Nothing Special   »   [go: up one dir, main page]

WO2011118372A1 - 希薄燃料吸入ガスタービン - Google Patents

希薄燃料吸入ガスタービン Download PDF

Info

Publication number
WO2011118372A1
WO2011118372A1 PCT/JP2011/055210 JP2011055210W WO2011118372A1 WO 2011118372 A1 WO2011118372 A1 WO 2011118372A1 JP 2011055210 W JP2011055210 W JP 2011055210W WO 2011118372 A1 WO2011118372 A1 WO 2011118372A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
turbine
catalytic combustor
heating burner
compressor
Prior art date
Application number
PCT/JP2011/055210
Other languages
English (en)
French (fr)
Inventor
義弘 山崎
聡 黒坂
宏行 柏原
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to UAA201212179A priority Critical patent/UA102361C2/ru
Priority to US13/636,991 priority patent/US20130276433A1/en
Priority to AU2011230790A priority patent/AU2011230790B2/en
Priority to RU2012145092/06A priority patent/RU2521179C2/ru
Priority to CN2011800155454A priority patent/CN102933819A/zh
Publication of WO2011118372A1 publication Critical patent/WO2011118372A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]

Definitions

  • the present invention relates to a lean fuel intake gas turbine that uses as a fuel a low-calorie gas such as CMM (Coal Mine Methane) generated in a coal mine or the like and landfill gas generated in a landfill.
  • a low-calorie gas such as CMM (Coal Mine Methane) generated in a coal mine or the like and landfill gas generated in a landfill.
  • a lean fuel intake gas turbine in which a gas having a methane concentration lower than the flammability limit is sucked into an engine and a methane component contained in the gas is used as fuel is known.
  • a working gas containing low-concentration methane gas is compressed by a compressor to generate compressed gas, which is combusted by a catalytic reaction in a catalytic combustor, and the turbine is driven by the obtained combustion gas.
  • the exhaust gas discharged from the turbine is sent to a regenerator (heat exchanger), thereby heating the compressed gas introduced from the compressor to the catalytic combustor to a predetermined temperature or higher.
  • a duct burner is provided in the exhaust gas passage connecting the turbine outlet and the regenerator inlet, and a fuel such as natural gas is introduced into the duct burner when starting an engine having a low exhaust gas temperature or during a low load operation. To burn. As a result, by raising the exhaust gas temperature, the compressed gas supplied from the compressor to the regenerator is sufficiently warmed and introduced into the catalytic combustor, and the catalytic combustor is activated to efficiently operate the turbine. (Patent Document 1).
  • VAM Vehicle Air Methane
  • CO 2 emission rights Can also be obtained.
  • the duct burner is installed in the exhaust gas passage at the turbine outlet, the exhaust gas from the turbine passes through the exhaust gas passage even when the duct burner is not operated as in rated operation. This will cause system pressure loss and reduce engine output.
  • the flow rate of the combustion air to the duct burner cannot be adjusted, it is difficult to re-ignite the duct burner required when the catalyst in the catalytic combustor is deteriorated.
  • the duct burner is installed and accommodated in the exhaust gas passage, the exhaust gas passage itself must have a large size and a large capacity, and the gas turbine is increased in size.
  • a lean fuel intake gas turbine compresses a working gas containing fuel and has a combustible concentration limit or less to generate a compressed gas, and combusts the compressed gas by a catalytic reaction.
  • the catalyst combustor, the turbine driven by the combustion gas from the catalyst combustor, and the exhaust gas supplied from the turbine through the exhaust gas passage, are introduced from the compressor into the catalyst combustor by the exhaust gas from the turbine.
  • a working gas having a flammable limit concentration or less mixed with fuel and air is compressed by a compressor, and the compressed gas is combusted by a catalytic reaction in a catalytic combustor.
  • the turbine is driven. If the inlet temperature of the catalytic combustor does not reach the starting temperature of the catalytic reaction, such as during start-up or low-load operation, the fuel is mixed with the extracted gas extracted from the compressor and burned by the heating burner. Warm gas is supplied to the exhaust gas passage to heat the exhaust gas.
  • the heated exhaust gas is heat-exchanged with the compressed gas introduced from the compressor in the regenerator, and the inlet temperature of the catalytic combustor is increased by the heated compressed gas, thereby enabling catalytic combustion.
  • high temperature combustion gas can be stably supplied to a turbine.
  • the heating burner does not exist in the exhaust gas passage, there is no pressure loss in the exhaust system, and the engine output does not decrease.
  • the gas turbine can be driven using gas with low fuel concentration (methane gas concentration) such as CMM, VAM, and landfill gas as fuel, and the catalytic reaction is used, the normal rating without using the humidifying burner During operation, many flammable gas concentrations below the flammable limit concentration can be processed without generating NOx, so that the amount of methane gas released can be reduced, which can help prevent global warming.
  • methane gas concentration such as CMM, VAM, and landfill gas
  • the heating burner since it is not a structure in which a heating burner is installed in the exhaust gas passage as in the prior art, it does not cause a pressure loss in the exhaust system and there is no reduction in engine output, so that efficient operation can be performed. Furthermore, since the heating burner is not installed in the exhaust gas passage, a relatively small exhaust gas passage is sufficient, and the gas turbine can be made compact. In addition, since the extraction gas supply amount to the heating burner is controlled by the extraction valve, the extraction gas amount is appropriately controlled at the time of re-ignition, and the required amount of heating gas is supplied by the heating burner. Since it can be generated, reignition is facilitated.
  • the extraction valve comprises a control valve for continuously increasing or decreasing the supply amount of the extraction gas to the heating burner.
  • the supply amount of the extraction gas to the heating burner is continuously controlled by the extraction valve, the supply amount of the extraction gas to the heating burner and the fuel are adjusted in accordance with the change in the engine speed.
  • the heating burner is configured to operate when the engine is started. Since the temperature of the exhaust gas from the turbine is low when the engine is started, the catalytic combustor is not sufficiently activated, so high-pressure and high-temperature compressed gas cannot be supplied to the turbine, and the rotation of the engine can be increased smoothly. Can not. Since the heating burner is operated at the time of starting the engine, the catalytic combustor is efficiently activated, and the engine can be started smoothly.
  • the heating burner is configured to operate at a partial rotational speed lower than the rated rotational speed of the engine.
  • the total amount of working gas that passes through the gas turbine is less than that at the rated speed, so the amount of fuel required for the heating burner can be reduced accordingly. Can be made compact.
  • the heating burner is configured to operate when a combustion failure occurs in the catalytic combustor other than when the gas turbine is started.
  • the heating burner is re-ignited and operated, so that the catalytic combustor is sufficiently activated and a reduction in engine output can be avoided.
  • the gas turbine can be driven by a gas having a low fuel concentration (methane gas concentration). Moreover, since a catalytic reaction is used, a large amount of gas can be processed and the amount of methane gas released can be reduced without generating NOx during normal rated operation. In addition, because it is not a structure in which a heating burner is installed in the exhaust gas passage, a relatively small exhaust gas passage is sufficient, and the gas turbine can be made compact, without causing pressure loss in the exhaust system, Reduced engine output is prevented.
  • a gas having a low fuel concentration methane gas concentration
  • FIG. 1 is a simplified configuration diagram showing a lean fuel intake gas turbine according to an embodiment of the present invention.
  • the gas turbine GT includes a compressor 1, a catalytic combustor 2 including a catalyst such as platinum or palladium, and a turbine 3.
  • the rotating machine 4 serving as a generator and a starter is driven by the output of the gas turbine GT.
  • a working gas G1 in which air and fuel (combustible component) are mixed such as VAM generated in a coal mine, CMM having a higher combustible component (methane) concentration than this.
  • VAM generated in a coal mine
  • CMM having a higher combustible component (methane) concentration than this.
  • the compressed gas G2 is combusted by a catalytic reaction by a catalyst such as platinum or palladium in the catalytic combustor 2, and a high-temperature / high-pressure combustion gas G3 generated thereby is supplied to the turbine 3 to drive the turbine 3.
  • the turbine 3 is connected to the compressor 1 via the rotary shaft 5, and the compressor 1 is driven by the turbine 3.
  • the power generation device 50 including the gas turbine GT and the rotating machine 4 is constructed.
  • the fuel concentration (combustible component concentration) in the working gas G1 is not more than the combustible concentration limit, that is, not more than the lowest temperature at which flame combustion is possible, it can be ignited even if the temperature is increased by compression in the compressor 1. There is no.
  • a high concentration of combustible components can be added to the working gas G1 as appropriate to increase the fuel concentration.
  • the gas turbine GT further includes a regenerator (heat exchanger) 6 for heating the compressed gas G2 introduced from the compressor 1 to the catalytic combustor 2 by the exhaust gas G4 from the turbine 3, and a heating burner 7. ing.
  • the warming burner 7 mixes the heating gas G5, which is obtained by mixing the fuel with the extracted gas G20 extracted from the compressor 1 and burning the flame, into the exhaust gas G4 supplied from the turbine 3 to the regenerator 6. .
  • the warming burner 7 is connected to a bleed valve 8 for controlling the supply amount of the extraction gas G20 to the warming burner 7.
  • the exhaust gas G4 flowing out of the regenerator 6 is silenced through a silencer (not shown) and then released to the outside.
  • Control of the supply amount of the extraction gas G20 to the heating burner 7 by the extraction valve 8 is performed by an output signal from the start control means 21 of the controller 20 described later.
  • the fuel is supplied to the heating burner 7 while adjusting the flow rate of the CMM fed from the CMM source 13 such as the excavation part of the coal mine by the first fuel flow control valve 9.
  • the CMM flow rate adjustment by the first fuel flow rate control valve 9 is performed by a control signal from a start control means 21 provided in a controller 20 that controls the entire apparatus.
  • the supply of the working gas G1 to the compressor 1 is performed by adjusting the flow rate of the CMM extracted from the CMM source 13 to the VAM from the VAM source 12, such as ventilation in a coal mine, as necessary by the second fuel flow control valve 10. It is done by mixing.
  • CMM contains about 10-30% methane gas
  • VAM contains less than 1% methane gas.
  • the flow rate adjustment of the CMM by the second fuel flow rate control valve 10 is performed by a control signal from a load / stop control means 22 provided in the controller 20.
  • an air source 19 such as an ambient environment is connected to the suction passage from the VAM source 12 to the compressor 1 through an on-off valve 18 for purging at the time of starting operation described later.
  • a first temperature sensor 31 for detecting the inlet temperature is provided on the inlet side of the catalytic combustor 2, and a second temperature sensor for detecting the outlet temperature is provided on the outlet side of the catalytic combustor 2.
  • 32 is provided.
  • the inlet temperature of the catalytic combustor 2 detected by the first temperature sensor 31 is input as a temperature detection signal to the start control means 21 of the controller 20, and the outlet temperature of the catalytic combustor 2 detected by the second temperature sensor 32.
  • a third temperature sensor 33 for detecting the outlet temperature is provided on the outlet side of the turbine 3, and the temperature detection of the exhaust gas detected by the third temperature sensor 33 is provided.
  • a signal is input to the load / stop control means 22 of the controller 20.
  • a fourth temperature sensor 34 for detecting the inlet temperature is provided on the inlet side of the regenerator 6, and a temperature detection signal of the inlet temperature is input to the start control means 21 of the controller 20.
  • the rotating shaft 5 that connects the compressor 1 and the turbine 3 is a single shaft, and the rotating shaft 5 and the rotating machine 4 are connected via a speed reducer 17.
  • a rotation sensor 36 is provided on the rotation shaft 5, and a detection signal of the rotation number of the rotation shaft 5 detected by the rotation sensor 36 is input to the load / stop control means 22 of the controller 20.
  • the electric power obtained by the rotating machine 4 driven by the rotation of the turbine 3 is input to the load / stop control means 22 of the controller 20.
  • the power converter 11 drives the rotating machine 4 as a starter motor at the time of starting by the load / stop control means 22.
  • the turbine 3 and the regenerator 6 are connected by an exhaust gas passage 25 formed by an exhaust duct.
  • the exhaust gas passage 25 includes a cylindrical portion 25a near the turbine and a diameter-expanded cylindrical portion 25b that is connected to the downstream end portion of the cylindrical portion 25a and expands toward the regenerator 6 side.
  • a heating burner 7 for supplying the heating gas G5 into the exhaust gas passage 25 is provided outside the enlarged diameter cylindrical portion 25b with respect to the enlarged diameter cylindrical portion 25b of the exhaust gas passage 25. Since the enlarged diameter cylindrical portion 25b connected to the regenerator 6 side of the exhaust gas passage 25 has a divergent shape, the heating gas G5 is uniformly supplied to the large regenerator 6, and the regenerator 6 as a whole. Can be used effectively to exchange heat with the compressed gas G2.
  • the heating burner 7 is supplied with CMM as a fuel component from the CMM source 13 (FIG. 1), and supplies the compressed gas G2 from the compressor 1 to the regenerator 6.
  • a bleed gas passage 27 branches from the compressed gas passage 24, and the bleed gas passage 27 is provided with a warming burner 7 and a bleed valve 8 located upstream thereof.
  • a curve a represents the number of revolutions of the rotating shaft 5 of the gas turbine GT
  • b represents generated power
  • c represents an opening of the first fuel flow control valve
  • d represents an opening of the second fuel flow control valve 10
  • e Indicates the opening of the bleed valve 8 respectively.
  • start control will be described.
  • the start control means 21 that has received a start command from the outside first operates the power converter 11 of FIG. 1 to drive the rotating machine 4 as a starter and open the on-off valve 18. Air is sucked into the gas turbine GT and motored for a certain period of time, and as shown in FIG. 3, the gas turbine GT is rotated at a low rotational speed (for example, 20 to 30% of the rating) (purge).
  • the on-off valve 18 is closed and the gas turbine GT sucks VAM from the VAM source 2 to increase the rotational speed to a partial rotational speed lower than the rated rotational speed (100%, for example, about 60% of the rated value).
  • the regenerator 6 is warmed by ignition of the heating burner 7 in FIG. 1, and the temperature is raised until the catalyst combustor 2 reaches a predetermined temperature at which catalytic reaction is possible.
  • the bleed valve 8 is gradually opened after the purge is completed, and is maintained at a constant opening after the humidification burner 7 is ignited.
  • the second fuel flow rate control valve 10 is opened by a control signal from the load / stop control means 22 while performing catalytic combustion in the catalytic combustor 2 of FIG. 1, and the CMM from the CMM source 13 to the compressor 1 is opened. Is started (intake CMM input).
  • the inlet temperature of the catalytic combustor 2 tends to rise, so that the combustion in the heating burner 7 is adjusted so that the inlet temperature becomes an appropriate temperature.
  • this combustion adjustment is performed by gradually decreasing the opening degree e, c of the extraction valve 8 and the first fuel flow control valve 9, thereby extracting gas to the heating burner 7 shown in FIG.
  • the supply of G20 and the supply of CMM as fuel are performed by gradually decreasing each.
  • the inlet temperature of the catalytic combustor 2 is detected by the temperature sensor 31, and the detection signal is input to the start control means 21 of the controller 20.
  • the start control means 21 Upon receiving this detection signal, the start control means 21 outputs a control signal to each of the bleed valve 8 and the first fuel flow control valve 9 to control the opening degree e, c.
  • the second fuel flow rate control valve 10 is controlled by the control signal from the load / stop control means 22 in FIG. After the amount of CMM supplied to the machine 1 is increased and the heating burner 7 is extinguished as described above, catalytic combustion is continued in the catalytic combustor 2.
  • the opening d of the second fuel flow control valve 10 gradually increases until the engine speed a reaches the rated value (100%) and the generated power b reaches the rated value (rated load).
  • the supply amount of CMM supplied to 1 is increased.
  • the amount of CMM supplied to the compressor 1 is controlled by the second fuel flow rate control valve 10 in FIG. 1 so as to maintain the set generated power b, and the working gas G1 Adjust CMM concentration.
  • the start control means 21 when the stop command is received from the outside, the start control means 21 is operated, and as shown in FIG. 3, the setting of the generated power b is gradually lowered, and the second fuel flow rate control is performed according to this power setting.
  • the opening degree d is gradually reduced, and the amount of CMM supplied to the catalytic combustor 2 is reduced.
  • the engine speed a is reduced and the generated power b is in a no-load state of approximately 0 kW.
  • the engine is aftercooled by holding the no-load state for a certain period of time.
  • the second fuel flow rate control valve 10 is fully closed to stop the supply of the CMM to the compressor 1, so that the power generation is stopped and the gas turbine GT is free-run stopped.
  • the heating burner 7 operates when combustion failure occurs in the catalytic combustor 2 separately from the above engine start. That is, when the outlet temperature of the catalytic combustor 2 detected by the second temperature sensor 32 is equal to or lower than a predetermined set temperature, it is determined that a defective combustion of the catalytic combustor 2 has occurred due to a cause such as catalyst deterioration. Then, the controller 20 is operated to open the bleed valve 8 and the first fuel flow rate control valve 9 to reignite the heating burner 7. As a result, the temperature of the exhaust gas G4 entering the regenerator 6 is raised, the temperature of the compressed gas G2 supplied to the catalyst combustor 2 is raised, the catalyst combustor 2 is sufficiently activated, and the engine output can be prevented from lowering.
  • the gas turbine GT can be started smoothly. That is, when the engine is started, since the temperature of the exhaust gas G4 from the turbine 3 is low, the catalytic combustor 2 is not activated. Therefore, high-pressure and high-temperature compressed gas cannot be supplied to the turbine 3, and the engine speed increases smoothly.
  • the warming burner 7 in the above embodiment is activated when the engine is started to raise the temperature of the exhaust gas G4 entering the regenerator 6. As a result, the temperature of the compressed gas G2 supplied to the catalytic combustor 2 rises due to heat exchange in the regenerator 6, so that the catalytic combustor 2 can be activated efficiently and the engine can be started smoothly.
  • the heating burner 7 shown in FIG. 1 is provided not on the exhaust gas passage 25 but on the outside of the exhaust gas passage 25, the exhaust system pressure loss does not occur and the engine output does not decrease.
  • the gas turbine GT can be operated.
  • the heating burner 7 since the heating burner 7 is not installed in the exhaust gas passage 25, the exhaust gas passage 25 may be a relatively small size, and the gas turbine GT can be made compact.
  • an extraction valve 8 is provided on the upstream side of the heating burner 7, and the supply amount of the extraction gas G20 to the heating burner 7 is continuously increased / decreased by the extraction valve 8, so that the engine rotational speed is increased.
  • the supply amount of the extraction gas G20 to the heating burner 7 and the fuel supply amount to the humidification burner 7 controlled by the fuel control valve 9 are appropriately set, and the heating from the heating burner 7 is set.
  • the inlet temperature of the catalytic combustor 2 can be appropriately controlled.
  • the flow rate of the working gas passing through the gas turbine is smaller than the rated rotational speed, and accordingly, the fuel flow rate required for the humidifying burner 7 is also small.
  • the humidifying burner 7 can be made compact.
  • this invention can be used if it is a gas of the density

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Supercharger (AREA)

Abstract

 エンジンの出力低下を来たす排気系の圧力損失がなく、かつガスタービンのコンパクト化を図ることができる希薄燃料吸入ガスタービンを提供することを目的とする。 燃料を含む可燃濃度限界以下の作動ガスG1を圧縮して圧縮ガスG2を生成する圧縮機1と、圧縮ガスG2を触媒反応により燃焼させる触媒燃焼器2と、触媒燃焼器2からの燃焼ガスG3により駆動されるタービン3と、タービン3から排ガス通路25を介して供給される排ガスG4によって、圧縮機1から触媒燃焼器2に導入される圧縮ガスG2を加熱する再生器6と、圧縮機1より抽出された抽出ガスG20に燃料を混合して燃焼させた加温用ガスG5を排ガス通路25に供給する加温用バーナ7と、加温用バーナ7への抽出ガスG20の供給量を制御する抽気弁8とを備えている。

Description

希薄燃料吸入ガスタービン
 本発明は、炭鉱などで発生するCMM(Coal Mine Methane)や埋立地などで発生するランドフィルガスなどの低カロリーガスを燃料として利用する、希薄燃料吸入ガスタービンに関する。
 従来、メタン濃度が可燃限界よりも低いガスをエンジンに吸入し、ガス中に含まれているメタン成分を燃料として利用する希薄燃料吸入ガスタービンが知られている。このガスタービンは、低濃度のメタンガスを含む作動ガスを圧縮機で圧縮して圧縮ガスを生成し、これを触媒燃焼器で触媒反応により燃焼させ、得られる燃焼ガスによりタービンを駆動させる。タービンから排出される排ガスは再生器(熱交換器)に送り、これにより前記圧縮機から触媒燃焼器に導入される圧縮ガスを所定温度以上に加温する。前記タービン出口と再生器入口との間を接続する排ガス通路内にはダクトバーナを設け、排ガス温度の低いエンジンの始動時や低負荷運転時に、前記ダクトバーナに天然ガスのような燃料を投入してこれを燃焼させる。これにより、排ガス温度を上昇させることで、圧縮機から再生器に供給された圧縮ガスを十分加温して前記触媒燃焼器に導入し、触媒燃焼器を活性化することにより、タービンを効率的に駆動させている(特許文献1)。
 このガスタービンでは、メタン濃度の低い低カロリーガス、特に炭坑における通風の排気であるVAM(Ventilation Air Methane)を燃料として利用できる。このVAMは、メタン濃度が1%以下で通常の方法では燃焼しないため、大気中に放散されているのが現状であるが、このVAMを燃料とするガスタービンで発電することによりCO排出権を獲得することもできる。
特開2010-19247号
 しかしながら、前記ガスタービンの場合、タービン出口の排ガス通路内にダクトバーナを設置した構造であるため、定格運転時のようにダクトバーナを作動させない場合でもタービンからの排ガスが排ガス通路内を通過するので、排気系の圧力損失を来たし、エンジンの出力低下の原因となる。また、ダクトバーナへの燃焼用空気の流量調整ができないので、触媒燃焼器の触媒劣化時に必要なダクトバーナの再着火が困難になる。さらに、排ガス通路内にダクトバーナを設置して収容する構造であるため、排ガス通路自体を大寸法の容量の大きいものとせねばならず、ガスタービンが大型化する。
 本発明は、エンジンの出力低下を来たす排気系の圧力損失がなく、かつガスタービンのコンパクト化を図ることができる希薄燃料吸入ガスタービンを提供することを目的とする。
 上記目的を達成するために、本発明の希薄燃料吸入ガスタービンは、燃料を含む可燃濃度限界以下の作動ガスを圧縮して圧縮ガスを生成する圧縮機と、前記圧縮ガスを触媒反応により燃焼させる触媒燃焼器と、前記触媒燃焼器からの燃焼ガスにより駆動されるタービンと、前記タービンから排ガス通路を介して供給される排ガスによって、前記タービンからの排ガスによって前記圧縮機から触媒燃焼器に導入される圧縮ガスを加熱する再生器と、前記圧縮機より抽出された抽出ガスに燃料を混合して燃焼させた加温用ガスを前記排ガス通路に供給する加温用バーナと、前記加温用バーナへの抽出ガスの供給量を制御する抽気弁とを備えている。
 このガスタービンによれば、燃料と空気を混合した可燃限界濃度以下の作動ガスが圧縮機で圧縮され、その圧縮ガスが触媒燃焼器で触媒反応により燃焼され、ここで発生する高温の燃焼ガスによりタービンが駆動される。始動時や低負荷運転時など、触媒燃焼器の入口温度が触媒反応の開始温度に達しない場合、加温用バーナにより、圧縮機から抽出された抽出ガスに燃料を混合して燃焼させた加温用ガスが排ガス通路に供給されて排ガスが加熱される。こうして、加熱された排ガスが、再生器で、圧縮機から導入される圧縮ガスと熱交換され、昇温した圧縮ガスにより触媒燃焼器の入口温度が上昇して触媒燃焼を可能にする。これにより、高温の燃焼ガスをタービンに安定して供給できる。しかも、前記加温用バーナは排ガス通路内に存在しないので、排気系の圧力損失がなく、エンジンの出力低下を来たさない。さらに、CMM、VAM、ランドフィルガスのような燃料濃度(メタンガス濃度)の低いガスを燃料として用いてガスタービンを駆動でき、触媒反応を利用しているから、加湿用バーナを使用しない通常の定格運転時にはNOxを発生させることなく、多くの可燃限界濃度以下のガスを処理してメタンガス放出量を削減できるので、地球温暖化防止に役立たせることができる。
 また、従来のように、加温用バーナを排ガス通路内に設置する構造ではないから、排気系の圧力損失を来たさず、エンジンの出力低下がないので、効率的な運転が行える。さらに、加温用バーナが排ガス通路内に設置されていないことで、排ガス通路が比較的小サイズのもので足りて、ガスタービンをコンパクト化できる。また、加温用バーナへの抽出ガスの供給量を抽気弁により制御するので、再着火の際に抽出ガス量を適切に制御して、加温用バーナで必要な量の加温用ガスを生成できるので、再着火が容易になされる。
 本発明の好ましい実施形態では、前記抽気弁は加温用バーナへの抽出ガスの供給量を連続的に増減制御する制御弁からなる。この構成によれば、加温用バーナへの抽気ガスの供給量が抽気弁により連続的に制御されるので、エンジン回転速度の変化に合わせて加温用バーナへの抽出ガスの供給量ならびに燃料制御弁により制御される加湿用バーナへの燃料供給量を適切に設定して、加温用バーナからの加温用ガスの流量および温度を適宜制御することにより、触媒燃焼器の入口温度を適切に制御できる。
 本発明の好ましい実施形態では、前記加温用バーナはエンジン始動時に作動するように構成されている。エンジンの始動時には、タービンからの排ガスの温度が低いために、前記触媒燃焼器が十分活性化されないので、タービンに高圧・高温の圧縮ガスを供給できず、エンジンの回転を円滑に上昇させることができない。このようなエンジン始動時に加温用バーナを作動させるので、触媒燃焼器を効率的に活性化させて、円滑なエンジン始動が可能になる。
 本発明の好ましい実施形態では、前記加温用バーナはエンジンの定格回転数よりも低い部分回転数において作動するように構成されている。エンジンが部分回転数の場合には、ガスタービンを通過する作動ガスの総量が定格回転時よりも少ないので、それに伴い加温用バーナで必要とされる燃料量も少なくて済むから、加湿用バーナをコンパクト化できる。
 本発明の好ましい実施形態では、前記加温用バーナはガスタービンの起動時以外にも前記触媒燃焼器での燃焼不良が生じたときに作動するように構成されている。触媒燃焼器において、触媒の劣化のような原因で燃焼不良が生じたとき、前記加温用バーナを再着火して作動させるので、触媒燃焼器が十分活性化され、エンジンの出力低下を回避できる。
 本発明によれば、燃料濃度(メタンガス濃度)の低いガスによりガスタービンを駆動できる。しかも、触媒反応を利用しているから、通常の定格運転時にはNOxを発生させることなく、多くのガスを処理してメタンガス放出量を削減できる。また、加温用バーナを排ガス通路内に設置する構造ではないから、排ガス通路が比較的小サイズのもので足りて、ガスタービンをコンパクト化できるとともに、排気系の圧力損失を来たさず、エンジンの出力低下が防止される。
本発明の一実施形態にかかる希薄燃料吸入ガスタービンを示す簡略構成図である。 同実施形態に用いるガスタービンの主要構成部分の配置構成図である。 同実施形態における始動停止タイミングチャートである。
 以下、本発明の好ましい実施形態を図面に基づいて説明する。図1は本発明の一実施形態にかかる希薄燃料吸入ガスタービンを示す簡略構成図である。このガスタービンGTは、圧縮機1、白金やパラジウムなどの触媒を含む触媒燃焼器2、およびタービン3を有している。このガスタービンGTの出力により、発電機とスタータを兼ねる回転機4が駆動される。
 このガスタービンGTで用いる低カロリーガスとして、例えば、炭鉱で発生するVAM、これよりも可燃成分(メタン)濃度が高いCMMのような、空気と燃料(可燃成分)とが混合された作動ガスG1が、前記圧縮機1で圧縮され、その高圧の圧縮ガスG2が前記触媒燃焼器2に送られる。この圧縮ガスG2が触媒燃焼器2の白金やパラジウムなどの触媒による触媒反応によって燃焼され、これにより発生する高温・高圧の燃焼ガスG3がタービン3に供給されて、タービン3を駆動する。タービン3は圧縮機1に回転軸5を介して連結され、このタービン3により圧縮機1が駆動される。このようにして、ガスタービンGTおよび回転機4を含む発電装置50が構築されている。ここで、作動ガスG1中の燃料濃度(可燃成分濃度)は可燃濃度限界以下、すなわち、火炎燃焼が可能な最低温度以下であるから、圧縮機1での圧縮により昇温しても着火することはない。前記作動ガスG1には適宜、高濃度の可燃成分を加えて、燃料濃度を高めることができる。
 ガスタービンGTは、さらに、タービン3からの排ガスG4によって圧縮機1から触媒燃焼器2に導入される圧縮ガスG2を加熱する再生器(熱交換器)6と、加温用バーナ7とを備えている。この加温用バーナ7は、圧縮機1より抽出された抽出ガスG20に燃料を混合して火炎燃焼させた加温用ガスG5を、タービン3から再生器6に供給される排ガスG4に混入する。加温用バーナ7には、この加温用バーナ7への抽出ガスG20の供給量を制御する抽気弁8が接続されている。前記再生器6から流出した排ガスG4は、図示しないサイレンサを通って消音されたのち、外部に放出される。
 前記抽気弁8による加温用バーナ7への抽出ガスG20の供給量の制御は、後述するコントローラ20の始動制御手段21からの出力信号により行なわれる。
 前記加温用バーナ7への燃料供給は、炭坑の掘削部分のようなCMM源13から送給されるCMMを第1燃料流量制御弁9により流量を調整しながらなされる。この第1燃料流量制御弁9によるCMMの流量調整は装置全体をコントロールするコントローラ20に設けられた始動制御手段21からの制御信号によって行なわれる。圧縮機1への作動ガスG1の供給は、炭坑の換気のようなVAM源12からのVAMに必要に応じてCMM源13から抽出したCMMを第2燃料流量制御弁10によりその流量を調整しながら混入することによってなされる。CMMは10~30%程度のメタンガスを含み、VAMは1%未満のメタンガスを含む。この第2燃料流量制御弁10によるCMMの流量調整は、コントローラ20に設けられた負荷・停止制御手段22からの制御信号によって行なわれる。また、VAM源12から圧縮機1への吸入通路には、後述する運転開始時のパージのために、開閉弁18を介して、周囲環境のような空気源19が接続されている。
 また、前記触媒燃焼器2の入口側には、その入口温度を検出する第1の温度センサ31が設けられ、触媒燃焼器2の出口側には、その出口温度を検出する第2の温度センサ32が設けられている。前記第1の温度センサ31で検出した触媒燃焼器2の入口温度は、コントローラ20の始動制御手段21に温度検出信号として入力され、第2の温度センサ32で検出した触媒燃焼器2の出口温度は、コントローラ20の始動制御手段21と負荷・停止制御手段22にそれぞれ温度検出信号として入力される。
 さらに、前記温度センサ31,32の他に、タービン3の出口側には、その出口温度を検出する第3の温度センサ33が設けられ、この第3の温度センサ33で検出した排ガスの温度検出信号がコントローラ20の負荷・停止制御手段22に入力される。再生器6の入口側には、その入口温度を検出する第4の温度センサ34が設けられ、入口温度の温度検出信号がコントローラ20の始動制御手段21に入力される。
 圧縮機1とタービン3とを連結する回転軸5は単一軸からなり、この回転軸5と回転機4とが減速機17を介して連結されている。回転軸5に回転センサ36が設けられ、この回転センサ36で検出した回転軸5の回転数の検出信号が、コントローラ20の負荷・停止制御手段22に入力される。
 タービン3の回転により駆動される回転機4により得られる電力は、コントローラ20の負荷・停止制御手段22に入力される。電力変換装置11は、負荷・停止制御手段22によって、始動時に回転機4をスタータモータとして駆動させる。
 図2に示すように、タービン3と再生器6とは、排気ダクトによって形成された排ガス通路25で連結されている。この排ガス通路25は、タービン寄りの円筒状部25aとこの円筒状部25aの下流端部に接続され、再生器6側に向かって末広がりとなった拡径筒状部25bとからなる。この排ガス通路25の拡径筒状部25bに対し、加温用ガスG5を排ガス通路25内に供給する加温用バーナ7が拡径筒状部25bの外側に設けられている。排ガス通路25の再生器6側に連結される拡径筒状部25bを末広がり状としたので、加温用ガスG5は大形の再生器6に対して均一に供給され、再生器6の全体を有効に利用して、圧縮ガスG2と熱交換できる。
 前記加温用バーナ7には、前述したように、CMM源13(図1)から燃料成分であるCMMが供給されるようになっており、圧縮機1から再生器6へ圧縮ガスG2を供給する圧縮ガス通路24から抽気ガス通路27が分岐しており、この抽気ガス通路27に、加温用バーナ7とその上流側に位置する抽気弁8とが設けられている。
 上記構成のガスタービンGTの基本動作である始動制御、負荷制御および停止制御について図3に示すガスタービンの始動停止タイミングチャートを参照しながら説明する。図3において、曲線aはガスタービンGTの回転軸5の回転数、bは発電電力、cは第1燃料流量制御弁9の開度、dは第2燃料流量制御弁10の開度、eは抽気弁8の開度を、それぞれ示す。
 はじめに、始動制御について説明する。始動制御では、外部から始動指令を受けた始動制御手段21が、まず、図1の電力変換装置11を作動させて、回転機4をスタータとして駆動し、かつ開閉弁18を開弁して、ガスタービンGTに空気を吸い込ませて、一定時間モータリングし、図3に示すように、ガスタービンGTを低い回転数(例えば定格の20~30%)で回転させる(パージ)。つぎに、開閉弁18を閉弁し、ガスタービンGTにVAM源2からVAMを吸いこませて定格回転数(100%)よりも低い部分回転数(例えば定格の60%程度)まで回転数を上げてモータリングし、図1の加温用バーナ7の点火により再生器6の暖気を行なうとともに、触媒燃焼器2が触媒反応可能な所定温度になるまで昇温させる。このとき、図3に示すように、パージ終了後に抽気弁8を徐々に開放し、加湿用バーナ7の点火後は一定開度に維持する。続いて、図1の触媒燃焼器2で触媒燃焼を行っている間に負荷・停止制御手段22からの制御信号によって第2燃料流量制御弁10を開き、CMM源13から圧縮機1へのCMMの供給を開始する(吸気CMM投入)。これにより、触媒燃焼器2の入口温度が上昇しようとするので、この入口温度が適正な温度となるように、加温用バーナ7での燃焼を調整する。
 この燃焼調整は、図3に示すように、抽気弁8と第1燃料流量制御弁9の開度e,cを徐々に小さくすることにより、図1に示す加温用バーナ7への抽出ガスG20の供給と、燃料としてのCMM供給とを、それぞれ徐々に少なくすることにより行なう。触媒燃焼器2の入口温度は、温度センサ31で検出されて、その検出信号がコントローラ20の始動制御手段21に入力される。この検出信号を受けた始動制御手段21が抽気弁8および第1燃料流量制御弁9のそれぞれに制御信号を出力して、その開度e,cを制御する。図3に示す発電電力bが0kWを超えると、つまり発電が開始されると、抽気弁の開度eおよび第1燃料流量制御弁9の開度cをさらに小さくしながら全閉して、抽出ガスG20ならびに加温用バーナ7へのCMM供給を停止させ、加温用バーナ7を消火する。
 つぎに、負荷制御について説明する。図3で発電が開始されると、図1の負荷・停止制御手段22からの制御信号によって第2燃料流量制御弁10を制御して、その開度dをさらに大きくし、CMM源13から圧縮機1に供給されるCMM量を増加させ、前述のとおり、加温用バーナ7を消火したのち、触媒燃焼器2で触媒燃焼を継続する。図3で、エンジン回転数aが定格(100%)に達して発電電力bが定格値(定格負荷)に達するまで第2燃料流量制御弁10の開度dが徐々に大きくなって、圧縮機1に供給されるCMMの供給量を増大させる。続いて、定格負荷になると、設定した発電電力bを保持するように、図1の第2燃料流量制御弁10により圧縮機1に供給されるCMMの供給量を制御し、作動ガスG1中のCMM濃度を調整する。
 停止制御においては、外部から停止指令を受けたとき、始動制御手段21が作動し、図3に示すように、発電電力bの設定を徐々に下げ、この電力設定に応じて第2燃料流量制御弁10を制御して、その開度dを徐々に小さくし、触媒燃焼器2に供給されるCMMの量を少なくする。これに伴い、エンジン回転数aが低下して発電電力bがほぼ0kWの無負荷状態になる。この後、無負荷状態を一定時間保持して、エンジン全体をアフタークーリングする。このアフタークーリング後、第2燃料流量制御弁10を全閉して圧縮機1へのCMMの供給を停止することで、発電停止状態とし、ガスタービンGTをフリーラン停止させる。
 加温用バーナ7は、以上のエンジン始動時とは別に、触媒燃焼器2での燃焼不良が生じたときにも作動する。すなわち、第2の温度センサ32により検出された触媒燃焼器2の出口温度が予め定めた設定温度以下になったとき、触媒の劣化のような原因で触媒燃焼器2の燃焼不良が生じたと判断され、コントローラ20が作動して抽気弁8と第1燃料流量制御弁9を開き、加温用バーナ7を再着火する。これにより、再生器6に入る排ガスG4が昇温し、触媒燃焼器2に供給される圧縮ガスG2が昇温して、触媒燃焼器2が十分活性化され、エンジンの出力低下を防止できる。
 上記実施形態によれば、ガスタービンGTの始動を円滑に行うことができる。すなわち、エンジンの始動時には、タービン3からの排ガスG4の温度が低いため、触媒燃焼器2が活性化されないので、タービン3に高圧・高温の圧縮ガスを供給できず、エンジンの回転を円滑に上昇させることができないが、上記実施形態における加温用バーナ7はエンジン始動時に作動して、再生器6に入る排ガスG4の温度を上昇させる。これにより再生器6での熱交換によって、触媒燃焼器2に供給される圧縮ガスG2の温度が上昇するので、触媒燃焼器2を効率的に活性化させて、円滑なエンジン始動が可能になる。
 また、図1の加温用バーナ7を排ガス通路25内ではなく、排ガス通路25の外側に設けた構造であるから、排気系の圧力損失を来たさず、エンジンの出力低下がないから効率的なガスタービンGTの運転が行える。さらに、加温用バーナ7が排ガス通路25内に設置されていないことで、排ガス通路25が比較的小サイズのもので足りて、ガスタービンGTをコンパクト化できる。
 また、前記加温用バーナ7の上流側に抽気弁8を設け、この抽気弁8により、加温用バーナ7への抽出ガスG20の供給量を連続的に増減制御するから、エンジン回転速度の変化に合わせ、加温用バーナ7への抽出ガスG20の供給量ならびに燃料制御弁9により制御される加湿用バーナ7への燃料供給量を適切に設定して、加温用バーナ7からの加温用ガスG5の流量および温度を適宜制御することにより、触媒燃焼器2の入口温度を適切に制御できる。
 さらに、エンジンが部分回転数の場合には、定格回転数と比較して、ガスタービンを通過する作動ガスの流量が少なくなるため、それにともない加湿用バーナ7で必要とされる燃料流量も少なくて済み、加湿用バーナ7をコンパクト化できる。
 なお、本発明は、作動ガスとして例示した前記CMM,VAM以外の可燃性ガスであっても可燃濃度限界以下の濃度のガスであれば、使用できる。
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
 1 圧縮機
 2 触媒燃焼器
 3 タービン
 4 発電機
 6 再生器
 7 加温用バーナ
 8 抽気弁
 25 排ガス通路
 G1 作動ガス
 G2 圧縮ガス
 G3 燃焼ガス
 G4 排ガス
 G5 加温用ガス
G20 抽出ガス

Claims (5)

  1.  燃料を含む可燃濃度限界以下の作動ガスを圧縮して圧縮ガスを生成する圧縮機と、
     前記圧縮ガスを触媒反応により燃焼させる触媒燃焼器と、
     前記触媒燃焼器からの燃焼ガスにより駆動されるタービンと、
     前記タービンから排ガス通路を介して供給される排ガスによって、前記タービンからの排ガスによって前記圧縮機から触媒燃焼器に導入される圧縮ガスを加熱する再生器と、
     前記圧縮機より抽出された抽出ガスに燃料を混合して燃焼させた加温用ガスを前記排ガス通路に供給する加温用バーナと、
     前記加温用バーナへの抽出ガスの供給量を制御する抽気弁とを備えた希薄燃料吸入ガスタービン。
  2.  請求項1において、前記抽気弁は加温用バーナへの抽出ガスの供給量を連続的に増減制御する制御弁からなる希薄燃料吸入ガスタービン。
  3.  請求項1または2において、前記加温用バーナはエンジン始動時に作動する希薄燃料吸入ガスタービン。
  4.  請求項3において、前記加温用バーナはエンジンの定格回転数よりも低い部分回転数において作動する希薄燃料吸入ガスタービン。
  5.  請求項1から3のいずれか一項において、前記加温用バーナは前記触媒燃焼器での燃焼不良が生じたときに作動する希薄燃料吸入ガスタービン。
PCT/JP2011/055210 2010-03-24 2011-03-07 希薄燃料吸入ガスタービン WO2011118372A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
UAA201212179A UA102361C2 (ru) 2010-03-24 2011-03-07 Газотурбинный двигатель, который работает на бедном газовом топливе
US13/636,991 US20130276433A1 (en) 2010-03-24 2011-03-07 Lean-fuel gas turbine engine
AU2011230790A AU2011230790B2 (en) 2010-03-24 2011-03-07 Lean-fuel intake gas turbine
RU2012145092/06A RU2521179C2 (ru) 2010-03-24 2011-03-07 Газотурбинный двигатель, работающий на обедненной топливной смеси
CN2011800155454A CN102933819A (zh) 2010-03-24 2011-03-07 稀薄燃料吸入燃气涡轮

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-067271 2010-03-24
JP2010067271A JP4751950B1 (ja) 2010-03-24 2010-03-24 希薄燃料吸入ガスタービン

Publications (1)

Publication Number Publication Date
WO2011118372A1 true WO2011118372A1 (ja) 2011-09-29

Family

ID=44597094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055210 WO2011118372A1 (ja) 2010-03-24 2011-03-07 希薄燃料吸入ガスタービン

Country Status (7)

Country Link
US (1) US20130276433A1 (ja)
JP (1) JP4751950B1 (ja)
CN (1) CN102933819A (ja)
AU (1) AU2011230790B2 (ja)
RU (1) RU2521179C2 (ja)
UA (1) UA102361C2 (ja)
WO (1) WO2011118372A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103958855A (zh) * 2011-11-28 2014-07-30 川崎重工业株式会社 重型结构物的支持机构
CN103975144A (zh) * 2011-12-21 2014-08-06 川崎重工业株式会社 贫燃料吸入燃气轮机的控制方法及控制装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5314637B2 (ja) * 2010-05-31 2013-10-16 三菱重工業株式会社 ガスエンジン
US20140250892A1 (en) * 2011-10-17 2014-09-11 Kawasaki Jukogyo Kabushiki Kaisha Lean fuel intake gas turbine
JP5183795B1 (ja) * 2011-12-05 2013-04-17 川崎重工業株式会社 希薄燃料吸入ガスタービン
AU2012354937A1 (en) * 2011-12-22 2014-07-10 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine engine and method for starting same
JPWO2013094381A1 (ja) * 2011-12-22 2015-04-27 川崎重工業株式会社 希薄燃料吸入ガスタービンエンジンの運転方法およびガスタービン発電装置
JPWO2013094432A1 (ja) * 2011-12-22 2015-04-27 川崎重工業株式会社 熱交換器を備えたガスタービンエンジンとその始動方法
AU2013282048A1 (en) * 2012-06-25 2015-01-29 Kawasaki Jukogyo Kabushiki Kaisha Oxidation system for treatment of low-concentration methane gas provided with multiple oxidizers
CH708276A1 (de) * 2013-07-04 2015-01-15 Liebherr Machines Bulle Sa Gasmotor.
MX2016009240A (es) * 2014-01-17 2017-02-08 Mitsubishi Hitachi Power Systems Americas Inc Metodo y aparato para operar una planta de energia de turbina de gas a condiciones de baja carga con una pila que cumple con niveles de emisiones.
DE102016117408B4 (de) * 2016-09-15 2020-11-26 Eberspächer Climate Control Systems GmbH Brennkammerbaugruppe für ein brennstoffbetriebenes Fahrzeugheizgerät
CN112627989A (zh) * 2021-01-08 2021-04-09 大连欧谱纳透平动力科技有限公司 控制小型燃气轮机排气温度和氮氧化物浓度的系统及方法
GB202215721D0 (en) * 2022-10-24 2022-12-07 Rolls Royce Plc Gas turbine engine fuel system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186923A (ja) * 1986-12-12 1988-08-02 アライド・シグナル インコーポレーテツド 動力発生装置
US6269625B1 (en) * 1999-09-17 2001-08-07 Solo Energy Corporation Methods and apparatus for igniting a catalytic converter in a gas turbine system
US6313544B1 (en) * 1997-09-19 2001-11-06 Solo Energy Corporation Self-contained energy center for producing mechanical, electrical, and heat energy
US20040100101A1 (en) * 1998-04-02 2004-05-27 Capstone Turbine Corporation Integrated turbine power generation system with catalytic reactor
JP2010019247A (ja) * 2008-06-13 2010-01-28 Kawasaki Heavy Ind Ltd 希薄燃料吸入ガスタービン

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472935A (en) * 1978-08-03 1984-09-25 Gulf Research & Development Company Method and apparatus for the recovery of power from LHV gas
US4858428A (en) * 1986-04-24 1989-08-22 Paul Marius A Advanced integrated propulsion system with total optimized cycle for gas turbines
US6393821B1 (en) * 1998-08-21 2002-05-28 Edan Prabhu Method for collection and use of low-level methane emissions
RU2284434C2 (ru) * 2002-05-06 2006-09-27 Московский авиационный институт (государственный технический университет) Способ и устройство для сжигания топлив
AU2002951703A0 (en) * 2002-09-27 2002-10-17 Commonwealth Scientific And Industrial Research Organisation A method and system for a combustion of methane
US20040255588A1 (en) * 2002-12-11 2004-12-23 Kare Lundberg Catalytic preburner and associated methods of operation
RU38218U1 (ru) * 2003-12-23 2004-05-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Устройство для подготовки и подачи топливовоздушной смеси в камеру сгорания
US7096667B2 (en) * 2004-01-09 2006-08-29 Siemens Power Generation, Inc. Control of gas turbine for catalyst activation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186923A (ja) * 1986-12-12 1988-08-02 アライド・シグナル インコーポレーテツド 動力発生装置
US6313544B1 (en) * 1997-09-19 2001-11-06 Solo Energy Corporation Self-contained energy center for producing mechanical, electrical, and heat energy
US20040100101A1 (en) * 1998-04-02 2004-05-27 Capstone Turbine Corporation Integrated turbine power generation system with catalytic reactor
US6269625B1 (en) * 1999-09-17 2001-08-07 Solo Energy Corporation Methods and apparatus for igniting a catalytic converter in a gas turbine system
JP2010019247A (ja) * 2008-06-13 2010-01-28 Kawasaki Heavy Ind Ltd 希薄燃料吸入ガスタービン

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103958855A (zh) * 2011-11-28 2014-07-30 川崎重工业株式会社 重型结构物的支持机构
CN103975144A (zh) * 2011-12-21 2014-08-06 川崎重工业株式会社 贫燃料吸入燃气轮机的控制方法及控制装置

Also Published As

Publication number Publication date
CN102933819A (zh) 2013-02-13
AU2011230790B2 (en) 2014-09-18
JP2011196355A (ja) 2011-10-06
UA102361C2 (ru) 2013-06-25
JP4751950B1 (ja) 2011-08-17
RU2012145092A (ru) 2014-04-27
RU2521179C2 (ru) 2014-06-27
AU2011230790A1 (en) 2012-11-08
US20130276433A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP4751950B1 (ja) 希薄燃料吸入ガスタービン
JP4538077B2 (ja) 希薄燃料吸入ガスタービン
JP4865476B2 (ja) ガスタービンの起動停止方法及び起動停止制御装置
KR101530807B1 (ko) 배열 회수 보일러 및 발전 플랜트
JP2009250236A (ja) ガスタービンエンジンの負荷ポイントを制御するための制御システム及び方法
JP5183795B1 (ja) 希薄燃料吸入ガスタービン
JP2017044209A (ja) ガスタービンをターンダウン状態で作動させる間にエミッションコンプライアンスを維持するためのシステム及び方法
WO2013094379A1 (ja) 希薄燃料吸入ガスタービンの制御方法および制御装置
WO2013094381A1 (ja) 希薄燃料吸入ガスタービンエンジンの運転方法およびガスタービン発電装置
WO2013094432A1 (ja) 熱交換器を備えたガスタービンエンジンとその始動方法
WO2013094433A1 (ja) ガスタービンエンジンとその始動方法
US8844295B2 (en) Method for meeting a purge flow requirement for a power plant and a power plant having a purge control system
JP5592965B2 (ja) 希薄燃料吸入ガスタービンの制御方法および制御装置
JP4795999B2 (ja) ガスタービン発電システム
JP7137397B2 (ja) コンバインドサイクル発電プラント
JP2010174767A (ja) ガスタービン,ガスタービンの制御装置及びガスタービンの点火制御方法
JP2008057414A (ja) 再生器を有するガスタービンプラントシステム及びその運転方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015545.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: A201212179

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 2012145092

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2011230790

Country of ref document: AU

Date of ref document: 20110307

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13636991

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11759180

Country of ref document: EP

Kind code of ref document: A1