Nothing Special   »   [go: up one dir, main page]

WO2011036923A1 - 感光性平版印刷版の製版処理廃液の処理方法 - Google Patents

感光性平版印刷版の製版処理廃液の処理方法 Download PDF

Info

Publication number
WO2011036923A1
WO2011036923A1 PCT/JP2010/060396 JP2010060396W WO2011036923A1 WO 2011036923 A1 WO2011036923 A1 WO 2011036923A1 JP 2010060396 W JP2010060396 W JP 2010060396W WO 2011036923 A1 WO2011036923 A1 WO 2011036923A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste liquid
plate
lithographic printing
photosensitive lithographic
printing plate
Prior art date
Application number
PCT/JP2010/060396
Other languages
English (en)
French (fr)
Inventor
青島 徳生
年宏 渡辺
史和 小林
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP10818600.8A priority Critical patent/EP2482133B1/en
Priority to CN201080041797XA priority patent/CN102687079A/zh
Priority to US13/496,306 priority patent/US20120175239A1/en
Publication of WO2011036923A1 publication Critical patent/WO2011036923A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/3092Recovery of material; Waste processing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions

Definitions

  • the present invention relates to a method for treating a platemaking treatment waste liquid of a photosensitive lithographic printing plate, and in particular, a positive type photosensitive lithographic printing plate is subjected to platemaking treatment with a developer containing a non-reducing sugar and a base without using a silicate. It relates to the processing method.
  • cresol novolak resin has been used as a binder (binder) for an o-quinonediazide compound, which is a photosensitive component, in the photosensitive layer of a positive photosensitive lithographic printing plate. Therefore, it is common to use a strong alkaline silicate having a pH of around 13 that can dissolve the cresol novolac resin as the developer.
  • aqueous silicates such as sodium silicate and potassium silicate. It is a salt solution. This is because the developability can be adjusted to some extent by the ratio and concentration of silicon oxide and alkali metal oxide, which are silicate components.
  • silicate has an advantage that it exhibits a good buffering action in its pH region and can be stably developed.
  • the silicate which is the main component of the developer, is stable in the alkaline region, it is gelled and insolubilized in neutrality, and only soluble in strong acids such as hydrofluoric acid when evaporated to dryness.
  • the actual damages include contamination of solidified product due to splashing around the developing tank of the automatic developing machine and precipitation of insolubilized product due to neutralization when discarding the developing waste solution.
  • Japanese Patent Application Laid-Open No. 58-95349 provides a sensor for electrically measuring the elution degree of the photosensitive layer in the non-image area of the photosensitive plate, and the developer replenisher is replenished when the elution degree falls to a predetermined level.
  • a method is disclosed.
  • the developer is silicate
  • the combination of saccharide and base exhibits a buffering action on the alkali side for the above problem, does not contain silicate, contains at least one non-reducing sugar, and at least one base,
  • the above problem was solved by using a photosensitive lithographic printing plate developer characterized in that the pH is in the range of 9.0 to 13.5 (see, for example, Japanese Patent No. 3642845).
  • the processing steps of the lithographic printing plate using an automatic processor include a developing step for supplying a developing solution to the image forming layer to be processed to elute the image forming layer like an image, a washing step for washing away the developing solution, and an exposed hydrophilic surface.
  • a desensitization step for protecting the surface a treatment step with a surface conditioning solution for preventing the hydrophilic surface from being contaminated with organic substances during the burning treatment, and the like.
  • Waste liquids such as the above are effectively discarded into the sewerage system due to recent water pollution prevention laws and the tightening of pollution regulations by each prefectural ordinance. It has become impossible. For this reason, the platemakers collect the waste liquid by paying a collection fee from the waste liquid treatment company, or install pollution treatment facilities.
  • the method of consigning to a waste liquid treatment company requires a large space for storing the waste liquid and is extremely expensive in terms of cost.
  • pollution treatment equipment has a problem that initial investment is extremely large and a considerably large space is required for maintenance.
  • the processing waste liquid is concentrated by decompression and / or heating, the evaporated liquid component is cooled and condensed, separated into a concentrate and a liquid component, and the waste is in the form of a concentrate. Techniques for reducing this are proposed.
  • a waste liquid recovery method for a photosensitive lithographic printing plate processing apparatus in which waste liquid is dried and concentrated to reduce the amount of waste liquid (see, for example, Japanese Patent Laid-Open No. 05-341535).
  • a method is disclosed in which an evaporator is used as a decompression means and the waste liquid is concentrated by heating under reduced pressure (see, for example, JP-A-01-304463).
  • a method of concentrating waste liquid by heating under reduced pressure using a heat pump circuit as a heating means has been proposed (see, for example, Japanese Patent No. 3168015).
  • an object of the present invention is to provide a method for treating a plate making waste liquid of a photosensitive lithographic printing plate excellent in equipment maintenance.
  • the plate-making process waste liquid discharged when performing the plate-making process of the photosensitive lithographic printing plate using the developer for the photosensitive lithographic printing plate is evaporated and concentrated by an evaporation concentrator to separate into water vapor and dissolved components.
  • the photosensitive lithographic printing plate developer comprises: at least one saccharide selected from non-reducing sugars and at least one base, and the plate making waste liquid.
  • the photosensitive lithographic printing plate is heated by a heating means in an evaporating pot having base resistance, and the water vapor separated from the platemaking waste liquid is led out from the evaporating pot and condensed in a cooling means to be recycled water. It is a processing method of the platemaking process waste liquid.
  • the waste liquid is reduced by evaporating and concentrating the plate-making process waste liquid with an evaporation concentrator, but the waste liquid does not contain silicate, so the concentrate of the waste liquid is present inside the evaporation pot or on the surface of the heating means. It is possible to provide a method for treating a plate making waste liquid that does not easily adhere and has excellent maintainability of an evaporation concentrator.
  • ⁇ 2> A method for treating a plate making waste liquid of a photosensitive lithographic printing plate, wherein the inside of the evaporation pot is depressurized by a pressure reducing means and the plate making waste solution is heated and concentrated.
  • a plate making of a photosensitive lithographic printing plate wherein a heat pump is used as the heating means, and the plate making waste liquid is heated by a heat radiating portion of the heat pump, while the water vapor of the cooling means is cooled by a heat absorbing portion of the heat pump. It is a processing method of processing waste liquid.
  • the heat concentration of the waste liquid is performed by the heat generated by the heat pump, and the water vapor is condensed by the heat absorption of the heat pump. Furthermore, it is possible to provide a method for treating plate making waste liquid that does not emit carbon dioxide and has a low environmental burden.
  • a method for treating a plate making waste liquid of a photosensitive lithographic printing plate comprising a neutralization treatment for lowering the pH of the plate making waste solution.
  • the pH of the waste liquid is lowered by the neutralization treatment, the evaporating pot, the heating means and the like are not easily affected by strong alkali, and the plate making treatment waste liquid in which the alkali is not remained in the discharged waste concentrate or reclaimed water. Can be provided.
  • a process for treating a plate making waste solution of a photosensitive lithographic printing plate wherein the concentrate of the plate making waste solution concentrated by evaporation is pressurized with a pump and collected in a collection tank.
  • the concentrate (slurry) that has been evaporated and concentrated while maintaining the fluidity in the evaporation kettle, and the volume (reduced slurry) is pressurized by the pump and pumped to the recovery tank.
  • the volume of the recovery container is not limited, so that the frequency of recovery can be reduced.
  • the plate-making process waste liquid discharged when the plate-making process of the photosensitive lithographic printing plate is performed using the developer for the photosensitive lithographic printing plate is evaporated and concentrated by an evaporation concentrator to separate into water vapor and dissolved components.
  • the photosensitive lithographic printing plate developer has an organic solvent content of 5% by mass or less
  • the plate making waste liquid is in an evaporating pot having base resistance.
  • the water vapor separated from the plate making waste liquid is led out from the evaporating pot and condensed in the cooling means to be reclaimed water.
  • the present invention having the above-described configuration can provide a method for treating a plate-making process waste liquid of a photosensitive lithographic printing plate excellent in equipment maintenance.
  • a waste liquid processing apparatus 10 is supplied from a processing liquid tank 20 and a processing liquid tank 20 for storing a waste liquid of a developer discharged along with plate making processing of a photosensitive lithographic printing plate.
  • the waste liquid thus obtained is heated under reduced pressure, the evaporating pot 30 for separating the evaporated water and the remaining concentrate (slurry), the water separated as water vapor in the evaporating pot 30 is introduced, cooled and condensed, and recycled water
  • the regenerative water tank 50 that stores regenerated water condensed in the refrigerating pot 40, and the heat pump unit 60 that moves heat between the evaporating pot 30 and the refrigerating pot 40 are provided.
  • the pressure reducing means of the evaporating pot 30 includes a general water seal type, oil rotary type, diaphragm type mechanical vacuum pump, diffusion pump using oil or mercury, a multistage turbo compressor, a reciprocating compressor, a screw compressor. Among them, a compressor, an aspirator, and the like are mentioned, and among these, the aspirator is preferably used in terms of maintainability and cost.
  • the heating / cooling means various heat exchangers can be used, and a heat pump circuit is preferably used from the viewpoint of running cost.
  • the transfer of the processing waste liquid to the waste liquid processing apparatus 10 and the transfer of the concentrate to the recovery tank 86 are automatic liquid feeding using means such as a pump liquid feeding and a solenoid valve for saving labor. Is preferred.
  • the fluidity of the concentrate is maintained, so that the liquid can be transferred using a pump or the like, which is different from the conventional method.
  • the reclaimed water stored in the reclaimed water tank 50 When the reclaimed water stored in the reclaimed water tank 50 overflows, the reclaimed water is sent to the wash water tank 70, and a part of the reclaimed water is used for washing the inside of the evaporation pot 30 as wash water.
  • a concentrate recovery pipe 80 is connected to the bottom of the evaporating pot 30 to discharge the concentrate to the outside.
  • the regenerative water circulation device 90 is connected to the evaporating pot 30 and the cooling pot 40, and the inside is depressurized during the evaporating and concentrating operation so that the pressure is lower than the atmospheric pressure.
  • the heating / depressurizing means the inside of the evaporating pot 30 is maintained at, for example, a liquid temperature of 20 to 35 ° C. and a vacuum of 2.6 to 4.6 kPa, and the waste liquid is evaporated and concentrated.
  • the evaporated solvent (water) is cooled in the cooling pot 40 and becomes reclaimed water having a low BOD and COD value.
  • the BOD value is approximately 300 mg / L or less and the COD value is 250 mg / L or less.
  • the reclaimed water is transferred to the reclaimed water tank 50 by the aspirator 94 and stored. Air is supplied to the reclaimed water tank 50 by an aeration pump 56. Since the pH is high, the reclaimed water that is difficult to be discarded as it is is supplied with air to lower the pH by oxidation with carbon dioxide gas, so that the pH of the reclaimed water tank 50 can be easily discarded. Make adjustments.
  • the supply amount of air is preferably 4000 cm 3 / min or more, for example.
  • Reclaimed water that has reached a certain amount is discharged by overflow and can be drained into sewage or stored or used as washing water for the concentration kettle.
  • a developer containing a silicate or an organic solvent in an amount exceeding 1% by mass hardly soluble or sticky precipitates are generated in the concentration kettle.
  • the developer used in the present invention when used, there is an advantage that it can be cleaned only by immersing it in reclaimed water once a month for about one day.
  • each processing unit will be described.
  • ⁇ Liquid supply part> When development processing of the photosensitive lithographic printing plate is performed in a plate making processor (not shown), for example, the developer is discharged as waste liquid according to the processing area of the developed photosensitive lithographic plate.
  • the exposed photosensitive lithographic plate is immersed in a developing tank filled with a developing solution, and a development process is performed on the surface (exposed surface) of the photosensitive lithographic plate.
  • automatic developing machines widely used in the plate making / printing industry for rationalizing and standardizing plate making operations are generally composed of a developing unit and a post-processing unit.
  • the processing plate pumped up by the pump is sprayed from the spray nozzle while the exposed printing plate is conveyed horizontally, and development processing is performed.
  • a method is also known in which a printing plate is dipped and conveyed by a submerged guide roll or the like in a processing liquid tank filled with the processing liquid.
  • each processing solution can be processed while being supplemented with a replenisher according to the processing amount, operating time, and the like.
  • a so-called disposable processing method in which processing is performed with a substantially unused processing solution is also applied.
  • the waste liquid generated by the development process as described above is stored in a waste liquid tank or the like provided inside the automatic developing device. However, since it is necessary to periodically perform the waste liquid treatment, the overflow waste liquid is treated as the processing liquid of the present invention.
  • a configuration for collecting in the tank 20 or a configuration in which the waste liquid tank itself is the processing liquid tank 20 of the present invention is conceivable.
  • the waste liquid may be fed from a separately provided waste liquid tank by manual work or a pressure feed pump.
  • a liquid level sensor (not shown) may be provided to prevent overflow of the waste liquid from the treatment liquid tank 20.
  • the treatment liquid tank 20 includes a waste liquid valve 22, and sends the waste liquid from the inside of the treatment liquid tank 20 to the evaporation pot 30.
  • the processing liquid tank 20 may be disposed at a lower position than the evaporation pot 30, and a pump may be provided instead of the waste liquid valve 22.
  • the evaporating pot sent from the normal liquid level sensor 36A and the abnormal liquid level sensor 36B provided in the evaporating pot 30 in the control unit (not shown). Operation control of the waste liquid valve 22 or the pump is performed based on the liquid level information of the waste liquid inside 30.
  • a defoamer tank 24 is provided in parallel with the treatment liquid tank 20, and the defoamer is fed into the evaporating pot 30 according to control of a control unit (not shown). That is, an antifoaming valve 26 is provided in the middle of a pipe for sending the antifoaming agent from the antifoaming agent tank 24 to the evaporation kettle 30, and the antifoaming agent is supplied at a predetermined timing, for example, when the evaporation concentrating operation starts in the evaporating kettle 30. The antifoam valve 26 is turned on / off so as to be added to the evaporation kettle 30, and the liquid feeding is controlled.
  • the antifoaming agent known fluorine type and silicone type materials are used, and silicone type is particularly preferable.
  • Commercially available emulsified dispersions can be used for these antifoaming agents, and are available from Shin-Etsu Silicone, Dow Corning, Toray Silicone, and the like.
  • FUJIFILM AF-A silicone antifoam emulsion
  • AF-A is diluted with water to a concentration of 5% by mass and added to the developing waste solution.
  • the addition amount of the dilution liquid is 5% by mass or less, preferably 3% by mass or less, with respect to the development waste liquid. When the addition amount is small, the workability is remarkably lowered because the developing waste liquid is foamed in the evaporation pot. When there is too much addition amount, a cost burden will become large and the merit of concentration will become small.
  • the treatment liquid tank 20 is connected to the evaporating pot 30 by a pipe 21 for sending waste liquid.
  • the evaporating pot 30 has, for example, a sealed vertically long and substantially cylindrical shape, and waste liquid sent from the processing liquid tank 20 is stored inside.
  • a heating coil 32 is provided inside the evaporating pot 30 and heats the waste liquid inside to evaporate the water as water vapor, removes the water in the waste liquid and compresses the volume.
  • the evaporating pot 30 communicates with a cooling pot 40, which will be described later, via a communication passage 39, and the cooling pot 40 is depressurized by a recycled water circulation device 90, which will be described later.
  • the evaporation pot 30 communicating with the cooling pot 40 via the communication path 39 is also decompressed in the same manner.
  • the heating coil 32 a part of piping forming the heat pump unit 60 described later may be provided inside the evaporation pot 30, or a heating means such as an electric heater may be used more simply. Since the inside of the heating pot 30 is depressurized by the decompression device as described above, the boiling point of the waste liquid (water contained in the waste liquid) is lowered, the water is evaporated at a temperature lower than the atmospheric pressure, and the waste liquid is converted into water vapor. To separate.
  • the plate making treatment waste liquid of the photosensitive lithographic printing plate used in the present invention is basic having a pH in the range of 9.0 to 13.5. It is desirable to be formed of a material having alkali resistance such as SUS316 or to be covered with an alkali resistant material. The portion that does not come into contact with the waste liquid may be replaced with a cheaper material such as SUS304.
  • the inside of the evaporating pot 30 is divided into an upper part 30A and a lower part 30B by a demister 34 (gas-liquid separation means).
  • the demister 34 is formed of a porous material such as a mesh made of stainless steel wire, for example, and gas such as water vapor is transmitted therethrough, and mist such as waste liquid droplets is captured.
  • the pipe 21 sends waste liquid to the lower portion 30B, and water vapor generated from the waste liquid heated by the heating coil 32 provided in the lower portion 30B passes through the demister 34 and moves to the upper portion 30A.
  • the upper part 30A communicates with the upper part of the cooling pot 40 installed in the vicinity by a communication passage 39.
  • the liquid level of the waste liquid is normally the maximum amount at the start of the heating and compression operation, and is the highest liquid level at a position below the communication path 39. Water vapor generated from the heated waste liquid and staying in the upper portion 30 ⁇ / b> A passes through the communication path 39 and moves to the cooling pot 40.
  • the ventilation means such as a fan, may be provided inside the communication path 39.
  • the normal liquid level sensor 36A and the abnormal liquid level sensor 36B are provided, for example, on the lid portion of the upper portion 30A.
  • the normal liquid level sensor 36A detects the upper limit position of the waste liquid level during normal operation. Liquid supply from the processing liquid tank 20 is performed at regular time intervals, and the processing waste liquid is filled up to the position of the normal liquid level sensor 36A.
  • a temperature sensor (not shown) is provided near the bottom surface of the lower part 30B. When the waste liquid is insufficient, a temperature change is detected, a signal indicating no liquid is sent to a control unit (not shown), and the control unit is heated by the heating coil 32. By stopping, it is configured to prevent heating (so-called emptying) in a state where the waste liquid is insufficient.
  • an air release valve 37 is provided in the upper part 30A.
  • the atmosphere release valve 37 is opened first so that the inside of the evaporation pot 30 is opened. The back flow of liquid is prevented by setting it to atmospheric pressure.
  • the abnormal liquid level sensor 36B that detects the liquid level under the communication path 39 detects the waste liquid level when abnormal foaming occurs in the evaporation pot 30, and sends a liquid overflow signal to a control unit (not shown). By stopping the heating by the heating coil 32, the waste liquid is prevented from passing through the communication path 39 and entering the cooling pot 40.
  • the bottom 30B of the evaporating pot 30 is provided with a concentrate discharge port 38 for discharging the waste liquid concentrate (slurry) from the bottom thereof, and can be controlled to be opened and closed by a control unit by means of an electromagnetic valve (not shown), for example.
  • the concentrate discharge port 38 is connected to a concentrate recovery pipe 80, and the concentrate recovery pipe 80 sends the waste liquid concentrate to the recovery tank 86.
  • the concentrate recovery pipe 80 is connected to the recovery tank 86 by the pump 84 from the concentrate discharge port 38 via the valve 82 via the pipe 81, and the concentrate discharged from the concentrate discharge port 38 is sucked and added by the pump 84. It is set as the structure pressurized and sent to a collection tank.
  • the waste liquid concentrate obtained by concentrating the plate making process waste liquid of the photosensitive lithographic printing plate used in the present invention is less likely to cause gelation, insolubilization or precipitation of dissolved components as described above, it can be concentrated without losing fluidity.
  • the concentrate can be pumped to the recovery tank 86 through the concentrate recovery pipe 80.
  • a neutralizer addition device (not shown) may be installed in the recovery tank 86.
  • Lowering the pH of the concentrate has the effect of further reducing waste liquid treatment costs and improving safety when handling the concentrate.
  • the pH of the concentrate after addition of the neutralizing agent is preferably 11.0 to 12.5. If it is pH value of this range, it will become possible to fall pH without generation
  • the neutralizing agent those known as pH lowering agents can be used.
  • JP-A No. 11-253969 discloses one containing a carbonate and a solid acid.
  • the neutralizing agent preferably used in the method of the present invention is an aqueous citric acid solution that is excellent in terms of material safety, local and rapid pH fluctuation at the time of addition, ease of supply by solution, cost, etc. desirable.
  • cooling pot 40 is communicated with the upper part 30 ⁇ / b> A of the evaporation pot 30 through a communication path 39.
  • the water vapor staying in the upper part 30 ⁇ / b> A of the evaporation pot 30 is pressurized by convection or heating, passes through the communication path 39 and moves to the cooling pot 40.
  • the ventilation means such as a fan, may be provided inside the communication path 39.
  • the cooling kettle 40 may have, for example, a substantially sealed vertically long cylindrical shape, and the water vapor that has passed through the communication path 39 from the evaporating kettle 30 stays inside.
  • the cooling pot 40 is also preferably formed of an alkali-resistant material such as SUS316 or covered with an alkali-resistant material, like the evaporating pot 30.
  • an alkali-resistant material such as SUS316
  • an alkali-resistant material like the evaporating pot 30.
  • SUS304 a cheaper material such as SUS304 may be used instead.
  • a cooling coil 42 is provided inside the cooling pot 40, and water vapor condenses on the cooled surface, and is stored as reclaimed water at the bottom of the cooling pot 40.
  • cooling coil 42 a part of piping forming the heat pump unit 60 described later may be provided inside the cooling pot 40, or cooling means such as a cooling water circulation pipe may be used more simply.
  • the drain 44 is provided in the bottom part of the cooling pot 40, and is connected to the reclaimed water circulation apparatus 90 mentioned later.
  • the aspirator 94 included in the reclaimed water circulation device 90 generates a negative pressure, sucks the reclaimed water from the drain port 44, takes out the reclaimed water from the bottom of the cooling kettle 40, and at the same time depressurizes the inside of the cooling kettle 40, thereby 39, the inside of the evaporating pot 30 is also depressurized, and the cooling pot 40, the communication path 39, and the evaporating pot 30 are maintained at a pressure lower than the atmospheric pressure.
  • the reclaimed water tank 50 is provided with, for example, an overflow drain 52, and when the stored reclaimed water level exceeds a certain value, a part thereof is sent to the wash water tank 70. Further, for example, a float type liquid level sensor 54 is provided, and the amount of reclaimed water in the reclaimed water tank 50 is detected and sent to a control unit (not shown) as reclaimed water amount information.
  • a control unit may perform control such as stopping the heating and compression operation of the entire apparatus and preventing the temperature of the cooling coil 42 from rising when the liquid level of the reclaimed water falls below a cooling pipe 58 described later.
  • the regeneration water tank 50 is provided with an aeration pump 56, and an air stone 56A is connected to the aeration pump 56, for example.
  • an aeration pump 56 blows air (outside air) into the reclaimed water, carbon dioxide or the like in the air dissolves in the reclaimed water, lowers the pH of the reclaimed water, and reduces the burden on the environment during discharge.
  • a pH meter (not shown) is provided in the reclaimed water tank 50, and the detected pH is sent as pH value information to a control unit (not shown), and when the pH value of the detected reclaimed water exceeds a predetermined value, A control unit (not shown) may be configured to operate the aeration pump 56.
  • a drain valve 51 is provided at the bottom of the reclaimed water tank 50, and the reclaimed water may be optionally discharged.
  • a reclaimed water circulation device 90 is connected to the drain port 44 provided at the bottom of the cooling pot 40.
  • the reclaimed water circulation device 90 includes a water flow pump 92, an aspirator 94 that is connected to the water flow pump 92 and generates a negative pressure in the water flow, and pipes 91 and 93 that send reclaimed water sucked by the aspirator 94 from the drain port 44 to the reclaimed water tank 50. I have.
  • the water flow pump 92 is connected to the reclaimed water tank 50 through a pipe 93, sucks the reclaimed water in the reclaimed water tank 50, and pumps it to the aspirator 94.
  • the aspirator 94 generates a negative pressure by the pressure of the regenerated water that has been pumped, and sucks the regenerated water from the cooling pot 40 through the drain 91 through the piping 91.
  • the reclaimed water pressure-fed from the aspirator 94 to the reclaimed water tank 50 is returned to the reclaimed water tank 50 from the water supply port 96, and a part thereof is sent from the overflow drain 52 to the wash water tank 70, while a part of the reclaimed water passes through the pipe 93 again.
  • the negative pressure is generated by the aspirator 94.
  • a heat pump unit 60 In order to heat the heating coil 32 provided inside the evaporation pot 30 and to cool the cooling coil 42 provided inside the cooling pot 40, for example, a heat pump unit 60 is provided that couples them together and circulates the refrigerant inside. It may be.
  • the refrigerant circulating inside releases heat from the heating coil 32 provided inside the evaporating pot 30 to heat the waste liquid, and cools it in the cooling pipe 58 immersed in the reclaimed water in the reclaimed water tank 50. After being liquefied and absorbed and vaporized by the cooling coil 42 provided inside the cooling pot 40, it is sent to the compressor 64 where it is compressed and liquefied again.
  • the refrigerant that has returned to the compressor 64 via the pipe 62 in a gaseous state is compressed and liquefied by the compressor 64.
  • the temperature of the refrigerant rises, and the liquefied refrigerant is cooled to a desired temperature by the radiator 66 in order not to overheat the inside of the evaporating pot 30.
  • the radiator 66 may have a configuration in which a radiator 66 provided with cooling fins and a cooling fan 67 are combined.
  • the refrigerant whose temperature has decreased due to the release of heat is dehumidified, for example, via a dryer 63, and then rapidly expands using a throttling action that occurs when the refrigerant passes through the narrow capillary 65 and is injected into the wide pipe 62. Then, it becomes a low-temperature and low-pressure liquid and is further cooled through the cooling pipe 58 passing through the reclaimed water in the reclaimed water tank 50.
  • a strainer may be provided on the upstream side of the capillary 65 to remove foreign substances.
  • the cooled refrigerant When the cooled refrigerant passes through the cooling coil 42 inside the cooling pot 40, it absorbs heat from the surrounding steam, condenses the steam around the cooling coil 42, and stores it as reclaimed water in the cooling pot 40.
  • the refrigerant is vaporized by the heat absorbed from the water vapor, and returns to the compressor 64 again.
  • ⁇ Washing water tank> The reclaimed water sent from the overflow drain port 52 of the reclaimed water tank 50 to the washing water tank 70 has a sufficiently low pH due to the supply of air from the aeration pump 56, and therefore passes directly to the drainage channel 79 (sewage etc.) via the pipe 78. It is possible to discharge.
  • a configuration may be adopted in which reclaimed water is sent to the evaporation kettle 30 through the pipe 72 via the washing water pump (or valve) 74 and supplied from the water supply port 76 to the inside of the evaporation kettle 30.
  • reclaimed water is sent to the evaporation kettle 30 through the pipe 72 via the washing water pump (or valve) 74 and supplied from the water supply port 76 to the inside of the evaporation kettle 30.
  • the operation is periodically stopped and the inside of the evaporating pot 30 is washed with reclaimed water to prevent the concentrate from sticking to the inner wall of the evaporating pot 30 and the surface of the heating coil 32 and to prevent clogging of the demister 34 and the like. It may be configured to.
  • the developer and replenisher used for developing the photosensitive lithographic printing plate are mainly composed of an organic compound having a buffering action and a base, and substantially free of silicon dioxide. It is necessary to use an alkaline developer.
  • a developer is hereinafter referred to as “non-silicate developer”.
  • “substantially” means allowing the presence of inevitable impurities and a small amount of silicon dioxide as a by-product.
  • the developing solution means a developing start solution (a developing solution in a narrow sense) and a developing replenisher.
  • the silicate which is the main component, is stable in the alkaline region, but in the neutral state it becomes gelled and insoluble, and when it is precipitated by evaporation to dryness, it only dissolves in strong acids such as hydrofluoric acid. have.
  • the silicate since the silicate is insolubilized and precipitated in the process of concentrating the treatment waste liquid, the insolubilized silicic acid is required to transfer the concentrate to another container or to continue the concentration process. The salt needs to be removed, and the maintainability of the concentrator is significantly reduced.
  • the main component of the developer used in the present invention comprises at least one compound selected from non-reducing sugars and at least one base.
  • the pH of the liquid is adjusted to be in the range of about 9.0 to 13.5.
  • Such non-reducing sugars are saccharides that do not have a free aldehyde group or ketone group and do not exhibit reducing properties, and are trehalose-type oligosaccharides in which reducing groups are bonded to each other, and glycosides in which a reducing group of saccharides and non-saccharides are bonded. And sugar alcohols reduced by hydrogenation of saccharides and saccharides, both of which are preferably used in the present invention.
  • Trehalose type oligosaccharides include saccharose and trehalose.
  • glycosides include alkyl glycosides, phenol glycosides, mustard oil glycosides, and the like.
  • sugar alcohol examples include D, L-arabit, rebit, xylit, D, L-sorbit, D, L-mannit, D, L-exit, D, L-talit, zulsiit and allozulcit.
  • maltitol obtained by hydrogenation of a disaccharide and a reduced form (reduced water candy) obtained by hydrogenation of an oligosaccharide are preferably used.
  • preferred non-reducing sugars used in the developer of the present invention are sugar alcohol and saccharose, and D-sorbite, saccharose, and reduced starch syrup have a buffering action in an appropriate pH region and are inexpensive. This is preferable.
  • non-reducing sugars can be used singly or in combination of two or more, and the proportion of them in the developer is preferably 0.1 to 30% by weight, more preferably 1 to 20% by weight. Below this range, sufficient buffering action cannot be obtained, and when the concentration is above this range, there is a problem that it is difficult to achieve high concentration and the cost is increased.
  • a conventionally known alkaline agent can be used as the base to be combined with the non-reducing sugar.
  • inorganic alkali agents such as potassium hydrogen carbonate, ammonium hydrogen carbonate, sodium borate, potassium borate, and ammonium borate.
  • alkali agents can be used alone or in combination of two or more. Of these, sodium hydroxide and potassium hydroxide are preferred. The reason is that the pH can be adjusted in a wide pH range by adjusting these amounts relative to the non-reducing sugar. Trisodium phosphate, tripotassium phosphate, sodium carbonate, potassium carbonate, and the like are also preferable because they have a buffering action.
  • alkali agents are added so that the pH of the developer is in the range of 9.0 to 13.5, and the addition amount is determined by the desired pH, the kind of non-reducing sugar and the addition amount.
  • a more preferable pH range is 10.0 to 13.2.
  • an alkaline buffer composed of a weak acid other than a saccharide and a strong base
  • the weak acid used as such a buffer is preferably one having a dissociation constant (pKa) of 10.0 to 13.2.
  • Such weak acids are selected from those described in IONATION CONSTANTS OF ORGANIC ACIDS IN AQUEOUS SOLUTION published by Pergamon Press, for example, 2,2,3,3-tetrafluoro-1-propanol (pKa 12.
  • alcohols such as trifluoroethanol (pKa 12.37), trichloroethanol (pKa 12.24), pyridine-2-aldehyde (pKa 12.68), pyridine-4-aldehyde (pKa 12.05), etc.
  • sulfosalicylic acid and salicylic acid are preferred.
  • sodium hydroxide, ammonium hydroxide, potassium hydroxide and lithium hydroxide are preferably used.
  • These alkaline agents can be used alone or in combination of two or more.
  • the above-mentioned various alkaline agents are used by adjusting the pH within a preferable range depending on the concentration and combination.
  • surfactant Various surfactants and organic solvents can be added to the developer of the present invention as necessary for the purpose of promoting developability, dispersing development residue, and improving ink affinity of the printing plate image area.
  • Preferred surfactants include anionic, cationic, nonionic and amphoteric surfactants.
  • the surfactant include polyoxyethylene alkyl ethers, glycerin fatty acid partial esters, sorbitan fatty acid partial esters, sucrose fatty acid partial esters, fatty acid diethanolamides, polyoxyethylene alkylamines, triethanolamine
  • Nonionic surfactants such as fatty acid esters and trialkylamine oxides, fatty acid salts, dialkylsulfosuccinic acid ester salts, linear alkylbenzene sulfonates, polyoxyethylene alkylsulfophenyl ether salts, sulfate esters of fatty acid alkyl esters,
  • Anionic surfactants such as polyoxyethylene alkyl ether sulfate salts, alkylamine salts, quaternary ammonium salts such as tetrabutylammonium bromide, polyoxy Chi alkylene alkyl amine salts, cationic surfactants such as polyethylene polyamine derivatives, carboxy betaines
  • a more preferred surfactant is a fluorosurfactant containing a perfluoroalkyl group in the molecule.
  • fluorosurfactants include perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, anionic types such as perfluoroalkyl phosphates, amphoteric types such as perfluoroalkyl betaines, and perfluoroalkyltrimethylammonium salts.
  • Nonionic types such as group-containing oligomers, perfluoroalkyl groups, and lipophilic group-containing urethanes can be mentioned.
  • the above surfactants can be used alone or in combination of two or more, and are added to the developer in the range of 0.001 to 10% by weight, more preferably 0.01 to 5% by weight.
  • development stabilizer Various development stabilizers are used in the developer of the present invention. Preferred examples thereof include polyethylene glycol adducts of sugar alcohols described in JP-A-6-282079, tetraalkylammonium salts such as tetrabutylammonium hydroxide, phosphonium salts such as tetrabutylphosphonium bromide, and iodonium such as diphenyliodonium chloride. A salt is a preferred example.
  • an organic solvent is further added to the developer as necessary.
  • an organic solvent those having a solubility in water of about 10% by mass or less are suitable, and are preferably selected from those having 5% by mass or less. Examples thereof include 1-phenylethanol, 2-phenylethanol, 3-phenyl-1-propanol, 2-phenoxyethanol, 2-benzyloxyethanol, benzyl alcohol, cyclohexanol, N-phenylethanolamine and the like.
  • the content of the organic solvent is 5% by mass or less based on the total weight of the liquid used. More preferably, it is 1 mass% or less.
  • the organic solvent evaporates in the process of concentrating the processing waste liquid, so that there is a concern that the components of the image forming layer that have ensured solubility in the developer due to the presence of the organic solvent may precipitate and generate sludge. For this reason, the maintainability of the concentrator is significantly reduced.
  • a reducing agent can be further added to the developer of the present invention. This prevents the printing plate from being stained.
  • Preferable organic reducing agents include phenol compounds such as hydroquinone and resorcin, and amine compounds such as phenylenediamine and phenylhydrazine.
  • More preferable inorganic reducing agents include sodium, potassium and ammonium salts of inorganic acids such as sulfurous acid, bisulfite, phosphorous acid, hydrogen phosphite, dihydrogen phosphite, thiosulfuric acid and dithionite. A salt etc. can be mentioned.
  • sulfite has a particularly excellent antifouling effect. When these reducing agents are used, they are preferably contained in the range of 0.05 to 5% by mass with respect to the developing solution at the time of use.
  • a known additive may be further added to the developer of the present invention as necessary.
  • organic carboxylic acids preservatives, colorants, thickeners, antifoaming agents, hard water softening agents, and the like can also be included.
  • the remaining component of the developer is water. It is advantageous for transportation that the developer of the present invention is a concentrated solution in which the water content is less than that in use, and is diluted with water at the time of use. In this case, the degree of concentration is appropriate such that each component does not cause separation or precipitation.
  • an aqueous solution having a higher alkali strength than that of the developer is added to the developer so that the developer in the developer tank is not changed for a long time. It is known that lithographic printing plates can be processed.
  • This replenishment method is also preferably applied in the present invention.
  • Various surfactants and organic solvents can be added to the developer and replenisher as necessary for the purpose of promoting or suppressing developability, dispersing development residue, and improving the ink affinity of the printing plate image area.
  • Preferred surfactants include anionic, cationic, nonionic and amphoteric surfactants.
  • the developer and replenisher may contain reducing agents such as hydroquinone, resorcin, sulfurous acid, bisulfite, and other inorganic acids such as sodium salts and potassium salts, and organic carboxylic acids, antifoaming agents, and hard water softeners. It can also be added.
  • reducing agents such as hydroquinone, resorcin, sulfurous acid, bisulfite, and other inorganic acids such as sodium salts and potassium salts, and organic carboxylic acids, antifoaming agents, and hard water softeners. It can also be added.
  • the positive-type planographic printing plate (also referred to as a planographic printing plate precursor) used in the plate-making method of the present invention contains an alkali-soluble resin and an infrared-absorbing dye on a support, and optionally contains a dissolution inhibitor and the like. A layer is provided. The configuration of the image recording layer will be described below.
  • the infrared absorbing dye used in the image recording layer is not particularly limited as long as it absorbs infrared rays and generates heat, and various dyes known as infrared absorbing dyes can be used.
  • infrared absorbing dye commercially available dyes and known dyes described in literature (for example, “Dye Handbook” edited by the Society of Synthetic Organic Chemistry, published in 1970) can be used. Specific examples include azo dyes, metal complex azo dyes, pyrazolone azo dyes, quinoneimine dyes, methine dyes, and cyanine dyes. In the present invention, among these dyes, those that absorb infrared light or near infrared light are particularly preferred because they are suitable for use in lasers that emit infrared light or near infrared light.
  • the infrared absorbing dye that can be used in the present invention is not particularly limited as long as it is a substance that absorbs light energy radiation used for recording and generates heat.
  • An infrared absorbing dye or pigment having an absorption maximum at a wavelength of 800 nm to 1200 nm is preferred from the viewpoint of compatibility with an easily available high-power laser.
  • cyanine dyes cyanine dyes, squarylium dyes, pyrylium salts, and organometallic complexes (for example, dithiolate complexes) are particularly preferable.
  • organometallic complexes for example, dithiolate complexes
  • a cyanine dye represented by the general formula (I) in JP-A No. 2001-305722 is preferred.
  • the amount of the infrared absorbing dye added to the image recording layer is 0.01 to 50% by mass, preferably 0.1 to 50% by mass, particularly from the viewpoint of the sensitivity and uniformity of the image recording layer, with respect to the mass of the image recording layer.
  • the content is 0.1 to 30% by mass.
  • the alkali-soluble resin used in the image recording layer is a water-insoluble and alkali-water-soluble resin (hereinafter, appropriately referred to as an alkali-soluble polymer), and has an acidic group on the main chain and / or side chain in the polymer. Containing homopolymers, copolymers thereof or mixtures thereof. Therefore, the image recording layer of the lithographic printing plate precursor has a property of dissolving when contacted with an alkaline developer.
  • the alkali-soluble polymer used in the image recording layer is not particularly limited as long as it is a conventionally known polymer, but any one of (1) phenolic hydroxyl group, (2) sulfonamide group, and (3) active imide group A polymer compound having a functional group in the molecule is preferable. Among these, (1) a polymer compound having a phenolic hydroxyl group in the molecule is preferable.
  • Examples of the polymer compound having a phenolic hydroxyl group include phenol formaldehyde resin, m-cresol formaldehyde resin, p-cresol formaldehyde resin, m- / p-mixed cresol formaldehyde resin, phenol / cresol (m-, p (May be either-or m- / p-mixture) Novolak resin such as mixed formaldehyde resin and pyrogallol acetone resin.
  • a polymer compound having a phenolic hydroxyl group in the side chain is preferably used as the polymer compound having a phenolic hydroxyl group.
  • a polymerizable monomer comprising a low molecular compound having at least one unsaturated bond polymerizable with the phenolic hydroxyl group is homopolymerized, or other polymerizable property is added to the monomer.
  • examples thereof include a polymer compound obtained by copolymerizing monomers.
  • Examples of the alkali-soluble polymer compound having a sulfonamide group include a polymer compound obtained by homopolymerizing a polymerizable monomer having a sulfonamide group or copolymerizing the monomer with another polymerizable monomer.
  • the polymerizable monomer having a sulfonamide group includes one or more sulfonamide groups —NH—SO 2 — in which at least one hydrogen atom is bonded on a nitrogen atom and one or more polymerizable unsaturated bonds in one molecule.
  • a polymerizable monomer comprising a low molecular weight compound.
  • a low molecular compound having an acryloyl group, an allyl group, or a vinyloxy group, and a substituted or monosubstituted aminosulfonyl group or a substituted sulfonylimino group is preferable.
  • the alkali-soluble polymer compound having an active imide group is preferably one having an active imide group in the molecule.
  • the polymer compound an unsaturated bond polymerizable with an active imide group is contained in one molecule, respectively.
  • examples thereof include a polymer compound obtained by homopolymerizing a polymerizable monomer composed of one or more low-molecular compounds or copolymerizing the monomer with another polymerizable monomer.
  • the alkali-soluble polymer is a copolymer of a polymerizable monomer having a phenolic hydroxyl group, a polymerizable monomer having a sulfonamide group, or a polymerizable monomer having an active imide group and another polymerizable monomer
  • the monomer that imparts alkali solubility is preferably contained in an amount of 10 mol% or more, more preferably 20 mol% or more so that the alkali solubility becomes sufficient and the effect of improving the development latitude is sufficiently achieved.
  • the alkali-soluble polymer when the alkali-soluble polymer is a homopolymer or copolymer of a polymerizable monomer having a phenolic hydroxyl group, a polymerizable monomer having a sulfonamide group, or a polymerizable monomer having an active imide group, the weight average Those having a molecular weight of 2,000 or more and a number average molecular weight of 500 or more are preferred. More preferably, the weight average molecular weight is 5,000 to 300,000, the number average molecular weight is 800 to 250,000, and the dispersity (weight average molecular weight / number average molecular weight) is 1.1 to 10. .
  • the alkali-soluble polymer is a resin such as phenol formaldehyde resin or cresol aldehyde resin
  • the weight average molecular weight is 500 to 20.000
  • the number average molecular weight is 200 to 10,000. preferable.
  • alkali-soluble polymer compounds may be used alone or in combination of two or more, and are 30 to 99% by mass, preferably 40 to 95% by mass, particularly preferably 50%, based on the total solid content of the image forming layer. Used in an addition amount of ⁇ 90% by mass. From the viewpoint of durability and sensitivity of the image forming layer, the above content range is appropriate.
  • the image recording layer preferably contains a dissolution inhibitor from the viewpoint of sensitivity. Although it does not specifically limit as a dissolution inhibitor, A quaternary ammonium salt, a polyethyleneglycol type compound, etc. are mentioned.
  • a substance that is thermally decomposable such as an onium salt, an o-quinonediazide compound, an aromatic sulfone compound, an aromatic sulfonic acid ester compound, and the like, which substantially reduces the solubility of the alkaline water-soluble polymer compound without being decomposed.
  • onium salts include diazonium salts, ammonium salts, phosphonium salts, iodonium salts, sulfonium salts, selenonium salts, and arsonium salts.
  • Examples of other additives include compounds such as sensitivity modifiers, print-out agents, dyes, and the like disclosed in JP-A-7-92660, [0024] to [0027], and the same publication [0031]. It is preferable to add a surfactant for improving the coating property.
  • Other preferable surfactants are preferably compounds shown in [0053] to [0059] of JP-A No. 2001-305722.
  • the coating amount (solid content) of the image recording layer varies depending on the application, but it can be provided at a coating amount of 0.3 to 3.0 g / m 2 from the viewpoint of film properties and printing durability. 0.5 to 2.5 g / m 2 is preferable, and 0.8 to 1.6 g / m 2 is more preferable.
  • the image recording layer of the lithographic printing plate precursor may have a single layer structure, or may have a multilayer structure in which a plurality of recording layers are laminated.
  • Examples of the image recording layer having a multilayer structure include a recording layer as described in JP-A-11-218914.
  • the image recording layer having a multilayer structure will be described.
  • the multilayer image recording layer may have a multilayer structure of at least two layers (hereinafter, for convenience, a case of two layers including an upper layer and a lower layer will be described).
  • the alkali-soluble resin described above can be applied to the alkali-soluble resin constituting the upper layer and the lower layer.
  • the upper layer preferably has a lower solubility in alkali than the lower layer.
  • the infrared absorbing dye may be contained in any one of the layers, or may be contained in both. These infrared absorbing dyes may be different infrared absorbing dyes in each layer, or infrared absorbing dyes composed of a plurality of compounds may be used in each layer.
  • the amount to be contained is 0.01 to 50% by mass, preferably 0.1 to 50% by mass, particularly preferably the total solid content of the layer to be added, as described above, when used in any layer. It can be added at a ratio of 0.1 to 30% by mass. When adding to a several layer, it is preferable to add so that the total of addition amount may become the said range.
  • an undercoat layer between the thermal positive type image recording layer and the support.
  • components contained in the undercoat layer include various organic compounds described in JP-A-2001-305722, [0068].
  • Examples of the hydrophilic support used in the lithographic printing plate precursor include a dimensionally stable plate having the required strength and durability, such as paper, plastic (eg, polyethylene, polypropylene, polystyrene). Etc.) laminated paper, metal plate (eg, aluminum, zinc, copper, etc.), plastic film (eg, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate butyrate, cellulose nitrate, polyethylene terephthalate) , Polyethylene, polystyrene, polypropylene, polycarbonate, polyvinyl acetal, etc.), paper laminated with metal as described above, or vapor-deposited paper, or plastic film.
  • a polyester film or an aluminum plate is preferable, and among them, an aluminum plate having good dimensional stability and relatively inexpensive is particularly preferable.
  • the thickness of the aluminum plate used for the support is about 0.1 mm to 0.6 mm, preferably 0.15 mm to 0.4 mm, and particularly preferably 0.2 mm to 0.3 mm.
  • the aluminum plate is subjected to various surface treatments to form a support.
  • the surface treatment is performed for the purpose of improving surface hydrophilicity, adhesion with the image recording layer, and the like, and surface roughening treatment, for example, mechanical roughening, electrochemical roughening, chemical roughening. There is a conversion process.
  • the thus roughened aluminum plate is subjected to an alkali etching treatment and neutralization treatment as necessary, and then subjected to an anodization treatment to enhance the water retention and wear resistance of the surface as desired.
  • hydrophilic treatment is performed if necessary.
  • the hydrophilic treatment include alkali metal silicates as disclosed in US Pat. Nos. 2,714,066, 3,181,461, 3,280,734 and 3,902,734. (Eg, sodium silicate aqueous solution) method, treatment with polyvinylphosphonic acid as disclosed in US Pat. Nos. 3,276,868, 4,153,461, 4,689,272 Etc. are used.
  • the lithographic printing plate precursor used in the present invention has at least the above-described image recording layer provided on a support, and an undercoat layer may be provided between the support and the image recording layer as necessary. it can.
  • phosphonic acids having an amino group such as carboxymethylcellulose, dextrin, gum arabic, 2-aminoethylphosphonic acid, and optionally substituted phenylphosphonic acid
  • Organic phosphonic acids such as naphthylphosphonic acid and alkylphosphonic acid, phenylphosphinic acid optionally having substituents, organic phosphinic acids such as alkylphosphinic acid, amino acids such as glycine and ⁇ -alanine, and triethanolamine
  • hydrochlorides of amines having a hydroxy group such as hydrochloride, and these may be used as a mixture of two or more.
  • the coverage of the undercoat layer is suitably 2 to 200 mg / m 2 from the viewpoint of printing durability, and preferably 5 to 100 mg / m 2 .
  • the lithographic printing plate precursor prepared as described above is exposed imagewise, and then developed using the alkali developing solution detailed above.
  • Examples of actinic light sources used for image exposure include mercury lamps, metal halide lamps, xenon lamps, chemical lamps, and carbon arc lamps.
  • Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays.
  • g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used.
  • Examples of the laser beam include helium / neon laser, argon laser, krypton laser, helium / cadmium laser, and KrF excimer laser.
  • a light source having an emission wavelength in the near infrared to infrared region is preferable, and a solid laser or a semiconductor laser is particularly preferable.
  • the configuration using the heat pump circuit for the waste liquid heating unit and the steam cooling unit is given as an example, but the present invention is not limited to this, for example, the configuration using an electric heater for the heating unit and a water cooling cooler for the cooling unit. It is also possible to apply.
  • the present invention can be applied as a processing method for any waste liquid that produces a concentrate having the same physical properties as the waste liquid according to the present invention other than the plate making waste liquid of the photosensitive lithographic printing plate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

 設備のメンテナンス性に優れた感光性平版印刷版の製版処理廃液の処理方法を提供する。非還元糖から選ばれる少なくとも一種の糖類と、少なくとも一種の塩基と、を含有し、珪酸塩を含まず、pHが9.0~13.5の範囲であることを特徴とする感光性平版印刷版用現像液を用いて感光性平版印刷版の製版処理を行った際に排出される製版処理廃液を、蒸発濃縮装置で蒸発濃縮し水蒸気と溶解成分とに分離する製版処理廃液の処理方法であって、前記製版処理廃液は耐塩基性を備えた蒸発釜中で加熱手段により加熱され、前記製版処理廃液より分離された前記水蒸気は前記蒸発釜より導出され冷却手段中で凝縮され再生水とされる。

Description

感光性平版印刷版の製版処理廃液の処理方法
 本発明は感光性平版印刷版の製版処理廃液の処理方法に関し、特にポジ型感光性平版印刷版を、珪酸塩を用いず非還元糖と塩基を含有する現像液で製版処理した際の廃液の処理方法に関する。
 従来から、ポジ型感光性平版印刷版の感光層には感光成分であるo-キノンジアジド化合物の結合剤(バインダー)としてクレゾールノボラック樹脂が用いられてきた。そのため現像液としては、クレゾールノボラック樹脂を溶解可能なpH13前後の強アルカリ性の珪酸塩を用いることが一般的であった。
 上記のようなポジ型感光性平版印刷版の現像液として使用されるアルカリ水溶液は、種々のものが知られているが、最も一般的に使用されているのは珪酸ナトリウム、珪酸カリウム等の珪酸塩水溶液である。その理由は珪酸塩の成分である酸化珪素とアルカリ金属酸化物の比率と濃度によって、ある程度現像性の調節が可能とされるためである。また、ほとんど全てのポジ型感光性平版印刷版が現像にpH13前後の強アルカリを必要とし、珪酸塩がそのpH領域で良好な緩衝作用を示し、安定した現像ができるという利点もある。
 しかしながら、当該現像液の主成分である珪酸塩は、アルカリ性領域では安定であるが、中性ではゲル化、不溶化し、また蒸発乾固するとフッ化水素酸のような強烈な酸にしか溶けなくなる欠点を持っている。実際、自動現像機の現像槽周辺の液はねによる固化物の汚れや、現像廃液を廃棄する際の中和による不溶化物の析出などがその実害として挙げられる。
 例えば特開昭58-95349号公報には、感光性プレートの非画像部の感光層の溶出度合いを電気的に測定するセンサを設け、溶出度合いが所定のレベルに低下した時に現像補充液が補充される方法が開示されている。しかし、現像液が珪酸塩系の場合、このセンサに珪酸塩の不溶化物が堆積して検出感度を落とすため正常な補充ができず、処理の安定性が著しく低下する問題があった。この問題点を解決するため、珪酸塩以外のアルカリ剤をポジ型感光性平版印刷版用現像液に用いる試みがなされ、燐酸三ナトリウムや、水酸化ナトリウムと燐酸三ナトリウムを組み合わせた強アルカリが現像液として評価されたが、何れも緩衝作用が弱く、安定した現像が出来なかった。
 上記の問題に対して本出願人らは糖類と塩基の組み合わせがアルカリ側で緩衝作用を示すことを見いだし、珪酸塩を含まず、少なくとも一種の非還元糖、および少なくとも一種の塩基を含有し、pHが9.0~13.5の範囲であることを特徴とする感光性平版印刷版用現像液を用いることで上記の問題を解決した(例えば、特許第3642845号公報参照)。
 ところで平版印刷版の自動現像機による処理工程は、処理すべき画像形成層に現像液を供給して画像形成層を画像様に溶出させる現像工程、現像液を洗い流す水洗工程、露出した親水性表面を保護するための不感脂化工程、バーニング処理時に親水性表面が有機物で汚染されないようにするための整面液による処理工程などが含まれる。
 大量の平版印刷版材料を自動現像機で処理する場合は、処理によって消費される成分や経時で揮発する成分の濃度を一定に保ち、また時間の経過により失われた処理液の性能を維持するために、補充液を各工程の処理液に供給する手段が採られている。このような補充を行っても、処理液の性能が許容限度外になるような場合には、処理液の全てが廃棄処分される。
 上記のような廃液(例えば、現像液、水洗液、ガム液、リンス液等の廃液)は、近年の水質汚濁防止法や各都道府県条例による公害規制の強化により、下水道への廃棄は実質的に不可能となっている。このため、製版業者は廃液を廃液処理業者に回収料金を払って回収してもらったり、公害処理設備を設置したりしている。しかし、廃液処理業者に委託する方法は廃液の貯蔵に多大なスペースが必要となるし、またコスト的にもきわめて高価である。さらに公害処理設備は初期投資が極めて大きく、整備するのにかなり広大な場所を必要とする等の問題を有している。
 上記のような問題の対策技術として、処理廃液を減圧及び/または加熱により濃縮し、蒸発した液体成分を冷却して凝縮させ、濃縮物と液体成分とに分離し、廃棄分を濃縮物の形態に減少させる技術が提案されている。
 例として廃液を乾燥・濃縮し、廃液量を減少させる感光性平版印刷版処理装置の廃液回収方法が開示されている(例えば、特開平05-341535号公報参照)。また減圧手段としてエバポレーターを使用し、減圧加熱により廃液を濃縮する方法が開示されている(例えば、特開平01-304463号公報参照)。あるいは加熱手段としてヒートポンプ回路を用いた減圧加熱により廃液を濃縮する方法が提案されている(例えば、特許第3168015号公報参照)。
 上記の各方法は、処理廃液の量を削減する効果が大きく有用な手段であるが、濃縮進行に従い析出物の発生、高粘度化や粘着物化が起き、濃縮液を廃棄する際の取り扱い性や蒸発濃縮釜のメンテナンス性が不十分であった。
 また蒸発濃縮釜中の析出物や粘着物化の低減を意図して、処理廃液を中和し、凝集剤を添加して凝集成分を凝集させて濾過し、濾液を蒸発濃縮釜へ送る技術が提案されている(例えば、特開平02-157084号公報参照)が、凝集剤のコストがかかる問題があった。
 上記のように従来の珪酸塩を含む現像廃液は濃縮することによりゲル化、不溶化することがわかっている。また有機溶剤を多く含む現像廃液では、加熱・濃縮によって有機溶剤が除去されることで溶解成分が析出する。上記の要素はともに廃液濃縮設備の釜内壁や加熱器などに付着し、設備のメンテナンス性を著しく損なうため、廃液の濃縮は実用性に欠けるという問題があった。
 本発明は上記事実を考慮し、設備のメンテナンス性に優れた感光性平版印刷版の製版処理廃液の処理方法を提供することを課題とする。
 <1>感光性平版印刷版用現像液を用いて感光性平版印刷版の製版処理を行った際に排出される製版処理廃液を、蒸発濃縮装置で蒸発濃縮し水蒸気と溶解成分とに分離することを含む製版処理廃液の処理方法であって、前記感光性平版印刷版用現像液は非還元糖から選ばれる少なくとも一種の糖類と、少なくとも一種の塩基と、を含有し、前記製版処理廃液を耐塩基性を備えた蒸発釜中で加熱手段により加熱し、前記製版処理廃液より分離された前記水蒸気を前記蒸発釜より導出し冷却手段中で凝縮して再生水とする、感光性平版印刷版の製版処理廃液の処理方法である。
 上記の発明によれば、製版処理廃液を蒸発濃縮装置で蒸発濃縮させることで廃液を減量させるのみならず、廃液が珪酸塩を含まないため蒸発釜内部や加熱手段の表面に廃液の濃縮物が付着しにくく、蒸発濃縮装置のメンテナンス性に優れた製版処理廃液の処理方法を提供することができる。
 <2>前記蒸発釜内部を減圧手段で減圧して前記製版処理廃液を加熱濃縮する、感光性平版印刷版の製版処理廃液の処理方法である。
 上記の発明によれば、蒸発釜内部を減圧することで内部の廃液の沸点を低下させ、大気圧下よりも低い温度で廃液を蒸発濃縮させることにより、安全で蒸発釜、廃液および廃液濃縮物が熱による影響を受けにくい製版処理廃液の処理方法を提供することができる。
 <3>前記加熱手段としてヒートポンプを使用し、前記ヒートポンプの放熱部で前記製版処理廃液を加熱する一方、前記ヒートポンプの吸熱部で前記冷却手段の前記水蒸気を冷却する、感光性平版印刷版の製版処理廃液の処理方法である。
 上記の発明によれば、廃液の加熱濃縮をヒートポンプの発熱で行い、水蒸気の凝縮をヒートポンプの吸熱で行うため熱効率がよく、また局所的に高熱とならないため電熱器等と比較すれば安全で、さらに二酸化炭素を排出せず環境への負担が少ない製版処理廃液の処理方法を提供することができる。
 <4>前記製版処理廃液のpHを下げる中和処理を含む、感光性平版印刷版の製版処理廃液の処理方法である。
 上記の発明によれば、中和処理によって廃液のpHを下げるので、蒸発釜や加熱手段などが強アルカリの影響を受けにくく、また排出される廃液濃縮物や再生水にアルカリが残りにくい製版処理廃液の処理方法を提供することができる。
 <5>蒸発濃縮により濃縮された前記製版処理廃液の濃縮物をポンプで加圧し回収タンクに回収する、感光性平版印刷版の製版処理廃液の処理方法である。
 上記の発明によれば、蒸発釜内で流動性を維持したまま蒸発濃縮し、体積を減少させた濃縮物(スラリー)をポンプで加圧して回収タンクへ圧送することで、蒸発釜の直下にてスラリー回収を行う必要がなく、回収容器の容積に制限がなくなるので回収頻度も少なく抑えることができる。
 <6>感光性平版印刷版用現像液を用いて感光性平版印刷版の製版処理を行った際に排出される製版処理廃液を、蒸発濃縮装置で蒸発濃縮し水蒸気と溶解成分とに分離することを含む製版処理廃液の処理方法であって、前記感光性平版印刷版用現像液は有機溶媒の含有量が5質量%以下であり、前記製版処理廃液を耐塩基性を備えた蒸発釜中で加熱手段により加熱し、前記製版処理廃液より分離された前記水蒸気を前記蒸発釜より導出し冷却手段中で凝縮して再生水とする、感光性平版印刷版の製版処理廃液の処理方法である。
 本発明は上記構成を有することにより、設備のメンテナンス性に優れた感光性平版印刷版の製版処理廃液の処理方法を提供することができる。
本発明の実施形態に係る廃液処理装置の主要部を示す概念図である。
 以下、図面を参照して本発明に係る実施形態の一例について説明する。
<全体構成>
 図1に示すように、本実施形態に係る廃液処理装置10は、感光性平版印刷版の製版処理に伴って排出される現像液の廃液を貯蔵する処理液タンク20、処理液タンク20より送られた廃液を減圧下で加熱し、蒸発する水分と残留する濃縮物(スラリー)とに分離する蒸発釜30、蒸発釜30で水蒸気として分離された水分を導入し、冷却・凝結して再生水とする冷却釜40、冷却釜40で凝結した再生水を貯蔵する再生水タンク50、蒸発釜30内部と冷却釜40内部との間で熱を移動させるヒートポンプユニット60が設けられている。
 蒸発釜30の減圧手段としては、一般的な水封式や油回転式、ダイヤフラム式等の機械的真空ポンプ、油や水銀を用いた拡散ポンプ、多段ターボ圧縮機、往復圧縮機、ねじ圧縮機等の圧縮機、アスピレータが挙げられるが、この中ではアスピレータがメンテナンス性、コストの点で好ましく用いられる。加熱・冷却手段としては、各種熱交換器を用いることができ、ランニングコストの観点でヒートポンプ回路を用いることが好ましい。
 また、廃液処理装置10への処理廃液の移液、濃縮物の回収タンク86への移液などは、省人化のためポンプ送液、電磁弁等の手段を用いた自動送液であることが好ましい。本発明においては珪酸塩を含まない廃液を処理するので濃縮物の流動性が維持されるため、ポンプ等を用いて移液が可能となる点が従来の方法とは異なっている。
 再生水タンク50に貯留された再生水はオーバーフローすると洗浄水タンク70へ送られ、一部は洗浄水として蒸発釜30の内部の洗浄に使用される。また蒸発釜30の底部には濃縮物回収配管80が接続され、濃縮物を外部へ排出する。さらに蒸発釜30、冷却釜40には再生水循環装置90が接続され、蒸発濃縮運転中は内部が減圧されて大気圧より低い気圧とされる。加熱・減圧手段により、蒸発釜30内は例えば液温20~35℃、真空度2.6~4.6kPaに保たれ、廃液の蒸発濃縮が行われる。
 蒸発した溶媒(水)は、冷却釜40で冷却されBOD、COD値の低い再生水となる。本発明で用いられる現像液を使用した場合、おおよそ、BOD値は300mg/L以下、COD値250mg/L以下となる。再生水は、アスピレータ94により再生水タンク50に移液され、貯蔵される。再生水タンク50には曝気ポンプ56によりエアーが供給されており、pHが高いためそのままでは廃棄しにくい再生水を、エアーを供給することで炭酸ガスによる酸化でpHを下げ、廃棄しやすいようにpHの調整を行う。エアーの供給量は、例えば4000cm/分以上であることが好ましい。
 一定量に達した再生水はオーバーフローで排出され、下水等に排水するか、保管して濃縮釜の洗浄用水として用いることが出来る。濃縮釜の洗浄は、例えば珪酸塩や有機溶媒を1質量%を超える量で含む現像液では、難溶解性や粘着性の析出物が濃縮釜内に発生するため、その都度装置を分解洗浄することが必要となるのに対して、本発明で用いられる現像液を使用した場合、月に一度、一日程度再生水に浸漬するだけで洗浄ができるという利点がある。
 以下、各処理部について説明する。
<給液部>
 図示しない製版処理機において感光性平版印刷版の現像処理が行われると、例えば現像処理された感光性平版の処理面積に応じて現像液が廃液として排出される。例えば現像液を満たした現像槽に、露光を行った感光性平版を浸漬し、感光性平版の表面(露光面)に対して現像処理が行われる。
 例として近年、製版・印刷業界で製版作業の合理化及び標準化のため広く用いられている自動現像機は、一般に現像部と後処理部からなり、印刷版を搬送する装置と各処理液槽及びスプレー装置を含み、露光済みの印刷版を水平に搬送しながら、ポンプで汲み上げた各処理液をスプレーノズルから吹き付けて現像処理するものである。また、最近は処理液が満たされた処理液槽中に液中ガイドロールなどによって印刷版を浸漬搬送させて処理する方法も知られている。このような自動処理においては、各処理液に処理量や稼働時間等に応じて補充液を補充しながら処理することができる。また、実質的に未使用の処理液で処理するいわゆる使い捨て処理方式も適用される。
 上記のような現像処理によって生じる廃液は自動現像器内部に設けられた廃液タンク等に貯蔵されるが、定期的に廃液処理を行う必要があるため、オーバーフローした分の廃液を本願発明の処理液タンク20にて回収する構成、あるいは廃液タンク自体を本願発明の処理液タンク20とする構成等が考えられる。
 処理液タンク20には別途設けられた廃液タンクから手作業や圧送ポンプ等で廃液を送液してもよい。あるいは処理液タンク20自体が廃液タンクであれば、図示しない液面センサを備え、処理液タンク20から廃液のオーバーフローを防止するようにしてもよい。
 図1に示すように処理液タンク20は廃液バルブ22を備えており、処理液タンク20内部より蒸発釜30へ廃液を送液する。処理液タンク20を蒸発釜30よりも低所に配置し、廃液バルブ22に替えてポンプを設けてもよい。
 何れにしても後述する蒸発釜30内部の液面を所定の範囲に保つため、図示しない制御部において、蒸発釜30に設けられた正常液面センサ36Aおよび異常液面センサ36Bから送られる蒸発釜30内部の廃液の液面情報により、廃液バルブ22またはポンプの作動制御を行う。
 処理液タンク20と並列に消泡剤タンク24が設けられ、図示しない制御部の制御に従って蒸発釜30の内部へ消泡剤を送液する。すなわち消泡剤タンク24から蒸発釜30へ消泡剤を送液する配管途中に消泡剤バルブ26が設けられ、例えば蒸発釜30で蒸発濃縮運転開始時などの所定のタイミングで消泡剤を蒸発釜30へ添加するように消泡剤バルブ26をon/offし、送液を制御する。
 消泡剤としては既知のフッ素系、シリコーン系素材が用いられ、特にシリコーン系が好ましい。これら消泡剤は乳化分散した市販のものを用いることができ、信越シリコーン社、ダウコーニング社、東レシリコーン社などから入手可能である。例えば富士フイルム製AF-A(シリコーン系消泡剤乳化物)が好ましく用いられる。例えばAF-Aは水で濃度5質量%に希釈して現像廃液に添加される。希釈液の添加量は、現像廃液に対して5質量%以下であり、好ましくは3質量%以下である。添加量が少ないと、現像廃液が蒸発釜で発泡するため作業性が著しく低下する。添加量が多すぎると、コスト負担が大きくなり、濃縮のメリットが小さくなる。
<蒸発釜>
 処理液タンク20は廃液を送る配管21で蒸発釜30へ接続されている。蒸発釜30は例えば密閉された縦長の略円筒形などの形状とされ、処理液タンク20より送られた廃液が内部に貯留される。蒸発釜30の内部には加熱コイル32が設けられ、内部の廃液を加熱し水分を水蒸気として蒸発させ、廃液の水分を除去して体積を圧縮する。
 蒸発釜30は後述する冷却釜40と連通路39を介して連通しており、冷却釜40は後述する再生水循環装置90によって減圧される。冷却釜40と連通路39を介して連通している蒸発釜30もまた同様に減圧される。
 加熱コイル32としては、後述するヒートポンプユニット60を形成する配管の一部が蒸発釜30の内部に設けられていてもよく、あるいはより単純に電熱器などの加熱手段が用いられてもよい。加熱釜30の内部は前述のように減圧装置により減圧されているため廃液(廃液内に含まれる水)の沸点は低下し、大気圧下よりも低い温度で水分は蒸発し、水蒸気として廃液と分離する。
 本願発明に用いられる感光性平版印刷版の製版処理廃液はpHが9.0~13.5の範囲にある塩基性であり、この廃液を蒸発濃縮する蒸発釜30は、少なくとも接液部分は例えばSUS316など耐アルカリ性を備えた素材で形成されるか、あるいは耐アルカリ性の素材で被覆されていることが望ましい。廃液に接触しない部分は例えばSUS304などのより安価な素材で代用されていてもよい。
 蒸発釜30の内部はデミスタ34(気液分離手段)で上部30Aと下部30Bとに区分されている。デミスタ34は例えばステンレス鋼線製のメッシュなど多孔質の素材で形成され、水蒸気などの気体は透過し、廃液飛沫などのミストを捕獲する。配管21は下部30Bに廃液を送り、下部30Bに設けられた加熱コイル32により加熱された廃液から生じた水蒸気はデミスタ34を透過して上部30Aへ移動する。
 上部30Aは近傍に設置された冷却釜40の上部と連通路39で連通されている。廃液の液面は通常、加熱圧縮運転開始時に最大量となり、連通路39よりも下の位置において液面の最高位とされる。加熱された廃液より発生し上部30Aに滞留する水蒸気は連通路39を通過して冷却釜40へ移動する。あるいは連通路39内部にファンなどの送風手段が設けられていてもよい。
 前述のように、上部30Aの例えば蓋部などに正常液面センサ36Aと異常液面センサ36Bが設けられている。正常液面センサ36Aは通常運転時の廃液液面の上限位置を検出する。一定時間の間隔で処理液タンク20からの送液を実施し、正常液面センサ36Aの位置まで処理廃液を満たす。また、下部30Bの底面近傍には、図示しない温度センサが設けられ、廃液が不足した場合は温度変化を検知し、図示しない制御部に液なし信号を送り、制御部は加熱コイル32による加熱を停止することで、廃液が不足した状態での加熱(いわゆる空焚き)を防止する構成とされている。
 さらに上部30Aには大気開放弁37が設けられており、運転中は低圧となる蒸発釜30を運転終了時などに開放する際、先に大気開放弁37を開放して蒸発釜30の内部を大気圧とすることで液の逆流を防止する。
 また連通路39の下で液面を検知する異常液面センサ36Bは蒸発釜30内部で異常発泡が発生した際の廃液面を検知し、図示しない制御部に液オーバーフロー信号を送り、制御部は加熱コイル32による加熱を停止することで、廃液が連通路39を通過し冷却釜40へ侵入することを防止する構成とされている。
<濃縮物回収配管>
 蒸発釜30の下部30Bには、その底部より廃液濃縮物(スラリー)を排出する濃縮物排出口38が設けられ、例えば図示しない電磁バルブなどで制御部より開閉制御可能とされている。濃縮物排出口38は濃縮物回収配管80に接続され、濃縮物回収配管80は回収タンク86へ廃液濃縮物を送る。濃縮物回収配管80はバルブ82を介して濃縮物排出口38よりポンプ84で回収タンク86まで配管81で接続されており、濃縮物排出口38から排出される濃縮物をポンプ84で吸引、加圧して回収タンクへ圧送する構成とされている。
 本願発明に用いられる感光性平版印刷版の製版処理廃液を濃縮した廃液濃縮物は前述のようにゲル化・不溶化あるいは溶解成分の析出を起こしにくいため、流動性を失うことなく濃縮可能な構成とされており、濃縮物を濃縮物回収配管80によって回収タンク86まで圧送可能とされている。
 また、回収タンク86に図示しない中和剤添加装置を設置してもよい。濃縮物のpHを低下させることで、廃液処理コストの更なる削減や、濃縮物の取り扱い時の安全性向上の効果がある。中和剤添加後の濃縮物のpHは、11.0~12.5であることが好ましい。この範囲のpH値であれば、沈殿物等の発生なくpHを低下することが可能となる。中和剤としては、pH低下剤として公知のものを用いることができ、例えば特開平11-253969号公報には炭酸塩、及び固体酸を含有するものが開示されている。本発明の方法で好ましく用いられる中和剤は、素材の安全性、添加時の局所的かつ急激なpH変動の少なさ、溶液化による供給の容易さ、コスト等の観点で優れるクエン酸水溶液が望ましい。
<冷却釜>
 蒸発釜30の上部30Aには冷却釜40が連通路39で連通されている。蒸発釜30の上部30Aに滞留する水蒸気は対流または加熱により加圧され、連通路39を通過して冷却釜40へ移動する。あるいは連通路39内部にファンなどの送風手段が設けられていてもよい。冷却釜40は蒸発釜30と同様、例えば略密閉された縦長の略円筒形などの形状でよく、内部には蒸発釜30より連通路39を通過した水蒸気が滞留する。
 冷却釜40もまた蒸発釜30と同様に例えばSUS316など耐アルカリ性を備えた素材で形成されるか、あるいは耐アルカリ性の素材で被覆されていることが望ましい。しかし、蒸発釜30とは異なり強塩基性の廃液と直接接触する接液部分が存在しないため、例えばSUS304などのより安価な素材で代用されていてもよい。
 冷却釜40の内部には冷却コイル42が設けられ、その冷却された表面で水蒸気が凝結され、再生水として冷却釜40の底部に貯留する。
 冷却コイル42としては、後述するヒートポンプユニット60を形成する配管の一部が冷却釜40の内部に設けられていてもよく、あるいはより単純に冷却水循環パイプなどの冷却手段が用いられてもよい。
 冷却釜40の底部には排水口44が設けられており、後述する再生水循環装置90に接続されている。再生水循環装置90に含まれるアスピレータ94は負圧を発生させ、排水口44より再生水を吸引し、冷却釜40の底部より再生水を取り出すと同時に、冷却釜40の内部を減圧することで、連通路39を通じて蒸発釜30の内部をも減圧し、冷却釜40、連通路39、蒸発釜30を大気圧より低い気圧で維持する。
<再生水タンク>
 冷却釜40で凝縮され、再生水とされた水蒸気は排水口44より再生水循環装置90で吸引され、再生水タンク50へ貯留される。
 再生水タンク50は、例えばオーバーフロー排水口52を備えており、貯留された再生水の水位が一定値を超えると、その一部を洗浄水タンク70へ送る。また例えばフロート式の液面センサ54を備えており、再生水タンク50内の再生水量を検出し、図示しない制御部へ再生水量情報として送る。図示しない制御部は、再生水の液面が後述する冷却パイプ58より低下する際には装置全体の加熱圧縮運転を停止し、冷却コイル42の温度上昇を防止するなどの制御を行ってもよい。
 再生水タンク50には曝気ポンプ56が設けられており、曝気ポンプ56には例えばエアストーン56Aが接続されている。曝気ポンプ56が再生水中にエア(外気)を吹き込むことにより空気中の炭酸ガス等が再生水中に溶解し、再生水のpHを低下させ、排出の際に環境への負担を軽減する。
 あるいは、例えば再生水タンク50中に図示しないpH計が設けられており、検出されたpHは図示しない制御部にpH値情報として送られ、検出された再生水のpH値が所定の値を超えると、図示しない制御部は曝気ポンプ56を稼働させる構成とされていてもよい。
 また再生水タンク50の底部にはドレインバルブ51が設けられており、任意で再生水を放出できる構成とされていてもよい。
<再生水循環装置>
 冷却釜40の底部に設けられた排水口44には再生水循環装置90が接続されている。再生水循環装置90は水流ポンプ92と、水流ポンプ92に接続され水流で負圧を発生させるアスピレータ94と、排水口44からアスピレータ94によって吸引された再生水を、再生水タンク50へ送る配管91、93を備えている。
 水流ポンプ92は配管93で再生水タンク50と接続されており、再生水タンク50内の再生水を吸引し、アスピレータ94へ圧送する。アスピレータ94は圧送された再生水の圧力によって負圧を発生させ、配管91を通じて冷却釜40より排水口44を経て再生水を吸引する。アスピレータ94から再生水タンク50へ圧送された再生水は給水口96から再生水タンク50へ戻され、一部はオーバーフロー排水口52から洗浄水タンク70へ送られる一方、一部は再度配管93を通じて水流ポンプ92へ送られ、アスピレータ94で負圧を発生させる。
<ヒートポンプユニット>
 蒸発釜30の内部に設けられた加熱コイル32を加熱し、冷却釜40の内部に設けられた冷却コイル42を冷却するため例えば両者を結合し、内部に冷媒を循環させるヒートポンプユニット60が設けられていてもよい。
 ヒートポンプユニット60は、内部を循環する冷媒が蒸発釜30の内部に設けられた加熱コイル32で熱を放出して廃液を加熱し、再生水タンク50の再生水中に浸漬される冷却パイプ58内で冷却されて液化し、冷却釜40の内部に設けられた冷却コイル42で周囲の熱を吸収し気化したのち、コンプレッサ64へ送られて圧縮され、再び液化される。
 すなわち、気体の状態で配管62を経由してコンプレッサ64へ戻った冷媒はコンプレッサ64で圧縮され液化される。これにより冷媒は温度が上昇するため、蒸発釜30の内部を過熱させないため液化された冷媒は放熱器66で所望の温度まで冷却される。放熱器66としては例えば冷却フィンを備えた放熱器66と冷却ファン67を組み合わせた構成であってもよい。
 液体の冷媒は蒸発釜30内部の加熱コイル32を通過する際に熱を放出し、周囲の廃液を加熱する。このとき放出される熱による加熱では、蒸発釜30内部の廃液温度は熱せられた冷媒の温度以上には上昇しないので、電熱器その他の加熱手段に比較して過熱などの危険性は少ない。
 熱を放出して温度の下がった冷媒は例えばドライヤ63を経由して除湿され、さらに狭いキャピラリ65の中を通過して広い配管62に噴射されることによって生じる絞り作用を利用して急激に膨張し、低温低圧の液体となって再生水タンク50中で再生水中を通る冷却パイプ58を通過して更に冷却される。キャピラリ65の上流側にストレーナが設けられ、異物を除去する構成とされていてもよい。
 冷却された冷媒は冷却釜40内部の冷却コイル42を通る際に周囲の水蒸気から熱を吸収し、冷却コイル42の周囲で水蒸気を凝結させ、再生水として冷却釜40内部に貯留させる。水蒸気から吸収した熱により冷媒は気化し、再びコンプレッサ64へ戻る。
 冷媒にはオゾン破壊係数の小さい代替フロンHFC(R410A、R407Cなど)を選択することが望ましいが、地球温暖化係数の点からアンモニア、イソブタン、二酸化炭素などの使用も考えられる。
<洗浄水タンク>
 再生水タンク50のオーバーフロー排水口52から洗浄水タンク70へ送られた再生水は、曝気ポンプ56によるエアーの供給でpHは十分に低いため、そのまま配管78を経由して排水路79(下水など)に排出することが可能とされている。
 また、洗浄水ポンプ(またはバルブ)74を介して配管72で蒸発釜30に再生水を送り、給水口76から蒸発釜30の内部へ供給する構成としてもよい。運転終了時に給水口76から供給される再生水で蒸発釜30の内部、特に加熱コイル32の表面を洗浄することで加熱圧縮運転時の効率低下を防止する。
 あるいは定期的に運転を休止して蒸発釜30の内部を再生水で洗浄することで蒸発釜30の内壁や加熱コイル32の表面への濃縮物のこびり付きを防止し、デミスタ34の目詰まり等を防止する構成とされていてもよい。
<処理能力>
 本発明に用いられる現像液を使用した場合、最大1/5~1/8の容量まで、析出物等なく濃縮が可能である。好ましい処理能力は2L~4L/時である。これ以上の能力にすると、濃縮釜等の容量が大きくなるため設置面積が大きくなったり、設備を導入するためのコストが大きくなったりするため好ましくない。
<現像液>
 本発明の製版処理廃液の処理方法において、感光性平版印刷版の現像に用いる現像液および補充液としては、緩衝作用を有する有機化合物と塩基とを主成分とし、実質上、二酸化ケイ素を含有しないアルカリ現像液を用いることを要する。本発明では、このような現像液を以下、「非シリケート現像液」と称する。なお、ここで「実質上」とは不可避の不純物及び副生成物としての微量の二酸化ケイ素の存在を許容することを意味する。
 以下に本発明の平版印刷版用現像液について詳しく述べる。なお、本明細書中において、特にことわりのない限り、現像液とは現像開始液(狭義の現像液)と現像補充液とを意味する。
[非還元糖及び塩基]
 従来の感光性平版印刷版の現像液として最も一般的に使用されていたのは珪酸ナトリウム、珪酸カリウム等の珪酸塩水溶液である。その理由は珪酸塩の成分である酸化珪素SiO 2とアルカリ金属酸化物MOの比率(一般に[SiO]/[MO]のモル比で表す)と濃度によってある程度現像性の調節が可能とされるためである。また、ほとんど全てのポジ型感光性平版印刷版が現像にpH13前後の強アルカリを必要とし、珪酸塩がそのpH領域で良好な緩衝作用を示し、安定した現像ができるためである。しかしながら、主成分である珪酸塩は、アルカリ性領域では安定であるが、中性ではゲル化、不溶化し、また蒸発乾固により析出するとフッ化水素酸のような強烈な酸にしか溶けなくなる欠点を持っている。このため、この処理廃液を濃縮する過程で珪酸塩が不溶化し析出してしまうので、濃縮液を別の容器に移液したり、濃縮処理を継続して実施したりするためには不溶化した珪酸塩を取り除く必要があり、濃縮装置のメンテナンス性が著しく低下する。
 これに対し、本発明で用いられる現像液は、その主成分が、非還元糖から選ばれる少なくとも一つの化合物と、少なくとも一種の塩基からなる。液のpHはおよそ9.0~13.5の範囲となるように調整され用いられる。
 かかる非還元糖とは、遊離のアルデヒド基やケトン基を持たず、還元性を示さない糖類であり、還元基同士の結合したトレハロース型少糖類、糖類の還元基と非糖類が結合した配糖体、および糖類に水素添加して還元した糖アルコールに分類され、何れも本発明に好適に用いられる。トレハロース型少糖類には、サッカロースやトレハロースがあり、配糖体としては、アルキル配糖体、フェノール配糖体、カラシ油配糖体などが挙げられる。また糖アルコールとしてはD,L-アラビット、リビット、キシリット、D,L-ソルビット、D,L-マンニット、D,L-イジット、D,L-タリット、ズリシットおよびアロズルシットなどが挙げられる。更に二糖類の水素添加で得られるマルチトールおよびオリゴ糖の水素添加で得られる還元体(還元水あめ)が好適に用いられる。これらの中で本発明の現像液に用いられる好ましい非還元糖は糖アルコールとサッカロースであり、特にD-ソルビット、サッカロース、還元水あめが適度なpH領域に緩衝作用があることと、低価格であることから好ましい。
 これらの非還元糖は、単独もしくは二種以上を組み合わせて使用でき、それらの現像液中に占める割合は0.1~30重量%が好ましく、更に好ましくは、1~20重量%である。この範囲以下では十分な緩衝作用が得られず、またこの範囲以上の濃度では、高濃縮化し難く、また原価が高くなるといった問題が生じる。
 尚、還元糖を塩基と組み合わせて使用した場合、経時的に褐色に変色し、pHも徐々に下がり、よって現像性が低下するという問題点がある。
 非還元糖に組み合わせる塩基としては、従来より知られているアルカリ剤が使用できる。例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、燐酸三ナトリウム、燐酸三カリウム、燐酸三アンモニウム、燐酸二ナトリウム、燐酸二カリウム、燐酸二アンモニウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウム、硼酸ナトリウム、硼酸カリウム、硼酸アンモニウムなどの無機アルカリ剤が挙げられる。また、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノイソプロピルアミン、ジイソプロピルアミン、トリイソプロピルアミン、n-ブチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、エチレンイミン、エチレンジアミン、ピリジンなどの有機アルカリ剤も用いられる。
 これらのアルカリ剤は単独もしくは二種以上を組み合わせて用いることができる。これらの中で好ましいのは水酸化ナトリウム、水酸化カリウムである。その理由は、非還元糖に対するこれらの量を調整することにより広いpH領域でpH調整が可能となるためである。また、燐酸三ナトリウム、燐酸三カリウム、炭酸ナトリウム、炭酸カリウムなどもそれ自身に緩衝作用があるので好ましい。
 これらのアルカリ剤は現像液のpHを9.0~13.5の範囲になるように添加され、その添加量は所望のpH、非還元糖の種類と添加量によって決められる。より好ましいpHの範囲は10.0~13.2である。
 本発明の現像液には更に、糖類以外の弱酸と強塩基からなるアルカリ性緩衝液を併用できる。かかる緩衝液として用いられる弱酸としては、解離定数(pKa)が10.0~13.2のものが好ましい。このような弱酸としては、Pergamon Press社発行のIONISATION CONSTANTS OF ORGANIC ACIDS IN AQUEOUS SOLUTIONなどに記載されているものから選ばれ、例えば2,2,3,3-テトラフルオロ-1-プロパノール(pKa 12.74)、トリフルオロエタノール(pKa 12.37)、トリクロロエタノール(pKa 12.24)などのアルコール類、ピリジン-2-アルデヒド(pKa 12.68)、ピリジン-4-アルデヒド(pKa 12.05)などのアルデヒド類、サリチル酸(pKa 13.0)、3-ヒドロキシ-2-ナフトエ酸(pKa 13.84)、カテコール(pKa 12.6)、没食子酸(pKa 12.4)、スルホサリチル酸(pKa 11.7)、3,4-ジヒドロキシスルホン酸(pKa 12.2)、3,4-ジヒドロキシ安息香酸(pKa 11.94)、1,2,4-トリヒドロキシベンゼン(pKa 11.82)、ハイドロキノン(pKa 11.56)、ピロガロール(pKa 11.34)、o-クレゾール(pKa 10.33)、レゾルシノール(pKa 11.27)、p-クレゾール(pKa 10.27)、m-クレゾール(pKa 10.09)などのフェノール性水酸基を有する化合物、2-ブタノンオキシム(pKa 12.45)、アセトキシム(pKa 12.42)、1,2-シクロヘプタンジオンジオキシム(pKa 12.3)、2-ヒドロキシベンズアルデヒドオキシム(pKa 12.10)、ジメチルグリオキシム(pKa 11.9)、エタンジアミドジオキシム(pKa 11.37)、アセトフェノンオキシム(pKa 11.35)などのオキシム類、アデノシン(pKa 12.56)、イノシン(pKa 12.5)、グアニン(pKa 12.3)、シトシン(pKa 12.2)、ヒポキサンチン(pKa 12.1)、キサンチン(pKa 12.9)などの核酸関連物質、ジエチルアミノメチルホスホン酸(pKa 12.32)、1-アミノ-3,3,3-トリフルオロ安息香酸(pKa 12.29)、イソプロピリデンジホスホン酸(pKa 12.10)、1,1-エチリデンジホスホン酸(pKa 11.54)、1,1-エチリデンジホスホン酸-1-ヒドロキシ(pKa 11.52)、ベンズイミダゾール(pKa 12.86)、チオベンズアミド(pKa 12.8)、ピコリンチオアミド(pKa 12.55)、バルビツル酸(pKa 12.5)などの弱酸が挙げられる。
 これらの弱酸の中で好ましいのは、スルホサリチル酸、サリチル酸である。これらの弱酸に組み合わせる塩基としては、水酸化ナトリウム、水酸化アンモニウム、水酸化カリウムおよび水酸化リチウムが好適に用いられる。これらのアルカリ剤は単独もしくは二種以上を組み合わせて用いることができる。
 上記の各種アルカリ剤は濃度および組み合わせによりpHを好ましい範囲内に調整して使用される。
[界面活性剤]
 本発明の現像液には、現像性の促進や現像カスの分散および印刷版画像部の親インキ性を高める目的で必要に応じて種々界面活性剤や有機溶剤を添加できる。好ましい界面活性剤としては、アニオン系、カチオン系、ノニオン系および両性界面活性剤が挙げられる。
 界面活性剤の好ましい例としては、ポリオキシエチレンアルキルエーテル類、グリセリン脂肪酸部分エステル類、ソルビタン脂肪酸部分エステル類、ショ糖脂肪酸部分エステル類、脂肪酸ジエタノールアミド類、ポリオキシエチレンアルキルアミン類、トリエタノールアミン脂肪酸エステル、トリアルキルアミンオキシドなどの非イオン性界面活性剤、脂肪酸塩類、ジアルキルスルホ琥珀酸エステル塩類、直鎖アルキルベンゼンスルホン酸塩類、ポリオキシエチレンアルキルスルホフェニルエーテル塩類、脂肪酸アルキルエステルの硫酸エステル塩類、ポリオキシエチレンアルキルエーテル硫酸エステル塩類、などのアニオン界面活性剤、アルキルアミン塩類、テトラブチルアンモニウムブロミド等の第四級アンモニウム塩類、ポリオキシエチレンアルキルアミン塩類、ポリエチレンポリアミン誘導体などのカチオン性界面活性剤、カルボキシベタイン類、アミノカルボン酸類、スルホベタイン類、アミノ硫酸エステル類、イミダゾリン類などの両性界面活性剤が挙げられる。
 更に好ましい界面活性剤は分子内にパーフルオロアルキル基を含有するフッ素系の界面活性剤である。かかるフッ素系界面活性剤としては、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルスルホン酸塩、パーフルオロアルキルリン酸エステルなどのアニオン型、パーフルオロアルキルベタインなどの両性型、パーフルオロアルキルトリメチルアンモニウム塩などのカチオン型およびパーフルオロアルキルアミンオキサイド、パーフルオロアルキルエチレンオキシド付加物、パーフルオロアルキル基および親水性基含有オリゴマー、パーフルオロアルキル基および親油性基含有オリゴマー、パーフルオロアルキル基、親水性基および親油性基含有オリゴマー、パーフルオロアルキル基および親油性基含有ウレタンなどの非イオン型が挙げられる。
 上記の界面活性剤は、単独もしくは2種以上を組み合わせて使用することができ、現像液中に0.001~10重量%、より好ましくは0.01~5重量%の範囲で添加される。
 界面活性剤は多すぎると蒸留工程で発泡して濃縮作業の安定性が損なわれ、また設備が広く処理廃液で汚染されるため手間がかかる。少なすぎると現像性が低下したり、現像液中に画像形成層由来の現像カスが発生したりするなどして、現像液の寿命に影響を与える。
[現像安定化剤]
 本発明の現像液には、種々の現像安定化剤が用いられる。それらの好ましい例として、特開平6-282079号公報記載の糖アルコールのポリエチレングリコール付加物、テトラブチルアンモニウムヒドロキシドなどのテトラアルキルアンモニウム塩、テトラブチルホスホニウムブロマイドなどのホスホニウム塩およびジフェニルヨードニウムクロライドなどのヨードニウム塩が好ましい例として挙げられる。
[有機溶剤]
 現像液には現像性を確保するため、更に必要により有機溶剤が加えられる。かかる有機溶剤としては、水に対する溶解度が約10質量%以下のものが適しており、好ましくは5質量%以下のものから選ばれる。例えば、1-フェニルエタノール、2-フェニルエタノール、3-フェニル-1-プロパノール、2-フェノキシエタノール、2-ベンジルオキシエタノール、ベンジルアルコール、シクロヘキサノール、N-フェニルエタノールアミンなどを挙げることができる。有機溶剤の含有量は使用液の総重量に対して5質量%以下である。より好ましくは1質量%以下である。含有量が多すぎると、可溶化剤としての界面活性剤の量を増やす必要が生じ、好ましくない。また、処理廃液の濃縮過程で有機溶媒が蒸発することで、有機溶媒の存在により現像液に対しての溶解性を確保していた画像形成層の成分が析出し、スラッジを発生させる懸念があるため、濃縮装置のメンテナンス性が著しく低下する。
[還元剤]
 本発明の現像液には更に還元剤を加えることができる。これは印刷版の汚れを防止するものである。好ましい有機還元剤としては、ハイドロキノン、レゾルシンなどのフェノール化合物、フェニレンジアミン、フェニルヒドラジンなどのアミン化合物が挙げられる。更に好ましい無機の還元剤としては、亜硫酸、亜硫酸水素酸、亜リン酸、亜リン酸水素酸、亜リン酸二水素酸、チオ硫酸および亜ジチオン酸などの無機酸のナトリウム塩、カリウム塩、アンモニウム塩などを挙げることができる。これらの還元剤のうち、汚れ防止効果が特に優れているのは亜硫酸塩である。これらの還元剤を用いる場合には使用時の現像液に対して好ましくは、0.05~5質量%の範囲で含有される。
[その他の添加剤]
 本発明の現像液には更に必要に応じて、更に公知の添加剤を加えてもよい。例えば、有機カルボン酸、防腐剤、着色剤、増粘剤、消泡剤および硬水軟化剤などを含有させることもできる。
[水]
 現像液の残余の成分は水である。本発明の現像液は、使用時よりも水の含有量を少なくした濃縮液としておき、使用時に水で希釈するようにしておくことが運搬上有利である。この場合の濃縮度は各成分が分離や析出を起こさない程度が適当である。
 更に、自動現像機を用いて現像する場合には、現像液よりもアルカリ強度の高い水溶液(補充液)を現像液に加えることによって、長時間現像タンク中の現像液を交換する事なく、多量の平版印刷版を処理できることが知られている。本発明においてもこの補充方式が好ましく適用される。現像液および補充液には、現像性の促進や抑制、現像カスの分散および印刷版画像部の親インキ性を高める目的で、必要に応じて種々の界面活性剤や有機溶剤を添加できる。好ましい界面活性剤としては、アニオン系、カチオン系、ノニオン系および両性界面活性剤が挙げられる。更に現像液および補充液には必要に応じて、ハイドロキノン、レゾルシン、亜硫酸、亜硫酸水素酸などの無機酸のナトリウム塩、カリウム塩等の還元剤、更に有機カルボン酸、消泡剤、硬水軟化剤を加えることもできる。
<平版印刷版>
 以下、本発明の現像液が好ましく適用できる平版印刷版について詳しく説明する。
[ポジ型平版印刷版]
 本発明の製版方法に使用するポジ型平版印刷版(平版印刷版原版とも称する)は、支持体上に、アルカリ可溶性樹脂及び赤外線吸収染料を含み、さらに所望により溶解抑制剤などを含有する画像記録層を設けたものである。
 以下に、その画像記録層の構成について説明する。
[赤外線吸収染料]
 本発明において、画像記録層に用いられる赤外線吸収染料は、赤外線を吸収し熱を発生する染料であれば特に制限はなく、赤外線吸収染料として知られる種々の染料を用いることができる。
 赤外線吸収染料としては、市販の染料及び文献(例えば「染料便覧」有機合成化学協会編集、昭和45年刊)に記載されている公知のものが利用できる。具体的には、アゾ染料、金属錯塩アゾ染料、ピラゾロンアゾ染料、キノンイミン染料、メチン染料、シアニン染料などの染料が挙げられる。本発明において、これらの染料のうち赤外光、もしくは近赤外光を吸収するものが、赤外光もしくは近赤外光を発光するレーザーでの利用に適する点で特に好ましい。
 本発明に使用可能な赤外線吸収染料としては、記録に使用する光エネルギー照射線を吸収し、熱を発生する物質であれば特に吸収波長域の制限はなく用いることができる。入手容易な高出力レーザーへの適合性の観点から波長800nmから1200nmに吸収極大を有する赤外線吸収性染料又は顔料が好ましく挙げられる。
 染料としては、市販の染料及び例えば「染料便覧」(有機合成化学協会編集、昭和45年刊)等の文献に記載されている公知のものが利用できる。具体的には、例えば、特開平10-39509号公報の段落番号[0050]~[0051]に記載のものを挙げることができる。
 これらの染料のうち特に好ましいものとしては、シアニン色素、スクワリリウム色素、ピリリウム塩、有機金属錯体(例えば、ジチオレート系錯体など)が挙げられる。アルカリ可溶性樹脂との相互作用形成性の観点から、特開2001-305722号公報の一般式(I)で示されたシアニン染料が好ましい。
 画像記録層の赤外線吸収染料の添加量は画像記録層の質量に対し、感度及び画像記録層の均一性の観点から、0.01~50質量%、好ましくは0.1~50質量%、特に好ましくは0.1~30質量%である。
[アルカリ可溶性樹脂]
 画像記録層に使用されるアルカリ可溶性樹脂は、水不溶性且つアルカリ水可溶性の樹脂(以下、適宜、アルカリ可溶性高分子と称する)であって、高分子中の主鎖および/または側鎖に酸性基を含有する単独重合体、これらの共重合体またはこれらの混合物を包含する。したがって、平版印刷版原版の画像記録層は、アルカリ性現像液に接触すると溶解する特性を有するものである。
 画像記録層に使用されるアルカリ可溶性高分子は、従来公知のものであれば特に制限はないが、(1)フェノール性水酸基、(2)スルホンアミド基、(3)活性イミド基のいずれかの官能基を分子中に有する高分子化合物であることが好ましい。なかでも(1)フェノール性水酸基を分子中に有する高分子化合物が好ましい。
 さらに詳しくは特開2001-305722号公報の[0023]~[0042]で示されている高分子が好ましく用いられる。
 (1)フェノール性水酸基を有する高分子化合物としては、例えば、フェノールホルムアルデヒド樹脂、m-クレゾールホルムアルデヒド樹脂、p-クレゾールホルムアルデヒド樹脂、m-/p-混合クレゾールホルムアルデヒド樹脂、フェノール/クレゾール(m-,p-,又はm-/p-混合のいずれでもよい)混合ホルムアルデヒド樹脂等のノボラック樹脂やピロガロールアセトン樹脂が挙げられる。フェノール性水酸基を有する高分子化合物としてはこの他に、側鎖にフェノール性水酸基を有する高分子化合物を用いることが好ましい。側鎖にフェノール性水酸基を有する高分子化合物としては、フェノール性水酸基と重合可能な不飽和結合をそれぞれ1つ以上有する低分子化合物からなる重合性モノマーを単独重合、或いは該モノマーに他の重合性モノマーを共重合させて得られる高分子化合物が挙げられる。
 (2)スルホンアミド基を有するアルカリ可溶性高分子化合物としては、スルホンアミド基を有する重合性モノマーを単独重合、或いは該モノマーに他の重合性モノマーを共重合させて得られる高分子化合物が挙げられる。スルホンアミド基を有する重合性モノマーとしては、1分子中に、窒素原子上に少なくとも1つの水素原子が結合したスルホンアミド基-NH-SO2-と、重合可能な不飽和結合をそれぞれ1つ以上有する低分子化合物からなる重合性モノマーが挙げられる。その中でも、アクリロイル基、アリル基、又はビニロキシ基と、置換或いはモノ置換アミノスルホニル基又は置換スルホニルイミノ基とを有する低分子化合物が好ましい。
 (3)活性イミド基を有するアルカリ可溶性高分子化合物は、活性イミド基を分子内に有するものが好ましく、この高分子化合物としては、1分子中に活性イミド基と重合可能な不飽和結合をそれぞれ1つ以上有する低分子化合物からなる重合性モノマーを単独重合、或いは該モノマーに他の重合性モノマーを共重合させて得られる高分子化合物が挙げられる。
 アルカリ可溶性高分子が前記フェノール性水酸基を有する重合性モノマー、スルホンアミド基を有する重合性モノマー、又は活性イミド基を有する重合性モノマーと、他の重合性モノマーとの共重合体である場合には、アルカリ可溶性が充分となり現像ラチチュードの向上効果が充分に達成されるように、アルカリ可溶性を付与するモノマーは10モル%以上含むことが好ましく、20モル%以上含むものがより好ましい。
 本発明においてアルカリ可溶性高分子が、前記フェノール性水酸基を有する重合性モノマー、スルホンアミド基を有する重合性モノマー、又は活性イミド基を有する重合性モノマーの単独重合体或いは共重合体の場合、重量平均分子量が2,000以上、数平均分子量が500以上のものが好ましい。更に好ましくは、重量平均分量が5,000~300,000で、数平均分子量が800~250,000であり、分散度(重量平均分子量/数平均分子量)が1.1~10のものである。
 また、本発明においてアルカリ可溶性高分子がフェノールホルムアルデヒド樹脂、クレゾールアルデヒド樹脂等の樹脂である場合には、重量平均分子量が500~20.000であり、数平均分子量が200~10,000のものが好ましい。
 これらアルカリ可溶性高分子化合物は、それぞれ1種類或いは2種類以上を組み合わせて使用してよく、前記画像形成層全固形分中、30~99質量%、好ましくは40~95質量%、特に好ましくは50~90質量%の添加量で用いられる。画像形成層の耐久性と感度の両面から上記の含有量の範囲が適当である。
 なお、画像記録層には、溶解抑制剤を含むことが感度の観点から好ましい。溶解抑制剤としては特に限定されないが、4級アンモニウム塩、ポリエチレングリコール系化合物等が挙げられる。
 また、上記インヒビション(溶解性阻害)改善の施策を行った場合、感度の低下が生じるが、この場合、ラクトン化合物を添加物することが有効である。このラクトン化合物は、露光部に現像液が浸透した際、現像液とラクトン化合物が反応し、これにより新たにカルボン酸化合物が発生し、露光部の溶解に寄与して感度が向上するものと考えられる。
 また、オニウム塩、o-キノンジアジド化合物、芳香族スルホン化合物、芳香族スルホン酸エステル化合物等の熱分解性であり、分解しない状態ではアルカリ水可溶性高分子化合物の溶解性を実質的に低下させる物質を併用することは、画像部の現像液への溶解阻止性の向上を図る点では、好ましい。オニウム塩としてはジアゾニウム塩、アンモニウム塩、ホスホニウム塩、ヨードニウム塩、スルホニウム塩、セレノニウム塩、アルソニウム塩等を挙げることができる。
 他の添加剤としては、例えば、特開平7-92660号公報の[0024]~[0027]で示されている感度調節剤、焼出剤、染料等の化合物や同公報[0031]に記載されているような塗布性を良化するための界面活性剤を加えることが好ましい。他の好ましい界面活性剤としては、特開2001-305722号公報の[0053]~[0059]で示されている化合物が好ましく挙げられる。
[塗布量]
 画像記録層の塗布量(固形分)は、用途によって異なるが、皮膜特性及び耐刷性の観点から0.3~3.0g/mの塗布量で設けることができる。好ましくは0.5~2.5g/mであり、さらに好ましくは0.8~1.6g/mである。
 平版印刷版原版が有する画像記録層は、単層構造であってもよく、また、複数の記録層が積層されてなる重層構造を有していてもよい。重層構造の画像記録層としては、例えば、特開平11-218914号公報に記載されているような記録層が挙げられる。
 重層構造の画像記録層について説明する。重層構造の画像記録層は、少なくとも2層以上の重層構成であってもよい(以下便宜上、上側層と下側層とからなる2層の場合を説明する)。
 上側層と下側層を構成するアルカリ可溶性樹脂は、上記に説明したアルカリ可溶性樹脂を適用することができる。上側層は、下側層よりもアルカリに対する溶解性が低いものであるのが好ましい。
 また、赤外線吸収染料は、いずれかの層に含まれていればよく、また、双方に含まれていてもよい。これら赤外線吸収染料は各層において異なる赤外線吸収染料であってもよく、また各層に複数の化合物からなる赤外線吸収染料を用いてもよい。含有させる量としては、いずれの層に用いる場合にも、上記した通り、添加する層の全固形分に対して0.01~50質量%、好ましくは0.1~50質量%、特に好ましくは0.1~30質量%の割合で添加することができる。複数の層に添加する場合は、添加量の合計が上記範囲になるように添加することが好ましい。
 サーマルポジタイプの画像記録層と支持体との間には、下塗層を設けることが好ましい。下塗層に含有される成分としては特開2001-305722号公報の[0068]に記載される種々の有機化合物が挙げられる。
[支持体]
 平版印刷版原版に使用される親水性支持体としては、必要な強度と耐久性を備えた寸度的に安定な板状物が挙げられ、例えば、紙、プラスチック(例えば、ポリエチレン、ポリプロピレン、ポリスチレン等)がラミネートされた紙、金属板(例えば、アルミニウム、亜鉛、銅等)、プラスチックフィルム(例えば、二酢酸セルロース、三酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、酢酸酪酸セルロース、硝酸セルロース、ポリエチレンテレフタレート、ポリエチレン、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリビニルアセタール等)、上記のごとき金属がラミネート、もしくは蒸着された紙、もしくはプラスチックフィルム等が挙げられる。中でも、ポリエステルフィルム又はアルミニウム板が好ましく、その中でも寸法安定性がよく、比較的安価であるアルミニウム板は特に好ましい。
 支持体に用いられるアルミニウム板の厚みはおよそ0.1mm~0.6mm程度、好ましくは0.15mm~0.4mm、特に好ましくは0.2mm~0.3mmである。
 アルミニウム板は各種の表面処理を施されて支持体が形成される。表面処理は、表面親水性の向上、画像記録層との密着性向上等の目的で行われ、表面粗面化処理、例えば、機械的粗面化、電気化学的粗面化、化学的粗面化処理がある。
 このように粗面化されたアルミニウム板は、必要に応じてアルカリエッチング処理及び中和処理された後、所望により表面の保水性や耐摩耗性を高めるために陽極酸化処理が施される。
 さらに、必要により親水化処理が施される。親水化処理としては、米国特許第2,714,066号、同第3,181,461号、第3,280,734号及び第3,902,734号に開示されているようなアルカリ金属シリケート(例えばケイ酸ナトリウム水溶液)法、米国特許第3,276,868号、同第4,153,461号、同第4,689,272号に開示されているようなポリビニルホスホン酸で処理する方法などが用いられる。
 本発明で使用する平版印刷版原版は、支持体上に少なくとも前記した画像記録層を設けたものであるが、必要に応じて支持体と画像記録層との間に下塗層を設けることができる。
 下塗層成分としては種々の有機化合物が用いられ、例えば、カルボキシメチルセルロース、デキストリン、アラビアガム、2-アミノエチルホスホン酸などのアミノ基を有するホスホン酸類、置換基を有してもよいフェニルホスホン酸、ナフチルホスホン酸、アルキルホスホン酸などの有機ホスホン酸、置換基を有してもよいフェニルホスフィン酸、アルキルホスフィン酸などの有機ホスフィン酸、グリシンやβ-アラニンなどのアミノ酸類、及びトリエタノールアミンの塩酸塩などのヒドロキシ基を有するアミンの塩酸塩等が挙げられ、これらは2種以上混合して用いてもよい。
 下塗層の被覆量は耐刷性能の観点から、2~200mg/mが適当であり、好ましくは5~100mg/mである。
 上記のようにして作成された平版印刷版原版は、画像様に露光され、その後、上記に詳述したアルカリ現像処理液を用いて現像処理を施される。
 像露光に用いられる活性光線の光源としては、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯等がある。放射線としては、電子線、X線、イオンビーム、遠赤外線などがある。またg線、i線、Deep-UV光、高密度エネルギービーム(レーザービーム)も使用される。レーザービームとしてはヘリウム・ネオンレーザー、アルゴンレーザー、クリプトンレーザー、ヘリウム・カドミウムレーザー、KrFエキシマレーザー等が挙げられる。本発明においては、近赤外線から赤外領域において発光波長を持つ光源が好ましく、固体レーザー、半導体レーザーが特に好ましい。
<その他>
 以上、本発明の実施例について記述したが、本発明は上記の実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得ることは言うまでもない。
 例えば上記実施形態では廃液加熱手段および水蒸気冷却手段にヒートポンプ回路を用いる構成を例に挙げたが、これに限定せず例えば加熱手段に電熱器、冷却手段に水冷クーラー等を用いる構成に本発明を適用することも可能である。
 さらに感光性平版印刷版の製版処理廃液以外でも、本発明に係る廃液と同様の物性をもつ濃縮物を生成する廃液であれば、その処理方法として本発明を応用することができる。
 日本特許出願第2009-220612号の開示は、その全体を本明細書に援用する。本明細書に記載された全ての文献、特許出願、および技術規格を、ここの文献、特許出願、および技術規格を援用することが具体的かつ個々に記された場合と同程度に、本明細書中に援用する。

Claims (6)

  1. 感光性平版印刷版用現像液を用いて感光性平版印刷版の製版処理を行った際に排出される製版処理廃液を、蒸発濃縮装置で蒸発濃縮し水蒸気と溶解成分とに分離することを含む製版処理廃液の処理方法であって、
     前記感光性平版印刷版用現像液は非還元糖から選ばれる少なくとも一種の糖類と、少なくとも一種の塩基と、を含有し、
     前記製版処理廃液を耐塩基性を備えた蒸発釜中で加熱手段により加熱し、
     前記製版処理廃液より分離された前記水蒸気を前記蒸発釜より導出し冷却手段中で凝縮して再生水とする
     感光性平版印刷版の製版処理廃液の処理方法。
  2. 前記蒸発釜内部を減圧手段で減圧して前記製版処理廃液を加熱濃縮する請求項1に記載の感光性平版印刷版の製版処理廃液の処理方法。
  3. 前記加熱手段としてヒートポンプを使用し、前記ヒートポンプの放熱部で前記製版処理廃液を加熱する一方、前記ヒートポンプの吸熱部で前記冷却手段の前記水蒸気を冷却する、請求項1または請求項2に記載の感光性平版印刷版の製版処理廃液の処理方法。
  4. 前記製版処理廃液のpHを下げる中和処理を含む、請求項1~請求項3の何れか1項に記載の感光性平版印刷版の製版処理廃液の処理方法。
  5. 蒸発濃縮により濃縮された前記製版処理廃液の濃縮物をポンプで加圧し回収タンクに回収する、請求項1~請求項4の何れか1項に記載の感光性平版印刷版の製版処理廃液の処理方法。
  6. 感光性平版印刷版用現像液を用いて感光性平版印刷版の製版処理を行った際に排出される製版処理廃液を、蒸発濃縮装置で蒸発濃縮し水蒸気と溶解成分とに分離することを含む製版処理廃液の処理方法であって、
     前記感光性平版印刷版用現像液における有機溶媒の含有量が5質量%以下であり、
     前記製版処理廃液を耐塩基性を備えた蒸発釜中で加熱手段により加熱し、
     前記製版処理廃液より分離された前記水蒸気を前記蒸発釜より導出し冷却手段中で凝縮して再生水とする
     感光性平版印刷版の製版処理廃液の処理方法。
PCT/JP2010/060396 2009-09-25 2010-06-18 感光性平版印刷版の製版処理廃液の処理方法 WO2011036923A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10818600.8A EP2482133B1 (en) 2009-09-25 2010-06-18 Method for processing waste solution in plate-making process of photosensitive lithographic printing plate
CN201080041797XA CN102687079A (zh) 2009-09-25 2010-06-18 感光性平版印刷版的制版处理废液的处理方法
US13/496,306 US20120175239A1 (en) 2009-09-25 2010-06-18 Method for processing waste solution in plate-making process of photosensitive planographic printing plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009220612 2009-09-25
JP2009-220612 2009-09-25

Publications (1)

Publication Number Publication Date
WO2011036923A1 true WO2011036923A1 (ja) 2011-03-31

Family

ID=43795687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060396 WO2011036923A1 (ja) 2009-09-25 2010-06-18 感光性平版印刷版の製版処理廃液の処理方法

Country Status (5)

Country Link
US (1) US20120175239A1 (ja)
EP (1) EP2482133B1 (ja)
JP (1) JP2011090282A (ja)
CN (1) CN102687079A (ja)
WO (1) WO2011036923A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104395834A (zh) * 2012-06-29 2015-03-04 富士胶片株式会社 显影处理废液浓缩方法及显影处理废液的再循环方法
EP2757417A4 (en) * 2011-09-15 2015-05-06 Fujifilm Corp METHOD FOR RECYCLING WASTEWATER BY A PLATE MANUFACTURING METHOD

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5722176B2 (ja) * 2011-09-15 2015-05-20 富士フイルム株式会社 感光性平版印刷版の製版処理廃液のリサイクル方法
EP2762977B1 (en) 2011-11-04 2017-09-27 FUJIFILM Corporation Method for recycling plate-making processing waste solution
JP5695267B2 (ja) * 2012-02-20 2015-04-01 富士フイルム株式会社 製版処理廃液の濃縮方法およびリサイクル方法
WO2014141781A1 (ja) 2013-03-14 2014-09-18 富士フイルム株式会社 製版処理廃液の濃縮方法及びリサイクル方法
CN109607911A (zh) * 2018-12-03 2019-04-12 深圳市艾柯森自动化设备有限公司 一种废水处理设备及其废水处理方法
US10809620B1 (en) * 2019-08-16 2020-10-20 Tokyo Electron Limited Systems and methods for developer drain line monitoring

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2714066A (en) 1950-12-06 1955-07-26 Minnesota Mining & Mfg Planographic printing plate
US3181461A (en) 1963-05-23 1965-05-04 Howard A Fromson Photographic plate
US3276868A (en) 1960-08-05 1966-10-04 Azoplate Corp Planographic printing plates
US3280734A (en) 1963-10-29 1966-10-25 Howard A Fromson Photographic plate
US3902734A (en) 1974-03-14 1975-09-02 Twm Mfg Co Frames for axle suspension systems
US4153461A (en) 1967-12-04 1979-05-08 Hoechst Aktiengesellschaft Layer support for light-sensitive material adapted to be converted into a planographic printing plate
JPS5895349A (ja) 1981-11-30 1983-06-06 Fuji Photo Film Co Ltd 感光性プレ−トの現像補充液補充方法
US4689272A (en) 1984-02-21 1987-08-25 Hoechst Aktiengesellschaft Process for a two-stage hydrophilizing post-treatment of aluminum oxide layers with aqueous solutions and use thereof in the manufacture of supports for offset printing plates
JPH01304463A (ja) 1988-06-01 1989-12-08 Konica Corp 廃液処理の作業性等が改善される非銀塩感光材料用自動現像機
JPH02157084A (ja) 1988-01-12 1990-06-15 Konica Corp 廃液処理の作業性等が改善される非銀塩感光材料の処理方法及び処理装置
JPH0445885A (ja) * 1990-06-08 1992-02-14 Konica Corp 非銀塩感光材料の処理廃液の処理方法及び処理装置
JPH05142781A (ja) * 1991-11-19 1993-06-11 Konica Corp 感光材料の現像廃液の処理方法及び該処理方法に用いる自動現像機
JPH05341535A (ja) 1992-06-09 1993-12-24 Fuji Photo Film Co Ltd 感光性平版印刷版処理装置の廃液回収方法
JPH06282079A (ja) 1993-03-30 1994-10-07 Fuji Photo Film Co Ltd 感光性平版印刷版用の現像液および現像補充液
JPH0792660A (ja) 1993-09-24 1995-04-07 Fuji Photo Film Co Ltd ポジ型感光性平版印刷版
JPH08305039A (ja) * 1995-03-06 1996-11-22 Fuji Photo Film Co Ltd 感光性平版印刷版用現像液
JPH1039509A (ja) 1996-07-22 1998-02-13 Fuji Photo Film Co Ltd ネガ型画像記録材料
JPH11218914A (ja) 1997-11-14 1999-08-10 Fuji Photo Film Co Ltd 赤外線レーザ用感光性画像形成材料
JPH11253969A (ja) 1998-03-16 1999-09-21 Fuji Photo Film Co Ltd アルカリ性産業廃棄物のpH低下剤およびそれを用いたpH低下方法
JPH11290868A (ja) * 1998-04-15 1999-10-26 Fuji Photo Film Co Ltd アルカリ性産業廃棄物のpH低下剤及びそれを用いたpH低下方法
JP3168015B2 (ja) 1991-01-31 2001-05-21 コニカ株式会社 水溶液の蒸発濃縮装置
JP2001305722A (ja) 2000-04-18 2001-11-02 Fuji Photo Film Co Ltd 平版印刷版原版
JP2004070031A (ja) * 2002-08-07 2004-03-04 Asahi Kasei Chemicals Corp 感光性樹脂版現像液の処理方法
JP2009220612A (ja) 2008-03-13 2009-10-01 Yamaha Motor Co Ltd 小型滑走艇

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796110B2 (ja) * 1986-04-04 1995-10-18 コニカ株式会社 写真処理廃液処理方法及びその装置
DE3782205T2 (de) * 1986-07-23 1993-02-25 Sumitomo Heavy Industries Behandlung einer photoresistmaterialien enthaltenden abfalloesung.
US4874530A (en) * 1986-12-05 1989-10-17 Knica Corporation Method for treating photographic processing waste solution
EP0357170B1 (en) * 1988-08-31 1993-03-31 Konica Corporation A method of treating an aqueous processing waste solution of a non-silver halide light-sensitive material and a device therefor
US5439560A (en) * 1990-02-22 1995-08-08 Konica Corporation Low pressure evaporation concentrating apparatus for a photographic process waste disposl
JP2732725B2 (ja) * 1991-06-14 1998-03-30 富士写真フイルム株式会社 水なし平版印刷版の廃液処理装置
US5354434A (en) * 1991-07-12 1994-10-11 Chlorine Engineers Corp. Ltd. Method for regenerating tetraalkylammonium hydroxide
JP2732735B2 (ja) * 1991-11-21 1998-03-30 沖電気工業株式会社 カ−ドリ−ダ装置とカ−ド除去シ−ト
JP3360365B2 (ja) * 1993-07-29 2002-12-24 クロリンエンジニアズ株式会社 水酸化テトラアルキルアンモニムの再生方法
JPH0857202A (ja) * 1994-08-25 1996-03-05 Konica Corp ヒートポンプ方式蒸発濃縮装置及びそれを用いた処理方法
JP3671644B2 (ja) * 1998-01-05 2005-07-13 オルガノ株式会社 フォトレジスト現像廃液の再生処理方法及び装置
JP3728945B2 (ja) * 1998-10-30 2005-12-21 オルガノ株式会社 フォトレジスト現像廃液からの現像液の回収再利用方法及び装置
KR100333817B1 (ko) * 1999-08-16 2002-04-26 윤종용 습식 전자사진방식 칼라 인쇄기의 현상액 공급장치

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2714066A (en) 1950-12-06 1955-07-26 Minnesota Mining & Mfg Planographic printing plate
US3276868A (en) 1960-08-05 1966-10-04 Azoplate Corp Planographic printing plates
US3181461A (en) 1963-05-23 1965-05-04 Howard A Fromson Photographic plate
US3280734A (en) 1963-10-29 1966-10-25 Howard A Fromson Photographic plate
US4153461A (en) 1967-12-04 1979-05-08 Hoechst Aktiengesellschaft Layer support for light-sensitive material adapted to be converted into a planographic printing plate
US3902734A (en) 1974-03-14 1975-09-02 Twm Mfg Co Frames for axle suspension systems
JPS5895349A (ja) 1981-11-30 1983-06-06 Fuji Photo Film Co Ltd 感光性プレ−トの現像補充液補充方法
US4689272A (en) 1984-02-21 1987-08-25 Hoechst Aktiengesellschaft Process for a two-stage hydrophilizing post-treatment of aluminum oxide layers with aqueous solutions and use thereof in the manufacture of supports for offset printing plates
JPH02157084A (ja) 1988-01-12 1990-06-15 Konica Corp 廃液処理の作業性等が改善される非銀塩感光材料の処理方法及び処理装置
JPH01304463A (ja) 1988-06-01 1989-12-08 Konica Corp 廃液処理の作業性等が改善される非銀塩感光材料用自動現像機
JPH0445885A (ja) * 1990-06-08 1992-02-14 Konica Corp 非銀塩感光材料の処理廃液の処理方法及び処理装置
JP3168015B2 (ja) 1991-01-31 2001-05-21 コニカ株式会社 水溶液の蒸発濃縮装置
JPH05142781A (ja) * 1991-11-19 1993-06-11 Konica Corp 感光材料の現像廃液の処理方法及び該処理方法に用いる自動現像機
JPH05341535A (ja) 1992-06-09 1993-12-24 Fuji Photo Film Co Ltd 感光性平版印刷版処理装置の廃液回収方法
JPH06282079A (ja) 1993-03-30 1994-10-07 Fuji Photo Film Co Ltd 感光性平版印刷版用の現像液および現像補充液
JPH0792660A (ja) 1993-09-24 1995-04-07 Fuji Photo Film Co Ltd ポジ型感光性平版印刷版
JPH08305039A (ja) * 1995-03-06 1996-11-22 Fuji Photo Film Co Ltd 感光性平版印刷版用現像液
JP3642845B2 (ja) 1995-03-06 2005-04-27 富士写真フイルム株式会社 感光性平版印刷版用現像液
JPH1039509A (ja) 1996-07-22 1998-02-13 Fuji Photo Film Co Ltd ネガ型画像記録材料
JPH11218914A (ja) 1997-11-14 1999-08-10 Fuji Photo Film Co Ltd 赤外線レーザ用感光性画像形成材料
JPH11253969A (ja) 1998-03-16 1999-09-21 Fuji Photo Film Co Ltd アルカリ性産業廃棄物のpH低下剤およびそれを用いたpH低下方法
JPH11290868A (ja) * 1998-04-15 1999-10-26 Fuji Photo Film Co Ltd アルカリ性産業廃棄物のpH低下剤及びそれを用いたpH低下方法
JP2001305722A (ja) 2000-04-18 2001-11-02 Fuji Photo Film Co Ltd 平版印刷版原版
JP2004070031A (ja) * 2002-08-07 2004-03-04 Asahi Kasei Chemicals Corp 感光性樹脂版現像液の処理方法
JP2009220612A (ja) 2008-03-13 2009-10-01 Yamaha Motor Co Ltd 小型滑走艇

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"SENRYO BINRAN (Dye Handbook", 1970
"SENRYO BINRAN", 1970
See also references of EP2482133A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2757417A4 (en) * 2011-09-15 2015-05-06 Fujifilm Corp METHOD FOR RECYCLING WASTEWATER BY A PLATE MANUFACTURING METHOD
CN104395834A (zh) * 2012-06-29 2015-03-04 富士胶片株式会社 显影处理废液浓缩方法及显影处理废液的再循环方法
EP2869122A4 (en) * 2012-06-29 2016-03-02 Fujifilm Corp METHOD FOR CONCENTRATING PROCESS WASTEWATER AND RECYCLING PROCESS FOR WASTE WATER
CN104395834B (zh) * 2012-06-29 2019-07-05 富士胶片株式会社 显影处理废液浓缩方法及显影处理废液的再循环方法

Also Published As

Publication number Publication date
JP2011090282A (ja) 2011-05-06
US20120175239A1 (en) 2012-07-12
EP2482133B1 (en) 2017-01-18
EP2482133A1 (en) 2012-08-01
CN102687079A (zh) 2012-09-19
EP2482133A4 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
WO2011036923A1 (ja) 感光性平版印刷版の製版処理廃液の処理方法
US6649319B2 (en) Method of processing lithographic printing plate precursors
JP4774124B1 (ja) 平版印刷版現像廃液削減装置
US6255042B1 (en) Developing system for alkaline-developable lithographic printing plates with different interlayers
JP2004219452A (ja) 感光性平版印刷版用自動現像装置の現像補充方法
JP2019510272A (ja) 平版印刷版の処理方法
US6165690A (en) Method of developing photosensitive lithographic printing plate precursor
JP5722176B2 (ja) 感光性平版印刷版の製版処理廃液のリサイクル方法
US6645700B2 (en) Developer for alkaline-developable lithographic printing plates
JP3642845B2 (ja) 感光性平版印刷版用現像液
JP3611651B2 (ja) ポジ型感光性平版印刷版
EP1444552A1 (en) Method for reuse of loaded developer
JP3690761B2 (ja) 感光性平版印刷版の処理方法
JP3766629B2 (ja) 水酸化テトラアルキルアンモニウム廃液の濃縮方法
JPH08234448A (ja) 感光性平版印刷版の現像方法
JP4344563B2 (ja) 平版印刷版用現像液の製造方法
JP3066161U (ja) 排気・排液回収処理装置を備えた腐食試験装置
JP2000089474A (ja) 感光性平版印刷版の製版方法
US6645699B2 (en) Method of processing a lithographic printing plate precursor
JPH06206063A (ja) 非銀塩感光材料処理廃液の固形化方法
JPH11258818A (ja) 感光性平版印刷版の処理方法
JPH11218935A (ja) 感光性平版印刷版の処理方法
JPH07168369A (ja) 感光性平版印刷版用現像機
JP4116216B2 (ja) 平版印刷版用現像液のモニタ方法
JPH11290868A (ja) アルカリ性産業廃棄物のpH低下剤及びそれを用いたpH低下方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080041797.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818600

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13496306

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010818600

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010818600

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3305/CHENP/2012

Country of ref document: IN