carcinoma
- liver cancer tissues Park et al., Cancer Res. 59: 307-310, 1999; Bjersing et al., J. Intern. Med . 234). : 339-340,1993; Tsopanomichalou et al., Liver 19: 305-311, 1999; Kusano et al., Hepatology 29: 1858-1862, 1999; Keck et al . , Cancer Genet. Cytogenet . 111: 37-44, 1999).
- liver cancer is not caused by some specific genes, but it can be seen that it is due to the complex interaction of many genes involved in various signaling and regulatory mechanisms in the cell as cancer progresses. Therefore, research on the mechanism of liver cancer formation with a focus on some specific genes is only a limited study. Therefore, it is necessary to analyze new genes related to liver cancer by comparing and analyzing the gene expression levels between normal liver cells and liver cancer cell lines. There is.
- the present inventors confirmed that the expression of NLK (Nemo-like kinase) in HCC tissues was differentiated from normal tissues. Furthermore, when the expression of NLK was suppressed, liver cancer was suppressed by inhibiting the proliferation of liver cancer cells. The present invention has been completed by confirming that the onset of can be prevented or treated.
- NLK Nemo-like kinase
- an object of the present invention is to provide a composition for diagnosing liver cancer using the NLK gene as a marker for diagnosing liver cancer.
- Another object of the present invention is to provide a composition for the prevention or treatment of liver cancer comprising an oligonucleotide that inhibits the expression of NLK (nemo like kinase).
- NLK nemo like kinase
- Another object of the present invention is to provide a method for predicting or diagnosing the onset of liver cancer, including measuring the expression level of a liver cancer marker, NLK (nemo like kinase).
- NLK nemo like kinase
- Another object of the present invention is to provide a method for screening a substance for preventing or treating liver cancer.
- Another object of the present invention is to provide a kit for diagnosing liver cancer and a microarray for diagnosing liver cancer.
- the present invention provides a composition for diagnosing liver cancer comprising a substance for measuring mRNA or protein level of the NLK (nemo like kinase) gene.
- the substance may be a primer, probe or antibody that specifically binds to a gene or protein of NLK.
- the liver cancer may be hepatocellular carcinoma (HCC).
- HCC hepatocellular carcinoma
- the NLK (nemo like kinase) gene may be composed of the nucleotide sequence represented by SEQ ID NO: 1.
- the present invention also provides a composition for the prevention or treatment of liver cancer comprising an oligonucleotide that inhibits the expression of NLK (nemo like kinase).
- NLK nemo like kinase
- the oligonucleotide may be an antisense oligonucleotide, siRNA or shRNA for a gene encoding a nelk like kinase (NLK).
- NLK nelk like kinase
- the siRNA may have a sequence of SEQ ID NO: 2 or SEQ ID NO: 3.
- the oligonucleotides that inhibit the expression of NLK inhibits the expression of cyclin D1, CDK2 or ⁇ -catenin, and inhibits the cell cycle progression of the G1 / S phase It may be through having anticancer activity.
- the measurement is reverse transcriptase-polymerase chain reaction, real time-polymerase chain reaction, Western blot, Northern blot, ELISA (enzyme linked) It may be selected from the group consisting of immunosorbent assay, radioimmunoassay (RIA), radioimmunodiffusion and immunoprecipitation assay.
- RIA radioimmunoassay
- NLK nemo like kinase
- step (c) determining the sample as a material for preventing or treating liver cancer when the measurement result of step (b) decreases the expression level of the NLK gene, the amount of the NLK protein, or the activity of the NLK protein.
- the measurement is reverse transcriptase-polymerase chain reaction, real time-polymerase chain reaction, Western blot, Northern blot, ELISA (enzyme linked) It may be selected from the group consisting of immunosorbent assay, radioimmunoassay (RIA), radioimmunodiffusion and immunoprecipitation assay.
- RIA radioimmunoassay
- the present invention also provides a kit for diagnosing liver cancer comprising the composition for diagnosing liver cancer according to the present invention.
- the kit may be a PCR kit, DNA chip kit or protein chip kit.
- the present invention provides a microarray for diagnosing liver cancer comprising a polynucleotide of NLK (nemo like kinase) represented by SEQ ID NO: 1.
- NLK nemo like kinase
- NLK a liver cancer marker gene according to the present invention
- the expression of cyclin D1 and CDK2 is reduced in liver cancer cells, and G1 Since the cell cycle progression of the / S phase is inhibited and the proliferation of cells is inhibited, the NLK gene discovered in the present invention can be usefully used as a target for the diagnosis and treatment of liver cancer. .
- Figure 1 shows the comparison of mRNA expression of NLK by RT-PCR for human hepatocellular carcinoma (HCC) and normal liver tissue samples.
- Figure 2 shows the results of Western blot analysis of the expression of NLK protein in human hepatocellular carcinoma (HCC) and normal liver tissue samples.
- FIG. 3 is a photograph showing analysis of normal liver tissues (A and C) and HCC samples (B and D) through immunohistochemical staining in a tissue microarray.
- Figure 4 shows the analysis of the expression level of NLK for liver cancer cell lines through RT-PCR (picture above) and Western blot (picture below).
- FIG. 5 shows silencing NLK using NLK siRNA in Hep3B cells, followed by RT-PCR and Western blot analysis.
- the graph shows the growth rate of cells through MTS analysis.
- 6 and 7 show the results of comparing NLK expression and growth rate to the control group treated with scrambled siRNA and reagents after treatment with NLK siRNA cells for SNU-423 and SNU-368 cell lines.
- Figure 8 shows the results of analyzing the cell cycle through the PI staining method after inhibiting the expression of NLK using NLK siRNA in Hep3B cells.
- Figure 9 shows that after inhibiting the expression of NLK using NLK siRNA in Hep3B cells, the degree of apoptosis was analyzed by performing Annexin V staining.
- Figure 10 shows the results of analyzing the expression of cell cycle regulators by Western blot when the expression of NLK in the cell inhibited by using NLK siRNA.
- the inventors of the present invention while studying a new marker for early and rapid diagnosis of liver cancer, discovered a gene of NLK whose expression is specifically increased compared to normal in liver cancer cells or liver cancer tissues, and this marker for diagnosing liver cancer It was confirmed that it can be used as.
- Nemo-like kinase is a member of extracellular signal-regulated kinase / microtubule-associated protein kinases (Erk / MAPKs) and cyclin-directed kinases (Cdks), and is a MAPKK (MAPK kinase kinase) superfamily Transforming growth-factor-b-activated kinase 1 (TAK1) is known as a potential activator of NLK in the Wnt signaling pathway (Meneghini et al., 1999; Shin et al., 1999).
- Nemo has been known to have homology with vertebrate NLK and has been known to function as a modulator of Wnt signaling, particularly during cell division and fly wing development of chiropods (Choi). and Benzer, 1994; Kaletta et al., 1997; Verheyen et al., 2001).
- NLK / Nmo / LIT-1 functions as a very important regulator in cellular processes of cell growth, patterning and death.
- the NLK discovered in the present invention is known as a tumor suppressor in the wnt / ⁇ -catenin signaling pathway of colon cancer, it is known so far about the signaling system located below the NLK pathway in other types of cancer. none.
- the expression of NLK in normal cells and tissues of human hepatocellular carcinoma and liver cancer tissues was confirmed by RT-PCR and Western blot, compared to the normal tissues of NLK Expression was increased by at least twofold (see FIGS. 1 and 2), and these results were also the same through immunohistochemical staining (see FIG. 3).
- overexpression of NLK was found to be increased not only in human hepatocellular carcinoma but also in other types of hepatocellular carcinoma cells (see FIG. 4).
- the present inventors were able to determine whether liver cancer can be diagnosed by measuring the expression level of the marker gene NLK according to the present invention or the amount of protein expressed from the gene.
- the present invention can provide a composition for diagnosing liver cancer comprising a substance for measuring mRNA or protein level of the NLK gene.
- the expression level of the gene preferably means the mRNA level, that is, the amount of mRNA expressed in the gene, and the material capable of measuring the level may include a primer or probe specific for the gene.
- the primer or probe specific for the NLK gene may be a primer or probe capable of specifically amplifying the entirety of the NLK gene or a specific region of the gene, and the primer or probe may be obtained by a method known in the art. You can design.
- the NLK gene may have a nucleotide sequence represented by SEQ ID NO: 1, and a primer capable of amplifying the NLK gene may be a primer pair of SEQ ID NOs: 4 and 5.
- primer in the present invention refers to a single-strand that can serve as an initiation point for template-directed DNA synthesis under suitable conditions and in suitable buffers (ie four different nucleoside triphosphates and polymerases). Oligonucleotides. Suitable lengths of primers can vary depending on various factors, such as temperature and the use of the primer. In addition, the sequence of the primer need not have a sequence that is completely complementary to some sequences of the template, it is sufficient to have sufficient complementarity within the range that can hybridize with the template to perform the primer-specific action.
- the primer in the present invention does not need to have a sequence that is perfectly complementary to the nucleotide sequence of the gene that is a template, and it is sufficient to have sufficient complementarity within a range capable of hybridizing to the gene sequence and acting as a primer.
- the primer according to the present invention can be used for gene amplification reactions.
- the amplification reaction refers to an amplification reaction of a nucleic acid molecule, and the amplification reactions of such genes are well known in the art, for example, polymerase chain reaction (PCR), reverse transcriptase polymerase chain reaction (RT-PCR), and Liga.
- PCR polymerase chain reaction
- RT-PCR reverse transcriptase polymerase chain reaction
- Liga Liga
- Aze chain reaction LCR
- TMA electron mediated amplification
- NASBA nucleic acid sequence substrate amplification
- the term probra means a linear oligomer of natural or modified monomers or linkages, and includes deoxyribonucleotides and ribonucleotides and can specifically hybridize to a target nucleotide sequence, and exists naturally. Or artificially synthesized.
- the probe according to the invention may be single chain, preferably oligodioxyribonucleotides.
- Probes of the invention can include natural dNMPs (ie, dAMP, dGMP, dCMP and dTMP), nucleotide analogues or derivatives.
- the probes of the present invention may also comprise ribonucleotides.
- the probes of the present invention can be used in the backbone modified nucleotides such as peptide nucleic acid (PNA) (M. Egholm et al., Nature, 365: 566-568 (1993)), phosphorothioate DNA, phosphorodithioate DNA, phosphoramidate DNA, amide-linked DNA, MMI-linked DNA, 2'-0-methyl RNA, alpha-DNA and methylphosphonate DNA, sugar modified nucleotides such as 2'-0-methyl RNA, 2'-fluoro RNA, 2'-amino RNA, 2'-0-alkyl DNA, 2'-0-allyl DNA, 2'-0-alkynyl DNA, hexose DNA, pyranosyl RNA and anhydrohex Tall DNA, and nucleotides with base modifications such as C-5 substituted pyrimidines (substituents are fluoro-, bromo-, chloro-, iodo--
- antibodies such as polyclonal antibodies, monoclonal antibodies and recombinant antibodies that can specifically bind to proteins expressed from the NLK marker gene of the present invention. It may include.
- the "antibody” may be prepared by a person skilled in the art using a known technique, for the production of the antibody, for example, in the case of polyclonal antibodies, the antigen of the protein is injected into the animal and blood collected from the animal Can be produced by methods well known in the art for obtaining serum comprising antibodies, such polyclonal antibodies from any animal species host such as goat, rabbit, sheep, monkey, horse, pig, cow, dog, etc. It can be manufactured.
- Monoclonal antibodies can be prepared using hybridoma methods well known in the art (Kohler et al., European Jounral of Immunology , 6, 511-519, 1976) or phage antibody libraries ( Clackson et al, Nature , 352, 624-628, 1991, Marks et al, J. Mol. Biol ., 222: 58, 1-597, 1991).
- the antibodies according to the invention may comprise functional fragments of antibody molecules as well as complete forms having two full length light chains and two full length heavy chains.
- a functional fragment of an antibody molecule refers to a fragment having at least antigen binding function, and includes Fab, F (ab '), F (ab') 2 and Fv.
- the present invention provides a liver cancer diagnostic kit comprising the liver cancer diagnostic marker or the liver cancer diagnostic composition according to the present invention.
- the kit for diagnosing liver cancer of the present invention may include a primer, a probe, or an antibody capable of measuring the expression level of the marker gene NLK gene or the amount of the protein expressed from the gene, and the definition thereof is as described above. .
- the kit of the present invention may optionally contain reagents necessary for PCR amplification, such as buffers, DNA polymerases (eg, Thermus aquaticus (Taq), Thermus thermophilus (Tth) ), Thermus filiformis, Thermis flavus, Thermococcus literalis or thermally stable DNA polymerase obtained from Pyrococcus furiosus (Pfu)), DNA polymerase cofactors and dNTPs, and the liver cancer diagnostic kit of the present invention
- the kit of the present invention may optionally comprise a substrate of a secondary antibody and a label.
- the kit according to the present invention may be manufactured in a number of separate packaging or compartments containing the reagent components described above, and the kit of the present invention may be a diagnostic kit including essential elements necessary for carrying out a DNA chip.
- the DNA chip kit may include a substrate to which a cDNA corresponding to a gene or a fragment thereof is attached as a probe, and a reagent, an agent, an enzyme, or the like for preparing a fluorescent probe.
- the substrate may comprise cDNA corresponding to the quantitative control gene or fragment thereof.
- the present invention also provides a liver cancer diagnostic microarray comprising the liver cancer diagnostic marker or the liver cancer diagnostic composition.
- a primer, probe or antibody capable of measuring the expression level of the marker protein or gene encoding the same is used as a hybridizable array element and immobilized on a substrate.
- Preferred substrates may include suitable rigid or semi-rigid supports, such as membranes, filters, chips, slides, wafers, fibers, magnetic beads or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. have.
- the hybridization array element is arranged and immobilized on the substrate, and such immobilization can be performed by a chemical bonding method or a covalent binding method such as UV.
- the hybridization array element can be bonded to a glass surface modified to include an epoxy compound or an aldehyde group, and can also be bonded by UV at the polylysine coating surface.
- the hybridization array element can be coupled to the substrate via a linker (eg, ethylene glycol oligomer and diamine).
- the sample to be applied to the microarray of the present invention is a nucleic acid
- it can be hybridized with the array element on the microarray.
- Hybridization conditions may vary, and detection and analysis of the degree of hybridization may vary depending on the labeling substance.
- the present invention may provide a method for predicting and diagnosing liver cancer through a method of measuring the expression level of the NLK marker gene or the expression protein level according to the present invention, preferably, the method comprises: (a) liver cancer Measuring the expression level of the NLK gene or the protein encoded by the gene from a biological sample of the suspected patient; And (b) comparing the expression level of the gene or the level of the protein encoded by the gene with the expression level or protein level of the gene in the normal control sample. Can be.
- the method of measuring the expression level of the gene or the amount of protein in the above may be carried out including a known process for separating mRNA or protein from a biological sample using a known technique.
- the "biological sample” refers to a sample collected from a living body, which is different from a normal control group, in which the expression level or protein level of the gene according to the occurrence or progression of liver cancer is used. But not limited to, tissue, cells, blood, serum, plasma, saliva, urine, and the like.
- the expression level of the gene is preferably to measure the level of mRNA, the method for measuring the level of mRNA reverse transcription polymerase chain reaction (RT-PCR), real-time reverse transcription polymerase chain reaction, RNase protection assay, Northern Blots and DNA chips, etc., but is not limited thereto.
- the protein level can be measured using an antibody, in which case the marker protein in the biological sample and the antibody specific thereto form a conjugate, i.e., an antigen-antibody complex, wherein the amount of antigen-antibody complex formed is a detection label. It can be measured quantitatively through the magnitude of the signal of the (detection label).
- a detection label may be selected from the group consisting of enzymes, fluorescent materials, ligands, luminescent materials, microparticles, redox molecules and radioisotopes, but is not limited thereto.
- Analytical methods for measuring protein levels include, but are not limited to, Western blot, ELISA, radioimmunoassay, radioimmunoassay, oukteroni immunodiffusion, rocket immunoelectrophoresis, tissue immunostaining, immunoprecipitation assay, Complement fixation assays, FACS, protein chips, and the like.
- the present invention can determine the amount of mRNA expression or protein of the marker gene of the control group and the amount of mRNA expression or protein of the marker gene in liver cancer patients or suspected liver cancer patients through the above detection methods, the expression amount By comparing the degree of with the control group, it is possible to predict and diagnose the incidence, progression or prognosis of liver cancer.
- the method for predicting or diagnosing the onset of liver cancer may be determined that liver cancer is induced when the expression level of the liver cancer marker gene NLK gene or the amount of the expressed protein thereof is increased compared to a normal control sample. Can be.
- the present invention further comprises the steps of: (a) contacting a sample to be analyzed with a liver cancer cell or tissue comprising a marker gene for diagnosis of liver cancer or a protein thereof expressed according to the present invention; (b) measuring the amount of expression of the selected gene or the amount or activity of the expressed protein thereof; And (c) determining that the sample is a material for preventing or treating liver cancer when the amount of expression of the selected gene or the amount or activity of the expressed protein is reduced as a result of the measurement in step (b).
- a method for screening a material for the prophylaxis or treatment of can be provided.
- a sample to be analyzed may be contacted with liver cancer cells containing the gene or protein.
- the sample means an unknown substance used in screening to test whether the gene expression level, protein amount or protein activity is affected.
- the sample may include, but is not limited to, chemicals, oligonucleotides, antisense-RNAs, small interference RNAs (shRNAs), shRNAs or natural product extracts.
- shRNAs small interference RNAs
- the amount of expression of the gene, the amount of protein or the activity of the protein can be measured in the cells treated with the sample, and the measurement results indicate that the amount of expression of the gene, the amount of protein or the activity of the protein is increased or decreased. If so, the sample may be determined as a substance capable of treating or preventing liver cancer.
- the method of measuring the expression amount of the gene, the amount of the protein or the activity of the protein in the above may be carried out through a variety of methods known in the art, for example, but not limited to reverse transcriptase polymerase chain reaction (reverse transcriptase-polymerase chain reaction, real time-polymerase chain reaction, western blot, northern blot, enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), radioimmunodiffusion (radioimmunodiffusion) And immunoprecipitation assays.
- reverse transcriptase polymerase chain reaction reverse transcriptase-polymerase chain reaction, real time-polymerase chain reaction, western blot, northern blot, enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), radioimmunodiffusion (radioimmunodiffusion)
- immunoprecipitation assays for example, but not limited to reverse transcriptase polymerase
- the present inventors found that in addition to the fact that NLK is overexpressed in liver cancer tissues compared to normal tissues, the NLK is associated with the expression of cyclins D1 and CDK2 that regulate the cell cycle. It was first discovered that it inhibits the expression of cyclin D1 and CDK2 that regulates.
- the present invention can also provide a method of inhibiting the expression of the NLK gene, simultaneously inhibiting the expression of cyclin D1 and CDK2, and regulating the cell cycle of mitosis.
- the present invention can provide a composition for preventing or treating liver cancer containing a substance that simultaneously inhibits the expression of cyclin D1 and CDK2.
- the cell cycle is performed in a certain order by a mechanism defined in the cell.
- the regulators that restore the cell cycle abnormality when it causes are cyclin and Cdk.
- Cdk4, 6, 8, etc. are activated in early stage of G1 depending on the type of cells, Cdk2 in late stage of G1 and early stage of S1, and Cdk1 (Cdc2) for progression from G2 to M. It is known to play an important role.
- Cdk4, 6, and 8 are activated by binding to cyclin D, and Cdk2 binds to cyclins A and E.
- Cdk1 binds to cyclins B and A, in addition to cyclins G, F and the like.
- the specific Cyclin-Cdk complex is activated and the proteins that are specifically phosphorylated in Cdk are responsible for the progression of the cell cycle.
- Cdk acts as an essential factor for cyclin activity.
- Activated Cdk-cyclin is divided into cyclin regulatory unit and Cdk active unit, and cyclin Cdk regulation can be seen in two ways. Cyclin and Cdk bind to induce protein structural changes, making the placement of ATP phosphate groups easier to transfer to substrate proteins.
- the position of the T loop which prevents the protein substrate from accessing the Cdk, is changed to facilitate access to the substrate.
- the activation of Cdk activity only at certain times of the cell cycle is due to the cell cycle-specific cyclin synthesis.
- cyclin D is most likely synthesized in the middle of G1, and is mainly induced by mitogens such as cell growth factors.
- Cyclin D has three types of subtypes (D1, 2, and 3), and the degree of expression varies depending on the type of cell. For example, inhibiting the synthesis of cyclin D stops the cell cycle G1, and overexpressing cyclin D shortens the G1 group and starts the cell cycle without mitogen.
- the present inventors observed that the expression of the cyclin D1 and CDK2 and the activity of related transcription factors change when the expression of NLK is suppressed using siRNA against NLK, the liver cancer diagnostic marker gene of the present invention.
- inhibition of expression of NLK by NLK siRNA was shown to inhibit the expression of cyclin D1 and CDK2 at the same time (see FIGS. 8 and 10).
- suppression of the expression of NLK is shown to reduce the phosphorylation of p130 also in the degree of phosphorylation of p130 and pRb (retinoblastoma protein) showing a direct relationship between NLK and CDK2, cyclin D1 expression
- CDK2 and cyclin D1 affects the phosphorylation of the pRb protein family. That is, inhibition of gene expression of NLK inhibited phosphorylation of pRB and p130 proteins, which resulted in a decrease in transcriptional activity of CDK2 and cyclin D1 (see FIG. 10).
- the present inventors suppressed the expression of cell cycle regulators cyclin D1 and CDK2 when inhibiting the expression of NLK in liver cancer cells, thereby inhibiting the progression of the G1 / S cell cycle, and ultimately liver cancer cells. Inhibiting the proliferation of was found to have anti-cancer activity.
- the present invention can provide a composition for preventing or treating liver cancer comprising an oligonucleotide that inhibits the expression of NLK as an active ingredient.
- RNAi an antisense oligonucleotide
- siRNA oligonucleotide
- shRNA for the gene of NLK represented by oligonucleotide SEQ ID NO: 1 to inhibit the expression of NLK, wherein the siRNA has a sequence of SEQ ID NO: 2 or SEQ ID NO: 3 Can be.
- the term "antisense oligonucleotide means a DNA or RNA or a derivative thereof containing a nucleic acid sequence complementary to a sequence of a particular mRNA, and binds to the complementary sequence in the mRNA to translate the mRNA into a protein.
- the antisense sequence of the present invention refers to a DNA or RNA sequence that is complementary to the mRNA of the gene and capable of binding to the mRNA, and translates the mRNA, translocation into the cytoplasm, and maturation. ) Or any other essential biological function.
- the antisense nucleic acid may be modified at the position of one or more bases, sugars or backbones to enhance efficacy (De Mesmaeker et al., Curr Opin Struct Biol ., 5, 3, 343-55, 1995 ).
- the nucleic acid backbone can be modified with phosphorothioate, phosphoroester, methyl phosphonate, short chain alkyl, cycloalkyl, short chain heteroatomic, heterocyclic intersaccharide linkages and the like.
- antisense nucleic acids may comprise one or more substituted sugar moieties. Antisense nucleic acids can include modified bases.
- Modified bases include hypoxanthine, 6-methyladenine, 5-methylpyrimidine (particularly 5-methylcytosine), 5-hydroxymethylcytosine (HMC), glycosyl HMC, gentobiosil HMC, 2-aminoadenine, 2 Thiouracil, 2-thiothymine, 5-bromouracil, 5-hydroxymethyluracil, 8-azaguanine, 7-deazaguanine, N6 (6-aminohexyl) adenine, 2,6-diaminopurine, etc. There is this.
- the antisense nucleic acids of the present invention may be chemically bound to one or more moieties or conjugates that enhance the activity and cellular adsorption of the antisense nucleic acids.
- Antisense oligonucleotides can be synthesized in vitro in conventional manner to be administered in vivo or to allow antisense oligonucleotides to be synthesized in vivo.
- One example of synthesizing antisense oligonucleotides in vitro is to use RNA polymerase I.
- One example of allowing antisense RNA to be synthesized in vivo is to allow the antisense RNA to be transcribed using a vector whose origin is in the opposite direction of the recognition site (MCS). Such antisense RNA is desirable to ensure that there is a translation stop codon in the sequence so that it is not translated into the peptide sequence.
- RNA interference refers to the RNA Interference, in Korean, it means the meaning of RNA interference.
- RNA interference is a specific gene suppression phenomenon that is well conserved among most organisms. It is thought to be a type of gene monitoring mechanism used by cells to defend against viral infections, to suppress transposons, or to remove abnormal mRNAs.
- gene suppression by small RNA is called RNA interference in a broad sense, and RNA interference in a narrow sense means mRNA degradation by siRNA.
- RNA interference may refer to a technique for inhibiting genes using siRNA.
- RNA refers to a nucleic acid molecule capable of mediating RNA interference or gene silencing (International Patent Nos. 00/44895, 01/36646, 99/32619, 01/29058, 99/07409, and 00 SiRNA is provided as an efficient gene knock-down method or gene therapy method because it can inhibit the expression of a target gene.
- the siRNA molecule of the present invention may have a structure in which a sense strand (a sequence corresponding to the mRNA sequence of the marker gene) and an antisense strand (a sequence complementary to the mRNA sequence) are positioned opposite to each other to form a double chain.
- the siRNA molecules of the present invention may have a single chain structure with self-complementary sense and antisense strands.
- siRNAs are not limited to completely paired double-stranded RNA moieties paired with RNA, but can be paired by mismatches (the corresponding bases are not complementary), bulges (there are no bases corresponding to one chain), and the like. Parts that do not achieve may be included.
- the siRNA terminal structure can be either blunt or cohesive, as long as the expression of the marker gene can be suppressed by the RNAi effect, and the adhesive terminal structure has a 3'-terminal protrusion structure and a 5'- end. Both terminal protruding structures are possible.
- the siRNA molecules of the present invention may have a form in which a short nucleotide sequence is inserted between self-complementary sense and antisense strands, in which case the siRNA molecule formed by expression of the nucleotide sequence is subjected to intramolecular hybridization.
- a hairpin structure is formed, and as a whole, a stem-and-loop structure is formed.
- This stem-and-loop structure is processed in vitro or in vivo to produce an active siRNA molecule capable of mediating RNAi.
- the method for preparing siRNA is to directly synthesize siRNA in vitro and then introduce it into the cell through a transformation process, and to siRNA expression vector or PCR-derived siRNA expression cassette prepared to express siRNA in the cell. There is a method of conversion or infection.
- compositions of the present invention comprising gene specific siRNAs may include agents that promote intracellular influx of siRNAs.
- Agents that promote the influx of siRNA into the cell generally can be used agents that promote the influx of nucleic acids. Examples of these include the use of liposomes or the lipophilic of one of many sterols, including cholesterol, cholate and deoxycholic acid. It can be combined with a carrier.
- poly-L-lysine spermine, polysilazane, polyethylenimine, polydihydroimidazolenium, polyallylamine Cationic polymers such as chitosan), succinylated PLL, succinylated PEI, polyglutamic acid, and polyaspartic acid.
- anionic polymers such as polyaspartic acid, polyacrylic acid, polymethacylic acid, dextran sulfate, heparin, and hyaluronic acid. It is available.
- the antibody when using an antibody specific for the protein as a substance that increases or decreases the expression and activity of the marker protein, the antibody is coupled (eg, covalently) with an existing therapeutic agent or indirectly through a linker or the like. Can be combined).
- Therapeutic agents that can be bound to the antibody include, but are not limited to, radionuclide such as 131I, 90Y, 105Rh, 47Sc, 67Cu, 212Bi, 211At, 67Ga, 125I, 186Re, 188Re, 177Lu, 153Sm, 123I, 111In, etc.
- Biological response variants or drugs such as methotrexate, adriamycin, and lympokine such as interferon; Toxins such as lysine, abrin, diphtheria and the like; Heterofunctional antibodies, ie antibodies that bind to other antibodies so that the complex binds to both cancer cells and agonist cells (eg, K cells such as T cells); and - May be associated with associated or non-complexed antibodies.
- composition for preventing or treating liver cancer according to the present invention may further include a pharmaceutically acceptable carrier as a pharmaceutical composition capable of treating liver cancer.
- pharmaceutically acceptable refers to a composition that is physiologically acceptable and that, when administered to a human, typically does not cause allergic or similar reactions, such as gastrointestinal disorders, dizziness, and the like.
- Pharmaceutically acceptable carriers include, for example, carriers for oral administration such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like, and parenteral administration such as water, suitable oils, saline, aqueous glucose and glycols. And the like may further comprise stabilizers and preservatives.
- Suitable stabilizers include antioxidants such as sodium hydrogen sulfite, sodium sulfite or ascorbic acid.
- Suitable preservatives include benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol.
- Other pharmaceutically acceptable carriers may be referred to those described in the following documents (Remington's Pharmaceutical Sciences, 19th ed., Mack Publishing Company, Easton, PA, 1995).
- the pharmaceutical composition according to the present invention may be formulated in a suitable form according to methods known in the art together with the pharmaceutically acceptable carrier as described above.
- the pharmaceutical composition of the present invention can be prepared in various parenteral or oral dosage forms according to known methods, and isotonic aqueous solution or suspension is preferable as an injectable formulation as a typical parenteral dosage form.
- injectable formulations may be prepared according to techniques known in the art using suitable dispersing or wetting agents and suspending agents.
- each component may be formulated for injection by dissolving in saline or buffer.
- formulations for oral administration include, but are not limited to, powders, granules, tablets, pills and capsules.
- compositions formulated in such a manner may be administered in an effective amount via a variety of routes including oral, transdermal, subcutaneous, intravenous or intramuscular, which is intended to introduce any substance into the patient in any suitable manner.
- routes including oral, transdermal, subcutaneous, intravenous or intramuscular, which is intended to introduce any substance into the patient in any suitable manner.
- Means and route of administration of the substance can be administered via any general route as long as it can reach the target tissue.
- the effective amount in the above means an amount exhibiting a prophylactic or therapeutic effect when administered to a patient.
- the dosage of the pharmaceutical composition according to the present invention may vary depending on various factors such as the disease type and severity of the patient, age, sex, weight, sensitivity to the drug, type of current treatment, administration method, target cell, and the like. It can be easily determined by experts.
- the pharmaceutical composition of the present invention may be administered in combination with a conventional therapeutic agent, may be administered sequentially or simultaneously with a conventional therapeutic agent, and may be single or multiple administrations.
- all of the above factors can be administered in an amount capable of obtaining the maximum effect in a minimum amount without side effects, more preferably 1 to 10000 ⁇ g / weight kg / day, even more preferably 10 to 1000 mg It may be administered repeatedly several times a day at an effective dose of / kg body weight / day.
- TMA tissue microarray
- liver cancer samples and five frozen liver cancer tissues around liver tissue were used from five liver cancer patients (Koreans). In all cases, the surrounding liver tissue showed chronic hepatitis and HBV (Hepatitis B virus) was detected. It was approved by the Institutional Review Board (IRB) of the Catholic University of Korea (CUMC09U029) and all patients received consent under the Declaration of Helsinki. Frozen tissue was ground to fine powder in liquid nitrogen and then preserved for molecular testing. In addition, for tissue microarray (TMA) design, a total of 50 liver samples (30 liver cancer tissues and 20 normal liver tissues) were fixed with formalin and paraffin-embedded liver samples were taken at the clergy Hospital Pathology. Obtained from Faculty. Tumor tissue and normal liver tissues were punched out and blocked with paraffin using a 0.6 mm diameter stylet.
- TMA tissue microarray
- Human liver cancer cell lines HepG2, Hep3B, PLC / PRF / 5, CHANG, SNU-182, SNU-387, SNU-423 and SNU-449 were purchased from American Type Culture Collection (ATCC; Manassas, VA) and human liver cancer cell lines SNU-354 and SNU-368 were purchased from Korean Cell Line Bank (KCLB, Korea).
- ATCC American Type Culture Collection
- KCLB Korean Cell Line Bank
- the cells were cultured in RPMI 1640 or DMEM medium supplemented with 10% FBS (Sigma, St Louis, MO) and 1 mg / ml penicillin / streptomycin (Invitrogen, Grand Island, NY) to be used in later experiments.
- RNA 6000 Nano chips at Agilent 2001 Bioanalyzer (Agilent Technologies, Germany). Then, 1 ug RNA was used for cDNA synthesis reaction using an RNA PCR Core Kit (Roche, Branchburg, NJ, USA). cDNA was used for each RT-PCR reaction. The RT-PCR program was run for 30 cycles at 95 ° C., 30 seconds at 53 ° C. and 30 at 72 ° C. for 35 cycles, and the sequences of the primers used were as described below.
- NLK forward (SEQ ID NO: 4): 5 ⁇ -GCT GGA TAT TGA GCC GGA TA-3 ’
- NLK reverse (SEQ ID NO: 5): 5 ⁇ -CAT CTT CAA TTC CCG GAA GA-3
- GAPDH forward (SEQ ID NO: 6): 5 ⁇ -ACC AGG TGG TCT CCT CTG AC-3
- GAPDH reverse (SEQ ID NO: 7): 5 ⁇ -TGC TGT AGC CAA ATT CGT TG-3
- the present inventors performed Western blot analysis in addition to RT-PCR to measure the expression level of NLK in liver cancer tissue, and for this measurement, cell extracts of cancer tissue and normal tissue (Whole-cell extracts) RIPA (radio-immunoprecipitation assay) lysis buffer (50 mmol / L Tris-HCl, pH 7.4, 150 mmol / L NaCl, 1% Nonidet P-40, 0.25% sodium deoxycholate, 1 mmol / L Phenylmethane-sulfonylfluoride containing protease inhibitors) , Roche, Mannheim, Germany) to prepare cell lysates.
- RIPA radio-immunoprecipitation assay
- Protein concentration was measured using a BCA protein analysis kit (Pierce, Rockford, IL), and the absorbance of the protein sample was measured using a VICTOR3 TM Multilabel Plate Reader (PerkinElmer) at 570 nm.
- RIPA lysates containing 10 ⁇ g or 15 ⁇ g protein are separated by SDS-PAGE and transferred onto a polyvinylidene difluoride membrane (Amersham HybondTM-P, Little Chalfont, Buckinghamshire, UK) , Were maintained in 5% skim milk (BD Biosciences) in TBS solution containing 0.05% Tween-20 (Usb Corporation, Cleveland, OH) overnight to protect against nonspecific binding.
- Membranes were incubated with each primary antibody and HRP-bound secondary antibody (Pierce). At this time, the ECL Plus Western Blotting Detection System (Amersham) was used to detect the specific specific immobilized antigen bound to the Horsadish Peroxidase (HRP) labeled antibody. The membrane was exposed to LAS 3000 (Fuji Photo Film Co. LTD, Japan) to determine the amount of protein expressed.
- the mRNA expression of NLK through RT-PCR was found to increase specifically at least two-fold in liver cancer tissues compared to normal liver tissue, Western blot analysis, the RT- The amount of NLK protein expressed identically to the PCR result was significantly increased in all liver cancer tissues compared to normal tissues.
- the present inventors have found that the NLK may be related to the onset of liver cancer, and in particular, that the NLK may be used as a marker for diagnosing liver cancer.
- Example 2 confirmed that NLK is overexpressed in liver cancer tissues, and this fact was more clearly investigated through immunohistochemical staining.
- NLK monoclonal antibody (1:50, Abcam, Cambridge, UK) on liver cancer tissue microarray samples.
- paraffin was stripped from the TMA slide and hydrated with ethanol to deionize the water. Endogenous peroxidase activity was blocked by incubating for 5 minutes in 3% hydrogen peroxide-methanol buffer.
- Antigens were recovered by boiling the slides in a steamer with sodium citrate buffer (pH 6.0) for 20 minutes. Thereafter, the monoclonal antibody of LNK was incubated at 4 ° C.
- NLK is located in the cytoplasm and nucleus in all liver cancer tissues.
- TMA scoring was performed independently by two pathologists. In the case of inconsistencies, the results were reevaluated using a multi-head microscope and graded into three categories for immunostaining intensity: 1+ (weak), 2+ (moderate) and 3+ (strong). However, if the number of immunostained cells was less than 10%, the case was considered negative for staining. Two tumor tissues each were combined and counted as one case.
- the present inventors investigated the expression level of NLK in other liver cancer cell lines in addition to HCC tissue, and obtained 10 different human liver cancer cell lines from HCC or hepatoblastomas, and performed RT-PCR and Western in the above examples. The expression of NLK was confirmed by blot analysis.
- NLK was overexpressed in other cancer cell lines as compared with normal cells.
- Hep3B cells which are liver cancer cell lines, showed the highest expression level.
- NLK siRNA and scrambled siRNA were purchased from Ambion Inc (Ambion, Austin, TX) and used.
- NLK sequences of interest were 5'-GGGUCUUCCGGGAAUUGAA (tt) -3 '(Sense) [SEQ ID NO: 2] and 5'-UUCAAUUCCCGGAAGACCC (tt) -3' (Antisense) [SEQ ID NO: 3], and the cells were Trypsin / After obtaining by EDTA, the plate was replated with 1.5 ⁇ 10 5 cells in a 60 mm dish and incubated overnight at 37 ° C. in a wet incubator with 5% CO 2 .
- the cells were transfected with only reagent and 50 nmol / L scrambled siRNA, 50 nmol / L or 100 nmol / L NLK-specific siRNA without any further treatment with Opti-MEM (Invitrogen).
- the transfection was performed according to instructions using 10 ⁇ l of Lipofectamine 2000 Reagent (Invitrogen), and after 6 hours of transfection, the medium was replaced with fresh RPMI 1640 medium supplemented with 10% FBS.
- NLK silencing was performed using NLK specific siRNAs, and the degree of inhibition of expression of NLK by NLK-targeted siRNA was evaluated by RT-PCR and Western blot analysis.
- NLK siRNA Inhibition of NLK expression by NLK siRNA, the effect on the growth of Hep3B cells was investigated by MTS analysis. To this end, the cells were dispensed in 24-well culture plates in RPMI 1640 medium containing 10% FBS at a density of 2 ⁇ 10 4 cells per well and maintained for 18 hours. Subsequently, after introducing NLK-specific siRNA into cells, the medium was replaced with RPMI 1640 medium containing 10% FBS after 4 hours, and the cells were cultured in a wet incubator at a temperature of 37 ° C. and 5% CO 2 . It was.
- the cells were incubated with 200 ⁇ l of CellTiter 96 AQueous One Solution Cell proliferation Assay solution (Promega, Madison, WI) for each predetermined time (0, 1, 2, 3 days), and after 3 hours, Absorbance was measured with a VICTOR3 TM Multilabel plate reader (PerkinElmer Inc, Boston, Mass.).
- the present inventors obtained another cell line to destroy the expression of NLK to analyze the growth of the cells to determine that NLK promotes tumor growth.
- NLK according to the present invention stimulates the growth of cells specifically for liver cancer, which indicates that NLK can be used as a marker for liver cancer.
- the present inventors confirmed that NLK is overexpressed in liver cancer cells, and therefore, in order to determine whether inhibiting the expression of NLK is effective in preventing or treating liver cancer, Hep3 cells which have silenced RNA of NLK are tested.
- the changes in cell cycle were investigated.
- Hep3B cells transfected with NLK siRNA were trypsinized at 48 hours to obtain cells, washed with cold PBS and fixed for 1 day with 70% alcohol at -20 ° C. After fixation, the cells were again washed twice with cold PBS and incubated for 30 minutes at 37 ° C. with PBS containing 10 mg / ml of RNase A.
- the cells were treated with RNase A, stained with 5 mg / ml propidium iodide (PI), and the cell cycles were measured using FACScan.
- the data obtained were analyzed by Cell-Quest FACS analysis software (BD Biosciences, Franklin Lakes, NJ).
- single cell populations from all cell populations in the FL2-A / FL2-W plot were analyzed by Cell-Quest FACS analysis software protocol to measure changes in cell cycle utilization by NLK siRNA transfection.
- the present inventors treated NLK siRNA on hep 3B cells, which are liver cancer cell lines, to inhibit the expression of NLK, resulting in an increase in the G1 level compared to the control group that did not inhibit the expression of NLK.
- the S phase induced a decrease, which may be one of the factors that reduce the proliferation rate of HCC cells by NLK RNA silencing.
- the NLK of the present invention it can be seen that it may play an important role in G1 / S metastasis during cell cycle progression in HCC cells, and furthermore, inhibition of expression of NLK induces a delay in G1 / S metastasis. It was found that the proliferation of liver cancer cells can be suppressed.
- the present inventors analyzed the degree of apoptosis of these cells when they inhibited the expression of NLK in Hep3 cells and SNU-423 cells. It was performed using. More specifically, the apoptosis assay treated NLK siRNA in Hep3 cells and SNU-423 cells to inhibit NLK expression, followed by trypsin treatment and washing twice with cold PBS and in 1 ⁇ 10 6 buffer. Resuspended at the cells / ml concentration. The cells, 100 ⁇ l (1 ⁇ 10 5 cells) of the cell suspension, were transferred to 5 ml culture tubes and 5 ⁇ l Annexin V-FITC and 10 ⁇ l PI solution were added.
- the present inventors have found that the mechanism of preventing or treating liver cancer by inhibiting the expression of NLK can be achieved through the mechanism of inhibiting the growth of cancer cells, not through the promotion of apoptosis. It was found that this is achieved by inhibiting the cell cycle of G1 / S.
- NLK cyclin dependent kinases
- CDK inhibitors CDKIs
- cyclins which are important factors related to the cell cycle
- the negative cell cycle regulators p21WAF1 / CIP1, p15INK4B, p16INK4A and p27Kip1 are cyclin D1 / CDK4, 6 or cyclin E / CDK2 complexes [Grana and Reddy, 1995; Soto Martinez et al., 2005; Xiong et al., 1993] are well known as key regulators of inhibition. Therefore, the present inventors observed the effect on the expression of the cell cycle regulators according to the inhibition of the expression of NLK in liver cancer cells through the Western blot method as follows.
- NLK Cell cycle related antibodies (p21, p15, p16, p27, Cyclin D1, CDK2) and NLK antibodies were purchased from Cell Signaling (Cell Signaling Technology Inc, Beverly, Mass.) And Abcam (Abcam Inc. Cambrige, Mass.) And Western blot Perform whole-cell extracts that inhibited the expression of NLK in radio-immunoprecipitation assay (RIPA) lysis buffer (50 mmol / L Tris-HCl, pH 7.4, 150 mmol / L NaCl, 1% Nonidet P-40, Prepared with 1mmol / L Phenylmethane-sulfonylfluoride (Roche, Mannheim, Germany) containing 0.25% sodium deoxycholate, protease inhibitor, the protein concentration was measured using a BCA protein assay kit (Pierce, Rockford, IL) Absorbance was measured using a VICTOR3 TM Multilabel Plate Reader (PerkinElmer) at 570 nm.
- RIPA lysates containing 10 ⁇ g or 15 ⁇ g protein are separated by SDS-PAGE and transferred onto a polyvinylidene difluoride membrane (Amersham HybondTM-P, Little Chalfont, Buckinghamshire, UK) , Were maintained in 5% skim milk (BD Biosciences) in TBS solution containing 0.05% Tween-20 (Usb Corporation, Cleveland, OH) overnight to protect against nonspecific binding. Membranes were incubated with each primary antibody and HRP-bound secondary antibody (Pierce). The membrane was then exposed to LAS 3000 (Fuji Photo Film Co. LTD, Japan). At this time, a cell into which scrambled siRNA was introduced was used as a control.
- NLK siRNA was introduced to reduce the expression of cyclin D1 and CDK2 in the cell where NLK was not expressed in the cell.
- the present inventors confirmed by Western blot whether the inhibition of NLK expression in Hep3B cells also affects the expression of ⁇ -catenin through the above experiment.
- NLK may play a role in regulating the stability of ⁇ -catenin in liver cancer cell lines, which suggests that NLK, which has been identified by previous studies, has been involved in the phosphorylation of T cell factor / lymphocyte potentiating factor. Although it has been reported to negatively regulate Wnt signaling through, the experimental results according to the present invention can be said to have identified other mechanisms of NLK different from the known facts.
- the present inventors performed a soft-agar colony formation assay to confirm whether inhibition of expression of NLK can inhibit the proliferation of liver cancer cells and ultimately prevent or treat liver cancer. For this, 48 hours after transfection of liver cancer cells with NLK siRNA, approximately 5,000 cells in 1 mL of 0.4% agarose in RPMI-1640 medium were dispensed into each well containing 0.8% agarose in three 35 nm dishes. 500 ul of medium containing 10% FBS was then added to the plates and incubated for 3 weeks in a 37 ° C. and 5% CO 2 incubator. The medium was then changed weekly, at 3 weeks cell colonies were stained with 0.05% crystal violet and colonies with diameters of 0.1 mm or more were counted microscopically at x40 magnification. The mean number of colonies counted was based on the number on three wells at each treatment condition and analyzed by one-sided students t test.
- the present inventors can inhibit the proliferation of cancer cells when inhibiting the expression of NLK in liver cancer cells or liver cancer tissues, and in particular, prevent or treat liver cancer by inducing a decrease in anchorage-independent growth. I could see that.
- NLK as a marker for the diagnosis of hepatocellular carcinomas
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Urology & Nephrology (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Medicinal Chemistry (AREA)
- Oncology (AREA)
- Hospice & Palliative Care (AREA)
- Hematology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Virology (AREA)
- Cell Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
Abstract
본 발명은 신규한 간암 진단용 마커 및 이의 용도에 관한 것이다. 보다 구체적으로, 본 발명은 간암세포에서 NLK(nemo like kinase)이 과발현됨을 확인함으로써 상기 NLK를 이용한 간암 진단용 마커, 이를 이용한 간암 진단용 조성물, 키트, 마이크로어레이 및 간임 진단 방법에 관한 것이고, 또한 상기 마커 유전자 또는 단백질의 발현을 감소시켜 간암을 예방 또는 치료할 수 있는 물질을 스크리닝하는 방법 및 상기 물질을 포함하는 간암의 예방 또는 치료용 조성물에 관한 것이다. 본 발명에 따른 간암 마커 유전자인 NLK는 정상 조직에 비해 간암 조직에서 특이적으로 발현양이 증가되어 있어, 상기 유전자의 발현을 억제할 경우, 간암세포에서 사이클린 D1 및 CDK2의 발현이 감소되고, G1/S 단계의 세포주기 진행이 억제됨과 동시에 세포의 증식 억제를 통해 간암의 예방 또는 치료할 수 있는 효과가 있으므로 상기 본 발명에서 발굴한 NLK 유전자는 간암의 진단 및 치료를 위한 타겟으로 유용하게 사용될 수 있다.
Description
본 발명은 간암을 효과적으로 진단 및 예측할 수 있는 신규 간암 진단용 마커, 진단용 키트, 마이크로어레이, 간암 진단용 조성물 및 상기 간암 진단용 마커를 이용한 간암의 진단 방법과 간암의 예방 또는 치료용 조성물에 관한 것이다.
간세포암 (Hepatocellular carcinoma, HCC)은 해마다 50 만명이 사망하는 세계에서 5번째로 일반적인 종양이다(Okuda 2000). HCC 환자의 생존률은 지난 20년에 걸쳐 개선되지 않았고 사망율과 거의 동일한 발병률을 지니고 있다 (Marrero, Fontana et al. 2005). B형 간염 바이러스 또는 C형 간염 바이러스에 감염되어 발병하는 만성 간염 및 아플라톡신 B1 (aflatoxin B1)과 같은 발암물질에의 노출은 HCC에 대한 주요 위험 인자로 알려져 있다 (Thorgeirsson and Grisham 2002).
또한, 세포주기 기작에서 G1 단계로 진행하는 세포주기 조절물질들의 변화가 간암 형성에 관련되어 있다는 보고도 있다[Hui 등, Hepatogasteroenterology 45:1635-1642, 1998]. 이외에도 DNA 돌연변이와 유전자 발현의 유전적 변화(genetic alteration)등이 간암 환자조직에서 확인된다고 보고되고 있다(Park 등, Cancer Res. 59:307-310, 1999; Bjersing 등, J. Intern. Med. 234:339-340,1993; Tsopanomichalou 등, Liver 19:305-311, 1999; Kusano 등, Hepatology 29:1858-1862, 1999; Keck 등,Cancer Genet. Cytogenet. 111:37-44, 1999).
이와 같이 간암의 발생과 진행은 몇몇 특정 유전자들에 의해 이루어지는 것이 아니라 암의 악성화가 진행되면서 발생하는 세포내 다양한 신호전달과 조절기작에 관여하는 많은 유전자들의 복합적인 상호작용에 의한 것임을 알 수 있다. 따라서 몇몇 특정한 유전자들에 중점을 두고 간암의 형성 기작을 연구하는 것은 매우 국한된 연구에 지나지 않기 때문에 정상 간세포와 간암 세포주들 사이의 다량의 유전자 발현정도를 비교 분석하여 간암에 관련된 새로운 유전자들을 발굴할 필요가 있다.
이러한 최근의 분자적 고찰은, p53, 베타 카테닌 및 AXIN1와 같은 종양 억제 유전자 또는 종양발생 유전자의 유전자 변형이 HCC에 대한 진행과 연관되어 있을 가능성을 발견하였지만(de La Coste, Romagnolo et al. 1998; Satoh, Daigo et al. 2000; Pang, Ng et al. 2003), 이러한 체세포 돌연변이의 빈도는 실제 HCC에서는 낮게 나타나는 것으로 밝혀졌다. 또한, 이러한 유전적 변화가 개개인의 종양에 대한 임상적 특징에 반영되는지도 불분명하다. 그러므로 대부분의 환자에서 HCC의 기초를 이루는 유력한 분자적 기전에 대한 연구가 여전히 과제로 남아 있는 실정이다 (Nam, Park et al. 2005).
따라서 보다 정확하고 간암의 발병원인을 분석하고 간암을 예측 또는 진단할 수 있는 새로운 마커의 개발이 필요하다.
이에 본 발명자들은 간암(HCC) 조직에서 NLK(Nemo-like kinase)의 발현이 정상 조직과는 차별되게 발현됨을 확인하였고, 나아가 NLK의 발현을 억제하였을 경우, 간암 세포의 증식을 억제함을 통해 간암의 발병을 예방 또는 치료할 수 있음을 확인함으로써 본 발명을 완성하였다.
따라서 본 발명의 목적은 간암을 진단할 수 있는 마커로서 NLK 유전자를 이용한 간암 진단용 조성물을 제공하는 것이다.
본 발명의 다른 목적은 NLK(nemo like kinase)의 발현을 억제하는 올리고뉴클레오티드를 포함하는 간암의 예방 또는 치료용 조성물을 제공하는 것이다.
본 발명의 다른 목적은 간암 마커인 NLK(nemo like kinase)의 발현 정도를 측정하는 단계를 포함하는 간암의 발병을 예측 또는 진단하는 방법을 제공하는 것이다.
본 발명의 다른 목적은 간암의 예방 또는 치료용 물질을 스크리닝하는 방법을 제공하는 것이다.
나아가 본 발명의 다른 목적은 간암 진단용 키트 및 간암 진단용 마이크로어레이를 제공하는 것이다.
상기의 목적을 달성하기 위하여, 본 발명은 NLK(nemo like kinase) 유전자의 mRNA 또는 이의 단백질 수준을 측정하는 물질을 포함하는 간암 진단용 조성물을 제공한다.
본 발명의 일실시예에 있어서, 상기 물질은 NLK의 유전자 또는 단백질에 특이적으로 결합하는 프라이머, 프로브 또는 항체일 수 있다.
본 발명의 일실시예에 있어서, 상기 간암은 인간 간세포암(HCC, hepatocellular carcinoma)일 수 있다.
본 발명의 일실시예에 있어서, 상기 NLK(nemo like kinase) 유전자는 서열번호 1로 표시되는 염기서열로 이루어진 것일 수 있다.
또한, 본 발명은 NLK(nemo like kinase)의 발현을 억제하는 올리고뉴클레오티드를 포함하는 간암의 예방 또는 치료용 조성물을 제공한다.
본 발명의 일실시예에 있어서, 상기 올리고뉴클레오티드는 NLK(nemo like kinase)를 암호화하는 유전자에 대한 안티센스 올리고뉴클레오티드, siRNA 또는 shRNA일 수 있다.
본 발명의 일실시예에 있어서, 상기 siRNA는 서열번호 2 또는 서열번호 3의 서열을 갖는 것일 수 있다.
본 발명의 일실시예에 있어서, 상기 NLK(nemo like kinase)의 발현을 억제하는 올리고뉴클레오티드는 사이클린 D1, CDK2 또는 β-카테닌의 발현을 억제하고, G1/S 단계의 세포주기 진행을 억제함을 통해 항암 활성을 갖는 것일 수 있다.
또한, 본 발명은,
(a) 간암이 의심되는 환자의 생물학적 시료로부터 NLK 유전자의 발현 수준 또는 상기 유전자가 코딩하는 단백질의 수준을 측정하는 단계; 및
(b) 상기 유전자의 발현 수준 또는 상기 유전자가 코딩하는 단백질의 수준을 정상 대조구 시료의 해당 유전자의 발현 수준 또는 단백질 수준과 비교하는 단계를 포함하는 간암의 발병을 예측 또는 진단하는 방법을 제공한다.
본 발명의 일실시예에 있어서, 상기 측정은 역전사 중합효소 연쇄반응(reverse transcriptase-polymerase chain reaction), 실시간 중합효소 연쇄반응(real time-polymerase chain reaction), 웨스턴 블럿, 노던 블럿, ELISA(enzyme linked immunosorbent assay), 방사선면역분석(RIA: radioimmunoassay), 방사 면역 확산법(radioimmunodiffusion) 및 면역침전분석법(immunoprecipitation assay)으로 이루어진 군 중에서 선택되는 것일 수 있다.
또한, 본 발명은,
(a) NLK(nemo like kinase) 유전자 또는 NLK 단백질을 포함하는 세포에 분석하고자 하는 시료를 접촉시키는 단계;
(b) 상기 NLK 유전자의 발현양, NLK 단백질의 양 또는 NLK 단백질의 활성을 측정하는 단계; 및
(c) 상기 (b) 단계의 측정 결과, NLK 유전자의 발현양, NLK 단백질의 양 또는 NLK 단백질의 활성이 감소되는 경우에 상기 시료를 간암의 예방 또는 치료용 물질로 판정하는 단계를 포함하는, 간암의 예방 또는 치료용 물질을 스크리닝 하는 방법을 제공한다.
본 발명의 일실시예에 있어서, 상기 측정은 역전사 중합효소 연쇄반응(reverse transcriptase-polymerase chain reaction), 실시간 중합효소 연쇄반응(real time-polymerase chain reaction), 웨스턴 블럿, 노던 블럿, ELISA(enzyme linked immunosorbent assay), 방사선면역분석(RIA: radioimmunoassay), 방사 면역 확산법(radioimmunodiffusion) 및 면역침전분석법(immunoprecipitation assay)으로 이루어진 군 중에서 선택되는 것일 수 있다.
또한, 본 발명은 상기 본 발명에 따른 간암 진단용 조성물을 포함하는 간암 진단용 키트를 제공한다.
본 발명의 일실시예에 있어서, 상기 키트는 PCR 키트, DNA 칩 키트 또는 단백질 칩 키트일 수 있다.
나아가 본 발명은 서열번호 1로 표시되는 NLK(nemo like kinase)의 폴리뉴클레오티드를 포함하는 간암 진단용 마이크로어레이를 제공한다.
본 발명에 따른 간암 마커 유전자인 NLK는 정상 조직에 비해 간암 조직에서 특이적으로 발현양이 증가되어 있어, 상기 유전자의 발현을 억제할 경우, 간암세포에서 사이클린 D1 및 CDK2의 발현이 감소되고, G1/S 단계의 세포주기 진행이 억제됨과 동시에 세포의 증식 억제를 통해 간암의 예방 또는 치료할 수 있는 효과가 있으므로 상기 본 발명에서 발굴한 NLK 유전자는 간암의 진단 및 치료를 위한 타겟으로 유용하게 사용될 수 있다.
도 1은 인간 간세포암종(HCC) 및 정상 간 조직 샘플에 대하여 RT-PCR로 NLK의 mRNA 발현정도를 비교한 것을 나타낸 것이다.
도 2는 인간 간세포암종(HCC) 및 정상 간 조직 샘플에 대하여 NLK 단백질의 발현정도를 웨스턴 블럿을 통해 분석한 결과를 나타낸 것이다.
도 3는 조직 마이크로어레이에서 면역조직화학 염색법을 통해 정상 간 조직(A 및 C) 및 HCC 샘플(B 및 D)을 분석한 것을 나타낸 사진이다
도 4는 간암 세포주들에 대하여 NLK의 발현 정도를 RT-PCR(위 사진) 및 웨스턴 블럿(아래 사진)을 통해 분석한 것을 나타낸 것이다.
도 5는 Hep3B 세포에서 NLK siRNA를 이용하여 NLK을 사일런싱(silencing) 시킨 후, RT-PCR 및 웨스턴 블럿 수행을 통해 분석한 것을 나타낸 것이고, 그래프는 MTS 분석을 통해 세포의 성장률을 나타낸 것이다.
도 6 및 도 7은 SNU-423 및 SNU-368 세포주에 대해 NLK siRNA를 세포에 처리한 후 NLK 발현정도 및 성장률을 스크램블 siRNA 및 시약만을 처리한 대조군들과 비교한 결과를 나타낸 것이다.
도 8은 Hep3B 세포에서 NLK siRNA를 이용하여 NLK의 발현을 억제시킨 후, PI 염색방법을 통해 세포주기를 분석한 결과를 나타낸 것이다.
도 9는 Hep3B 세포에서 NLK siRNA를 이용하여 NLK의 발현을 억제시킨 후, 아넥신 V 염색법을 수행하여 세포사멸 정도를 분석한 것을 나타낸 것이다.
도 10은 NLK siRNA를 이용하여 세포내에서 NLK의 발현이 억제시켰을 경우, 세포주기 조절 인자들의 발현 정도를 웨스턴 블럿을 통해 분석한 결과를 나타낸 것이다.
도 11은 NLK siRNA를 이용하여 세포내에서 NLK의 발현이 억제시켰을 경우, 간암 세포의 콜로니 형성 정도를 대조군(스크램블 siRNA을 처리한 군(Scr), 시약만을 처리한 군(R), 아무것도 처리하지 않은 군(None))과 비교한 결과를 나타낸 그래프이다.
본 발명자들은 간암을 조기에 신속하고 정확하게 진단할 수 있는 새로운 마커를 연구하던 중, 간암 세포 또는 간암 조직에서 정상에 비해 특이적으로 발현이 증가되는 NLK의 유전자를 발굴하였고, 이를 간암 진단을 위한 마커로 사용할 수 있다는 사실을 확인하였다.
NLK(Nemo-like kinase)는 세포외 신호 조절된 키나아제/미소관(microtubule)-관련된 단백질 키나아제(Erk/MAPKs) 및 Cdks(cyclin-directed kinases)의 일 구성원으로서, MAPKK(MAPK kinase kinase) 수퍼 패밀리의 TAK1(transforming growth-factor-b-activated kinase 1)는 Wnt 시그널 경로에서 NLK의 잠재적 활성자로서 알려져 있다(Meneghini et al., 1999; Shin et al., 1999). 꼬마선충 및 초파리의 유전적 연구에서, Nemo는 척추동물의 NLK와 상동성을 가지는 것으로 알려졌고, 특히, 꼬마선충의 세포분열 및 파리의 날개 발생동안 Wnt 시그널링의 조절자로 기능함이 알려진 바 있다(Choi and Benzer, 1994; Kaletta et al., 1997; Verheyen et al., 2001). 따라서 NLK/Nmo/LIT-1는 세포 성장, 패터닝 및 죽음의 세포 과정에서 매우 중요한 조절자로 기능함을 알 수 있다.
특히, 본 발명에서 발굴된 NLK는 대장암(colon cancer)의 wnt/β-카테닌 시그널링 경로에서 종양 억제자로 알려져 있지만, 다른 종류의 암에서 NLK 경로 하부에 위치하고 있는 신호전달 체계에 대해서는 지금까지 알려진 바가 없다.
그러나 본 발명에서는 간암 조직에서 NLK가 상향-조절(up-regulating)됨을 확인하였고, 기존에 보고된 바 있는 대장암에서 종양 억제자로의 역할과는 전혀 상이한 결과를 확인하였다.
본 발명의 일실시예에 따르면, 인간 간세포암 및 간암 조직을 대상으로 정상세포 및 조직들에서의 NLK의 발현 정도를 RT-PCR 및 웨스턴 블럿을 통해 확인한 결과, 정상조직에 비해 간암조직에서 NLK의 발현이 최소 2배 이상 증가한 것으로 나타났고(도 1 및 도 2 참조), 이러한 결과는 면역조직화학 염색법을 통해서도 동일한 결과로 나타났다(도 3 참조).
또한, 본 발명의 다른 일실시예에 따르면, NLK의 과발현은 인간 간세포암 뿐만 아니라 다른 간암 세포의 종류에서도 동일하게 증가한 것으로 나타났다(도 4 참조).
따라서 이러한 결과를 통해 본 발명자들은 상기 본 발명에 따른 마커 유전자인 NLK의 발현 수준 또는 상기 유전자로부터 발현되는 단백질의 양을 측정함을 통해 간암의 여부를 진단할 수 있다는 사실을 알 수 있었고, 그러므로 본 발명은 NLK 유전자의 mRNA 또는 이의 단백질 수준을 측정하는 물질을 포함하는 간암 진단용 조성물을 제공할 수 있다.
본 발명에서 상기 유전자의 발현 수준은, 바람직하게 상기 유전자가 발현된 mRNA 수준, 즉, mRNA의 양을 의미하며, 상기 수준을 측정할 수 있는 물질로는 상기 유전자에 특이적인 프라이머 또는 프로브를 포함할 수 있다. 본 발명에서 상기 NLK유전자에 특이적인 프라이머 또는 프로브는 상기 NLK의 유전자 전체 또는 유전자의 특정 영역을 특이적으로 증폭할 수 있는 프라이머 또는 프로브일 수 있으며, 상기 프라이머 또는 프로브는 당업계에 알려진 방법을 통해 디자인할 수 있다. 바람직하게 상기 NLK 유전자는 서열번호 1로 표시되는 염기서열을 갖는 것일 수 있고, 상기 NLK 유전자를 증폭할 수 있는 프라이머는 서열번호 4 및 5의 프라이머 쌍일 수 있다.
본 발명에서 상기 프라이머란 용어는 적합한 온도 및 적합한 완충액 내에서 적합한 조건(즉, 4종의 다른 뉴클레오시드 트리포스페이트 및 중합반응 효소) 하에서 주형-지시 DNA 합성의 개시점으로 작용할 수 있는 단일-가닥 올리고뉴클레오타이드를 의미한다. 프라이머의 적합한 길이는 다양한 요소, 예컨대, 온도와 프라이머의 용도에 따라 변화가 있을 수 있다. 또한, 프라이머의 서열은 주형의 일부 서열과 완전하게 상보적인 서열을 가질 필요는 없으며, 주형과 혼성화되어 프라이머 고유의 작용을 할 수 있는 범위 내에서의 충분한 상보성을 가지면 충분하다. 따라서 본 발명에서의 프라이머는 주형인 유전자의 뉴클레오타이드 서열에 완벽하게 상보적인 서열을 가질 필요는 없으며, 이 유전자 서열에 혼성화되어 프라이머 작용을 할 수 있는 범위 내에서 충분한 상보성을 가지면 충분하다. 또한, 본 발명에 따른 프라이머는 유전자 증폭 반응에 이용될 수 있는 것이 바람직하다.
상기 증폭 반응은 핵산 분자를 증폭하는 반응을 말하며, 이러한 유전자의 증폭 반응들에 대해서는 당업계에 잘 알려져 있고, 예컨대, 중합효소 연쇄반응(PCR), 역전사 중합효소 연쇄반응(RT-PCR), 리가아제 연쇄반응(LCR), 전자 중재 증폭(TMA), 핵산 염기서열 기판 증폭(NASBA) 등이 포함될 수 있다.
본 발명에서, 상기프로브라는 용어는 자연의 또는 변형된 모노머 또는 연쇄(linkages)의 선형 올리고머를 의미하며, 디옥시리보뉴클레오타이드 및 리보뉴클레오타이드를 포함하고 타켓 뉴클레오타이드 서열에 특이적으로 혼성화할 수 있으며, 자연적으로 존재하거나 또는 인위적으로 합성된 것을 말한다. 본 발명에 따른 프로브는 단일쇄일 수 있으며, 바람직하게는 올리고디옥시리보뉴클레오티드일 수 있다. 본 발명의 프로브는 자연 dNMP(즉, dAMP, dGMP, dCMP 및 dTMP), 뉴클레오타이드 유사체 또는 유도체를 포함할 수 있다. 또한, 본 발명의 프로브는 리보뉴클레오타이드도 포함할 수 있다. 예컨대, 본 발명의 프로브는 골격 변형된 뉴클레오타이드, 예컨대, 펩타이드 핵산 (PNA) (M. Egholm et al., Nature, 365:566-568(1993)), 포스포로티오에이트 DNA, 포스포로디티오에이트 DNA, 포스포로아미데이트 DNA, 아마이드-연결된 DNA, MMI-연결된 DNA, 2'-O-메틸 RNA, 알파-DNA 및 메틸포스포네이트 DNA, 당 변형된 뉴클레오타이드 예컨대, 2'-O-메틸 RNA, 2'-플루오로 RNA, 2'-아미노 RNA, 2'-O-알킬 DNA, 2'-O-알릴 DNA, 2'-O-알카이닐 DNA, 헥소스 DNA, 피라노실 RNA 및 안히드로헥시톨 DNA, 및 염기 변형을 갖는 뉴클레오타이드 예컨대, C-5 치환된 피리미딘(치환기는 플루오로-, 브로모-, 클로로-, 아이오도-, 메틸-, 에틸-, 비닐-, 포르밀-, 에티틸-, 프로피닐-, 알카이닐-, 티아조릴-, 이미다조릴-, 피리딜- 포함), C-7 치환기를 갖는 7-데아자퓨린 (치환기는 플루오로-, 브로모-, 클로로-, 아이오도-, 메틸-, 에틸-, 비닐-, 포르밀-, 알카이닐-, 알켄일-, 티아조릴-, 이미다조릴-, 피리딜-), 이노신 및 디아미노퓨린을 포함할 수 있다.
또한, 본 발명에서 상기 단백질의 수준을 측정할 수 있는 물질로는 상기 본 발명의 NLK 마커 유전자로부터 발현된 단백질에 대해 특이적으로 결합할 수 있는 다클론 항체, 단일클론 항체 및 재조합 항체 등의 항체를 포함할 수 있다.
상기 “항체”는 당해 기술분야의 일반적 기술자가 공지된 기술을 이용하여 제조된 것을 사용할 수 있는데, 상기 항체의 제조는 예컨대, 다클론 항체의 경우에는 상기 단백질의 항원을 동물에 주사하고 동물로부터 채혈하여 항체를 포함하는 혈청을 수득하는 당업계에 널리 공지된 방법에 의해 생산할 수 있으며, 이러한 다클론 항체는 염소, 토끼, 양, 원숭이, 말, 돼지, 소, 개 등의 임의의 동물 종 숙주로부터 제조가능하다. 단일클론 항체의 경우에는 당업계에 널리 공지된 하이브리도마(hybridoma) 방법(Kohler et al., European Jounral of Immunology, 6, 511-519, 1976)을 이용하여 제조할 수 있거나 또는 파지 항체 라이브러리(Clackson et al, Nature, 352, 624-628, 1991, Marks et al, J. Mol. Biol., 222:58, 1-597, 1991) 기술을 이용하여 제조할 수 있다. 또한, 본 발명에 따른 항체는 2개의 전체 길이의 경쇄 및 2개의 전체 길이의 중쇄를 가지는 완전한 형태뿐만 아니라, 항체 분자의 기능적인 단편을 포함할 수 있다. 항체 분자의 기능적인 단편이란 적어도 항원 결합 기능을 보유하고 있는 단편을 뜻하며, Fab, F(ab'), F(ab') 2 및 Fv 등이 있다.
또한, 본 발명은 상기 본 발명에 따른 간암 진단용 마커 또는 상기 간암 진단용 조성물을 포함하는 간암 진단용 키트를 제공한다.
본 발명의 간암 진단용 키트는 상기 마커 유전자인 NLK 유전자의 발현 수준 또는 상기 유전자로부터 발현된 단백질의 양을 측정할 수 있는 프라이머, 프로브 또는 항체를 포함할 수 있으며, 이들의 정의는 앞서 기술된 바와 같다.
본 발명의 간임 진단용 키트가 만일 PCR 증폭 과정에 적용되는 경우, 본 발명의 키트는 선택적으로, PCR 증폭에 필요한 시약, 예컨대, 완충액, DNA 중합효소(예컨대, Thermus aquaticus (Taq), Thermus thermophilus (Tth), Thermus filiformis, Thermis flavus, Thermococcus literalis 또는 Pyrococcus furiosus(Pfu)로부터 수득한 열 안정성 DNA 중합효소), DNA 중합 효소 조인자 및 dNTPs를 포함할 수 있으며, 본 발명의 간암 진단용 키트가 면역 분석에 적용되는 경우, 본 발명의 키트는 선택적으로, 이차항체 및 표지의 기질을 포함할 수 있다. 나아가, 본 발명에 따른 키트는 상기한 시약 성분을 포함하는 다수의 별도 패키징 또는 컴파트먼트로 제작될 수 있으며, 본 발명의 키트는 DNA 칩을 수행하기 위해 필요한 필수 요소를 포함하는 진단용 키트일 수 있다. DNA 칩 키트는, 유전자 또는 그의 단편에 해당하는 cDNA가 프로브로 부착되어 있는 기판, 및 형광표식 프로브를 제작하기 위한 시약, 제제, 효소 등을 포함할 수 있다. 또한, 기판은 정량 대조구 유전자 또는 그의 단편에 해당하는 cDNA를 포함할 수 있다.
또한, 본 발명은 상기 간암 진단용 마커 또는 상기 간암 진단용 조성물을 포함하는 간암 진단용 마이크로어레이를 제공한다.
본 발명의 마이크로어레이에 있어서, 상기 마커 단백질 또는 이를 암호화하는 유전자의 발현 수준을 측정할 수 있는 프라이머, 프로브 또는 항체는 혼성화 어레이 요소(hybridizable array element)로서 이용되며, 기질(substrate) 상에 고정화된다. 바람직한 기질은 적합한 견고성 또는 반-견고성 지지체로서, 예컨대, 막, 필터, 칩, 슬라이드, 웨이퍼, 파이버, 자기성 비드 또는 비자기성 비드, 겔, 튜빙, 플레이트, 고분자, 미소입자 및 모세관을 포함할 수 있다. 상기 혼성화 어레이 요소는 상기 기질 상에 배열되고 고정화되며, 이와 같은 고정화는 화학적 결합 방법 또는 UV와 같은 공유 결합적 방법에 의해 수행될 수 있다. 예를 들어, 상기 혼성화 어레이 요소는 에폭시 화합물 또는 알데히드기를 포함하도록 변형된 글래스 표면에 결합될 수 있고, 또한 폴리라이신 코팅 표면에서 UV에 의해 결합될 수 있다. 또한, 상기 혼성화 어레이 요소는 링커(예: 에틸렌 글리콜 올리고머 및 디아민)를 통해 기질에 결합될 수 있다.
한편, 본 발명의 마이크로어레이에 적용되는 시료가 핵산일 경우에는 표지(labeling)될 수 있고, 마이크로어레이상의 어레이 요소와 혼성화 될 수 있다. 혼성화 조건은 다양할 수 있으며, 혼성화 정도의 검출 및 분석은 표지 물질에 따라 다양하게 실시될 수 있다.
또한, 본 발명은 상기 본 발명에 따른 NLK 마커 유전자의 발현수준 또는 그 발현 단백질 수준을 측정하는 방법을 통해 간암을 예측 및 진단하는 방법을 제공할 수 있는데, 바람직하게 상기 방법은, (a) 간암이 의심되는 환자의 생물학적 시료로부터 NLK 유전자의 발현 수준 또는 상기 유전자가 코딩하는 단백질의 수준을 측정하는 단계; 및 (b) 상기 유전자의 발현 수준 또는 상기 유전자가 코딩하는 단백질의 수준을 정상 대조구 시료의 해당 유전자의 발현 수준 또는 단백질 수준과 비교하는 단계를 포함하는 간암의 발병을 예측 또는 진단하는 방법을 포함할 수 있다.
상기에서 유전자의 발현 수준 또는 단백질의 양을 측정하는 방법은 공지의 기술을 이용하여 생물학적 시료로부터 mRNA 또는 단백질을 분리하는 공지의 공정을 포함하여 수행될 수 있다.
본 발명에서 상기 "생물학적 시료"란 간암의 발생 또는 진행 정도에 따른 상기 유전자의 발현 수준 또는 단백질의 수준이 정상 대조군과는 다른, 생체로부터 채취된 시료를 말하며, 상기 시료로는 예를 들면, 이에 제한되지는 않으나, 조직, 세포, 혈액, 혈청, 혈장, 타액 및 뇨 등이 포함될 수 있다.
상기 유전자의 발현 수준 측정은 바람직하게는 mRNA의 수준을 측정하는 것이며, mRNA의 수준을 측정하는 방법으로는 역전사 중합효소연쇄반응(RT-PCR), 실시간 역전사 중합효소연쇄반응, RNase 보호 분석법, 노던 블럿 및 DNA 칩 등이 있으나, 이에 제한되지는 않는다.
상기 단백질 수준의 측정은 항체를 이용할 수 있는데, 이러한 경우, 생물학적 시료 내의 상기 마커 단백질과 이에 특이적인 항체는 결합물, 즉, 항원-항체 복합체를 형성하며, 항원-항체 복합체의 형성량은 검출 라벨(detection label)의 시그널의 크기를 통해서 정량적으로 측정할 수 있다. 이러한 검출 라벨은 효소, 형광물, 리간드, 발광물, 미소입자(microparticle), 레독스 분자 및 방사선 동위원소로 이루어진 그룹 중에서 선택할 수 있으며, 이에 제한되는 것은 아니다. 단백질 수준을 측정하기 위한 분석 방법으로는, 이에 제한되지는 않으나, 웨스턴 블럿, ELISA, 방사선면역분석, 방사선 면역 확산법, 오우크테로니 면역 확산법, 로케트 면역전기영동, 조직면역 염색, 면역침전 분석법, 보체 고정분석법, FACS, 단백질 칩 등이 있다.
따라서 본 발명은 상기와 같은 검출 방법들을 통하여, 대조군의 마커 유전자의 mRNA 발현 양 또는 단백질의 양과 간암 환자 또는 간암 의심환자에서의 마커 유전자의 mRNA 발현 양 또는 단백질의 양을 확인할 수 있고, 상기 발현 양의 정도를 대조군과 비교함으로써 간암의 발병여부, 진행단계 또는 예후 등을 예측 및 진단할 수 있다.
보다 구체적으로 상기 간암의 발병을 예측 또는 진단하는 방법은 본 발명에 따른 간암 마커 유전자인 NLK 유전자의 발현 수준 또는 그 발현 단백질의 양이 정상 대조군 시료에 비해 증가되었을 경우, 간암이 유발된 것으로 판단할 수 있다.
나아가 본 발명은 (a) 본 발명에 따른 간암 진단용 마커 유전자 또는 그 발현 단백질을 포함하는 간암 세포 또는 조직에 분석하고자 하는 시료를 접촉시키는 단계; (b) 상기 선택된 유전자의 발현양 또는 그 발현 단백질의 양 또는 활성을 측정하는 단계; 및 (c) 상기 (b) 단계의 측정 결과, 상기 선택된 유전자의 발현양 또는 그 발현 단백질의 양 또는 활성이 감소되는 경우에 상기 시료는 간암을 예방 또는 치료용 물질로 판정하는 단계를 포함하는 간암의 예방 또는 치료용 물질을 스크리닝하는 방법을 제공할 수 있다.
본 발명의 스크리닝 방법에 따르면, 먼저 상기 유전자 또는 단백질을 포함하는 간암 세포에 분석하고자 하는 시료를 접촉시킬 수 있다. 여기서 상기시료는 상기 유전자의 발현양, 단백질의 양 또는 단백질의 활성에 영향을 미치는지 여부를 검사하기 위하여 스크리닝에서 이용되는 미지의 물질을 의미한다. 상기 시료는 화학물질, 올리고뉴클레오티드, 안티센스-RNA, siRNA(small interference RNA), shRNA 또는 천연물 추출물을 포함할 수 있으나, 이에 제한되지는 않는다. 이후, 시료가 처리된 세포에서 상기 유전자의 발현양, 단백질의 양 또는 단백질의 활성을 측정할 수 있으며, 측정 결과, 상기 유전자의 발현양, 단백질의 양 또는 단백질의 활성이 증가 또는 감소되는 것이 측정되면 상기 시료는 간암을 치료 또는 예방할 수 있는 물질로 판단할 수 있다.
상기에서 유전자의 발현양, 단백질의 양 또는 단백질의 활성을 측정하는 방법은 당업계에 공지된 다양한 방법을 통해 수행될 수 있는데, 예를 들면, 이에 제한되지는 않으나, 역전사 중합효소 연쇄반응(reverse transcriptase-polymerase chain reaction), 실시간 중합효소 연쇄반응(real time-polymerase chain reaction), 웨스턴 블럿, 노던 블럿, ELISA(enzyme linked immunosorbent assay), 방사선면역분석(RIA: radioimmunoassay), 방사 면역 확산법(radioimmunodiffusion) 및 면역침전분석법(immunoprecipitation assay)등을 이용하여 수행할 수 있다.
한편, 본 발명자들은 정상조직에 비해 간암조직에서 NLK가 과발현되어 있다는 사실 이외에도, 상기 NLK가 세포주기를 조절하는 사이클린 D1 및 CDK2의 발현과 연관성이 있음을 발견하였는데, 즉, NLK의 발현이 세포주기를 조절하는 사이클린 D1 및 CDK2의 발현을 억제한다는 사실을 최초로 발견하였다.
따라서 본 발명은 NLK 유전자의 발현을 억제시킴으로서, 사이클린 D1 및 CDK2의 발현을 동시에 억제하고, 유사분열의 세포주기를 조절하는 방법도 제공할 수 있다. 또한, 본 발명은 사이클린 D1 및 CDK2의 발현을 동시에 억제하는 물질을 함유하는 간암의 예방 또는 치료용 조성물을 제공할 수 있다.
일반적으로 세포주기는 세포내에서 정해진 메카니즘에 의해 일정순서 대로 이루어지고 있다. 그러나 이렇게 정해진 순서에 이상이 초래되면 세포주기의 유지는 어려워질 것이며, 세포주기의 이상이 초래되었을 때 이를 복구하는 역할을 하는 조절인자가 사이클린과 Cdk이다. 세포주기 과정에서, G1기 초기에는 세포의 종류에 따라서 Cdk4, 6, 8등이 활성화되어 작용하고, G1기 후기와 S기 초기에서는 Cdk2가 작용하며, G2에서 M으로의 진행에는 Cdk1 (Cdc2)이 중요한 역할을 하는 것으로 알려져 있다.
또한, Cdk의 활성에는 사이클린과의 결합이 필수적인데 Cdk4, 6, 8은 사이클린 D와의 결합에 의하여 활성화되며, Cdk2는 사이클린 A 및 E와 결합한다. Cdk1은 사이클린 B 및 A와 결합하며, 이외에 사이클린 G, F 등이 알려져 있다. 이러한 세포주기의 각 시기에서 특이적인 Cyclin-Cdk 복합체가 각각 활성화되고 Cdk에 특이적으로 인산화되는 단백질들이 세포주기의 진행을 담당하게 되므로 세포주기를 Cdk 주기로 명명할 수도 있다.
또한, Cdk는 사이클린의 활성에 필수적인 인자로 작용하는데, 활성화된 Cdk-사이클린은 사이클린의 조절단위와 Cdk의 활성단위로 구분되어 있으며, 사이클린의 Cdk 조절방법은 두 가지로 볼 수 있는데, 첫 번째가 사이클린과 Cdk가 결합하여 단백질의 구조변화를 유도하여 ATP phosphate group의 배치가 기질 단백질에 전달하기 쉽게 변한다. 또한, 단백질의 기질이 Cdk에 접근할 수 없도록 막고 있는 T loop의 위치가 변하여 기질의 접근이 용이해진다. Cdk의 활성이 세포주기의 특정 시기에만 활성화되는 것은 세포주기 특이적으로 일어나는 사이클린 합성 때문이다
또한, 사이클린 D는 주로 G1 중기에 합성이 최고조에 달하며 주로 세포성장인자 등의 마이토젠(mitogen)에 의하여 유도된다. 사이클린 D는 세 종류의 서브타입(D1, 2, 3)이 있는데, 세포의 종류에 따라서 발현되는 정도가 다르다. 예컨대, 사이클린 D의 합성을 저해하면 세포주기 G1이 정지되고, 사이클린 D를 과발현하면 G1기가 짧아지고 마이토젠 없이도 세포주기가 시작된다.
한편, 본 발명자들은 본 발명의 간암 진단용 마커 유전자인 NLK에 대한 siRNA를 사용하여 NLK의 발현을 억제할 경우, 상기 사이클린 D1 및 CDK2의 발현 및 관련된 전사인자의 활성이 변화한다는 것을 관찰하였다. 특히, NLK siRNA에 의한 NLK의 발현억제는 사이클린 D1 및 CDK2의 발현이 동시에 억제되는 것으로 나타났다(도 8 및 도 10 참조).
또한, 본 발명의 일실시예에 따르면, NLK 및 CDK2, 사이클린 D1 발현 사이의 직접적인 관계를 보여주는 p130 및 pRb(retinoblastoma protein)의 인산화 정도에 있어서도, NLK의 발현 억제는 p130의 인산화를 감소시키는 것으로 나타났고, 결국 CDK2 및 사이클린 D1의 전사활성을 통해 pRb 단백질 패밀리의 인산화에 영향을 미치는 것을 확인하였다. 즉, NLK의 유전자 발현 억제는 pRB 및 p130 단백질의 인산화를 저해시켰고, 이는 CDK2 및 사이클린 D1의 전사 활성의 감소를 초래하였다(도 10 참조).
또한, 본 발명의 다른 일실시예에 따르면, 간암세포에서 NLK의 발현을 억제할 경우, 간암세포의 증식이 억제되고 특히 비부착성 증식능이 감소되는 것으로 나타났다(도 11 참조). 반면 간암세포에서 NLK의 발현 억제시 간암세포의 세포사멸에는 아무런 영향을 미치지 않는 다는 사실을 알 수 있었다(도 9 참조).
따라서 상기 결과를 통해 본 발명자들은 간암 세포에서 NLK의 발현을 억제할 경우, 세포주기의 조절인자인 사이클린 D1 및 CDK2의 발현을 감소시켜 G1/S의 세포주기의 진행을 억제하고, 궁극적으로 간암 세포의 증식을 억제함을 통해 항암 활성을 갖는다는 사실을 알 수 있었다.
그러므로 본 발명은 NLK의 발현을 억제하는 올리고뉴클레오티드를 유효성분으로 포함하는 간암의 예방 또는 치료용 조성물을 제공할 수 있다.
바람직하게 상기 NLK의 발현을 억제하는 올리고뉴클레오티드 서열번호 1로 표시되는 NLK의 유전자에 대한 안티센스 올리고뉴클레오티드, RNAi, siRNA 또는 shRNA일 수 있고, 상기 siRNA는 서열번호 2 또는 서열번호 3의 서열을 갖는 것일 수 있다.
본 발명에서 상기 "안티센스 올리고뉴클레오타이드란 용어는 특정 mRNA의 서열에 상보적인 핵산 서열을 함유하고 있는 DNA 또는 RNA 또는 이들의 유도체를 의미하고, mRNA 내의 상보적인 서열에 결합하여 mRNA의 단백질로의 번역을 저해하는 작용을 한다. 본 발명의 안티센스 서열은 상기 유전자의 mRNA에 상보적이고 상기 mRNA에 결합할 수 있는 DNA 또는 RNA 서열을 의미하며, 상기 mRNA의 번역, 세포질내로의 전위(translocation), 성숙(maturation) 또는 다른 모든 전체적인 생물학적 기능에 대한 필수적인 활성을 저해할 수 있다.
또한, 상기 안티센스 핵산은 효능을 증진시키기 위하여 하나 이상의 염기, 당 또는 골격(backbone)의 위치에서 변형될 수 있다(De Mesmaeker et al., Curr Opin Struct Biol., 5, 3, 343-55, 1995). 핵산 골격은 포스포로티오에이트, 포스포트리에스테르, 메틸 포스포네이트, 단쇄 알킬, 시클로알킬, 단쇄 헤테로아토믹, 헤테로시클릭 당간 결합 등으로 변형될 수 있다. 또한, 안티센스 핵산은 하나 이상의 치환된 당 모이어티(sugar moiety)를 포함할 수 있다. 안티센스 핵산은 변형된 염기를 포함할 수 있다. 변형된 염기에는 하이포크잔틴, 6-메틸아데닌, 5-메틸피리미딘(특히 5-메틸시토신), 5-하이드록시메틸시토신(HMC), 글리코실 HMC, 젠토비오실 HMC, 2-아미노아데닌, 2-티오우라실, 2-티오티민, 5-브로모우라실, 5-하이드록시메틸우라실, 8-아자구아닌, 7-데아자구아닌, N6 (6-아미노헥실)아데닌, 2,6-디아미노퓨린 등이 있다. 또한, 본 발명의 안티센스 핵산은 상기 안티센스 핵산의 활성 및 세포 흡착성을 향상시키는 하나 이상의 모이어티(moiety) 또는 컨쥬게이트(conjugate)와 화학적으로 결합될 수 있다. 콜레스테롤 모이어티, 콜레스테릴 모이어티, 콜릭산, 티오에테르, 티오콜레스테롤, 지방성 사슬, 인지질, 폴리아민, 폴리에틸렌 글리콜 사슬, 아다맨탄 아세트산, 팔미틸 모이어티, 옥타데실아민, 헥실아미노-카르보닐-옥시콜에스테롤 모이어티 등의 지용성 모이어티 등이 있고 이에 제한되지는 않는다. 지용성 모이어티를 포함하는 올리고뉴클레오티드와 제조 방법은 본 발명의 기술 분야에서 이미 잘 알려져 있다(미국특허 제5,138,045호, 제5,218,105호 및 제5,459,255호). 상기 변형된 핵산은 뉴클레아제에 대한 안정성을 증가시키고 안티센스 핵산과 표적 mRNA와의 결합 친화력을 증가시킬 수 있다.
안티센스 올리고뉴클레오타이드는 통상의 방법으로 시험관에서 합성되어 생체 내로 투여하거나 생체 내에서 안티센스 올리고뉴클레오타이드가 합성되도록 할 수 있다. 시험관에서 안티센스 올리고뉴클레오타이드를 합성하는 일예는 RNA 중합효소 I를 이용하는 것이다. 생체 내에서 안티센스 RNA가 합성되도록 하는 한 가지 예는 인식부위(MCS)의 기원이 반대 방향에 있는 벡터를 사용하여 안티센스 RNA가 전사되도록 하는 것이다. 이런 안티센스 RNA는 서열 내에 번역 중지 코돈이 존재하도록 하여 펩타이드 서열로 번역되지 않도록 하는 것이 바람직하다.
본 발명에서 "RNAi"는 RNA Interference를 지칭하는 말로, 우리말로 풀이하면 RNA 간섭이라는 뜻을 지니고 있다. RNA 간섭은 대부분의 생물체 사이에서 잘 보존되어 있는 특이적 유전자억제 현상이다. 바이러스 감염에 대한 방어나 트랜스포손을 억제하기 위하여 혹은 비정상적 mRNA를 제거하기 위하여 세포가 사용하는 유전자 감시기작의 일종으로 생각되고 있다. 특히, small RNA에 의한 유전자 억제현상을 넓은 의미에서 RNA간섭이라 하고, 좁은 의미의 RNA 간섭은 siRNA에 의한 mRNA 분해 현상을 뜻한다. 또한 RNA간섭은 siRNA를 이용한 유전자 억제 실험 기술을 뜻하기도 한다.
본 발명에서 "siRNA라는 용어는 RNA 방해 또는 유전자 사일런싱을 매개할 수 있는 핵산 분자를 의미한다(국제공개 특허번호 00/44895, 01/36646, 99/32619, 01/29058, 99/07409 및 00/44914 참조). siRNA는 표적 유전자의 발현을 억제할 수 있기 때문에 효율적인 유전자 넉다운(knock-down) 방법으로서 또는 유전자치료 방법으로 제공된다.
본 발명의 siRNA 분자는, 센스 가닥(상기 마커 유전자의 mRNA 서열에 상응하는 서열)과 안티센스 가닥(상기 mRNA 서열에 상보적인 서열)이 서로 반대쪽에 위치하여 이중쇄를 이루는 구조를 가질 수 있으며, 또한, 본 발명의 siRNA 분자는 자기-상보성(self-complementary) 센스 및 안티센스 가닥을 가지는 단일쇄 구조를 가질 수 있다. 나아가 siRNA는 RNA끼리 짝을 이루는 이중사슬 RNA 부분이 완전히 쌍을 이루는 것에 한정되지 않고 미스매치(대응하는 염기가 상보적이지 않음), 벌지(일방의 사슬에 대응하는 염기가 없음) 등에 의하여 쌍을 이루지 않는 부분이 포함될 수 있다. 또한, siRNA 말단 구조는 상기 마커 유전자의 발현을 RNAi 효과에 의하여 억제할 수 있는 것이면 평활(blunt) 말단 혹은 점착(cohesive) 말단 모두 가능하고, 점착 말단 구조는 3'-말단 돌출 구조와 5'-말단 돌출 구조 모두 가능하다.
또한, 본 발명의 siRNA 분자는 자기-상보성(self-complementary) 센스 및 안티센스 가닥 사이에 짧은 뉴클레오티드 서열이 삽입된 형태를 가질 수 있으며, 이 경우 뉴클레오타이드 서열의 발현에 의해 형성된 siRNA 분자는 분자내 혼성화에 의하여 헤어핀 구조를 형성하게 되며, 전체적으로는 스템-앤드-루프 구조를 형성하게 된다. 이 스템-앤드-루프 구조는 인 비트로 또는 인 비보에서 프로세싱되어 RNAi를 매개할 수 있는 활성의 siRNA 분자를 생성한다.
siRNA를 제조하는 방법은 시험관에서 siRNA를 직접 합성한 뒤, 형질전환 과정을 거쳐 세포 안으로 도입시키는 방법과 siRNA가 세포 안에서 발현되도록 제조된 siRNA 발현 벡터 또는 PCR-유래의 siRNA 발현 카세트 등을 세포안으로 형질전환 또는 감염(infection)시키는 방법이 있다.
또한, 유전자 특이적인 siRNA를 포함하는 본 발명의 조성물은 siRNA의 세포내 유입을 촉진시키는 제제를 포함할 수 있다. siRNA의 세포내 유입을 촉진시키는 제제에는 일반적으로 핵산 유입을 촉진하는 제제를 사용할 수 있으며, 이러한 예로는, 리포좀을 이용하거나 콜레스테롤, 콜레이트 및 데옥시콜산을 비롯한 다수의 스테롤류 중 1종의 친유성 담체와 함께 배합할 수 있다. 또한 폴리-L-라이신(poly-L-lysine), 스퍼민(spermine), 폴리실아잔(polysilazane), 폴리에틸레민(PEI:polyethylenimine), 폴리디하이드로이미다졸레늄(polydihydroimidazolenium), 폴리알리라민(polyallylamine), 키토산(chitosan) 등의 양이온성 고분자(cationic polymer)를 이용할 수도 있고, 숙실화된 PLL(succinylated PLL), 숙실화된 PEI(succinylated PEI), 폴리글루타믹산(polyglutamic acid), 폴리아스파틱산(polyaspartic acid), 폴리아크릴산(polyacrylic acid), 폴리메타아크릴산(polymethacylic acid), 덱스트란 설페이트(dextran sulfate), 헤파린(heparin), 히아루릭산(hyaluronic acid) 등의 음이온성 고분자(anionic polymer)를 이용할 수 있다.
또한, 상기 마커 단백질의 발현 및 활성을 증가시키거나 감소시키는 물질로서 상기 단백질에 특이적인 항체를 사용할 경우, 상기 항체는 기존의 치료제와 직접 또는 링커 등을 통하여 간접적으로 커플링(예를 들어, 공유결합)시킬 수 있다. 항체와 결합될 수 있는 치료제로는 이에 제한되지는 않으나, 131I, 90Y, 105Rh, 47Sc, 67Cu, 212Bi, 211At, 67Ga, 125I, 186Re, 188Re, 177Lu, 153Sm, 123I, 111In 등과 같은 방사성핵종(radionuclide); 메토트렉세이트(methotrexate), 아드리아마이신(adriamycin), 및 인터페론과 같은 림포카인(lympokine) 등의 생물학적 반응 변형체 또는 약물; 리신, 아브린, 디프테리아 등과 같은 독소; 이형기능성 항체(heterofunctional antibodies), 즉 다른 항체와 결합되어서 그 복합체가 암 세포와 효능 세포(예를 들면, T 세포와 같은 K 세포(killer cell) 모두에 결합하는 항체; 및 자연적인, 즉, 비-연관 또는 비-복합된 항체와 결합될 수 있다.
또한, 본 발명에 따른 상기 간암의 예방 또는 치료용 조성물은 간암을 치료할 수 있는 약학적 조성물로서, 약학적으로 허용되는 담체를 추가로 포함할 수 있다. 상기에서 "약학적으로 허용되는"이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증 등과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다. 약학적으로 허용되는 담체로는 예를 들면, 락토스, 전분, 셀룰로스 유도체, 마그네슘 스테아레이트, 스테아르산 등과 같은 경구 투여용 담체 및 물, 적합한 오일, 식염수, 수성 글루코스 및 글리콜 등과 같은 비경구 투여용 담체 등이 있으며 안정화제 및 보존제를 추가로 포함할 수 있다. 적합한 안정화제로는 아황산수소나트륨, 아황산나트륨 또는 아스코르 브산과 같은 항산화제가있다. 적합한 보존제로는 벤즈알코늄 클로라이드, 메틸- 또는 프로필-파라벤 및 클로로부탄올이 있다. 그 밖의 약학적으로 허용되는 담체로는 다음의 문헌에 기재되어 있는 것을 참고로 할 수 있다(Remington's Pharmaceutical Sciences, 19th ed., Mack Publishing Company, Easton, PA, 1995). 본 발명에 따른 약학적 조성물은 상술한 바와 같은 약학적으로 허용되는 담체와 함께 당업계에 공지된 방법에 따라 적합한 형태로 제형화 될 수 있다. 즉, 본 발명의 약학적 조성물은 공지의 방법에 따라 다양한 비경구 또는 경구 투여용 형태로 제조될 수 있으며, 비경구 투여용 제형의 대표적인 것으로는 주사용 제형으로 등장성 수용액 또는 현탁액이 바람직하다. 주사용 제형은 적합한 분산제 또는 습윤제 및 현탁화제를 사용하여 당업계에 공지된 기술에 따라 제조할 수 있다. 예를 들면, 각 성분을 식염수 또는 완충액에 용해시켜 주사용으로 제형화될 수 있다. 또한, 경구 투여용 제형으로는, 이에 한정되지는 않으나, 분말, 과립, 정제, 환약 및 캡슐 등이 있다.
상기와 같은 방법으로 제형화된 약학적 조성물은 유효량으로 경구, 경피, 피하, 정맥 또는 근육을 포함한 여러 경로를 통해 투여될 수 있는데, 상기 투여란 어떠한 적절한 방법으로 환자에게 소정의 물질을 도입하는 것을 의미하며 물질의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다.
또한, 상기에서 유효량 이란 환자에게 투여하였을 때, 예방 또는 치료 효과를 나타내는 양을 말한다. 본 발명에 따른 약학적 조성물의 투여량은 환자의 질환 종류 및 중증도, 연령, 성별, 체중, 약물에 대한 민감도, 현재 치료법의 종류, 투여방법, 표적 세포 등 다양한 요인에 따라 달라질 수 있으며, 당 분야의 전문가들에 의해 용이하게 결정될 수 있다. 또한, 본 발명의 약학적 조성물은 종래의 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 바람직하게는 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여할 수 있으며, 더욱 바람직하게는 1~10000㎍/체중kg/day, 더욱더 바람직하게는 10~1000㎎/체중kg /day의 유효용량으로 하루에 수회 반복 투여될 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
<실시예 1>
마이크로어레이 제작
(1) 조직 마이크로어레이(TMA, tissue microarray)
5명의 간암환자(한국인)로부터 간 조직 주변의 정상 간 조직 샘플과 5개의 냉동 간암 조직을 사용하였다. 모든 경우에서 주변 간 조직은 만성 간염을 나타냈고 HBV(Hepatitis B virus)가 검출되었다. 한국 가톨릭 대학의 IRB(institutional review board)로부터 승인 받고(CUMC09U029), 헬싱키 선언에 따라 모든 환자로부터 동의를 받았다. 냉동 조직을 액체 질소 내에서 미세한 가루로 간 다음, 분자적 시험을 위해 보존시켰다. 또한, 조직 마이크로어레이(TMA) 설계를 위해, 총 50개 간 샘플(간암조직 30개 및 정상 간 조직 20개)을 포르말린으로 고정시키고, 파라핀 포매(paraffin-embedded)된 간 샘플을 가톨릭 대학교 병원 병리학부에서 수득하였다. 종양조직 및 정상 간 조직들은 펀치 아웃(punched out)하였고, 0.6 mm 직경의 스틸렛(stylet)을 사용하여 파라핀으로 블로킹 시켰다.
(2) 세포 배양
인간 간암 세포주들인 HepG2, Hep3B, PLC/PRF/5, CHANG, SNU-182, SNU-387, SNU-423 및 SNU-449를 American Type Culture Collection (ATCC; Manassas, VA) 로부터 구입하였고, 인간 간암 세포주 SNU-354 및 SNU-368는 Korean Cell Line Bank (KCLB, Korea)에서 구입하였다. 상기 세포들을 10% FBS (Sigma, St Louis, MO) 및 1 mg/ml 페니실린/스트렙토마이신(Invitrogen, Grand Island, NY)이 첨가된 RPMI 1640 또는 DMEM 배지에서 배양하여 이후 실험들에서 사용하였다.
<실시예 2>
NLK의 mRNA 발현 및 NLK 단백질 발현 조사
본 발명자들은 환자로부터 선별된 상기 5개의 HCC 조직 및 정상 간 조직 샘플에 대하여 RT-PCR을 수행하여 NLK(nemo like kinase)의 mRNA 발현을 조사하였다. 이를 위해, 먼저 전체 RNA를 TRIzol(Invitrogen, Carlsbad, CA, USA)을 이용하여 추출하고 품질관리를 Agilent 2001 Bioanalyzer (Agilent Technologies, Germany)에서 RNA 6000 Nano chips을 이용하여 수행하였다. 이후, RNA PCR Core Kit (Roche, Branchburg, NJ, USA)를 이용하여 1ug RNA를 cDNA 합성 반응에 사용하였다. cDNA를 각 RT-PCR 반응에 사용하였다. RT-PCR 프로그램은 35 사이클 동안 95℃에서 30초, 53℃에서 30초 및 72℃에서 30로 수행하였으며, 사용한 프라이머의 서열은 하기에 기재된 바와 같다.
사용한 프라이머 서열
NLK forward(서열번호 4) : 5´-GCT GGA TAT TGA GCC GGA TA-3‘
NLK reverse(서열번호 5): 5´-CAT CTT CAA TTC CCG GAA GA-3‘
GAPDH forward(서열번호 6): 5´-ACC AGG TGG TCT CCT CTG AC-3‘
GAPDH reverse(서열번호 7): 5´-TGC TGT AGC CAA ATT CGT TG-3‘
또한, 본 발명자들은 RT-PCR 이외에도 웨스턴 블럿 분석(Western blot analysis)을 수행하여 간암 조직에서의 NLK의 발현양을 측정하였는데, 상기 측정을 위해 암 조직 및 정상 조직의 세포 추출물(Whole-cell extracts)을 RIPA(radio-immunoprecipitation assay) 용해 버퍼 (50mmol/L Tris-HCl, pH7.4, 150mmol/L NaCl, 1% Nonidet P-40, 0.25% sodium deoxycholate, 프로테아제 억제제를 함유하는 1mmol/L Phenylmethane-sulfonylfluoride, Roche, Mannheim, Germany)로 용해시켜 세포 용해물을 준비하였다. 단백질 농도는 BCA 단백질 분석 키트(Pierce, Rockford, IL)를 이용하여 측정하고, 단백질 시료의 흡광도는 570 nm에서 VICTOR3™ Multilabel Plate Reader (PerkinElmer)를 이용하여 측정하였다. 10 μg 또는 15 μg 단백질을 함유하는 RIPA 용해물(lysates)을 SDS-PAGE에 의해 분리하고 폴리비닐리덴 디플로라이드(polyvinylidene difluoride) 멤브레인 (Amersham HybondTM-P, Little Chalfont, Buckinghamshire, UK) 상에 옮겨, 비특이적 결합에 대해 보호하기 위해 밤새 0.05% Tween-20 (Usb Corporation, Cleveland, OH)를 함유하는 TBS 용액에서 5% 스킴밀크(BD Biosciences)에서 유지시켰다. 멤브레인을 각 일차 항체 및 HRP-결합된 2차 항체(Pierce)로 인큐베이션하였다. 이때, ECL 플러스 웨스턴 블럿팅 검출 시스템(Amersham)을 HRP(Horseradish Peroxidase) 표지된 항체와 결합되어 있는 고정된 특정 항원을 검출하는데 사용하였다. 상기 멤브레인을 LAS 3000 (Fuji Photo Film Co. LTD, Japan)에 노출시켜 발현된 단백질의 양을 측정하였다.
그 결과, 도 1a에 나타난 바와 같이, RT-PCR을 통해 NLK의 mRNA 발현은 정상 간 조직에 비해 간암 조직에서 특이적으로 최소 2배 이상으로 증가한 것으로 나타났으며, 웨스턴 블럿 분석 결과, 상기 RT-PCR 결과와 동일하게 발현된 NLK 단백질의 양은 정상 조직에 비해 모든 간암 조직에서 현저히 증가된 것으로 나타났다.
따라서 상기 결과를 통해 본 발명자들은 상기 NLK를 간암의 발병과 관련이 있음을 알 수 있었고, 특히 NLK를 간암 진단을 위한 마커로 사용할 수 있다는 사실을 알 수 있었다.
<실시예 3>
NLK 면역조직화학 분석(Immunohistochemistry analysis)
상기 실시예 2의 결과를 통해 간암조직에서 NLK가 과발현된다는 사실을 확인하였으며, 이와 같은 사실을 면역조직화학 염색법을 통해 보다 확실히 조사하였다.
(1) 면역조직화학 염색
간암세포에서 NLK 단백질의 발현정도를 알아보기 위해, 간암 조직 마이크로어레이 샘플 상에서 NLK 단일클론 항체로(1:50, Abcam, Cambridge, UK) 면역조직화학 염색을 수행하였다. 이를 위해 면역 염색 전에, TMA 슬라이드에서 파라핀을 벗겨내고 에탄올로 수화시켜 물을 탈이온화 시켰다. 내생성 퍼옥시다제(peroxidase) 활성을 3% 수소 퍼옥사이드-메탄올 버퍼에서 5분 동안 배양시켜 블로킹하였다. 스티머에서 구연산 나트륨 버퍼(pH 6.0)로 상기 슬라이드를 20분 동안 끓여 항원들을 회수하였다. 이후, LNK의 단일클론 항체를 4℃에서 밤새 배양한 후, 바이오틴을 결합시킨 염소의 항-마우스 항체(1:200; Sigma)를 이용하여 반응시킨 후, 퍼옥시다제-결합 아비딘-비오틴 복합체로 반응시켰다. 디아미노벤지딘을 색소원(chromogen)으로 사용하여 슬라이드를 가볍게 Mayers hematoxylin으로 대비 염색하였으며, 음성 대조군으로서 슬라이드를 처리하고 일차항체를 비면역성 혈청으로 바꾸었다.
그 결과, 도 3c 및 3d에 나타낸 바와 같이, 모든 간암조직의 경우 NLK는 세포질 및 핵에 위치하고 있는 것으로 나타났다.
(2) 면역조직화학염색 평가
TMA 점수화는 두 병리학자에 의해 독립적으로 수행되었다. 일치하지 않는 경우, 그 결과는 multi-head 현미경을 이용하여 재평가하였으며, 면역염색 강도에 대하여 3가지 카테고리로 등급화하였다: 1+(weak), 2+(moderate) 및 3+(strong). 그러나 면역염색된 세포의 수가 10% 미만인 경우에는 해당 케이스는 염색에 대해 음성인 것으로 간주하였다. 각각 두 개씩의 종양 조직들을 결합시켜 하나의 케이스로 계산하였다.
그 결과, 정상 간세포 샘플 20개 중, 16개(80%)가 NLK 항체에 대하여 약한 양성을 보이거나 또는 검출되지 않았으며, 반면, HCC 샘플 30개 중 17(54%) 이상이 NLK 항체 염색에 대해 강한 양성을 나타냈다.
(3) 다양한 간암세포주 결과 비교
본 발명자들은 HCC 조직 이 외에도 다른 간암세포주에서의 NLK의 발현 정도를 조사하였는데, HCC 또는 간아세포종(hepatoblastomas)으로부터 10개의 다른 인간 간암 세포주를 입수하고, 상기 실시예들에서 수행한 RT-PCR 및 웨스턴 블럿 분석방법으로 NLK의 발현을 확인하였다.
그 결과, 도 4에 나타낸 바와 같이, 다른 암세포주의 경우에도 NLK가 정상에 비해 과발현되는 것으로 나타났으며, 특히 간암 세포주인 Hep3B 세포의 경우, 가장 높은 발현 정도를 보이는 것으로 나타났다.
<실시예 4>
NLK 간섭에 따른 HCC 세포 증식률 분석
(1) NLK 발현의 사일런싱(Silencing)
NLK의 유전자 발현을 억제할 경우, 간암 세포에 미치는 영향을 조사하기 위해, 간암 세포주인 Hep3B 세포에서 RNA 간섭-매개 단백질의 녹다운 방법에 NLK의 유전자를 내생적으로 파괴시켰다. 이를 위해 NLK siRNA 및 scrambled siRNA를 Ambion Inc (Ambion, Austin, TX)로부터 구입하여 사용하였다.
목적하는 NLK 서열은 5'-GGGUCUUCCGGGAAUUGAA(tt)-3' (Sense) [서열번호 2] 및 5'-UUCAAUUCCCGGAAGACCC(tt)-3' (Antisense) [서열번호 3]으로 하였고, 상기 세포들을 Trypsin/EDTA에 의해 수득한 후 60 mm 디쉬에 1.5 × 105 cells로 다시 플레이팅하고, 5% CO2의 습식 배양기에서 37℃의 온도하에서 밤새 배양하였다. 이후, 16 시간 후에, 상기 세포들을 Opti-MEM (Invitrogen)에 별다른 처리 없이 오직 시약과 50nmol/L scrambled siRNA, 50 nmol/L 또는 100 nmol/L NLK-특이적 siRNA로 트랜스펙션시켰다. 상기 트랜스펙션은 리포펙타민 2000 시약(Invitrogen) 10μl을 사용하여 설명서에 따라 수행하였고, 트렌스펙션 6 시간 후에, 상기 배지를 10% FBS가 보충된 신선한 RPMI 1640 배지로 교체하였다. 이후, NLK 특이적 siRNAs를 이용하여 NLK 사이런싱을 수행하였고, NLK-타겟팅 siRNA에 의한 NLK의 발현 억제 정도를 RT-PCR 및 웨스턴 블럿 분석으로 평가하였다.
그 결과, 도 5에 나타낸 바와 같이, 대조군의 경우(scrambled sequence를 도입한 경우)와 비교하여 50 nM 및 100 nM의 NLK siRNA를 세포에 처리한 경우, l모두 효과적으로 Hep3B 세포에서 NLK 발현이 억제된 것으로 나타났다.
(2) 세포 증식 분석
NLK siRNA에 의해 NLK의 발현을 억제할 경우, Hep3B 세포들의 성장에 미치는 영향을 MTS 분석으로 조사하였다. 이를 위해 24-웰 배양 플레이트에서 상기 세포들을 각 웰당 2 × 104 cells의 밀도로 10% FBS가 함유된 RPMI 1640 배지에 분주하고 18 시간 동안 유지시켰다. 이후, NLK-특이적 siRNA를 세포에 도입시킨 후, 4시간이 지나면 10% FBS 함유 RPMI 1640 배지를 이용하여 배지를 교체하고, 상기 세포들을 37℃의 온도, 5% CO2의 습식배양기에서 배양하였다. 세포증식의 확인을 위해 상기 세포들을 CellTiter 96 AQueous One Solution Cell proliferation Assay solution (Promega, Madison, WI) 200μl으로 각 정해진 시간동안(0, 1, 2, 3 days) 배양하고, 3시간 후, 세포의 흡광도를 VICTOR3™ Multilabel plate reader (PerkinElmer Inc, Boston, MA)로 측정하였다. 또한, 나아가 본 발명자들은 NLK가 종양 성장을 촉진시킨다는 사실을 규명하기 위해 다른 세포주를 입수하여 NLK의 발현을 파괴한 후, 세포들의 성장 정도를 분석하였다.
그 결과, 도 5에 나타난 바와 같이, 스크램블(scrambled) siRNA 로 처리된 대조군 세포들과 비교하였을 경우, NLK siRNA 50 nM 및 100 nM 농도로 세포에 처리한 실험군의 경우 세포 성장이 현저히 감소하는 것으로 나타났다.
또한, 도 6 및 도 7에 나타난 바와 같이, 다른 암 세포주를 대상으로 NLK의 발현을 억제시켰을 경우, SNU-423 세포의 성장은 감소하는 것으로 나타났다. 반면, SNU-368의 세포는 성장 정도가 감소된 것으로 나타나지 않았다.
따라서 상기 결과를 통해 본 발명자들은 본 발명에 따른 NLK가 간암 특이적으로 세포의 성장을 자극한다는 사실을 알 수 있었고, 이러한 결과는 즉 NLK를 간암 특이적인 마커로 사용할 수 있다는 것을 나타낸다.
<실시예 5> NLK의 발현이 억제된 HCC 세포의 세포주기 분석
상기 결과를 통해 본 발명자들은 간암 세포에서 NLK가 과발현됨을 확인하였고, 따라서 NLK의 발현을 억제할 경우 간암을 예방 또는 치료할 수 있는 효과가 있는지를 확인하기 위해, NLK의 RNA를 사일런싱시킨 Hep3 세포를 대상으로 세포주기의 변화를 조사하였다. 이를 위해, NLK siRNA가 트랜스펙션된 Hep3B 세포들을 48시간 째 트립신 처리하여 세포를 수득하고, 차가운 PBS로 세척한 후 -20℃에서 70% 알코올로 1 일 동안 고정시켰다. 고정 후, 상기 세포들을 다시 차가운 PBS로 두 번 세척하고 10 mg/ml의 RNase A를 함유하는 PBS로 37℃에서 30분 동안 배양하였다. 이후, RNase A를 처리한 다음, 5 mg/ml 프로피디움 요오드화물(PI)로 세포핵을 염색하고 염색된 세포들을 FACScan을 이용하여 세포 주기를 측정하였다. 수득한 데이터는 Cell-Quest FACS 분석 소프트웨어 (BD Biosciences, Franklin Lakes, NJ)로 분석하였다. 또한, NLK siRNA 트랜스펙션에 의한 세포주기 이용의 변화를 측정하기 위하여, FL2-A/FL2-W 플롯에서 모든 세포군으로부터 단일 세포군을 Cell-Quest FACS 분석 소프트웨어 프로토콜에 의해 분석하였다.
그 결과, 도 8에 나타낸 바와 같이, Hep 3B 세포를 유세포 분석기로 분석한 결과에 의하면, NLK siRNA로 트랜스펙션하거나 또는 그렇지 않은 경우 48시간 후를 비교해 보았을 때, NLK siRNA 트랜스펙션에 따른 세포군집이 PI 염색된 세포가 G1-S 단계 동안 증가된 것으로 나타났다. 또한, NLK의 발현이 억제되지 않은 대조군과 비교하여(Scr, 40.7%), NLK의 발현이 억제된 경우에는 G1-S 세포 주기의 억제(arresting) (51.2%)가 증가된 것으로 나타났다.
상기 결과를 통해, 본 발명자들은 간암 세포주인 Hep 3B 세포를 대상으로 상기 세포에 NLK siRNA를 처리하여 NLK의 발현을 억제할 경우, NLK의 발현을 억제하지 않은 대조군에 비해 G1 단계의 증가를 가져오는 반면, S단계는 감소를 유도하였고, 이는 NLK RNA 사일런싱에 의해 HCC 세포의 증식률을 감소시키는 요인 중에 하나가 될 수 있다는 것을 알 수 있었다. 또한, 본 발명의 NLK의 경우, HCC 세포에서의 세포주기 진행과정에서 G1/S 전이에 중요한 역할을 할 수 있다는 사실을 알 수 있었으며, 나아가 NLK의 발현 억제는 G1/S 전이의 지연을 유도함으로써 간암 세포의 증식을 억제할 수 있음을 알 수 있었다.
<실시예 6>
NLK의 발현이 억제된 HCC 세포의 세포사멸 분석
나아가 본 발명자들은 Hep3 세포 및 SNU-423 세포에서 NLK의 발현을 억제하였을 경우, 이들 세포의 세포사멸 정도를 분석하였는데, 세포사멸의 정량분석은 아넥신 V-FITC 세포사멸 검출 키트 I (BD Biosciences)를 사용하여 수행하였다. 보다 구체적으로 상기 세포사멸 분석은 Hep3 세포 및 SNU-423 세포들을 대상으로 NLK siRNA을 처리하여 NLK의 발현을 억제시킨 후, 트립신을 처리하고 차가운 PBS로 두번 세척하고, 1X 결합 버퍼에서 1 × 106 cells/ml 농도로 재현탁하였다. 상기 세포들, 즉 세포 현탁액 100 μl (1 × 105 cells)를 5 ml 배양 튜브에 옮기고 5 μl 아넥신 V-FITC 및 10 μl PI 용액을 첨가하였다. 암실 및 실온에서 배양한지 15분 후에 400 μl 1X 결합버퍼를 각 배양튜브에 첨가하고 세포의 세포사멸 분획의 검출을 유세포 분석기 FACScan (BD Biosciences)에서 Cell-Quest FACS analysis software로 수행하였다. 이때 대조군으로는 NLK siRNA 대신 스크램블 siRNA를 처리한 것을 사용하였다.
그 결과, 도 9에 나타난 바와 같이, 세포사멸이 유도된 세포(오른쪽 상단 그림)에 대하여 PI 및 Annexin V 염색에 따른 유세포 분석은 NLK 사일런싱에 의한 영향을 받지 않는 것으로 나타났다.
따라서 상기 결과를 통해 본 발명자들은 NLK의 발현 억제를 통해 간암을 예방 또는 치료할 수 있는 메카니즘은 세포사멸의 촉진을 통해서가 아니라 암 세포의 성장을 억제시키는 기작을 통해 이루어질 수 있다는 것을 알 수 있었고, 특히 G1/S의 세포주기를 억제함을 통해 이루어진다는 것을 알 수 있었다.
<실시예 7>
G1/S 세포주기 이동(transition)에서 NLK가 미치는 영향 조사
본 발명자들은 상기 실험 결과들로부터 NLK의 발현 억제가 간암세포의 세포성장을 억제한다는 사실을 알 수 있었다. 따라서 세포주기에 관련된 중요 인자들인 CDK(cyclin dependent kinases), CDK 억제자 (CDKIs) 및 사이클린에 대해 NLK가 미치는 영향을 하기와 같은 실험들을 통해 조사하였다.
(1) NLK의 발현억제에 따른 세포주기 조절자의 발현여부
세포주기 과정에서 G1에서 S 단계로의 이동에 관여하는 조절자 중에서, 음성 세포주기 조절자인 p21WAF1/CIP1, p15INK4B, p16INK4A 및 p27Kip1들은 사이클린 D1/CDK4, 6 또는 사이클린 E/CDK2 복합체[Grana and Reddy, 1995; Soto Martinez et al., 2005; Xiong et al., 1993]를 억제하는 주요 조절자들로 잘 알려져 있다. 이에 본 발명자들은 간암 세포에서 NLK의 발현 억제에 따른 상기 세포주기 조절 인자들의 발현에 미치는 영향을 다음과 같은 웨스턴 블럿 방법을 통해 관찰하였다. 세포주기 관련 항체 (p21, p15, p16, p27, Cyclin D1, CDK2) 및 NLK 항체를 Cell Signaling (Cell Signaling Technology Inc, Beverly, MA) 및 Abcam (Abcam Inc. Cambrige, MA)로부터 구입하였고, 웨스턴 블럿 수행은 NLK의 발현을 억제시킨 세포 추출물(Whole-cell extracts)을 RIPA(radio-immunoprecipitation assay) 용해 버퍼 (50mmol/L Tris-HCl, pH7.4, 150mmol/L NaCl, 1% Nonidet P-40, 0.25% sodium deoxycholate, 프로테아제 억제제를 함유하는 1mmol/L Phenylmethane-sulfonylfluoride, Roche, Mannheim, Germany)로 준비하고, 단백질 농도는 BCA 단백질 분석 키트(Pierce, Rockford, IL)를 이용하여 측정하고, 단백질 시료의 흡광도는 570 nm에서 VICTOR3™ Multilabel Plate Reader (PerkinElmer)를 이용하여 측정하였다. 10 μg 또는 15 μg 단백질을 함유하는 RIPA 용해물(lysates)을 SDS-PAGE에 의해 분리하고 폴리비닐리덴 디플로라이드(polyvinylidene difluoride) 멤브레인 (Amersham HybondTM-P, Little Chalfont, Buckinghamshire, UK) 상에 옮겨, 비특이적 결합에 대해 보호하기 위해 밤새 0.05% Tween-20 (Usb Corporation, Cleveland, OH)를 함유하는 TBS 용액에서 5% 스킴밀크(BD Biosciences)에서 유지시켰다. 멤브레인을 각 일차 항체 및 HRP-결합된 2차 항체(Pierce)로 인큐베이션하였다. 그리고, 상기 멤브레인을 LAS 3000 (Fuji Photo Film Co. LTD, Japan)에 노출시켰다. 이때 대조군으로는 스크램블 siRNA를 도입한 세포를 사용하였다.
그 결과, 도 10에 나타낸 바와 같이, NLK siRNA가 도입되어 세포내에서 NLK가 발현되지 않은 세포의 경우, 사이클린 D1 및 CDK2의 발현이 감소되는 것으로 나타났다. 이러한 결과를 통해 HCC 세포에서 NLK의 과발현은 사이클린 D1 및 CDK2 양쪽 모두의 발현을 활성화시킨다는 것을 알 수 있었다.
(2) p130, pRb 단백질의 인산화
상기 결과를 바탕으로, NLK와 CDK2 및 사이클린 D1간의 관계를 보다 확실히 규명하기 위해, Hep3B 세포에서 NLK의 발현을 억제하였을 경우, p130, pRb 단백질의 인산화 정도를 분석하였다. 상기 인산화는 상기 기술된 웨스턴 블럿 방법과 동일한 방법으로 수행하였다.
그 결과, 도 10에 나타난 바와 같이, NLK의 발현 억제는 p130의 인산화를 감소시키는 것으로 나타났고, 이는 HCCs에서 NLK의 특이적 조절이 CDK2 및 사이클린 D1의 전사 활성을 통해 pRb 단백질 패밀리의 인산화에 영향을 준다는 것을 알 수 있었다.
또한, 이러한 결과는 NLK에 의한 CDK2 및 사이클린 D1의 동시 조절은 간암의 진행 동안 조절되지 않은 세포의 성장을 야기하는 잠재적인 유사분열의 자극이 될 수 있음을 알 수 있었다.
(3) β-카테닌의 발현 억제
본 발명자들은 상기 실험을 통해 Hep3B 세포에서 NLK의 발현 억제가 β-카테닌의 발현에도 영향을 미치는지 웨스턴 블럿을 통해 확인하였다.
그 결과, 도 10에 나타낸 바와 같이, NLK의 발현이 억제된 세포에서 β-카테닌의 발현의 발현도 억제된다는 것을 알 수 있었다.
이러한 결과를 통해 본 발명자들은 간암 세포주에서 NLK가 β-카테닌의 안정성을 조절하는 역할을 할 수 있다는 것을 알 수 있었으며, 이는 이전 연구들에 의해 규명된 NLK가 T세포 인자/림프구 강화인자의 인산화를 통해 Wnt 시그널링을 음성적으로 조절함을 보고하고 있으나, 상기 본 발명에 따른 실험 결과는 종래 공지 사실과는 상이한 NLK의 다른 메커니즘을 규명한 것이라고 할 수 있다.
<실시예 8>
NLK 발현 억제에 따른 간암세포의 증식 억제 효과
마지막으로 본 발명자들은 NLK의 발현 억제를 통해 간암 세포의 증식을 억제하고 궁극적으로 간암을 예방 또는 치료할 수 있는지를 확인하기 위해 소프트-아가 콜로니 형성 분석(Soft-agar colony formation assay)을 수행하였다. 이를 위해 NLK siRNA로 간암 세포에 트랜스펙션하고 48시간 후, RPMI-1640 배지에서 0.4% 아가로스 1 mL에 약 5,000 cells를 3개의 35nm 디쉬에서 0.8% 아가로스가 존재하는 각 웰에 분주하였다. 이후 상기 플레이트에 10% FBS 함유한 배지 500 ul를 첨가하고 37℃ 및 5% CO2 배양기에서 3주 동안 배양하였다. 이후 배지를 매주 교체하였고, 3주째 세포 콜로니들을 0.05 % 크리스탈 바이올렛으로 염색하고 직경이 0.1 mm 이상인 콜로니들을 x40 배율에서 현미경으로 계수하였다. 계수된 콜로니 수의 평균은 각 처리조건에서 3개의 웰 상에서의 수를 기초로 하였고 단측검정(one-sided Students t test)에 의해 분석하였다.
그 결과, 도 11에 나타난 바와 같이, NLK의 발현이 억제된 실험군의 경우 대조군에 비해 콜로니의 형성수가 감소된 것으로 나타났다.
이러한 결과를 통해 본 발명자들은 간암 세포 또는 간암 조직에서 NLK의 발현을 억제할 경우, 암 세포의 증식을 억제하고, 특히 비부착성 증식능(anchorage-independent growth)의 감소를 유발하여 간암을 예방 또는 치료할 수 있다는 사실을 알 수 있었다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
<110> Industry Academic Cooperation Foundation of Catholic University
<120> NLK as a marker for the diagnosis of hepatocellular carcinomas
and as a therapeutic agent thereof
<150> KR 2010-0026751
<151> 2010-03-25
<160> 7
<170> KopatentIn 1.71
<210> 1
<211> 1584
<212> DNA
<213> Artificial Sequence
<220>
<223> NLK gene sequence
<400> 1
atgtctcttt gtggcgcaag agccaacgca aaaatgatgg cggcttacaa tggcggtaca 60
tctgcagcag cagcaggtca ccaccaccac catcaccacc accttccaca cctccctcct 120
cctcacctgc accaccacca ccaccctcaa caccatcttc atccggggtc ggctgccgct 180
gtacaccctg tacagcagca cacctcttcg gcagctgcgg cagccgcagc agcggctgca 240
gctgcagcca tgttaaaccc tgggcaacaa cagccatatt tcccatcacc ggcaccgggg 300
caggctcctg gaccagctgc agcagcccca gctcaggtac aggctgccgc agctgctaca 360
gttaaggcgc accatcatca gcactcgcat catccacagc agcagctgga tattgagccg 420
gatagaccta ttggatatgg agcctttggt gttgtctggt cagtaacaga tccaagagat 480
ggaaagagag tagcgctcaa aaagatgccc aacgtcttcc agaatctggt ctcttgcaaa 540
agggtcttcc gggaattgaa gatgttgtgt ttttttaagc atgataatgt actctctgcc 600
cttgacatac tccaacctcc acacattgac tattttgaag aaatatatgt tgtcacagaa 660
ttgatgcaga gtgacctaca taaaattatc gtctctcctc aaccactcag ctcagatcat 720
gtcaaagttt ttctttatca gattttgcga ggtttgaaat atctccattc agctggcatt 780
ttacatcgag acattaagcc agggaatctc cttgtgaaca gcaactgtgt tctaaagatt 840
tgtgattttg gattggccag agtggaagaa ttagatgaat cccgtcatat gactcaggaa 900
gttgttactc agtattatcg ggctccagaa atcctgatgg gcagccgtca ttacagcaat 960
gctattgaca tctggtctgt gggatgtatc tttgcagaac tactaggacg aagaatattg 1020
tttcaggcac agagtcccat tcagcagttg gatttgatca cggatctgtt gggcacacca 1080
tcactggaag caatgaggac agcttgtgaa ggcgctaagg cacatatact caggggtcct 1140
cataaacagc catctcttcc tgtactctat accctgtcta gccaggctac acatgaagct 1200
gttcatctcc tttgcaggat gttggtcttt gatccatcca aaagaatatc cgctaaggat 1260
gccttagccc acccctacct agatgaaggg cgactacgat atcacacatg tatgtgtaaa 1320
tgttgctttt ccacctccac tggaagagtt tataccagtg actttgagcc tgtcaccaat 1380
cccaaatttg atgacacttt cgagaagaac ctcagttctg tccgacaggt taaagaaatt 1440
attcatcagt tcattttgga acagcagaaa ggaaacagag tgcctctctg catcaaccct 1500
cagtctgctg cttttaagag ctttattagt tccactgttg ctcagccatc tgagatgccc 1560
ccatctcctc tggtgtggga gtga 1584
<210> 2
<211> 19
<212> RNA
<213> Artificial Sequence
<220>
<223> nlk sense
<400> 2
gggucuuccg ggaauugaa 19
<210> 3
<211> 19
<212> RNA
<213> Artificial Sequence
<220>
<223> nlk antisense
<400> 3
uucaauuccc ggaagaccc 19
<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> nlk F primer
<400> 4
gctggatatt gagccggata 20
<210> 5
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> nlk R primer
<400> 5
catcttcaat tcccggaaga 20
<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> GAPDH F primer
<400> 6
accaggtggt ctcctctgac 20
<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> GAPDH R primer
<400> 7
tgctgtagcc aaattcgttg 20
Claims (15)
- NLK(nemo like kinase) 유전자의 mRNA 또는 이의 단백질 수준을 측정하는 물질을 포함하는 간암 진단용 조성물.
- 제1항에 있어서,상기 물질은 NLK의 유전자 또는 단백질에 특이적으로 결합하는 프라이머, 프로브 또는 항체인 것을 특징으로 하는 간암 진단용 조성물.
- 제1항에 있어서,상기 간암은 인간 간세포암(HCC, hepatocellular carcinoma)인 것을 특징으로 하는 간암 진단용 조성물.
- 제1항에 있어서,상기 NLK(nemo like kinase) 유전자는 서열번호 1로 표시되는 염기서열로 이루어진 것을 특징으로 하는 간암 진단용 조성물.
- NLK(nemo like kinase)의 발현을 억제하는 올리고뉴클레오티드를 포함하는 간암의 예방 또는 치료용 조성물.
- 제5항에 있어서,상기 올리고뉴클레오티드는 NLK(nemo like kinase)를 암호화하는 유전자에 대한 안티센스 올리고뉴클레오티드, siRNA 또는 shRNA인 것을 특징으로 하는 간암의 예방 또는 치료용 조성물.
- 제6항에 있어서,상기 siRNA는 서열번호 2 또는 서열번호 3의 서열을 갖는 것을 특징으로 하는 간암의 예방 또는 치료용 조성물.
- 제5항에 있어서,상기 NLK(nemo like kinase)의 발현을 억제하는 올리고뉴클레오티드는 사이클린 D1, CDK2 또는 β-카테닌의 발현을 억제하고, G1/S 단계의 세포주기 진행을 억제함을 통해 항암 활성을 갖는 것을 특징으로 하는 간암의 예방 또는 치료용 조성물.
- (a) 간암이 의심되는 환자의 생물학적 시료로부터 NLK 유전자의 발현 수준 또는 상기 유전자가 코딩하는 단백질의 수준을 측정하는 단계; 및(b) 상기 유전자의 발현 수준 또는 상기 유전자가 코딩하는 단백질의 수준을 정상 대조구 시료의 해당 유전자의 발현 수준 또는 단백질 수준과 비교하는 단계를 포함하는 간암의 발병을 예측 또는 진단하는 방법.
- 제9항에 있어서,상기 측정은 역전사 중합효소 연쇄반응(reverse transcriptase-polymerase chain reaction), 실시간 중합효소 연쇄반응(real time-polymerase chain reaction), 웨스턴 블럿, 노던 블럿, ELISA(enzyme linked immunosorbent assay), 방사선면역분석(RIA: radioimmunoassay), 방사 면역 확산법(radioimmunodiffusion) 및 면역침전분석법(immunoprecipitation assay)으로 이루어진 군 중에서 선택되는 것을 특징으로 하는 간암의 발병을 예측 또는 진단하는 방법.
- (a) NLK(nemo like kinase) 유전자 또는 NLK 단백질을 포함하는 세포에 분석하고자 하는 시료를 접촉시키는 단계;(b) 상기 NLK 유전자의 발현양, NLK 단백질의 양 또는 NLK 단백질의 활성을 측정하는 단계; 및(c) 상기 (b) 단계의 측정 결과, NLK 유전자의 발현양, NLK 단백질의 양 또는 NLK 단백질의 활성이 감소되는 경우에 상기 시료를 간암의 예방 또는 치료용 물질로 판정하는 단계를 포함하는, 간암의 예방 또는 치료용 물질을 스크리닝 하는 방법.
- 제11항에 있어서,상기 측정은 역전사 중합효소 연쇄반응(reverse transcriptase-polymerase chain reaction), 실시간 중합효소 연쇄반응(real time-polymerase chain reaction), 웨스턴 블럿, 노던 블럿, ELISA(enzyme linked immunosorbent assay), 방사선면역분석(RIA: radioimmunoassay), 방사 면역 확산법(radioimmunodiffusion) 및 면역침전분석법(immunoprecipitation assay)으로 이루어진 군 중에서 선택되는 것을 특징으로 하는 간암의 예방 또는 치료용 물질을 스크리닝 하는 방법.
- 제1항 내지 제4항 중 어느 한 항에 따른 조성물을 포함하는 간암 진단용 키트.
- 제13항에 있어서.상기 키트는 PCR 키트, DNA 칩 키트 또는 단백질 칩 키트인 것을 특징으로 하는 간암 진단용 키트.
- 서열번호 1로 표시되는 NLK(nemo like kinase)의 폴리뉴클레오티드를 포함하는 간암 진단용 마이크로어레이.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/637,008 US8609626B2 (en) | 2010-03-25 | 2011-03-25 | NLK as a marker for diagnosis of liver cancer and as a therapeutic agent thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20100026751 | 2010-03-25 | ||
KR10-2010-0026751 | 2010-03-25 | ||
KR10-2011-0026618 | 2011-03-24 | ||
KR1020110026618A KR101315570B1 (ko) | 2010-03-25 | 2011-03-24 | 간암 진단 마커 및 치료제로서의 nlk |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2011118994A2 true WO2011118994A2 (ko) | 2011-09-29 |
WO2011118994A9 WO2011118994A9 (ko) | 2012-03-08 |
WO2011118994A3 WO2011118994A3 (ko) | 2012-04-26 |
Family
ID=44673953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/002031 WO2011118994A2 (ko) | 2010-03-25 | 2011-03-25 | 간암 진단 마커 및 치료제로서의 엔엘케이 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011118994A2 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103173529A (zh) * | 2011-12-23 | 2013-06-26 | 上海吉凯基因化学技术有限公司 | 人nlk基因相关的用途及其相关药物 |
WO2014013231A1 (en) * | 2012-07-16 | 2014-01-23 | The Institute Of Cancer Research: Royal Cancer Hospital | Materials and methods for treating pten mutated or deficient cancer |
CN104726593A (zh) * | 2011-12-23 | 2015-06-24 | 上海吉凯基因化学技术有限公司 | 人nlk基因相关的用途及其相关药物 |
-
2011
- 2011-03-25 WO PCT/KR2011/002031 patent/WO2011118994A2/ko active Application Filing
Non-Patent Citations (4)
Title |
---|
EMAMI, K. H. ET AL.: 'Nemo-like kinase induces apoptosis and inhibits androgen receptor signaling in prostate cancer cells' PROSTATE. vol. 69, no. 14, 01 October 2009, pages 1481 - 1492 * |
JI, J. ET AL.: 'Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells' HEPATOLOGY. vol. 50, no. 2, August 2009, pages 472 - 480 * |
JUNG, K. H. ET AL.: 'Targeted disruption of Nemo-like kinase inhibits tumor Cell growth by simultaneous suppression of cyclin D and CDK2 in human hepatocellular carcinoma' JOURNAL OF CELLULAR BIOCHEMISTRY vol. 110, no. 3, 01 June 2010, pages 687 - 696 * |
YASUDA, J. ET AL.: 'Nemo-like kinase induces apoptosis in DLD-1 human colon cancer cells' BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. vol. 308, no. 2, 22 August 2003, pages 227 - 233 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103173529A (zh) * | 2011-12-23 | 2013-06-26 | 上海吉凯基因化学技术有限公司 | 人nlk基因相关的用途及其相关药物 |
WO2013091293A1 (zh) * | 2011-12-23 | 2013-06-27 | 上海吉凯基因化学技术有限公司 | 人nlk基因相关的用途及其相关药物 |
CN104726593A (zh) * | 2011-12-23 | 2015-06-24 | 上海吉凯基因化学技术有限公司 | 人nlk基因相关的用途及其相关药物 |
US9334502B2 (en) | 2011-12-23 | 2016-05-10 | Shanghai Genechem Co., Ltd | Use of human NLK gene and associated drugs thereof |
WO2014013231A1 (en) * | 2012-07-16 | 2014-01-23 | The Institute Of Cancer Research: Royal Cancer Hospital | Materials and methods for treating pten mutated or deficient cancer |
Also Published As
Publication number | Publication date |
---|---|
WO2011118994A9 (ko) | 2012-03-08 |
WO2011118994A3 (ko) | 2012-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016018087A1 (ko) | Egfr-표적제제에 대한 감수성 예측용 신규한 바이오 마커 및 이의 용도 | |
WO2016018088A1 (ko) | Met 저해제에 대한 감수성 예측용 신규한 바이오 마커 및 이의 용도 | |
WO2016036172A1 (ko) | 단백질 키나제 억제제에 대한 감수성 예측용 바이오 마커 및 이의 용도 | |
WO2011118994A2 (ko) | 간암 진단 마커 및 치료제로서의 엔엘케이 | |
WO2011081465A9 (ko) | 혈관신생 억제용 약제학적 조성물 | |
WO2023096126A1 (ko) | Mdsc 활성 저해 약물의 선별 방법 | |
WO2017082655A1 (ko) | 항암 치료 내성 판단 방법 및 상기 방법에 사용되는 조성물 | |
WO2019146841A1 (ko) | 간암의 진단 및 예후 예측용 바이오 마커 및 이의 용도 | |
WO2015108328A1 (ko) | 대장암 마커로서의 신규 ntrk1 융합유전자 및 이의 용도 | |
WO2015046783A1 (en) | Pharmaceutical composition for treatment of radiation- or drug-resistant cancer comprising hrp-3 inhibitor | |
WO2021091319A1 (en) | Glypican-3-specific modified aptamer and use thereof | |
WO2013100273A1 (ko) | 방사선 피폭 진단용 마커 igfbp-5, 그 마커의 발현수준을 측정하는 방사선 피폭 진단용 조성물, 그 조성물을 포함하는 방사선 피폭 진단용 키트, 및 그 마커를 이용한 방사선 피폭을 진단하는 방법 | |
WO2014157965A1 (ko) | P34의 발현 억제제 또는 활성 억제제를 유효성분으로 포함하는 암의 치료 또는 전이 억제용 조성물 | |
WO2017164568A1 (ko) | V-ATPase subunit V1E1의 단백질 발현 수준을 측정하여 식도암 환자의 생존율과 예후를 예측하는 방법 | |
WO2022216066A1 (ko) | 암 환자의 예후 예측용 바이오마커 및 이의 용도 | |
WO2011090283A2 (ko) | Sh3rf2 발현 또는 활성 억제제를 함유하는 암의 예방 또는 치료용 조성물 | |
WO2018174506A1 (ko) | Sulf2 유전자를 이용한 소라페닙 치료에 대한 감수성 예측방법 및 sulf2 저해제를 포함하는 암 치료용 조성물 | |
WO2017030395A1 (ko) | 비만 치료 또는 예방용 약학 조성물 | |
WO2013133472A1 (ko) | 독성 예측 및 치료 타겟으로서의 activating transcription factor 3(atf 3) | |
WO2021033973A1 (ko) | Mitf 억제제를 유효성분으로 함유하는 골수-유래 억제세포 저해용 조성물 | |
WO2021045538A1 (ko) | eIF4E 저해제를 포함하는 eIF4E 활성증가와 관련된 상태의 진단 또는 치료용 조성물 | |
WO2022169342A2 (ko) | 암 전이 억제용 약학 조성물 | |
WO2020130467A2 (ko) | Cd8+ 메모리 t 세포 매개성 질환의 예방 또는 치료용 약학 조성물 | |
WO2016200246A1 (ko) | 담도암의 항암제 내성 진단용 신규 바이오마커 및 이의 용도 | |
WO2017023001A1 (ko) | 비알콜성 지방간 조절인자 14-3-3 단백질 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11759743 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13637008 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11759743 Country of ref document: EP Kind code of ref document: A2 |