WO2011155143A1 - Liquid crystal display device - Google Patents
Liquid crystal display device Download PDFInfo
- Publication number
- WO2011155143A1 WO2011155143A1 PCT/JP2011/002949 JP2011002949W WO2011155143A1 WO 2011155143 A1 WO2011155143 A1 WO 2011155143A1 JP 2011002949 W JP2011002949 W JP 2011002949W WO 2011155143 A1 WO2011155143 A1 WO 2011155143A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- layer
- electrode
- region
- line
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134336—Matrix
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133371—Cells with varying thickness of the liquid crystal layer
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133397—Constructional arrangements; Manufacturing methods for suppressing after-image or image-sticking
Definitions
- the present invention relates to a liquid crystal display device using a switching element such as a thin film transistor.
- a liquid crystal display device includes a pair of substrates disposed opposite to each other (that is, a TFT (Thin Film Transistor) substrate and a CF (Color Filter) substrate), a liquid crystal layer provided between the pair of substrates, A pair of substrates are bonded to each other, and a sealing material provided in a frame shape is provided between the substrates to enclose liquid crystal.
- a TFT Thin Film Transistor
- CF Color Filter
- the liquid crystal display device is provided in common to a plurality of pixels arranged in a matrix, and includes a pixel electrode included in each pixel and a common electrode arranged so as to face the pixel electrode with a liquid crystal layer interposed therebetween. (Or a counter electrode).
- one pixel includes a red layer R, a green layer G, and a blue layer. It is generally configured by a primary color layer composed of B and performing color display using a color filter having the primary color layer.
- the red layer R, the green layer G are changed by changing the thicknesses of the red layer R, the green layer G, and the blue layer B constituting the color filter.
- a liquid crystal display device adopting a structure (multi-gap structure) in which the thickness (cell gap) of the liquid crystal layer corresponding to the blue layer B is made different.
- a liquid crystal display device having a multi-gap structure has been proposed that has a structure that can reduce image quality deterioration due to flicker. More specifically, when the thicknesses of the liquid crystal layers corresponding to the red layer R, the green layer G, and the blue layer B are d R , d G , and d B , respectively, a relationship of d R > d G > d B When the areas of the pixel electrodes corresponding to the red layer R, the green layer G, and the blue layer B are S R , S G , and S B , respectively, the relationship of S R > S G > S B is established. An established liquid crystal display device is disclosed.
- the capacitance of the liquid crystal layer is proportional to S (area of the pixel electrode) / d (thickness of the liquid crystal layer), and each of the red layer R, the green layer G, and the blue layer B Since the S / d values are substantially the same in the arranged region, the capacitance of the liquid crystal layer corresponding to each of the red layer R, the green layer G, and the blue layer B can be made substantially constant. As a result, it is described that image quality deterioration due to flicker can be reduced (see, for example, Patent Document 1).
- the present invention has been made in view of the above-described problems, and in a liquid crystal display device using PSA liquid crystal, a liquid crystal display capable of making the same pull-in voltage during pixel charging and preventing occurrence of flicker.
- An object is to provide an apparatus.
- a liquid crystal display device includes a first substrate having a first electrode and a plurality of coloring layers disposed opposite to the first substrate and including a red layer, a green layer, and a blue layer.
- the red layer, green layer, and each T R the thickness of the liquid crystal layer in each of which is arranged a region of the blue layer, T G, when the T B, the relationship of T R> T G> T B
- a slit for controlling the alignment of liquid crystal molecules and a line partitioned by the slit are formed, and a voltage is applied between the first electrode and the second electrode.
- the liquid crystal capacity of the liquid crystal layer in the region where the reference colored layer is disposed is C k
- C G is the liquid crystal capacity of the liquid crystal layer in the region where the green layer is disposed
- C B is the liquid crystal capacity of the liquid crystal layer in the region where the blue layer is disposed
- W is the line width in the region where the red layer is disposed.
- the thicknesses T R , T G , and T B of the liquid crystal layers in the regions where the red layer, the green layer, and the blue layer are arranged are different (that is, T even R> T G> T B) case, it is possible to cancel out the thickness of the liquid crystal layer T R, T G, a liquid crystal capacitance C R due to the difference of T B, C G, the difference in C B, red the width of the line in the layers are arranged regions W R, width of the line in the region where the green layer is disposed W G, and a blue layer is the width of a line in the arrangement area by setting W B, slit and the line It is possible to adjust the electrode area of the first electrode or the second electrode on which is formed.
- the red layer, green layer, and since the liquid crystal capacitance C R of the liquid crystal layer in the region that are each located in the blue layer, C G, a C B can be made substantially constant, a liquid crystal display device using a PSA liquid crystal In FIG. 5, the pull-in voltage at the time of pixel charging can be made the same, and the occurrence of flicker can be prevented.
- a first substrate having a first electrode and pixels having a plurality of colored layers made of a red layer, a green layer, and a blue layer are arranged to face the first substrate.
- the first electrode is formed with slits for controlling the alignment of liquid crystal molecules and lines partitioned by the slits, and the liquid crystal that drives the liquid crystal molecules by applying a voltage between the first electrode and the second electrode.
- a display device comprising a red layer, a green layer, Of the liquid crystal layer in the region where the reference colored layer is disposed, C k , the capacity of the liquid crystal layer in the region where the red layer is disposed, C R , and the liquid crystal in the region where the green layer is disposed
- the capacitance of the layer is C G
- the capacitance of the liquid crystal layer in the region where the blue layer is arranged is C B
- the line width in the region where the red layer is arranged is W R ( ⁇ m)
- the line in the region where the green layer is arranged Is W G ( ⁇ m)
- the line width in the region where the blue layer is arranged is W B ( ⁇ m)
- the slit width is 3 ⁇ m
- Width W R of the line is, satisfies the equation (1) below, [Equation 1]
- W R (3 ⁇ C R / C k ⁇ 2.37) / (1.23-C R / C k ) (1) Width W G
- the red layer, green layer, and since the liquid crystal capacitance C R of the liquid crystal layer in the region that are each located in the blue layer, C G, a C B can be made substantially constant, a liquid crystal display device using a PSA liquid crystal In FIG. 5, the pull-in voltage at the time of pixel charging can be made the same, and the occurrence of flicker can be prevented.
- the first electrode may be formed with a slit and a line.
- liquid crystal display device of the present invention a configuration may be adopted in which slits and lines are formed in the second electrode.
- the first electrode and the second electrode may be formed of indium tin oxide or indium zinc oxide.
- the first electrode and the second electrode can be formed from an inexpensive and versatile material.
- the pull-in voltage at the time of pixel charging can be made the same, and the occurrence of flicker can be prevented.
- FIG. 1 is an equivalent circuit diagram of a liquid crystal display device according to an embodiment of the present invention. It is sectional drawing which shows the whole structure of the TFT substrate which comprises the liquid crystal display device which concerns on embodiment of this invention. It is sectional drawing which shows the whole structure of the display part of the liquid crystal display device which concerns on embodiment of this invention. It is a top view for demonstrating the part corresponding to a red layer of the pixel electrode in the liquid crystal display device which concerns on embodiment of this invention.
- FIG. 1 is a plan view showing an overall configuration of a liquid crystal display device according to an embodiment of the present invention
- FIG. 2 is a cross-sectional view of the liquid crystal display device according to an embodiment of the present invention
- 3 is an equivalent circuit diagram of the liquid crystal display device according to the embodiment of the present invention
- FIG. 4 is a cross-sectional view showing the entire configuration of the TFT substrate constituting the liquid crystal display device according to the embodiment of the present invention. is there.
- FIG. 5 is a cross-sectional view showing the overall configuration of the display unit of the liquid crystal display device according to the embodiment of the present invention.
- the liquid crystal display device 1 includes a TFT substrate 2 that is a first substrate, a CF substrate 3 that is a second substrate disposed opposite to the TFT substrate 2, a TFT substrate 2,
- the liquid crystal layer 4 which is a display medium layer sandwiched between the CF substrates 3 and the TFT substrate 2 and the CF substrate 3 are sandwiched, and the TFT substrate 2 and the CF substrate 3 are bonded to each other and the liquid crystal
- a sealing material 40 provided in a frame shape is provided.
- the sealing material 40 is formed so as to go around the liquid crystal layer 4, and the TFT substrate 2 and the CF substrate 3 are bonded to each other via the sealing material 40.
- the liquid crystal display device 1 includes a plurality of photo spacers (not shown) for regulating the thickness of the liquid crystal layer 4 (that is, the cell gap).
- the liquid crystal display device 1 is formed in a rectangular shape, and in the longitudinal direction X of the liquid crystal display device 1, the TFT substrate 2 protrudes from the CF substrate 3 on its upper side, and the protrusion In the region, a plurality of display wirings such as gate lines and source lines, which will be described later, are drawn out to form a terminal region T.
- a display area D for displaying an image is defined in an area where the TFT substrate 2 and the CF substrate 3 overlap.
- the display area D is configured by arranging a plurality of pixels E (see FIG. 5), which is the minimum unit of an image, in a matrix.
- the sealing material 40 is provided in a rectangular frame shape surrounding the entire periphery of the display area D.
- the frame width of the sealing material 40 is not particularly limited, but can be set to 0.5 mm or more and 2.0 mm or less, for example.
- the TFT substrate 2 covers an insulating substrate 6 such as a glass substrate, a plurality of gate lines 11 extending in parallel with each other on the insulating substrate 6, and the gate lines 11. And a plurality of source lines 14 extending in parallel to each other in a direction orthogonal to the gate lines 11 on the gate insulating film 12.
- the TFT substrate 2 includes a plurality of TFTs 5 provided at each intersection of the gate lines 11 and the source lines 14, and a first interlayer insulating film provided in order so as to cover the source lines 14 and the TFTs 5.
- the TFT 5 includes a gate electrode 17 in which each gate line 11 protrudes to the side, a gate insulating film 12 provided so as to cover the gate electrode 17, and a gate on the gate insulating film 12.
- a semiconductor layer 13 provided in an island shape at a position overlapping with the electrode 17, and a source electrode 18 and a drain electrode 20 provided so as to face each other on the semiconductor layer 13 are provided.
- the source electrode 18 is a portion where each source line 14 protrudes to the side.
- the drain electrode 20 is connected to the pixel electrode 19 through a contact hole 30 formed in the first interlayer insulating film 15 and the second interlayer insulating film 16.
- the semiconductor layer 13 includes a lower intrinsic amorphous silicon layer 13 a and an upper n + amorphous silicon layer 13 b doped with phosphorus, and is exposed from the source electrode 18 and the drain electrode 20.
- the intrinsic amorphous silicon layer 13a that constitutes the channel region.
- the liquid crystal display device 1 of the present embodiment is a transmissive device, and in the display region D of the liquid crystal display device 1, a transmissive region T is defined as shown in FIG.
- a transflective device in which a reflective region and a transmissive region are defined in the display region D may be used.
- the pixel electrode 19 is formed of a transparent conductor such as ITO (indium tin oxide) or IZO (indium zinc oxide).
- the material constituting the first interlayer insulating film 15 is not particularly limited, and examples thereof include silicon oxide (SiO 2 ), silicon nitride (SiNx (x is a positive number)), and the like.
- the thickness of the first interlayer insulating film 15 is preferably 600 nm or more and 1000 nm or less. This is because when the thickness of the first interlayer insulating film 15 is less than 600 nm, it may be difficult to planarize the first interlayer insulating film 15, and when the thickness is larger than 1000 nm, This is because the etching may cause a disadvantage that it is difficult to form the contact hole 30.
- the CF substrate 3 includes an insulating substrate 21 such as a glass substrate, a color filter 22 provided on the insulating substrate 21, and a common electrode 24 provided so as to cover the color filter 22.
- a photo spacer (not shown) provided in a column shape on the common electrode 24 and an alignment film 26 provided so as to cover the common electrode 24 and the photo spacer.
- the common electrode 24 is formed of a transparent conductor such as ITO (indium tin oxide) or IZO (indium zinc oxide) in the same manner as the pixel electrode 19 described above.
- ITO indium tin oxide
- IZO indium zinc oxide
- the color filter 22 includes a plurality of types of colored layers 28 (that is, a red layer 22R, a green layer 22G, and a blue layer 22B) provided for each pixel E, and a light shielding film. And a black matrix 27.
- the black matrix 27 is provided between the adjacent colored layers 28 and has a role of partitioning the plurality of types of colored layers 28.
- the black matrix 27 is made of a metal material such as Ta (tantalum), Cr (chromium), Mo (molybdenum), Ni (nickel), Ti (titanium), Cu (copper), Al (aluminum), or a black pigment such as carbon.
- a metal material such as Ta (tantalum), Cr (chromium), Mo (molybdenum), Ni (nickel), Ti (titanium), Cu (copper), Al (aluminum), or a black pigment such as carbon.
- the photo spacer is made of, for example, an acrylic photosensitive resin, and is formed by a photolithography method.
- the color filter 22 has a display region D in which a plurality of pixels E each having a plurality of colored layers 28 composed of a red layer R, a green layer G, and a blue layer B are two-dimensionally arranged.
- the thickness of the liquid crystal layer 4 in the region where each of the red layer R, the green layer G, and the blue layer B is disposed that is, the region where the red layer R is disposed.
- E R, the green layer G is disposed region E G, and the blue layer B are each respectively T the thickness) of the liquid crystal layer 4 in the R of the arrangement region E B, T G, when the T B, T R > T G > T B is established.
- liquid crystal layer 4 is formed of PSA (Polymer-Sustained Alignment) liquid crystal from the viewpoint of improving the contrast ratio and the response speed and improving the transmittance.
- PSA Polymer-Sustained Alignment
- the PSA liquid crystal is formed of a liquid crystal material in which a small amount of a photopolymerizable polymer (for example, biphenyl acrylate) is added to the liquid crystal, and liquid crystal molecules are formed using electrodes (pixel electrodes or common electrodes) in which slits are formed. It refers to the liquid crystal to be aligned.
- a photopolymerizable polymer for example, biphenyl acrylate
- an electrode provided with a slit is used as the pixel electrode 19. More specifically, as shown in FIGS. 5 and 6, the pixel electrode 19, the portion corresponding to the red layer R (i.e., the pixel electrode 19, the portion of the area E R to the red layer R is disposed) 19R Are formed with a plurality of slits K R (portions where no electrode material is present) for controlling the alignment of liquid crystal molecules when a voltage is applied.
- the slit K R has a predetermined width H R, of the pixel electrode 19, the portion 19R of the region E R of the red layer R is arranged, adjacent to the slit K R, the slit K R A plurality of partitioned lines (portions where electrode material is present) LR are formed.
- the line L R has a predetermined width W R.
- the pixel electrode 19 the portion corresponding to the green layer G (i.e., the pixel electrode 19, part of the region E G the green layer G is placed) to 19G a plurality of slits K G (portion where the electrode material is not present) that controls the orientation of liquid crystal molecules when a voltage is applied is formed.
- the slit K G has a predetermined width H G
- the pixel electrode 19 the portion 19G of the green layer G is disposed region E G is adjacent to the slit K G, the slit K G compartmentalized multiple lines (partial electrode material are present) L G is formed.
- the line L G has a predetermined width W G.
- the pixel electrode 19 corresponds to the portion corresponding to the blue layer B (that is, the portion of the pixel electrode 19 in the region EB where the blue layer B is disposed) 19 ⁇ / b > B.
- a plurality of slits K B portion where the electrode material is not present that controls the orientation of liquid crystal molecules when a voltage is applied is formed.
- the slit K B has a predetermined width H B, the pixel electrode 19, the portion 19B of the blue layer B is disposed region E B is adjacent to the slit K B, the slit K B a plurality of lines which are compartments (electrode material present portion) L B is formed.
- the line L B has a predetermined width W B.
- the liquid crystal display device 1 having the above-described configuration is configured to transmit light from a backlight (not shown) incident from the TFT substrate 2 side in the transmission region T.
- one pixel E is formed for each pixel electrode 19.
- the source line A source signal is sent from 14, and a predetermined charge is written into the pixel electrode 19 via the source electrode 18 and the drain electrode 20.
- a potential difference is generated between the pixel electrode 19 and the common electrode 24, and a predetermined voltage is applied to the liquid crystal layer 4. That is, by applying a voltage between the pixel electrode 19 and the common electrode 24, the liquid crystal molecules of the liquid crystal layer 4 are driven.
- the liquid crystal molecules An image is displayed by adjusting the transmittance of light incident from the backlight by utilizing the change in the orientation state.
- linewidth i.e., above the line L R, L G, the width of each of the L B W R, W G, W B
- FIG. 9 is a graph showing the relationship between the thickness ratio of the liquid crystal layer and the liquid crystal capacitance ratio when a pixel electrode having a slit is used
- FIG. 10 is a graph when the pixel electrode having a slit is used. It is a graph which shows the relationship between the electrode area ratio of a pixel electrode (namely, ratio of the conductor area with respect to the area of the whole electrode in a pixel electrode), and a liquid crystal capacitance ratio.
- the relationship shown in FIG. 9 uses the structure 31 composed of the pixel electrode 19a, the common electrode 24a, and the liquid crystal layer 4a shown in FIG. 11, and changes the thickness T of the liquid crystal layer 4a to change the liquid crystal capacitance C. Was calculated by measuring.
- the relationship shown in FIG. 10 uses the structure 31 shown in FIG. 11 and changes the width W of the line L of the pixel electrode 19a to change the electrode area of the liquid crystal capacitor C and the pixel electrode 19a (that is, in the pixel electrode).
- the conductor area was calculated by measuring S.
- the pixel electrode 19a and the common electrode 24a were made of ITO.
- the liquid crystal layer 4a is made of PSA liquid crystal. Further, the measurement was performed with the width H of the slit K of the pixel electrode 19a being constant (3 ⁇ m).
- Table 1 shows the thickness T and the liquid crystal capacity C of the obtained liquid crystal layer 4a, the liquid crystal capacity ratio calculated from the thickness T and the liquid crystal capacity C of these liquid crystal layers 4a, and the thickness ratio of the liquid crystal layer 4a.
- the liquid crystal capacity ratio was calculated based on the liquid crystal capacity when the thickness T was 3.2 ⁇ m.
- the thickness ratio of the liquid crystal layer 4a was calculated based on the case where the thickness T was 3.2 ⁇ m.
- FIG. 9 is a graph showing the reciprocal of the liquid crystal capacitance ratio shown in Table 1 and the thickness ratio of the liquid crystal layer 4a. From FIG. 9, it can be seen that there is a proportional relationship between the liquid crystal capacitance ratio and the reciprocal of the thickness ratio of the liquid crystal layer 4a.
- Liquid crystal capacity ratio 0.83 ⁇ (1 / liquid crystal layer thickness ratio) +0.17 (1) It will be represented by
- Table 2 shows the electrode area S and the liquid crystal capacitance C of the obtained pixel electrode 19a, and the liquid crystal capacitance ratio calculated from the electrode area S and the liquid crystal capacitance C of the pixel electrode 19a and the electrode area ratio of the pixel electrode.
- the liquid crystal capacity ratio was calculated based on the liquid crystal capacity when the width W of the line L was 3 ⁇ m.
- the electrode area ratio was calculated based on the electrode area when the width W of the line L was 3 ⁇ m.
- the liquid crystals in the regions E R , E G , E B in which the red layer R, the green layer G, and the blue layer B are arranged are determined from the thicknesses T R , T G , and T B of the layer 4.
- each slit K R described above, K G, the width H R of K B, H G is fixed to H B to 3 [mu] m, to secure the width W G of the line L G in 3 [mu] m.
- T R 3.5 ⁇ m
- T G 3.2 ⁇ m
- T B 2.9 ⁇ m
- the width H of the slit K of the pixel electrode 19a is constant (3 ⁇ m), one pitch per unit length (1 ⁇ m) (the width of the line L).
- the width W R of the line L R in the area E R to the red layer R is disposed, the width W B of the line L B in the region E B where the blue layer B disposed, respectively ,
- W R [ ⁇ m] (3 ⁇ C R / C G -2.37) / (1.23-C R / C G)
- W B [ ⁇ m] (3 ⁇ C B / C G ⁇ 2.37) / (1.23-C B / C G ) (6)
- each slit K R, K G, the width H R of K B, H G is fixed to H B to 3 [mu] m, for a fixed width W G of the line L G in 3 [mu] m, the line L the width of R W R and sets to 1.4 ⁇ m and by setting the width W B of the line L B in 5.8 [mu] m, in the liquid crystal display device 1 using a PSA liquid crystal, the thickness T R of the liquid crystal layer 4, T G, T B difference is different (i.e., T R> T G> T B) even when the thickness T R of the liquid crystal layer 4, T G, a liquid crystal capacitor due to the difference in T B C R, C G, C B It is possible to adjust the electrode area of the pixel electrode 19 so as to cancel out.
- the red layer R, a green layer G, and a blue layer region E B each being disposed of B, E G, a liquid crystal capacitance C R of the liquid crystal layer 4 in the E R, and C G, substantially constant C B Therefore, in the liquid crystal display device using the PSA liquid crystal, the pull-in voltage at the time of pixel charging can be made the same, and the occurrence of flicker can be prevented.
- the liquid crystal layer 4 in the region where the reference colored layer in this embodiment, the green layer G
- C G C k capacity when the, according to the above equation (5) to (7), the line width can be prevented flicker W R, W G, be determined W B it can.
- the liquid crystal display device adopting a structure (multi-gap structure) in which the thickness of the liquid crystal layer 4 corresponding to each colored layer 28 of the red layer R, the green layer G, and the blue layer B is different as the liquid crystal display device.
- the present invention has been described with reference to a specific color layer (in FIG. 12) among the thicknesses T R , T G , and T B of the liquid crystal layer 4, as shown in FIG. can be applied to a liquid crystal display device 32 employing the structure (semi-multi-gap structure) in which only the different thickness T B of the liquid crystal layer 4 corresponding to the blue layer B).
- line width W R, W G it is configured to determine a W B, based on the other coloring layers (the red layer R, the blue layer B), the line width W R, W G, may be configured to determine the W B.
- the slit K R to the pixel electrode 19, K G, K B and the line L L, L G it is configured to provide a L B, it is provided with a slit and a line to the common electrode 24 Good.
- liquid crystal display device using a switching element such as a thin film transistor.
- Liquid crystal display device 2 TFT substrate (first substrate) 3 CF substrate (second substrate) 4 Liquid crystal layer 5 TFT (switching element) 19 Pixel electrode (first electrode) 22 Color filter 24 Common electrode (second electrode) 28 Colored layer 32 Liquid crystal display device B Blue layer E Pixel G Green layer K R slit K G slit K B slit L R line L G line L B line R Red layer
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
- Geometry (AREA)
Abstract
In a liquid crystal display device (1) which uses PSA liquid crystals, the liquid crystal capacities (CR, CG, CB) of a liquid crystal layer (4), in regions (EB, EG, ER) wherein a red layer (R), a green layer (G), and a blue layer (B) are each arranged, are made to be substantially constant by setting the widths (WR, WG, WB) of lines of a pixel electrode (19) in the regions (EB, EG, ER) wherein the red layer (R), green layer (G), and blue layer (B) are each arranged, to correspond with the liquid crystal capacity ratio. Also, in the device, the pull-in voltage during pixel charging is uniform.
Description
本発明は、薄膜トランジスタ等のスイッチング素子を用いた液晶表示装置に関する。
The present invention relates to a liquid crystal display device using a switching element such as a thin film transistor.
近年、携帯電話、携帯ゲーム機等のモバイル型端末機器やノート型パソコン等の各種電子機器の表示パネルとして、薄くて軽量であるとともに、低電圧で駆動でき、かつ消費電力が少ないという長所を有する液晶表示装置が広く使用されている。
In recent years, as a display panel for mobile terminal devices such as mobile phones and portable game machines and various electronic devices such as notebook computers, it has the advantages of being thin and lightweight, being able to be driven at a low voltage, and consuming little power. Liquid crystal display devices are widely used.
一般に、液晶表示装置は、互いに対向して配置された一対の基板(即ち、TFT(Thin Film Transistor)基板とCF(Color Filter)基板)と、一対の基板の間に設けられた液晶層と、一対の基板を互いに接着するとともに、両基板の間に液晶を封入するために枠状に設けられたシール材とを備えている。
In general, a liquid crystal display device includes a pair of substrates disposed opposite to each other (that is, a TFT (Thin Film Transistor) substrate and a CF (Color Filter) substrate), a liquid crystal layer provided between the pair of substrates, A pair of substrates are bonded to each other, and a sealing material provided in a frame shape is provided between the substrates to enclose liquid crystal.
また、液晶表示装置は、マトリクス状に配置された複数の画素に共通して設けられ、各画素に含まれる画素電極と、この画素電極と液晶層を挟んで対向するように配置された共通電極(または、対向電極)を備えている。
The liquid crystal display device is provided in common to a plurality of pixels arranged in a matrix, and includes a pixel electrode included in each pixel and a common electrode arranged so as to face the pixel electrode with a liquid crystal layer interposed therebetween. (Or a counter electrode).
また、液晶表示装置としては、画素により画像を形成する各種のディスプレイが、情報や映像の表示手段として広く普及しているが、例えば、1つの画素が、赤色層R、緑色層G及び青色層Bからなる3原色の着色層によって構成され、この3原色の着色層を有するカラーフィルターによりカラー表示を行うものが一般的である。
In addition, as a liquid crystal display device, various displays that form an image with pixels are widely used as information and video display means. For example, one pixel includes a red layer R, a green layer G, and a blue layer. It is generally configured by a primary color layer composed of B and performing color display using a color filter having the primary color layer.
ここで、一般に、視野角特性に基づく色度変化を改善するために、カラーフィルターを構成する赤色層R、緑色層G及び青色層Bの厚みを変化させることにより、赤色層R、緑色層G及び青色層Bに対応する液晶層の厚み(セルギャップ)を異ならせる構造(マルチギャップ構造)を採用した液晶表示装置が提案されている。
Here, in general, in order to improve the chromaticity change based on the viewing angle characteristics, the red layer R, the green layer G are changed by changing the thicknesses of the red layer R, the green layer G, and the blue layer B constituting the color filter. In addition, there has been proposed a liquid crystal display device adopting a structure (multi-gap structure) in which the thickness (cell gap) of the liquid crystal layer corresponding to the blue layer B is made different.
しかし、このマルチギャップ構造では、各着色層に対応する液晶層の厚みが異なるため、各着色層に対応する液晶層の容量に差が生じてしまう。従って、画素充電時の引き込み電圧が各着色層により異なることになるため、最適な共通電極の電圧値も各着色層の領域毎に異なってくる。従って、通常実施される、全画素の共通電極の電圧を一括で調整するという方法では、最適な電圧値に設定されない共通電極が存在することになるため、結果として、表示画像にフリッカーを生じさせるという問題があった。
However, in this multi-gap structure, since the thickness of the liquid crystal layer corresponding to each colored layer is different, a difference occurs in the capacity of the liquid crystal layer corresponding to each colored layer. Accordingly, since the pull-in voltage at the time of pixel charging differs depending on each colored layer, the optimum voltage value of the common electrode also differs for each colored layer region. Therefore, in the method of adjusting the voltages of the common electrodes of all the pixels at once, which is normally performed, there is a common electrode that is not set to an optimum voltage value, and as a result, flicker is generated in the display image. There was a problem.
そこで、マルチギャップ構造を有する液晶表示装置において、フリッカーによる画像品質劣化を低減することができる構造を有するものが提案されている。より具体的には、赤色層R、緑色層G及び青色層Bに対応する液晶層の厚みを、それぞれdR、dG、dBとした場合に、dR>dG>dBの関係が成立するとともに、赤色層R、緑色層G及び青色層Bに対応する画素電極の面積を、それぞれSR、SG、SBとした場合に、SR>SG>SBの関係が成立する液晶表示装置が開示されている。そして、このような液晶表示装置によれば、液晶層の容量はS(画素電極の面積)/d(液晶層の厚み)に比例し、赤色層R、緑色層G及び青色層Bの各々が配置された領域において、S/dの値が略同一となるため、赤色層R、緑色層G及び青色層Bの各々に対応する液晶層の容量を略一定とすることができる。その結果、フリッカーによる画像品質劣化を低減することができると記載されている(例えば、特許文献1参照)。
Therefore, a liquid crystal display device having a multi-gap structure has been proposed that has a structure that can reduce image quality deterioration due to flicker. More specifically, when the thicknesses of the liquid crystal layers corresponding to the red layer R, the green layer G, and the blue layer B are d R , d G , and d B , respectively, a relationship of d R > d G > d B When the areas of the pixel electrodes corresponding to the red layer R, the green layer G, and the blue layer B are S R , S G , and S B , respectively, the relationship of S R > S G > S B is established. An established liquid crystal display device is disclosed. According to such a liquid crystal display device, the capacitance of the liquid crystal layer is proportional to S (area of the pixel electrode) / d (thickness of the liquid crystal layer), and each of the red layer R, the green layer G, and the blue layer B Since the S / d values are substantially the same in the arranged region, the capacitance of the liquid crystal layer corresponding to each of the red layer R, the green layer G, and the blue layer B can be made substantially constant. As a result, it is described that image quality deterioration due to flicker can be reduced (see, for example, Patent Document 1).
ここで、近年、液晶表示装置においては、コントラスト比および応答速度をさらに向上させる要請があり、更に、透過率の向上を実現する要請がある。そこで、PSA(Polymer-Susutained Alignment)液晶を使用した液晶表示装置が提案されている。このPSA型の液晶表示装置においては、画素電極(または、対向電極)に、液晶分子の配向を規制するスリットを形成して、液晶分子を配向させることにより、コントラスト比を向上させ、高いコントラスト比、及び速い応答速度を実現している。
Here, in recent years, there is a request for further improving the contrast ratio and response speed in the liquid crystal display device, and further, there is a request for realizing an improvement in transmittance. Therefore, a liquid crystal display device using a PSA (Polymer-SustainedinAlignment) liquid crystal has been proposed. In this PSA type liquid crystal display device, a slit for regulating the alignment of liquid crystal molecules is formed in the pixel electrode (or the counter electrode), and the liquid crystal molecules are aligned, thereby improving the contrast ratio and increasing the contrast ratio. And a high response speed.
しかし、上記PSA液晶を使用した液晶表示装置においては、電極にスリットが形成されているため、液晶容量は電極の面積に比例せず、従って、上記特許文献1に記載の液晶表示装置の方法では、赤色層R、緑色層G及び青色層Bの各々に対応する液晶層の液晶容量を略一定とすることができない。その結果、フリッカーによる画像品質劣化を低減することが困難になるという問題があった。
However, in the liquid crystal display device using the PSA liquid crystal, since a slit is formed in the electrode, the liquid crystal capacitance is not proportional to the area of the electrode. Therefore, in the method of the liquid crystal display device described in Patent Document 1, The liquid crystal capacity of the liquid crystal layer corresponding to each of the red layer R, the green layer G, and the blue layer B cannot be made substantially constant. As a result, there is a problem that it is difficult to reduce image quality deterioration due to flicker.
そこで、本発明は、上述の問題に鑑みてなされたものであり、PSA液晶を使用した液晶表示装置において、画素充電時の引き込み電圧を同一とすることができ、フリッカーの発生を防止できる液晶表示装置を提供することを目的とする。
Accordingly, the present invention has been made in view of the above-described problems, and in a liquid crystal display device using PSA liquid crystal, a liquid crystal display capable of making the same pull-in voltage during pixel charging and preventing occurrence of flicker. An object is to provide an apparatus.
上記目的を達成するために、本発明の液晶表示装置は、第1電極を有する第1基板と、第1基板に対向して配置され、赤色層、緑色層、および青色層からなる複数の着色層を有する画素が配列されたカラーフィルターと、カラーフィルター上に設けられた第2電極とを有する第2基板と、第1基板及び第2基板の間に設けられ、PSA液晶により形成された液晶層とを備え、赤色層、緑色層、および青色層の各々が配置された領域における液晶層の厚みをそれぞれTR、TG、TBとした場合、TR>TG>TBの関係を有し、第1電極または第2電極には、液晶分子の配向を制御するスリットとスリットにより区画されたラインが形成され、第1電極と第2電極との間に電圧を印加することにより、液晶分子を駆動する液晶表示装置であって、赤色層、緑色層、および青色層のうち、基準となる着色層が配置された領域における液晶層の液晶容量をCk、赤色層が配置された領域における液晶層の液晶容量をCR、緑色層が配置された領域における液晶層の液晶容量をCG、青色層が配置された領域における液晶層の液晶容量をCB、赤色層が配置された領域におけるラインの幅をWR(μm)、緑色層が配置された領域におけるラインの幅をWG(μm)、青色層が配置された領域における前記ラインの幅をWB(μm)、スリットの幅を3μmとした場合に、
ラインの幅WRが、下記の式(1)を満たし、
[数1]
WR=(3×CR/Ck-2.37)/(1.23-CR/Ck) …(1)
ラインの幅WGが、下記の式(2)を満たし、
[数2]
WG=(3×CG/Ck-2.37)/(1.23-CG/Ck) …(2)
ラインの幅WBが、下記の式(3)を満たすことを特徴とする液晶表示装置。
[数3]
WB=(3×CB/Ck-2.37)/(1.23-CB/Ck) …(3) In order to achieve the above object, a liquid crystal display device according to the present invention includes a first substrate having a first electrode and a plurality of coloring layers disposed opposite to the first substrate and including a red layer, a green layer, and a blue layer. A liquid crystal formed by a PSA liquid crystal provided between a first substrate and a second substrate, a second substrate having a color filter in which pixels having layers are arranged, and a second electrode provided on the color filter. and a layer, the red layer, green layer, and each T R the thickness of the liquid crystal layer in each of which is arranged a region of the blue layer, T G, when the T B, the relationship of T R> T G> T B In the first electrode or the second electrode, a slit for controlling the alignment of liquid crystal molecules and a line partitioned by the slit are formed, and a voltage is applied between the first electrode and the second electrode. Liquid crystal display device that drives liquid crystal molecules In the red layer, green layer, and blue layer, the liquid crystal capacity of the liquid crystal layer in the region where the reference colored layer is disposed is C k , and the liquid crystal capacity of the liquid crystal layer in the region where the red layer is disposed C R , C G is the liquid crystal capacity of the liquid crystal layer in the region where the green layer is disposed, C B is the liquid crystal capacity of the liquid crystal layer in the region where the blue layer is disposed, and W is the line width in the region where the red layer is disposed. R ([mu] m), the width of the line in the region where the green layer is disposed W G (μm), width W B (μm) of the lines in the region where the blue layer is arranged, if the width of the slit was 3μm In addition,
Width W R of the line is, satisfies the equation (1) below,
[Equation 1]
W R = (3 × C R / C k −2.37) / (1.23-C R / C k ) (1)
Width W G of the line is, satisfies the equation (2) below,
[Equation 2]
W G = (3 × C G / C k −2.37) / (1.23-C G / C k ) (2)
The liquid crystal display device width W B of the line, and satisfies the equation (3) below.
[Equation 3]
W B = (3 × C B / C k -2.37) / (1.23-C B / C k ) (3)
ラインの幅WRが、下記の式(1)を満たし、
[数1]
WR=(3×CR/Ck-2.37)/(1.23-CR/Ck) …(1)
ラインの幅WGが、下記の式(2)を満たし、
[数2]
WG=(3×CG/Ck-2.37)/(1.23-CG/Ck) …(2)
ラインの幅WBが、下記の式(3)を満たすことを特徴とする液晶表示装置。
[数3]
WB=(3×CB/Ck-2.37)/(1.23-CB/Ck) …(3) In order to achieve the above object, a liquid crystal display device according to the present invention includes a first substrate having a first electrode and a plurality of coloring layers disposed opposite to the first substrate and including a red layer, a green layer, and a blue layer. A liquid crystal formed by a PSA liquid crystal provided between a first substrate and a second substrate, a second substrate having a color filter in which pixels having layers are arranged, and a second electrode provided on the color filter. and a layer, the red layer, green layer, and each T R the thickness of the liquid crystal layer in each of which is arranged a region of the blue layer, T G, when the T B, the relationship of T R> T G> T B In the first electrode or the second electrode, a slit for controlling the alignment of liquid crystal molecules and a line partitioned by the slit are formed, and a voltage is applied between the first electrode and the second electrode. Liquid crystal display device that drives liquid crystal molecules In the red layer, green layer, and blue layer, the liquid crystal capacity of the liquid crystal layer in the region where the reference colored layer is disposed is C k , and the liquid crystal capacity of the liquid crystal layer in the region where the red layer is disposed C R , C G is the liquid crystal capacity of the liquid crystal layer in the region where the green layer is disposed, C B is the liquid crystal capacity of the liquid crystal layer in the region where the blue layer is disposed, and W is the line width in the region where the red layer is disposed. R ([mu] m), the width of the line in the region where the green layer is disposed W G (μm), width W B (μm) of the lines in the region where the blue layer is arranged, if the width of the slit was 3μm In addition,
Width W R of the line is, satisfies the equation (1) below,
[Equation 1]
W R = (3 × C R / C k −2.37) / (1.23-C R / C k ) (1)
Width W G of the line is, satisfies the equation (2) below,
[Equation 2]
W G = (3 × C G / C k −2.37) / (1.23-C G / C k ) (2)
The liquid crystal display device width W B of the line, and satisfies the equation (3) below.
[Equation 3]
W B = (3 × C B / C k -2.37) / (1.23-C B / C k ) (3)
同構成によれば、PSA液晶を使用した液晶表示装置において、赤色層、緑色層、青色層の各々が配置された領域における液晶層の厚みTR,TG,TBが異なる(即ち、TR>TG>TB)場合であっても、液晶層の厚みTR,TG,TBの差に起因する液晶容量CR,CG,CBの差を打ち消すことができる、赤色層が配置された領域におけるラインの幅WR、緑色層が配置された領域におけるラインの幅WG、及び青色層が配置された領域におけるラインの幅をWBを設定して、スリットとラインが形成された第1電極または第2電極の電極面積を調整することが可能になる。従って、赤色層、緑色層、及び青色層の各々が配置された領域における液晶層の液晶容量CR,CG,CBを略一定とすることができるため、PSA液晶を使用した液晶表示装置において、画素充電時の引き込み電圧を同一とすることができ、フリッカーの発生を防止できる。
According to this configuration, in the liquid crystal display device using the PSA liquid crystal, the thicknesses T R , T G , and T B of the liquid crystal layers in the regions where the red layer, the green layer, and the blue layer are arranged are different (that is, T even R> T G> T B) case, it is possible to cancel out the thickness of the liquid crystal layer T R, T G, a liquid crystal capacitance C R due to the difference of T B, C G, the difference in C B, red the width of the line in the layers are arranged regions W R, width of the line in the region where the green layer is disposed W G, and a blue layer is the width of a line in the arrangement area by setting W B, slit and the line It is possible to adjust the electrode area of the first electrode or the second electrode on which is formed. Therefore, the red layer, green layer, and since the liquid crystal capacitance C R of the liquid crystal layer in the region that are each located in the blue layer, C G, a C B can be made substantially constant, a liquid crystal display device using a PSA liquid crystal In FIG. 5, the pull-in voltage at the time of pixel charging can be made the same, and the occurrence of flicker can be prevented.
また、本発明の液晶表示装置は、第1電極を有する第1基板と、第1基板に対向して配置され、赤色層、緑色層、および青色層からなる複数の着色層を有する画素が配列されたカラーフィルターと、カラーフィルター上に設けられた第2電極とを有する第2基板と、第1基板及び第2基板の間に設けられ、PSA液晶により形成された液晶層とを備え、赤色層、緑色層、青色層の各々が配置された領域における液晶層の厚みをそれぞれTR、TG、TBとした場合、TR=TG>TBの関係を有し、第1電極または第2電極には、液晶分子の配向を制御するスリットとスリットにより区画されたラインが形成され、第1電極と第2電極との間に電圧を印加することにより、液晶分子を駆動する液晶表示装置であって、赤色層、緑色層、および青色層のうち、基準となる着色層が配置された領域における液晶層の容量をCk、赤色層が配置された領域における液晶層の容量をCR、緑色層が配置された領域における液晶層の容量をCG、青色層が配置された領域における液晶層の容量をCB、赤色層が配置された領域におけるラインの幅をWR(μm)、緑色層が配置された領域におけるラインの幅をWG(μm)、青色層が配置された領域におけるラインの幅をWB(μm)、スリットの幅を3μmとした場合に、
ラインの幅WRが、下記の式(1)を満たし、
[数1]
WR=(3×CR/Ck-2.37)/(1.23-CR/Ck) …(1)
ラインの幅WGが、下記の式(2)を満たし、
[数2]
WG=(3×CG/Ck-2.37)/(1.23-CG/Ck) …(2)
ラインの幅WBが、下記の式(3)を満たすことを特徴とする液晶表示装置。
[数3]
WB=(3×CB/Ck-2.37)/(1.23-CB/Ck) …(3) In the liquid crystal display device of the present invention, a first substrate having a first electrode and pixels having a plurality of colored layers made of a red layer, a green layer, and a blue layer are arranged to face the first substrate. And a second substrate having a color filter and a second electrode provided on the color filter, and a liquid crystal layer provided between the first substrate and the second substrate and formed of PSA liquid crystal. layer, a green layer, each thickness T R of the liquid crystal layer in the region that are each located in the blue layer, T G, when the T B, has a relation of T R = T G> T B , the first electrode Alternatively, the second electrode is formed with slits for controlling the alignment of liquid crystal molecules and lines partitioned by the slits, and the liquid crystal that drives the liquid crystal molecules by applying a voltage between the first electrode and the second electrode. A display device comprising a red layer, a green layer, Of the liquid crystal layer in the region where the reference colored layer is disposed, C k , the capacity of the liquid crystal layer in the region where the red layer is disposed, C R , and the liquid crystal in the region where the green layer is disposed The capacitance of the layer is C G , the capacitance of the liquid crystal layer in the region where the blue layer is arranged is C B , the line width in the region where the red layer is arranged is W R (μm), and the line in the region where the green layer is arranged Is W G (μm), the line width in the region where the blue layer is arranged is W B (μm), and the slit width is 3 μm,
Width W R of the line is, satisfies the equation (1) below,
[Equation 1]
W R = (3 × C R / C k −2.37) / (1.23-C R / C k ) (1)
Width W G of the line is, satisfies the equation (2) below,
[Equation 2]
W G = (3 × C G / C k −2.37) / (1.23-C G / C k ) (2)
The liquid crystal display device width W B of the line, and satisfies the equation (3) below.
[Equation 3]
W B = (3 × C B / C k -2.37) / (1.23-C B / C k ) (3)
ラインの幅WRが、下記の式(1)を満たし、
[数1]
WR=(3×CR/Ck-2.37)/(1.23-CR/Ck) …(1)
ラインの幅WGが、下記の式(2)を満たし、
[数2]
WG=(3×CG/Ck-2.37)/(1.23-CG/Ck) …(2)
ラインの幅WBが、下記の式(3)を満たすことを特徴とする液晶表示装置。
[数3]
WB=(3×CB/Ck-2.37)/(1.23-CB/Ck) …(3) In the liquid crystal display device of the present invention, a first substrate having a first electrode and pixels having a plurality of colored layers made of a red layer, a green layer, and a blue layer are arranged to face the first substrate. And a second substrate having a color filter and a second electrode provided on the color filter, and a liquid crystal layer provided between the first substrate and the second substrate and formed of PSA liquid crystal. layer, a green layer, each thickness T R of the liquid crystal layer in the region that are each located in the blue layer, T G, when the T B, has a relation of T R = T G> T B , the first electrode Alternatively, the second electrode is formed with slits for controlling the alignment of liquid crystal molecules and lines partitioned by the slits, and the liquid crystal that drives the liquid crystal molecules by applying a voltage between the first electrode and the second electrode. A display device comprising a red layer, a green layer, Of the liquid crystal layer in the region where the reference colored layer is disposed, C k , the capacity of the liquid crystal layer in the region where the red layer is disposed, C R , and the liquid crystal in the region where the green layer is disposed The capacitance of the layer is C G , the capacitance of the liquid crystal layer in the region where the blue layer is arranged is C B , the line width in the region where the red layer is arranged is W R (μm), and the line in the region where the green layer is arranged Is W G (μm), the line width in the region where the blue layer is arranged is W B (μm), and the slit width is 3 μm,
Width W R of the line is, satisfies the equation (1) below,
[Equation 1]
W R = (3 × C R / C k −2.37) / (1.23-C R / C k ) (1)
Width W G of the line is, satisfies the equation (2) below,
[Equation 2]
W G = (3 × C G / C k −2.37) / (1.23-C G / C k ) (2)
The liquid crystal display device width W B of the line, and satisfies the equation (3) below.
[Equation 3]
W B = (3 × C B / C k -2.37) / (1.23-C B / C k ) (3)
同構成によれば、PSA液晶を使用した液晶表示装置において、赤色層、緑色層、青色層の各々が配置された領域における液晶層の厚みTR,TG,TBが異なる(即ち、TR=TG>TB)場合であっても、液晶層の厚みTR,TG,TBの差に起因する液晶容量CR,CG,CBの差を打ち消すことができる、赤色層が配置された領域におけるラインの幅WR、緑色層が配置された領域におけるラインの幅WG、及び青色層が配置された領域におけるラインの幅をWBを設定して、スリットとラインが形成された第1電極または第2電極の電極面積を調整することが可能になる。従って、赤色層、緑色層、及び青色層の各々が配置された領域における液晶層の液晶容量CR,CG,CBを略一定とすることができるため、PSA液晶を使用した液晶表示装置において、画素充電時の引き込み電圧を同一とすることができ、フリッカーの発生を防止できる。
According to this configuration, in the liquid crystal display device using the PSA liquid crystal, the thicknesses T R , T G , and T B of the liquid crystal layers in the regions where the red layer, the green layer, and the blue layer are arranged are different (that is, T even R = T G> T B) case, it is possible to cancel out the thickness of the liquid crystal layer T R, T G, a liquid crystal capacitance C R due to the difference of T B, C G, the difference in C B, red the width of the line in the layers are arranged regions W R, width of the line in the region where the green layer is disposed W G, and a blue layer is the width of a line in the arrangement area by setting W B, slit and the line It is possible to adjust the electrode area of the first electrode or the second electrode on which is formed. Therefore, the red layer, green layer, and since the liquid crystal capacitance C R of the liquid crystal layer in the region that are each located in the blue layer, C G, a C B can be made substantially constant, a liquid crystal display device using a PSA liquid crystal In FIG. 5, the pull-in voltage at the time of pixel charging can be made the same, and the occurrence of flicker can be prevented.
本発明の液晶表示装置においては、第1電極に、スリットとラインを形成する構成としてもよい。
In the liquid crystal display device of the present invention, the first electrode may be formed with a slit and a line.
また、本発明の液晶表示装置においては、第2電極に、スリットとラインを形成する構成としてもよい。
Further, in the liquid crystal display device of the present invention, a configuration may be adopted in which slits and lines are formed in the second electrode.
また、本発明の液晶表示装置においては、第1電極及び第2電極が、インジウム錫酸化物またはインジウム亜鉛酸化物により形成されていてもよい。
In the liquid crystal display device of the present invention, the first electrode and the second electrode may be formed of indium tin oxide or indium zinc oxide.
同構成によれば、安価かつ汎用性のある材料により、第1電極及び第2電極を形成することができる。
According to this configuration, the first electrode and the second electrode can be formed from an inexpensive and versatile material.
本発明によれば、PSA液晶を使用した液晶表示装置において、画素充電時の引き込み電圧を同一とすることができ、フリッカーの発生を防止できる。
According to the present invention, in the liquid crystal display device using the PSA liquid crystal, the pull-in voltage at the time of pixel charging can be made the same, and the occurrence of flicker can be prevented.
以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiment.
図1は、本発明の実施形態に係る液晶表示装置の全体構成を示す平面図であり、図2は、本発明の実施形態に係る液晶表示装置の断面図である。また、図3は、本発明の実施形態に係る液晶表示装置の等価回路図であり、図4は、本発明の実施形態に係る液晶表示装置を構成するTFT基板の全体構成を示す断面図である。また、図5は、本発明の実施形態に係る液晶表示装置の表示部の全体構成を示す断面図である。
FIG. 1 is a plan view showing an overall configuration of a liquid crystal display device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the liquid crystal display device according to an embodiment of the present invention. 3 is an equivalent circuit diagram of the liquid crystal display device according to the embodiment of the present invention, and FIG. 4 is a cross-sectional view showing the entire configuration of the TFT substrate constituting the liquid crystal display device according to the embodiment of the present invention. is there. FIG. 5 is a cross-sectional view showing the overall configuration of the display unit of the liquid crystal display device according to the embodiment of the present invention.
図1、図2に示す様に、液晶表示装置1は、第1基板であるTFT基板2と、TFT基板2に対向して配置された第2基板であるCF基板3と、TFT基板2及びCF基板3の間に挟持して設けられた表示媒体層である液晶層4と、TFT基板2とCF基板3との間に狭持され、TFT基板2及びCF基板3を互いに接着するとともに液晶層4を封入するために枠状に設けられたシール材40とを備えている。
As shown in FIGS. 1 and 2, the liquid crystal display device 1 includes a TFT substrate 2 that is a first substrate, a CF substrate 3 that is a second substrate disposed opposite to the TFT substrate 2, a TFT substrate 2, The liquid crystal layer 4 which is a display medium layer sandwiched between the CF substrates 3 and the TFT substrate 2 and the CF substrate 3 are sandwiched, and the TFT substrate 2 and the CF substrate 3 are bonded to each other and the liquid crystal In order to enclose the layer 4, a sealing material 40 provided in a frame shape is provided.
このシール材40は、液晶層4を周回するように形成されており、TFT基板2とCF基板3は、このシール材40を介して相互に貼り合わされている。また、液晶表示装置1は、液晶層4の厚み(即ち、セルギャップ)を規制するための複数のフォトスペーサ(不図示)を備えている。
The sealing material 40 is formed so as to go around the liquid crystal layer 4, and the TFT substrate 2 and the CF substrate 3 are bonded to each other via the sealing material 40. In addition, the liquid crystal display device 1 includes a plurality of photo spacers (not shown) for regulating the thickness of the liquid crystal layer 4 (that is, the cell gap).
また、図1に示すように、液晶表示装置1は、矩形状に形成されており、液晶表示装置1の長手方向Xにおいて、TFT基板2がその上辺においてCF基板3よりも突出し、その突出した領域には、後述するゲート線やソース線等の複数の表示用配線が引き出され、端子領域Tが構成されている。
As shown in FIG. 1, the liquid crystal display device 1 is formed in a rectangular shape, and in the longitudinal direction X of the liquid crystal display device 1, the TFT substrate 2 protrudes from the CF substrate 3 on its upper side, and the protrusion In the region, a plurality of display wirings such as gate lines and source lines, which will be described later, are drawn out to form a terminal region T.
また、液晶表示装置1では、TFT基板2及びCF基板3が重なる領域に画像表示を行う表示領域Dが規定されている。ここで、表示領域Dは、画像の最小単位である画素E(図5参照)がマトリクス状に複数配列されることにより構成されている。
Further, in the liquid crystal display device 1, a display area D for displaying an image is defined in an area where the TFT substrate 2 and the CF substrate 3 overlap. Here, the display area D is configured by arranging a plurality of pixels E (see FIG. 5), which is the minimum unit of an image, in a matrix.
また、シール材40は、図1に示すように、表示領域Dの周囲全体を囲む矩形枠状に設けられている。このシール材40の枠幅は、特に限定されないが、例えば、0.5mm以上2.0mm以下に設定できる。
Further, as shown in FIG. 1, the sealing material 40 is provided in a rectangular frame shape surrounding the entire periphery of the display area D. The frame width of the sealing material 40 is not particularly limited, but can be set to 0.5 mm or more and 2.0 mm or less, for example.
TFT基板2は、図3、図4に示すように、ガラス基板等の絶縁基板6と、当該絶縁基板6上に互いに平行に延設された複数のゲート線11と、各ゲート線11を覆うように設けられたゲート絶縁膜12と、ゲート絶縁膜12上に各ゲート線11と直交する方向に互いに平行に延設された複数のソース線14とを備えている。また、TFT基板2は、各ゲート線11及び各ソース線14の交差部分毎にそれぞれ設けられた複数のTFT5と、各ソース線14及び各TFT5を覆うように順に設けられた第1層間絶縁膜15及び第2層間絶縁膜16からなる層間絶縁膜10と、第2層間絶縁膜16上にマトリクス状に設けられ、各TFT5の各々に接続された複数の画素電極19と、各画素電極19を覆うように設けられた配向膜9とを有している。
As shown in FIGS. 3 and 4, the TFT substrate 2 covers an insulating substrate 6 such as a glass substrate, a plurality of gate lines 11 extending in parallel with each other on the insulating substrate 6, and the gate lines 11. And a plurality of source lines 14 extending in parallel to each other in a direction orthogonal to the gate lines 11 on the gate insulating film 12. The TFT substrate 2 includes a plurality of TFTs 5 provided at each intersection of the gate lines 11 and the source lines 14, and a first interlayer insulating film provided in order so as to cover the source lines 14 and the TFTs 5. 15 and the second interlayer insulating film 16, a plurality of pixel electrodes 19 provided in a matrix on the second interlayer insulating film 16 and connected to each of the TFTs 5, and the pixel electrodes 19. And an alignment film 9 provided so as to cover it.
また、TFT5は、図4に示すように、各ゲート線11が側方に突出したゲート電極17と、ゲート電極17を覆うように設けられたゲート絶縁膜12と、ゲート絶縁膜12上でゲート電極17に重なる位置において島状に設けられた半導体層13と、半導体層13上で互いに対峙するように設けられたソース電極18及びドレイン電極20とを備えている。
As shown in FIG. 4, the TFT 5 includes a gate electrode 17 in which each gate line 11 protrudes to the side, a gate insulating film 12 provided so as to cover the gate electrode 17, and a gate on the gate insulating film 12. A semiconductor layer 13 provided in an island shape at a position overlapping with the electrode 17, and a source electrode 18 and a drain electrode 20 provided so as to face each other on the semiconductor layer 13 are provided.
ここで、ソース電極18は、各ソース線14が側方に突出した部分である。また、ドレイン電極20は、図4に示すように、第1層間絶縁膜15及び第2層間絶縁膜16に形成されたコンタクトホール30を介して、画素電極19に接続されている。また、半導体層13は、図4に示すように、下層の真性アモルファスシリコン層13aと、その上層のリンがドープされたn+アモルファスシリコン層13bとを備え、ソース電極18及びドレイン電極20から露出する真性アモルファスシリコン層13aがチャネル領域を構成している。
Here, the source electrode 18 is a portion where each source line 14 protrudes to the side. Further, as shown in FIG. 4, the drain electrode 20 is connected to the pixel electrode 19 through a contact hole 30 formed in the first interlayer insulating film 15 and the second interlayer insulating film 16. Further, as shown in FIG. 4, the semiconductor layer 13 includes a lower intrinsic amorphous silicon layer 13 a and an upper n + amorphous silicon layer 13 b doped with phosphorus, and is exposed from the source electrode 18 and the drain electrode 20. The intrinsic amorphous silicon layer 13a that constitutes the channel region.
また、本実施形態の液晶表示装置1は透過型の装置であり、液晶表示装置1の表示領域Dでは、図5に示すように、透過領域Tが規定されている。なお、液晶表示装置1として、表示領域Dにおいて、反射領域と透過領域とが規定された半透過型の装置を使用してもよい。
Further, the liquid crystal display device 1 of the present embodiment is a transmissive device, and in the display region D of the liquid crystal display device 1, a transmissive region T is defined as shown in FIG. As the liquid crystal display device 1, a transflective device in which a reflective region and a transmissive region are defined in the display region D may be used.
また、画素電極19は、ITO(インジウム錫酸化物)またはIZO(インジウム亜鉛酸化物)等の透明導電体により形成されている。
The pixel electrode 19 is formed of a transparent conductor such as ITO (indium tin oxide) or IZO (indium zinc oxide).
また、第1層間絶縁膜15を構成する材料としては、特に限定されず、例えば、酸化シリコン(SiO2)、窒化シリコン(SiNx(xは正数))等が挙げられる。また、第1層間絶縁膜15の厚みは、600nm以上1000nm以下が好ましい。これは、第1層間絶縁膜15の厚みが600nm未満の場合は、第1層間絶縁膜15を平坦化することが困難になるという不都合が生じる場合があるためであり、1000nmより大きい場合は、エッチングにより、コンタクトホール30を形成することが困難になるという不都合が生じる場合があるためである。
The material constituting the first interlayer insulating film 15 is not particularly limited, and examples thereof include silicon oxide (SiO 2 ), silicon nitride (SiNx (x is a positive number)), and the like. The thickness of the first interlayer insulating film 15 is preferably 600 nm or more and 1000 nm or less. This is because when the thickness of the first interlayer insulating film 15 is less than 600 nm, it may be difficult to planarize the first interlayer insulating film 15, and when the thickness is larger than 1000 nm, This is because the etching may cause a disadvantage that it is difficult to form the contact hole 30.
また、CF基板3は、図5に示すように、ガラス基板等の絶縁基板21と、絶縁基板21上に設けられたカラーフィルター22と、カラーフィルター22を覆うように設けられた共通電極24と、共通電極24上に柱状に設けられたフォトスペーサ(不図示)と、共通電極24及びフォトスペーサを覆うように設けられた配向膜26とを有している。
As shown in FIG. 5, the CF substrate 3 includes an insulating substrate 21 such as a glass substrate, a color filter 22 provided on the insulating substrate 21, and a common electrode 24 provided so as to cover the color filter 22. A photo spacer (not shown) provided in a column shape on the common electrode 24 and an alignment film 26 provided so as to cover the common electrode 24 and the photo spacer.
共通電極24は、上述の画素電極19と同様に、ITO(インジウム錫酸化物)またはIZO(インジウム亜鉛酸化物)等の透明導電体により形成されている。
The common electrode 24 is formed of a transparent conductor such as ITO (indium tin oxide) or IZO (indium zinc oxide) in the same manner as the pixel electrode 19 described above.
また、カラーフィルター22には、図5に示すように、各画素Eに対して設けられた複数種の着色層28(即ち、赤色層22R、緑色層22G、および青色層22B)と、遮光膜であるブラックマトリクス27とが含まれる。ブラックマトリクス27は、隣接する着色層28の間に設けられ、これら複数種の着色層28を区画する役割を有するものである。
As shown in FIG. 5, the color filter 22 includes a plurality of types of colored layers 28 (that is, a red layer 22R, a green layer 22G, and a blue layer 22B) provided for each pixel E, and a light shielding film. And a black matrix 27. The black matrix 27 is provided between the adjacent colored layers 28 and has a role of partitioning the plurality of types of colored layers 28.
このブラックマトリクス27は、Ta(タンタル)、Cr(クロム)、Mo(モリブデン)、Ni(ニッケル)、Ti(チタン)、Cu(銅)、Al(アルミニウム)などの金属材料、カーボンなどの黒色顔料が分散された樹脂材料、または、各々、光透過性を有する複数色の着色層が積層された樹脂材料などにより形成される。また、フォトスペーサは、例えば、アクリル系の感光性樹脂からなり、フォトリソグラフィー法により形成される。
The black matrix 27 is made of a metal material such as Ta (tantalum), Cr (chromium), Mo (molybdenum), Ni (nickel), Ti (titanium), Cu (copper), Al (aluminum), or a black pigment such as carbon. Are dispersed or a resin material in which a plurality of colored layers having light transmittance are laminated. The photo spacer is made of, for example, an acrylic photosensitive resin, and is formed by a photolithography method.
そして、カラーフィルター22は、赤色層R、緑色層G、および青色層Bからなる複数の着色層28を有する画素Eが2次元的に複数配列された表示領域Dを有する。
The color filter 22 has a display region D in which a plurality of pixels E each having a plurality of colored layers 28 composed of a red layer R, a green layer G, and a blue layer B are two-dimensionally arranged.
また、本実施形態においては、図5に示すように、赤色層R、緑色層G、青色層Bの各々が配置された領域における液晶層4の厚み(即ち、赤色層Rが配置された領域ER、緑色層Gが配置された領域EG、及び青色層Bが配置された領域EBの各々における液晶層4の厚み)をそれぞれTR、TG、TBとした場合、TR>TG>TBの関係が成立するように構成されている。
Further, in the present embodiment, as shown in FIG. 5, the thickness of the liquid crystal layer 4 in the region where each of the red layer R, the green layer G, and the blue layer B is disposed (that is, the region where the red layer R is disposed). E R, the green layer G is disposed region E G, and the blue layer B are each respectively T the thickness) of the liquid crystal layer 4 in the R of the arrangement region E B, T G, when the T B, T R > T G > T B is established.
また、液晶層4は、コントラスト比および応答速度を向上させるとともに、透過率の向上を実現するとの観点から、PSA(Polymer-Susutained Alignment)液晶により形成されている。
Further, the liquid crystal layer 4 is formed of PSA (Polymer-Sustained Alignment) liquid crystal from the viewpoint of improving the contrast ratio and the response speed and improving the transmittance.
ここで、PSA液晶とは、液晶に光重合性のポリマー(例えば、ビフェニルアクリレート)を微量添加した液晶材料により形成され、スリットが形成された電極(画素電極や共通電極)を用いて液晶分子を配向させる液晶のことをいう。
Here, the PSA liquid crystal is formed of a liquid crystal material in which a small amount of a photopolymerizable polymer (for example, biphenyl acrylate) is added to the liquid crystal, and liquid crystal molecules are formed using electrodes (pixel electrodes or common electrodes) in which slits are formed. It refers to the liquid crystal to be aligned.
また、同様の観点から、画素電極19としては、スリットが設けられた電極が使用される。より具体的には、図5、図6に示すように、画素電極19の、赤色層Rに対応する部分(即ち、画素電極19の、赤色層Rが配置された領域ERの部分)19Rには、電圧印加時の液晶分子の配向を制御する複数のスリットKR(電極材料が存在しない部分)が形成されている。
From the same viewpoint, an electrode provided with a slit is used as the pixel electrode 19. More specifically, as shown in FIGS. 5 and 6, the pixel electrode 19, the portion corresponding to the red layer R (i.e., the pixel electrode 19, the portion of the area E R to the red layer R is disposed) 19R Are formed with a plurality of slits K R (portions where no electrode material is present) for controlling the alignment of liquid crystal molecules when a voltage is applied.
このスリットKRは、所定の幅HRを有しており、画素電極19の、赤色層Rが配置された領域ERの部分19Rには、スリットKRに隣接して、スリットKRにより区画された複数のライン(電極材料が存在する部分)LRが形成されている。このラインLRは、所定の幅WRを有している。
The slit K R has a predetermined width H R, of the pixel electrode 19, the portion 19R of the region E R of the red layer R is arranged, adjacent to the slit K R, the slit K R A plurality of partitioned lines (portions where electrode material is present) LR are formed. The line L R has a predetermined width W R.
また、同様に、図5、図7に示すように、画素電極19の、緑色層Gに対応する部分(即ち、画素電極19の、緑色層Gが配置された領域EGの部分)19Gには、電圧印加時の液晶分子の配向を制御する複数のスリットKG(電極材料が存在しない部分)が形成されている。
Similarly, as shown in FIGS. 5 and 7, the pixel electrode 19, the portion corresponding to the green layer G (i.e., the pixel electrode 19, part of the region E G the green layer G is placed) to 19G a plurality of slits K G (portion where the electrode material is not present) that controls the orientation of liquid crystal molecules when a voltage is applied is formed.
このスリットKGは、所定の幅HGを有しており、画素電極19の、緑色層Gが配置された領域EGの部分19Gには、スリットKGに隣接して、スリットKGにより区画された複数のライン(電極材料が存在する部分)LGが形成されている。このラインLGは、所定の幅WGを有している。
The slit K G has a predetermined width H G, the pixel electrode 19, the portion 19G of the green layer G is disposed region E G is adjacent to the slit K G, the slit K G compartmentalized multiple lines (partial electrode material are present) L G is formed. The line L G has a predetermined width W G.
また、同様に、図5、図8に示すように、画素電極19の、青色層Bに対応する部分(即ち、画素電極19の、青色層Bが配置された領域EBの部分)19Bには、電圧印加時の液晶分子の配向を制御する複数のスリットKB(電極材料が存在しない部分)が形成されている。
Similarly, as shown in FIGS. 5 and 8, the pixel electrode 19 corresponds to the portion corresponding to the blue layer B (that is, the portion of the pixel electrode 19 in the region EB where the blue layer B is disposed) 19 </ b > B. a plurality of slits K B (portion where the electrode material is not present) that controls the orientation of liquid crystal molecules when a voltage is applied is formed.
このスリットKBは、所定の幅HBを有しており、画素電極19の、青色層Bが配置された領域EBの部分19Bには、スリットKBに隣接して、スリットKBにより区画された複数のライン(電極材料が存在する部分)LBが形成されている。このラインLBは、所定の幅WBを有している。
The slit K B has a predetermined width H B, the pixel electrode 19, the portion 19B of the blue layer B is disposed region E B is adjacent to the slit K B, the slit K B a plurality of lines which are compartments (electrode material present portion) L B is formed. The line L B has a predetermined width W B.
上記構成の液晶表示装置1は、透過領域TにおいてTFT基板2側から入射するバックライト(不図示)からの光を透過するように構成されている。
The liquid crystal display device 1 having the above-described configuration is configured to transmit light from a backlight (not shown) incident from the TFT substrate 2 side in the transmission region T.
そして、液晶表示装置1は、各画素電極19毎に1つの画素Eが構成されており、各画素Eにおいて、ゲート線11からゲート信号が送られてTFT5をオン状態にした場合に、ソース線14からソース信号が送られてソース電極18及びドレイン電極20を介して、画素電極19に所定の電荷が書き込まれる。そして、画素電極19と共通電極24との間で電位差が生じ、液晶層4に所定の電圧が印加されるように構成されている。即ち、画素電極19と共通電極24との間に電圧を印加することにより、液晶層4の液晶分子が駆動され、液晶表示装置1では、印加された電圧の大きさに応じて、液晶分子の配向状態が変わることを利用して、バックライトから入射する光の透過率を調整することにより、画像が表示される構成となっている。
In the liquid crystal display device 1, one pixel E is formed for each pixel electrode 19. When a gate signal is sent from the gate line 11 and the TFT 5 is turned on in each pixel E, the source line A source signal is sent from 14, and a predetermined charge is written into the pixel electrode 19 via the source electrode 18 and the drain electrode 20. A potential difference is generated between the pixel electrode 19 and the common electrode 24, and a predetermined voltage is applied to the liquid crystal layer 4. That is, by applying a voltage between the pixel electrode 19 and the common electrode 24, the liquid crystal molecules of the liquid crystal layer 4 are driven. In the liquid crystal display device 1, according to the magnitude of the applied voltage, the liquid crystal molecules An image is displayed by adjusting the transmittance of light incident from the backlight by utilizing the change in the orientation state.
ここで、本実施形態においては、まず、赤色層R、緑色層G、青色層Bの各々が配置された領域ER,EG,EBにおける液晶層4の厚みTR,TG,TBから、液晶層4の容量比を決定する。次いで、液晶層4の容量比から、赤色層R、緑色層G、青色層Bの各々が配置された領域ER,EG,EBにおける液晶層4の容量を同一とするための画素電極19のラインの幅(即ち、上述のラインLR,LG,LBの各々の幅WR,WG,WB)を決定する点に特徴がある。
Here, in the present embodiment, first, the thicknesses T R , T G , T of the liquid crystal layer 4 in the regions E R , E G , E B where the red layer R, the green layer G, and the blue layer B are respectively arranged. From B , the capacity ratio of the liquid crystal layer 4 is determined. Next, based on the capacitance ratio of the liquid crystal layer 4, pixel electrodes for making the capacitance of the liquid crystal layer 4 the same in the regions E R , E G , and E B where the red layer R, the green layer G, and the blue layer B are disposed. 19 linewidth (i.e., above the line L R, L G, the width of each of the L B W R, W G, W B) is characterized in that to determine.
以下、本特徴を詳しく説明する。図9は、スリットが形成された画素電極を使用した場合の液晶層の厚み比と液晶容量比との関係を示すグラフであり、図10は、スリットが形成された画素電極を使用した場合の画素電極の電極面積比(即ち、画素電極における、電極全体の面積に対する導体面積の比)と液晶容量比との関係を示すグラフである。
Hereinafter, this feature will be described in detail. FIG. 9 is a graph showing the relationship between the thickness ratio of the liquid crystal layer and the liquid crystal capacitance ratio when a pixel electrode having a slit is used, and FIG. 10 is a graph when the pixel electrode having a slit is used. It is a graph which shows the relationship between the electrode area ratio of a pixel electrode (namely, ratio of the conductor area with respect to the area of the whole electrode in a pixel electrode), and a liquid crystal capacitance ratio.
なお、図9に示す関係は、図11に示す画素電極19a、共通電極24a、及び液晶層4aとから構成された構造体31を使用し、液晶層4aの厚みTを変化させて液晶容量Cを測定することにより算出した。
The relationship shown in FIG. 9 uses the structure 31 composed of the pixel electrode 19a, the common electrode 24a, and the liquid crystal layer 4a shown in FIG. 11, and changes the thickness T of the liquid crystal layer 4a to change the liquid crystal capacitance C. Was calculated by measuring.
また、図10に示す関係は、図11に示す構造体31を使用し、画素電極19aのラインLの幅Wを変化させて、液晶容量Cと画素電極19aの電極面積(即ち、画素電極における導体面積)Sを測定することにより算出した。
Further, the relationship shown in FIG. 10 uses the structure 31 shown in FIG. 11 and changes the width W of the line L of the pixel electrode 19a to change the electrode area of the liquid crystal capacitor C and the pixel electrode 19a (that is, in the pixel electrode). The conductor area was calculated by measuring S.
なお、画素電極19aと共通電極24aとして、ITOにより形成されたものを使用した。また、液晶層4aとしては、PSA液晶からなるものを使用した。また、画素電極19aのスリットKの幅Hは一定(3μm)として測定を行った。
The pixel electrode 19a and the common electrode 24a were made of ITO. The liquid crystal layer 4a is made of PSA liquid crystal. Further, the measurement was performed with the width H of the slit K of the pixel electrode 19a being constant (3 μm).
以上より、得られた液晶層4aの厚みTと液晶容量C、及び、これらの液晶層4aの厚みTと液晶容量Cより算出した液晶容量比と液晶層4aの厚み比を表1に示す。なお、液晶容量比は、厚みTが3.2μmの場合の液晶容量を基準として算出した。また、液晶層4aの厚み比は、厚みTが3.2μmの場合を基準として算出した。
Table 1 shows the thickness T and the liquid crystal capacity C of the obtained liquid crystal layer 4a, the liquid crystal capacity ratio calculated from the thickness T and the liquid crystal capacity C of these liquid crystal layers 4a, and the thickness ratio of the liquid crystal layer 4a. The liquid crystal capacity ratio was calculated based on the liquid crystal capacity when the thickness T was 3.2 μm. The thickness ratio of the liquid crystal layer 4a was calculated based on the case where the thickness T was 3.2 μm.
そして、表1に示す液晶容量比と液晶層4aの厚み比の逆数をグラフ化したものが図9である。図9より、液晶容量比と液晶層4aの厚み比の逆数との間には比例関係があることが判り、液晶容量比は、
液晶容量比=0.83×(1/液晶層の厚み比)+0.17 (1)
で表されることになる。 FIG. 9 is a graph showing the reciprocal of the liquid crystal capacitance ratio shown in Table 1 and the thickness ratio of theliquid crystal layer 4a. From FIG. 9, it can be seen that there is a proportional relationship between the liquid crystal capacitance ratio and the reciprocal of the thickness ratio of the liquid crystal layer 4a.
Liquid crystal capacity ratio = 0.83 × (1 / liquid crystal layer thickness ratio) +0.17 (1)
It will be represented by
液晶容量比=0.83×(1/液晶層の厚み比)+0.17 (1)
で表されることになる。 FIG. 9 is a graph showing the reciprocal of the liquid crystal capacitance ratio shown in Table 1 and the thickness ratio of the
Liquid crystal capacity ratio = 0.83 × (1 / liquid crystal layer thickness ratio) +0.17 (1)
It will be represented by
また、得られた画素電極19aの電極面積Sと液晶容量C、及びこれらの画素電極19aの電極面積Sと液晶容量Cにより算出した液晶容量比と画素電極の電極面積比を表2に示す。なお、液晶容量比は、ラインLの幅Wが3μmの場合の液晶容量を基準として算出した。また、電極面積比は、ラインLの幅Wが3μmの場合の電極面積を基準として算出した。
Table 2 shows the electrode area S and the liquid crystal capacitance C of the obtained pixel electrode 19a, and the liquid crystal capacitance ratio calculated from the electrode area S and the liquid crystal capacitance C of the pixel electrode 19a and the electrode area ratio of the pixel electrode. The liquid crystal capacity ratio was calculated based on the liquid crystal capacity when the width W of the line L was 3 μm. The electrode area ratio was calculated based on the electrode area when the width W of the line L was 3 μm.
そして、表2に示す液晶容量比と電極面積比をグラフ化したものが図10である。図10より、液晶容量比と電極面積比との間には比例関係があることが判り、液晶容量比は、
液晶容量比=0.22×電極面積比+0.79 (2)
で表されることになる。 FIG. 10 is a graph showing the liquid crystal capacitance ratio and the electrode area ratio shown in Table 2. From FIG. 10, it can be seen that there is a proportional relationship between the liquid crystal capacitance ratio and the electrode area ratio.
Liquid crystal capacitance ratio = 0.22 × electrode area ratio + 0.79 (2)
It will be represented by
液晶容量比=0.22×電極面積比+0.79 (2)
で表されることになる。 FIG. 10 is a graph showing the liquid crystal capacitance ratio and the electrode area ratio shown in Table 2. From FIG. 10, it can be seen that there is a proportional relationship between the liquid crystal capacitance ratio and the electrode area ratio.
Liquid crystal capacitance ratio = 0.22 × electrode area ratio + 0.79 (2)
It will be represented by
次いで、上記式(1)を使用して、図5に示す液晶表示装置1において、赤色層R、緑色層G、青色層Bの各々が配置された領域ER,EG,EBにおける液晶層4の厚みTR,TG,TBから、液晶層4の液晶容量比を決定する。
Next, using the above formula (1), in the liquid crystal display device 1 shown in FIG. 5, the liquid crystals in the regions E R , E G , E B in which the red layer R, the green layer G, and the blue layer B are arranged. The liquid crystal capacitance ratio of the liquid crystal layer 4 is determined from the thicknesses T R , T G , and T B of the layer 4.
例えば、上述の各スリットKR,KG,KBの幅HR,HG,HBを3μmに固定するとともに、ラインLGの幅WGを3μmに固定する。そして、液晶層4の厚みTR,TG,TBが、TR=3.5μm、TG=3.2μm、TB=2.9μmの場合、緑色層Gが配置された領域EGにおける液晶層4の厚みTGを基準とすると、厚みTGに対する、赤色層Rが配置された領域ERにおける液晶層4の厚みTRの厚み比は、TR/TG=3.5/3.2≒1.09となり、また、厚みTGに対する、青色層Bが配置された領域EBにおける液晶層4の厚みTBの厚み比は、TB/TG=2.9/3.2≒0.91となる。
For example, each slit K R described above, K G, the width H R of K B, H G, is fixed to H B to 3 [mu] m, to secure the width W G of the line L G in 3 [mu] m. When the thicknesses T R , T G , and T B of the liquid crystal layer 4 are T R = 3.5 μm, T G = 3.2 μm, and T B = 2.9 μm, the region E G in which the green layer G is disposed If based on the thickness T G of the liquid crystal layer 4 in, to the thickness T G, thickness ratio of the thickness T R of the liquid crystal layer 4 in the region E R of the red layer R is disposed, T R / T G = 3.5 /3.2≒1.09 becomes also, to the thickness T G, thickness ratio of the thickness T B of the liquid crystal layer 4 in the blue layer B is disposed region E B is, T B / T G = 2.9 / 3.2≈0.91.
なお、厚みTGが基準であるため、厚みTGに対する厚みTGの厚み比は、TG/TG=3.2/3.2=1となる。
Since the thickness TG is the reference, the thickness ratio of the thickness TG to the thickness TG is TG / TG = 3.2 / 3.2 = 1.
従って、緑色層Gが配置された領域EGにおける液晶層4の液晶容量CGを基準とすると、液晶容量CGに対する、赤色層Rが配置された領域ERにおける液晶層4の液晶容量CRの比はCR/CGとなり、上記式(1)より、CR/CG=0.83×(1/1.09)+0.17≒0.93となる。
Therefore, when the reference liquid crystal capacitance C G of the liquid crystal layer 4 in the region E G the green layer G is placed, the liquid crystal capacitance to C G, a liquid crystal capacitance C of the liquid crystal layer 4 in the red layer R is disposed region E R the ratio of R is next C R / C G, the above equation (1), the C R / C G = 0.83 × (1 / 1.09) + 0.17 ≒ 0.93.
また、同様に、緑色層Gが配置された領域EGにおける液晶層4の液晶容量CGを基準とすると、液晶容量CGに対する、青色層Bが配置された領域EBにおける液晶層4の液晶容量CBの比はCB/CGとなり、上記式(1)より、CB/CG=0.83×(1/0.91)+0.17≒1.08となる。
Similarly, when the reference liquid crystal capacitance C G of the liquid crystal layer 4 in the green layer G is disposed region E G, with respect to the liquid crystal capacitance C G, of the liquid crystal layer 4 in the region E B where the blue layer B disposed The ratio of the liquid crystal capacitance C B is C B / CG , and from the above formula (1), C B / C G = 0.83 × (1 / 0.91) + 0.17≈1.08.
ここで、上述のごとく、図11に示す構造体31においては、画素電極19aのスリットKの幅Hは一定(3μm)としているため、単位長さ(1μm)あたりの1ピッチ(ラインLの幅W+スリットKの幅H)の面積は、(ラインLの幅W+スリットKの幅H)×単位長さ=W+3〔μm2〕となり、画素電極19aの電極面積(即ち、ラインLの面積)は、W/(W+3)〔μm2〕となる。
Here, as described above, in the structure 31 shown in FIG. 11, since the width H of the slit K of the pixel electrode 19a is constant (3 μm), one pitch per unit length (1 μm) (the width of the line L). The area of W + width H of the slit K) is (width W of the line L + width H of the slit K) × unit length = W + 3 [μm 2 ], and the electrode area of the pixel electrode 19a (that is, the area of the line L) is , W / (W + 3) [μm 2 ].
また、表2においては、画素電極19aの電極面積比は、ラインLの幅Wが3μmの場合の面積(即ち、0.50)を基準として算出しているため、画素電極19aの電極面積比は、
電極面積比=画素電極19aの電極面積/0.50=2W/(W+3) (3)
となる。 In Table 2, since the electrode area ratio of thepixel electrode 19a is calculated based on the area when the width W of the line L is 3 μm (that is, 0.50), the electrode area ratio of the pixel electrode 19a is calculated. Is
Electrode area ratio = electrode area of thepixel electrode 19a / 0.50 = 2W / (W + 3) (3)
It becomes.
電極面積比=画素電極19aの電極面積/0.50=2W/(W+3) (3)
となる。 In Table 2, since the electrode area ratio of the
Electrode area ratio = electrode area of the
It becomes.
そして、式(3)を式(2)に代入すると、
W〔μm〕=(3×液晶容量比-2.37)/(1.23-液晶容量比) (4)
となる。 Then, substituting equation (3) into equation (2),
W [μm] = (3 × liquid crystal capacitance ratio−2.37) / (1.23-liquid crystal capacitance ratio) (4)
It becomes.
W〔μm〕=(3×液晶容量比-2.37)/(1.23-液晶容量比) (4)
となる。 Then, substituting equation (3) into equation (2),
W [μm] = (3 × liquid crystal capacitance ratio−2.37) / (1.23-liquid crystal capacitance ratio) (4)
It becomes.
従って、上記式(4)より、赤色層Rが配置された領域ERにおけるラインLRの幅WRと、青色層Bが配置された領域EBにおけるラインLBの幅WBは、それぞれ、
WR〔μm〕=(3×CR/CG-2.37)/(1.23-CR/CG)(5)
WB〔μm〕=(3×CB/CG-2.37)/(1.23-CB/CG)(6)
で表されることになる。 Accordingly, from the formula (4), the width W R of the line L R in the area E R to the red layer R is disposed, the width W B of the line L B in the region E B where the blue layer B disposed, respectively ,
W R [μm] = (3 × C R / C G -2.37) / (1.23-C R / C G) (5)
W B [μm] = (3 × C B / C G −2.37) / (1.23-C B / C G ) (6)
It will be represented by
WR〔μm〕=(3×CR/CG-2.37)/(1.23-CR/CG)(5)
WB〔μm〕=(3×CB/CG-2.37)/(1.23-CB/CG)(6)
で表されることになる。 Accordingly, from the formula (4), the width W R of the line L R in the area E R to the red layer R is disposed, the width W B of the line L B in the region E B where the blue layer B disposed, respectively ,
W R [μm] = (3 × C R / C G -2.37) / (1.23-C R / C G) (5)
W B [μm] = (3 × C B / C G −2.37) / (1.23-C B / C G ) (6)
It will be represented by
そして、上記式(5)に、CR/CG≒0.93を代入することにより、ラインLRの幅WR≒1.4μmを得ることができる。また、同様に、上記式(6)に、CB/CG≒1.08を代入することにより、ラインLBの幅WB≒5.8μmを得ることができる。
Then, the above equation (5), by substituting the C R / C G ≒ 0.93, it is possible to obtain a width W R ≒ 1.4 [mu] m of line L R. Similarly, in equation (6), by substituting C B / C G ≒ 1.08, it is possible to obtain a width W B ≒ 5.8 [mu] m of line L B.
即ち、各スリットKR,KG,KBの幅HR,HG,HBを3μmに固定するとともに、ラインLGの幅WGを3μmに固定した場合、ラインLRの幅WRを1.4μmに設定するとともに、ラインLBの幅WBを5.8μmに設定することにより、PSA液晶を使用した液晶表示装置1において、液晶層4の厚みTR,TG,TBが異なる(即ち、TR>TG>TB)場合であっても、液晶層4の厚みTR,TG,TBの差に起因する液晶容量CR,CG,CBの差を打ち消すように、画素電極19の電極面積を調整することが可能になる。
That is, each slit K R, K G, the width H R of K B, H G, is fixed to H B to 3 [mu] m, for a fixed width W G of the line L G in 3 [mu] m, the line L the width of R W R and sets to 1.4μm and by setting the width W B of the line L B in 5.8 [mu] m, in the liquid crystal display device 1 using a PSA liquid crystal, the thickness T R of the liquid crystal layer 4, T G, T B difference is different (i.e., T R> T G> T B) even when the thickness T R of the liquid crystal layer 4, T G, a liquid crystal capacitor due to the difference in T B C R, C G, C B It is possible to adjust the electrode area of the pixel electrode 19 so as to cancel out.
その結果、赤色層R、緑色層G、及び青色層Bの各々が配置された領域EB,EG,ERにおける液晶層4の液晶容量CR,CG,CBを略一定とすることができるため、PSA液晶を使用した液晶表示装置において、画素充電時の引き込み電圧を同一とすることができ、フリッカーの発生を防止できる。
To a result, the red layer R, a green layer G, and a blue layer region E B each being disposed of B, E G, a liquid crystal capacitance C R of the liquid crystal layer 4 in the E R, and C G, substantially constant C B Therefore, in the liquid crystal display device using the PSA liquid crystal, the pull-in voltage at the time of pixel charging can be made the same, and the occurrence of flicker can be prevented.
なお、上述のごとく、ラインLGの幅WGは3μmであるが、上記式(4)より、緑色層Gが配置された領域EGにおけるラインLGの幅WGは、
WG〔μm〕=(3×CG/CG-2.37)/(1.23-CG/CG)(7)
となり、上記式(7)に、CG/CG=1を代入することにより、ラインLGの幅WG≒3μmを得ることができる。 Incidentally, as described above, but the width W G of the line L G is 3 [mu] m, from the formula (4), the width W G of the line L G in the region E G the green layer G is arranged,
W G [μm] = (3 × C G / C G -2.37) / (1.23-C G / C G) (7)
Next, the above expression (7), by substituting C G / C G = 1, it is possible to obtain a width W G ≒ 3 [mu] m of line L G.
WG〔μm〕=(3×CG/CG-2.37)/(1.23-CG/CG)(7)
となり、上記式(7)に、CG/CG=1を代入することにより、ラインLGの幅WG≒3μmを得ることができる。 Incidentally, as described above, but the width W G of the line L G is 3 [mu] m, from the formula (4), the width W G of the line L G in the region E G the green layer G is arranged,
W G [μm] = (3 × C G / C G -2.37) / (1.23-C G / C G) (7)
Next, the above expression (7), by substituting C G / C G = 1, it is possible to obtain a width W G ≒ 3 [mu] m of line L G.
このように、本発明においては、赤色層R、緑色層G、および青色層Bのうち、基準となる着色層(本実施形態においては、緑色層G)が配置された領域における液晶層4の容量をCk(本実施形態においては、CG)とした場合に、上記式(5)~(7)により、フリッカーの発生を防止できるライン幅WR,WG,WBを求めることができる。
Thus, in the present invention, among the red layer R, the green layer G, and the blue layer B, the liquid crystal layer 4 in the region where the reference colored layer (in this embodiment, the green layer G) is disposed. (in this embodiment, C G) C k capacity when the, according to the above equation (5) to (7), the line width can be prevented flicker W R, W G, be determined W B it can.
なお、上記実施形態は以下のように変更しても良い。
Note that the above embodiment may be modified as follows.
上記実施形態においては、液晶表示装置として、赤色層R、緑色層G、青色層Bの各着色層28に対応する液晶層4の厚みを異ならせる構造(マルチギャップ構造)を採用した液晶表示装置1を例に挙げて説明したが、本発明は、図12に示すように、液晶層4の厚みTR,TG,TBのうち、特定の1種類の着色層(図12においては、青色層B)に対応する液晶層4の厚みTBのみを異ならせる構造(セミマルチギャップ構造)を採用した液晶表示装置32にも適用できる。この場合、図12に示すように、液晶層4の厚みTR,TG,TBの間には、TR=TG>TBの関係が成立するように構成される。
In the above embodiment, the liquid crystal display device adopting a structure (multi-gap structure) in which the thickness of the liquid crystal layer 4 corresponding to each colored layer 28 of the red layer R, the green layer G, and the blue layer B is different as the liquid crystal display device. 1, the present invention has been described with reference to a specific color layer (in FIG. 12) among the thicknesses T R , T G , and T B of the liquid crystal layer 4, as shown in FIG. can be applied to a liquid crystal display device 32 employing the structure (semi-multi-gap structure) in which only the different thickness T B of the liquid crystal layer 4 corresponding to the blue layer B). In this case, as shown in FIG. 12, the liquid crystal layer 4 is configured such that a relationship of T R = T G > T B is established between the thicknesses T R , T G , and T B.
また、上記実施形態においては、緑色層Gを基準として、ライン幅WR,WG,WBを求める構成としたが、他の着色層(赤色層R、青色層B)を基準として、ライン幅WR,WG,WBを求める構成としてもよい。
In the embodiment described above, based on the green layer G, line width W R, W G, it is configured to determine a W B, based on the other coloring layers (the red layer R, the blue layer B), the line width W R, W G, may be configured to determine the W B.
また、上記実施形態においては、画素電極19にスリットKR,KG,KB及びラインLL,LG,LBを設ける構成としたが、共通電極24にスリット及びラインを設ける構成としてもよい。
In the above embodiment, the slit K R to the pixel electrode 19, K G, K B and the line L L, L G, it is configured to provide a L B, it is provided with a slit and a line to the common electrode 24 Good.
本発明の活用例としては、薄膜トランジスタ等のスイッチング素子を用いた液晶表示装置が挙げられる。
As an application example of the present invention, there is a liquid crystal display device using a switching element such as a thin film transistor.
1 液晶表示装置
2 TFT基板(第1基板)
3 CF基板(第2基板)
4 液晶層
5 TFT(スイッチング素子)
19 画素電極(第1電極)
22 カラーフィルター
24 共通電極(第2電極)
28 着色層
32 液晶表示装置
B 青色層
E 画素
G 緑色層
KR スリット
KG スリット
KB スリット
LR ライン
LG ライン
LB ライン
R 赤色層 1 Liquidcrystal display device 2 TFT substrate (first substrate)
3 CF substrate (second substrate)
4Liquid crystal layer 5 TFT (switching element)
19 Pixel electrode (first electrode)
22Color filter 24 Common electrode (second electrode)
28Colored layer 32 Liquid crystal display device B Blue layer E Pixel G Green layer K R slit K G slit K B slit L R line L G line L B line R Red layer
2 TFT基板(第1基板)
3 CF基板(第2基板)
4 液晶層
5 TFT(スイッチング素子)
19 画素電極(第1電極)
22 カラーフィルター
24 共通電極(第2電極)
28 着色層
32 液晶表示装置
B 青色層
E 画素
G 緑色層
KR スリット
KG スリット
KB スリット
LR ライン
LG ライン
LB ライン
R 赤色層 1 Liquid
3 CF substrate (second substrate)
4
19 Pixel electrode (first electrode)
22
28
Claims (5)
- 第1電極を有する第1基板と、
前記第1基板に対向して配置され、赤色層、緑色層、および青色層からなる複数の着色層を有する画素が配列されたカラーフィルターと、該カラーフィルター上に設けられた第2電極とを有する第2基板と、
前記第1基板及び前記第2基板の間に設けられ、PSA液晶により形成された液晶層とを備え、
前記赤色層、前記緑色層、および前記青色層の各々が配置された領域における前記液晶層の厚みをそれぞれTR、TG、TBとした場合、TR>TG>TBの関係を有し、
前記第1電極または前記第2電極には、液晶分子の配向を制御するスリットと該スリットにより区画されたラインが形成され、前記第1電極と前記第2電極との間に電圧を印加することにより、前記液晶分子を駆動する液晶表示装置であって、
前記赤色層、前記緑色層、および前記青色層のうち、基準となる前記着色層が配置された領域における前記液晶層の液晶容量をCk、前記赤色層が配置された領域における前記液晶層の液晶容量をCR、前記緑色層が配置された領域における前記液晶層の液晶容量をCG、前記青色層が配置された領域における前記液晶層の液晶容量をCB、前記赤色層が配置された領域における前記ラインの幅をWR(μm)、前記緑色層が配置された領域における前記ラインの幅をWG(μm)、前記青色層が配置された領域における前記ラインの幅をWB(μm)、前記スリットの幅を3μmとした場合に、
前記ラインの幅WRが、下記の式(1)を満たし、
[数1]
WR=(3×CR/Ck-2.37)/(1.23-CR/Ck) …(1)
前記ラインの幅WGが、下記の式(2)を満たし、
[数2]
WG=(3×CG/Ck-2.37)/(1.23-CG/Ck) …(2)
前記ラインの幅WBが、下記の式(3)を満たすことを特徴とする液晶表示装置。
[数3]
WB=(3×CB/Ck-2.37)/(1.23-CB/Ck) …(3) A first substrate having a first electrode;
A color filter arranged opposite to the first substrate and having a plurality of colored layers composed of a red layer, a green layer, and a blue layer, and a second electrode provided on the color filter. A second substrate having;
A liquid crystal layer provided between the first substrate and the second substrate and formed of PSA liquid crystal;
The red layer, the green layer, and the respective thickness T R of the liquid crystal layer in each of which is arranged a region of the blue layer, T G, when the T B, the relationship T R> T G> T B Have
In the first electrode or the second electrode, a slit for controlling the alignment of liquid crystal molecules and a line partitioned by the slit are formed, and a voltage is applied between the first electrode and the second electrode. A liquid crystal display device for driving the liquid crystal molecules,
Among the red layer, the green layer, and the blue layer, the liquid crystal capacity of the liquid crystal layer in a region where the colored layer serving as a reference is arranged is C k , and the liquid crystal layer in the region where the red layer is arranged The liquid crystal capacitance is C R , the liquid crystal capacitance of the liquid crystal layer in the region where the green layer is arranged is C G , the liquid crystal capacitance of the liquid crystal layer in the region where the blue layer is arranged is C B , and the red layer is arranged The width of the line in the region where the green layer is disposed is W R (μm), the width of the line in the region where the green layer is disposed is W G (μm), and the width of the line in the region where the blue layer is disposed is W B. (Μm), when the width of the slit is 3 μm,
Width W R of the line satisfies a formula (1) below,
[Equation 1]
W R = (3 × C R / C k −2.37) / (1.23-C R / C k ) (1)
Width W G of the line satisfies a formula (2) below,
[Equation 2]
W G = (3 × C G / C k −2.37) / (1.23-C G / C k ) (2)
The liquid crystal display device width W B of the line, and satisfies the equation (3) below.
[Equation 3]
W B = (3 × C B / C k -2.37) / (1.23-C B / C k ) (3) - 第1電極を有する第1基板と、
前記第1基板に対向して配置され、赤色層、緑色層、および青色層からなる複数の着色層を有する画素が配列されたカラーフィルターと、該カラーフィルター上に設けられた第2電極とを有する第2基板と、
前記第1基板及び前記第2基板の間に設けられ、PSA液晶により形成された液晶層とを備え、
前記赤色層、前記緑色層、前記青色層の各々が配置された領域における前記液晶層の厚みをそれぞれTR、TG、TBとした場合、TR=TG>TBの関係を有し、
前記第1電極または前記第2電極には、液晶分子の配向を制御するスリットと該スリットにより区画されたラインが形成され、前記第1電極と前記第2電極との間に電圧を印加することにより、前記液晶分子を駆動する液晶表示装置であって、
前記赤色層、前記緑色層、および前記青色層のうち、基準となる前記着色層が配置された領域における前記液晶層の容量をCk、前記赤色層が配置された領域における前記液晶層の容量をCR、前記緑色層が配置された領域における前記液晶層の容量をCG、前記青色層が配置された領域における前記液晶層の容量をCB、前記赤色層が配置された領域における前記ラインの幅をWR(μm)、前記緑色層が配置された領域における前記ラインの幅をWG(μm)、前記青色層が配置された領域における前記ラインの幅をWB(μm)、前記スリットの幅を3μmとした場合に、
前記ラインの幅WRが、下記の式(1)を満たし、
[数1]
WR=(3×CR/Ck-2.37)/(1.23-CR/Ck) …(1)
前記ラインの幅WGが、下記の式(2)を満たし、
[数2]
WG=(3×CG/Ck-2.37)/(1.23-CG/Ck) …(2)
前記ラインの幅WBが、下記の式(3)を満たすことを特徴とする液晶表示装置。
[数3]
WB=(3×CB/Ck-2.37)/(1.23-CB/Ck) …(3) A first substrate having a first electrode;
A color filter arranged opposite to the first substrate and having a plurality of colored layers composed of a red layer, a green layer, and a blue layer, and a second electrode provided on the color filter. A second substrate having;
A liquid crystal layer provided between the first substrate and the second substrate and formed of PSA liquid crystal;
When the thickness of the liquid crystal layer in the region where each of the red layer, the green layer, and the blue layer is arranged is T R , T G , and T B , there is a relationship of T R = T G > T B. And
In the first electrode or the second electrode, a slit for controlling the alignment of liquid crystal molecules and a line partitioned by the slit are formed, and a voltage is applied between the first electrode and the second electrode. A liquid crystal display device for driving the liquid crystal molecules,
Among the red layer, the green layer, and the blue layer, the capacitance of the liquid crystal layer in the region where the reference colored layer is disposed is C k , and the capacitance of the liquid crystal layer in the region where the red layer is disposed. C R , the capacitance of the liquid crystal layer in the region where the green layer is arranged, C G , the capacitance of the liquid crystal layer in the region where the blue layer is arranged, C B , and the capacitance in the region where the red layer is arranged The width of the line is W R (μm), the width of the line in the region where the green layer is arranged is W G (μm), the width of the line in the region where the blue layer is arranged is W B (μm), When the slit width is 3 μm,
Width W R of the line satisfies a formula (1) below,
[Equation 1]
W R = (3 × C R / C k −2.37) / (1.23-C R / C k ) (1)
Width W G of the line satisfies a formula (2) below,
[Equation 2]
W G = (3 × C G / C k −2.37) / (1.23-C G / C k ) (2)
The liquid crystal display device width W B of the line, and satisfies the equation (3) below.
[Equation 3]
W B = (3 × C B / C k -2.37) / (1.23-C B / C k ) (3) - 前記第1電極に、前記スリットと前記ラインが形成されていることを特徴とする請求項1または請求項2に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the slit and the line are formed in the first electrode.
- 前記第2電極に、前記スリットと前記ラインが形成されていることを特徴とする請求項1または請求項2に記載の液晶表示装置。 3. The liquid crystal display device according to claim 1, wherein the slit and the line are formed in the second electrode.
- 前記第1電極及び前記第2電極が、インジウム錫酸化物またはインジウム亜鉛酸化物により形成されていることを特徴とする請求項1~請求項4のいずれか1項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 4, wherein the first electrode and the second electrode are formed of indium tin oxide or indium zinc oxide.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-130423 | 2010-06-07 | ||
JP2010130423 | 2010-06-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011155143A1 true WO2011155143A1 (en) | 2011-12-15 |
Family
ID=45097764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/002949 WO2011155143A1 (en) | 2010-06-07 | 2011-05-26 | Liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011155143A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105242425A (en) * | 2015-10-12 | 2016-01-13 | 深圳市华星光电技术有限公司 | Display panel, liquid crystal display and method for making display panel |
WO2024197920A1 (en) * | 2023-03-29 | 2024-10-03 | 惠州华星光电显示有限公司 | Liquid crystal display panel and liquid crystal display device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003005204A (en) * | 2001-06-21 | 2003-01-08 | Matsushita Electric Ind Co Ltd | Multi-gap color liquid crystal display device |
JP2006091083A (en) * | 2004-09-21 | 2006-04-06 | Sharp Corp | Liquid crystal display device |
JP2008122610A (en) * | 2006-11-10 | 2008-05-29 | Sharp Corp | Simulation device for liquid crystal alignment, simulation method for liquid crystal alignment, simulation program for liquid crystal alignment and computer readable recording medium with the same recorded thereon |
JP2010097226A (en) * | 2010-01-12 | 2010-04-30 | Sony Corp | Liquid crystal display element |
-
2011
- 2011-05-26 WO PCT/JP2011/002949 patent/WO2011155143A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003005204A (en) * | 2001-06-21 | 2003-01-08 | Matsushita Electric Ind Co Ltd | Multi-gap color liquid crystal display device |
JP2006091083A (en) * | 2004-09-21 | 2006-04-06 | Sharp Corp | Liquid crystal display device |
JP2008122610A (en) * | 2006-11-10 | 2008-05-29 | Sharp Corp | Simulation device for liquid crystal alignment, simulation method for liquid crystal alignment, simulation program for liquid crystal alignment and computer readable recording medium with the same recorded thereon |
JP2010097226A (en) * | 2010-01-12 | 2010-04-30 | Sony Corp | Liquid crystal display element |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105242425A (en) * | 2015-10-12 | 2016-01-13 | 深圳市华星光电技术有限公司 | Display panel, liquid crystal display and method for making display panel |
CN105242425B (en) * | 2015-10-12 | 2017-03-15 | 深圳市华星光电技术有限公司 | A kind of preparation method of display floater, liquid crystal display and display floater |
WO2017063204A1 (en) * | 2015-10-12 | 2017-04-20 | 深圳市华星光电技术有限公司 | Display panel, liquid crystal display and preparation method for display panel |
WO2024197920A1 (en) * | 2023-03-29 | 2024-10-03 | 惠州华星光电显示有限公司 | Liquid crystal display panel and liquid crystal display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7415062B2 (en) | liquid crystal display device | |
US7724336B2 (en) | In-plane switching mode liquid crystal display device having first and second common electrode connection lines and first and second pixel electrode connection lines being formed on the same layer | |
JP4041336B2 (en) | Substrate for liquid crystal display device, liquid crystal display device including the same, and manufacturing method thereof | |
US7428034B2 (en) | Liquid crystal display device | |
JP5156506B2 (en) | Liquid crystal display | |
US20070247451A1 (en) | Display device substrate and liquid crystal display device having the same | |
WO2009139199A1 (en) | Liquid crystal display device | |
JP5791593B2 (en) | Liquid crystal display panel and liquid crystal display device | |
US20200050063A1 (en) | Liquid crystal display device | |
WO2010131552A1 (en) | Liquid crystal display device | |
WO2012124699A1 (en) | Liquid crystal display | |
WO2011155143A1 (en) | Liquid crystal display device | |
WO2015012092A1 (en) | Liquid crystal display apparatus | |
EP3040769B1 (en) | Liquid crystal display device | |
JP2006154080A (en) | Liquid crystal display device | |
JP5443619B2 (en) | Active matrix substrate and display device | |
WO2013122184A1 (en) | Liquid crystal display manufacturing method | |
US10203579B2 (en) | Liquid crystal display device | |
JP2008076978A (en) | Liquid crystal display device | |
JP2007183678A (en) | Substrate for liquid crystal display, liquid crystal display having the same and method of manufacturing the same | |
JP7398926B2 (en) | liquid crystal display device | |
JP5594636B2 (en) | Liquid crystal display element and image display apparatus using the same | |
WO2011142070A1 (en) | Liquid crystal display device | |
KR20170050006A (en) | Thin film transistor substrate and liquid crystal display panel with the same | |
JP2005084229A (en) | Liquid crystal display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11792105 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11792105 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |