Nothing Special   »   [go: up one dir, main page]

WO2011142011A1 - 内燃機関の排気浄化システム - Google Patents

内燃機関の排気浄化システム Download PDF

Info

Publication number
WO2011142011A1
WO2011142011A1 PCT/JP2010/058036 JP2010058036W WO2011142011A1 WO 2011142011 A1 WO2011142011 A1 WO 2011142011A1 JP 2010058036 W JP2010058036 W JP 2010058036W WO 2011142011 A1 WO2011142011 A1 WO 2011142011A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
reduction catalyst
temperature
reducing agent
fuel
Prior art date
Application number
PCT/JP2010/058036
Other languages
English (en)
French (fr)
Inventor
利岡 俊祐
広田 信也
伊藤 和浩
光一朗 福田
見上 晃
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/696,972 priority Critical patent/US8783023B2/en
Priority to EP10851394.6A priority patent/EP2570625B1/en
Priority to JP2012514639A priority patent/JP5397542B2/ja
Priority to PCT/JP2010/058036 priority patent/WO2011142011A1/ja
Priority to CN201080066707.2A priority patent/CN102892984B/zh
Publication of WO2011142011A1 publication Critical patent/WO2011142011A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification system for an internal combustion engine, and more particularly, to an exhaust gas purification system including a catalyst that receives nitrogen supply to reduce nitrogen oxide (NO x ) in exhaust gas.
  • an exhaust gas purification system including a catalyst that receives nitrogen supply to reduce nitrogen oxide (NO x ) in exhaust gas.
  • a selective reduction type catalyst (SCR: Selective Catalytic Reduction) arranged in an exhaust passage of the internal combustion engine, and a reducing agent addition valve arranged in an exhaust passage upstream of the selective reduction type catalyst, from the reducing agent addition valve SCR systems that add ammonia-derived compounds and compositions are known.
  • SCR Selective Catalytic Reduction
  • Patent Document 2 describes a configuration in which a urea addition valve, an oxidation catalyst, a particulate filter, and a selective reduction catalyst are sequentially arranged from the upstream side of the exhaust passage.
  • Patent Document 3 describes a configuration in which a particulate filter and a selective reduction catalyst are sequentially arranged from the upstream side of the exhaust passage, and urea and fuel are added between the particulate filter and the selective reduction catalyst.
  • Patent Document 4 describes an exhaust purification catalyst having oxidation ability and selective reduction ability.
  • JP 2009-013931 A JP 2008-545085 A JP 2008-157188 A JP 2008-031970 A
  • the selective reduction catalyst when the selective reduction catalyst includes a noble metal catalyst, or when the noble metal catalyst is disposed in the exhaust passage downstream from the reducing agent addition valve and upstream from the selective reduction catalyst, it is derived from ammonia added from the reducing agent addition valve. May be oxidized by the noble metal catalyst to be nitrogen oxide (NO x ).
  • NO x nitrogen oxide
  • the present invention has been made in view of the above-described various circumstances, and an object thereof is to reduce nitrogen oxide (NO x ) purification performance in an exhaust purification system of an internal combustion engine including an SCR system,
  • the purpose is to increase the degree of freedom in the layout of the exhaust purification system.
  • the inventor of the present invention supplies a selective reducing catalyst with a noble metal catalyst by supplying an ammonia-derived reducing agent and a hydrocarbon (fuel) at the same time. Attention was focused on matters that prevent a decrease in the NO x purification rate of the catalyst.
  • the amount of nitrogen oxide (NO x ) flowing out from the selective reduction catalyst increases. This is considered because the reducing agent is oxidized by the noble metal catalyst before reacting with the nitrogen oxide (NO x ).
  • the amount of nitrogen oxide (NO x ) reduced in the selective reduction catalyst decreases. Further, when the reducing agent is oxidized by the noble metal catalyst, new nitrogen oxides (NO x ) are generated. As a result, the amount of nitrogen oxide (NO x ) flowing out from the selective catalytic reduction catalyst increases. This phenomenon becomes conspicuous when the temperature of the selective catalytic reduction catalyst (the bed temperature of the selective catalytic reduction catalyst or the temperature of the gas passing through the selective catalytic reduction catalyst) is high (for example, 200 ° C. to 300 ° C. or higher).
  • the present inventor has conducted diligent experiments and verifications, and as a result, the selective reduction type catalyst by supplying ammonia-derived reducing agent and hydrocarbon simultaneously to the selective reduction type catalyst provided with the noble metal catalyst. It has been found that the amount of nitrogen oxides (NO x ) flowing out of the catalyst is reduced.
  • the inventor of the present application can oxidize nitrogen flowing out from the selective catalytic reduction catalyst if the ammonia-derived reducing agent and the hydrocarbon are simultaneously supplied even when the temperature of the selective catalytic reduction catalyst including the noble metal catalyst is high. It has also been found that the amount of product (NO x ) is reduced.
  • hydrocarbons are also supplied at the same time.
  • the exhaust gas purification system for an internal combustion engine of the present invention includes: A selective reduction catalyst disposed in an exhaust passage of the internal combustion engine and having a noble metal catalyst; An addition device that is disposed in an exhaust passage upstream of the selective catalytic reduction catalyst and adds a reducing agent derived from ammonia into the exhaust; A fuel supply device that supplies fuel into the exhaust gas upstream of the selective catalytic reduction catalyst; A control unit for supplying fuel from the fuel supply device when a reducing agent is added into the exhaust gas from the addition device; I was prepared to.
  • the reducing agent derived from ammonia when supplied to the selective catalytic reduction catalyst provided with the noble metal catalyst, oxidation of the reducing agent by the noble metal catalyst can be suppressed. Therefore, reduction of the NO x purification rate of the selective reduction catalyst can be suppressed.
  • the inventor of the present application has a higher purification rate of nitrogen oxide (NO x ) when the temperature of the selective catalytic reduction catalyst is lower than when it is higher than when the reducing agent derived from ammonia and the amount of hydrocarbons are lower. I found it. In other words, the inventor of the present application shows that when the temperature of the selective catalytic reduction catalyst is high, the nitrogen oxide (NO x ) purification rate is higher when the amount of ammonia-derived reducing agent is smaller and the amount of hydrocarbons is larger. I found.
  • control unit of the present invention may adjust the addition amount of the ammonia-derived reducing agent and the supply amount of hydrocarbons according to the temperature of the selective catalytic reduction catalyst. For example, the control unit may increase the amount of reducing agent added and reduce the amount of hydrocarbon supplied when the temperature of the selective catalytic reduction catalyst is low compared to when the temperature is high. Thus, when the addition amount of the reducing agent and the supply amount of hydrocarbons are adjusted, the purification rate of nitrogen oxides (NO x ) can be increased regardless of the temperature of the selective reduction catalyst.
  • NO x nitrogen oxides
  • the exhaust gas purification system for an internal combustion engine may further include a temperature control device that is disposed in the exhaust passage upstream of the selective reduction catalyst and adjusts the temperature of the exhaust gas.
  • a temperature control device that is disposed in the exhaust passage upstream of the selective reduction catalyst and adjusts the temperature of the exhaust gas. According to this configuration, the temperature of the selective catalytic reduction catalyst can be adjusted by the temperature control device. Therefore, it is possible to adjust the exhaust temperature so that the ratio of the amount of reducing agent derived from ammonia and the amount of hydrocarbon becomes a desired ratio.
  • the “desired ratio” here may be determined as appropriate according to the characteristics of the internal combustion engine or the vehicle equipped with the internal combustion engine, or may be determined as appropriate according to the remaining amount of the reducing agent derived from ammonia or the remaining amount of hydrocarbon. It may be changed. For example, when the remaining amount of the ammonia-derived reducing agent is small, the exhaust gas temperature is increased compared to when the amount is large, thereby reducing the amount of ammonia-derived reducing agent added and reducing the nitrogen oxide (NO x ) purification rate. Can be maintained. Further, when the remaining amount of hydrocarbon is small, the exhaust gas temperature is lowered compared to when the amount is large, so that the purification rate of nitrogen oxide (NO x ) can be kept high while suppressing the amount of hydrocarbon supply.
  • a burner that burns fuel and secondary air can be used as the temperature control device.
  • the temperature of the exhaust can be increased by the heat generated when the fuel and the secondary air are combusted.
  • the secondary air is supplied without igniting the burner, the temperature of the exhaust can be lowered by the secondary air.
  • hydrocarbons can also be supplied from the burner into the exhaust.
  • the burner can also function as a fuel supply device.
  • the present invention can increase the degree of freedom in the layout of the exhaust gas purification system without reducing the nitrogen oxide (NO x ) purification performance in the exhaust gas purification system of the internal combustion engine including the SCR system.
  • FIG. 1 is a diagram showing a schematic configuration of an exhaust system of an internal combustion engine to which the present invention is applied.
  • the internal combustion engine 1 shown in FIG. 1 is a compression ignition type internal combustion engine (diesel engine), but may be a spark ignition type internal combustion engine (gasoline engine).
  • an exhaust passage 2 is connected to the internal combustion engine 1.
  • the exhaust passage 2 is a passage for flowing gas (exhaust gas) flowing out from the cylinder of the internal combustion engine 1.
  • a turbine 3 of a centrifugal supercharger (turbocharger) is arranged.
  • An exhaust purification device 4 is disposed in the exhaust passage 2 downstream from the turbine 3.
  • the exhaust purification device 4 is a unit in which a selective catalytic reduction catalyst is accommodated in a cylindrical casing.
  • a selective catalytic reduction catalyst for example, a monolith type substrate having a honeycomb-shaped cross section made of cordierite or Fe—Cr—Al heat resistant steel is coated with an active component (support) of alumina or zeolite. Is.
  • a noble metal catalyst having an oxidizing ability for example, platinum (Pt) is supported on the carrier.
  • a particulate filter 5 is disposed in the exhaust passage 2 downstream from the exhaust purification device 4 described above.
  • the particulate filter 5 collects particulate matter (PM) contained in the exhaust gas.
  • a fuel addition valve 6 and a reducing agent addition valve 7 are arranged in the exhaust passage 2 located between the turbine 3 and the exhaust purification device 4.
  • the fuel addition valve 6 is connected to the fuel tank 61 via the first pump 60.
  • the first pump 60 sucks the fuel stored in the fuel tank 61 and pumps the sucked fuel to the fuel addition valve 6.
  • the fuel addition valve 6 adds the fuel sent from the first pump 60 to the exhaust in the exhaust passage 2.
  • the fuel addition valve 6, the first pump 60, and the fuel tank 61 are an embodiment of the fuel supply apparatus according to the present invention.
  • the above-described reducing agent addition valve 7 is connected to the reducing agent tank 71 via the second pump 70.
  • the second pump 70 sucks the reducing agent stored in the reducing agent tank 71 and pumps the sucked reducing agent to the reducing agent addition valve 7.
  • the reducing agent addition valve 7 adds the reducing agent sent from the second pump 70 into the exhaust passage 2.
  • the reducing agent addition valve 7, the second pump 70, and the reducing agent tank 71 are an embodiment of the addition device according to the present invention.
  • the reducing agent stored in the reducing agent tank 71 is a reducing agent derived from ammonia.
  • ammonia-derived reducing agent an aqueous solution of urea or ammonium carbamate can be used.
  • an aqueous urea solution is used as the ammonia-derived reducing agent.
  • the fuel addition valve 6, the reducing agent addition valve 7, the first pump 60, and the second pump 70 are electrically controlled by the ECU 8.
  • the ECU 8 is an electronic control unit that includes a CPU, a ROM, a RAM, a backup RAM, and the like.
  • the ECU 8 controls each device described above using output signals from various sensors such as the crank position sensor 9, the accelerator position sensor 10, and the exhaust temperature sensor 11 as parameters.
  • the aforementioned crank position sensor 9 is a sensor that outputs an electrical signal corresponding to the rotational position of the output shaft (crankshaft) of the internal combustion engine 1.
  • the accelerator position sensor 10 is a sensor that outputs an electrical signal corresponding to the operation amount (accelerator opening) of the accelerator pedal.
  • the exhaust temperature sensor 11 is a sensor that is attached to the exhaust passage 2 between the exhaust purification device 4 and the particulate filter 5 and outputs an electrical signal corresponding to the temperature of the exhaust gas flowing out from the exhaust purification device 4.
  • the urea aqueous solution added to the exhaust gas from the reducing agent addition valve 7 is thermally decomposed and hydrolyzed in the exhaust gas or in the exhaust gas purification device 4 to generate ammonia (NH 3 ).
  • the ammonia (NH 3 ) generated in this way is adsorbed or occluded by the selective reduction catalyst of the exhaust purification device 4.
  • Ammonia (NH 3 ) adsorbed or occluded by the selective reduction catalyst reacts with nitrogen oxide (NO x ) contained in the exhaust gas to generate nitrogen (N 2 ) or water (H 2 O). That is, ammonia (NH 3 ) works as a reducing agent for nitrogen oxides (NO x ).
  • the urea aqueous solution added to the exhaust gas from the reducing agent addition valve 7 becomes too small, the amount of ammonia (NH 3 ) adsorbed on the selective reduction catalyst (ammonia adsorption amount) decreases. Therefore, a situation occurs in which a part of the nitrogen oxide (NO x ) contained in the exhaust is not reduced.
  • the urea aqueous solution added to the exhaust gas from the reducing agent addition valve 7 becomes excessive, a situation occurs in which a part of ammonia (NH 3 ) is not adsorbed by the selective catalytic reduction catalyst.
  • the target amount described above is an amount obtained by subtracting a predetermined margin from the maximum ammonia amount (ammonia saturation amount) that can be adsorbed by the selective catalytic reduction catalyst.
  • the amount of ammonia saturation changes according to the temperature (bed temperature) of the selective catalytic reduction catalyst.
  • the ammonia saturation amount is smaller when the temperature of the selective catalytic reduction catalyst is high than when it is low. Therefore, it is desirable that the target amount described above is changed according to the temperature of the selective catalytic reduction catalyst.
  • the ECU 8 calculates the target amount using the temperature of the selective catalytic reduction catalyst as a parameter. At that time, the ECU 8 may use a map that defines the relationship between the temperature of the selective catalytic reduction catalyst and the target amount.
  • a value measured by a dedicated temperature sensor may be used, but in this embodiment, the output signal of the exhaust temperature sensor 11 is used as an alternative value. In that case, the exhaust gas temperature sensor 11 corresponds to the measurement unit of the present invention.
  • the ECU 8 controls the reducing agent addition valve 7 so that the actual ammonia adsorption amount matches the target amount described above. Specifically, the ECU 8 first calculates the amount of nitrogen oxides (NO x ) discharged from the internal combustion engine 1 per unit time (NO x emission amount). NO x emissions may be calculated by using a map as arguments an output signal (accelerator opening) and the engine speed of the accelerator position sensor 10.
  • the ECU 8 calculates a nitrogen oxide (NO x ) purification rate (NO x purification rate) in the selective reduction catalyst.
  • the NO x purification rate is calculated using the temperature of the selective catalytic reduction catalyst and the exhaust gas flow rate as parameters. At that time, the relationship between the NO x purification rate, the temperature of the selective catalytic reduction catalyst, and the exhaust gas flow rate may be mapped in advance.
  • the ECU 8 calculates the amount of ammonia (NH 3 ) consumed per unit time (ammonia consumption) in order to reduce nitrogen oxides (NO x ) using the NO x emission amount and the NO x purification rate as parameters. To do.
  • the ECU 8 subtracts the ammonia consumption amount from the amount of ammonia (NH 3 ) supplied to the selective reduction catalyst per unit time, thereby reducing the amount of ammonia (NH 3 ) adsorbed on the selective reduction catalyst per unit time. Calculate the quantity.
  • the ECU 8 calculates the actual ammonia adsorption amount by integrating the amount of ammonia (NH 3 ) adsorbed on the selective catalytic reduction unit per unit time.
  • the ECU 8 calculates a target addition amount (hereinafter referred to as “reference addition amount”) of ammonia (NH 3 ) using the difference between the two as a parameter, and sets the reference addition amount as the reference addition amount. Therefore, an aqueous urea solution is added.
  • the ECU 8 stops adding the urea aqueous solution.
  • the exhaust emission control device 4 of the present embodiment includes a selective reduction catalyst and a noble metal catalyst. Therefore, a part of ammonia (NH 3 ) supplied to the exhaust purification device 4 may be oxidized by the noble metal catalyst before being adsorbed or occluded by the selective reduction catalyst. In that case, the NO x purification rate in the selective reduction catalyst decreases. Further, when ammonia (NH 3 ) is oxidized, new nitrogen oxides (NO x ) are generated. As a result, a relatively large amount of nitrogen oxide (NO x ) may flow out from the selective catalytic reduction catalyst.
  • the fuel is added from the fuel addition valve 6. That is, when the urea aqueous solution is added, the fuel is also added at the same time.
  • the present inventor has conducted intensive experiments and verification, if the aqueous urea solution and fuel are added simultaneously, it found that reduction of the NO x purification rate can be suppressed. Further, the inventor of the present application may differ in the amount (ratio) of ammonia (NH 3 ) and hydrocarbon (HC) required for purifying nitrogen oxide (NO x ) depending on the temperature of the selective catalytic reduction catalyst. I found it.
  • FIG. 2 is a diagram showing a change in the required amount of the reducing agent with respect to the temperature change of the selective catalytic reduction catalyst.
  • the required amount shown in FIG. 2 is the amount of ammonia (NH 3 ) and hydrocarbon (HC) required to purify a certain amount of nitrogen oxides (NO x ).
  • the solid line indicates the required amount of ammonia (NH 3 )
  • the alternate long and short dash line indicates the required amount of hydrocarbon (HC)
  • the broken line indicates the reference addition amount of ammonia (NH 3 ).
  • the ratio between the required amount of ammonia (NH 3 ) and the required amount of hydrocarbon (HC) as shown in FIG. 2 (hereinafter referred to as “addition ratio”) is mapped in advance by an adaptation operation using experiments or the like. Shall be kept. Then, the ECU 8 determines the addition amount of ammonia (NH 3 ) and the addition amount of hydrocarbon (HC) based on the temperature of the selective catalytic reduction catalyst and the map shown in FIG. Specifically, the ECU 8 calculates the addition amount of ammonia (NH 3 ) and the addition amount of hydrocarbon (HC) by multiplying the reference addition amount described above by the addition ratio.
  • Figure 3 is a diagram showing the relationship between the temperature and the NO x purification rate of the selective reduction catalyst.
  • the solid line in FIG. 3 shows the NO x purification rate when ammonia (NH 3 ) and hydrocarbon (HC) are added according to the addition ratio defined in FIG. 2 described above. Further, the broken line in FIG. 3 indicates the NO x purification rate when only ammonia (NH 3 ) is added according to the reference addition amount.
  • the noble metal catalyst and the selective reduction catalyst can be supported on one carrier or substrate.
  • the degree of freedom in the layout of the exhaust purification system including the addition device and the selective reduction catalyst can be increased.
  • the selective reduction catalyst and the oxidation catalyst can be supported on one base material or carrier, or the selective reduction catalyst and the oxidation catalyst can be supported on the base material of the particulate filter.
  • the required amount of ammonia (NH 3 ) is smaller than the reference addition amount, the consumption amount of the urea aqueous solution can be reduced. Therefore, the capacity of the reducing agent tank 71 can be reduced. As a result, the in-vehicle performance of the reducing agent tank 71 can be improved.
  • FIG. 4 is a flowchart showing a reducing agent addition processing routine.
  • This addition processing routine is a routine that is stored in advance in the ROM of the ECU 8 and is periodically executed by the ECU 8.
  • the ECU 8 first determines whether or not an addition condition is satisfied in S101. For example, the ECU 8 determines that the addition condition is satisfied when the actual ammonia adsorption amount is smaller than the target amount.
  • the ECU 8 proceeds to S107 and stops the operation of the reducing agent addition valve 7 and the fuel addition valve 6. That is, the ECU 8 stops the addition of the urea aqueous solution and the addition of fuel.
  • the ECU 8 proceeds to S102.
  • the ECU 8 reads the temperature of the selective catalytic reduction catalyst.
  • the output signal of the exhaust temperature sensor 11 is used as the temperature of the selective catalytic reduction catalyst.
  • the ECU 8 calculates the ratio (addition ratio) between the required amount of ammonia (NH 3 ) and the required amount of hydrocarbon (HC) from the exhaust temperature read in S102 and the map shown in FIG. To do. Subsequently, in S104, the ECU 8 obtains the reference addition amount by subtracting the actual ammonia adsorption amount from the target amount of ammonia (NH 3 ) adsorbed on the selective catalytic reduction catalyst.
  • the ECU 8 calculates the required amount of ammonia (NH 3 ) and the required amount of hydrocarbon (HC) using the addition ratio calculated in S103 and the reference addition amount obtained in S104 as parameters. To do.
  • the ECU 8 converts the required amount of ammonia (NH 3 ) into the amount of urea aqueous solution and converts the required amount of hydrocarbon (HC) into the amount of fuel.
  • the addition ratio of ammonia (NH 3 ) and hydrocarbon (HC) is determined, but the ratio between the required amount of urea aqueous solution and the required amount of fuel is determined. It may be.
  • the ECU 8 operates the reducing agent addition valve 7 and the fuel addition valve 6 in accordance with the amount of urea aqueous solution and the amount of fuel obtained in S105.
  • control part concerning this invention is implement
  • the layout in which the selective reduction catalyst and the noble metal catalyst are supported on a common carrier or base material is taken as an example, but the selective reduction catalyst is disposed in the exhaust passage downstream of the noble metal catalyst, and The same effect can be obtained even in a layout in which the reducing agent addition valve is arranged upstream of the noble metal catalyst.
  • the fuel supply device is exemplified by a device including the fuel addition valve 6, the first pump 60, and the fuel tank 61.
  • the fuel that the internal combustion engine 1 injects fuel into the cylinders.
  • the fuel supply device may be realized by injecting fuel from the fuel injection valve in a cylinder during the exhaust stroke (a cylinder in which the exhaust valve is open).
  • a burner for burning fuel and secondary air can also be used as a fuel supply device.
  • the difference between the first embodiment and the present embodiment described above is that a burner 12 is added to the exhaust passage 2 located between the turbine 3 and the exhaust purification device 4.
  • the burner 12 is a device that combusts the secondary air supplied from the air pump 120 and the fuel supplied from the first pump 60.
  • the burner 12 includes a spark plug (not shown), and the secondary air and fuel are combusted when the spark plug is activated. Gas burned in the burner 12 (combustion gas) is introduced into the exhaust passage 2 through the exhaust pipe 121.
  • the burner 12 and the fuel addition valve 6 share the first pump 60, but the burner 12 may be provided with a dedicated fuel pump.
  • the burner 12, the air pump 120, and the 1st pump 60 are equivalent to the temperature control apparatus concerning this invention.
  • the above-described burner 12 and air pump 120 are electrically controlled by the ECU 8.
  • the ECU 8 operates the burner 12 (ignition plug), the air pump 120, and the first pump 60 when the temperature of the selective catalytic reduction catalyst is raised or when the temperature of the particulate filter 5 is raised.
  • the high-temperature combustion gas generated in the burner 12 is introduced into the exhaust passage 2 via the exhaust pipe 121.
  • the temperature of the exhaust gas flowing into the selective reduction catalyst increases. Therefore, the selective catalytic reduction catalyst receives the heat of the combustion gas and quickly rises in temperature.
  • the ECU 8 determines whether the temperature of the selective catalytic reduction catalyst in the active state needs to be further increased, or when the particulate matter (PM) collected by the particulate filter 5 needs to be oxidized. By operating one pump 60 (and air pump 120), unburned fuel may be supplied to the selective reduction catalyst or the particulate filter 5.
  • unburned fuel is oxidized in the selective reduction catalyst or the particulate filter 5.
  • the temperature of the selective reduction catalyst or the particulate filter 5 is raised by the reaction heat generated when the unburned fuel is oxidized.
  • the ECU 8 controls the burner 12 so that the temperature of the selective catalytic reduction catalyst matches the target temperature (or the target temperature range).
  • the “target temperature” here is, for example, a temperature at which the NO x purification rate of the selective catalytic reduction catalyst is equal to or higher than a predetermined reference value, and is a required amount of ammonia (NH 3 ) and hydrocarbon (HC). This is the temperature at which the ratio to the required amount is the desired target ratio.
  • the “reference value” here corresponds to, for example, the NO x purification rate at which the amount of nitrogen oxide (NO x ) flowing out from the selective catalytic reduction catalyst is less than or equal to the regulated amount.
  • the “desired ratio” may be a fixed value that is appropriately determined according to the characteristics of the internal combustion engine 1, the characteristics of the vehicle on which the internal combustion engine 1 is mounted, the capacity of the reducing agent tank 71 and the fuel tank 61, and the like. Alternatively, it may be a variable value that is changed according to the remaining amount of urea aqueous solution or the remaining amount of fuel.
  • the exhaust gas temperature is raised compared to when the urea aqueous solution is large, so that the purification rate of nitrogen oxide (NO x ) can be maintained high while reducing the addition ratio of the urea aqueous solution.
  • the exhaust gas temperature is lowered compared to when the amount of fuel is large, so that the purification rate of nitrogen oxide (NO x ) can be kept high while the fuel addition ratio is lowered.
  • the ECU 8 may operate the ignition plug of the burner 12, the air pump 120, and the first pump 60.
  • the ECU 8 may operate only the air pump 120 without operating the ignition plug of the burner 12.
  • the ratio of the urea aqueous solution addition amount and the fuel addition amount can be set to an arbitrary ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Abstract

 本発明は、内燃機関の排気通路に配置された選択還元型触媒と、選択還元型触媒へアンモニア由来の還元剤を供給する添加装置と、を備えた内燃機関の排気浄化システムにおいて、窒素酸化物の還元能力を低下させることなく排気浄化システムのレイアウトの自由度を高めることを課題とする。この課題を解決するために、本発明の内燃機関の排気浄化システムは、アンモニア由来の還元剤を選択還元型触媒へ供給するときに炭化水素も同時に供給することにより、貴金属触媒によって容易に酸化されない還元剤を生成するようにした。

Description

内燃機関の排気浄化システム
 内燃機関の排気浄化システムに関し、特にアンモニアの供給を受けて排気中の窒素酸化物(NO)を還元する触媒を備えた排気浄化システムに関する。
 内燃機関の排気通路に配置された選択還元型触媒(SCR:Selective Catalytic Reduction)と、選択還元型触媒より上流の排気通路に配置された還元剤添加弁と、を備え、前記還元剤添加弁からアンモニア由来の化合物や組成物を添加させるSCRシステムが知られている。
 近年、排気エミッションに対する規制強化に伴い、SCRシステムに酸化触媒やパティキュレートフィルタを追加する必要性も生じている。そのため、排気通路の上流側から燃料添加弁、酸化触媒、パティキュレートフィルタ、尿素添加弁、選択還元型触媒、及びアンモニア酸化触媒を順次配置したシステムも提案されている(たとえば、特許文献1を参照)。
 特許文献2には、排気通路の上流側から尿素添加弁、酸化触媒、パティキュレートフィルタ、及び選択還元型触媒を順次配置した構成について記述されている。特許文献3には、排気通路の上流側からパティキュレートフィルタと選択還元型触媒を順次配置し、パティキュレートフィルタと選択還元型触媒との間に尿素及び燃料を添加する構成について記述されている。特許文献4には、酸化能と選択還元能とを備えた排気浄化用触媒について記述されている。
特開2009-013931号公報 特開2008-545085号公報 特開2008-157188号公報 特開2008-031970号公報
 ところで、選択還元型触媒が貴金属触媒を備える場合、あるいは還元剤添加弁より下流且つ選択還元型触媒より上流の排気通路に貴金属触媒が配置される場合は、還元剤添加弁から添加されたアンモニア由来の還元剤が貴金属触媒により酸化されて窒素酸化物(NO)になる可能性がある。
 その場合、選択還元型触媒において還元される窒素酸化物(NO)の量が減少するうえ、選択還元型触媒において窒素酸化物(NO)が生成されることになる。これに対し、前述した特許文献1に開示されたような構成を採用する方法が考えられるが、排気浄化システムのレイアウトの自由度が低下するため、車両搭載性の低下や製造コストの上昇を招く可能性がある。
 本発明は、上記した種々の実情に鑑みてなされたものであり、その目的は、SCRシステムを含む内燃機関の排気浄化システムにおいて、窒素酸化物(NO)の浄化性能を低下させることなく、排気浄化システムのレイアウトの自由度を高めることにある。
 本発明の発明者は、上記した課題を解決するために、貴金属触媒を備えた選択還元型触媒に対してアンモニア由来の還元剤と炭化水素(燃料)とを同時に供給することにより、選択還元型触媒におけるNO浄化率の低下が抑制される事項に着目した。
 貴金属触媒を備えた選択還元型触媒にアンモニア由来の還元剤のみが供給された場合は、選択還元型触媒から流出する窒素酸化物(NO)の量が増加する。これは、還元剤が窒素酸化物(NO)と反応する前に貴金属触媒によって酸化されるためと考えられる。
 還元剤が貴金属触媒によって酸化されると、選択還元型触媒において還元される窒素酸化物(NO)の量が減少する。さらに、還元剤が貴金属触媒によって酸化されると、新たな窒素酸化物(NO)が生成される。その結果、選択還元型触媒から流出する窒素酸化物(NO)の量が増加する。この現象は、選択還元型触媒の温度(選択還元型触媒の床温又は選択還元型触媒を通過するガスの温度)が高いとき(たとえば、200℃乃至300℃以上のとき)に顕著となる。
 これに対し、本願発明者は、鋭意の実験及び検証を行った結果、貴金属触媒を備えた選択還元型触媒に対し、アンモニア由来の還元剤と炭化水素とを同時に供給することにより、選択還元型触媒から流出する窒素酸化物(NO)の量が低減されることを見出した。
 さらに、本願発明者は、貴金属触媒を備えた選択還元型触媒の温度が高いときであっても、アンモニア由来の還元剤と炭化水素が同時に供給されれば、選択還元型触媒から流出する窒素酸化物(NO)の量が低減されることも見出した。
 これらのメカニズムについては明確に解明されていないが、アンモニア由来の還元剤と炭化水素が選択還元型触媒へ流入する前に物理的又は化学的に結合又は反応することにより、貴金属触媒によって酸化され難い重質な還元剤が生成されると予想される。
 そこで、本発明は、貴金属触媒を備えた選択還元型触媒に対してアンモニア由来の還元剤を供給するときに、炭化水素も同時に供給するようにした。
 詳細には、本発明の内燃機関の排気浄化システムは、
 内燃機関の排気通路に配置され、貴金属触媒を具備する選択還元型触媒と、
 前記選択還元型触媒より上流の排気通路に配置され、アンモニア由来の還元剤を排気中に添加する添加装置と、
 前記選択還元型触媒より上流において排気中に燃料を供給する燃料供給装置と、
 前記添加装置から排気中へ還元剤を添加させるときに、前記燃料供給装置から燃料を供給させる制御部と、
を備えるようにした。
 かかる発明によれば、貴金属触媒を備えた選択還元型触媒に対してアンモニア由来の還元剤を供給したときに、貴金属触媒による還元剤の酸化を抑制することができる。そのため、選択還元型触媒におけるNO浄化率の低下が抑制される。
 したがって、貴金属触媒と選択還元型触媒とを1つの基材又は担体に担持させることが可能になる。また、貴金属触媒の下流に選択還元型触媒が配置される場合において、貴金属触媒より上流に添加装置を配置することも可能となる。このように排気浄化システムのレイアウトの自由度が高められると、排気浄化システムの車両搭載性を高めることが可能になるうえ、製造コストを下げることも可能になる。
 なお、本願発明者は、選択還元型触媒の温度が低いときは高いときに比べ、アンモニア由来の還元剤が多く且つ炭化水素が少ない方が窒素酸化物(NO)の浄化率が高いことも見出した。言い換えると、本願発明者は、選択還元型触媒の温度が高いときは低いときに比べ、アンモニア由来の還元剤が少なく且つ炭化水素が多い方が窒素酸化物(NO)の浄化率が高いことを見出した。
 そこで、本発明の制御部は、選択還元型触媒の温度に応じてアンモニア由来の還元剤の添加量と炭化水素の供給量とを調整するようにしてもよい。たとえば、制御部は、選択還元型触媒の温度が低いときは高いときに比べ、還元剤の添加量が多く且つ炭化水素の供給量が少なくしてもよい。このように還元剤の添加量及び炭化水素の供給量が調整されると、選択還元型触媒の温度に関わらず、窒素酸化物(NO)の浄化率を高めることができる。
 また、本発明にかかる内燃機関の排気浄化システムは、選択還元型触媒より上流の排気通路に配置され、排気の温度を調整する調温装置をさらに備えるようにしてもよい。かかる構成によると、調温装置により選択還元型触媒の温度を調整することができる。そのため、アンモニア由来の還元剤の量と炭化水素の量との比率が所望の比率となるように排気温度を調整することもできる。
 ここでいう「所望の比率」は、内燃機関や内燃機関を搭載する車両の特性に応じて適宜決められてもよく、あるいはアンモニア由来の還元剤の残量や炭化水素の残量に応じて適宜変更されてもよい。たとえば、アンモニア由来の還元剤の残量が少ないときは多いときに比べ排気温度を高めることにより、アンモニア由来の還元剤の添加量を少なく抑えつつ、窒素酸化物(NO)の浄化率を高く維持することができる。また、炭化水素の残量が少ないときは多いときに比べ排気温度を低めることにより、炭化水素の供給量を少なく抑えつつ、窒素酸化物(NO)の浄化率を高く維持することができる。
 調温装置としては、燃料と二次空気を燃焼させるバーナを用いることができる。バーナが点火されると燃料と二次空気が燃焼する際に発生する熱によって排気の温度を高めることができる。バーナを点火させずに二次空気が供給されると、二次空気により排気の温度を低下させることができる。
 なお、バーナを点火させずに燃料が供給された場合、又は燃料過濃な状態でバーナが点火された場合は、該バーナから排気中に炭化水素を供給することもできる。その結果、バーナを燃料供給装置として機能させることもできる。
 本発明は、SCRシステムを含む内燃機関の排気浄化システムにおいて、窒素酸化物(NO)の浄化性能を低下させることなく、排気浄化システムのレイアウトの自由度を高めることができる。
第1の実施例における内燃機関の排気系の概略構成を示す図である。 選択還元型触媒の温度変化に対する還元剤の要求量の変化を示す図である。 選択還元型触媒の温度とNO浄化率との関係を示す図である。 還元剤の添加処理ルーチンを示すフローチャートである。 第2の実施例における内燃機関の排気系の概略構成を示す図である。
 以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。
 <実施例1>
 先ず、本発明の第1の実施例について図1乃至図4に基づいて説明する。図1は、本発明を適用する内燃機関の排気系の概略構成を示す図である。図1に示す内燃機関1は、圧縮着火式の内燃機関(ディーゼルエンジン)であるが、火花点火式の内燃機関(ガソリンエンジン)であってもよい。
 図1において、内燃機関1には、排気通路2が接続されている。排気通路2は、内燃機関1の気筒内から流出するガス(排気)を流すための通路である。排気通路2の途中には、遠心過給機(ターボチャージャ)のタービン3が配置されている。タービン3より下流の排気通路2には、排気浄化装置4が配置されている。
 排気浄化装置4は、筒状のケーシング内に選択還元型触媒を収容したものである。選択還元型触媒は、たとえば、コーディライトやFe-Cr-Al系の耐熱鋼から成るハニカム形状の横断面を有するモノリスタイプの基材に、アルミナ系又はゼオライト系の活性成分(担体)をコーティングしたものである。さらに、前記した担体には、酸化能を有する貴金属触媒(たとえば、白金(Pt))が担持されている。
 前記した排気浄化装置4より下流の排気通路2には、パティキュレートフィルタ5が配置されている。パティキュレートフィルタ5は、排気中に含まれる粒子状物質(PM)を捕集するものである。
 前記したタービン3と排気浄化装置4との間に位置する排気通路2には、燃料添加弁6と還元剤添加弁7が配置されている。燃料添加弁6は、第1ポンプ60を介して燃料タンク61に接続されている。第1ポンプ60は、燃料タンク61に貯留されている燃料を吸引するとともに、吸引された燃料を燃料添加弁6へ圧送する。燃料添加弁6は、第1ポンプ60から送られてくる燃料を排気通路2内の排気へ添加する。燃料添加弁6、第1ポンプ60、及び燃料タンク61は、本発明に係わる燃料供給装置の一実施態様である。
 前記した還元剤添加弁7は、第2ポンプ70を介して還元剤タンク71に接続されている。第2ポンプ70は、還元剤タンク71に貯留されている還元剤を吸引するとともに、吸引された還元剤を還元剤添加弁7へ圧送する。還元剤添加弁7は、第2ポンプ70から送られてくる還元剤を排気通路2内へ添加する。還元剤添加弁7、第2ポンプ70、及び還元剤タンク71は、本発明に係わる添加装置の一実施態様である。
 なお、還元剤タンク71に貯留される還元剤は、アンモニア由来の還元剤である。アンモニア由来の還元剤としては、尿素やカルバミン酸アンモニウムなどの水溶液を用いることができる。本実施例では、アンモニア由来の還元剤として尿素水溶液を用いるものとする。
 上記した燃料添加弁6、還元剤添加弁7、第1ポンプ60、及び第2ポンプ70は、ECU8によって電気的に制御されるようになっている。ECU8は、CPU、ROM、RAM、バックアップRAMなどから構成される電子制御ユニットである。ECU8は、クランクポジションセンサ9、アクセルポジションセンサ10、排気温度センサ11などの各種センサの出力信号をパラメータとして、上記した各機器を制御する。
 前記したクランクポジションセンサ9は、内燃機関1の出力軸(クランクシャフト)の回転位置に応じた電気信号を出力するセンサである。アクセルポジションセンサ10は、アクセルペダルの操作量(アクセル開度)に応じた電気信号を出力するセンサである。排気温度センサ11は、排気浄化装置4とパティキュレートフィルタ5との間の排気通路2に取り付けられ、排気浄化装置4から流出した排気の温度に応じた電気信号を出力するセンサである。
 ここで、還元剤添加弁7(及び第2ポンプ70)の制御方法について述べる。還元剤添加弁7から排気中に添加された尿素水溶液は、排気中又は排気浄化装置4において熱分解及び加水分解されてアンモニア(NH)を生成する。このようにして生成されたアンモニア(NH)は、排気浄化装置4の選択還元型触媒に吸着又は吸蔵される。選択還元型触媒に吸着又は吸蔵されたアンモニア(NH)は、排気中に含まれる窒素酸化物(NO)と反応して窒素(N)や水(HO)を生成する。つまり、アンモニア(NH)は、窒素酸化物(NO)の還元剤として働く。
 なお、還元剤添加弁7から排気中に添加される尿素水溶液が過少になると、選択還元型触媒に吸着されるアンモニア(NH)の量(アンモニア吸着量)が少なくなる。そのため、排気中に含まれる窒素酸化物(NO)の一部が還元されない事態が発生する。一方、還元剤添加弁7から排気中に添加される尿素水溶液が過多になると、アンモニア(NH)の一部が選択還元型触媒に吸着されない事態が発生する。
 したがって、尿素水溶液の添加量は、選択還元型触媒のアンモニア吸着量が適量(目標量)となるように制御されることが望ましい。前記した目標量は、選択還元型触媒が吸着可能な最大のアンモニア量(アンモニア飽和量)から所定のマージンを差し引いた量である。
 アンモニア飽和量は、選択還元型触媒の温度(床温)に応じて変化する。たとえば、選択還元型触媒の温度が高いときは低いときに比べ、アンモニア飽和量が少なくなる。よって、前記した目標量は、選択還元型触媒の温度に応じて変更されることが望ましい。
 そこで、ECU8は、選択還元型触媒の温度をパラメータとして目標量を演算する。その際、ECU8は、選択還元型触媒の温度と目標量との関係を定めたマップを利用してもよい。なお、選択還元型触媒の温度としては、専用の温度センサによって測定された値が用いられてもよいが、本実施例では排気温度センサ11の出力信号が代替値として用いられるものとする。その場合、排気温度センサ11は、本発明の測定部に相当する。
 上記した方法により目標量が定められると、ECU8は、実際のアンモニア吸着量が前記した目標量と一致するように還元剤添加弁7を制御する。詳細には、ECU8は、先ず、単位時間あたりに内燃機関1から排出される窒素酸化物(NO)の量(NO排出量)を演算する。NO排出量は、アクセルポジションセンサ10の出力信号(アクセル開度)と機関回転数とを引数とするマップを用いて算出されてもよい。
 続いて、ECU8は、選択還元型触媒における窒素酸化物(NO)の浄化率(NO浄化率)を演算する。ここでいう「NO浄化率」は、選択還元型触媒に流入する窒素酸化物(NO)の量に対し、選択還元型触媒において還元される窒素酸化物(NO)の量の割合に相当する値である。NO浄化率は、選択還元型触媒の温度と排気流量とをパラメータとして算出される。その際、NO浄化率と選択還元型触媒の温度と排気流量との関係を予めマップ化しておくようにしてもよい。
 ECU8は、NO排出量とNO浄化率をパラメータとして、窒素酸化物(NO)を還元するために、単位時間あたりに消費されるアンモニア(NH)の量(アンモニア消費量)を演算する。
 ECU8は、単位時間あたりに選択還元型触媒へ供給されるアンモニア(NH)の量からアンモニア消費量を減算することにより、単位時間あたりに選択還元型触媒に吸着されるアンモニア(NH)の量を演算する。ECU8は、単位時間あたりに選択還元型触媒に吸着されるアンモニア(NH)の量を積算することにより、実際のアンモニア吸着量を算出する。
 ECU8は、実際のアンモニア吸着量が目標量より少ないときは、両者の差をパラメータとしてアンモニア(NH)の目標添加量(以下、「基準添加量」と称する)を算出し、基準添加量にしたがって尿素水溶液の添加を行う。一方、実際のアンモニア吸着量が目標量以上であるときは、ECU8は、尿素水溶液の添加を停止する。
 ところで、本実施例の排気浄化装置4は、選択還元型触媒と貴金属触媒とを含んでいる。そのため、排気浄化装置4へ供給されたアンモニア(NH)の一部は、選択還元型触媒に吸着又は吸蔵される前に、貴金属触媒によって酸化される可能性がある。その場合、選択還元型触媒におけるNO浄化率が低下する。さらに、アンモニア(NH)が酸化されると、新たな窒素酸化物(NO)が生成される。その結果、選択還元型触媒から比較的多量の窒素酸化物(NO)が流出する可能性がある。
 そこで、本実施例では、還元剤添加弁7から尿素水溶液を添加させる際に、燃料添加弁6から燃料を添加させるようにした。つまり、尿素水溶液の添加が行われるときは、それと同時に燃料の添加も行われるようにした。
 本願発明者は、鋭意の実験及び検証を行った結果、尿素水溶液と燃料が同時に添加されると、NO浄化率の低下が抑制されることを見出した。さらに、本願発明者は、窒素酸化物(NO)を浄化する際に必要となるアンモニア(NH)及び炭化水素(HC)の量(比率)は、選択還元型触媒の温度によって異なることも見出した。
 図2は、選択還元型触媒の温度変化に対する還元剤の要求量の変化を示す図である。図2に示す要求量は、一定量の窒素酸化物(NO)を浄化する際に必要となるアンモニア(NH)及び炭化水素(HC)の量である。図2中において、実線はアンモニア(NH)の要求量を示し、一点鎖線は炭化水素(HC)の要求量を示し、破線はアンモニア(NH)の基準添加量を示す。
 図2に示すように、選択還元型触媒の温度が高いときは低いときに比べ、アンモニア(NH)の要求量が少なくなるとともに炭化水素(HC)の要求量が多くなる。逆に、選択還元型触媒の温度が低いときは高いときに比べ、アンモニア(NH)の要求量が多くなるとともに炭化水素(HC)の要求量が少なくなる。
 図2に示したようなアンモニア(NH)の要求量と炭化水素(HC)の要求量との比率(以下、「添加比率」と称する)は、実験などを利用した適合作業により予めマップ化しておくものとする。そして、ECU8は、選択還元型触媒の温度と図2に示したマップとに基づいてアンモニア(NH)の添加量と炭化水素(HC)の添加量を決定する。具体的には、ECU8は、前述した基準添加量に添加比率を乗算することにより、アンモニア(NH)の添加量と炭化水素(HC)の添加量を算出する。
 図3は、選択還元型触媒の温度とNO浄化率との関係を示す図である。図3中の実線は、前述した図2に定められた添加比率にしたがってアンモニア(NH)と炭化水素(HC)を添加した場合のNO浄化率を示している。また、図3中の破線は、基準添加量にしたがってアンモニア(NH)のみを添加した場合のNO浄化率を示している。
 図3において、アンモニア(NH)のみが添加された場合は選択還元型触媒の温度が高くなるほどNO浄化率が低下するのに対し、アンモニア(NH)と炭化水素(HC)が添加された場合は選択還元型触媒の温度にかかわらずNO浄化率が高く維持される。
 よって、貴金属触媒と選択還元型触媒とを1つの担体又は基材に担持させることができる。その結果、添加装置及び選択還元型触媒を含む排気浄化システムのレイアウトの自由度を高めることができる。たとえば、1つの基材又は担体に選択還元型触媒と酸化触媒とを担持させたり、パティキュレートフィルタの基材に選択還元型触媒と酸化触媒を担持させたりすることが可能になる。
 また、前述した図2に示したように、アンモニア(NH)の要求量は基準添加量より少なくなるため、尿素水溶液の消費量を少なく抑えることができる。よって、還元剤タンク71の容量を小さくすることが可能になる。その結果、還元剤タンク71の車載性を向上させることもできる。
 以下、本実施例における還元剤の添加手順について図4に沿って説明する。図4は、還元剤の添加処理ルーチンを示すフローチャートである。この添加処理ルーチンは、予めECU8のROMに記憶されているルーチンであり、ECU8によって周期的に実行される。
 添加処理ルーチンでは、ECU8は、先ずS101において添加条件が成立しているか否かを判別する。たとえば、ECU8は、実際のアンモニア吸着量が目標量より少ないときに、添加条件が成立していると判定する。
 前記S101において否定判定された場合は、ECU8は、S107へ進み、還元剤添加弁7及び燃料添加弁6の作動を停止させる。すなわち、ECU8は、尿素水溶液の添加及び燃料の添加を停止させる。
 前記S101において肯定判定された場合は、ECU8は、S102へ進む。S102では、ECU8は、選択還元型触媒の温度を読み込む。ここでは、選択還元型触媒の温度として、排気温度センサ11の出力信号が用いられるものとする。
 S103では、ECU8は、前記S102で読み込まれた排気温度と図2に示したマップとから、アンモニア(NH)の要求量と炭化水素(HC)の要求量との比率(添加比率)を演算する。続いて、ECU8は、S104において、選択還元型触媒に吸着されるアンモニア(NH)の目標量から実際のアンモニア吸着量を減算することにより、基準添加量を求める。
 S105では、ECU8は、前記S103で算出された添加比率と前記S104で求められた基準添加量とをパラメータにして、アンモニア(NH)の要求量と炭化水素(HC)の要求量とを演算する。ECU8は、アンモニア(NH)の要求量を尿素水溶液の量に変換するとともに、炭化水素(HC)の要求量を燃料の量に変換する。
 なお、前述した図2に示した例では、アンモニア(NH)と炭化水素(HC)との添加比率が定められているが、尿素水溶液の要求量と燃料の要求量との比率が定められていてもよい。
 S106では、ECU8は、前記S105で求められた尿素水溶液の量と燃料の量とにしたがって、還元剤添加弁7及び燃料添加弁6を作動させる。
 このようにECU8が添加処理ルーチンを実行することにより、本発明に係わる制御部が実現される。その結果、選択還元型触媒と貴金属触媒が1つの担体又は基材に担持されている場合であっても、選択還元型触媒のNO浄化率を高く維持することが可能となる。
 なお、本実施例では選択還元型触媒と貴金属触媒とが共通の担体又は基材に担持されるレイアウトを例に挙げたが、選択還元型触媒が貴金属触媒より下流の排気通路に配置され、且つ還元剤添加弁が貴金属触媒より上流に配置されるレイアウトであっても同様の効果を得ることができる。
 要するに、尿素水溶液水の添加が行われるときに燃料(炭化水素(HC))も同時に添加されれば、排気浄化システムのレイアウトにかかわらず同様の効果を得ることが可能になる。
 よって、選択還元型触媒のNO浄化率を低下させることなく、排気浄化システムのレイアウトを多様化させることが可能となる。その結果、排気浄化システムの車載性を向上させることができるとともに、製造コストを低減させることも可能となる。
 本実施例では、本発明に係わる燃料供給装置として、燃料添加弁6、第1ポンプ60、及び燃料タンク61を含む装置を例に挙げたが、内燃機関1が気筒内へ燃料を噴射する燃料噴射弁を備えている場合は排気行程中の気筒(排気弁が開弁している気筒)において燃料噴射弁から燃料を噴射させることにより、燃料供給装置が実現されるようにしてもよい。また、燃料と二次空気を燃焼させるためのバーナを燃料供給装置として使用することもできる。
 <実施例2>
 次に、本発明の第2の実施例について図5に基づいて説明する。ここでは、前述した第1の実施例と異なる構成について説明し、同様の構成については説明を省略する。
 前述した第1の実施例と本実施例との相違点は、タービン3と排気浄化装置4との間に位置する排気通路2にバーナ12が追加されている点にある。バーナ12は、エアポンプ120から供給される二次空気と第1ポンプ60から供給される燃料とを燃焼させる装置である。
 バーナ12は図示しない点火プラグを備えており、該点火プラグが作動することにより二次空気及び燃料が燃焼されるようになっている。バーナ12において燃焼されたガス(燃焼ガス)は、排出管121を介して排気通路2内へ導入されるようになっている。なお、図5に示す例では、バーナ12と燃料添加弁6が第1ポンプ60を共用しているが、バーナ12に専用の燃料ポンプが設けられてもよい。バーナ12、エアポンプ120、及び第1ポンプ60は、本発明に係わる調温装置に相当する。
 前記したバーナ12及びエアポンプ120は、ECU8によって電気的に制御されるようになっている。たとえば、ECU8は、選択還元型触媒を昇温させる場合やパティキュレートフィルタ5を昇温させる場合等に、バーナ12(点火プラグ)とエアポンプ120と第1ポンプ60を作動させる。
 その場合、バーナ12において発生した高温な燃焼ガスが排出管121を介して排気通路2へ導入されることになる。その結果、選択還元型触媒へ流入する排気の温度が上昇する。よって、選択還元型触媒が燃焼ガスの熱を受けて速やかに昇温する。
 また、ECU8は、活性状態にある選択還元型触媒をさらに昇温させる必要がある場合や、パティキュレートフィルタ5に捕集された粒子状物質(PM)を酸化させる必要がある場合等は、第1ポンプ60(及びエアポンプ120)を作動させることにより、未燃の燃料を選択還元型触媒又はパティキュレートフィルタ5へ供給させてもよい。
 その場合、未燃の燃料が選択還元型触媒又はパティキュレートフィルタ5において酸化されることになる。その結果、未燃燃料が酸化する際に発生する反応熱によって選択還元型触媒又はパティキュレートフィルタ5が昇温させられる。
 さらに、本実施例においては、ECU8は、選択還元型触媒の温度が目標温度(又は目標となる温度範囲)と一致するようにバーナ12を制御する。ここでいう「目標温度」は、たとえば、選択還元型触媒のNO浄化率が予め定められた基準値以上となる温度であって、アンモニア(NH)の要求量と炭化水素(HC)の要求量との比率が所望の目標比率となる温度である。
 ここでいう「基準値」は、たとえば、選択還元型触媒から流出する窒素酸化物(NO)の量が規制量以下となるNO浄化率に相当する。また、「所望の比率」は、内燃機関1の特性、内燃機関1を搭載する車両の特性、あるいは還元剤タンク71や燃料タンク61の容量などに応じて適宜決められる固定値であってもよく、あるいは尿素水溶液の残量や燃料の残量に応じて変更される可変値であってもよい。
 たとえば、尿素水溶液の残量が少ないときは多いときに比べ排気温度を高めることにより、尿素水溶液の添加比率を低下させつつ、窒素酸化物(NO)の浄化率を高く維持することができる。また、燃料の残量が少ないときは多いときに比べ排気温度を低めることにより、燃料の添加比率を低下させつつ、窒素酸化物(NO)の浄化率を高く維持することができる。
 なお、選択還元型触媒の温度を上昇させる場合は、ECU8は、バーナ12の点火プラグとエアポンプ120と第1ポンプ60を作動させればよい。一方、選択還元型触媒の温度を低下させる場合は、ECU8は、バーナ12の点火プラグを作動させずに、エアポンプ120のみを作動させればよい。
 このように、バーナ12を利用して選択還元型触媒の温度を調整することにより、尿素水溶液の添加量と燃料の添加量との比率を任意の比率にすることが可能となる。
1     内燃機関
2     排気通路
3     タービン
4     排気浄化装置
5     パティキュレートフィルタ
6     燃料添加弁
7     還元剤添加弁
8     ECU
9     クランクポジションセンサ
10   アクセルポジションセンサ
11   排気温度センサ
12   バーナ
60   第1ポンプ
61   燃料タンク
70   第2ポンプ
71   還元剤タンク
120 エアポンプ
121 排出管

Claims (5)

  1.  内燃機関の排気通路に配置され、貴金属触媒を具備する選択還元型触媒と、
     前記選択還元型触媒より上流の排気通路に配置され、アンモニア由来の還元剤を排気中に添加する添加装置と、
     前記選択還元型触媒より上流において排気中に燃料を供給する燃料供給装置と、
     前記添加装置から排気中へ還元剤を添加させるときに、前記燃料供給装置から燃料を供給させる制御部と、
    を備える内燃機関の排気浄化システム。
  2.  請求項1において、前記選択還元型触媒の温度と相関する温度を測定する測定部をさらに備え、
     前記制御部は、前記測定部により測定された温度に応じて、前記添加装置から添加される還元剤の量と前記燃料供給装置から供給される燃料の量とを変更する内燃機関の排気浄化システム。
  3.  請求項2において、前記制御部は、前記測定部により測定された温度が高いときは低いときに比べ、還元剤の量が少なくなり且つ燃料の量が多くなるように前記添加装置及び前記燃料供給装置を制御する内燃機関の排気浄化システム。
  4.  請求項1乃至3の何れか1項において、前記選択還元型触媒より上流の排気通路に配置され、排気の温度を調整する調温装置をさらに備える内燃機関の排気浄化システム。
  5.  請求項4において、前記調温装置は、燃料と二次空気を燃焼させるバーナである内燃機関の排気浄化システム。
     
PCT/JP2010/058036 2010-05-12 2010-05-12 内燃機関の排気浄化システム WO2011142011A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/696,972 US8783023B2 (en) 2010-05-12 2010-05-12 Exhaust gas purification system for internal combustion engine
EP10851394.6A EP2570625B1 (en) 2010-05-12 2010-05-12 Exhaust gas purification system for internal combustion engine
JP2012514639A JP5397542B2 (ja) 2010-05-12 2010-05-12 内燃機関の排気浄化システム
PCT/JP2010/058036 WO2011142011A1 (ja) 2010-05-12 2010-05-12 内燃機関の排気浄化システム
CN201080066707.2A CN102892984B (zh) 2010-05-12 2010-05-12 内燃机的排气净化系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/058036 WO2011142011A1 (ja) 2010-05-12 2010-05-12 内燃機関の排気浄化システム

Publications (1)

Publication Number Publication Date
WO2011142011A1 true WO2011142011A1 (ja) 2011-11-17

Family

ID=44914079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058036 WO2011142011A1 (ja) 2010-05-12 2010-05-12 内燃機関の排気浄化システム

Country Status (5)

Country Link
US (1) US8783023B2 (ja)
EP (1) EP2570625B1 (ja)
JP (1) JP5397542B2 (ja)
CN (1) CN102892984B (ja)
WO (1) WO2011142011A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2677150A3 (en) * 2012-06-21 2015-09-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus of internal combustion engine
EP2927448A4 (en) * 2012-12-03 2016-11-23 Toyota Motor Co Ltd EXHAUST GAS CLEANING SYSTEM OF A COMBUSTION ENGINE

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019102928A1 (de) 2019-02-06 2020-08-06 Volkswagen Aktiengesellschaft Abgasnachbehandlungssystem sowie Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102019210413B4 (de) * 2019-07-15 2021-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Abgasnachbehandlung
DE102019210415B4 (de) * 2019-07-15 2021-03-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Abgasnachbehandlung
CN114870888A (zh) * 2022-05-20 2022-08-09 上海歌地催化剂有限公司 一种scr催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08284641A (ja) * 1995-04-11 1996-10-29 Toyota Autom Loom Works Ltd 過給機付きエンジンの排ガス浄化装置
JP2008031970A (ja) 2006-07-31 2008-02-14 Honda Motor Co Ltd NOx低減化システムの制御方法
JP2008157188A (ja) 2006-12-26 2008-07-10 Mitsubishi Fuso Truck & Bus Corp 排気浄化装置
JP2008545085A (ja) 2005-07-06 2008-12-11 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング 内燃機関排出ガス流中のパティキュレート割合および酸化窒素割合を減らすための方法および相応する排出ガス精製ユニット
JP2009013931A (ja) 2007-07-06 2009-01-22 Hino Motors Ltd 排気浄化装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6415602B1 (en) * 2000-10-16 2002-07-09 Engelhard Corporation Control system for mobile NOx SCR applications
US7481983B2 (en) * 2004-08-23 2009-01-27 Basf Catalysts Llc Zone coated catalyst to simultaneously reduce NOx and unreacted ammonia
DE102004049289B4 (de) * 2004-10-09 2018-02-15 Robert Bosch Gmbh Abgasnachbehandlungssystem und Abgasnachbehandlungsverfahren für einen Verbrennungsmotor
JP4972914B2 (ja) * 2005-11-21 2012-07-11 いすゞ自動車株式会社 排気ガス浄化システムの再生制御方法及び排気ガス浄化システム
JP4626854B2 (ja) * 2005-11-29 2011-02-09 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8109077B2 (en) * 2006-10-11 2012-02-07 Tenneco Automotive Operating Company Inc. Dual injector system for diesel emissions control
JP4900002B2 (ja) * 2007-04-05 2012-03-21 トヨタ自動車株式会社 内燃機関の排気浄化システム
KR101168621B1 (ko) * 2007-07-04 2012-07-30 도요타 지도샤(주) 내연 기관의 배기 정화 시스템
JP4910932B2 (ja) * 2007-08-01 2012-04-04 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2009228611A (ja) * 2008-03-25 2009-10-08 Toyota Central R&D Labs Inc 排気浄化装置
US20100089042A1 (en) * 2008-10-14 2010-04-15 Gm Global Technology Operations, Inc. Two-stage regeneration of diesel particulate filter
JP5071341B2 (ja) * 2008-10-17 2012-11-14 マツダ株式会社 エンジンの排気浄化装置
US8635855B2 (en) * 2009-06-17 2014-01-28 GM Global Technology Operations LLC Exhaust gas treatment system including a lean NOx trap and two-way catalyst and method of using the same
US8904760B2 (en) * 2009-06-17 2014-12-09 GM Global Technology Operations LLC Exhaust gas treatment system including an HC-SCR and two-way catalyst and method of using the same
US20100326059A1 (en) * 2009-06-26 2010-12-30 Gm Global Technology Operations, Inc. Selective catalytic reduction exhaust aftertreatment system and engine incorporating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08284641A (ja) * 1995-04-11 1996-10-29 Toyota Autom Loom Works Ltd 過給機付きエンジンの排ガス浄化装置
JP2008545085A (ja) 2005-07-06 2008-12-11 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング 内燃機関排出ガス流中のパティキュレート割合および酸化窒素割合を減らすための方法および相応する排出ガス精製ユニット
JP2008031970A (ja) 2006-07-31 2008-02-14 Honda Motor Co Ltd NOx低減化システムの制御方法
JP2008157188A (ja) 2006-12-26 2008-07-10 Mitsubishi Fuso Truck & Bus Corp 排気浄化装置
JP2009013931A (ja) 2007-07-06 2009-01-22 Hino Motors Ltd 排気浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2570625A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2677150A3 (en) * 2012-06-21 2015-09-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus of internal combustion engine
EP2927448A4 (en) * 2012-12-03 2016-11-23 Toyota Motor Co Ltd EXHAUST GAS CLEANING SYSTEM OF A COMBUSTION ENGINE

Also Published As

Publication number Publication date
EP2570625B1 (en) 2016-03-30
US20130055703A1 (en) 2013-03-07
CN102892984B (zh) 2015-03-18
EP2570625A1 (en) 2013-03-20
JPWO2011142011A1 (ja) 2013-07-22
JP5397542B2 (ja) 2014-01-22
EP2570625A8 (en) 2013-06-05
EP2570625A4 (en) 2015-01-28
CN102892984A (zh) 2013-01-23
US8783023B2 (en) 2014-07-22

Similar Documents

Publication Publication Date Title
JP5293811B2 (ja) エンジンの排気浄化装置
JP6149930B2 (ja) 内燃機関の排気浄化システム
JP5397542B2 (ja) 内燃機関の排気浄化システム
JP6245309B2 (ja) 内燃機関の制御装置
WO2014038550A1 (ja) 内燃機関の制御システム
JP2008163856A (ja) 内燃機関の排気浄化装置
JP5158214B2 (ja) 内燃機関の排気浄化装置
JP5120503B2 (ja) 内燃機関
WO2010087005A1 (ja) 排気浄化装置
WO2016194735A1 (ja) 内燃機関の制御装置
WO2012066606A1 (ja) 内燃機関の排気浄化装置
JP5672296B2 (ja) 内燃機関の排気浄化システム
WO2013179487A1 (ja) 内燃機関の排気浄化装置
WO2014112311A1 (ja) 内燃機関の排気浄化装置
JP2010185434A (ja) 内燃機関の排気浄化装置
JP4375311B2 (ja) 内燃機関の排気浄化システム
CN103518045A (zh) 内燃机的排气净化装置
WO2012137247A1 (ja) バーナー装置を備える内燃機関
JP2013234608A (ja) 排気浄化装置の昇温制御システム
JP7298575B2 (ja) 内燃機関の排気浄化システム
JP7407606B2 (ja) 排気浄化装置及び排気浄化方法
JP2009215977A (ja) 排気浄化装置
JP5652255B2 (ja) 内燃機関の排気浄化装置
JP2016109097A (ja) 排気浄化装置
JP2022054628A (ja) 内燃機関の排気浄化システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066707.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851394

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012514639

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13696972

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010851394

Country of ref document: EP