WO2011036939A1 - Molten glass manufacturing device, molten glass manufacturing method, and sheet glass manufacturing method using the device and the method - Google Patents
Molten glass manufacturing device, molten glass manufacturing method, and sheet glass manufacturing method using the device and the method Download PDFInfo
- Publication number
- WO2011036939A1 WO2011036939A1 PCT/JP2010/062444 JP2010062444W WO2011036939A1 WO 2011036939 A1 WO2011036939 A1 WO 2011036939A1 JP 2010062444 W JP2010062444 W JP 2010062444W WO 2011036939 A1 WO2011036939 A1 WO 2011036939A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molten glass
- bubbler
- row
- bubblers
- glass
- Prior art date
Links
- 239000006060 molten glass Substances 0.000 title claims abstract description 169
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 87
- 239000005357 flat glass Substances 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000002844 melting Methods 0.000 claims abstract description 84
- 230000008018 melting Effects 0.000 claims abstract description 84
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 56
- 239000011521 glass Substances 0.000 claims abstract description 51
- 238000004090 dissolution Methods 0.000 claims description 23
- 239000007789 gas Substances 0.000 claims description 16
- 239000002994 raw material Substances 0.000 claims description 11
- 239000011449 brick Substances 0.000 claims description 7
- 239000012943 hotmelt Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 229910001260 Pt alloy Inorganic materials 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910004298 SiO 2 Inorganic materials 0.000 claims 1
- 239000003513 alkali Substances 0.000 abstract description 9
- 239000000758 substrate Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000011295 pitch Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000000265 homogenisation Methods 0.000 description 6
- 230000001737 promoting effect Effects 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000005361 soda-lime glass Substances 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 238000006124 Pilkington process Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 238000009849 vacuum degassing Methods 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000003280 down draw process Methods 0.000 description 1
- 238000002438 flame photometric detection Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/18—Stirring devices; Homogenisation
- C03B5/193—Stirring devices; Homogenisation using gas, e.g. bubblers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/18—Stirring devices; Homogenisation
- C03B5/183—Stirring devices; Homogenisation using thermal means, e.g. for creating convection currents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/235—Heating the glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/42—Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
- C03B5/43—Use of materials for furnace walls, e.g. fire-bricks
Definitions
- the present invention relates to a molten glass production apparatus, a molten glass production method, and a plate glass production method using them. More specifically, the present invention relates to a molten glass manufacturing apparatus, a molten glass manufacturing method, and a plate glass manufacturing method using them for producing high-quality alkali-free glass with high homogeneity.
- alkali-free glass that does not substantially contain alkali metal ions in order to increase the insulating properties of the glass substrate.
- alkali-free glass is preferable for the production of a glass substrate for FPD because it has a small coefficient of thermal expansion.
- the melting furnace described in Patent Document 1 the melting furnace is divided into an upstream zone and a downstream zone by a transverse sill, and a molten glass circulation flow (upstream circulation flow, downstream circulation flow) is formed in each zone. , Melting raw materials and homogenizing molten glass. More specifically, the glass raw material is melted by forming an upstream circulation flow in the upstream zone, and the molten glass is homogenized by forming a downstream circulation flow in the downstream zone.
- a bubbler is provided on the upstream side of the crossing sill in order to control the upstream circulation flow and the downstream circulation flow.
- the melting furnace (melting tank) described in Patent Document 2 does not have a structure corresponding to the transverse sill in the melting furnace described in Patent Document 1, but includes at least one row of bubblers and at least two opposite burners. It describes using glass to melt and clarify.
- the melting furnaces described in Patent Documents 1 and 2 are not necessarily suitable for producing high-quality alkali-free glass.
- T ⁇ As an index of the melting temperature of glass, T ⁇ , that is, a temperature at which the glass viscosity ⁇ becomes 10 2 [dPa ⁇ S] is used, but non-alkali glass has a T ⁇ of 1500 to 1760 ° C.
- alkali-containing glass such as lime glass
- T ⁇ is 100 ° C. or higher, and homogenization is difficult. For this reason, it cannot be sufficiently homogenized in a melting furnace having a layout for general mass production such as soda lime glass described in Patent Documents 1 and 2, and glass products (for FPDs) that require particularly high homogeneity. It was not necessarily suitable for the production of glass substrates and the like.
- the alkali-free glass has a higher T ⁇ than the alkali-containing glass such as soda lime glass, and therefore the temperature of the molten glass in the melting furnace inevitably increases. If the temperature of the molten glass is high, the erosion action of the molten glass on the in-furnace structure is enhanced accordingly. Therefore, in the case of non-alkali glass, there is a step that affects the flow of the molten glass at the bottom of the melting furnace, such as a crossing threshold in the melting furnace described in Patent Document 1 and a fining table in the melting furnace described in Patent Document 2. Then, the erosion of the level
- the present invention provides a molten glass manufacturing apparatus, a molten glass manufacturing method, and a plate glass using them, which are suitable for producing high-quality non-alkali glass with high homogeneity
- An object is to provide a manufacturing method.
- the present invention has been made on the basis of the above findings by the inventors of the present invention, and is used for producing a molten glass having a temperature T ⁇ of 1500 to 1760 ° C. at which the glass viscosity ⁇ is 10 2 [dPa ⁇ S].
- the molten glass manufacturing apparatus has a melting tank for melting the glass raw material, A plurality of first bubblers and a plurality of second bubblers over the width direction of the molten glass flow path in the vicinity of the bottom surface of the melting tank;
- the first bubbler is provided on the upstream side of the molten glass flow path from the second bubbler,
- the dissolution tank has a burner for heating the upper space of the dissolution tank,
- the distance from the downstream end of the molten glass flow path to the second bubbler row is 0.45L F to 0.55L F
- the distance L between the first bubbler row and the second bubbler row P is 500 to 1000 mm
- a distance L B1 between the row of the first bubblers and the burner closest to the upstream side of the row in the flow direction of the molten glass in the melting tank is 0 to 2000 mm
- a distance L B2 between the second bubbler row and the burner closest to the downstream side of the row in the flow direction of the molten glass in the melting tank is 800 to 2500 mm
- the molten glass manufacturing apparatus characterized by it being LB2 > LB1 is provided.
- the present invention is also a method for producing molten glass using the above-described molten glass production apparatus, wherein the average flow rate of the gas supplied from the first bubbler is V 1 [liter / minute], and the first The average flow rate of the gas supplied from the second bubbler is V 2 [liter / min], the ambient temperature above the first bubbler is T 1 [° C.], and the ambient temperature above the second bubbler is Provided is a molten glass production method for producing molten glass under the conditions of V 1 > V 2 and T 1 > T 2 when T 2 [° C.] is satisfied.
- the present invention also provides a plate glass manufacturing method for forming molten glass obtained by the above-described molten glass manufacturing method of the present invention into plate glass.
- the molten glass manufacturing apparatus and molten glass manufacturing method of the present invention are suitable for the production of high-quality alkali-free glass with high homogeneity. Since the plate glass manufacturing method of this invention can manufacture plate glass with high homogeneity and high transparency, it is suitable for manufacture of the board
- FIG. 1 is a cross-sectional view of an embodiment of a melting tank in the molten glass production apparatus of the present invention.
- FIG. 2 is a plan view of the dissolution tank 10 shown in FIG. However, the upper wall surface of the dissolution tank 10 is omitted.
- T ⁇ is used as an index of the melting temperature of glass.
- the glass targeted by the present invention has a T ⁇ of 1500 to 1760 ° C., which is 100 ° C. or more higher than the T ⁇ of general alkali-containing glass such as soda lime glass, so it is difficult to homogenize the molten glass.
- the molten glass manufacturing apparatus and the molten glass manufacturing method of the present invention are suitable for homogenizing such molten glass.
- a specific example of the glass having a T ⁇ of 1500 to 1760 ° C. is particularly alkali-free glass. From this point, the molten glass production apparatus and the molten glass production method of the present invention produce a predetermined amount (20 to 100 tons / day) of glass products with strict quality requirements, such as glass substrates for FPD. Suitable for
- FIG. 1 is a cross-sectional view of one embodiment of a melting tank in the molten glass production apparatus of the present invention
- FIG. 2 is a plan view of the melting tank shown in FIG.
- a glass raw material inlet 11 is provided at the upstream end of the melting tank 10.
- the glass raw material charged from the charging port 11 is melted by heating by the burner 15 to become molten glass G, and is held in the melting tank 10.
- a discharge port 12 for discharging the molten glass G to the next process is provided at the downstream end of the melting tank 10.
- the discharge port 12 communicates with the downstream conduit 20.
- a plurality of first bubblers 13 and a plurality of second bubblers 14 are provided in the vicinity of the bottom surface of the dissolution tank 10 shown in FIGS.
- the plurality of first bubblers 13 and the plurality of second bubblers 14 have a predetermined interval (pitch) over the width direction of the melting tank 10, more specifically, the width direction of the molten glass flow path of the melting tank 10. ) Is opened.
- the first bubbler 13 is provided upstream of the second bubbler 14 in the molten glass flow path, and a predetermined interval is provided between the first bubbler 13 row and the second bubbler 14 row. Is provided.
- the preferred range of the pitches of the individual bubblers in the row direction of the first bubbler 13 and the second bubbler 14 and the distance between the row of the first bubblers 13 and the row of the second bubblers 14 is as follows. It will be described later.
- burners 15 are arranged on both sides of the melting tank 10 so as to be positioned above the molten glass G held in the melting tank 10.
- the burners 15 are provided at equal intervals over the entire length of the dissolution tank 10 except for an exception part to be described later.
- the melting tank 10 in the molten glass manufacturing apparatus of the present invention has Patent Documents 1 and 2 at the bottom of the molten glass channel by arranging the first and second bubblers 13 and 14 and the burner 15 in a specific arrangement described later. Formation of a circulating flow of the molten glass G (upstream circulating flow 100, downstream circulating flow 101) in the melting tank 10 without providing a step structure that affects the molten glass flow as described in FIG. Further, the flow rate of the upstream circulating flow 100 and the flow rate of the downstream circulating flow 101 can be controlled to have a predetermined relationship.
- the melting tank 10 in the molten glass production apparatus of the present invention is suitable for producing glass having a T ⁇ of 1500 to 1760 ° C. because there is no step structure that causes erosion by the molten glass at the bottom of the molten glass flow path. is there.
- the melting tank 10 in the molten glass production apparatus of the present invention is a distance from the upstream end of the molten glass flow path to the first bubbler 13 row when the length of the molten glass flow path of the melting tank 10 is L F.
- L F length of the molten glass flow path of the melting tank 10
- a distance from the downstream end of the molten glass flow path to the row of the second bubbler 14 is 0.45L F ⁇ 0.55L F. Therefore, compared with the conventional melting tank (melting furnace) as described in Patent Documents 1 and 2, the length of the melting tank 10 is short, and the length of the part forming the downstream circulating flow in the melting tank is also short. .
- the length L F of the molten glass channel of the melting tank 10 of the present invention varies depending on the width of the molten glass channel, but is preferably 10 to 30 m, more preferably 10 to 25 m, and even more preferably 15 to 22 m.
- the width of the molten glass channel is preferably 5 to 10 m, more preferably 5.5 to 9 m, and still more preferably 6.5 to 8 m.
- the flow rates of the gases 16 and 17 from the first bubbler 13 and the second bubbler 14 are set to a specific relationship described later, and the burner 15 is set to a specific arrangement described later.
- the flow rate of the upstream circulating flow 100 and the flow rate of the downstream circulating flow 101 have a predetermined relationship. Can be controlled.
- T ⁇ 1500 to 1760 ° C.
- the gas 16 and 17 supplied from the first bubbler 13 and the second bubbler 14 should use molten glass G and those that do not adversely affect the components of the melting tank 10 such as the bubblers 13 and 14. Is preferred. Specific examples of such a gas include air, nitrogen, oxygen, helium, and argon.
- the material of the bubblers 13, 14 it is preferable to use a gas that does not contain oxygen, such as nitrogen, helium, and argon, as the gases 16, 17 supplied from the bubbler 13, the bubbler 14. .
- nitrogen is particularly preferred.
- the distance from the upstream end of the molten glass flow path to the row of the first bubblers 13 is preferably 0.43L F to 0.46L F , and the second end from the downstream end of the molten glass flow path.
- the distance to the row of bubblers 14 is preferably 0.47L F to 0.54L F.
- L P is 500 to 1000 mm.
- L P satisfies the above range, it is excellent in the effect of promoting the formation of a circulating flow of the molten glass G (upstream circulating flow 100, downstream circulating flow 101) in the melting tank 10, and upstream.
- This is preferable in controlling the flow rate of the side circulation flow 100 and the flow rate of the downstream circulation flow 101 so as to have a predetermined relationship.
- L P is less than 500 mm, the distance between the row of the first bubblers 13 and the row of the second bubblers 14 is too close, so the circulating flow of the molten glass G in the melting tank 10 (upstream circulating flow 100 In addition, the effect of promoting the formation of the downstream circulation flow 101) is poor, and it is difficult to control the flow rate of the upstream circulation flow 100 and the flow rate of the downstream circulation flow 101 to have a predetermined relationship.
- L P is preferably 600 to 800 mm.
- the pitch p between the individual bubblers in the row direction of the bubblers that is, the distance between the individual bubblers in the width direction of the molten glass flow path of the melting tank 10 is 400 to It is preferable that it is 700 mm. If the pitch p between the individual bubblers is in the above range, it is excellent in the effect of promoting the formation of a circulating flow (upstream circulating flow 100, downstream circulating flow 101) of the molten glass G in the melting tank 10, and upstream. This is preferable for controlling the flow rate of the side circulation flow 100 and the flow rate of the downstream circulation flow 101 so as to have a predetermined relationship, and is excellent in terms of manufacturing cost.
- the pitch p between the individual bubblers exceeds 700 mm, the distance between the individual bubblers is too wide, so that the molten glass G circulating flow (upstream circulating flow 100, downstream circulating flow 101) in the melting tank 10
- the effect of promoting the formation may be insufficient.
- a difference occurs in the acceleration, and the flow rate of the circulating flow may be uneven, which is not preferable from the viewpoint of homogenizing the molten glass G.
- the flow rate of the upstream circulation flow 100 and the flow rate of the downstream circulation flow 101 may be difficult to control the flow rate of the upstream circulation flow 100 and the flow rate of the downstream circulation flow 101 so as to have a predetermined relationship.
- the pitch p between individual bubblers is less than 400 mm, it no longer contributes to the promotion of the formation of the circulating flow of the molten glass G (upstream circulating flow 100, downstream circulating flow 101) in the melting tank 10. Rather, from the viewpoint of cost effectiveness, the number of the first and second bubblers 13 and 14 provided in the melting tank 10 becomes excessive, which leads to an increase in the manufacturing cost of the molten glass, which is not preferable.
- the first bubbler 13 and the second bubbler 14 are arranged so as not to be coaxial with respect to the flow direction of the molten glass in the melting tank 10.
- the protruding ports of the first bubbler 13 and the protruding ports of the second bubbler 14 are arranged in a staggered manner, and the protruding port of the first bubbler 13 and the second bubbler 14 are arranged. There is no coexistence with the protruding port. In such an arrangement, even if one of the protruding ports of the first bubbler 13 stops functioning, due to the presence of the protruding ports of the second bubbler 14 arranged in a staggered manner downstream.
- the effect of promoting the formation of the circulating flow of the molten glass G (upstream circulating flow 100, downstream circulating flow 101) in the melting tank 10 is not impaired, and the flow rate and the downstream of the upstream circulating flow 100 are not impaired.
- the flow rate of the side circulation flow 101 can be controlled to have a predetermined relationship.
- Burners 15 are provided at equal intervals over the entire length of the dissolution tank 10 on both sides of the dissolution tank 10 shown in FIGS. However, the burner 15 is not provided above the second bubbler 14. As will be described in detail later, in the present invention, the average flow rate V 2 of the gas 17 supplied from the second bubbler 14 is made smaller than the average flow rate V 1 of the gas 16 supplied from the first bubbler 13 (control 1). ) And lowering the ambient temperature T 2 above the second bubbler 14 to be lower than the ambient temperature T 1 above the first bubbler 13 (control 2), the unit of the downstream circulating flow 101 per unit time It is possible to control the flow rate of the upstream circulating flow 100 and the downstream circulating flow 101 so as to have a predetermined relationship by decreasing the flow rate. Thereby, when producing a molten glass having a T ⁇ of 1500 to 1760 ° C., homogenization of the molten glass can be promoted, and a high-quality molten glass with high homogeneity can be obtained.
- the atmospheric temperature T 2 above the second bubbler can be made lower than the atmospheric temperature T 1 above the first bubbler.
- L B2 ⁇ L B1 ⁇ 300 mm is preferable
- L B2 ⁇ L B1 ⁇ 500 mm is more preferable
- L B2 ⁇ L B1 ⁇ 800 mm is further preferable.
- the burner 15 is provided above the row of the first bubblers 13, but as long as the relationship of L B2 > L B1 is satisfied,
- the nearest burner 15 may be arranged some distance away from the upstream side of the row.
- the ambient temperature above the first bubbler 13 becomes too low and the upstream side circulation flow 100 becomes weak, and the glass Problems such as insufficient melting of the raw materials and insufficient homogenization of the molten glass G in the downstream region of the melting tank 10 occur.
- L B1 500 to 1500 mm is preferable.
- the pitch between adjacent burners 15 is preferably 600 to 2600 mm, and more preferably 800 to 2400 mm, although it depends on the type of burner 15 and the layout of the dissolution tank 10.
- Combustion in the burner 15 can be performed by mixing the fuel with oxygen gas and burning it, or mixing the fuel with oxygen gas and air and burning it. By using these methods, moisture can be contained in the molten glass.
- the molten glass In the post-process of the molten glass sent from the melting tank 10 to the downstream conduit 20, when the bubbles in the molten glass are defoamed by vacuum degassing, the molten glass preferably contains moisture. Therefore, the combustion as described above is preferable.
- the constituent material of the melting tank 10 in contact with the molten glass G is required to be excellent in heat resistance and corrosion resistance to the molten glass. Therefore, a refractory brick containing ZrO 2 is used. of the bottom surface of the dissolving tank 10, in a portion of the 0.1 L F ⁇ 0.3 L F to the upstream side from the row of first bubbler 13, ZrO 2 is not more than 97% 85% by mass%, the balance being SiO It is preferable to use a glassy hot-melt refractory mainly composed of 2 .
- each hot-melt refractory is preferably 50 to 120 mm, and two to three hot-melt refractories are preferably laminated. Furthermore, 2 to 5 layers of other refractory bricks containing ZrO 2 can be laminated on the outside of the layer of the hot-melt refractory thus formed. In addition, it is preferable to comprise all the parts which contact
- each refractory brick can be laminated
- the molten glass manufacturing method of this invention is demonstrated.
- the molten glass is manufactured while performing the above controls 1 and 2.
- the flow rate per unit time of the downstream circulation flow 101 is lowered, and the flow rate of the upstream circulation flow 100 and the flow rate of the downstream circulation flow 101 have a predetermined relationship described later. Can be controlled.
- V 1 is preferably 0.5 to 20 liters / minute, more preferably 0.7 to 5 liters / minute, and 0.9 to 3 liters / minute. More preferably, it is 1.8 to 2.6 liters / minute.
- the V 2 is preferably 0.3 to 19.8 liters / minute, more preferably 0.4 to 4.8 liters / minute, and 0.5 to 2 liters / minute. Is more preferable, and 0.9 to 2.0 liter / min is particularly preferable.
- V 1 ⁇ V 2 ⁇ 0.2 liter / min is preferable, V 1 ⁇ V 2 ⁇ 0.4 liter / min is more preferable, V 1 ⁇ V 2 ⁇ 0.6 liter / min is more preferable, V 1 ⁇ V 2 ⁇ 1.0 l / min is particularly preferred.
- the T 1 is preferably 1590 to 1710 ° C., more preferably 1600 to 1695 ° C.
- the T 2 is preferably 1570 to 1690 ° C., more preferably 1580 to 1675 ° C.
- T 1 -T 2 is preferably 10 to 35 ° C.
- T 1 -T 2 is more preferably 15 to 30 ° C., and further preferably 19 to 26 ° C.
- T 1 and T 2 can be measured by the following method. (Measurement position) T 1 : Intermediate position between the burner closest to the upstream side of the first row of bubblers and the latest burner positioned further upstream than the burner.
- F 1 and F 2 can be measured by the following method.
- F 2 distance from the downstream end of the molten glass flow path at 0.22L F ⁇ 0.30L F, near the center in the width direction of the molten glass flow path.
- Video of the flow of bubbles on the surface of the molten glass is taken, and the moving time with respect to the moving distance of the bubbles is measured to obtain the flow velocity. Repeat this procedure 2-3 times to determine the average flow rate.
- the plate glass manufacturing method of the present invention the molten glass obtained by the above-described molten glass manufacturing method of the present invention is formed into a plate glass.
- various forming methods such as a float method and a downdraw method can be used. In the case of a glass having a T ⁇ of 1500 to 1760 ° C., the float method is particularly preferable.
- bubbles in the molten glass may be degassed by vacuum degassing.
- the plate glass manufacturing method of the present invention since the molten glass having high homogeneity obtained by the molten glass manufacturing method of the present invention is formed into a plate glass, a plate glass having high homogeneity and high transparency can be obtained.
- the plate glass production apparatus of the present invention can be applied to the production of plate glass for various uses. However, since a plate glass having high homogeneity and high transparency can be obtained, the homogeneity of the glass substrate for FPD can be obtained. It is particularly preferable to apply it to the production of plate glass for applications in which the demands of these are extremely strict.
- T eta is the production of alkali-free glass of 1500 ⁇ 1760 ° C..
- Molten glass flow path length L F 16 to 25 m Molten glass channel width: 5.5-9m Distance from the upstream end of the molten glass flow path to the first bubbler 13 row: 0.43L F to 0.46L F Distance from the downstream end of the molten glass flow path to the second bubbler 14 row: 0.47L F to 0.54L F Distance L P between first row of bubblers 13 and second row of bubblers 14: 600 to 800 mm Pitch of individual bubblers 13 and 14 in the row direction of bubblers p: 400 to 700 mm Distance L B1 between the row of first bubblers 13 and the burner 15 nearest to the upstream side of the row in the flow direction of the molten glass in the melting tank: 500 to 1500 mm Distance L B2 between the row of second bubblers 14 and the burner 15 closest to the downstream side of the row in the flow direction of the molten glass in the melting tank: 1000 to 2000 mm L B2 -L B1 ⁇ 500mm Distance between individual burners in the flow direction of the molten glass in the melting tank: 800
- V 1 1.8 to 2.6 liters / minute
- V 2 0.9 to 2.0 liters / minute
- T 1 and T 2 are measured by the method described above.
- T 1 1590-1710 ° C
- T 2 1580 to 1675 ° C.
- T 1 -T 2 10 to 35 ° C
- the average flow rate F 2 in average flow rate F 1 and the downstream circulation flow 101 of the upstream circulation flow 100 in the dissolution tank 10 is measured by the method described above. The results are as follows.
- the molten glass production apparatus and molten glass production method of the present invention are suitable for the production of high-quality alkali-free glass with high homogeneity. Moreover, since the plate glass manufacturing method of this invention can manufacture plate glass with high homogeneity and transparency, it is suitable for manufacture of the board
- Dissolution tank 11 Input port 12: Discharge port 13: First bubbler 14: Second bubbler 15: Burner 16: Gas from the first bubbler 17: Gas from the second bubbler 20: Downstream side Conduit 100: Upstream circulating flow 101: Downstream circulating flow
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Glass Compositions (AREA)
Abstract
Description
ガラスの溶解温度の指標には、Tη、すなわち、ガラス粘度ηが102[dPa・S]となる温度が用いられるが、無アルカリガラスはTηが1500~1760℃であり、通常のソーダライムガラス等のアルカリ含有ガラスに比べてTηが100℃以上高く、均質化が難しい。このため、特許文献1,2に記載のソーダライムガラス等の一般的な大量生産用等のレイアウトの溶融炉では十分均質化することができず、均質性に対する要求が特に厳しいガラス製品(FPD用のガラス基板等)の製造には必ずしも適していなかった。 However, the melting furnaces described in Patent Documents 1 and 2 are not necessarily suitable for producing high-quality alkali-free glass.
As an index of the melting temperature of glass, T η , that is, a temperature at which the glass viscosity η becomes 10 2 [dPa · S] is used, but non-alkali glass has a T η of 1500 to 1760 ° C. Compared with alkali-containing glass such as lime glass, T η is 100 ° C. or higher, and homogenization is difficult. For this reason, it cannot be sufficiently homogenized in a melting furnace having a layout for general mass production such as soda lime glass described in Patent Documents 1 and 2, and glass products (for FPDs) that require particularly high homogeneity. It was not necessarily suitable for the production of glass substrates and the like.
前記溶解槽の底面近傍に、溶融ガラス流路の幅方向にわたって複数の第1のバブラーおよび複数の第2のバブラーを有し、
前記第1のバブラーは、前記の第2のバブラーよりも溶融ガラス流路の上流側に設けられており、
前記溶解槽は、該溶解槽の上部空間を加熱するためのバーナーを有し、
前記溶解槽の溶融ガラス流路の長さをLFとするとき、前記溶融ガラス流路の上流端から前記第1のバブラーの列までの距離が0.4LF~0.5LFであり、前記溶融ガラス流路の下流端から前記第2のバブラーの列までの距離が0.45LF~0.55LFであり、前記第1のバブラーの列と前記第2のバブラー列との距離LPが500~1000mmであり、
前記溶解槽での溶融ガラスの流路方向における、前記第1のバブラーの列と該列の上流側に直近のバーナーとの距離LB1が0~2000mmであり、
前記溶解槽での溶融ガラスの流路方向における、前記第2のバブラーの列と該列の下流側に直近のバーナーとの距離LB2が800~2500mmであり、
かつ、LB2>LB1であることを特徴とする溶融ガラス製造装置を提供する。 The present invention has been made on the basis of the above findings by the inventors of the present invention, and is used for producing a molten glass having a temperature T η of 1500 to 1760 ° C. at which the glass viscosity η is 10 2 [dPa · S]. It is a glass manufacturing apparatus, the molten glass manufacturing apparatus has a melting tank for melting the glass raw material,
A plurality of first bubblers and a plurality of second bubblers over the width direction of the molten glass flow path in the vicinity of the bottom surface of the melting tank;
The first bubbler is provided on the upstream side of the molten glass flow path from the second bubbler,
The dissolution tank has a burner for heating the upper space of the dissolution tank,
When the length of the molten glass flow path of the melting tank is L F , the distance from the upstream end of the molten glass flow path to the first bubbler row is 0.4 L F to 0.5 L F. The distance from the downstream end of the molten glass flow path to the second bubbler row is 0.45L F to 0.55L F , and the distance L between the first bubbler row and the second bubbler row P is 500 to 1000 mm,
A distance L B1 between the row of the first bubblers and the burner closest to the upstream side of the row in the flow direction of the molten glass in the melting tank is 0 to 2000 mm;
A distance L B2 between the second bubbler row and the burner closest to the downstream side of the row in the flow direction of the molten glass in the melting tank is 800 to 2500 mm;
And the molten glass manufacturing apparatus characterized by it being LB2 > LB1 is provided.
本発明の板ガラス製造方法は、均質性が高く、透明性が高い板ガラスを製造することができるため、FPD用の基板の製造に好適である。 The molten glass manufacturing apparatus and molten glass manufacturing method of the present invention are suitable for the production of high-quality alkali-free glass with high homogeneity.
Since the plate glass manufacturing method of this invention can manufacture plate glass with high homogeneity and high transparency, it is suitable for manufacture of the board | substrate for FPD.
この点から、本発明の溶融ガラス製造装置、および、溶融ガラス製造方法は、FPD用のガラス基板のような、品質についての要求が厳しいガラス製品を所定量(20~100トン/日)生産するのに適している。 As described above, T η is used as an index of the melting temperature of glass. The glass targeted by the present invention has a T η of 1500 to 1760 ° C., which is 100 ° C. or more higher than the T η of general alkali-containing glass such as soda lime glass, so it is difficult to homogenize the molten glass. The molten glass manufacturing apparatus and the molten glass manufacturing method of the present invention are suitable for homogenizing such molten glass. A specific example of the glass having a T η of 1500 to 1760 ° C. is particularly alkali-free glass.
From this point, the molten glass production apparatus and the molten glass production method of the present invention produce a predetermined amount (20 to 100 tons / day) of glass products with strict quality requirements, such as glass substrates for FPD. Suitable for
溶解槽10の上流側の端部にはガラス原料の投入口11が設けられている。投入口11から投入されたガラス原料は、バーナー15による加熱によって溶解して溶融ガラスGとなり、溶解槽10内に保持される。溶解槽10の下流側の端部には、溶融ガラスGを次工程に払出すための払出し口12が設けられている。払出し口12は下流側の導管20と連通している。 FIG. 1 is a cross-sectional view of one embodiment of a melting tank in the molten glass production apparatus of the present invention, and FIG. 2 is a plan view of the melting tank shown in FIG. However, the upper wall surface of the
A glass
複数の第1のバブラー13、および、複数の第2のバブラー14は、溶解槽10の幅方向、より具体的には、溶解槽10の溶融ガラス流路の幅方向、にわたって所定の間隔(ピッチ)を開けて配設されている。
また、第1のバブラー13は、第2のバブラー14よりも溶融ガラス流路の上流側に設けられており、第1のバブラー13の列と第2のバブラー14の列との間には所定の間隔が設けられている。
なお、第1のバブラー13、および、第2のバブラー14の列方向における個々のバブラーのピッチ、ならびに、第1のバブラー13の列と第2のバブラー14の列との距離の好適範囲については後述する。 A plurality of
The plurality of
The
The preferred range of the pitches of the individual bubblers in the row direction of the
本発明の溶融ガラス製造装置における溶解槽10は、溶融ガラス流路の底部に溶融ガラスによる侵食が問題となる段差構造が存在しないため、Tηが1500~1760℃であるガラスの製造に好適である。 The
The
したがって、特許文献1,2に記載されているような従来の溶解槽(溶融炉)に比べて、溶解槽10の長さが短く、溶解槽における下流側循環流を形成する部位の長さも短い。
本発明の溶解槽10の溶融ガラス流路の長さLFは、溶融ガラス流路の幅によって異なるが、好ましくは10~30mであり、より好ましくは10~25mであり、さらに好ましくは15~22mである。
一方、溶融ガラス流路の幅は、好ましくは5~10mであり、より好ましくは5.5~9mであり、さらに好ましくは6.5~8mである。 The
Therefore, compared with the conventional melting tank (melting furnace) as described in Patent Documents 1 and 2, the length of the
The length L F of the molten glass channel of the
On the other hand, the width of the molten glass channel is preferably 5 to 10 m, more preferably 5.5 to 9 m, and still more preferably 6.5 to 8 m.
なお、第1のバブラー13および第2のバブラー14から供給するガス16,17には、溶融ガラスG、および、バブラー13,14等の溶解槽10の構成要素に悪影響を及ぼさないものを用いることが好ましい。このようなガスの具体例としては、空気、窒素、酸素、ヘリウム、アルゴン等が例示される。バブラー13,14の材料として、白金または白金合金が用いられる場合、バブラー13,バブラー14から供給するガス16,17には、窒素、ヘリウム、および、アルゴンといった酸素を含まないガスを用いることが好ましい。これらの中でも窒素が特に好ましい。 In the
In addition, the
LPが500mm未満だと、第1のバブラー13の列と、第2のバブラー14の列との距離が近すぎるため、溶解槽10内での溶融ガラスGの循環流(上流側循環流100、下流側循環流101)の形成を促進する効果に乏しく、かつ、上流側循環流100の流速と下流側循環流101の流速とを所定の関係になるように制御するのが困難である。
LPが1000mm超の場合も、第1のバブラー13の列と、第2のバブラー14の列との距離が広すぎるため、溶解槽10内での溶融ガラスGの循環流(上流側循環流100、下流側循環流101)の形成を促進する効果に乏しく、かつ、上流側循環流100の流速と下流側循環流101の流速とを所定の関係になるように制御するのが困難である。
溶解槽10において、LPが600~800mmであることが好ましい。 In the
If L P is less than 500 mm, the distance between the row of the
Even when L P is more than 1000 mm, the distance between the row of the
In the
個々のバブラー間のピッチpが700mm超だと、個々のバブラー間の距離が広すぎるため、溶解槽10内での溶融ガラスGの循環流(上流側循環流100、下流側循環流101)の形成を促進する効果が不十分となるおそれがあり、特に、溶融ガラス流路の幅方向において、部位によって、溶融ガラスGの循環流(上流側循環流100、下流側循環流101)の形成の促進に差が生じ、循環流の流速にムラが生じるおそれがあり、溶融ガラスGの均質化という点から好ましくない。また、上流側循環流100の流速と下流側循環流101の流速とを所定の関係になるように制御するのが困難になるおそれがある。
一方、個々のバブラー間のピッチpを400mm未満としても、溶解槽10内での溶融ガラスGの循環流(上流側循環流100、下流側循環流101)の形成の促進にはもはや寄与せず、むしろ、費用対効果の観点では溶解槽10内に設ける第1,第2のバブラー13,14の数が過剰となり、溶融ガラスの製造コストの増加につながることから好ましくない。 In the
If the pitch p between the individual bubblers exceeds 700 mm, the distance between the individual bubblers is too wide, so that the molten glass G circulating flow (upstream circulating
On the other hand, even if the pitch p between individual bubblers is less than 400 mm, it no longer contributes to the promotion of the formation of the circulating flow of the molten glass G (upstream circulating
図2に示す溶解槽10において、第1のバブラー13の突出口と第2のバブラー14の突出口とが千鳥状に配置されており、第1のバブラー13の突出口と第2のバブラー14の突出口とが同軸上に存在しない。
このような配置にした場合、第1のバブラー13の突出口のいずれかが機能しなくなった場合であっても、下流側に千鳥状に配置された第2のバブラー14の突出口の存在により、溶解槽10内での溶融ガラスGの循環流(上流側循環流100、下流側循環流101)の形成を促進する効果が損なわれることがなく、かつ、上流側循環流100の流速と下流側循環流101の流速とを所定の関係になるように制御することができる。 It is preferable that the
In the
In such an arrangement, even if one of the protruding ports of the
詳しくは後述するが、本発明では、第2のバブラー14から供給されるガス17の平均流量V2を第1のバブラー13から供給されるガス16の平均流量V1よりも小さくし(制御1)、かつ、第2のバブラー14の上方の雰囲気温度T2を第1のバブラー13の上方の雰囲気温度T1よりも低くすることにより(制御2)、下流側循環流101の単位時間当たりの流量を下げて、上流側循環流100の流速と下流側循環流101の流速とを所定の関係になるように制御することができる。これにより、Tηが1500~1760℃の溶融ガラスを製造する際に、溶融ガラスの均質化を促進することができ、均質性の高い高品質な溶融ガラスを得ることができる。
As will be described in detail later, in the present invention, the average flow rate V 2 of the
但し、第2のバブラー14の列と該列の下流側に直近のバーナー15とを離しすぎると、第2のバブラー14の上方の雰囲気温度が低くなりすぎて、却って溶融ガラスの均質化が不十分になる等の問題が生じる。また、溶解槽10の下流側の端部に設けられた払出し口12から払出される溶融ガラスGの温度が低くなり、後工程において減圧脱泡を行う場合に脱泡し難くなる等の問題が生じる。このため、LB2=2500mm以下とする必要がある。
したがって、LB2=800~2500mmである。なお、LB2=1000~2000mmであることが好ましく、LB2=1000~1600mmであることがより好ましい。 In order to achieve the above control 2, as shown in FIG. 2, it is necessary to arrange the row of the
However, if the row of the
Therefore, L B2 = 800 to 2500 mm. Note that L B2 = 1000 to 2000 mm is preferable, and L B2 = 1000 to 1600 mm is more preferable.
本発明において、LB2-LB1≧300mmであることが好ましく、LB2-LB1≧500mmであることがより好ましく、LB2-LB1≧800mmであることがさらに好ましい。 Further, in order to achieve the above control 2, in the
In the present invention, L B2 −L B1 ≧ 300 mm is preferable, L B2 −L B1 ≧ 500 mm is more preferable, and L B2 −L B1 ≧ 800 mm is further preferable.
したがって、LB1=0~2000mmである。なお、LB1=500~1500mmであることが好ましい。
また、隣り合うバーナー15間のピッチは、バーナー15の種類や溶解槽10のレイアウトにもよるが、600~2600mmが好ましく、800~2400mmがより好ましい。 On the other hand, in the
Therefore, L B1 = 0 to 2000 mm. Note that L B1 = 500 to 1500 mm is preferable.
The pitch between
溶解槽10底部の耐火レンガの外側には、該耐火レンガを冷却するための空冷または水冷等による冷却手段が設けられていると、耐火レンガの寿命が向上するため、好ましい。 The constituent material of the
It is preferable that cooling means by air cooling or water cooling for cooling the refractory brick is provided on the outer side of the refractory brick at the bottom of the
本発明の溶融ガラス製造方法では、上記制御1,2を行いつつ溶融ガラスを製造する。
上記制御1,2を行うことによって、下流側循環流101の単位時間当たりの流量を下げて、上流側循環流100の流速と下流側循環流101の流速とを、後述する所定の関係になるように制御することができる。 Next, the molten glass manufacturing method of this invention is demonstrated.
In the molten glass manufacturing method of the present invention, the molten glass is manufactured while performing the above controls 1 and 2.
By performing the above controls 1 and 2, the flow rate per unit time of the
また、V1-V2≧0.2リットル/分が好ましく、V1-V2≧0.4リットル/分がより好ましく、V1-V2≧0.6リットル/分がさらに好ましく、V1-V2≧1.0リットル/分が特に好ましい。 In the molten glass production method of the present invention, V 1 is preferably 0.5 to 20 liters / minute, more preferably 0.7 to 5 liters / minute, and 0.9 to 3 liters / minute. More preferably, it is 1.8 to 2.6 liters / minute. The V 2 is preferably 0.3 to 19.8 liters / minute, more preferably 0.4 to 4.8 liters / minute, and 0.5 to 2 liters / minute. Is more preferable, and 0.9 to 2.0 liter / min is particularly preferable.
Further, V 1 −V 2 ≧ 0.2 liter / min is preferable, V 1 −V 2 ≧ 0.4 liter / min is more preferable, V 1 −V 2 ≧ 0.6 liter / min is more preferable, V 1− V 2 ≧ 1.0 l / min is particularly preferred.
また、T1-T2は10~35℃が好ましく、T1-T2は15~30℃がより好ましく、19~26℃がさらに好ましい。
なお、T1およびT2は、以下の方法で測定することができる。
(測定位置)
T1:第1のバブラーの列よりも上流側に直近のバーナーと、該バーナーよりもさらに上流側に位置する直近のバーナーと、の中間位置。
T2:第2のバブラーの列と、該バブラーよりも下流側に直近のバーナーと、の中間位置。
(測定方法)
溶解槽の側面に設けられた観察用窓から、対面側の側面の溶解槽内壁面温度を放射温度計(例えば、CHINO IR-AH3SU(測定波長:0.65μm、ε=1.0))で測定する。 In the molten glass production method of the present invention, the T 1 is preferably 1590 to 1710 ° C., more preferably 1600 to 1695 ° C. The T 2 is preferably 1570 to 1690 ° C., more preferably 1580 to 1675 ° C.
T 1 -T 2 is preferably 10 to 35 ° C., T 1 -T 2 is more preferably 15 to 30 ° C., and further preferably 19 to 26 ° C.
T 1 and T 2 can be measured by the following method.
(Measurement position)
T 1 : Intermediate position between the burner closest to the upstream side of the first row of bubblers and the latest burner positioned further upstream than the burner.
T 2 : Intermediate position between the second row of bubblers and the burner closest to the downstream side of the bubblers.
(Measuring method)
From the observation window provided on the side of the dissolution tank, the temperature of the inner wall of the dissolution tank on the opposite side is measured with a radiation thermometer (for example, CHINO IR-AH3SU (measurement wavelength: 0.65 μm, ε = 1.0)). taking measurement.
F1=8~15m/時間、F2=1~4m/時間となるように制御することがより好ましい。
なお、F1およびF2は、以下の方法で測定することができる。
(測定位置)
F1:溶融ガラス流路の上流端からの距離が0.30LF~0.34LFで、溶融ガラス流路の幅方向における中央付近。
F2:溶融ガラス流路の下流端からの距離が0.22LF~0.30LFで、溶融ガラス流路の幅方向における中央付近。
(測定方法)
溶融ガラスの表層における泡の流れをビデオ撮影し、泡の移動距離に対する移動時間を測定して流速とする。この手順を2~3回繰り返して平均流速を求める。 In the molten glass production method of the present invention, when the average flow velocity of the
It is more preferable to control so that F 1 = 8 to 15 m / hour and F 2 = 1 to 4 m / hour.
F 1 and F 2 can be measured by the following method.
(Measurement position)
F 1: distance from the upstream end of the molten glass flow path at 0.30L F ~ 0.34L F, near the center in the width direction of the molten glass flow path.
F 2: distance from the downstream end of the molten glass flow path at 0.22L F ~ 0.30L F, near the center in the width direction of the molten glass flow path.
(Measuring method)
Video of the flow of bubbles on the surface of the molten glass is taken, and the moving time with respect to the moving distance of the bubbles is measured to obtain the flow velocity. Repeat this procedure 2-3 times to determine the average flow rate.
本発明の板ガラス製造方法では、上記した本発明の溶融ガラス製造方法により得られた溶融ガラスを板ガラスに成形する。溶融ガラスを成形して板ガラスとする手段としては、フロート法、ダウンドロー法等の各種成形方法を用いることができる。Tηが1500~1760℃のガラスの場合、フロート法が特に好ましい。
本発明の板ガラス製造方法において、上記した本発明の溶融ガラス製造方法により得られた溶融ガラスを板ガラスに成形する前に、該溶融ガラス中の泡を減圧脱泡により脱泡してもよい。
本発明の板ガラス製造方法では、本発明の溶融ガラス製造方法により得られた均質性が高い溶融ガラスを成形して板ガラスとするので、均質性が高く、透明性が高い板ガラスを得ることができる。
本発明の板ガラス製造装置では、様々な用途の板ガラスの製造に適用可能であるが、均質性が高く、透明性が高い板ガラスが得られることから、FPD用のガラス基板のように、均質性についての要求がきわめて厳しい用途の板ガラスの製造に適用することが特に好ましい。 Next, the plate glass manufacturing method of the present invention will be described.
In the plate glass manufacturing method of the present invention, the molten glass obtained by the above-described molten glass manufacturing method of the present invention is formed into a plate glass. As a means for forming molten glass into plate glass, various forming methods such as a float method and a downdraw method can be used. In the case of a glass having a T η of 1500 to 1760 ° C., the float method is particularly preferable.
In the plate glass manufacturing method of the present invention, before the molten glass obtained by the above-described molten glass manufacturing method of the present invention is formed into plate glass, bubbles in the molten glass may be degassed by vacuum degassing.
In the plate glass manufacturing method of the present invention, since the molten glass having high homogeneity obtained by the molten glass manufacturing method of the present invention is formed into a plate glass, a plate glass having high homogeneity and high transparency can be obtained.
The plate glass production apparatus of the present invention can be applied to the production of plate glass for various uses. However, since a plate glass having high homogeneity and high transparency can be obtained, the homogeneity of the glass substrate for FPD can be obtained. It is particularly preferable to apply it to the production of plate glass for applications in which the demands of these are extremely strict.
溶融ガラス流路の長さLF:16~25m
溶融ガラス流路の幅:5.5~9m
溶融ガラス流路の上流端から第1のバブラー13の列までの距離
:0.43LF~0.46LF
溶融ガラス流路の下流端から第2のバブラー14の列までの距離
:0.47LF~0.54LF
第1のバブラー13の列と、第2のバブラー14の列との距離LP:600~800mmバブラーの列方向における個々のバブラー13,14のピッチp:400~700mm
溶解槽での溶融ガラスの流路方向における、第1のバブラー13の列と該列の上流側に直近のバーナー15との距離LB1:500~1500mm
溶解槽での溶融ガラスの流路方向における、第2のバブラー14の列と該列の下流側に直近のバーナー15との距離LB2:1000~2000mm
LB2-LB1≧500mm
溶解槽での溶融ガラスの流路方向における、個々のバーナー間の距離
:800~2400mm
第1のバブラー13からの平均流量V1、および、第2のバブラー14からの平均流量V2が下記条件となるように調整する。
V1:1.8~2.6リットル/分
V2:0.9~2.0リットル/分
V1-V2≧0.6リットル/分
バーナー15での燃焼により、第1のバブラー13の上方の雰囲気温度T1、および、第2のバブラー14の上方の雰囲気温度T2は下記条件に保持される。なお、T1およびT2は上述した方法で測定する。
T1:1590~1710℃
T2:1580~1675℃
T1-T2:10~35℃
溶解槽10内における上流側循環流100の平均流速F1および下流側循環流101の平均流速F2を上述した方法により測定する。結果は以下の通りである。
F1=8~15m/時間
F2=1~4m/時間
上記の条件で実施することにより、Tηが1500~1760℃で、均質性が高い高品質な無アルカリガラスが製造される。 The glass raw material was put into a desired composition into the slot of the
Molten glass flow path length L F : 16 to 25 m
Molten glass channel width: 5.5-9m
Distance from the upstream end of the molten glass flow path to the
Distance from the downstream end of the molten glass flow path to the
Distance L P between first row of
Distance L B1 between the row of
Distance L B2 between the row of
L B2 -L B1 ≧ 500mm
Distance between individual burners in the flow direction of the molten glass in the melting tank: 800 to 2400 mm
The average flow rate V 1 from the
V 1 : 1.8 to 2.6 liters / minute V 2 : 0.9 to 2.0 liters / minute V 1 −V 2 ≧ 0.6 liters / minute By the combustion in the
T 1 : 1590-1710 ° C
T 2 : 1580 to 1675 ° C.
T 1 -T 2 : 10 to 35 ° C
The average flow rate F 2 in average flow rate F 1 and the
F 1 = 8 to 15 m / hour F 2 = 1 to 4 m / hour By carrying out under the above conditions, a high-quality alkali-free glass having a high homogeneity with a T η of 1500 to 1760 ° C. is produced.
本出願は、2009年9月24日出願の日本特許出願2009-219347に基づくものであり、その内容はここに参照として取り込まれる。 Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2009-219347 filed on Sep. 24, 2009, the contents of which are incorporated herein by reference.
11:投入口
12:払出し口
13:第1のバブラー
14:第2のバブラー
15:バーナー
16:第1のバブラーからのガス
17:第2のバブラーからのガス
20:下流側の導管
100:上流側循環流
101:下流側循環流 10: Dissolution tank 11: Input port 12: Discharge port 13: First bubbler 14: Second bubbler 15: Burner 16: Gas from the first bubbler 17: Gas from the second bubbler 20: Downstream side Conduit 100: Upstream circulating flow 101: Downstream circulating flow
Claims (8)
- ガラス粘度ηが102[dPa・S]となる温度Tηが1500~1760℃の溶融ガラスを製造するための溶融ガラス製造装置であって、該溶融ガラス製造装置はガラス原料を溶解する溶解槽を有し、
前記溶解槽の底面近傍に、溶融ガラス流路の幅方向にわたって複数の第1のバブラーおよび複数の第2のバブラーを有し、
前記第1のバブラーは、前記の第2のバブラーよりも溶融ガラス流路の上流側に設けられており、
前記溶解槽は、該溶解槽の上部空間を加熱するためのバーナーを有し、
前記溶解槽の溶融ガラス流路の長さをLFとするとき、前記溶融ガラス流路の上流端から前記第1のバブラーの列までの距離が0.4LF~0.5LFであり、前記溶融ガラス流路の下流端から前記第2のバブラーの列までの距離が0.45LF~0.55LFであり、前記第1のバブラーの列と、前記第2のバブラーの列との距離LPが500~1000mmであり、
前記溶解槽での溶融ガラスの流路方向における、前記第1のバブラーの列と該列の上流側に直近のバーナーとの距離LB1が0~2000mmであり、
前記溶解槽での溶融ガラスの流路方向における、前記第2のバブラーの列と該列の下流側に直近のバーナーとの距離LB2が800~2500mmであり、
かつ、LB2>LB1であることを特徴とする溶融ガラス製造装置。 A molten glass manufacturing apparatus for manufacturing a molten glass having a temperature T η of 1500 to 1760 ° C. at which a glass viscosity η is 10 2 [dPa · S], the molten glass manufacturing apparatus being a melting tank for melting a glass raw material Have
A plurality of first bubblers and a plurality of second bubblers over the width direction of the molten glass flow path in the vicinity of the bottom surface of the melting tank;
The first bubbler is provided on the upstream side of the molten glass flow path from the second bubbler,
The dissolution tank has a burner for heating the upper space of the dissolution tank,
When the length of the molten glass flow path of the melting tank is L F , the distance from the upstream end of the molten glass flow path to the first bubbler row is 0.4 L F to 0.5 L F. The distance from the downstream end of the molten glass flow path to the second bubbler row is 0.45L F to 0.55L F , and the first bubbler row and the second bubbler row are The distance L P is 500 to 1000 mm,
A distance L B1 between the row of the first bubblers and the burner closest to the upstream side of the row in the flow direction of the molten glass in the melting tank is 0 to 2000 mm;
A distance L B2 between the second bubbler row and the burner closest to the downstream side of the row in the flow direction of the molten glass in the melting tank is 800 to 2500 mm;
And the molten glass manufacturing apparatus characterized by it being L B2 > L B1 . - 前記第1のバブラーおよび前記第2のバブラーにおいて、バブラーの列方向における個々のバブラーのピッチpが、400~700mmである請求項1に記載の溶融ガラス製造装置。 The molten glass manufacturing apparatus according to claim 1, wherein, in the first bubbler and the second bubbler, a pitch p of each bubbler in a row direction of the bubblers is 400 to 700 mm.
- 前記溶解槽における溶融ガラスの流路方向を軸とするとき、前記第1のバブラーと前記第2のバブラーとが同軸上に存在しないように配置されている請求項1または2に記載の溶融ガラス製造装置。 The molten glass according to claim 1 or 2, wherein the first bubbler and the second bubbler are arranged so as not to be coaxial with each other when the flow direction of the molten glass in the melting tank is an axis. Manufacturing equipment.
- 前記溶解槽の構成材料がZrO2含有の耐火レンガであり、溶融ガラス流路をなす前記溶解槽の底面のうち、前記第1のバブラーの列から上流側に0.1LF~0.3LFの部分に、質量%でZrO2が85%以上97%以下で、残部がSiO2を主体とするガラス質の熱溶融耐火物が用いられた請求項1~3のいずれか1項に記載の溶融ガラス製造装置。 The constituent material of the dissolving tank is a refractory brick of the ZrO 2 content, of the bottom surface of the melting bath forms a molten glass flow path, the first 0.1 L F ~ 0.3 L F to the upstream side from the row of bubblers The glassy hot-melt refractory mainly composed of SiO 2 is used for the portion of ZrO 2 in a mass% of 85% or more and 97% or less, and the balance is any one of claims 1 to 3. Molten glass manufacturing equipment.
- 前記第1のバブラーおよび前記第2のバブラーが白金製または白金合金製であり、前記第1のバブラーおよび前記第2のバブラーから供給されるガスが酸素を含まないガスである請求項1~4のいずれか1項に記載の溶融ガラス製造装置。 The first bubbler and the second bubbler are made of platinum or a platinum alloy, and the gas supplied from the first bubbler and the second bubbler is a gas not containing oxygen. The molten glass manufacturing apparatus of any one of these.
- 請求項1~5のいずれか1項に記載の溶融ガラス製造装置を用いて、前記第1のバブラーから供給されるガスの平均流量をV1[リットル/分]とし、前記第2のバブラーから供給されるガスの平均流量をV2[リットル/分]とし、前記第1のバブラーの上方の雰囲気温度をT1[℃]とし、前記第2のバブラーの上方の雰囲気温度をT2[℃]とするとき、V1>V2、T1>T2となる条件で溶融ガラスを製造する溶融ガラス製造方法。 An average flow rate of gas supplied from the first bubbler is set to V 1 [liter / min] using the molten glass manufacturing apparatus according to any one of claims 1 to 5, and the second bubbler The average flow rate of the supplied gas is V 2 [liter / min], the ambient temperature above the first bubbler is T 1 [° C.], and the ambient temperature above the second bubbler is T 2 [° C. when a], V 1> V 2, T 1> molten glass producing method of producing molten glass by T 2 become condition.
- 前記第1のバブラーよりも上流側に形成される溶融ガラスの上流側循環流の平均流速をF1[m/時間]とし、前記第2のバブラーよりも下流側に形成される溶融ガラスの下流側循環流の平均流速をF2[m/時間]とするとき、F1=5~20m/時間、F2=0.5~7m/時間となる条件で溶融ガラスを製造する請求項6に記載の溶融ガラス製造方法。 The average flow velocity of the upstream circulating flow of the molten glass formed upstream of the first bubbler is F 1 [m / hour], and the downstream of the molten glass formed downstream of the second bubbler. The molten glass is produced under the conditions of F 1 = 5 to 20 m / hour and F 2 = 0.5 to 7 m / hour when the average flow velocity of the side circulation flow is F 2 [m / hour]. The molten glass manufacturing method of description.
- 請求項6または7に記載の溶融ガラス製造方法により得られた溶融ガラスを板ガラスに成形する板ガラス製造方法。 A plate glass manufacturing method in which molten glass obtained by the molten glass manufacturing method according to claim 6 or 7 is formed into plate glass.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011532932A JP5549674B2 (en) | 2009-09-24 | 2010-07-23 | Molten glass production apparatus, molten glass production method, and plate glass production method using them |
KR1020127007567A KR101453629B1 (en) | 2009-09-24 | 2010-07-23 | Molten glass manufacturing device, molten glass manufacturing method, and sheet glass manufacturing method using the device and the method |
CN201080042588.7A CN102574719B (en) | 2009-09-24 | 2010-07-23 | Molten glass manufacturing device, molten glass manufacturing method, and sheet glass manufacturing method using the device and the method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009219347 | 2009-09-24 | ||
JP2009-219347 | 2009-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011036939A1 true WO2011036939A1 (en) | 2011-03-31 |
Family
ID=43795701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/062444 WO2011036939A1 (en) | 2009-09-24 | 2010-07-23 | Molten glass manufacturing device, molten glass manufacturing method, and sheet glass manufacturing method using the device and the method |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5549674B2 (en) |
KR (1) | KR101453629B1 (en) |
CN (1) | CN102574719B (en) |
TW (1) | TWI483913B (en) |
WO (1) | WO2011036939A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013094313A1 (en) * | 2011-12-19 | 2013-06-27 | 旭硝子株式会社 | Apparatus for producing molten glass, method for producing molten glass, and method for producing plate glass using said apparatus and method |
WO2015033931A1 (en) * | 2013-09-06 | 2015-03-12 | 旭硝子株式会社 | Manufacturing method for molten glass and manufacturing method for sheet glass using same |
JP2016037444A (en) * | 2014-08-05 | 2016-03-22 | 興亜硝子株式会社 | Automatic bottle making apparatus for white glass container |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105601087B (en) * | 2016-03-22 | 2018-07-10 | 株洲醴陵旗滨玻璃有限公司 | A kind of bubbling melting method in float glass |
CN106477852A (en) | 2016-09-21 | 2017-03-08 | 巨石集团有限公司 | A kind of kiln bubbling arrangement |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5218715A (en) * | 1975-08-04 | 1977-02-12 | Nippon Electric Glass Co | Method of homogenizing glass |
JPH07144923A (en) * | 1993-08-13 | 1995-06-06 | Beteiligungen Sorg Gmbh & Co Kg | Method for melting glass and tank furnace |
WO2009005067A1 (en) * | 2007-07-02 | 2009-01-08 | Asahi Glass Co., Ltd. | Glass melting furnace and process for producing glass product |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3928014A (en) * | 1974-04-29 | 1975-12-23 | Ppg Industries Inc | Method for producing flat glass |
US20060174655A1 (en) * | 2003-04-15 | 2006-08-10 | Hisashi Kobayashi | Process of fining glassmelts using helium bubblles |
JP4941872B2 (en) * | 2003-09-02 | 2012-05-30 | 日本電気硝子株式会社 | Transparent alkali-free glass substrate for liquid crystal display |
-
2010
- 2010-07-23 KR KR1020127007567A patent/KR101453629B1/en active Active
- 2010-07-23 JP JP2011532932A patent/JP5549674B2/en not_active Expired - Fee Related
- 2010-07-23 CN CN201080042588.7A patent/CN102574719B/en active Active
- 2010-07-23 WO PCT/JP2010/062444 patent/WO2011036939A1/en active Application Filing
- 2010-07-30 TW TW099125520A patent/TWI483913B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5218715A (en) * | 1975-08-04 | 1977-02-12 | Nippon Electric Glass Co | Method of homogenizing glass |
JPH07144923A (en) * | 1993-08-13 | 1995-06-06 | Beteiligungen Sorg Gmbh & Co Kg | Method for melting glass and tank furnace |
WO2009005067A1 (en) * | 2007-07-02 | 2009-01-08 | Asahi Glass Co., Ltd. | Glass melting furnace and process for producing glass product |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013094313A1 (en) * | 2011-12-19 | 2013-06-27 | 旭硝子株式会社 | Apparatus for producing molten glass, method for producing molten glass, and method for producing plate glass using said apparatus and method |
KR20140107233A (en) | 2011-12-19 | 2014-09-04 | 아사히 가라스 가부시키가이샤 | Apparatus for producing molten glass, method for producing molten glass, and method for producing plate glass using said apparatus and method |
JPWO2013094313A1 (en) * | 2011-12-19 | 2015-04-27 | 旭硝子株式会社 | Molten glass production apparatus, molten glass production method, and plate glass production method using them |
KR101971755B1 (en) * | 2011-12-19 | 2019-04-23 | 에이지씨 가부시키가이샤 | Apparatus for producing molten glass, method for producing molten glass, and method for producing plate glass using said apparatus and method |
WO2015033931A1 (en) * | 2013-09-06 | 2015-03-12 | 旭硝子株式会社 | Manufacturing method for molten glass and manufacturing method for sheet glass using same |
JPWO2015033931A1 (en) * | 2013-09-06 | 2017-03-02 | 旭硝子株式会社 | Molten glass manufacturing method and plate glass manufacturing method using the same |
JP2016037444A (en) * | 2014-08-05 | 2016-03-22 | 興亜硝子株式会社 | Automatic bottle making apparatus for white glass container |
Also Published As
Publication number | Publication date |
---|---|
TWI483913B (en) | 2015-05-11 |
CN102574719B (en) | 2014-07-09 |
TW201111312A (en) | 2011-04-01 |
JP5549674B2 (en) | 2014-07-16 |
KR20120086691A (en) | 2012-08-03 |
CN102574719A (en) | 2012-07-11 |
KR101453629B1 (en) | 2014-10-22 |
JPWO2011036939A1 (en) | 2013-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6015671B2 (en) | Molten glass production apparatus, molten glass production method, and plate glass production method using them | |
KR101300934B1 (en) | Method and apparatus for making glass sheet | |
JP5397371B2 (en) | Molten glass manufacturing apparatus and molten glass manufacturing method using the same | |
CN103080025B (en) | The manufacture method of glass substrate | |
KR20120116385A (en) | Glass melting furnace, molten glass manufacturing method, glass product manufacturing device, and glass product manufacturing method | |
JP5549674B2 (en) | Molten glass production apparatus, molten glass production method, and plate glass production method using them | |
CN103269986A (en) | Clarifying tank, glass melting furnace, method for producing molten glass, method for producing glass product, and device for producing glass product | |
WO2019124006A1 (en) | Method for producing glass article and glass-melting furnace | |
CN103261106B (en) | The manufacture method of glass plate and device for producing glass sheet | |
JP2017065973A (en) | Production method of glass substrate and production apparatus of glass substrate | |
JP6304256B2 (en) | Molten glass manufacturing method and plate glass manufacturing method using the same | |
JP6292090B2 (en) | Melting kiln, melting method, and alkali-free glass plate manufacturing method | |
TWI704111B (en) | Melting method and manufacturing method of alkali-free glass plate | |
JP2024047906A (en) | Glass melting method and glass article manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080042588.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10818616 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011532932 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127007567 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10818616 Country of ref document: EP Kind code of ref document: A1 |