Nothing Special   »   [go: up one dir, main page]

WO2011152060A1 - 位相差フィルムとそれを備える画像表示装置 - Google Patents

位相差フィルムとそれを備える画像表示装置 Download PDF

Info

Publication number
WO2011152060A1
WO2011152060A1 PCT/JP2011/003124 JP2011003124W WO2011152060A1 WO 2011152060 A1 WO2011152060 A1 WO 2011152060A1 JP 2011003124 W JP2011003124 W JP 2011003124W WO 2011152060 A1 WO2011152060 A1 WO 2011152060A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
retardation film
weight
polymer
film
Prior art date
Application number
PCT/JP2011/003124
Other languages
English (en)
French (fr)
Inventor
隆司 大西
昭夫 中
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010127660A external-priority patent/JP5775676B2/ja
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to CN201180027074.9A priority Critical patent/CN102939550B/zh
Priority to KR1020137000046A priority patent/KR101771768B1/ko
Publication of WO2011152060A1 publication Critical patent/WO2011152060A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • C08F8/16Lactonisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133637Birefringent elements, e.g. for optical compensation characterised by the wavelength dispersion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical

Definitions

  • the present invention relates to a retardation film and an image display device including the film.
  • a retardation film made of a cellulosic polymer generally has a wavelength dispersibility (the retardation becomes smaller as the wavelength of light becomes shorter at least in the visible light region ( (Inverse wavelength dispersion of phase difference).
  • the retardation film has problems such as high moisture permeability, a high photoelastic coefficient, and a sufficiently large retardation.
  • a (meth) acrylic polymer having a ring structure in the main chain is used for the retardation film (see Patent Document 1: JP 2008-9378 A).
  • a retardation film made of a (meth) acrylic polymer having a ring structure in the main chain has high transparency and heat resistance, while ensuring mechanical properties, particularly flexibility.
  • the mechanical properties of the retardation film are improved by adding or stretching elastic particles such as rubber. However, when elastic particles are added, aggregation of the added particles must be suppressed to ensure transparency as a retardation film.
  • a retardation film made of a (meth) acrylic polymer having a ring structure in the main chain has a shorter light wavelength at least in the visible light region, similar to a retardation film made of a general polymer.
  • the wavelength dispersibility forward wavelength dispersibility of the phase difference that increases the phase difference is shown.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2009-1744 discloses that a (meth) acrylic polymer having a ring structure in the main chain is useful as a modifier for a cellulose ester film, and has a ring structure in the main chain.
  • a (meth) acrylic polymer having a ring structure in the main chain is useful as a modifier for a cellulose ester film, and has a ring structure in the main chain.
  • the present invention is a retardation film comprising a layer comprising a resin composition comprising a (meth) acrylic polymer having a ring structure in the main chain and a cellulose ester polymer, and has a low photoelastic coefficient and moisture permeability, Providing a retardation film having a high degree of freedom in controlling the wavelength dispersion of the retardation (for example, it can exhibit reverse wavelength dispersion of the retardation, or the retardation can be flat at least in the visible light region). With the goal.
  • the retardation film of the present invention comprises a resin composition comprising 30 to 95% by weight of a (meth) acrylic polymer (A) having a ring structure in the main chain and 5 to 70% by weight of a cellulose ester polymer (B).
  • the image display device of the present invention includes the retardation film of the present invention.
  • the retardation film of this invention contains the layer which consists of a resin composition which contains the (meth) acryl polymer (A) which has a ring structure in a principal chain, and a cellulose polymer (B) in the range of a specific content rate.
  • the retardation film has a low photoelastic coefficient and moisture permeability and a high degree of freedom in controlling the wavelength dispersion of the retardation.
  • the (meth) acrylic polymer contains (meth) acrylic acid ester units in an amount of 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more, particularly preferably 95% by weight or more, A polymer having 99% by weight or more is preferable.
  • the ring structure that the (meth) acrylic polymer (A) has in the main chain can be a derivative of a (meth) acrylic acid ester unit. In this case, if the total of the (meth) acrylic acid ester unit and the ring structure is 50% by weight or more of all the structural units, a (meth) acrylic polymer is obtained.
  • the (meth) acrylic acid ester unit includes, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, t- (meth) acrylic acid t- Butyl, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, benzyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, (meth) acryl Dicyclopentanyl acid, chloromethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, (meth) acrylic acid 2, 3,4,5,6-pentahydroxyhexyl, (meth) acrylic
  • the (meth) acrylic polymer (A) preferably has a (meth) acrylic acid alkyl ester unit X represented by the following formula (1) as a constituent unit.
  • R 1 is an alkyl group having 2 to 18 carbon atoms
  • R 2 is H (hydrogen atom) or CH 3 (methyl group).
  • R 2 is H
  • the unit shown in Formula (1) is an acrylic acid alkyl ester unit
  • R 2 is CH 3
  • the unit shown in Formula (1) is a methacrylic acid alkyl ester unit.
  • R 1 is not limited as long as it is an alkyl group having 2 to 18 carbon atoms.
  • R 1 is, for example, an ethyl group (carbon number 2), a propyl group (carbon number 3), a butyl group (carbon number 4), a pentyl group (carbon number 5), a hexyl group (carbon number 6), a heptyl group (carbon 7), octyl group (carbon number 8), nonyl group (carbon number 9), decyl group (carbon number 10), undecyl group (carbon number 11) and dodecyl group (carbon number 12) and their structural isomers. is there.
  • the proportion of the (meth) acrylic acid alkyl ester unit X in all the structural units of the (meth) acrylic polymer (A) varies depending on the specific molecular structure of the unit X, but is, for example, 5% by weight or more.
  • the ratio is preferably 10% by weight or more, and more preferably 15% by weight or more because the effect of suppressing the increase in haze can be obtained with certainty.
  • the upper limit of the said ratio is not specifically limited, For example, it is 50 weight%.
  • the proportion of the (meth) acrylic acid alkyl ester unit X in all the structural units of the (meth) acrylic polymer (A) can be determined by 1 H nuclear magnetic resonance ( 1 H-NMR) or infrared spectroscopic analysis (IR).
  • the ratio is the ratio of each monomer used for the polymerization of the (meth) acrylic polymer (A) and, if necessary, the reaction from the monomer to the (meth) acrylic polymer (A). It can also be obtained by referring
  • (Meth) acrylic polymer (A) may have two or more (meth) acrylic acid alkyl ester units X as constituent units.
  • (Meth) acrylic polymer (A) may have structural units other than (meth) acrylic acid ester units.
  • the structural unit is, for example, (meth) acrylic acid, styrene, vinyl toluene, ⁇ -methyl styrene, ⁇ -hydroxymethyl styrene, ⁇ -hydroxyethyl styrene, acrylonitrile, methacrylonitrile, methallyl alcohol, allyl alcohol, ethylene, It is a structural unit formed by polymerization of monomers such as propylene, 4-methyl-1-pentene, vinyl acetate, 2-hydroxymethyl-1-butene, methyl vinyl ketone, N-vinyl pyrrolidone, and N-vinyl carbazole. .
  • the (meth) acrylic polymer (A) preferably has (meth) acrylic acid alkyl ester units X, MMA units and 2- (hydroxymethyl) acrylic acid ester units as constituent units.
  • the (meth) acrylic polymer (A) preferably has (meth) acrylic acid alkyl ester units X, MMA units, 2- (hydroxymethyl) acrylic acid ester units and N-vinylcarbazole units as constituent units.
  • the content of the MMA unit in the (meth) acrylic polymer (A) is preferably 10 to 80% by weight, more preferably 20 to 60% by weight.
  • the content of 2- (hydroxymethyl) acrylic acid ester units is preferably 10 to 60% by weight, more preferably 20 to 40% by weight.
  • the content of the unit X is preferably 5 to 70% by weight, and more preferably 10 to 50% by weight.
  • the content of N-vinylcarbazole units is preferably 1 to 20% by weight, more preferably 3 to 8% by weight.
  • Examples of 2- (hydroxymethyl) acrylic acid ester units include 2- (hydroxymethyl) methyl acrylate (MHMA) units, 2- (hydroxymethyl) ethyl acrylate units, 2- (hydroxymethyl) acrylic acid isopropyl units, These are normal butyl units of 2- (hydroxymethyl) acrylate and t-butyl units of 2- (hydroxymethyl) acrylate. Of these, MHMA units and 2- (hydroxymethyl) ethyl acrylate units are preferred, and MHMA units are particularly preferred from the viewpoint of transparency and heat resistance of the retardation film.
  • (Meth) acrylic polymer (A) has a ring structure in the main chain.
  • the (meth) acrylic polymer (A) having a ring structure in the main chain contributes to the retardation film of the present invention exhibiting a large in-plane retardation and suppression of haze increase.
  • the (meth) acrylic polymer (A) having a ring structure in the main chain has a high glass transition temperature (Tg), for example, 110 ° C. or higher, 120 ° C. or higher depending on the structure of the polymer, and 130 It is above °C.
  • Tg glass transition temperature
  • the heat resistance of the retardation film of the present invention is improved. Since the retardation film having high heat resistance can be disposed near a heat generating portion such as a light source, it is suitable for use in an image display device such as an LCD.
  • the content of the ring structure in the (meth) acrylic polymer (A) is preferably 25 to 90% by weight, more preferably 35 to 90% by weight, and particularly preferably 40 to 90% by weight.
  • the content rate of the ring structure in a polymer (A) exceeds 90 weight%, the moldability of the resin composition containing a polymer (A) will fall, and manufacture of retardation film may become difficult.
  • the ring structure that the (meth) acrylic polymer (A) has in the main chain is, for example, a ring structure having an ester group, an imide group, or an acid anhydride group.
  • ring structure More specific examples of the ring structure are at least one selected from a lactone ring structure, a glutarimide structure, a glutaric anhydride structure, an N-substituted maleimide structure, and a maleic anhydride structure. These ring structures have a large contribution to the large in-plane retardation described above.
  • the ring structure is preferably at least one selected from a lactone ring structure and a glutarimide structure, and more preferably a lactone ring structure.
  • the (meth) acrylic polymer (A) having a lactone ring structure or a glutarimide structure, particularly a lactone ring structure, in the main chain has particularly low birefringence wavelength dispersion. For this reason, the freedom degree of control of the wavelength dispersion of retardation in the retardation film of this invention becomes higher between flat wavelength dispersion and reverse wavelength dispersion.
  • the (meth) acrylic polymer (A) having a lactone ring structure in the main chain has particularly high compatibility with the cellulose ester polymer (B). High compatibility contributes to suppression of haze rise.
  • the specific lactone ring structure that the (meth) acrylic polymer (A) may have in the main chain is not particularly limited, and may be, for example, a 4- to 8-membered ring, but it is excellent in stability as a ring structure.
  • a membered ring or a 6-membered ring is preferable, and a 6-membered ring is more preferable.
  • the lactone ring structure which is a 6-membered ring is a structure disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-168882.
  • High polymerization yield of the precursor (a (meth) acrylic polymer (A) having a lactone ring structure in the main chain is obtained by subjecting the precursor to a cyclization condensation reaction), a cyclization condensation reaction of the precursor From the reasons such that a (meth) acrylic polymer (A) having a high lactone ring content can be obtained, and a polymer having MMA units as constituent units can be used as a precursor, the following formula ( The structure represented by 2) is preferred.
  • R 3 , R 4 and R 5 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
  • the organic residue can contain an oxygen atom.
  • the organic residue is, for example, an alkyl group having 1 to 20 carbon atoms, such as a methyl group, an ethyl group, or a propyl group; an unsaturated aliphatic carbonization having 1 to 20 carbon atoms, such as an ethenyl group or a propenyl group.
  • a hydrogen group an aromatic hydrocarbon group having 1 to 20 carbon atoms, such as a phenyl group or a naphthyl group; one of hydrogen atoms in the alkyl group, the unsaturated aliphatic hydrocarbon group and the aromatic hydrocarbon group;
  • One or more groups are substituted with at least one group selected from a hydroxyl group, a carboxyl group, an ether group and an ester group.
  • the lactone ring structure represented by the formula (2) is obtained by, for example, copolymerizing a monomer group containing MMA and MHMA, and then subjecting adjacent MMA units and MHMA units to dealcoholization cyclization in the obtained copolymer. It can be formed by condensation.
  • R 3 is H
  • R 4 and R 5 are CH 3 .
  • the content of the lactone ring structure in the polymer (A) is determined with the cellulose ester polymer (B), particularly the cellulose acetate polymer. From the viewpoint of compatibility, it is preferably 25 to 90% by weight, more preferably 25 to 70% by weight, particularly preferably 30 to 60% by weight, and most preferably 35 to 60% by weight.
  • the content of the lactone ring structure in the (meth) acrylic polymer (A) can be determined by the method described in JP-A-2001-151814.
  • the weight average molecular weight (Mw) of the (meth) acrylic polymer (A) is preferably 80,000 or more, more preferably 100,000 or more.
  • the Mw and dispersity of the (meth) acrylic polymer (A) can be determined by gel permeation chromatography (GPC). When the (meth) acrylic polymer (A) satisfies the above Mw and dispersion ranges, the branched structure of the polymer (A) is suppressed. This improves the thermal stability of the resin composition containing the polymer (A), and contributes to the production of a retardation film having high strength and a desirable appearance.
  • (Meth) acrylic polymer (A) can be produced by a known method.
  • the (meth) acrylic polymer (A) in which the ring structure of the main chain is a glutaric anhydride structure or a glutarimide structure can be produced, for example, by the method described in WO2007 / 26659 or WO2005 / 108438.
  • the (meth) acrylic polymer (A) in which the ring structure of the main chain is a maleic anhydride structure or an N-substituted maleimide structure is described in, for example, JP-A-57-153008 and JP-A-2007-31537. It can be produced by a method.
  • the (meth) acrylic polymer (A) in which the ring structure of the main chain is a lactone ring structure is described in, for example, JP-A-2006-96960, JP-A-2006-171464, or JP-A-2007-63541. It can be produced by a method.
  • the polymer (A) is formed by heating the polymer (a) having a hydroxyl group and an ester group in the molecular chain in the presence of an arbitrary catalyst to advance a lactone cyclization condensation reaction accompanied by dealcoholization. sell.
  • the polymer (a) is formed, for example, by polymerization of a monomer group including a monomer represented by the following formula (3).
  • the polymer (A) has a (meth) acrylic acid alkyl ester unit X represented by the formula (1) as a constituent unit
  • the polymer (a) includes, for example, a monomer represented by the following formula (3) and It can be formed by polymerization of a monomer group containing a monomer represented by the following formula (4).
  • R 6 and R 7 are each independently a group exemplified as a hydrogen atom or an organic residue in the formula (2).
  • the monomer represented by the formula (3) gives a hydroxyl group and an ester group in the molecular chain of the polymer (a) by polymerization.
  • R 8 is the same group as R 1 in the formula (1).
  • R 9 is H (hydrogen atom) or CH 3 (methyl group).
  • the monomer ((meth) acrylic acid alkyl ester monomer Y) represented by the formula (4) becomes a (meth) acrylic acid alkyl ester unit X by polymerization.
  • the monomer represented by the formula (3) examples include methyl 2- (hydroxymethyl) acrylate, ethyl 2- (hydroxymethyl) acrylate, isopropyl 2- (hydroxymethyl) acrylate, 2- (hydroxy Methyl) normal butyl acrylate, t-butyl 2- (hydroxymethyl) acrylate.
  • methyl 2- (hydroxymethyl) acrylate and ethyl 2- (hydroxymethyl) acrylate are preferred, and methyl 2- (hydroxymethyl) acrylate (MHMA) is particularly preferred from the viewpoint of transparency and heat resistance.
  • the monomer represented by the formula (4) include ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, and hexyl (meth) acrylate. , Heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, undecyl (meth) acrylate, and dodecyl (meth) acrylate.
  • the content of the monomer represented by the formulas (3) and (4) is adjusted according to the molecular structure of the desired (meth) acrylic polymer (A). Yes.
  • the monomer group used for forming the polymer (a) may contain two or more monomers represented by the formula (3).
  • the monomer group may contain two or more monomers represented by the formula (4).
  • the monomer group used for forming the polymer (a) may contain monomers other than the monomers represented by the formulas (3) and (4). Such a monomer is not particularly limited as long as it is a monomer copolymerizable with the monomers represented by formulas (3) and (4).
  • the said monomer is (meth) acrylic acid ester other than the monomer shown to Formula (3), (4), for example.
  • the (meth) acrylic acid ester is, for example, an acrylic acid ester such as methyl acrylate, cyclohexyl acrylate, or benzyl acrylate; a methacrylic acid ester such as methyl methacrylate, cyclohexyl methacrylate, or benzyl methacrylate; From the viewpoint of transparency and heat resistance, MMA is preferred.
  • the monomer group used for forming the polymer (a) may contain two or more of these (meth) acrylic acid esters.
  • the monomer group used for forming the polymer (a) includes monomers such as (meth) acrylic acid, styrene, vinyltoluene, ⁇ -methylstyrene, acrylonitrile, methyl vinyl ketone, ethylene, propylene, vinyl acetate, One type or two or more types may be included.
  • the content of (meth) acrylic acid in the monomer group is preferably 30% by weight or less, more preferably 20% by weight or less, particularly preferably 10% by weight or less, and most preferably 5% by weight or less. When the content of (meth) acrylic acid exceeds 30% by weight, gelation may proceed in the polymerization process of the monomer group.
  • a polymerization initiator When forming the polymer (a) by polymerization of monomer groups, a polymerization initiator can be used as necessary.
  • the polymerization initiator include cumene hydroperoxide, diisopropylbenzene hydroperoxide, di-t-butyl peroxide, lauroyl peroxide, benzoyl peroxide, t-butyl peroxyisopropyl carbonate, t-amyl peroxy-2- Organic peroxides such as ethyl hexanoate; 2,2′-azobis (isobutyronitrile), 1,1′-azobis (cyclohexanecarbonitrile), 2,2′-azobis (2,4-dimethylvaleronitrile) ), Dimethyl 2,2′-azobisisobutyrate; Two or more polymerization initiators can be used in combination.
  • the usage-amount of a polymerization initiator can be suitably set according to the combination of the monomer contained in a
  • the cyclization catalyst is, for example, an esterification catalyst such as p-toluenesulfonic acid or a transesterification catalyst.
  • Organic carboxylic acids such as acetic acid, propionic acid, benzoic acid, acrylic acid and methacrylic acid can be used as the cyclization catalyst.
  • a basic compound; an organic carboxylate such as zinc acetate; a carbonate is used as a cyclization catalyst. Yes.
  • the cyclization catalyst can be an organophosphorus compound.
  • the organophosphorus compound includes, for example, alkylphosphonic acid or arylphosphonous acid such as methylphosphonous acid, ethylphosphonous acid, and phenylphosphonous acid (however, these are alkyl phosphinic acid or aryl which are tautomers) As well as mono- or diesters thereof; dimethylphosphinic acid, diethylphosphinic acid, diphenylphosphinic acid, phenylmethylphosphinic acid, phenylethylphosphinic acid and the like dialkylphosphinic acids, diarylphosphinic acids or alkylarylphosphinic acids and These esters; alkylphosphonic acids or arylphosphonic acids such as methylphosphonic acid, ethylphosphonic acid, trifluoromethylphosphonic acid, phenylphosphonic acid, and their Esters or diesters; alkylphosphinic acids or ary
  • Ruyl (aryl) halogen phosphines such as methyl phosphine oxide, ethyl phosphine oxide, phenyl phosphine oxide, dimethyl phosphine oxide, diethyl phosphine oxide, diphenyl phosphine oxide, trimethyl phosphine oxide, triethyl phosphine oxide, triphenyl phosphine oxide -Or tri-alkyl (aryl) phosphines; tetraalkyl (aryl) phosphonium halides such as tetramethylphosphonium chloride, tetraethylphosphonium chloride, tetraphenylphosphonium chloride; Two or more of these organophosphorus compounds can be used in combination.
  • alkyl (aryl) phosphonous acid, phosphorous acid monoester or diester, phosphoric acid monoester or diester, and alkyl (aryl) phosphonic acid are preferable because of high catalytic activity and low colorability.
  • Phosphorous acid, phosphorous acid monoester or diester, phosphoric acid monoester or diester are more preferred, and alkyl (aryl) phosphonous acid, phosphoric acid monoester or diester is particularly preferred.
  • the cyclization catalyst is, for example, a group 12 element compound described in JP-A-2009-144112, and a zinc compound is particularly preferable.
  • the zinc compound include organic zinc compounds such as zinc acetate, zinc propionate, and zinc octylate; inorganic zinc compounds such as zinc oxide, zinc chloride, and zinc sulfate; organic zinc compounds containing fluorine such as zinc trifluoromethanesulfonate; It is.
  • the basic deactivator is, for example, a metal carboxylate, a metal complex, or a metal oxide, preferably a metal carboxylate or metal oxide, and more preferably a metal carboxylate.
  • the metal used for the deactivator is not limited as long as it does not inhibit the physical properties of the resin composition.
  • alkali metals such as lithium, sodium and potassium
  • alkaline earth metals such as magnesium, calcium, strontium and barium
  • Zinc zirconium.
  • the carboxylic acid constituting the metal carboxylate is, for example, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid. Acid, behenic acid, tridecanoic acid, pentadecanoic acid, heptadecanoic acid, lactic acid, malic acid, citric acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, and adipic acid.
  • An organic component in the metal complex is, for example, acetylacetone.
  • the metal oxide include zinc oxide, calcium oxide, and magnesium oxide, and zinc oxide is preferable.
  • Acidic deactivators are, for example, organic phosphoric acid compounds and carboxylic acids. Two or more quenchers can be used in combination.
  • the form of the quenching agent is not limited, and it may be in the form of solid, powder, dispersion, suspension, aqueous solution or the like.
  • the cellulose ester polymer (B) is not limited, and examples thereof include a cellulose aromatic carboxylic acid ester polymer and a cellulose fatty acid ester polymer. Since a retardation film having excellent optical properties can be obtained, the cellulose polymer (B) is preferably a cellulose lower fatty acid ester polymer.
  • a lower fatty acid means a fatty acid having 5 or less carbon atoms.
  • the cellulose lower fatty acid ester polymer is, for example, cellulose acetate, cellulose propionate, cellulose butyrate, or cellulose pivalate.
  • the cellulose ester polymer (B) may be a cellulose mixed fatty acid ester polymer such as cellulose acetate propionate or cellulose acetate butyrate.
  • both the film formability of the resin composition (C) containing the cellulose polymer (B) and the mechanical properties of the finally obtained retardation film can be achieved.
  • the cellulose ester polymer (B) is preferably cellulose acetate, particularly cellulose triacetate or cellulose acetate propionate.
  • the Mn of the cellulose ester polymer (B) is preferably 50,000 to 150,000, more preferably 550,000 to 120,000, and further preferably 60,000 to 100,000.
  • the Mw of the cellulose ester polymer (B) is preferably 100,000 to 300,000, more preferably 100,000 to 250,000, and further preferably 120,000 to 200,000.
  • the cellulose ester polymer (B) can be produced by a known method. For example, it can be produced by substituting the hydroxyl group of the raw material cellulose with an acetyl group, a propionyl group and / or a butyl group by a conventional method using acetic anhydride, propionic anhydride and / or butyric anhydride. In that case, the methods described in JP-A-10-45804 and JP-A-6-501040 are helpful.
  • the raw material cellulose is not particularly limited, and examples thereof include wood pulp and cotton linter.
  • the wood pulp may be softwood pulp or hardwood pulp, but softwood pulp is preferred. From the viewpoint of releasability when forming a film, a cotton linter is preferred.
  • Two or more cellulose ester polymers (B) can be used.
  • the resin composition (C) contains 30 to 95% by weight of the (meth) acrylic polymer (A) having a ring structure in the main chain and 5 to 70% by weight of the cellulose ester polymer (B).
  • the resin composition (C) preferably contains 50 to 90% by weight of the (meth) acrylic polymer (A) and 10 to 50% by weight of the cellulose ester polymer (B), more preferably the (meth) acrylic polymer.
  • (A) 70 to 90% by weight and cellulose ester polymer (B) 10 to 30% by weight are included.
  • Resin composition (C) may contain two or more (meth) acrylic polymers (A) and / or two or more cellulose ester polymers (B).
  • the resin composition (C) has a content other than the (meth) acrylic polymer (A) and the cellulose ester polymer (B) in the resin composition (C). Up to 40% by weight, preferably up to 10% by weight.
  • polystyrene examples include olefin polymers such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (4-methyl-1-pentene); halogen-containing polymers such as vinyl chloride and chlorinated vinyl resins; polystyrene, Styrene polymers such as styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene block copolymer; polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate; nylon 6, nylon 66, polyamides such as nylon 610; polyacetals; polycarbonates; polyphenylene oxides; polyphenylene sulfides: polyether ether ketones; polyether nitriles; Li polyether sulfone; a; polyoxyethylene Penji alkylene; polyamideimide.
  • vinyl methacrylate is a single monomer because of its excellent compatibility with (meth) acrylic polymer (A), particularly (meth) acrylic polymer (A) having a lactone ring structure in the main chain.
  • Resin composition (C) may contain any material as long as the effects of the present invention are obtained.
  • the material includes, for example, an ultraviolet absorber; an antioxidant; a stabilizer such as a light-resistant stabilizer, a weather-resistant stabilizer and a heat stabilizer; a reinforcing material such as a glass fiber and a carbon fiber; a near-infrared absorber; Tris (dibromopropyl) Flame retardants such as phosphate, triallyl phosphate and antimony oxide; antistatic agents represented by anionic, cationic and nonionic surfactants; colorants such as inorganic pigments, organic pigments and dyes; organic fillers and inorganic fillers Resin modifier; anti-blocking agent; matting agent; acid scavenger; metal deactivator; plasticizer; lubricant; rubber mass such as ASA and ABS.
  • the content of these materials in the resin composition (C) is, for example, 0 to 5% by weight, preferably 0 to 2% by weight,
  • UV absorbers are, for example, benzophenone compounds, salicinate compounds, benzoate compounds, triazole compounds, and triazine compounds.
  • benzophenone compounds include 2,4-dihydroxybenzophenone, 4-n-octyloxy-2-hydroxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2-hydroxy-4-n- Octyloxybenzophenone, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) methane, 1,4-bis (4-benzoyl-3-hydroxyphenone) -butane.
  • the silicate compound is, for example, pt-butylphenyl silicate.
  • the benzoate compound is, for example, 2,4-di-t-butylphenyl-3 ', 5'-di-t-butyl-4'-hydroxybenzoate.
  • Triazole compounds include, for example, 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (3 5-di-t-butyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (2H-benzotriazol-2-yl) -p-cresol, 2- (2H-benzotriazol-2-yl)- 4,6-bis (1-methyl-1-phenylethyl) phenol, 2-benzotriazol-2-yl-4,6-di-t-butylphenol, 2- [5-chloro (2H) -benzotriazole-2 -Yl] -4-methyl-6- (t-butyl) phenol, 2- (2H-benz
  • triazine compound examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-ethoxy). Phenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-butoxy) Phenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy) -4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, , 4-Diphenyl-6- (2-hydroxy-4-d
  • Tinuvin 1577 “Tinuvin 460” and “Tinuvin 477” (all manufactured by Ciba Specialty Chemicals) are commercially available as triazine-based UV absorbers, and “Adeka Stub LA-31” (Asahi Denka Kogyo Co., Ltd.) as a triazole-based UV absorber. Manufactured) is commercially available.
  • Resin composition (C) may contain two or more ultraviolet absorbers.
  • the content of the ultraviolet absorber in the resin composition (C) is not particularly limited. In the state of the retardation film, the content is preferably 0.01 to 25% by weight, more preferably 0.05 to 10% by weight. If the content of the ultraviolet absorber is excessively large, the mechanical properties of the finally obtained retardation film may be deteriorated, or the retardation film may be yellowed.
  • the antioxidant is, for example, a hindered phenol compound, a phosphorus compound, or a sulfur compound.
  • the resin composition (C) can contain two or more antioxidants.
  • the antioxidant may be a phenolic compound, such as n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, n-octadecyl-3- (3,5- Di-t-butyl-4-hydroxyphenyl) acetate, n-octadecyl-3,5-di-t-butyl-4-hydroxybenzoate, n-hexyl-3,5-di-t-butyl-4-hydroxyphenyl Benzoate, n-dodecyl-3,5-di-t-butyl-4-hydroxyphenylbenzoate, neododecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, dodecyl- ⁇ - (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate, ethyl- ⁇ - (4-hydroxy-3,
  • an antioxidant composed of a phenolic compound (phenolic antioxidant) in combination with a thioether antioxidant or a phosphoric acid antioxidant.
  • the content of both antioxidants in the resin composition (C) is, for example, 0. 0 for each of the phenol-based antioxidant and the thioether-based antioxidant based on the weight of the (meth) acrylic polymer (A). 01% by weight or more, and each of the phenolic antioxidant and the phosphoric acid antioxidant is 0.025% by weight or more.
  • thioether antioxidant examples include pentaerythrityl tetrakis (3-lauryl thiopropionate), dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl- 3,3′-thiodipropionate.
  • phosphoric acid-based antioxidants examples include tris (2,4-di-t-butylphenyl) phosphite, 2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) dibenzo [d.
  • the content of the antioxidant in the resin composition (C) is not particularly limited, and is, for example, 0 to 10% by weight, preferably 0 to 5% by weight, more preferably 0.01 to 2% by weight. More preferably 0.05 to 1% by weight. When the content of the antioxidant becomes excessively large, the antioxidant may bleed out or silver streaks may occur when the retardation film is formed from the resin composition (C) by melt extrusion. is there.
  • FIG. 1 shows an example of the retardation film of the present invention.
  • the retardation film 1 of the present invention shown in FIG. 1 has a (meth) acrylic polymer (A) having a ring structure in the main chain of 30 to 95% by weight and a cellulose ester polymer (B) of 5 to 70% by weight. It is comprised from the layer which consists of a resin composition (C) containing.
  • the retardation film of the present invention can be provided with an arbitrary layer other than the layer composed of the resin composition (C) as necessary, but in order to obtain the effects of the present invention more reliably, as shown in FIG.
  • the layer can have a functional coating layer on its surface.
  • the absolute value of the photoelastic coefficient for light having a wavelength of 590 nm in the retardation film of the present invention is, for example, 5 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less.
  • Types of (meth) acrylic polymer (A) and cellulose ester polymer (B) contained in the retardation film of the present invention (included in the resin composition (C)), and (meth) acrylic in the retardation film of the present invention Depending on the contents of the polymer (A) and the cellulose ester polymer (B), the absolute value is 4 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and further 3 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less.
  • the in-plane retardation Re indicated by the retardation film of the present invention varies depending on the stretched state of the film, but is, for example, 50 nm or more as a value per 100 ⁇ m of film thickness with respect to light having a wavelength of 590 nm.
  • Kinds of (meth) acrylic polymer (A) and cellulose ester polymer (B) contained in the retardation film of the present invention, and (meth) acrylic polymer (A) and cellulose ester polymer in the retardation film of the present invention Depending on the content of (B), the in-plane retardation Re is 140 nm or more, further 150 nm or more and 500 nm or less as a value per 100 ⁇ m of film thickness.
  • the degree of freedom in controlling the wavelength dispersion of the retardation in the retardation film of the present invention is high.
  • the retardation film exhibits a reverse wavelength dispersion of the retardation or has a flat wavelength dispersion.
  • the in-plane phase differences Re (447), Re (590), and Re (750) for light of wavelengths 447, 590, and 750 nm are expressed by the following equation: 0.8 ⁇ Re (447) / Re (590 ) ⁇ 1.2, and 0.8 ⁇ Re (750) / Re (590) ⁇ 1.2.
  • Re (447), Re (590) and Re (750) have the formulas 0.8 ⁇ Re (447) / Re (590) ⁇ 1.1 and 0.9 ⁇ Re ( 750) / Re (590) ⁇ 1.2 and satisfy the formulas 0.8 ⁇ Re (447) / Re (590) ⁇ 1.0 and 1.0 ⁇ Re (750) / Re ( 590) ⁇ 1.2 is more preferable.
  • the moisture permeability per 100 ⁇ m thickness in the retardation film of the present invention is, for example, 300 g / m 2 ⁇ 24 hours or less as a value measured according to JIS Z0208.
  • the retardation film of the present invention exhibits high heat resistance based on the (meth) acrylic polymer (A) having a ring structure in the main chain, and its Tg is, for example, 110 ° C. or higher.
  • Tg is 120 ° C. or higher, 125 ° C. or higher, and further 130 ° C. or higher.
  • the thickness of the retardation film of the present invention is not particularly limited, and is, for example, 10 to 500 ⁇ m, preferably 20 to 300 ⁇ m, particularly preferably 30 to 100 ⁇ m.
  • the Nz coefficient of the retardation film of the present invention is preferably less than 1.20, more preferably 1.15 or less, and even more preferably 1.10 or less and 0.95 or more in terms of light with a wavelength of 590 nm.
  • the total light transmittance of the retardation film of the present invention is preferably 85% or more, more preferably 90% or more, and still more preferably 91% or more as a value measured in accordance with JIS K7361-1.
  • the haze of the retardation film of the present invention is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less as measured at a thickness of 50 ⁇ m as measured according to JIS 7165.
  • various functional coating layers can be formed on the surface of the layer made of the resin composition (C) as necessary.
  • the functional coating layer is, for example, an antistatic layer; an adhesive layer such as a pressure-sensitive adhesive layer or an adhesive layer; an easy adhesion layer; an antiglare layer (non-glare) layer; an antifouling layer such as a photocatalyst layer; an antireflection layer; An ultraviolet shielding layer, a heat ray shielding layer, an electromagnetic wave shielding layer, and a gas barrier layer.
  • the application of the retardation film of the present invention is not particularly limited, and can be used for the same application as a conventional retardation film.
  • the retardation film of the present invention is suitable for optical compensation in an image display device such as an LCD. Further, in addition to the LCD, it can be used for various image display devices and optical devices.
  • the retardation film of the present invention can be used in combination with other optical members as necessary, for example, in a state of being bonded to each other.
  • the retardation film of the present invention is a known film formed from the resin composition (C), or from the (meth) acrylic polymer (A) and the cellulose ester polymer (B) before making the resin composition (C). It can be produced by a method and a film stretching method. Specifically, for example, the resin composition (C) is formed into a film to form an original film (unstretched film), and the obtained original film is stretched.
  • the film forming method examples include a solution casting method (solution casting method), a melt extrusion method, a calendar method, and a compression molding method. Of these, the solution casting method and the melt extrusion method are preferable.
  • a known uniaxial stretching method or biaxial stretching method can be applied to the stretching method of the original film.
  • the melt extrusion method is, for example, a T-die method or an inflation method.
  • a T-die is placed at the tip of a melt extruder, and a film melt-extruded from the T-die is taken up, whereby an original film wound in a roll shape is obtained.
  • melt extrusion it is preferable to devolatilize volatile components from the vent portion of the melt extruder. Moreover, it is preferable to use together filtration of the resin composition by a polymer filter in the case of melt extrusion.
  • the solution casting method generally has (1) a dissolution step, (2) a casting step, and (3) a drying step.
  • a known method can be applied to each step.
  • the specific procedure of the dissolution step is not limited as long as a solution containing a (meth) acrylic polymer (A) and a cellulose ester polymer (B) having a ring structure in the main chain is obtained.
  • a good solvent such as methylene chloride, methyl acetate, and dioxolane can be used as a solvent for dissolving both polymers, and a poor solvent such as methanol, ethanol, and butanol can be used in combination.
  • the polymerization solvent used when the (meth) acrylic polymer (A) is polymerized can be used.
  • a known solution coating method can be applied to the casting process.
  • This method is, for example, a coating method using a die coater, a doctor blade coater, a roll coater, a comma coater, a lip coater or the like.
  • the specific procedure of the drying process is not particularly limited as long as a film is formed by drying the coating film formed by the casting process.
  • the image display device of the present invention includes the retardation film of the present invention. As a result, the image display device is excellent in image display characteristics, for example, an image display device with high contrast and a wide viewing angle.
  • the image display device of the present invention is, for example, an LCD.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) were determined by polystyrene conversion using gel permeation chromatography (GPC) according to the following measurement conditions.
  • Measurement system Tosoh GPC system HLC-8220 Developing solvent: Chloroform (Wako Pure Chemical Industries, special grade) Solvent flow rate: 0.6 mL / min Standard sample: TSK standard polystyrene (manufactured by Tosoh, PS-oligomer kit)
  • Measurement side column configuration Tosoh, TSK-GEL super HZM-M 6.0X150, 2 in series connection Tosoh, TSK-GEL super HZ-L 4.6X35, 1 Reference side column configuration: Tosoh, TSK-GEL SuperH- RC 6.0X150, 2 in series Column temperature: 40 ° C
  • the glass transition temperature (Tg) was determined according to JIS K7121. Specifically, it is obtained by using a differential scanning calorimeter (manufactured by Rigaku, DSC-8230) to raise a temperature of about 10 mg from room temperature to 200 ° C. (temperature increase rate 20 ° C./min) in a nitrogen gas atmosphere. The DSC curve was evaluated by the starting point method. ⁇ -alumina was used as a reference.
  • MFR Melt flow rate
  • nx is the refractive index in the slow axis direction in the film plane
  • ny is the refractive index in the direction perpendicular to nx in the film plane
  • nz is the refractive index in the thickness direction of the film
  • d is the thickness of the film ( nm).
  • the slow axis direction is the direction in which the refractive index is maximum in the film plane.
  • the in-plane retardation Re (447) and Re (750) for the light having a wavelength of 447 nm and 750 nm in the produced retardation film was similarly evaluated, and the in-plane retardation Re for the light having the wavelength of 590 nm was determined.
  • the ratio with (590) the values of Re (447) / Re (590) and Re (750) / Re (590) were obtained.
  • the photoelastic coefficient of the prepared retardation film with respect to light having a wavelength of 590 nm was evaluated using an ellipsometer (manufactured by JASCO, M-150). Specifically, the produced retardation film was cut into 20 mm ⁇ 50 mm with the stretching direction as the long side to obtain a measurement sample, which was attached to a photoelasticity measurement unit of an ellipsometer, and 5 to 25 N parallel to the stretching direction. The three-point birefringence was measured while applying a stress load of and the slope of birefringence with respect to the stress when using light having a wavelength of 590 nm was defined as the photoelastic coefficient.
  • a transparent (meth) acrylic polymer (A-1) having a lactone ring structure was obtained.
  • the weight average molecular weight of the polymer (A-1) was 134,000, the MFR was 14.5 g / 10 min, and the Tg was 130 ° C.
  • the obtained resin composition was press-molded at 220 ° C. by a press molding machine to obtain a film (unstretched film) having a thickness of 126 ⁇ m.
  • the produced film was uniaxially stretched in the MD direction at a stretching ratio of 2 and a stretching temperature of 133 ° C. by a tensile tester (Instron) to obtain a stretched film (F1) having a thickness of 85 ⁇ m.
  • the evaluation results of the stretched film (F1) are shown in Table 1 below.
  • Example 2 Example except that 70 parts by weight of polymer (A-1) and 30 parts by weight of cellulose acetate propionate (B-1) were dissolved in methylene chloride, and a 120 ⁇ m-thick original film was prepared. 1, a stretched film (F2) having a thickness of 82 ⁇ m was obtained. The evaluation results of the stretched film (F2) are shown in Table 1 below.
  • Example 3 Example except that 50 parts by weight of polymer (A-1) and 50 parts by weight of cellulose acetate propionate (B-1) were dissolved in methylene chloride, and an original film having a thickness of 118 ⁇ m was prepared. 1, a stretched film (F3) having a thickness of 83 ⁇ m was obtained. The evaluation results of the stretched film (F3) are shown in Table 1 below.
  • the stretched films of Examples 1 to 3 had lower moisture permeability and photoelastic coefficient than the stretched film of Comparative Example 1, yielded a large in-plane retardation, and had a small Nz coefficient. . Further, the retardation in the stretched films of Examples 1 to 3 showed flat wavelength dispersion or reverse wavelength dispersion.
  • cyclization condensation reaction was allowed to proceed for 2 hours under reflux at about 85-100 ° C. Then, it was further heated at 240 ° C. for 90 minutes in an autoclave pressurized to a maximum gauge pressure of about 2 MPa.
  • the polymer in the molten state is extruded from the extruder, and the (meth) acrylic polymer (A-2) having a lactone ring structure in the main chain and having 18% by weight of BMA units in all the structural units. Pellets were obtained.
  • the polymer (A-2) had a weight average molecular weight of 1260,000 and a Tg of 123 ° C.
  • the BMA unit is a (meth) acrylic acid alkyl ester unit represented by the formula (1), in which R 1 is an n-butyl group and R 2 is CH 3 (methyl group).
  • the main chain has a lactone ring structure and all the BMA units as in Production Example 2 except that the amount of each monomer charged into the reactor is 60 parts by weight of MMA, 30 parts by weight of MHMA, and 10 parts by weight of BMA.
  • a pellet of (meth) acrylic polymer (A-3) having 10% by weight of the unit was obtained.
  • the polymer (A-3) had a weight average molecular weight of 134,000 and a Tg of 130 ° C.
  • the main chain has a lactone ring structure in the same manner as in Production Example 2 except that BMA is not charged into the reactor, the amount of MMA charged into the reactor is 70 parts by weight, and the amount of MHMA is 30 parts by weight.
  • a pellet of the (meth) acrylic polymer (C-1) not having the structural unit shown in (1) was obtained.
  • the weight average molecular weight of the polymer (C-1) was 17,000 and Tg was 122 ° C.
  • t-amylperoxy-2-ethylhexanoate manufactured by Arkema Yoshitomi, trade name: Luperox 575
  • toluene 10 While a solution in which 0.10 parts by weight of the above t-amylperoxy-2-heptylhexanoate was dissolved in parts by weight was added dropwise over 8 hours, the solution polymerization was allowed to proceed under reflux at about 90 to 100 ° C. Further, aging was performed for 12 hours.
  • cyclization condensation reaction was allowed to proceed for 2 hours under reflux at about 80 to 100 ° C. Then, it was further heated at 240 ° C. for 90 minutes in an autoclave pressurized to a maximum gauge pressure of about 2 MPa. Next, the obtained polymerization solution was dried at 240 ° C.
  • the EMA unit is a (meth) acrylic acid ester unit represented by the formula (1), in which R 1 is an ethyl group and R 2 is CH 3 (methyl group).
  • the main chain has a lactone ring structure in the same manner as in Production Example 5 except that the amount of each monomer charged in the reactor is 44.5 parts by weight of MMA, 26 parts by weight of MHMA, 25 parts by weight of EMA, and 4.5 parts by weight of NVCz.
  • a (meth) acrylic polymer (A-5) having EMA units and 25% by weight of all structural units was obtained.
  • the polymer (A-5) had a weight average molecular weight of 17,000 and a Tg of 129 ° C.
  • EMA was not charged into the reactor, but the amount of MMA charged into the reactor was 69.5 parts by weight, the amount of MHMA was 26 parts by weight, and the amount of NVCz was 4.5 parts by weight.
  • a (meth) acrylic polymer (C-2) having a lactone ring structure in the main chain and having no structural unit represented by the formula (1) was obtained.
  • the weight average molecular weight of the polymer (C-2) was 163,000, and the Tg was 138 ° C.
  • the obtained resin composition was press-molded at 220 ° C. with a press molding machine to obtain an unstretched film having a thickness of 50 ⁇ m.
  • the evaluation results of the obtained film are shown in Table 2 below.
  • the films of Production Examples 8 to 10 and Production Examples 12 to 14 were smaller in haze than the films of Production Examples 11 and 15, and were excellent in transparency. And the tendency for the haze of the produced film to become small was confirmed, so that the content rate of the BMA unit or EMA unit in a (meth) acryl polymer was large.
  • the moisture permeability and photoelastic coefficient of the film were lower than the moisture permeability and photoelastic coefficient of the films of Production Examples 11 and 15.
  • Example 4 The unstretched film produced in Production Example 8 (however, the thickness of the film was 120 ⁇ m) was uniaxially oriented in the MD direction at a stretching ratio of 2 and a stretching temperature of 128 ° C. using a tensile tester (manufactured by Instron). The film was stretched to obtain a stretched film (retardation film) having a thickness of 87 ⁇ m. The evaluation results of the obtained retardation film are shown in Table 3 below.
  • Example 5 A stretched film (retardation film) having a thickness of 85 ⁇ m was obtained in the same manner as in Example 4 except that the unstretched film produced in Production Example 9 (however, the thickness of the film was 120 ⁇ m) was used. .
  • the evaluation results of the obtained retardation film are shown in Table 3 below.
  • Example 6 A stretched film having a thickness of 82 ⁇ m (as in Example 4), except that the unstretched film produced in Production Example 10 (however, the thickness of the film was 120 ⁇ m) and the stretching temperature was 133 ° C. Retardation film) was obtained. The evaluation results of the obtained retardation film are shown in Table 3 below.
  • Example 7 Except for using the unstretched film produced in Production Example 12 (however, the thickness of the film was 123 ⁇ m) and the stretching temperature was 127 ° C., a stretched film having a thickness of 86 ⁇ m ( Retardation film) was obtained. The evaluation results of the obtained retardation film are shown in Table 3 below.
  • Example 8 A stretched film (retardation film) having a thickness of 84 ⁇ m was obtained in the same manner as in Example 4 except that the unstretched film produced in Production Example 13 (however, the thickness of the film was 121 ⁇ m) was used. .
  • the evaluation results of the obtained retardation film are shown in Table 3 below.
  • Example 9 A stretched film (retardation film) having a thickness of 87 ⁇ m was obtained in the same manner as in Example 4 except that the unstretched film produced in Production Example 14 (however, the thickness of the film was 126 ⁇ m) was used. .
  • the evaluation results of the obtained retardation film are shown in Table 3 below.
  • each of the retardation films produced in Examples 4 to 9 showed a large in-plane retardation Re and a positive thickness retardation Rth in the thickness direction, and an inverse wavelength dispersion for the in-plane retardation Re. showed that.
  • the haze exhibited by the retardation films produced in Examples 4 to 9 and the haze exhibited by the stretched films produced by stretching the unstretched films produced in Production Examples 11 and 15 in the same manner as in Example 4 were the same film. It was the same as the haze indicated by the corresponding unstretched film before stretching (Production Examples 8 to 15) in terms of thickness.
  • the photoelastic coefficient and moisture permeability per 100 ⁇ m thickness shown in the retardation films prepared in Examples 4 to 9 and the unstretched films prepared in Production Examples 11 and 15 were drawn in the same manner as in Example 4.
  • the stretched film exhibited the same photoelastic coefficient and moisture permeability per 100 ⁇ m thickness as the corresponding unstretched film (Production Examples 8 to 15) before stretching.
  • the retardation film of the present invention can be used in the same applications as conventional retardation films, for example, various image display devices including LCD and optical devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Polarising Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 本発明の位相差フィルムは、主鎖に環構造を有する(メタ)アクリル重合体30~95重量%と、セルロースエステル重合体5~70重量%とを含む樹脂組成物からなる層を含む。本発明の位相差フィルムは、光弾性係数および透湿度が低いとともに、位相差の波長分散性の制御の自由度が高く、例えば、位相差の逆波長分散性を示す、あるいは位相差の波長分散性がフラットである位相差フィルムである。この位相差フィルムは、液晶表示装置(LCD)などの画像表示装置における光学補償の用途に好適である。

Description

位相差フィルムとそれを備える画像表示装置
 本発明は、位相差フィルムと、当該フィルムを備える画像表示装置とに関する。
 従来、偏光子保護フィルムおよび位相差フィルムをはじめとする光学フィルムに、セルロース系重合体が使用されている。ポリカーボネートなどの一般的な重合体からなる位相差フィルムとは異なり、セルロース系重合体からなる位相差フィルムは、一般に、少なくとも可視光域において光の波長が短くなるほど位相差が小さくなる波長分散性(位相差の逆波長分散性)を示す。これにより、当該位相差フィルムを備える液晶表示装置(LCD)における画像表示特性の向上が期待される。しかし、セルロース系重合体の特性に由来して、当該位相差フィルムは、透湿性が高い、光弾性係数が大きい、必ずしも十分に大きな位相差が得られないといった問題点を有する。
 これとは別に、主鎖に環構造を有する(メタ)アクリル重合体が位相差フィルムに使用されている(特許文献1:特開2008-9378号公報を参照)。主鎖に環構造を有する(メタ)アクリル重合体からなる位相差フィルムは、高い透明性および耐熱性を有する一方、機械的特性、特に可撓性、の確保が課題である。当該位相差フィルムの機械的特性は、ゴムのような弾性体粒子の添加あるいは延伸によって改善される。しかし、弾性体粒子を添加した場合、添加した粒子の凝集を抑制し、位相差フィルムとしての透明性を確保しなければならない。これに加えて、主鎖に環構造を有する(メタ)アクリル重合体からなる位相差フィルムは、一般的な重合体からなる位相差フィルムと同様に、少なくとも可視光域において光の波長が短くなるほど位相差が大きくなる波長分散性(位相差の順波長分散性)を示す。
 特許文献2(特開2009-1744号公報)には、主鎖に環構造を有する(メタ)アクリル重合体が、セルロースエステルフィルムの改質剤として有用であること、主鎖に環構造を有する(メタ)アクリル重合体をセルロースエステルフィルムに添加することによって、馬の背故障、巻芯転写に代表される当該フィルムの変形故障が抑制されること、セルロースエステルフィルムの一例に位相差フィルムがあること、が記載されている。ただし、特開2009-1744号公報には、主鎖に環構造を有する(メタ)アクリル重合体を、改質剤としてどの程度セルロースエステルフィルムに添加すればよいかの記載がなく、唯一、実施例において、セルロースエステル100重量部に当該(メタ)アクリル重合体を4~12重量部添加した例が記載されているのみである。
特開2008-9378号公報 特開2009-1744号公報
 本発明は、主鎖に環構造を有する(メタ)アクリル重合体とセルロースエステル重合体とを含む樹脂組成物からなる層を含む位相差フィルムであって、光弾性係数および透湿度が低いとともに、位相差の波長分散性の制御の自由度が高い(例えば、位相差の逆波長分散性を示しうる、あるいは位相差の波長分散性が少なくとも可視光域においてフラットでありうる)位相差フィルムの提供を目的とする。
 本発明の位相差フィルムは、主鎖に環構造を有する(メタ)アクリル重合体(A)30~95重量%と、セルロースエステル重合体(B)5~70重量%と、を含む樹脂組成物(C)からなる層を含む。
 本発明の画像表示装置は、上記本発明の位相差フィルムを備える。
 本発明の位相差フィルムは、主鎖に環構造を有する(メタ)アクリル重合体(A)と、セルロース重合体(B)とを特定の含有率の範囲で含む樹脂組成物からなる層を含むことにより、光弾性係数および透湿度が低いとともに、位相差の波長分散性の制御の自由度が高い位相差フィルムとなる。
本発明の位相差フィルムの一例を模式的に示す平面図である。
 [(メタ)アクリル重合体(A)]
 (メタ)アクリル重合体は、(メタ)アクリル酸エステル単位を、全構成単位の50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上、特に好ましくは95重量%以上、最も好ましくは99重量%以上有する重合体である。(メタ)アクリル重合体(A)が主鎖に有する環構造は、(メタ)アクリル酸エステル単位の誘導体でありうる。この場合、(メタ)アクリル酸エステル単位および環構造の合計が全構成単位の50重量%以上であれば、(メタ)アクリル重合体となる。
 (メタ)アクリル酸エステル単位は、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニルオキシエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6-ペンタヒドロキシヘキシル、(メタ)アクリル酸2,3,4,5-テトラヒドロキシペンチル、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、2-(ヒドロキシメチル)アクリル酸イソプロピル、2-(ヒドロキシメチル)アクリル酸ノルマルブチル、2-(ヒドロキシメチル)アクリル酸t-ブチルなどの単量体の重合により形成される構成単位である。(メタ)アクリル重合体は、これらの構成単位を2種類以上有しうる。熱安定性の観点から、(メタ)アクリル重合体(A)がメタクリル酸メチル(MMA)単位を有することが好ましい。
 (メタ)アクリル重合体(A)は、以下の式(1)に示す(メタ)アクリル酸アルキルエステル単位Xを構成単位として有することが好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(1)において、R1は炭素数2~18のアルキル基であり、R2はH(水素原子)またはCH3(メチル基)である。R2がHのとき、式(1)に示す単位はアクリル酸アルキルエステル単位であり、R2がCH3のとき、式(1)に示す単位はメタクリル酸アルキルエステル単位である。
 (メタ)アクリル重合体とセルロースエステル重合体とを含む樹脂組成物を成形すると、表面のヘイズが高くなって、得られた成形体の透明性が往々にして低下する。特に、当該樹脂組成物をフィルムに成形する際に、この傾向が顕著である。透明性が低下したフィルムは位相差フィルムとして使用できない。(メタ)アクリル重合体(A)が、(メタ)アクリル酸アルキルエステル単位Xを含む場合、このようなヘイズの上昇が抑制され、透明性に優れる位相差フィルムが得られる。
 R1は、炭素数2~18のアルキル基である限り限定されない。R1は、例えば、エチル基(炭素数2)、プロピル基(炭素数3)、ブチル基(炭素数4)、ペンチル基(炭素数5)、ヘキシル基(炭素数6)、ヘプチル基(炭素数7)、オクチル基(炭素数8)、ノニル基(炭素数9)、デシル基(炭素数10)、ウンデシル基(炭素数11)およびドデシル基(炭素数12)ならびにこれらの構造異性体である。
 (メタ)アクリル重合体(A)の全構成単位に占める(メタ)アクリル酸アルキルエステル単位Xの割合は、当該単位Xの具体的な分子構造によって異なるが、例えば5重量%以上である。ヘイズの上昇を抑制する効果が確実に得られることから、当該割合は10重量%以上が好ましく、15重量%以上が好ましい。当該割合の上限は特に限定されず、例えば、50重量%である。(メタ)アクリル重合体(A)の全構成単位に占める(メタ)アクリル酸アルキルエステル単位Xの割合は、1H核磁気共鳴(1H-NMR)あるいは赤外線分光分析(IR)により求めうる。当該割合は、(メタ)アクリル重合体(A)の重合に用いた各単量体の比、ならびに、必要に応じて、単量体から(メタ)アクリル重合体(A)になるまでの反応機構を参照しても、求めうる。
 (メタ)アクリル重合体(A)は、2種以上の(メタ)アクリル酸アルキルエステル単位Xを構成単位として有しうる。
 (メタ)アクリル重合体(A)は、(メタ)アクリル酸エステル単位以外の構成単位を有しうる。当該構成単位は、例えば、(メタ)アクリル酸、スチレン、ビニルトルエン、α-メチルスチレン、α-ヒドロキシメチルスチレン、α-ヒドロキシエチルスチレン、アクリロニトリル、メタクリロニトリル、メタリルアルコール、アリルアルコール、エチレン、プロピレン、4-メチル-1-ペンテン、酢酸ビニル、2-ヒドロキシメチル-1-ブテン、メチルビニルケトン、N-ビニルピロリドン、N-ビニルカルバゾールなどの単量体の重合により形成される構成単位である。
 (メタ)アクリル重合体(A)は、(メタ)アクリル酸アルキルエステル単位X、MMA単位および2-(ヒドロキシメチル)アクリル酸エステル単位を構成単位として有することが好ましい。(メタ)アクリル重合体(A)は、(メタ)アクリル酸アルキルエステル単位X、MMA単位、2-(ヒドロキシメチル)アクリル酸エステル単位およびN-ビニルカルバゾール単位を構成単位として有することが好ましい。これらの場合、ヘイズの上昇がさらに抑制されるとともに、位相差フィルムとしたときに高い光学特性が得られる。これらの場合、(メタ)アクリル重合体(A)におけるMMA単位の含有率は10~80重量%が好ましく、20~60重量%がより好ましい。2-(ヒドロキシメチル)アクリル酸エステル単位の含有率は10~60重量%が好ましく、20~40重量%がより好ましい。単位Xの含有率は5~70重量%が好ましく、10~50重量%がより好ましい。N-ビニルカルバゾール単位の含有率は1~20重量%が好ましく、3~8重量%がより好ましい。2-(ヒドロキシメチル)アクリル酸エステル単位は、例えば、2-(ヒドロキシメチル)アクリル酸メチル(MHMA)単位、2-(ヒドロキシメチル)アクリル酸エチル単位、2-(ヒドロキシメチル)アクリル酸イソプロピル単位、2-(ヒドロキシメチル)アクリル酸ノルマルブチル単位、2-(ヒドロキシメチル)アクリル酸t-ブチル単位である。なかでも、MHMA単位、2-(ヒドロキシメチル)アクリル酸エチル単位が好ましく、位相差フィルムの透明性および耐熱性の観点から、MHMA単位が特に好ましい。
 (メタ)アクリル重合体(A)は、主鎖に環構造を有する。(メタ)アクリル重合体(A)が主鎖に環構造を有することは、本発明の位相差フィルムが大きな面内位相差を示すこと、およびヘイズの上昇の抑制に寄与する。
 これに加えて、主鎖に環構造を有する(メタ)アクリル重合体(A)のガラス転移温度(Tg)は高く、例えば110℃以上、当該重合体の構成によっては120℃以上、さらには130℃以上である。このように高いTgを有する(メタ)アクリル重合体(A)を含むことにより、本発明の位相差フィルムの耐熱性が向上する。耐熱性が高い位相差フィルムは、光源のような発熱部の近くに配置することが可能であるため、LCDなどの画像表示装置への使用に好適である。
 (メタ)アクリル重合体(A)における環構造の含有率は、好ましくは25~90重量%、より好ましくは35~90重量%、特に好ましくは40~90重量%である。重合体(A)における環構造の含有率が90重量%を超えると、重合体(A)を含む樹脂組成物の成形性が低下し、位相差フィルムの製造が困難になることがある。
 (メタ)アクリル重合体(A)が主鎖に有する環構造は、例えば、エステル基、イミド基または酸無水物基を有する環構造である。
 より具体的な環構造の例は、ラクトン環構造、グルタルイミド構造、無水グルタル酸構造、N-置換マレイミド構造および無水マレイン酸構造から選ばれる少なくとも1種である。これらの環構造は、上述した、大きな面内位相差への寄与の程度が大きい。
 環構造は、ラクトン環構造およびグルタルイミド構造から選ばれる少なくとも1種が好ましく、ラクトン環構造がより好ましい。ラクトン環構造またはグルタルイミド構造、特にラクトン環構造、を主鎖に有する(メタ)アクリル重合体(A)は、複屈折の波長分散性が特に小さい。このため、本発明の位相差フィルムにおける位相差の波長分散性の制御の自由度が、フラットな波長分散性から逆波長分散性の間において、より高くなる。これに加えて、ラクトン環構造を主鎖に有する(メタ)アクリル重合体(A)は、セルロースエステル重合体(B)との相溶性が特に高い。高い相溶性は、ヘイズの上昇の抑制に寄与する。
 (メタ)アクリル重合体(A)が主鎖に有しうる具体的なラクトン環構造は特に限定されず、例えば4~8員環でありうるが、環構造としての安定性に優れることから5員環または6員環であることが好ましく、6員環であることがより好ましい。6員環であるラクトン環構造は、例えば、特開2004-168882号公報に開示されている構造である。前駆体(前駆体を環化縮合反応させることで、ラクトン環構造を主鎖に有する(メタ)アクリル重合体(A)が得られる)の重合収率が高いこと、前駆体の環化縮合反応により、高いラクトン環含有率を有する(メタ)アクリル重合体(A)が得られること、MMA単位を構成単位として有する重合体を前駆体に使用しうること、などの理由から、以下の式(2)により示す構造が好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(2)において、R3、R4およびR5は、互いに独立して、水素原子または炭素数1~20の範囲の有機残基である。有機残基は、酸素原子を含みうる。
 有機残基は、例えば、メチル基、エチル基、プロピル基などの炭素数が1~20の範囲のアルキル基;エテニル基、プロペニル基などの炭素数が1~20の範囲の不飽和脂肪族炭化水素基;フェニル基、ナフチル基などの炭素数が1~20の範囲の芳香族炭化水素基;上記アルキル基、上記不飽和脂肪族炭化水素基および上記芳香族炭化水素基において、水素原子の一つ以上が水酸基、カルボキシル基、エーテル基およびエステル基から選ばれる少なくとも1種の基により置換された基;である。
 式(2)に示すラクトン環構造は、例えば、MMAとMHMAとを含む単量体群を共重合した後、得られた共重合体における隣り合ったMMA単位とMHMA単位とを脱アルコール環化縮合させて形成しうる。このとき、R3はH、R4およびR5はCH3である。
 (メタ)アクリル重合体(A)が主鎖にラクトン環構造を有する場合、重合体(A)におけるラクトン環構造の含有率は、セルロースエステル重合体(B)、特にセルロースアセテート重合体、との相溶性の観点から、25~90重量%が好ましく、25~70重量%がより好ましく、30~60重量%が特に好ましく、35~60重量%が最も好ましい。(メタ)アクリル重合体(A)におけるラクトン環構造の含有率は、特開2001-151814号公報に記載の方法により求めうる。
 (メタ)アクリル重合体(A)の重量平均分子量(Mw)は8万以上が好ましく、10万以上がより好ましい。(メタ)アクリル重合体(A)における分子量の分散度(=重量平均分子量Mw/数平均分子量Mn)は3.5以下が好ましく、3以下がより好ましい。(メタ)アクリル重合体(A)のMwおよび分散度は、ゲルパーミエーションクロマトグラフィ(GPC)により求めうる。(メタ)アクリル重合体(A)が上記Mwおよび分散度の範囲を満たす場合、当該重合体(A)の分岐構造が抑制される。これは、重合体(A)を含む樹脂組成物の熱安定性を向上させ、高い強度および望ましい外観を有する位相差フィルムの製造に寄与する。
 (メタ)アクリル重合体(A)は、公知の方法により製造しうる。主鎖の環構造が無水グルタル酸構造またはグルタルイミド構造である(メタ)アクリル重合体(A)は、例えば、WO2007/26659号公報あるいはWO2005/108438号公報に記載の方法により製造しうる。主鎖の環構造が無水マレイン酸構造またはN-置換マレイミド構造である(メタ)アクリル重合体(A)は、例えば、特開昭57-153008号公報、特開2007-31537号公報に記載の方法により製造しうる。主鎖の環構造がラクトン環構造である(メタ)アクリル重合体(A)は、例えば、特開2006-96960号公報、特開2006-171464号公報あるいは特開2007-63541号公報に記載の方法により製造しうる。
 一例として、主鎖にラクトン環構造を有する(メタ)アクリル重合体(A)の製造方法を説明する。当該重合体(A)は、分子鎖内に水酸基とエステル基とを有する重合体(a)を任意の触媒存在下で加熱し、脱アルコールを伴うラクトン環化縮合反応を進行させて、形成しうる。
 重合体(a)は、例えば、以下の式(3)に示す単量体を含む単量体群の重合により形成される。重合体(A)が、式(1)に示す(メタ)アクリル酸アルキルエステル単位Xを構成単位として有する場合、重合体(a)は、例えば、以下の式(3)に示す単量体および以下の式(4)に示す単量体を含む単量体群の重合により形成しうる。
Figure JPOXMLDOC01-appb-C000003
 式(3)において、R6およびR7は、互いに独立して、水素原子または式(2)における有機残基として例示した基である。式(3)に示す単量体は、重合により、重合体(a)の分子鎖内に水酸基およびエステル基を与える。
Figure JPOXMLDOC01-appb-C000004
 式(4)において、R8は、式(1)のR1と同様の基である。式(4)において、R9はH(水素原子)またはCH3(メチル基)である。式(4)に示す単量体((メタ)アクリル酸アルキルエステル単量体Y)は、重合により、(メタ)アクリル酸アルキルエステル単位Xとなる。
 式(3)に示す単量体の具体的な例は、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、2-(ヒドロキシメチル)アクリル酸イソプロピル、2-(ヒドロキシメチル)アクリル酸ノルマルブチル、2-(ヒドロキシメチル)アクリル酸t-ブチルである。なかでも、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチルが好ましく、透明性および耐熱性の観点から、2-(ヒドロキシメチル)アクリル酸メチル(MHMA)が特に好ましい。
 式(4)に示す単量体の具体的な例は、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシルである。
 重合体(a)の形成に用いる単量体群における、式(3)、(4)に示す単量体の含有率は、望む(メタ)アクリル重合体(A)の分子構造に応じて調整しうる。
 重合体(a)の形成に用いる単量体群は、式(3)に示す単量体を2種以上含みうる。当該単量体群は、式(4)に示す単量体を2種以上含みうる。
 重合体(a)の形成に用いる単量体群は、式(3)、(4)に示す単量体以外の単量体を含みうる。このような単量体は、式(3)、(4)に示す単量体と共重合可能な単量体である限り、特に限定されない。当該単量体は、例えば、式(3)、(4)に示す単量体以外の(メタ)アクリル酸エステルである。
 当該(メタ)アクリル酸エステルは、例えば、アクリル酸メチル、アクリル酸シクロヘキシル、アクリル酸ベンジルなどのアクリル酸エステル;メタクリル酸メチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジルなどのメタクリル酸エステル;である。透明性および耐熱性の観点からは、MMAが好ましい。
 重合体(a)の形成に用いる単量体群は、これら(メタ)アクリル酸エステルを2種以上含みうる。
 重合体(a)の形成に用いる単量体群は、(メタ)アクリル酸、スチレン、ビニルトルエン、α-メチルスチレン、アクリロニトリル、メチルビニルケトン、エチレン、プロピレン、酢酸ビニルなどの単量体を、1種または2種以上含みうる。ただし、当該単量体群における(メタ)アクリル酸の含有率は、30重量%以下が好ましく、20重量%以下がより好ましく、10重量%以下が特に好ましく、5重量%以下が最も好ましい。(メタ)アクリル酸の含有率が30重量%を超えると、単量体群の重合過程においてゲル化が進行することがある。
 単量体群の重合による重合体(a)の形成時には、必要に応じて、重合開始剤を使用しうる。重合開始剤は、例えば、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーオキシイソプロピルカーボネート、t-アミルパーオキシ-2-エチルヘキサノエートなどの有機過酸化物;2,2’-アゾビス(イソブチロニトリル)、1,1’-アゾビス(シクロヘキサンカルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビスイソブチレート;である。重合開始剤は、2種以上を併用しうる。重合開始剤の使用量は、単量体群に含まれる単量体の組み合わせおよび重合条件に応じて、適宜、設定しうる。
 重合体(a)における脱アルコールを伴うラクトン環化縮合反応には、公知の環化触媒を使用することが好ましい。環化触媒は、例えば、p-トルエンスルホン酸などのエステル化触媒またはエステル交換触媒である。酢酸、プロピオン酸、安息香酸、アクリル酸、メタクリル酸などの有機カルボン酸類を環化触媒として使用しうる。さらに、例えば、特開昭61-254608号公報および特開昭61-261303号公報に開示されているように、塩基性化合物;酢酸亜鉛などの有機カルボン酸塩;炭酸塩を環化触媒として使用しうる。
 環化触媒は、有機リン化合物でありうる。当該有機リン化合物は、例えば、メチル亜ホスホン酸、エチル亜ホスホン酸、フェニル亜ホスホン酸などのアルキル亜ホスホン酸またはアリール亜ホスホン酸(ただし、これらは、互変異性体であるアルキルホスフィン酸またはアリールホスフィン酸でありうる)ならびにこれらのモノエステルまたはジエステル;ジメチルホスフィン酸、ジエチルホスフィン酸、ジフェニルホスフィン酸、フェニルメチルホスフィン酸、フェニルエチルホスフィン酸などのジアルキルホスフィン酸、ジアリールホスフィン酸またはアルキルアリールホスフィン酸ならびにこれらのエステル;メチルホスホン酸、エチルホスホン酸、トリフルオルメチルホスホン酸、フェニルホスホン酸などのアルキルホスホン酸またはアリールホスホン酸ならびにこれらのモノエステルまたはジエステル;メチル亜ホスフィン酸、エチル亜ホスフィン酸、フェニル亜ホスフィン酸などのアルキル亜ホスフィン酸またはアリール亜ホスフィン酸ならびにこれらのエステル;亜リン酸メチル、亜リン酸エチル、亜リン酸フェニル、亜リン酸ジメチル、亜リン酸ジエチル、亜リン酸ジフェニル、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニルなどの亜リン酸モノエステル、ジエステルまたはトリエステル;リン酸メチル、リン酸エチル、リン酸2-エチルヘキシル、リン酸イソデシル、リン酸ラウリル、リン酸ステアリル、リン酸イソステアリル、リン酸フェニル、リン酸ジメチル、リン酸ジエチル、リン酸ジ-2-エチルヘキシル、リン酸オクチル、リン酸ジイソデシル、リン酸ジラウリル、リン酸ジステアリル、リン酸ジイソステアリル、リン酸ジフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリイソデシル、リン酸トリラウリル、リン酸トリステアリル、リン酸トリイソステアリル、リン酸トリフェニルなどのリン酸モノエステル、ジエステルまたはトリエステル;メチルホスフィン、エチルホスフィン、フェニルホスフィン、ジメチルホスフィン、ジエチルホスフィン、ジフェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィンなどのモノ-、ジ-またはトリ-アルキル(アリール)ホスフィン;メチルジクロロホスフィン、エチルジクロロホスフィン、フェニルジクロロホスフィン、ジメチルクロロホスフィン、ジエチルクロロホスフィン、ジフェニルクロロホスフィンなどのアルキル(アリール)ハロゲンホスフィン;酸化メチルホスフィン、酸化エチルホスフィン、酸化フェニルホスフィン、酸化ジメチルホスフィン、酸化ジエチルホスフィン、酸化ジフェニルホスフィン、酸化トリメチルホスフィン、酸化トリエチルホスフィン、酸化トリフェニルホスフィンなどの酸化モノ-、ジ-またはトリ-アルキル(アリール)ホスフィン;塩化テトラメチルホスホニウム、塩化テトラエチルホスホニウム、塩化テトラフェニルホスホニウムなどのハロゲン化テトラアルキル(アリール)ホスホニウム;である。これらの有機リン化合物を2種以上併用しうる。なかでも、触媒活性が高く、着色性が低いことから、アルキル(アリール)亜ホスホン酸、亜リン酸モノエステルまたはジエステル、リン酸モノエステルまたはジエステル、アルキル(アリール)ホスホン酸が好ましく、アルキル(アリール)亜ホスホン酸、亜リン酸モノエステルまたはジエステル、リン酸モノエステルまたはジエステルがより好ましく、アルキル(アリール)亜ホスホン酸、リン酸モノエステルまたはジエステルが特に好ましい。
 塩基性の環化触媒の使用も可能である。当該環化触媒は、例えば、特開2009-144112号公報に記載された12族元素の化合物であり、特に亜鉛化合物が好ましい。亜鉛化合物は、例えば、酢酸亜鉛、プロピオン酸亜鉛、オクチル酸亜鉛などの有機亜鉛化合物;酸化亜鉛、塩化亜鉛、硫酸亜鉛などの無機亜鉛化合物;トリフルオロメタンスルホン酸亜鉛などのフッ素を含む有機亜鉛化合物;である。
 ラクトン環化縮合反応後にも微量に残存する未反応の反応性基によって、得られた(メタ)アクリル重合体(A)を含む樹脂組成物をフィルムに成形する際に、発泡あるいは重合体間の架橋が生じることがある。この現象は、環化縮合反応後に環化触媒の失活剤を添加することで抑制しうる。失活剤の添加は、当該樹脂組成物が含むセルロースエステル重合体(B)の劣化を抑制するためにも有効である。環化触媒には、酸性物質あるいは塩基性物質が使用されることが多い。環化触媒が酸性物質である場合、塩基性の失活剤を使用し、環化触媒が塩基性物質である場合、酸性の失活剤を使用することが好ましい。塩基性の失活剤は、例えば、金属カルボン酸塩、金属錯体、金属酸化物であり、金属カルボン酸塩および金属酸化物が好ましく、金属カルボン酸塩がより好ましい。当該失活剤に使用される金属は、樹脂組成物の物性を阻害しない限り限定されず、例えば、リチウム、ナトリウム、カリウムなどのアルカリ金属;マグネシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属;亜鉛;ジルコニウムである。金属カルボン酸塩を構成するカルボン酸は、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、トリデカン酸、ペンタデカン酸、ヘプタデカン酸、乳酸、リンゴ酸、クエン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、アジピン酸である。金属錯体における有機成分は、例えば、アセチルアセトンである。金属酸化物は、例えば、酸化亜鉛、酸化カルシウム、酸化マグネシウムであり、酸化亜鉛が好ましい。酸性の失活剤は、例えば、有機リン酸化合物、カルボン酸である。失活剤は、2種以上を併用しうる。失活剤の形態は限定されず、固形、粉末状、分散体、懸濁液、水溶液などの形態を有しうる。
 [セルロースエステル重合体(B)]
 セルロースエステル重合体(B)は限定されず、例えば、セルロース芳香族カルボン酸エステル重合体、セルロース脂肪酸エステル重合体である。光学特性に優れる位相差フィルムが得られることから、セルロース重合体(B)はセルロース低級脂肪酸エステル重合体が好ましい。低級脂肪酸とは、炭素原子数が5以下の脂肪酸を意味する。セルロース低級脂肪酸エステル重合体は、例えば、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースピバレートである。セルロースエステル重合体(B)は、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどのセルロース混合脂肪酸エステル重合体でありうる。この場合、当該セルロース重合体(B)を含む樹脂組成物(C)の成膜性と、最終的に得られた位相差フィルムの機械的特性との両立が図られうる。(メタ)アクリル重合体(A)との相溶性の観点からは、セルロースエステル重合体(B)は、セルロースアセテート、特にセルローストリアセテート、またはセルロースアセテートプロピオネートが好ましい。
 セルロースエステル重合体(B)のMnは5万~15万が好ましく、5.5万~12万がより好ましく、6万~10万がさらに好ましい。セルロースエステル重合体(B)のMwは10万~30万が好ましく、10万~25万がより好ましく、12万~20万がさらに好ましい。セルロースエステル重合体(B)における分子量の分散度(=Mw/Mn)は、1.3~5.5が好ましく、1.5~5.0がより好ましく、1.7~4.0がさらに好ましく、2.0~3.5が特に好ましい。
 セルロースエステル重合体(B)は、公知の方法により製造しうる。例えば、原料セルロースの水酸基を、無水酢酸、無水プロピオン酸および/または無水酪酸を用いて、常法により、アセチル基、プロピオニル基および/またはブチル基に置換することで製造しうる。その際、特開平10-45804号公報および特表平6-501040号公報に記載の方法が参考となる。なお、原料セルロースは特に限定されず、例えば、木材パルプ、綿花リンターである。木材パルプは、針葉樹のパルプでも広葉樹のパルプでもよいが、針葉樹のパルプが好ましい。フィルムへ成膜する際の剥離性の観点からは、綿花リンターが好ましい。セルロースエステル重合体(B)は、2種以上使用しうる。
 [樹脂組成物(C)]
 樹脂組成物(C)は、主鎖に環構造を有する(メタ)アクリル重合体(A)30~95重量%と、セルロースエステル重合体(B)5~70重量%とを含む。樹脂組成物(C)は、好ましくは(メタ)アクリル重合体(A)50~90重量%とセルロースエステル重合体(B)10~50重量%とを含み、より好ましくは(メタ)アクリル重合体(A)70~90重量%とセルロースエステル重合体(B)10~30重量%とを含む。
 樹脂組成物(C)における(メタ)アクリル重合体(A)の含有率が過度に大きくなると、最終的に得られた位相差フィルムにおける位相差の波長分散性の制御の自由度が低下する。一方、樹脂組成物(C)におけるセルロースエステル重合体(B)の含有率が過度に大きくなると、最終的に得られた位相差フィルムの光弾性係数および透湿度が高くなる。
 樹脂組成物(C)は、2種以上の(メタ)アクリル重合体(A)および/または2種以上のセルロースエステル重合体(B)を含みうる。
 樹脂組成物(C)は、本発明の効果が得られる限り、(メタ)アクリル重合体(A)およびセルロースエステル重合体(B)以外の重合体を、樹脂組成物(C)における含有率にして40重量%以下、好ましくは10重量%以下、含みうる。
 当該重合体は、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリ(4-メチル-1-ペンテン)などのオレフィン重合体;塩化ビニル、塩素化ビニル樹脂などのハロゲン含有重合体;ポリスチレン、スチレン-メタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレンブロック共重合体などのスチレン系重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ナイロン6、ナイロン66、ナイロン610などのポリアミド;ポリアセタール;ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド:ポリエーテルエーテルケトン;ポリエーテルニトリル;ポリサルホン;ポリエーテルサルホン;ポリオキシペンジレン;ポリアミドイミド;である。
 これらの重合体のなかでは、(メタ)アクリル重合体(A)、特に主鎖にラクトン環構造を有する(メタ)アクリル重合体(A)との相溶性に優れることから、シアン化ビニル単量体に由来する構成単位と芳香族ビニル単量体に由来する構成単位とを含む共重合体、例えばスチレン-アクリロニトリル共重合体、が好ましい。
 樹脂組成物(C)は、本発明の効果が得られる限り、任意の材料を含みうる。当該材料は、例えば、紫外線吸収剤;酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤などの安定剤;ガラス繊維、炭素繊維などの補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモンなどの難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤に代表される帯電防止剤;無機顔料、有機顔料、染料などの着色剤;有機フィラー、無機フィラー;樹脂改質剤;アンチブロッキング剤;マット剤;酸補足剤;金属不活性化剤;可塑剤;滑剤;ASAやABSなどのゴム質量体である。樹脂組成物(C)におけるこれらの材料の含有率は、例えば0~5重量%であり、好ましくは0~2重量%であり、より好ましくは0~0.5重量%である。
 紫外線吸収剤は、例えば、ベンゾフェノン系化合物、サリシケート系化合物、ベンゾエート系化合物、トリアゾール系化合物およびトリアジン系化合物である。ベンゾフェノン系化合物は、例えば、2,4-ジーヒドロキシベンゾフェノン、4-n-オクチルオキシ-2-ヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2-ヒドロキシ-4-n-オクチルオキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、1,4-ビス(4-ベンゾイル-3-ヒドロキシフェノン)-ブタンである。サリシケート系化合物は、例えば、p-t-ブチルフェニルサリシケートである。ベンゾエート系化合物は、例えば、2,4-ジ-t-ブチルフェニル-3’,5’-ジ-t-ブチル-4’-ヒドロキシベンゾエートである。トリアゾール系化合物は、例えば、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-ベンゾトリアゾール-2-イル-4,6-ジ-t-ブチルフェノール、2-[5-クロロ(2H)-ベンゾトリアゾール-2-イル]-4-メチル-6-(t-ブチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-t-ブチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチル-6-(3,4,5,6-テトラヒドロフタルイミジルメチル)フェノール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-t-ブチル-4-ヒドロキシフェニル)プロピオネート/ポリエチレングリコール300の反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、3-(2H-ベンゾトリアゾール-2-イル)-5-(1,1-ジメチルエチル)-4-ヒドロキシ-C7-9側鎖及び直鎖アルキルエステルである。トリアジン系化合物は、例えば、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシエトキシ)-1,3,5-トリアジン、2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3-5-トリアジン、2,4-ビス(2,4-ジメチルフェニル)-6-[2-ヒドロキシ-4-(3-アルキルオキシ-2-ヒドロキシプロピルオキシ)-5-α-クミルフェニル]-s-トリアジンの各トリアジン骨格と、アルキルオキシ、例えばオクチルオキシ、ノニルオキシ、デシルオキシなどの長鎖アルキルオキシ基と、を有する化合物である。トリアジン系紫外線吸収剤として「チヌビン1577」「チヌビン460」「チヌビン477」(いずれもチバスペシシャリティーケミカルズ製)が市販されており、トリアゾール系紫外線吸収剤として「アデカスタブLA-31」(旭電化工業製)が市販されている。
 樹脂組成物(C)は、2種以上の紫外線吸収剤を含みうる。樹脂組成物(C)が紫外線吸収剤を含む場合、樹脂組成物(C)における紫外線吸収剤の含有率は特に限定されない。位相差フィルムの状態で、その含有率は0.01~25重量%が好ましく、0.05~10重量%がより好ましい。紫外線吸収剤の含有率が過度に大きくなると、最終的に得られた位相差フィルムの機械的特性が低下したり、位相差フィルムが黄変したりすることがある。
 酸化防止剤は、例えば、ヒンダードフェノール系化合物、リン系化合物およびイオウ系化合物である。樹脂組成物(C)は、2種以上の酸化防止剤を含みうる。
 酸化防止剤はフェノール系化合物であってもよく、例えば、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)アセテート、n-オクタデシル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、n-ヘキシル-3,5-ジ-t-ブチル-4-ヒドロキシフェニルベンゾエート、n-ドデシル-3,5-ジ-t-ブチル-4-ヒドロキシフェニルベンゾエート、ネオドデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ドデシル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、エチル-α-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)イソブチレート、オクタデシル-α-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)イソブチレート、オクタデシル-α-(4-ヒドロキシ-3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2-(n-オクチルチオ)エチル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、2-(n-オクチルチオ)エチル-3,5-ジ-t-ブチル-4-ヒドロキシフェニルアセテート、2-(n-オクタデシルチオ)エチル-3,5-ジ-t-ブチル-4-ヒドロキシフェニルアセテート、2-(n-オクタデシルチオ)エチル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、2-(2-ヒドロキシエチルチオ)エチル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、ジエチルグリコールビス-(3,5-ジ-t-ブチル-4-ヒドロキシ-フェニル)プロピオネート、2-(n-オクタデシルチオ)エチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ステアルアミド-N,N-ビス-[エチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、n-ブチルイミノ-N,N-ビス-[エチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-(2-ステアロイルオキシエチルチオ)エチル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、2-(2-ステアロイルオキシエチルチオ)エチル-7-(3-メチル-5-t-ブチル-4-ヒドロキシフェニル)ヘプタノエート、1,2-プロピレングリコールビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、エチレングリコールビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ネオペンチルグリコールビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、エチレングリコールビス-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルアセテート)、グリセリン-1-n-オクタデカノエート-2,3-ビス-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルアセテート)、ペンタエリスリトールテトラキス-[3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]、1,1,1-トリメチロールエタントリス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ソルビトールヘキサ-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-ヒドロキシエチル-7-(3-メチル-5-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2-ステアロイルオキシエチル-7-(3-メチル-5-t-ブチル-4-ヒドロキシフェニル)ヘプタノエート、1,6-n-ヘキサンジオールビス[(3’,5’-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリトリトールテトラキス(3,5-ジ-t-ブチル-4-ヒドロキシヒドロシンナメート)、3,9-ビス[1,1-ジメチル-2-[β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]-2,4,8,10-テトラオキサスピロ[5,5]-ウンデカンである。
 フェノール系化合物からなる酸化防止剤(フェノール系酸化防止剤)は、チオエーテル系酸化防止剤またはリン酸系酸化防止剤と組み合わせて使用することが好ましい。樹脂組成物(C)における双方の酸化防止剤の含有率は、(メタ)アクリル重合体(A)の重量を基準に、例えば、フェノール系酸化防止剤およびチオエーテル系酸化防止剤の各々が0.01重量%以上、フェノール系酸化防止剤およびリン酸系酸化防止剤の各々が0.025重量%以上である。
 チオエーテル系酸化防止剤は、例えば、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネートである。
 リン酸系酸化防止剤は、例えば、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、2-[[2,4,8,10-テトラキス(1,1-ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェピン-6-イル]オキシ]-N,N-ビス[2-[[2,4,8,10-テトラキス(1,1ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェピン-6-イル]オキシ]-エチル]エタナミン、ジフェニルトリデシルフォスファイト、トリフェニルフォスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルフォスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリストールジフォスファイト、ジステアリルペンタエリスリトールジフォスファイト、サイクリックネオペンタンテトライルビス(2,6-ジ-t-ブチル-4-メチルフェニル)フォスファイトである。
 樹脂組成物(C)における酸化防止剤の含有率は特に限定されず、例えば、0~10重量%であり、好ましくは0~5重量%であり、より好ましくは0.01~2重量%であり、さらに好ましくは0.05~1重量%である。酸化防止剤の含有率が過度に大きくなると、樹脂組成物(C)から位相差フィルムを溶融押出により成形する際に、酸化防止剤がブリードアウトしたり、シルバーストリークスが発生したりすることがある。
 [位相差フィルム]
 図1に、本発明の位相差フィルムの一例を示す。図1に示す、本発明の位相差フィルム1は、主鎖に環構造を有する(メタ)アクリル重合体(A)30~95重量%と、セルロースエステル重合体(B)5~70重量%とを含む樹脂組成物(C)からなる層から構成される。本発明の位相差フィルムは、必要に応じて、樹脂組成物(C)からなる層以外の任意の層を備えうるが、本発明の効果をより確実に得るためには、図1に示すように、樹脂組成物(C)からなる層から構成される、すなわち、樹脂組成物(C)から構成されることが好ましい。ただし、当該層は、その表面に機能性コーティング層を有しうる。
 本発明の位相差フィルムにおける、波長590nmの光に対する光弾性係数の絶対値は、例えば、5×10-12Pa-1以下である。本発明の位相差フィルムが含む(樹脂組成物(C)が含む)(メタ)アクリル重合体(A)およびセルロースエステル重合体(B)の種類、ならびに本発明の位相差フィルムにおける(メタ)アクリル重合体(A)およびセルロースエステル重合体(B)の含有率によっては、当該絶対値は、4×10-12Pa-1以下、さらには3×10-12Pa-1以下となる。
 本発明の位相差フィルムが示す面内位相差Reは、当該フィルムの延伸の状態によって異なるが、波長590nmの光に対する、フィルムの厚さ100μmあたりの値にして、例えば50nm以上である。本発明の位相差フィルムが含む(メタ)アクリル重合体(A)およびセルロースエステル重合体(B)の種類、ならびに本発明の位相差フィルムにおける(メタ)アクリル重合体(A)およびセルロースエステル重合体(B)の含有率によっては、面内位相差Reは、フィルムの厚さ100μmあたりの値にして、140nm以上、さらには150nm以上500nm以下となる。
 本発明の位相差フィルムにおける位相差の波長分散性の制御の自由度は高く、例えば、位相差の逆波長分散性を示す、あるいは位相差の波長分散性がフラットである位相差フィルムとなる。具体的な例として、波長447、590および750nmのそれぞれの光に対する面内位相差Re(447)、Re(590)およびRe(750)が、式0.8≦Re(447)/Re(590)≦1.2、および0.8≦Re(750)/Re(590)≦1.2の関係を満たす位相差フィルムとなる。本発明の位相差フィルムは、Re(447)、Re(590)およびRe(750)が、式0.8≦Re(447)/Re(590)≦1.1、および0.9≦Re(750)/Re(590)≦1.2の関係を満たすことが好ましく、式0.8≦Re(447)/Re(590)≦1.0、および1.0≦Re(750)/Re(590)≦1.2の関係を満たすことがより好ましい。
 本発明の位相差フィルムにおける厚さ100μmあたりの透湿度は、JIS Z0208に準拠して測定した値にして、例えば、300g/m2・24時間以下である。本発明の位相差フィルムが含む(メタ)アクリル重合体(A)およびセルロースエステル重合体(B)の種類、ならびに本発明の位相差フィルムにおける(メタ)アクリル重合体(A)およびセルロースエステル重合体(B)の含有率によっては、当該値は、250g/m2・24時間以下、200g/m2・24時間以下、150g/m2・24時間以下、130g/m2・24時間以下、さらには120g/m2・24時間以下となる。
 本発明の位相差フィルムは、主鎖に環構造を有する(メタ)アクリル重合体(A)に基づく高い耐熱性を示し、そのTgは、例えば110℃以上である。本発明の位相差フィルムが含む(メタ)アクリル重合体(A)およびセルロースエステル重合体(B)の種類、ならびに本発明の位相差フィルムにおける(メタ)アクリル重合体(A)およびセルロースエステル重合体(B)の含有率によっては、Tgは、120℃以上、125℃以上、さらには130℃以上となる。
 本発明の位相差フィルムの厚さは特に限定されず、例えば、10~500μmであり、20~300μmが好ましく、30~100μmが特に好ましい。
 本発明の位相差フィルムが示すNz係数は、波長590nmの光に対する値にして、1.20未満が好ましく、1.15以下がより好ましく、1.10以下0.95以上がさらに好ましい。Nz係数は、位相差フィルムの面内位相差をRe、厚さ方向の位相差をRthとしたときに、式Nz=(Rth/Re)+0.5により示される値である。
 本発明の位相差フィルムの全光線透過率は、JIS K7361-1に準拠して測定した値にして、85%以上が好ましく、90%以上がより好ましく、91%以上がさらに好ましい。
 本発明の位相差フィルムのヘイズは、JIS 7165に準拠して測定した、厚さ50μmのときの値にして、5%以下が好ましく、3%以下がより好ましく、1%以下がさらに好ましい。
 本発明の位相差フィルムにおいて、樹脂組成物(C)からなる層の表面には、必要に応じて、各種の機能性コーティング層が形成されうる。機能性コーティング層は、例えば、帯電防止層;粘着剤層、接着剤層などの接着層;易接着層;防眩(ノングレア)層;光触媒層などの防汚層;反射防止層;ハードコート層;紫外線遮蔽層、熱線遮蔽層、電磁波遮蔽層;ガスバリヤー層である。
 本発明の位相差フィルムの用途は特に限定されず、従来の位相差フィルムと同様の用途に使用しうる。本発明の位相差フィルムは、LCDなどの画像表示装置における光学補償に好適である。さらに、LCD以外にも、様々な画像表示装置、光学装置に使用しうる。
 本発明の位相差フィルムは、必要に応じて、他の光学部材と組み合わせて、例えば互いに接合した状態で、使用しうる。
 本発明の位相差フィルムは、樹脂組成物(C)から、あるいは樹脂組成物(C)とする前の(メタ)アクリル重合体(A)およびセルロースエステル重合体(B)から、公知のフィルム成形方法およびフィルム延伸方法により製造しうる。具体的には、例えば、樹脂組成物(C)をフィルムに成形して原フィルム(未延伸フィルム)とし、得られた原フィルムを延伸する。
 フィルム成形方法は、例えば、溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法である。なかでも、溶液キャスト法、溶融押出法が好ましい。
 原フィルムの延伸方法には、公知の一軸延伸手法あるいは二軸延伸手法を適用しうる。
 溶融押出法は、例えば、Tダイ法およびインフレーション法である。Tダイ法では、溶融押出機の先端にTダイを配置し、当該Tダイから溶融押出したフィルムを巻き取ることで、ロール状に巻回させた原フィルムが得られる。この際、巻き取りの温度および速度を調整して、フィルムの押出方向に延伸(一軸延伸)を加えることも可能である。
 溶融押出の際には、溶融押出機のベント部から、揮発成分の脱揮を行うことが好ましい。また、溶融押出の際には、ポリマーフィルタによる樹脂組成物の濾過を併用することが好ましい。
 溶液キャスト法は、一般に、(1)溶解工程、(2)流延工程および(3)乾燥工程を有する。各工程には、公知の手法を適用しうる。
 溶解工程の具体的な手順は、主鎖に環構造を有する(メタ)アクリル重合体(A)およびセルロースエステル重合体(B)を含む溶液が得られる限り限定されない。双方の重合体を溶解させる溶媒には、メチレンクロライド、酢酸メチル、ジオキソランなどの良溶媒を使用でき、同時に、メタノール、エタノール、ブタノールなどの貧溶媒を併用しうる。セルロースエステル重合体(B)を溶解する限り、(メタ)アクリル重合体(A)を重合する際に使用した重合溶媒を使用しうる。
 流延工程には、公知の溶液塗工方法を適用しうる。当該方法は、例えば、ダイコーター、ドクターブレードコーター、ロールコーター、コンマコーター、リップコーターなどを用いた塗工方法である。
 乾燥工程の具体的な手順は、流延工程により形成された塗布膜の乾燥により、フィルムが形成される限り特に限定されない。
 [画像表示装置]
 本発明の画像表示装置は、本発明の位相差フィルムを備える。これにより、画像表示特性に優れる、例えば、高コントラストかつ広視野角の画像表示装置となる。
 本発明の画像表示装置は、例えば、LCDである。
 以下、実施例により、本発明をより詳細に説明する。本発明は、以下に示す実施例に限定されない。
 [平均分子量]
 重量平均分子量(Mw)および数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)を用い、以下の測定条件に従って、ポリスチレン換算により求めた。
 測定システム:東ソー製GPCシステムHLC-8220
 展開溶媒:クロロホルム(和光純薬工業製、特級)
 溶媒流量:0.6mL/分
 標準試料:TSK標準ポリスチレン(東ソー製、PS-オリゴマーキット)
 測定側カラム構成:東ソー製、TSK-GEL super HZM-M 6.0X150、2本直列接続
                    東ソー製、TSK-GEL super HZ-L 4.6X35、1本
 リファレンス側カラム構成:東ソー製、TSK-GEL SuperH-RC 6.0X150、2本直列接続
 カラム温度:40℃
 [ガラス転移温度]
 ガラス転移温度(Tg)は、JIS K7121に準拠して求めた。具体的には、示差走査熱量計(リガク製、DSC-8230)を用い、窒素ガス雰囲気下、約10mgのサンプルを常温から200℃まで昇温(昇温速度20℃/分)して得られたDSC曲線から、始点法により評価した。リファレンスにはα-アルミナを用いた。
 [メルトフローレート(MFR)]
 MFRは、JIS K6874に準拠して、試験温度を240℃、試験荷重を10kgとして求めた。
 [位相差フィルムの光学特性]
 作製した位相差フィルムにおける波長590nmの光に対する面内位相差Reおよび厚さ方向の位相差Rthは、位相差フィルム・光学材料検査装置RETS-100(大塚電子製)を用いて、入射角40°の条件で評価した。面内位相差Reは、式Re=(nx-ny)×dにより、厚さ方向の位相差Rthは、式Rth=[(nx+ny)/2-nz]×dにより、それぞれ定義される。ここで、nxはフィルム面内の遅相軸方向の屈折率、nyはフィルム面内においてnxと垂直な方向の屈折率、nzはフィルムの厚さ方向の屈折率、dはフィルムの厚さ(nm)である。遅相軸方向は、フィルム面内で屈折率が最大の方向である。作製した位相差フィルムのNz係数は、上記のように求めたReおよびRthの値から、式Nz係数=(Rth/Re)+0.5により算出した。
 これとは別に、作製した位相差フィルムにおける波長447nmおよび750nmの光に対する面内位相差Re(447)およびRe(750)を同様に評価し、上記求めた波長590nmの光に対する面内位相差Re(590)との比をとることで、Re(447)/Re(590)およびRe(750)/Re(590)の値を求めた。
 [位相差フィルムの光弾性係数Cd]
 作製した位相差フィルムにおける波長590nmの光に対する光弾性係数は、エリプソメーター(JASCO製、M-150)を用いて評価した。具体的には、作製した位相差フィルムを、延伸方向を長辺として20mm×50mmに切り出して測定試料とし、これをエリプソメーターの光弾性計測ユニットに装着して、延伸方向と平行に5~25Nの応力荷重を印加しながら三点複屈折を計測し、波長590nmの光を使用したときにおける、応力に対する複屈折の傾きを光弾性係数とした。
 [透湿度]
 作製した位相差フィルムの透湿度は、40℃の測定条件下において、JIS Z0208に準拠して求めた。以下の表には、位相差フィルムの厚さ100μmあたりに換算した値を示す。
 [ヘイズ]
 作製した位相差フィルムのヘイズは、濁度計(日本電色工業製、NDH5000)を用いて評価した。なお、当該濁度計では、JIS K7165に準拠した測定が実施される。以下の表には、フィルムの厚さ50μmあたりの値を示す。
 (製造例1)
 攪拌装置、温度センサー、冷却管および窒素導入管を備えた内容積30L(リットル)の反応装置に、メタクリル酸メチル(MMA)6000g、2-(ヒドロキシメチル)アクリル酸メチル(MHMA)3000g、メタクリル酸ノルマルブチル(BMA)1000g、および重合溶媒としてメチルイソブチルケトン(MIBK)とメチルエチルケトン(MEK)との混合溶媒(重量比9:1)6667gを仕込み、これに窒素を通じつつ、105℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤として6.0gのt-アミルパーオキシイソノナノエート(アルケマ吉富製、商品名:ルペロックス570)を添加するとともに、上記混合溶媒3315gに上記t-アミルパーオキシイソノナノエート12.0gを溶解した溶液を3時間かけて滴下しながら、約95~110℃の還流下で溶液重合を進行させ、さらに4時間の熟成を行った。重合反応率は90.5%、得られた重合体におけるMHMA単位の含有率は29.7重量%であった。
 次に、得られた重合溶液に、環化縮合反応の触媒(環化触媒)として、20gのリン酸オクチル/ジオクチル混合物(堺化学製、商品名:Phoslex A-8)を加え、約85~100℃の還流下において2時間、環化縮合反応を進行させた。さらに、ゲージ圧にして最高約2MPaに加圧したオートクレーブ中で240℃、90分間加熱した後、得られた重合溶液を、ベントタイプスクリュー二軸押出機において脱揮し、押し出して、主鎖にラクトン環構造を有する透明な(メタ)アクリル重合体(A-1)を得た。重合体(A-1)の重量平均分子量は13.4万であり、MFRは14.5g/10分、Tgは130℃であった。
 (実施例1)
 製造例1で作製した重合体(A-1)90重量部と、セルロースアセテートプロピオネート(B-1)[アセチル基置換度2.5重量%、ヒドロキシル基置換度1.8重量%、プロピオニル基置換度46重量%、数平均分子量Mn=6.3万、重量平均分子量Mw=17.5万]10重量部とを、塩化メチレンに溶解させ、得られた溶液を攪拌して重合体(A-1)およびセルロースアセテートプロピオネート(B-1)を均一に混合した。次に、得られた混合溶液を、減圧下、120℃で1時間乾燥して、固形の樹脂組成物100重量部を得た。
 次に、得られた樹脂組成物をプレス成形機により220℃でプレス成形して、厚さ126μmのフィルム(未延伸フィルム)とした。次に、作製したフィルムを、引張試験機(インストロン製)により、延伸倍率2倍および延伸温度133℃でMD方向に一軸延伸して、厚さ85μmの延伸フィルム(F1)を得た。延伸フィルム(F1)の評価結果を以下の表1に示す。
 (実施例2)
 重合体(A-1)70重量部と、セルロースアセテートプロピオネート(B-1)30重量部とを塩化メチレンに溶解させたこと、ならびに厚さ120μmの原フィルムを作製したこと以外は実施例1と同様にして、厚さ82μmの延伸フィルム(F2)を得た。延伸フィルム(F2)の評価結果を以下の表1に示す。
 (実施例3)
 重合体(A-1)50重量部と、セルロースアセテートプロピオネート(B-1)50重量部とを塩化メチレンに溶解させたこと、ならびに厚さ118μmの原フィルムを作製したこと以外は実施例1と同様にして、厚さ83μmの延伸フィルム(F3)を得た。延伸フィルム(F3)の評価結果を以下の表1に示す。
 (比較例1)
 重合体(A-1)10重量部と、セルロースアセテートプロピオネート(B-1)90重量部とを塩化メチレンに溶解させたこと、厚さ104μmの原フィルムを作製したこと、ならびに延伸温度を135℃としたこと以外は実施例1と同様にして、厚さ72μmの延伸フィルム(F4)を得た。延伸フィルム(F4)の評価結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~3の延伸フィルムは、比較例1の延伸フィルムに比べて透湿度および光弾性係数が低く、大きな面内位相差が得られるとともに、Nz係数が小さかった。また、実施例1~3の延伸フィルムにおける位相差は、フラットな波長分散性または逆波長分散性を示した。
 (製造例2)
 攪拌装置、温度センサー、冷却管および窒素導入管を備えた内容積30L(リットル)の反応装置に、メタクリル酸メチル(MMA)52重量部、2-(ヒドロキシメチル)アクリル酸メチル(MHMA)30重量部、メタクリル酸ノルマルブチル(BMA)18重量部、および重合溶媒としてメチルイソブチルケトン(MIBK)とメチルエチルケトン(MEK)との混合溶媒(重量比9:1)67重量部を仕込み、これに窒素を通じつつ、105℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤として0.06重量部のt-アミルパーオキシイソノナノエート(アルケマ吉富製、商品名:ルペロックス570)を添加するとともに、上記混合溶媒33重量部に上記t-アミルパーオキシイソノナノエート0.12重量部を溶解させた溶液を3時間かけて滴下しながら、約95~110℃の還流下で溶液重合を進行させ、さらに4時間の熟成を行った。
 次に、得られた重合溶液に、環化縮合反応の触媒(環化触媒)として、0.2重量部のリン酸オクチル/ジオクチル混合物(堺化学製、商品名:Phoslex A-8)を加え、約85~100℃の還流下において2時間、環化縮合反応を進行させた。そして、ゲージ圧にして最高約2MPaに加圧したオートクレーブ中で240℃、90分間、さらに加熱した。次に、得られた重合溶液を、バレル温度260℃、回転速度100rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数1個、フォアベント数4個のベントタイプスクリュー二軸押出機(φ=30mm、L/D=40)に樹脂量換算で2.0kg/時の処理速度で導入し、当該押出機内において、環化縮合反応のさらなる進行と脱揮とを実施した。その後、当該押出機から、溶融状態にある重合体を押し出して、主鎖にラクトン環構造を有するとともに、BMA単位を全構成単位の18重量%有する(メタ)アクリル重合体(A-2)のペレットを得た。重合体(A-2)の重量平均分子量は12.6万であり、Tgは123℃であった。なお、BMA単位は、式(1)に示す(メタ)アクリル酸アルキルエステル単位であって、R1がn-ブチル基であり、R2がCH3(メチル基)である構成単位である。
 (製造例3)
 反応装置に仕込む各単量体の量を、MMA60重量部、MHMA30重量部およびBMA10重量部とした以外は製造例2と同様にして、主鎖にラクトン環構造を有するとともに、BMA単位を全構成単位の10重量%有する(メタ)アクリル重合体(A-3)のペレットを得た。重合体(A-3)の重量平均分子量は13.4万であり、Tgは130℃であった。
 (製造例4)
 反応装置にBMAを仕込まず、反応装置に仕込むMMAの量を70重量部、MHMAの量を30重量部とした以外は製造例2と同様にして、主鎖にラクトン環構造を有するとともに、式(1)に示す構成単位を有さない(メタ)アクリル重合体(C-1)のペレットを得た。重合体(C-1)の重量平均分子量は17.0万であり、Tgは122℃であった。
 (製造例5)
 攪拌装置、温度センサー、冷却管および窒素導入管を備えた内容積30L(リットル)の反応装置に、MMA24.5重量部、MHMA26重量部、メタクリル酸エチル(EMA)45重量部、N-ビニルカルバゾール(NVCz)4.5重量部、および重合溶媒としてトルエン86.5重量部とメタノール3.5重量部との混合溶媒を仕込み、これに窒素を通じつつ、95℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤として0.01重量部のt-アミルパーオキシ-2-エチルヘキサノエート(アルケマ吉富製、商品名:ルペロックス575)を添加するとともに、トルエン10重量部に上記t-アミルパーオキシ-2-へチルヘキサノエート0.10重量部を溶解させた溶液を8時間かけて滴下しながら、約90~100℃の還流下で溶液重合を進行させ、さらに12時間の熟成を行った。
 次に、得られた重合溶液に、環化縮合反応の触媒(環化触媒)として、0.2重量部のリン酸オクチル/ジオクチル混合物(堺化学製、商品名:Phoslex A-8)を加え、約80~100℃の還流下において2時間、環化縮合反応を進行させた。そして、ゲージ圧にして最高約2MPaに加圧したオートクレーブ中で240℃、90分間、さらに加熱した。次に、得られた重合溶液を、減圧下、240℃で1時間乾燥させて、主鎖にラクトン環構造を有するとともに、EMA単位を全構成単位の45重量%有する(メタ)アクリル重合体(A-4)を得た。重合体(A-4)の重量平均分子量は17.0万であり、Tgは122℃であった。なお、EMA単位は、式(1)に示す(メタ)アクリル酸エステル単位であって、R1がエチル基であり、R2がCH3(メチル基)である構成単位である。
 (製造例6)
 反応装置に仕込む各単量体の量を、MMA44.5重量部、MHMA26重量部、EMA25重量部およびNVCz4.5重量部とした以外は製造例5と同様にして、主鎖にラクトン環構造を有するとともに、EMA単位を全構成単位の25重量%有する(メタ)アクリル重合体(A-5)を得た。重合体(A-5)の重量平均分子量は17.0万、Tgは129℃であった。
 (製造例7)
 反応装置にEMAを仕込まず、反応装置に仕込むMMAの量を69.5重量部、MHMAの量を26重量部、NVCzの量を4.5重量部とした以外は製造例5と同様にして、主鎖にラクトン環構造を有するとともに、式(1)に示す構成単位を有さない(メタ)アクリル重合体(C-2)を得た。重合体(C-2)の重量平均分子量は16.3万であり、Tgは138℃であった。
 (製造例8)
 製造例2で作製した重合体(A-2)70重量部と、セルロースアセテートプロピオネート(B-1)[アセチル基置換度2.5重量%、ヒドロキシル基置換度1.8重量%、プロピオニル基置換度46重量%、数平均分子量Mn=6.3万、重量平均分子量Mw=17.5万]30重量部とを、塩化メチレンに溶解させ、得られた溶液を攪拌して重合体(A-2)およびセルロースアセテートプロピオネート(B-1)を均一に混合した。次に、得られた混合溶液を、減圧下、120℃で1時間乾燥して、固形の樹脂組成物100重量部を得た。
 次に、得られた樹脂組成物をプレス成形機により220℃でプレス成形して、厚さ50μmである未延伸フィルムを得た。得られたフィルムの評価結果を以下の表2に示す。
 (製造例9)
 重合体(A-2)50重量部とセルロースアセテートプロピオネート(B-1)50重量部とを均一に混合した以外は製造例8と同様にして、未延伸フィルムを得た。得られたフィルムの評価結果を以下の表2に示す。
 (製造例10)
 重合体(A-2)の代わりに、製造例3で作製した重合体(A-3)を用いた以外は製造例8と同様にして、未延伸フィルムを得た。得られたフィルムの評価結果を以下の表2に示す。
 (製造例11)
 重合体(A-2)の代わりに、製造例4で作製した重合体(C-1)を用いた以外は製造例8と同様にして、未延伸フィルムを得た。得られたフィルムの評価結果を以下の表2に示す。
 (製造例12)
 重合体(A-2)の代わりに、製造例5で作製した重合体(A-4)を用いた以外は製造例8と同様にして、未延伸フィルムを得た。得られたフィルムの評価結果を以下の表2に示す。
 (製造例13)
 重合体(A-4)50重量部と、セルロースアセテートプロピオネート(B-1)50重量部とを均一に混合した以外は製造例12と同様にして、未延伸フィルムを得た。得られたフィルムの評価結果を以下の表2に示す。
 (製造例14)
 重合体(A-2)の代わりに、製造例6で作製した重合体(A-5)を用いた以外は製造例8と同様にして、未延伸フィルムを得た。得られたフィルムの評価結果を以下の表2に示す。
 (製造例15)
 重合体(A-2)の代わりに、製造例7で作製した重合体(C-2)を用いた以外は製造例8と同様にして、フィルムを得た。得られたフィルムの評価結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、製造例8~10および製造例12~14のフィルムは製造例11,15のフィルムに比べてヘイズが小さく、透明性に優れていた。そして、(メタ)アクリル重合体におけるBMA単位またはEMA単位の含有率が大きいほど、作製したフィルムのヘイズが小さくなる傾向が確認された。これに加えて、製造例8~10および製造例12~14のフィルムにおける(メタ)アクリル重合体(A)の組成ならびに作製したフィルムにおける(メタ)アクリル重合体(A)の含有率によっては、当該フィルムの透湿度および光弾性係数が、製造例11,15のフィルムの透湿度および光弾性係数に比べて低くなった。
 (実施例4)
 製造例8で作製した未延伸フィルム(ただし、当該フィルムの厚さは120μmとした)を、引張試験機(インストロン製)を用いて、延伸倍率2倍および延伸温度128℃でMD方向に一軸延伸して、厚さ87μmの延伸フィルム(位相差フィルム)を得た。得られた位相差フィルムの評価結果を以下の表3に示す。
 (実施例5)
 製造例9で作製した未延伸フィルム(ただし、当該フィルムの厚さは120μmとした)を用いた以外は、実施例4と同様にして、厚さ85μmの延伸フィルム(位相差フィルム)を得た。得られた位相差フィルムの評価結果を以下の表3に示す。
 (実施例6)
 製造例10で作製した未延伸フィルム(ただし、当該フィルムの厚さは120μmとした)を用いるとともに延伸温度を133℃とした以外は、実施例4と同様にして、厚さ82μmの延伸フィルム(位相差フィルム)を得た。得られた位相差フィルムの評価結果を以下の表3に示す。
 (実施例7)
 製造例12で作製した未延伸フィルム(ただし、当該フィルムの厚さは123μmとした)を用いるとともに延伸温度を127℃とした以外は、実施例4と同様にして、厚さ86μmの延伸フィルム(位相差フィルム)を得た。得られた位相差フィルムの評価結果を以下の表3に示す。
 (実施例8)
 製造例13で作製した未延伸フィルム(ただし、当該フィルムの厚さは121μmとした)を用いた以外は、実施例4と同様にして、厚さ84μmの延伸フィルム(位相差フィルム)を得た。得られた位相差フィルムの評価結果を以下の表3に示す。
 (実施例9)
 製造例14で作製した未延伸フィルム(ただし、当該フィルムの厚さは126μmとした)を用いた以外は、実施例4と同様にして、厚さ87μmの延伸フィルム(位相差フィルム)を得た。得られた位相差フィルムの評価結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例4~9で作製した各位相差フィルムは、大きな面内位相差Reおよび厚さ方向の正の位相差Rthを示すとともに、面内位相差Reについて逆波長分散性を示した。
 なお、実施例4~9において作製した位相差フィルムが示すヘイズ、ならびに製造例11,15で作製した未延伸フィルムを実施例4と同様に延伸して作製した延伸フィルムが示すヘイズは、同じフィルム厚に換算して、対応する延伸前の未延伸フィルム(製造例8~15)が示すヘイズと同じであった。また、実施例4~9において作製した位相差フィルムが示す光弾性係数および厚さ100μmあたりの透湿度、ならびに製造例11,15で作製した未延伸フィルムを実施例4と同様に延伸して作製した延伸フィルムが示す光弾性係数および厚さ100μmあたりの透湿度は、対応する延伸前の未延伸フィルム(製造例8~15)が示す光弾性係数および透湿度と同じであった。
 本発明は、その意図および本質的な特徴から逸脱しない限り、他の実施形態に適用しうる。この明細書に開示されている実施形態は、あらゆる点で説明的なものであってこれに限定されない。本発明の範囲は、上記説明ではなく添付したクレームによって示されており、クレームと均等な意味および範囲にあるすべての変更はそれに含まれる。
 本発明の位相差フィルムは、従来の位相差フィルムと同様の用途、例えばLCDをはじめとする種々の画像表示装置および光学装置に使用できる。
 

Claims (9)

  1.  主鎖に環構造を有する(メタ)アクリル重合体(A)30~95重量%と、
     セルロースエステル重合体(B)5~70重量%と、を含む樹脂組成物(C)からなる層を含む位相差フィルム。
  2.  前記(メタ)アクリル重合体(A)が、以下の式(1)に示す(メタ)アクリル酸アルキルエステル単位を構成単位として有する請求項1に記載の位相差フィルム。
    Figure JPOXMLDOC01-appb-C000005
     式(1)において、R1は炭素数2~18のアルキル基であり、R2はHまたはCH3である。
  3.  前記(メタ)アクリル重合体(A)が、メタクリル酸メチル単位および2-(ヒドロキシメチル)アクリル酸エステル単位を有する請求項2に記載の位相差フィルム。
  4.  前記(メタ)アクリル重合体(A)が、メタクリル酸メチル単位、2-(ヒドロキシメチル)アクリル酸エステル単位およびN-ビニルカルバゾール単位を有する請求項2に記載の位相差フィルム。
  5.  前記(メタ)アクリル重合体(A)が、メタクリル酸メチル単位を有する請求項1に記載の位相差フィルム。
  6.  波長590nmの光に対する光弾性係数の絶対値が、5×10-12Pa-1以下である請求項1に記載の位相差フィルム。
  7.  波長447、590および750nmのそれぞれの光に対する面内位相差Re(447)、Re(590)およびRe(750)が、
      0.8≦Re(447)/Re(590)≦1.2、および
      0.8≦Re(750)/Re(590)≦1.2
    の関係を満たす請求項1に記載の位相差フィルム。
  8.  JIS K7165に準拠して測定した、厚さ50μmのときのヘイズが5%以下である請求項1に記載の位相差フィルム。
  9.  請求項1~8のいずれかに記載の位相差フィルムを備える画像表示装置。
PCT/JP2011/003124 2010-06-03 2011-06-02 位相差フィルムとそれを備える画像表示装置 WO2011152060A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180027074.9A CN102939550B (zh) 2010-06-03 2011-06-02 相位差膜和具备该相位差膜的图像显示装置
KR1020137000046A KR101771768B1 (ko) 2010-06-03 2011-06-02 위상차 필름과 그것을 구비하는 화상 표시 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-127660 2010-06-03
JP2010127660A JP5775676B2 (ja) 2010-06-03 2010-06-03 位相差フィルムとそれを用いた画像表示装置
JP2010-127661 2010-06-03
JP2010127661 2010-06-03

Publications (1)

Publication Number Publication Date
WO2011152060A1 true WO2011152060A1 (ja) 2011-12-08

Family

ID=45066451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003124 WO2011152060A1 (ja) 2010-06-03 2011-06-02 位相差フィルムとそれを備える画像表示装置

Country Status (3)

Country Link
KR (1) KR101771768B1 (ja)
CN (1) CN102939550B (ja)
WO (1) WO2011152060A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081598A (ja) * 2012-10-18 2014-05-08 Fujifilm Corp 光学フィルム及びその製造方法ならびに偏光板
JP2016017129A (ja) * 2014-07-08 2016-02-01 株式会社日本触媒 樹脂組成物、該樹脂組成物を含むフィルム、並びに該フィルムを用いた偏光子保護フィルム、偏光板及び画像表示装置
JPWO2014057852A1 (ja) * 2012-10-09 2016-09-05 出光興産株式会社 共重合体、有機電子素子用材料、有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015178224A1 (ja) * 2014-05-23 2017-04-20 住友化学株式会社 光学積層体及び画像表示装置
JP6664912B2 (ja) * 2014-09-19 2020-03-13 日東電工株式会社 偏光板
KR20180091827A (ko) * 2015-12-22 2018-08-16 니폰 제온 가부시키가이샤 액정성 조성물, 액정 경화층 및 그 제조 방법, 그리고 광학 필름
CN112882134A (zh) * 2019-11-29 2021-06-01 旭化成株式会社 头戴式显示器用树脂透镜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009378A (ja) * 2006-02-28 2008-01-17 Nippon Shokubai Co Ltd 位相差フィルム
JP2009001744A (ja) * 2007-06-25 2009-01-08 Konica Minolta Opto Inc セルロースエステルフィルム、セルロースエステルフィルムの製造方法、それを用いた偏光板、及び液晶表示装置
JP2011099955A (ja) * 2009-11-05 2011-05-19 Konica Minolta Opto Inc 光学フィルム、偏光板及び液晶表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091369A (ja) 2004-09-22 2006-04-06 Fuji Photo Film Co Ltd 偏光板及び液晶表示装置
WO2007010788A1 (ja) * 2005-07-19 2007-01-25 Nitto Denko Corporation 偏光板、および画像表示装置
CN101228198B (zh) * 2005-08-04 2011-06-22 株式会社日本触媒 低双折射共聚物
TWI375053B (en) * 2006-02-28 2012-10-21 Nippon Catalytic Chem Ind Phase difference film
JP2009098667A (ja) * 2007-09-28 2009-05-07 Fujifilm Corp 液晶表示装置
JP5463912B2 (ja) * 2007-12-25 2014-04-09 コニカミノルタ株式会社 アクリル樹脂含有フィルム、それを用いた偏光板及び液晶表示装置
JP5588626B2 (ja) * 2008-08-04 2014-09-10 富士フイルム株式会社 光学フィルム、偏光板、光学補償フィルム、反射防止フィルムおよび液晶表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009378A (ja) * 2006-02-28 2008-01-17 Nippon Shokubai Co Ltd 位相差フィルム
JP2009001744A (ja) * 2007-06-25 2009-01-08 Konica Minolta Opto Inc セルロースエステルフィルム、セルロースエステルフィルムの製造方法、それを用いた偏光板、及び液晶表示装置
JP2011099955A (ja) * 2009-11-05 2011-05-19 Konica Minolta Opto Inc 光学フィルム、偏光板及び液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014057852A1 (ja) * 2012-10-09 2016-09-05 出光興産株式会社 共重合体、有機電子素子用材料、有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP2017066416A (ja) * 2012-10-09 2017-04-06 出光興産株式会社 共重合体、有機電子素子用材料、有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
US9847490B2 (en) 2012-10-09 2017-12-19 Idemitsu Kosan Co., Ltd. Copolymer, material for organic electronic element, material for organic electroluminescent element, and organic electroluminescent element
JP2014081598A (ja) * 2012-10-18 2014-05-08 Fujifilm Corp 光学フィルム及びその製造方法ならびに偏光板
JP2016017129A (ja) * 2014-07-08 2016-02-01 株式会社日本触媒 樹脂組成物、該樹脂組成物を含むフィルム、並びに該フィルムを用いた偏光子保護フィルム、偏光板及び画像表示装置

Also Published As

Publication number Publication date
CN102939550A (zh) 2013-02-20
CN102939550B (zh) 2016-11-23
KR101771768B1 (ko) 2017-08-25
KR20130096215A (ko) 2013-08-29

Similar Documents

Publication Publication Date Title
WO2011152060A1 (ja) 位相差フィルムとそれを備える画像表示装置
KR101004730B1 (ko) 광학용 면상 열가소성 수지 조성물
JP5666989B2 (ja) 光学フィルムおよび画像表示装置
JP2010180305A (ja) アクリル系樹脂およびその製造方法
JP5601781B2 (ja) 光学フィルム
JP5154169B2 (ja) フィルム
US8394504B2 (en) Optical planar thermoplastic resin composition
JP6869642B2 (ja) アクリル系共重合体およびその製造方法
JP2010160398A (ja) 防眩性積層体
EP3450473B1 (en) Method for producing maleimide block copolymer
JP5775676B2 (ja) 位相差フィルムとそれを用いた画像表示装置
JP5086727B2 (ja) アクリル系重合体及び光学フィルムの製造方法
JP5383381B2 (ja) 光学フィルムの製造方法
JP5546235B2 (ja) 光学フィルム
JP2009175380A (ja) 防眩性積層体
JP2009175375A (ja) 防眩性積層体
JP2010215707A (ja) 2軸延伸フィルム
JP5355373B2 (ja) 熱可塑性樹脂組成物および光学フィルム
JP2010241883A (ja) 位相差調節剤とそれを用いた光学用樹脂組成物ならびに光学フィルム
JP5269364B2 (ja) フィルム及びその製造方法
JP2012078778A (ja) 樹脂組成物、光学フィルムおよび画像表示装置
JP2009162821A (ja) 防眩性積層体
JP5715773B2 (ja) 位相差フィルムの製造方法
JP2009180845A (ja) 防眩性積層体
JP2014065805A (ja) アクリル樹脂組成物およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027074.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137000046

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11789473

Country of ref document: EP

Kind code of ref document: A1