Nothing Special   »   [go: up one dir, main page]

WO2011024234A1 - 内燃機関の排気装置 - Google Patents

内燃機関の排気装置 Download PDF

Info

Publication number
WO2011024234A1
WO2011024234A1 PCT/JP2009/004227 JP2009004227W WO2011024234A1 WO 2011024234 A1 WO2011024234 A1 WO 2011024234A1 JP 2009004227 W JP2009004227 W JP 2009004227W WO 2011024234 A1 WO2011024234 A1 WO 2011024234A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
tail pipe
pipe
opening
opening end
Prior art date
Application number
PCT/JP2009/004227
Other languages
English (en)
French (fr)
Inventor
若月一稔
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/383,507 priority Critical patent/US8356690B2/en
Priority to JP2011528524A priority patent/JP5229391B2/ja
Priority to CN200980161153.1A priority patent/CN102482964B/zh
Priority to DE112009005180.4T priority patent/DE112009005180B4/de
Priority to PCT/JP2009/004227 priority patent/WO2011024234A1/ja
Publication of WO2011024234A1 publication Critical patent/WO2011024234A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/20Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having flared outlets, e.g. of fish-tail shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/06Silencing apparatus characterised by method of silencing by using interference effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/083Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling using transversal baffles defining a tortuous path for the gases or successively throttling gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/02Tubes being perforated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/08Two or more expansion chambers in series separated by apertured walls only

Definitions

  • the present invention relates to an exhaust system for an internal combustion engine, and more particularly to an exhaust system for an internal combustion engine that suppresses an increase in sound pressure due to air column resonance of a tail pipe provided at the most downstream in the exhaust direction of exhaust gas.
  • FIG. 32 As an exhaust device for an internal combustion engine used in a vehicle such as an automobile, one as shown in FIG. 32 is known (for example, see Patent Document 1).
  • exhaust gas exhausted from the engine 1 as an internal combustion engine is introduced into the exhaust device 4 after passing through the exhaust manifold 2 and being purified by the catalytic converter 3.
  • the exhaust device 4 includes a front pipe 5 connected to the catalytic converter 3, a center pipe 6 connected to the front pipe 5, a main muffler 7 as a silencer connected to the center pipe 6, a tail pipe 8 connected to the main muffler 7, and a tail.
  • the sub-muffler 9 is interposed in the pipe 8.
  • the main muffler 7 includes an expansion chamber 7a into which exhaust gas is expanded and introduced from a small hole 6a of the center pipe 6, and a resonance chamber 7b into which the downstream opening end 6b of the center pipe 6 is inserted.
  • the exhaust gas introduced into the resonance chamber 7b from the downstream opening end 6b of the center pipe 6 is silenced by a Helmholtz resonance.
  • the length of the projecting portion of the center pipe 6 that projects into the resonance chamber 7b is L 1 (m)
  • the cross-sectional area of the center pipe 6 is S (m 2 )
  • the volume of the resonance chamber 7b is V (m 3 )
  • the resonance frequency fn (Hz) in the air is obtained by the following equation (1) regarding Helmholtz resonance.
  • the sub-muffler 9 is configured to suppress an increase in sound pressure due to the occurrence of air column resonance corresponding to the length of the tail pipe 8 in the tail pipe 8 due to exhaust pulsation during operation of the engine 1.
  • the tail pipe 8 having the upstream opening end 8a and the downstream opening end 8b on the upstream side and the downstream side, respectively, in the exhaust direction of the exhaust gas has an incident wave caused by exhaust pulsation during operation of the engine 1 caused by the upstream opening end 8a of the tail pipe 8.
  • air column resonance having a wavelength that is a natural number multiple of the half wavelength is generated with air column resonance having a frequency with the tube length L of the tail pipe 8 being a half wavelength.
  • the wavelength ⁇ 1 of the air column resonance of the fundamental vibration is approximately twice the tube length L of the tail pipe 8
  • the wavelength ⁇ 2 of the air column resonance of the secondary component is approximately the tube length L. It becomes 1 time.
  • the wavelength ⁇ 3 of the air column resonance of the third order component is 2/3 times the tube length L.
  • the air column resonance frequency fa is expressed by the following formula (2).
  • c speed of sound (m / s) L: pipe length of the tail pipe (m)
  • n order
  • the speed of sound c is a constant value according to the temperature. It can be seen that the longer the tube length L, the more the air column resonance frequency fa shifts to the lower frequency side, and the problem of noise due to the air column resonance of the exhaust sound tends to occur in the low frequency region.
  • the primary component f 1 of the exhaust sound due to the air column resonance is 166.7 Hz
  • the secondary component f 2 is 333.3 Hz.
  • the primary component f 1 of the exhaust sound due to the air column resonance is 66.7 Hz
  • the secondary component f 2 is 133.3 Hz.
  • an exhaust pulsation frequency fe (Hz) of the engine 1 is represented by the following formula (3).
  • Ne engine speed (rpm)
  • N engine cylinder number (natural number)
  • the sound pressure level of exhaust noise in the primary component f 1 of the exhaust sound by air column resonance generated in response to a particular engine speed Ne (dB) is extremely high.
  • the sound pressure level of the secondary component f 2 even exhaust noise (dB) is extremely high.
  • the exhaust sound of the air column resonance is transmitted to the vehicle interior, and a muffled sound is generated in the vehicle interior. This will cause discomfort to the driver.
  • a sub-muffler 9 having a capacity smaller than that of the main muffler 7 is provided at an optimum position of the tail pipe 8 for an antinode portion where the sound pressure of the standing wave generated by the air column resonance is high, thereby preventing the occurrence of air column resonance.
  • a sub-muffler 9 having a capacity smaller than that of the main muffler 7 is provided at an optimum position of the tail pipe 8 for an antinode portion where the sound pressure of the standing wave generated by the air column resonance is high, thereby preventing the occurrence of air column resonance.
  • the exhaust pulsation frequency of the engine 1 is 100 Hz as described above.
  • the air column resonance occurs below (the engine speed Ne is 3000 rpm or less).
  • the engine speed Ne becomes 4000 rpm
  • the air column resonance frequency fa shifts to the high frequency side.
  • the present invention has been made in order to solve the above-described conventional problems, and a muffler having a large-capacity resonance chamber is provided at the upstream opening end side of the tail pipe with a sub-muffler interposed in the tail pipe.
  • the internal combustion engine that can suppress the increase of the sound pressure level due to the tail column air column resonance, reduce the weight, and reduce the manufacturing cost and installation space. It is an object of the present invention to provide an exhaust device.
  • an exhaust device for an internal combustion engine has an upstream opening end connected to a silencer on the upstream side in the exhaust direction of exhaust gas discharged from the internal combustion engine at one end portion, and the other end portion.
  • An exhaust system for an internal combustion engine comprising an exhaust pipe having a downstream opening end for discharging the exhaust gas to the atmosphere, wherein at least one of the exhaust pipe upstream side and the exhaust pipe downstream side of the exhaust pipe , Having an enlarged diameter structure that expands toward either the upstream opening end or the downstream opening end, and an opening that penetrates in the exhaust direction of the exhaust gas and the exhaust pipe inside the enlarged diameter structure
  • a plate having a closing portion for closing the opening is provided so as to oppose the exhaust gas exhaust direction so that the reflected open end wave generated by the open portion interferes with the closed end reflected wave generated by the closed portion.
  • At least one of the exhaust pipe upstream side and the exhaust direction downstream side has a diameter-expanding structure in which the diameter is increased toward either the upstream opening end or the downstream opening end.
  • a plate with an opening formed therein is provided to cause interference between the open end reflected wave generated by the open portion and the closed end reflected wave generated by the closed portion, so that exhaust gas pulsating due to the operation of the internal combustion engine enters the exhaust pipe.
  • the exhaust sound generated by the inflow is suppressed from internal reflection by the enlarged diameter structure, and when the exhaust sound frequency matches the air column resonance frequency of the exhaust pipe, The opening end reflected wave reflected from the opening in the same phase and the closed end reflected wave reflected from the plate that is 180 ° out of phase with the incident wave cancel each other out, and the exhaust sound It is possible to suppress the pressure level.
  • the diameter expansion structure provided on at least one of the exhaust pipe upstream side and the exhaust direction downstream side of the exhaust pipe has an exponential shape part,
  • the exponential shape portion is characterized in that the diameter is expanded so as to draw an exponential curve toward the opening end.
  • the exponential curve refers to a curve drawn by an exponential function in which the value of one variable is determined with respect to the value of one variable.
  • the opening area of the opening is preferably set to 1/3 of the total area of the opening and the closing part of the plate. It is characterized by.
  • the reflectance of the sound wave in the plate is 0.5, and the closed end reflected wave,
  • the reflected wave at the aperture end occurs at a ratio of 1: 1, and the reflected waves that have a phase difference of 180 ° and cancel each other due to interference become the same amount, so that the effect of reducing the sound pressure level can be maximized.
  • the present invention it is not necessary to install a sub-muffler in the tail pipe or to provide a silencer having a large-capacity resonance chamber at the upstream opening end of the tail pipe. Can be suppressed, the weight can be reduced, and the exhaust device for an internal combustion engine that can reduce the manufacturing cost and installation space can be provided.
  • FIG. 1 is a diagram showing a first embodiment of an exhaust device for an internal combustion engine according to the present invention, and is a perspective view showing a configuration of an exhaust system of the internal combustion engine.
  • FIG. 1 is a view showing a first embodiment of an exhaust device for an internal combustion engine according to the present invention, and is a perspective view of the muffler showing a part of a muffler to which a tail pipe is connected in cross section.
  • FIG. 3 is a view showing a first embodiment of an exhaust device for an internal combustion engine according to the present invention, and is a longitudinal sectional view of a muffler cut along a plane passing through the central axis of the tail pipe and the center pipe of FIG. 2.
  • FIG. 6 is a view showing a first embodiment of an exhaust device for an internal combustion engine according to the present invention, and is a cross-sectional view showing a cross section AA of FIG. 5.
  • 1 is a diagram illustrating a first embodiment of an exhaust device for an internal combustion engine according to the present invention, and is a diagram illustrating a flow of exhaust gas in a muffler and a tail pipe.
  • FIG. 1 is a diagram showing a first embodiment of an exhaust system for an internal combustion engine according to the present invention, in which a standing wave of air column resonance due to reflection at an open end generated in a tail pipe is represented by a vertical axis representing particle velocity and a horizontal axis representing tail. It is a figure explaining with the particle velocity distribution which represented the position of the pipe typically. It is a figure which shows 1st Embodiment of the exhaust apparatus of the internal combustion engine which concerns on this invention, and is a figure which shows the relationship between the sound pressure level of a tail pipe, and an engine speed.
  • FIG. 1 is a diagram showing a first embodiment of an exhaust system for an internal combustion engine according to the present invention, in which an incident wave G is distributed to reflected waves R 1 and R 2 at an upstream opening end, a vertical axis indicates particle velocity, and a horizontal axis. It is a figure explaining with the particle velocity distribution which represented the position of the tail pipe on the axis
  • 1 is a diagram showing a first embodiment of an exhaust system for an internal combustion engine according to the present invention, in which a standing wave of air column resonance caused by closed end reflection generated in a tail pipe is represented by a particle velocity on the vertical axis and a tail on the horizontal axis. It is a figure explaining with the particle velocity distribution which represented the position of the pipe typically.
  • FIG. 13 is a view showing a first embodiment of the exhaust device for an internal combustion engine according to the present invention, and is a longitudinal sectional view of a muffler cut along a plane passing through the central axis of the tail pipe and the center pipe of FIG. is there.
  • FIG. 16 is a view showing a second embodiment of the exhaust device for an internal combustion engine according to the present invention, and is a longitudinal sectional view of a muffler cut along a plane passing through the central axis of the tail pipe and the center pipe of FIG. 15.
  • FIG. 19 is a view showing a second embodiment of the exhaust device for an internal combustion engine according to the present invention, and is a cross-sectional view showing a BB cross section of FIG. It is a figure which shows 2nd Embodiment of the exhaust apparatus of the internal combustion engine which concerns on this invention, and is explanatory drawing for demonstrating an exponential diameter expansion structure.
  • FIGS. 1 to 13 are views showing a first embodiment of an exhaust device for an internal combustion engine according to the present invention. First, the configuration will be described.
  • the exhaust device 20 As shown in FIG. 1, the exhaust device 20 according to the first embodiment is applied to an engine 21 as an in-line four-cylinder internal combustion engine, and is connected to an exhaust manifold 22 connected to the engine 21. Yes.
  • exhaust gas discharged from the engine 21 is purified, exhaust noise is suppressed, and exhaust gas is discharged to the atmosphere.
  • the engine 21 is not limited to the in-line four cylinders, and may be in-line three cylinders or in-line five cylinders or more, or may be a V-type engine having three or more cylinders in each bank divided into left and right. Good.
  • the exhaust manifold 22 includes four exhaust branch pipes 22a, 22b, 22c, and 22d, and exhaust branch pipes 22a, 22b, 22c, and 22d connected to exhaust ports that respectively communicate with the first cylinder to the fourth cylinder of the engine 21.
  • the exhaust gas collecting pipe 22e that collects the downstream side of the exhaust gas is exhausted from each cylinder of the engine 21 and introduced into the exhaust collecting pipe 22e via the exhaust branch pipes 22a, 22b, 22c, and 22d. It is like that.
  • the exhaust device 20 includes a catalytic converter 24, a cylindrical front pipe 25, a cylindrical center pipe 26, a muffler 27 as a silencer, and a tail pipe 28 as a cylindrical exhaust pipe.
  • the exhaust device 20 is installed on the downstream side in the exhaust direction of the exhaust gas of the engine 21 so as to be elastically suspended below the floor of the vehicle body.
  • the exhaust direction downstream side or the upstream side indicates the upstream side in the direction in which the exhaust gas discharged from the engine 21 flows in the exhaust device 20, and the exhaust direction downstream side or the downstream side means the exhaust gas is the exhaust device.
  • 20 shows the downstream side of the exhaust gas flowing in the direction of the exhaust gas, that is, the direction opposite to the upstream side.
  • the upstream end of the catalytic converter 24 is connected to the downstream end of the exhaust collecting pipe 22e, and the downstream end of the catalytic converter 24 is connected to the front pipe 25 via a universal joint 29.
  • This catalytic converter 24 is composed of a honeycomb base or a granular activated alumina support to which a catalyst such as platinum or palladium is attached, which is housed in a main body case, and performs reduction of NOx and oxidation of CO and HC. To do.
  • the universal joint 29 is composed of a spherical joint such as a ball joint, and allows relative displacement between the catalytic converter 24 and the front pipe 25. Further, the upstream end of the center pipe 26 is connected to the downstream end of the front pipe 25 via a universal joint 30.
  • the universal joint 30 is composed of a spherical joint such as a ball joint, and allows relative displacement between the front pipe 25 and the center pipe 26.
  • the downstream end of the center pipe 26 is connected to a muffler 27, and this muffler 27 is designed to mute the exhaust sound.
  • the muffler 27 includes an outer shell 31 formed in a hollow cylindrical shape, end plates 32 and 33 that close both ends of the outer shell 31, and an end plate 32 and an end plate 33. And an intervening partition plate 34.
  • the outer shell 31, the end plates 32 and 33, and the partition plate 34 constitute a silencer body.
  • the muffler 27 according to the first embodiment constitutes a silencer for an exhaust device of an internal combustion engine according to the present invention.
  • the partition plate 34 provided in the outer shell 31 divides the inside of the outer shell 31 into an expansion chamber 35 for expanding exhaust gas and a resonance chamber 36 for silencing exhaust sound of a specific frequency by Helmholtz resonance.
  • the end plate 32 and the partition plate 34 are formed with insertion holes 32a and 34a, respectively.
  • the insertion holes 32a and 34a have downstream ends of the center pipe 26, that is, the inside of the muffler 27 of the center pipe 26. 26A of inlet pipes which consist of the part accommodated in are inserted.
  • the inlet pipe portion 26A is supported by the end plate 32 and the partition plate 34 so as to be accommodated in the expansion chamber 35 and the resonance chamber 36, and a downstream opening end 26b as a downstream opening end opens into the resonance chamber 36. ing.
  • the inlet pipe portion 26A is formed with a plurality of small holes 26a in the extending direction of the inlet pipe portion 26A (exhaust gas exhaust direction) and in the circumferential direction, and the inside of the inlet pipe portion 26A and the expansion chamber 35 are And communicated through the small hole 26a.
  • the exhaust gas introduced into the muffler 27 through the inlet pipe portion 26A of the center pipe 26 is introduced into the expansion chamber 35 through the small hole 26a, and is introduced into the resonance chamber 36 from the downstream opening end 26b of the inlet pipe portion 26A. Is done.
  • the exhaust gas introduced into the resonance chamber 36 is silenced by a specific frequency (Hz) due to Helmholtz resonance.
  • the length of the protruding portion of the inlet pipe portion 26A protruding into the resonance chamber 36 is L 1 (m)
  • the sectional area of the inlet pipe portion 26A is S (m 2 )
  • the volume of the resonance chamber 36 is V (m 3 ).
  • the resonance frequency can be tuned to the high frequency side.
  • insertion holes 34 b and 33 a are formed in the partition plate 34 and the end plate 33, respectively.
  • the upstream ends of the tail pipe 28, that is, the muffler 27 of the tail pipe 28 are formed in the insertion holes 34 b and 33 a.
  • An outlet pipe portion 28A composed of a portion housed inside is inserted.
  • the tail pipe 28 is formed of a cylindrical pipe, and an upstream opening end 28a is provided at an upstream end portion of the outlet pipe portion 28A. Further, a downstream opening end 28b is provided at a downstream end portion of the tail pipe 28 at a distance L from the upstream opening end 28a as shown in FIG.
  • the outlet pipe portion 28 ⁇ / b> A is connected to the muffler 27 by being inserted into the insertion holes 34 b and 33 a so that the upstream opening end 28 a opens to the expansion chamber 35.
  • a diameter-expanding structure 38 that increases in diameter toward the outside of the opening end is provided.
  • a plate 41 is provided facing the direction.
  • the expanded structure 38 as shown in FIG. 6 have the same inner diameter D 1 and the tail pipe 28, closed and a proximal end 38a which is connected to the tail pipe 28, an inner diameter larger D 2 than the inner diameter D 1 and a distal portion 38b which faces the base end portion 38a, is formed between the proximal end 38a and distal end 38b, an inner diameter as the inner diameter toward the end portion 38b from the base end portion 38a is in the D 2 from D 1 And a conical portion 38c that gradually increases.
  • the conical portion 38c is in contact with the straight line La connecting the point Pa on the inner periphery of the base end portion 38a and the point Pb on the inner periphery of the tip end portion 38b, and the inner peripheral portion 28c of the tail pipe 28, and passes through the point Pa.
  • the angle formed by the straight line Lb extending in the axial direction of the tail pipe 28 is formed to be ⁇ .
  • the axial distance L 2 between the point Pa and the point Pb is expressed by the following equation (5).
  • a sound wave that passes through a pipe having a constant cross-sectional area travels as a plane wave, but it is known that when the cross-sectional area changes, the sound wave is reflected at the changed portion.
  • the changed portion includes such a conical portion 38c
  • the exhaust sound enters the tail pipe 28, and the incident wave passes through the conical portion 38c.
  • the change of the plane wave of the exhaust sound is suppressed, and reflection is suppressed in the conical portion 38c.
  • the inner diameter D 1 , the inner diameter D 2, and the angle ⁇ formed are appropriately selected based on data such as design specifications, simulations, experiments, and experience values of the vehicle to which the exhaust device 20 according to the first embodiment is applied. Is done.
  • the line connecting the point Pa on the inner circumference of the base end portion 38a and the point Pb on the inner circumference of the tip end portion 38b has been described with the straight line La, but the point Pa on the inner circumference of the base end portion 38a and The line connecting the point Pb on the inner periphery of the tip end portion 38b may be constituted by a curve having a large radius of curvature that forms a gentle concave shape.
  • Plate 41 is provided with an outer peripheral portion 41a having substantially the same outer diameter as the inner diameter D 2 of the front end portion 38b of the enlarged diameter structure 38, and a side surface portion 41b opposed to the exhaust direction of the exhaust gas flowing in the tail pipe 28 Yes.
  • a substantially circular through-holes of the same diameter D 3 is formed with an inner diameter D 1
  • the opening 41d of the plate 41 is constituted by the through-hole.
  • the side surface portion 41b includes the opening portion 41d and a closing portion 41e configured by a portion other than the opening portion 41d, and exhaust gas is discharged from the opening portion 41d to the atmosphere. ing.
  • the plate 41 is provided so as to face the exhaust direction of the exhaust gas flowing in the tail pipe 28, but more specifically, the tail pipe is perpendicular to the axial direction of the tail pipe 28. 28 is attached.
  • the plate 41 is attached to the tail pipe 28 so that the outer peripheral portion 41a and the inner peripheral portion 28c of the tail pipe 28 are in close contact with each other.
  • the attachment method of the plate 41 to the tail pipe 28 is preferably a fixing method such as joining or pressure.
  • it may replace with this attachment method and may process by integral formation methods, such as a drawing process.
  • Plate 41, reflecting surface portion 41f of the exhaust upstream side of the side surface portion 41b is provided from the downstream open end 28b of the tail pipe 28, so as to spaced apart a distance L 3, the inner peripheral portion 28c of the tail pipe 28 at the outer peripheral portion 41a It has been.
  • the exhaust sound that has passed through the enlarged diameter structure 38 reaches the reflecting surface portion 41f while maintaining the state of a plane wave.
  • the reflective surface portion 41f is a surface that reflects the incident wave or the reflected wave of the exhaust sound, and includes an opening 41d and a part of the closing portion 41e.
  • the opening area S 2 (m 2 ) of the opening 41d shown in FIG. 5 and the total area S 1 (m 2 ) of the side surface 41b including the opening 41d of the plate 41 are shown.
  • the opening 41d is formed so as to satisfy the following formula (6).
  • the intrinsic acoustic impedance of the medium inside the tail pipe 28 is Z 1
  • the intrinsic acoustic impedance of the medium in the vicinity of the opening 41 d of the plate 41 of the tail pipe 28 is Z 2
  • the vicinity of the downstream opening end 28 b outside the tail pipe 28 is Z 3
  • the reflectance Rv 1 , the transmittance Tv 1 and the reflectance Rv 2 are Represented by equations (7), (8), and (9), respectively.
  • the area S 3 is open to the atmosphere, the area S 3 is ⁇ , that is, infinite. Therefore, when calculating the area S 3 of the formula (11) as ⁇ , so that the above-mentioned formula (6) is obtained.
  • the exhaust gas purified and exhausted by the catalytic converter 24 is introduced into the muffler 27 of the exhaust device 20 through the front pipe 25 and the center pipe 26.
  • the exhaust gas introduced into the muffler 27 is introduced into the expansion chamber 35 through the small hole 26a of the inlet pipe portion 26A and resonates from the downstream opening end 26b of the inlet pipe portion 26A, as indicated by arrows in FIG. It is introduced into the chamber 36.
  • the exhaust gas introduced into the expansion chamber 35 is introduced into the tail pipe 28 through the upstream opening end 28a of the outlet pipe portion 28A, the exhaust gas is provided at the distal end portion 38b of the diameter expansion structure 38 at the downstream opening end 28b of the tail pipe 28.
  • the air is exhausted through the opening 41d of the plate 41 to the atmosphere.
  • Plates 41 provided on the downstream open end 28b side, the expanded structure 38, the inner diameter of the tail pipe 28 inside diameter than D 1 has become a large inside diameter D 2
  • the opening 41d is tail pipe 28 of the plate 41 because it is formed by the inner diameter D 3 having D 1 the same size as the exhaust gas passes through the opening 41d, passes smoothly, that the back pressure of the exhaust gas is increased is prevented.
  • exhaust sound having a frequency (Hz) that changes in accordance with the rotation speed (rpm) of the engine 21 is generated from each explosion cylinder.
  • This exhaust noise has a frequency that increases as the rotational speed of the engine 21 increases.
  • the exhaust pipe passes through the exhaust manifold 22, the catalytic converter 24, the front pipe 25, and the center pipe 26, and the inlet pipe portion of the muffler 27. 26A.
  • the exhaust sound incident on the inlet pipe portion 26A enters the expansion chamber 35 through the small hole 26a of the inlet pipe portion 26A and is expanded, and the sound pressure level of the exhaust sound is reduced over the entire frequency band. Further, the exhaust sound incident on the inlet pipe portion 26A enters the resonance chamber 36 from the downstream opening end 26b. The sound pressure level of the exhaust sound having a specific frequency set by Helmholtz resonance is reduced in the exhaust sound that has entered the resonance chamber 36.
  • the exhaust sound that has entered the expansion chamber 35 enters the tail pipe 28, and the incident wave is reflected by the plate 41 at the downstream opening end 28 b of the tail pipe 28 to become a reflected wave.
  • the reflected wave due to the open end reflection and the reflected wave due to the closed end reflection cancel each other, and the reflected wave due to the open end reflection and the reflected wave due to the closed end reflection further pass through the upstream open end 28a of the tail pipe 28.
  • the reflected light travels in the direction of the downstream opening end 28b in the same manner as the incident wave, and is re-reflected by the plate 41 in the same manner as the incident wave. Such reflection is repeated and a standing wave is generated.
  • the reason why the open end reflection occurs at the downstream open end 28b is as follows. That is, the pressure of the exhaust gas flowing in the tail pipe 28 is high, and the atmospheric pressure outside the downstream opening end 28b of the tail pipe 28 is lower than the pressure of the exhaust gas flowing in the tail pipe 28. For this reason, the incident wave rushes out to the atmosphere from the downstream opening end 28b, thereby generating a low pressure portion where the pressure of the exhaust gas in the downstream opening end 28b is lowered, and this low pressure portion passes through the tail pipe 28 in the upstream opening end 28a. It is because it begins to progress toward.
  • the reflected wave becomes a plane wave in the opposite direction to the incident wave and travels in the opposite direction to the incident wave.
  • the reason why the reflected wave is generated on the upstream opening end 28a side is the same as the reason why the reflected wave is generated on the downstream opening end 28b.
  • the incident wave which goes to the opening part 41d of the downstream opening end 28b and the 1st reflected wave which goes to the direction away from the opening part 41d of the downstream opening end 28b interfere.
  • the first reflected wave is reflected at the opening of the upstream opening end 28a and becomes the second reflected wave toward the opening 41d, and the second reflected wave, the first reflected wave, and the incident wave are opened upstream. Repeated between end 28a and downstream open end 28b, each interferes.
  • a standing wave can be generated between the opening of the upstream opening end 28a of the tail pipe 28 and the opening 41d of the downstream opening end 28b.
  • the standing wave has an opening at the upstream opening end 28a and an opening 41d at the downstream opening end 28b of the tail pipe 28 when the tube length L of the tail pipe 28 and the wavelength ⁇ of the standing wave have a specific relationship.
  • the amplitude is remarkably increased and air column resonance occurs.
  • This air column resonance is based on a frequency with the pipe length L of the tail pipe 28 as a half wavelength, and air column resonance occurs at a frequency that is a natural number multiple of this basic frequency.
  • the wavelength is a length obtained by dividing the basic wavelength by the natural number.
  • the air column resonance of a certain wavelength is generated, the sound pressure is remarkably increased, and noise is generated.
  • the wavelength ⁇ 1 of the air column resonance of the primary component consisting of the fundamental vibration of the exhaust sound is equal to the tube length L of the tail pipe 28.
  • the wavelength ⁇ 2 of the air column resonance of the secondary component that is approximately twice the fundamental vibration is approximately 1 time the tube length L.
  • the wavelength ⁇ 3 of the air column resonance of the third-order component that is three times the fundamental vibration is 2/3 times the tube length L, and as is apparent from FIG.
  • the end 28a and the downstream opening end 28b become antinodes of the particle velocity, and the particle velocity is maximized.
  • the sound pressure distribution in the standing wave of the air column resonance of the primary component or the tertiary component of the exhaust sound is opposite to the antinodes and nodes of the particle velocity distribution shown in FIG. And the downstream opening end 28b becomes a node of the sound pressure, and the sound pressure becomes zero.
  • the sound pressure level (dB) of the exhaust sound is such that the resonance frequency (Hz) of the primary component f 1 and the secondary component f 2 as the engine speed Ne (rpm) increases. It increases at the engine speed Ne corresponding to.
  • the air column resonance frequency fc (Hz) when the sound speed is c (m / s), the length of the tail pipe 28 is L (m), and the order is n is expressed by the following equation (12). .
  • the primary component f 1 of the exhaust sound due to the air column resonance of the tail pipe 28 is 66 based on the above equation (12). .7 Hz, the secondary component f 2 is 133.3 Hz, and the sound pressure level (dB) of the exhaust sound by the primary component f 1 and the secondary component f 2 of the resonance frequency due to the air column resonance corresponding to the rotational speed of the engine 21. Becomes higher.
  • N 4 in the above-described equation (3), and when the engine speed Ne is 2000 rpm, exhaust is caused by air column resonance of the primary component f 1. increases acoustic sound pressure level (dB) is the sound pressure level of the engine speed Ne is 4000rpm exhaust sound by air column resonance of the secondary component f 2 at (dB) increases.
  • the sound pressure level (dB) is reliably prevented from increasing due to air column resonance.
  • the opening end reflection occurs with respect to the incident wave incident on the tail pipe 28 at the opening 41d of the plate 41, and the closing end reflection occurs at the closing portion 41e.
  • open end reflection and closed end reflection occur at the reflection surface portion 41 f of the plate 41.
  • the reflected wave is in phase with respect to the incident wave, in accordance with an open end reflection is reflected at the opening 41d, which accounts for about 33% of the total area S 1 of the side surface portion 41b that includes an aperture 41d of the plate 41 and the reflected wave are different from 180 ° phase with the incident waves are distributed and reflected waves due to the closed end reflections reflected by blocking parts 41e of the side surface portion 41b of the plate 41, which accounts for about 67% of the total area S 1 of the above.
  • the reflected waves due to the opening end reflection and the closing end reflection distributed by the opening 41d and the closing portion 41e cancel each other, and as a result, the sound pressure level of the reflected sound is reduced, and the sound pressure level (dB) is reduced by air column resonance. Is suppressed from increasing.
  • the reflectance Rp of the incident exhaust sound on the plate 41 is set so that the distribution ratio of the opening end reflection and the closing end reflection is halved as described above. It is set to 0.5.
  • the opening area S 2 (m 2 ) of the opening 41d shown in FIG. 5 and the total area S 1 (m 2 ) of the side surface 41b including the opening 41d of the plate 41 are shown.
  • the opening 41d is formed so as to satisfy S 2 ⁇ (1/3) S 1 .
  • an incident wave G of exhaust sound caused by exhaust pulsation during operation of engine 21 is incident on tail pipe 28, and this incident wave G is incident with tube length L of tail pipe 28 being a half wavelength.
  • the wave G that is, aperture end reflection will be described.
  • the frequency of the incident wave G matches the air column resonance frequency of the tail pipe 28, it enters from the opening 41d of the plate 41 provided on the downstream opening end 28b side of the tail pipe 28 as shown in FIG. some of the waves G enters the atmosphere becomes a transmitted wave G 1.
  • the opening 41d of the plate 41 occurs the open end reflection of the foregoing, travels in a direction incident wave G at the opening 41d is spaced apart from the plate 41 as reflected wave R 1 shown by a solid line.
  • the reflected wave R 1 is in phase with the incident wave G. That is, the dense or sparse exhaust gas or air mass that has traveled through the narrow air column in the tail pipe 28 expands at once as soon as it reaches the boundary with the wide space of the atmosphere in the opening 41d. until sparse in the place was densely is formed, this sparse reflected wave R 1 become a new wave source will be gradually turned back in the direction that has now progress the air column, dense to sparse, sparse dense Therefore, the phase of the incident wave G is directly the phase of the reflected wave R 1 , and the reflected wave R 1 is in phase with the incident wave G.
  • the reflected wave R 1 since the incident wave G and the reflected wave R 1 have the same phase, the reflected wave R 1 originally overlaps the same line as the incident wave G. However, for convenience of explanation, in FIG. R 1 is shifted downward with respect to the incident wave G.
  • the reflected wave R 2 has an opposite phase to the incident wave G, and is 180 ° out of phase with the reflected wave R 1 . That is, the dense or sparse exhaust gas or air mass that has been transmitted through the narrow air column in the tail pipe 28 collides with the wall surface at the closed portion 41e and rebounds with the dense and the sparse rebound.
  • the phase of the wave G is reversed to be the phase of the reflected wave R 2 , and the reflected wave R 2 is in reverse phase with respect to the incident wave G.
  • the incident wave G and reflected wave R 2 are opposite phase.
  • the reflected wave R 2 is symmetric with respect to the incident wave G and a horizontal line of phase 0.
  • the reflected wave R 1 and the reflected wave R 2 have a horizontal line of phase 0. so as to be symmetrical about, and shifting the reflected wave R 2 in the horizontal direction of the phase 0.
  • the reflected wave R 1 and the reflected wave R 2 are opposite in phase, but have the same particle velocity, so that they interfere to cancel each other, and in the air column in the tail pipe 28, the air column resonance is It will not happen.
  • the primary component f 1 indicated by the broken line in the exhaust sound caused by air column resonance can be suppressed as shown by the solid line, the sound pressure level of exhaust noise is greatly reduced.
  • the reflected wave reflected from the downstream opening end 28b of the tail pipe 28 is reflected in the incident wave G as in FIG. It is distributed between the reflected wave R 2 by 180 ° phase difference blocking parts 41e against the reflected wave R 1 and incident wave G by opening 41d of the same phase for a reflected wave R 1 and reflected wave R 2 is Interfere to counteract each other.
  • the secondary component f 2 indicated by the broken line in the exhaust sound caused by air column resonance can be suppressed as shown by the solid line, the sound pressure level of exhaust noise is greatly reduced.
  • an incident wave G due to exhaust pulsation during operation of the engine 21 enters the tail pipe 28, and the wavelength of the incident wave G is an incident wave G based on a quarter wavelength of the tube length L of the tail pipe 28. A case will be described.
  • the open end reflection is based on a frequency where the tube length L of the tail pipe 28 is a half wavelength, and air column resonance of a wavelength having a length obtained by dividing the basic wavelength at this time by a natural number occurs. It is.
  • the closed end reflection is a length obtained by dividing the fundamental wavelength at this time by an odd number with air column resonance at a frequency where the tube length L of the tail pipe 28 is 1/4 wavelength. The air column resonance of the wavelength of the wavelength is generated, and the incident wave incident into the pipe from the upstream opening end 28a of the tail pipe 28 is reflected at the closed end with a phase different from the incident wave by 180 °.
  • the wavelength ⁇ 1 of the primary component air column resonance consisting of fundamental vibration is approximately four times the tube length L of the tail pipe 28, and the wavelength ⁇ of the secondary component air column resonance is ⁇ . 2 is approximately 4/3 times the tube length L.
  • the wavelength ⁇ 3 of the air column resonance of the third-order component is 4/5 times the tube length L, and a standing wave is generated in which the closed end is a node of the particle velocity and the open end is an antinode of the particle velocity.
  • the sound pressure distribution in the standing wave of the air column resonance of the primary component or the third component is the particle velocity distribution and the antinode and node are reversed, the closed end is the sound pressure antinode, and the open end is the sound pressure node.
  • a standing wave like this is possible.
  • the increase of the sound pressure level (dB) of the exhaust sound due to the resonance frequency is not limited even when the wavelength of the incident wave G is the incident wave G based on the quarter wavelength of the tube length L of the tail pipe 28. Occurs as in the case of the incident wave G based on the half wavelength of the tube length L of the tail pipe 28. That is, as in the graph shown in FIG. 9, the sound pressure level (dB) of the exhaust sound is increased as the engine speed Ne (rpm) increases, with the resonance frequencies of the primary component f 1 and the secondary component f 2 ( Hz) at an engine speed Ne corresponding to the frequency.
  • the air column resonance frequency fd (Hz) when the sound velocity is c (m / s), the length of the tail pipe 28 is L (m), and the order is n is expressed by the following equation (13). .
  • the primary component f 1 of the exhaust sound due to the air column resonance of the tail pipe 28 is 33 based on the above equation (13). .3 Hz, the secondary component f 2 is 100 Hz, and the sound pressure level (dB) of the exhaust sound is increased by the primary component f 1 and the secondary component f 2 of the resonance frequency due to the air column resonance corresponding to the rotational speed of the engine 21. .
  • N 4 in the above-described equation (3), and when the engine speed Ne is 1000 rpm, exhaust is caused by air column resonance of the primary component f 1. It increases acoustic sound pressure level (dB) is the sound pressure level of the engine speed Ne exhaust sound by air column resonance of the secondary component f 2 at 3000 rpm (dB) increases.
  • the frequency of the incident wave G and the tail pipe 28 air column resonance frequencies coincide with each other.
  • the reflected wave reflected from the downstream opening end 28 b of the tail pipe 28 is 180 ° in phase with the reflected wave R 1 of the opening end reflection by the opening 41 d in phase with the incident wave G and the incident wave G. It is distributed to the reflected wave R 2 in the closed end reflection by different blocking parts 41e.
  • the reflected wave R 1 and the reflected wave R 2 are opposite in phase but have the same particle velocity, so that they interfere with each other so that the primary component f 1 of the exhaust sound due to air column resonance is suppressed.
  • the sound pressure level of exhaust sound is greatly reduced.
  • the reflected wave reflected from the downstream opening end 28b of the tail pipe 28 is reflected in the incident wave G as in FIG. 180 ° phase with respect to the reflected wave R 1 and incident wave G reflected at the opening 41d of the plate 41 of the same phase is distributed to the reflected wave R 2 reflected by the closed portion 41e of the different plates 41 against.
  • the reflected wave R 1 and the reflected wave R 2 cancel each other, the secondary component f 2 of the exhaust sound due to air column resonance is suppressed, and the sound pressure level of the exhaust sound is greatly reduced.
  • the length (mm) of the muffler 27 of the exhaust device 20 according to the first embodiment, the size of the outer shape (mm), the number of resonance chambers and expansion chambers, the inner diameters (mm) of the inlet pipe portion 26A and the tail pipe 28, Thickness (mm) and length (mm), thickness of plate 41 (mm), total area S 1 of side surface portion 41b including opening 41d of plate 41, opening area S 2 , distance L (mm), L 1 (mm), L 2 (mm), and L 3 (mm) are based on data such as vehicle design specifications, simulations, experiments, and experience values to which the exhaust device 20 according to the first embodiment is applied. It is selected appropriately.
  • the internal combustion engine exhaust device 20 includes a tail pipe 28 that exhausts exhaust gas discharged from the engine 21 to the atmosphere.
  • the tail pipe 28 has an upstream opening end 28a connected to the muffler 27 upstream of the exhaust gas in the exhaust direction, and a downstream opening end 28b for discharging the exhaust gas to the atmosphere downstream of the muffler 27.
  • a diameter-expanding structure 38 whose diameter increases toward the downstream opening end 28b is provided, and the plate 41 faces the exhaust gas in the exhaust direction inside the diameter-expanded structure 38.
  • one opening 41d penetrating in the exhaust direction of the plate 41 is formed.
  • the opening area S 2 of the opening 41d is set to a size of about 1/3 of the total area S 1 of the side surface portion 41b that includes an aperture 41d of the plate 41.
  • the diameter expanding structure 38 has a conical portion 38c.
  • the enlarged structure 38 on the downstream side of the tail pipe 28 is provided, it is possible to increase the opening area S 2 of the opening 41d to be formed in the plate 41. Since the conical portion 38 c is formed in the diameter-expanding structure 38, the exhaust sound that has entered the tail pipe 28 reliably reaches the reflecting surface portion 41 f of the plate 41 without being reflected by the diameter-expanding structure 38. The effect that it can do is acquired. Since the opening 41d is formed in the plate 41, not only the opening 41d but also the closing portion 41e is defined by the plate 41 at the downstream opening end 28b.
  • the closing portion 41e is also defined at the downstream opening end 28b in this way, when an incident wave due to exhaust pulsation during operation of the engine 21 enters the tail pipe 28 and reaches the downstream opening end 28b, The reflected wave reflected from the downstream opening end 28b of the tail pipe 28 can be distributed as follows.
  • the reflected wave by the so-called opening end reflection that is reflected from the opening 41d in the same phase with respect to the incident wave and the so-called closed end reflection that is reflected from the closing portion 41e that is 180 ° out of phase with the incident wave. Can be distributed to the reflected wave.
  • the exhaust device since it is not necessary to increase the size of the silencer corresponding to the main muffler as in the past or to install a sub muffler in the tail pipe 28, the exhaust device has a simple structure in which the plate 41 is simply provided on the tail pipe 28. The increase in the weight of the exhaust system is prevented, the manufacturing cost of the exhaust device is prevented from increasing, and the installation space is reduced.
  • the opening area S 2 of the opening 41d is approximately 1/3 the size, i.e. the downstream open end 28b of the tail pipe 28
  • the aperture ratio can be about 33%.
  • the reflected wave from the opening end reflection reflected from the opening 41d occupying about 33% of the total area is in phase with the incident wave, and the phase is 180 ° different from the incident wave. It can be distributed to the reflected wave by the closed end reflection reflected from the closed portion 41e occupying about 67%.
  • the reflected wave due to the reflection at the opening end and the reflected wave due to the reflection at the closed end are interfered with each other so as to surely cancel each other, thereby reliably suppressing an increase in sound pressure due to air column resonance of the tail pipe 28.
  • the exhaust device 20 when the columnar resonance of the wavelength having a length obtained by dividing the fundamental wavelength by the natural number is generated with the wavelength having the half length of the tube length L of the tail pipe 28 as the fundamental wavelength, Even so, it is possible to prevent the sound pressure from increasing due to the air column resonance of the tail pipe 28, and to prevent the noise from being generated in the passenger compartment when the engine 21 is rotating at a low speed (2000 rpm). The effect that it can be obtained.
  • the fundamental wavelength is set to a wavelength with the tube length L of the tail pipe 28 as a half wavelength.
  • the fundamental wavelength is a reflection mode of a perfect opening end having a standing wave of air column resonance having a wavelength of a length divided by a natural number, and a wavelength at which the tube length L of the tail pipe 28 is 1 ⁇ 4 wavelength.
  • the reflected wave R 1 and the reflected wave R 2 can be canceled each other as shown in FIG. 10, and the sound pressure level of the exhaust sound due to air column resonance can be reduced.
  • the effect that it can reduce significantly is acquired. Therefore, a high silencing effect can be obtained.
  • the case where the diameter expansion structure 38 and the plate 41 are provided only at the downstream opening end 28b of the tail pipe 28 has been described.
  • a structure other than the structure in which the diameter expansion structure 38 and the plate 41 are provided only at the downstream opening end 28 b of the tail pipe 28 may be used.
  • a structure in which the enlarged diameter structure 38 and the plate 41 are provided at both the upstream opening end 28 a and the downstream opening end 28 b of the tail pipe 28 may be used.
  • the structure which provided the enlarged diameter structure 38 and the plate 41 only in the upstream opening end 28a of the tail pipe 28 may be sufficient.
  • the structure in which such a diameter expansion structure 38 and the plate 41 are provided in both the upstream opening end 28a and the downstream opening end 28b of the tail pipe 28 and in the structure in which only the upstream opening end 28a of the tail pipe 28 is provided The same effect as described above can be obtained.
  • the exhaust device 60 according to the second embodiment is configured similarly to the exhaust device 20 according to the first embodiment.
  • the other component is comprised similarly. Therefore, the same configuration will be described using the same reference numerals as those in the first embodiment shown in FIGS. 1 to 13, and only differences will be described in detail. First, the configuration will be described.
  • the exhaust device 60 according to the second embodiment is applied to the engine 21 as in the first embodiment, and only the tail pipe 68 constituting the exhaust device 60 is the first embodiment. Is different.
  • the tail pipe 68 is a cylindrical pipe, and an upstream opening end 68 a is provided at an upstream end portion of the outlet pipe portion 68 ⁇ / b> A. As shown in FIG. 16, a downstream opening end 68b is provided at the side end portion at a distance L from the upstream opening end 68a.
  • the outlet pipe portion 68A is connected to the muffler 27 by being inserted into the insertion holes 34b and 33a so that the upstream opening end 68a opens into the expansion chamber 35.
  • downstream opening end 68b of the tail pipe 68 is provided with a diameter-expanding structure 78 that increases in diameter toward the outside of the downstream opening end 68b.
  • a plate 41 is provided facing the gas exhaust direction.
  • the expanded structure 78 as shown in FIGS. 19 and 20, and a distal portion 78b having a proximal end 78a having the same inner diameter D 1 and the tail pipe 68, an inner diameter larger D 4 than the inner diameter D 1, group
  • An exponential shape portion 78c is formed between the end portion 78a and the distal end portion 78b, and has a sectional shape whose diameter increases along an exponential curve from the base end portion 78a toward the distal end portion 78b.
  • a curve Ec connecting the point Ea on the inner periphery of the base end portion 78a and the point Eb on the inner periphery of the tip end portion 78b is formed to be an exponential curve.
  • a cross-sectional area passing through the point Ea is S 0
  • the cross-sectional area Sx at the position x based on this exponential curve is represented by the exponential function of the following equation (15).
  • Ln represents a natural logarithm with the constant e (2.77188282845904) as the base.
  • the center of each expanded cross section is the same as the axis Lp of the tail pipe 68. That is, as shown in FIG. 20, the cross section of the cross-sectional area S 0, the cross section of the cross-sectional area S 0, the cross section of the cross-sectional area Sx, the respective centers of the cross-section of the cross-sectional area S L is made identical with the axis Lp. Since the expanded diameter structure 78 includes an exponential shape portion 78 c, the exhaust sound is incident on the tail pipe 68, and when the incident wave reaches the plate 41, reflection occurs in the expanded diameter structure 78. It is surely suppressed so that there is no.
  • a sound wave that passes through a pipe having a constant cross-sectional area travels as a plane wave, but it is known that when the cross-sectional area changes, the sound wave is reflected at the changed portion.
  • the cross-sectional area changes if the changed portion is formed with an exponential shape represented by the following equation (15) based on the exponential curve, the position x in the range of 0 ⁇ x ⁇ L
  • the cross-sectional area Sx changes based on the exponential curve.
  • the cross-sectional area S 0 , the cross-sectional area S L, and the distance L are based on data such as vehicle design specifications, simulations, experiments, and experience values to which the exhaust device 60 according to the second embodiment is applied. It is selected appropriately.
  • the exponential shape part 78c by not only the above-mentioned exponential function but the hyperbolic shape part which has what is called a hyperbolic shape represented by following Formula (16).
  • cosh is a hyperbolic cosine
  • sinh is a hyperbolic sine
  • m is a function represented by the above-described equation (14)
  • Sx is a cross-sectional area of the hyperbolic shape portion at a position x based on the hyperbolic shape
  • T is Each of 0 to ⁇ is represented.
  • the hyperbolic shape portion is formed in the shape represented by the equation (16)
  • the cross-sectional area Sx changes based on the function of the position x in the range of 0 ⁇ x ⁇ L.
  • almost ideal plane wave propagation is realized in the hyperbolic shape portion, and the incident wave passing through the hyperbolic shape portion is not reflected. Therefore, the incident wave incident on the tail pipe 68 reaches the reflection surface portion 41f of the plate 41 in a state of a plane wave without being reflected when passing through the hyperbolic shape portion.
  • the exhaust gas exhausted from each cylinder of the engine 21 is the plate 41 provided at the tip 78b of the diameter expansion structure 78, as in the first embodiment. Through the opening 41d.
  • exhaust noise with a frequency (Hz) that changes in accordance with the rotational speed (rpm) of the engine 21 is caused by each exhaust pulsation excited in each explosion cylinder of the engine 21 during operation of the engine 21. Generated from the cylinder.
  • This exhaust sound enters the inlet pipe portion 26A.
  • the exhaust sound incident on the inlet pipe portion 26A enters the resonance chamber 36 from the downstream opening end 26b.
  • the sound pressure level of the exhaust sound having a specific frequency set by Helmholtz resonance is reduced in the exhaust sound that has entered the resonance chamber 36.
  • the exhaust sound that has entered the expansion chamber 35 enters the tail pipe 68, and this incident wave is reflected by the plate 41 at the downstream opening end 68 b of the tail pipe 68 to become a reflected wave.
  • the diameter structure 78 has the above-described exponential shape portion 78c and propagates as a substantially complete plane wave within the diameter expansion structure 78, so that the exhaust sound is reflected and reflected on the reflection surface portion 41f of the plate 41. It is prevented from reaching. Therefore, the exhaust sound that has entered the tail pipe 68 reliably reaches the reflection surface portion 41 f of the plate 41 without receiving a loss due to reflection when passing through the inside of the diameter expansion structure 78.
  • the reflected wave due to the open end reflection and the reflected wave due to the closed end reflection cancel each other, and the reflected wave due to the open end reflection and the reflected wave due to the closed end reflection further pass through the upstream open end 68a of the tail pipe 68.
  • the reflected light travels in the direction of the downstream opening end 68b in the same manner as the incident wave, and is re-reflected by the plate 41 in the same manner as the incident wave. Such reflection is repeated.
  • the exhaust device 60 for an internal combustion engine includes a tail pipe 68 that exhausts exhaust gas discharged from the engine 21 to the atmosphere.
  • the tail pipe 68 has an upstream opening end 68a connected to the muffler 27 upstream of the exhaust gas in the exhaust direction and a downstream opening end 68b for discharging the exhaust gas to the atmosphere downstream of the muffler 27.
  • the downstream opening end 68b is provided with a diameter expansion structure 78 that increases in diameter toward the outside, and a plate 41 is provided facing the exhaust gas exhaust direction, and the plate 41 faces the exhaust direction.
  • One opening portion 41d is formed in the side surface portion 41b. Then, the opening area S 2 of the opening 41d is set to a size of about 1/3 of the total area S 1 of the side surface portion 41b that includes an aperture 41d of the plate 41.
  • the expanded-diameter structure 38 is formed with an exponential shape portion 78c.
  • the enlarged structure 78 at the downstream open end 68b of the tail pipe 68 is provided, it is possible to increase the opening area S 2 of the opening 41d to be formed in the plate 41.
  • the exponential shape part 78c is formed in this diameter expansion structure 78, the exhaust sound which injected into the tail pipe 68 does not reflect in this diameter expansion structure 78, but it is reliably as a substantially complete plane wave.
  • the effect of being able to reach the reflection surface portion 41f of the plate 41 is obtained. Therefore, the reflected wave due to the reflection at the opening end and the reflected wave due to the reflection at the closed end cancel each other out, and the occurrence of air column resonance due to the reflected wave of the exhaust sound is more reliably suppressed.
  • the case where the diameter expansion structure 78 and the plate 41 are provided only at the downstream opening end 68 b of the tail pipe 68 has been described.
  • a structure other than the structure in which the enlarged diameter structure 78 and the plate 41 are provided only at the downstream opening end 68 b of the tail pipe 68 may be used.
  • a structure in which the enlarged diameter structure 78 and the plate 41 are provided at both the upstream opening end 68a and the downstream opening end 68b of the tail pipe 68 may be used.
  • a structure in which the diameter expansion structure 78 and the plate 41 are provided only at the upstream opening end 68 a of the tail pipe 68 may be employed.
  • the structure in which such a diameter expansion structure 78 and the plate 41 are provided at both the upstream opening end 68a and the downstream opening end 68b of the tail pipe 68 and the structure in which only the upstream opening end 68a of the tail pipe 68 is provided The same effect as described above can be obtained.
  • FIG. 21 to 23 are views showing a tail pipe 110 according to the third embodiment.
  • the tail pipe 110 according to the third embodiment is provided with a through hole 78d newly in the tail pipe 68 of the exhaust device 60 according to the second embodiment.
  • the through hole 78d is provided for correcting the reflection position of the incident wave in the opening end reflection at the opening 41d of the plate 41.
  • the opening end correction will be described.
  • the actual length of the air column in the air column resonance generated in the tail pipe P is greater than the tube length L from the upstream opening end a to the downstream opening end b of the tail pipe P.
  • the air column length Lh is slightly longer.
  • opening end correction is required.
  • the distance from the upstream opening end a to the actual exhaust sound reflection position spaced outward and the distance from the downstream opening end b to the actual exhaust sound reflection position are respectively ⁇ L.
  • the traveling wave propagating in the tail pipe P is actually reflected at a position separated by ⁇ L from the downstream opening end b to the downstream side, and this reflected wave is upstream from the upstream opening end a.
  • the light is actually reflected at a position separated by ⁇ L.
  • the same exhaust gas having the same temperature (° C.) as the exhaust gas in the tail pipe P is present outside the downstream opening end b and the upstream opening end a.
  • the sound energy (J) is also transmitted to the outside of the vicinity of the downstream opening end b and the upstream opening end a discharged from the tail pipe P.
  • the sound pressure (Pa) does not become zero at the downstream opening end b and the upstream opening end a, and the sound pressure (Pa) becomes zero at a position spaced apart by ⁇ L from the downstream opening end b and the upstream opening end a.
  • a position separated by ⁇ L from the downstream opening end b and the upstream opening end a becomes an effective pipe end.
  • the incident wave is reflected by an effective tube end that is spaced outward by ⁇ L from the downstream opening end b.
  • the reflected wave reflected at the downstream opening end b is reflected at the effective tube end at a position spaced apart by ⁇ L from the upstream opening end a.
  • through holes 78d are provided, and an effective pipe end is corrected so as to approach the downstream opening end 110b of the tail pipe 110, thereby obtaining a high noise reduction effect.
  • the through hole 78 d having a diameter D 5 is inward in the axial direction of the tail pipe 110 with respect to the side surface portion 41 b of the plate 41. in a position spaced apart from the side surface 41b of the plate 41 by a distance L 5, it is formed through the inner peripheral portion 110a and the outer peripheral portion 110c of the tail pipe 110.
  • the through hole 78d is located upstream of the plate 41 in the exhaust direction of the exhaust gas in the tail pipe 110 with respect to the downstream opening end 110b.
  • the through hole 78d may be configured by a plurality of through holes.
  • the side surface portion of the plate 41 is arranged such that the through hole 78d is located upstream of the downstream opening end 110b of the exhaust gas in the tail pipe 110 with respect to the plate 41 in the exhaust direction. to a position spaced by a distance L 5 from 41b, it may be three forms.
  • the one or more through holes 78d constitute a part of the opening 41d of the plate 41 in a pseudo manner, and the air column resonance of the air column resonance separated outward from the downstream opening end 110b by the distance ⁇ L.
  • the effective pipe end will approach the downstream opening end 110b. That is, the distance ⁇ L approaches 0 as much as possible, and effective opening end reflection is performed at the opening 41 d of the plate 41.
  • the diameter D 5 and the distance L 5 are appropriately selected based on data such as vehicle design specifications, simulations, experiments, and experience values to which the tail pipe 110 of the third embodiment is applied.
  • the distance L 5 represents is preferably substantially equal to the distance ⁇ L of the formula (17) in the aforementioned opening end correction.
  • the tail pipe 110 according to the third embodiment has a simple structure in which only the through hole 78d is provided, and the opening end reflection at the opening 41d of the plate 41 and the closing end reflection at the closing portion 41e are almost complete. The phase can be reversed.
  • the reflected wave caused by the reflection at the opening end and the reflected wave caused by the reflection at the closed end are interfered with each other so as to surely cancel each other, thereby reliably suppressing an increase in sound pressure due to air column resonance of the tail pipe 110. The effect that it can be obtained.
  • tail pipe 120 is integrally formed with a diameter expanding structure 121 and a plate portion 122 on the downstream side in the exhaust direction.
  • the expanded structure 121 as shown in FIG. 26, a base end portion 121a having a cross-sectional area S 0 of the same substantially elliptical shape with a tail pipe 120, and a distal portion 121b having a sectional area S L of the substantially elliptical, An expo that is formed between the base end part 121a and the front end part 121b, and whose cross-sectional shape expands along an exponential curve from the base end part 121a toward the front end part 121b, and has an approximately elliptical cross-sectional area Sx. And a shape part 121c. Unlike the diameter-expansion structure 78 according to the second embodiment, the diameter-expansion structure 121, as shown in FIG.
  • each of the diameter-expanded sections is collinear below each drawing. Is formed. That is, as shown in FIG. 26, and lower cross-sectional area S 0, and the lower cross-sectional area S x, the lower cross-sectional area S L has become collinear.
  • the change in the cross-sectional area is formed in the same manner as the tail pipe 68 according to the second embodiment. That is, it is formed so as to satisfy the above-mentioned formulas (14) and (15).
  • the plate part 122 is integrally formed with the tip part 121b by, for example, machining such as drawing or molding such as die casting, and a side part 122a and an opening part 122b formed through the side part. And a closing portion 122c including a portion other than the opening portion 122b. As shown in FIGS. 34 and 35, the opening 122b is formed so that the lower part penetrates the lower side of the side part 122a, and the exhaust gas condensed water staying in the tail pipe 120 is discharged to the outside. It has come to be.
  • the opening end reflection at the opening 122b and the closing end reflection at the closing portion 122c are in completely opposite phases, and a mutual canceling effect is obtained.
  • a high silencing effect can be obtained.
  • the opening 122b is formed below the plate 41, the exhaust gas condensed water staying in the tail pipe 120 can be discharged from the opening 122b, and the corrosion resistance of the tail pipe 120 is simplified. The durability can be improved.
  • tail pipe 130 is a diameter-expanding structure 78 and a plate 41 having an opening at the center on the downstream side in the exhaust direction, whereas according to the fifth embodiment.
  • the tail pipe 130 has a diameter-expanding structure 78 and a plate 131 whose center is closed on the downstream side in the exhaust direction.
  • the plate 41 according to the second embodiment has an opening 41d having a circular cross section at the center, whereas the plate 131 according to the fifth embodiment is closed at the center. In addition to having a portion 131a, it has openings 131b, 131c, 131d, and 131e made of notches formed at equal intervals around the closed portion 131a.
  • the opening end reflections in the openings 131b, 131c, 131d, and 131e and the closing end reflections in the closing part 131a are in completely opposite phases, and cancel each other. The effect is obtained and a high silencing effect is obtained. Furthermore, since the opening 131d is formed in the plate 131, the exhaust gas condensed water staying in the tail pipe 130 can be discharged from the opening 131d, and the corrosion resistance of the tail pipe 130 and the like can be reduced with a simple structure. Durability can be improved.
  • FIG. 29 is a diagram illustrating a tail pipe 140 according to the sixth embodiment.
  • the tail pipe 140 according to the sixth embodiment includes a plate 41 in which the tail pipe 68 according to the second embodiment has a diameter-expanding structure 78 and a single opening 41 d formed at the center.
  • the tail pipe 140 according to the sixth embodiment has a diameter-expanding structure 78 on the downstream side in the exhaust direction and a plate 141 in which a plurality of through holes 141a are formed in the central portion.
  • the plate 41 according to the second embodiment has one opening 41d having a circular cross section at the central portion, whereas the plate 141 according to the sixth embodiment has a central portion.
  • an opening 141b made of eight through-holes 141a and an opening 141c made of a notch at the bottom. Moreover, it has the closing part 141e comprised by side part 141d other than this opening part 141b and the opening part 141c.
  • the opening end reflection at the opening portions 141b and 141c and the closing end reflection at the closing portion 141e are in completely opposite phases, and a mutual canceling effect is obtained. And a high silencing effect is obtained. Furthermore, since the opening 141c is provided in the lower part of the plate 141, the exhaust gas condensed water staying in the tail pipe 140 can be discharged, and the durability such as the corrosion resistance of the tail pipe 140 is simplified. It is possible to improve the performance.
  • FIG. 30 and 31 are views showing a tail pipe 150 according to the seventh embodiment.
  • the tail pipe 150 according to the seventh embodiment is related to the seventh embodiment, whereas the tail pipe 68 according to the second embodiment is integrally formed with the diameter-expanding structure 78.
  • the tail pipe 150 has an enlarged diameter structure 151 that is separate from the tail pipe 150.
  • the diameter expansion structure 78 according to the second embodiment is formed integrally with the tail pipe 68, whereas the diameter expansion structure 151 is formed separately from the tail pipe 150.
  • the tail pipe 150 is attached to the tail pipe 150 so as to surround the downstream opening end 150a.
  • the enlarged diameter structure 151 includes a proximal end portion 151a connected to the tail pipe 150, a distal end portion 151b facing the proximal end portion 151a and having a larger inner diameter than the proximal end portion 151a, and a proximal end portion 151a and a distal end portion. And an exponential shape portion 151c located between the portion 151b.
  • each component of the exponential shape portion 151c is formed so as to satisfy the above-described formulas (14) and (15). ing.
  • the front end portion 151b is folded back by a forming process such as a drawing process, and a circumferential edge 151d is smoothly formed to improve the aesthetic appearance. Yes.
  • the plate 41 of the tail pipe 68 according to the second embodiment is formed in a disc shape
  • the plate 152 according to the seventh embodiment has a circumferential edge portion protruding in one direction.
  • the protruding portion is formed and incorporated in the tip portion 151b so as to be accommodated in the folded portion of the tip portion 151b.
  • An opening 152b made of a through hole 152a is formed in the central portion of the plate 152, and an annular protrusion 152c that protrudes in the same direction as the protrusion formed on the plate 152 is formed surrounding the through hole 152a.
  • the closing part 152e comprised by side part 152d other than this opening part 152b.
  • the opening end reflection at the opening 152b and the closing end reflection at the closing portion 152e are in completely opposite phases, and a mutual canceling effect is obtained.
  • a high silencing effect can be obtained.
  • the tail pipe 150 has the diameter-expanding structure 151 and the plate 152, only the appearance of the so-called diffuser that can guide the fluid to the required place with as little pressure loss as possible can be obtained. .
  • the appearance that the diffuser is attached to the downstream opening end 150a of the tail pipe 150 can be exhibited, and the appearance can be improved.
  • the exhaust system for an internal combustion engine eliminates the need for providing a sub-muffler in the tail pipe or providing a silencer having a large-capacity resonance chamber at the upstream opening end of the tail pipe.
  • the exhaust system of the internal combustion engine can suppress the increase in sound pressure level due to the air column resonance of the tail pipe, reduce the weight, and reduce the manufacturing cost and installation space. Useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

 テールパイプにサブマフラを介装したり、テールパイプの上流開口端に大容量の共鳴室を有する消音器を設けるのを不要にして、テールパイプの気柱共鳴によって音圧レベルが増大してしまうのを抑制でき、重量を低減でき、製造コストおよび設置スペースを低減できる内燃機関の排気装置を提供するため、内燃機関(21)から排出された排気ガスを排出する排気管(28)を備え、消音器(27)に接続される上流開口端(28a)と、消音器(27)から排出された排気ガスを大気に排出する下流開口端(28b)とが設けられ、排気管(28)の排気方向上流側および前気方向下流側の少なくとも一方が、上流開口端(28a)および下流開口端(28b)のいずれかに向かうに従って拡径される拡径構造(38)を有し、拡径構造(38)の内部に、排気ガスの排気方向に対向して設けられ、開口部(41d)が形成されたプレート(41)が設けられる。

Description

内燃機関の排気装置
 本発明は、内燃機関の排気装置に関し、特に、排気ガスの排気方向の最下流に設けられたテールパイプの気柱共鳴による音圧の増大を抑制するようにした内燃機関の排気装置に関する。
 自動車等の車両に用いられる内燃機関の排気装置としては、図32に示すようなものが知られている(例えば、特許文献1参照)。図32において、この排気装置4には、内燃機関としてのエンジン1から排気される排気ガスが、排気マニホールド2を通り、触媒コンバータ3によって浄化された後に導入されるようになっている。
 排気装置4は、触媒コンバータ3に連結されたフロントパイプ5、フロントパイプ5に連結されたセンターパイプ6、センターパイプ6に連結された消音器としてのメインマフラ7、メインマフラ7に連結されたテールパイプ8およびテールパイプ8に介装されたサブマフラ9とから構成されている。
 図33に示すように、メインマフラ7は、センターパイプ6の小孔6aから排気ガスが拡張されて導入される拡張室7aと、センターパイプ6の下流開口端6bが挿通される共鳴室7bとを備えており、センターパイプ6の下流開口端6bから共鳴室7bに導入される排気ガスは、ヘルムホルツ共鳴によって特定の周波数の排気音が消音される。
 ここで、共鳴室7bに突出する部分のセンターパイプ6の突出部分の長さをL(m)、センターパイプ6の断面積をS(m)、共鳴室7bの容積をV(m)、空気中の音速をc(m/s)とするとき、空気中の共鳴周波数fn(Hz)は、ヘルムホルツ共鳴に関する下記の式(1)により求められる。
Figure JPOXMLDOC01-appb-M000001
 
 式(1)から明らかなように、共鳴室7bの容積Vを大きくしたり、センターパイプ6の突出部分の長さLを長くして共鳴周波数を低周波数側にチューニングしたり、共鳴室7bの容積Vを小さくしたり、センターパイプ6の突出部分の長さLを短くして共鳴周波数を高周波数側にチューニングするようにしている。
 サブマフラ9は、エンジン1の運転時の排気脈動によってテールパイプ8内でテールパイプ8の管長に対応した気柱共鳴が発生することによって音圧が増大するのを抑制するようになっている。
 一般に、排気ガスの排気方向上流側および下流側にそれぞれ上流開口端8aおよび下流開口端8bを有するテールパイプ8は、エンジン1の運転時の排気脈動による入射波がテールパイプ8の上流開口端8aおよび下流開口端8bで反射することにより、テールパイプ8の管長Lを半波長とした周波数の気柱共鳴を基本成分として、その半波長の自然数倍の波長の気柱共鳴が発生する。
 具体的には、基本振動(一次成分)の気柱共鳴の波長λは、テールパイプ8の管長Lの略2倍となり、二次成分の気柱共鳴の波長λは、管長Lの略1倍となる。また、三次成分の気柱共鳴の波長λは、管長Lの2/3倍となる。このように、テールパイプ8内には上流開口端8aおよび下流開口端8bが音圧の節となるような定在波ができる。
 また、気柱共鳴周波数faは、下記式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 
 ただし、c:音速(m/s) L:テールパイプの管長(m) n:次数
 式(2)から明らかなように、音速cは、温度に応じた一定の値となるので、テールパイプ8の管長Lが長い程、気柱共鳴周波数faが低周波数側に移行して、低周波領域において、排気音の気柱共鳴による騒音の問題が起き易くなってしまうことがわかる。
 例えば、音速cを400m/sとすると、テールパイプ8の管長Lが1.2mの場合、気柱共鳴による排気音の一次成分fは166.7Hz、二次成分fは333.3Hzとなる。他方、テールパイプ8の管長Lが3.0mの場合、気柱共鳴による排気音の一次成分fは66.7Hz、二次成分fは133.3Hzとなる。このように、テールパイプ8の管長Lを長くする程、気柱共鳴周波数faは、低周波数側に移行する。
 また、エンジン1の排気脈動の周波数fe(Hz)は、下記式(3)に示される。
Figure JPOXMLDOC01-appb-M000003
 
 ただし、Ne:エンジン回転数(rpm)、N:エンジンの気筒数(自然数)
 また、特定のエンジン回転数Neに対応して発生した気柱共鳴による排気音の一次成分fで排気音の音圧レベル(dB)が著しく高くなっている。また、二次成分fでも排気音の音圧レベル(dB)が著しく高くなっている。
 例えば、音速cを400m/sとすると、4気筒エンジンの場合には、N=4であるため、テールパイプ8の管長Lが3.0mの場合には、エンジン回転数Neが2000rpmになると、周波数66.7Hzの一次成分fの気柱共鳴が発生し、エンジン回転数Neが4000rpmになると、周波数133.3Hzの二次成分fの気柱共鳴が発生する。
 特に、エンジン1の排気脈動の周波数が100Hz以下の低い周波数領域で気柱共鳴が発生するような場合に騒音が問題となる。例えば、前述のようにエンジン1の回転数が2000rpmの低回転数でテールパイプ8内に気柱共鳴が発生すると、この気柱共鳴の排気音が車室内に伝達され、車室内にこもり音を生じさせてしまい、運転者に不快感を与えてしまうことになる。
 このため、気柱共鳴により発生する定常波の音圧が高い腹の部分に対して、テールパイプ8の最適な位置に、メインマフラ7より容量の小さなサブマフラ9を設け、気柱共鳴の発生を防止するようにしている。
 したがって、例えば、音速cを400m/sとすると、サブマフラ9が設けられていない状態のテールパイプ8の管長Lが3.0mの場合には、上述したようにエンジン1の排気脈動の周波数が100Hz以下(エンジン回転数Neが3000rpm以下)で気柱共鳴が発生する。これに対して、テールパイプ8にサブマフラ9を介装してサブマフラ9から後方に延在するテールパイプ8の管長が1.5mとなると、気柱共鳴による排気音の一次成分fは、周波数=133.3Hzでエンジン回転数Neが4000rpmとなり、気柱共鳴周波数faが高周波数側に移行する。
 このため、テールパイプ8にサブマフラ9を設けることで、エンジン1の回転数が2000rpmの低回転数で車室内にこもり音を生じさせてしまうのを抑制することができ、運転者に不快感を与えてしまうのを防止することができる。
 他方、サブマフラ9を廃止するよう対策して、排気装置4の製造コストや重量を低減することが考えられる。この対策として、例えば、テールパイプ8の上流開口端8aに接続されるメインマフラ7の共鳴周波数を気柱共鳴周波数に合わせることによって、メインマフラ7の共鳴室内においてテールパイプ8の気柱共鳴の排気音を消音することが考えられる。
 すなわち、式(1)に基づいて、共鳴室7bの容積Vを大きくしたり、センターパイプ6の突出部分の長さLを長くして、共鳴室7bの共鳴周波数を低周波数側にチューニングすることで、テールパイプ8内で発生する気柱共鳴を共鳴室7bで予め消音することが考えられる。
特開2006-46121号公報
 このような従来のエンジン1の排気装置4にあっては、テールパイプ8の気柱共鳴をメインマフラ7の共鳴室7bによって低減するような構成では、共鳴室7bの容積Vを大きくする必要があるため、メインマフラ7が大型化してしまうという問題がある。また、メインマフラ7の大型化に伴って排気装置4の重量が増大してしまうとともに、排気装置4の製造コストが増大してしまうという問題がある。
 また、車両の減速時にはアクセルペダルが解放されるため、エンジン1から排気装置4に排気されるガス量が急激に低減された排気流のみとなり、共鳴室7bに導入される空気圧が小さくなる。
 このため、共鳴室7bにおいてヘルムホルツ共鳴を行うのに充分な空気量を得ることができず、テールパイプ8の気柱共鳴を抑制することが困難となってしまう。特に、車両の減速時にはエンジン1の回転数が急激に低下するため、2000rpm程度(気柱共鳴による排気音の一次成分f)の低回転数で車室内にこもり音を生じさせてしまい、運転者に不快感を与えてしまうことになる。
 したがって、テールパイプ8の最適な位置にサブマフラ9を設け、テールパイプ8の気柱共鳴によって音圧が増大してしまうのを抑制する必要があり、結果的に、排気装置4の重量が増大してしまうとともに、排気装置4の製造コストが増大してしまうという問題が発生する。
 本発明は、上述のような従来の問題を解決するためになされたもので、テールパイプにサブマフラを介装したり、テールパイプの上流開口端側に大容量の共鳴室を有する消音器を設けるのを不要にして、テールパイプの気柱共鳴によって音圧レベルが増大してしまうのを抑制することができ、重量を低減することができるとともに製造コストや設置スペースを低減することができる内燃機関の排気装置を提供することを課題とする。
 本発明に係る内燃機関の排気装置は、上記課題を解決するため、一端部に内燃機関から排出された排気ガスの排気方向上流側の消音器に接続される上流開口端と、他端部に前記排気ガスを大気に排出するための下流開口端と、を有する排気管を備えた内燃機関の排気装置であって、前記排気管の前記排気方向上流側および前記排気方向下流側の少なくとも一方が、前記上流開口端および前記下流開口端のいずれかに向かうに従って拡径される拡径構造を有し、前記拡径構造の内部に、前記排気ガスの排気方向に貫通する開口部および前記排気管を閉口する閉口部を形成したプレートを、前記排気ガスの排気方向に対向して設け、前記開口部により生じる開口端反射波と、前記閉口部により生じる閉口端反射波と、が干渉するように、前記プレートを設けたことを特徴とする。
 この排気装置においては、排気管の排気方向上流側および排気方向下流側の少なくとも一方が、上流開口端および下流開口端のいずれかに向かうに従って拡径される拡径構造を有し、拡径構造の内部に開口部を形成したプレートを設け、開口部により生じる開口端反射波と、閉口部により生じる閉口端反射波と、を干渉させるので、内燃機関の作動により脈動する排気ガスが排気管内に流入することにより発生する排気音が、拡径構造によって内部の反射が抑制され、また、排気音の周波数と排気管の気柱共鳴周波数とが一致したときに、排気音の入射波に対して同位相で開口部から反射される開口端反射波と、入射波に対して180°位相が異なるプレートから反射される閉口端反射波と、が干渉することにより打ち消し合い、排気音の音圧レベルを抑制することができる。
 このように排気管における気柱共鳴の発生が抑制され、排気管の気柱共鳴による音圧レベルの増大が抑制されるので、特に、従来問題となっていた内燃機関の低回転時における車室内に発生するこもり音がなくなる。
 その結果、従来のようにメインマフラに相当する消音器を大型化したり、排気管にサブマフラを介装することが不要となり、排気装置の重量の増大が防止されるとともに、排気装置の製造コストの増大が防止され、設置スペースが低減される。
 上記構成を有する内燃機関の排気装置は、好ましくは、前記排気管の前記排気方向上流側および前記排気方向下流側の少なくとも一方に設けた前記拡径構造が、エクスポネンシャル形状部を有し、前記エクスポネンシャル形状部は、開口端に向かうに従って指数曲線を描くように拡径したことを特徴とする。
 この排気装置においては、排気方向上流側に設けた拡径構造および排気方向下流側に設けた拡径構造の少なくとも一方が、エクスポネンシャル形状部を有しているので、排気方向上流側および排気方向下流側で入射波が途中反射することなく、プレートに確実に到達する。その結果、前述の開口端反射による反射波と閉口端反射による反射波とが、確実に打ち消し合い、排気音の反射波による気柱共鳴の発生がより確実に抑制される。ここで、指数曲線とは、一の変数の値に対して他の変数の値が定まる指数関数によって描かれる曲線をいう。
 上記構成を有する内燃機関の排気装置は、好ましくは、前記プレートの前記開口部と前記閉口部とを合わせた総面積に対して前記開口部の開口面積を1/3の大きさに設定したことを特徴とする。
 この排気装置においては、プレートの開口部の面積が、開口部を含むプレートの総面積の1/3となっているので、プレートにおける音波の反射率が0.5となり、閉口端反射波と、開口端反射波と、が1:1の割合で起こることとなり、位相差が180°異なり干渉により打ち消し合う互いの反射波が同一量となり、音圧レベルの低減効果を最大限に高めることができる。
 本発明によれば、テールパイプにサブマフラを介装したり、テールパイプの上流開口端に大容量の共鳴室を有する消音器を設けるのを不要にして、テールパイプの気柱共鳴によって音圧レベルが増大してしまうのを抑制することができ、重量を低減することができるとともに製造コストや設置スペースを低減することができる内燃機関の排気装置を提供することができる。
本発明に係る内燃機関の排気装置の第1実施形態を示す図であり、内燃機関の排気系の構成を示す斜視図である。 本発明に係る内燃機関の排気装置の第1実施形態を示す図であり、テールパイプが連結されたマフラの一部を断面で示すマフラの斜視図である。 本発明に係る内燃機関の排気装置の第1実施形態を示す図であり、図2のテールパイプとセンターパイプとの中心軸を通る面で切断されたマフラの縦断面図である。 本発明に係る内燃機関の排気装置の第1実施形態を示す図であり、テールパイプの下流開口端の斜視図である。 本発明に係る内燃機関の排気装置の第1実施形態を示す図であり、テールパイプの下流開口端の正面図である。 本発明に係る内燃機関の排気装置の第1実施形態を示す図であり、図5のA-A断面を示す断面図である。 本発明に係る内燃機関の排気装置の第1実施形態を示す図であり、マフラおよびテールパイプ内の排気ガスの流れを示す図である。 本発明に係る内燃機関の排気装置の第1実施形態を示す図であり、テールパイプ内に発生する開口端反射による気柱共鳴の定在波を、縦軸に粒子速度を表し横軸にテールパイプの位置を模式的に表した粒子速度分布で説明する図である。 本発明に係る内燃機関の排気装置の第1実施形態を示す図であり、テールパイプの音圧レベルとエンジン回転数との関係を示す図である。 本発明に係る内燃機関の排気装置の第1実施形態を示す図であり、上流開口端で入射波Gが反射波R、Rに分配される状態を、縦軸に粒子速度を表し横軸にテールパイプの位置を模式的に表した粒子速度分布で説明する図である。 本発明に係る内燃機関の排気装置の第1実施形態を示す図であり、テールパイプ内に発生する閉口端反射による気柱共鳴の定在波を、縦軸に粒子速度を表し横軸にテールパイプの位置を模式的に表した粒子速度分布で説明する図である。 本発明に係る内燃機関の排気装置の第1実施形態を示す図であり、構成の一部が異なるテールパイプが連結されたマフラの一部を断面で示すマフラの斜視図である。 本発明に係る内燃機関の排気装置の第1実施形態を示す図であり、構成の一部が異なる図12のテールパイプとセンターパイプとの中心軸を通る面で切断されたマフラの縦断面図である。 本発明に係る内燃機関の排気装置の第2実施形態を示す図であり、内燃機関の排気系の構成を示す斜視図である。 本発明に係る内燃機関の排気装置の第2実施形態を示す図であり、テールパイプが連結されたマフラの一部を断面で示すマフラの斜視図である。 本発明に係る内燃機関の排気装置の第2実施形態を示す図であり、図15のテールパイプとセンターパイプとの中心軸を通る面で切断されたマフラの縦断面図である。 本発明に係る内燃機関の排気装置の第2実施形態を示す図であり、テールパイプの下流開口端の斜視図である。 本発明に係る内燃機関の排気装置の第2実施形態を示す図であり、テールパイプの下流開口端の正面図である。 本発明に係る内燃機関の排気装置の第2実施形態を示す図であり、図18のB-B断面を示す断面図である。 本発明に係る内燃機関の排気装置の第2実施形態を示す図であり、エクスポネンシャル拡径構造を説明するための説明図である。 本発明に係る内燃機関の排気装置の第3実施形態を示す図であり、テールパイプの下流開口端の斜視図である。 本発明に係る内燃機関の排気装置の第3実施形態を示す図であり、図21の断面を示す断面図である。 本発明に係る内燃機関の排気装置の第3実施形態を示す図であり、テールパイプの開口端補正を説明する模式図である。 本発明に係る内燃機関の排気装置の第3実施形態を示す図であり、構成の一部が異なるテールパイプの下流開口端の正面図である。 本発明に係る内燃機関の排気装置の第4実施形態を示す図であり、テールパイプの下流開口端の斜視図である。 本発明に係る内燃機関の排気装置の第4実施形態を示す図であり、図25の断面を示す断面図である。 本発明に係る内燃機関の排気装置の第5実施形態を示す図であり、テールパイプの下流開口端の斜視図である。 本発明に係る内燃機関の排気装置の第5実施形態を示す図であり、図27の断面を示す断面図である。 本発明に係る内燃機関の排気装置の第6実施形態を示す図であり、テールパイプの下流開口端の斜視図である。 本発明に係る内燃機関の排気装置の第7実施形態を示す図であり、テールパイプの下流開口端の斜視図である。 本発明に係る内燃機関の排気装置の第7実施形態を示す図であり、図30の断面を示す断面図である。 従来の排気装置を備えた排気系の構成を示す斜視図である。 従来の排気装置を備えた排気系を示す図であり、両端が開口端となるテールパイプが連結されたマフラの縦断面図である。
 以下、本発明に係る内燃機関の排気装置の第1実施形態ないし第7実施形態について、図面を参照して説明する。
 (第1実施形態)
 図1ないし図13は、本発明に係る内燃機関の排気装置の第1実施形態を示す図である。 
 まず、構成を説明する。
 本第1実施形態に係る排気装置20は、図1に示すように、直列4気筒の内燃機関としてのエンジン21に適用されたもので、このエンジン21に接続された排気マニホールド22に接続されている。この排気装置20においては、エンジン21から排出される排気ガスが浄化されるとともに、排気音が抑制されて排気ガスが大気に排出されるようになっている。
 なお、エンジン21は、直列4気筒に限らず、直列3気筒または直列5気筒以上であってもよく、左右に分割されたそれぞれのバンクに3気筒以上の気筒を有するV型エンジンであってもよい。
 排気マニホールド22は、エンジン21の第1気筒から第4気筒にそれぞれ連通する排気ポートにそれぞれ接続される4つの排気枝管22a、22b、22c、22dと、排気枝管22a、22b、22c、22dの下流側を集合させる排気集合管22eとから構成されており、エンジン21の各気筒から排気される排気ガスが排気枝管22a、22b、22c、22dを介して排気集合管22eに導入されるようになっている。
 排気装置20は、触媒コンバータ24、円筒状のフロントパイプ25、円筒状のセンターパイプ26、消音器としてのマフラ27および円筒状の排気管としてのテールパイプ28を備えている。この排気装置20は、車体の床下に弾性的に垂下されるようにしてエンジン21の排気ガスの排気方向下流側に設置されている。なお、排気方向下流側または上流側とは、エンジン21から排出される排気ガスが排気装置20内で流動する方向の上流側を示し、排気方向下流側または下流側とは、排気ガスが排気装置20内で流動する方向の排気ガスの下流側、すなわち、上流側と反対方向を示す。
 触媒コンバータ24の上流側の端部は、排気集合管22eの下流側の端部に接続されており、触媒コンバータ24の下流側の端部は、自在継手29を介してフロントパイプ25に接続されている。この触媒コンバータ24は、ハニカム基材または粒状の活性アルミナ製担体に白金、パラジウム等の触媒を付着させたものが本体ケースに収納されたものから構成され、NOxの還元やCO、HCの酸化を行うようになっている。
 自在継手29は、ボールジョイント等の球面継手から構成されており、触媒コンバータ24とフロントパイプ25との相対変位を許容するようになっている。また、フロントパイプ25の下流側の端部には自在継手30を介してセンターパイプ26の上流側の端部が接続されている。自在継手30は、ボールジョイント等の球面継手から構成されており、フロントパイプ25とセンターパイプ26との相対変位を許容するようになっている。
 センターパイプ26の下流側の端部は、マフラ27に接続されており、このマフラ27は、排気音の消音を行うようになっている。
 図2、図3に示すように、マフラ27は、中空筒状に形成されたアウタシェル31と、アウタシェル31の両端を閉塞するエンドプレート32、33と、エンドプレート32とエンドプレート33との間に介装された仕切板34とを備えている。このアウタシェル31、エンドプレート32、33および仕切板34は消音器本体を構成している。 
 本第1実施形態に係るマフラ27は、本発明に係る内燃機関の排気装置の消音器を構成している。
 アウタシェル31内に設けられた仕切板34は、アウタシェル31内を排気ガスを拡張するための拡張室35およびヘルムホルツ共鳴によって特定の周波数の排気音を消音するための共鳴室36に区画している。また、エンドプレート32と仕切板34にはそれぞれ挿通孔32a、34aが形成されており、この挿通孔32a、34aにはセンターパイプ26の下流側の端部、すなわち、センターパイプ26のうちマフラ27の内部に収納されている部分からなるインレットパイプ部26Aが挿通されている。
 このインレットパイプ部26Aは、拡張室35および共鳴室36に収納されるようにしてエンドプレート32および仕切板34に支持されており、下流開口端としての下流開口端26bが共鳴室36に開口している。
 また、インレットパイプ部26Aにはインレットパイプ部26Aの延在方向(排気ガスの排気方向)および周方向に複数の小孔26aが形成されており、インレットパイプ部26Aの内部と拡張室35とは、小孔26aを介して連通している。
 したがって、センターパイプ26のインレットパイプ部26Aを通してマフラ27に導入される排気ガスは、小孔26aを介して拡張室35に導入されるとともに、インレットパイプ部26Aの下流開口端26bから共鳴室36に導入される。
 そして、共鳴室36に導入される排気ガスは、ヘルムホルツ共鳴によって特定の周波数(Hz)の排気音が消音される。
 すなわち、共鳴室36に突出するインレットパイプ部26Aの突出部分の長さをL(m)、インレットパイプ部26Aの断面積をS(m)、共鳴室36の容積をV(m)、空気中の音速をc(m/s)とするとき、空気中の共鳴周波数fb(Hz)はヘルムホルツ共鳴に関する下記の式(4)により求められる。
Figure JPOXMLDOC01-appb-M000004
 
 式(4)から明らかなように、共鳴室36の容積Vを小さくしたり、インレットパイプ部26Aの突出部分の長さLを短くしたり、インレットパイプ部26Aの断面積Sを大きくすることにより、共鳴周波数を高周波数側にチューニングすることができる。また、共鳴室36の容積Vを大きくしたり、インレットパイプ部26Aの突出部分の長さLを長くしたり、インレットパイプ部26Aの断面積Sを小さくすることにより、共鳴周波数を低周波数側にチューニングすることができる。
 一方、仕切板34とエンドプレート33にはそれぞれ挿通孔34b、33aが形成されており、この挿通孔34b、33aにはテールパイプ28の上流側の端部、すなわち、テールパイプ28のうちマフラ27の内部に収納されている部分からなるアウトレットパイプ部28Aが挿通されている。
 テールパイプ28は、円筒状のパイプからなり、アウトレットパイプ部28Aの上流側の端部には上流開口端28aが設けられている。また、テールパイプ28の下流側の端部には下流開口端28bが、図3に示すように、上流開口端28aから距離Lだけ離隔して設けられている。また、アウトレットパイプ部28Aは、上流開口端28aが拡張室35に開口するようにして挿通孔34b、33aに挿通されることにより、マフラ27に接続されている。
 このテールパイプ28の排気方向下流側には、図4、図5および図6に示すように、開口端の外方に向かうに従って拡径される拡径構造38が設けられるとともに、排気ガスの排気方向に対向してプレート41が設けられている。
 この拡径構造38は、図6に示すように、テールパイプ28と同じ内径Dを有し、テールパイプ28と接続される基端部38aと、内径Dよりも大きい内径Dを有し、基端部38aと対向する先端部38bと、基端部38aと先端部38bとの間に形成され、内径が基端部38aから先端部38bに近づくほど内径がDからDに徐々に大きくなる円錐部38cとを備えている。
 円錐部38cは、基端部38aの内周上の点Paと、先端部38bの内周上の点Pbとを結ぶ直線Laと、テールパイプ28の内周部28cに接し、点Paを通りテールパイプ28の軸線方向に延びる直線Lbとがなす角がθとなるように形成されている。
 したがって、点Paと点Pbとの間の軸線方向の距離Lは、次式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 
 一般に、断面積が一定のパイプ内を通過する音波は、平面波となって進行するが、その断面積が変化すると、その変化した部分で音波の反射が起きることが知られている。
 しかしながら、その断面積が変化した場合でも、その変化した部分が、このような円錐部38cを備えていると、排気音がテールパイプ28に入射し、その入射波が、円錐部38cを通過する際、排気音の平面波の変化が抑制され、円錐部38c内で反射が抑制されるようになっている。
 ここで、内径D、内径Dおよびなす角θは、本第1実施形態に係る排気装置20が適用される車両の設計諸元、シミュレーション、実験や経験値などのデータに基づいて適宜選択される。なお、基端部38aの内周上の点Paと、先端部38bの内周上の点Pbとを結ぶ線を直線Laで説明したが、この基端部38aの内周上の点Paと、先端部38bの内周上の点Pbとを結ぶ線を緩やかな凹形状を形成する大きな曲率半径を有する曲線で構成するようにしてもよい。
 プレート41は、拡径構造38の先端部38bの内径Dとほぼ同じ外径を有する外周部41aと、テールパイプ28内を流動する排気ガスの排気方向に対向する側面部41bとを備えている。この側面部41bには、内径Dとほぼ同じ直径Dの円形の貫通孔が形成され、この貫通孔によってプレート41の開口部41dが構成されている。したがって、この側面部41bは、この開口部41dと、この開口部41d以外の部分で構成される閉口部41eとを備えており、この開口部41dから排気ガスが大気に排出されるようになっている。
 ここで、このプレート41は、テールパイプ28内を流動する排気ガスの排気方向に対向するように設けられているが、より具体的には、テールパイプ28の軸線方向に直交するようにテールパイプ28に取り付けられている。また、プレート41は、外周部41aとテールパイプ28の内周部28cとが密着するよう、テールパイプ28に取り付けられている。ここで、プレート41のテールパイプ28に対する取付方法は、接合や圧力などの固定方法が好ましい。なお、この取付方法に代えて、絞り加工などの一体形成方法により加工してもよい。
 プレート41は、側面部41bの排気方向上流側の反射面部41fが、テールパイプ28の下流開口端28bから、距離Lだけ離隔するよう、外周部41aでテールパイプ28の内周部28cに設けられている。この反射面部41fには、拡径構造38を通過した排気音が、平面波の状態を維持しつつ到達するようになっている。
 このプレート41の側面部41bにおいては、テールパイプ28に入射した入射波に対して、開口部41dで、いわゆる開口端反射が起き、閉口部41eで、いわゆる閉口端反射が起きるようになっている。すなわち、プレート41の反射面部41fで排気音の反射が行われている。
 この場合、開口部41dおよび閉口部41eで分配された開口端反射および閉口端反射による反射波が互いに打ち消し合い、その結果、互いの干渉効果により反射音の音圧レベルが低減される。なお、反射面部41fは、排気音の入射波や反射波を反射する面からなり、開口部41dおよび閉口部41eの一部により構成されている。
 この反射音の最適な消音効果を得るため、図5に示す開口部41dの開口面積S(m)と、プレート41の開口部41dを含む側面部41bの総面積S(m)は、次式(6)を満たすよう、その開口部41dが形成されている。
Figure JPOXMLDOC01-appb-M000006
 
 式(6)は、次のようにして導くことができる。すなわち、反射音の最適な消音効果を得るためには、開口部41dの排気音の粒子速度の反射率をRvとし、開口部41dの排気音の粒子速度の透過率をTvとし、閉口部41eの排気音の粒子速度の反射率をRvとすると、(Rv×Tv)とRvとを、重ね合わせるため、正負が逆で同等にすればよいということが知られている。すなわち、(Rv×Tv)+Rv=0、とすればよい。
 ここで、テールパイプ28の内部の媒質の固有音響インピーダンスをZ、テールパイプ28のプレート41の開口部41d付近の媒質の固有音響インピーダンスをZ、テールパイプ28の外部の下流開口端28b付近、すなわち大気側の媒質の固有音響インピーダンスをZとし、大気開放側の開口面積Sに対向する面積をSとすると、反射率Rv、透過率Tvおよび反射率Rvは、次式(7)、(8)、(9)によりそれぞれ表される。
Figure JPOXMLDOC01-appb-M000007
 
Figure JPOXMLDOC01-appb-M000008
 
Figure JPOXMLDOC01-appb-M000009
 
 したがって、(Rv×Tv)+Rv=0、は次のように表される。
Figure JPOXMLDOC01-appb-M000010
 
 ここで、固有音響インピーダンスは、媒質の密度ρ(Kg/m)と音速c(m/s)の積で表されるので、Z=ρ、Z=ρ、Z=ρとなる。そして、テールパイプ28の内部の媒質ρおよび音速cと、テールパイプ28のプレート41の開口部41d付近の媒質ρと、テールパイプ28の外部の下流開口端28b付近、すなわち大気側の媒質ρは、ともに排気ガスである。なお、エンジン21が、燃料の無噴射状態で回転している場合には、ともに空気となることがある。ともに排気ガスおよび空気の場合には、ρ=ρ=ρとなるので、Z=Z=Zとなり、式(10)は、次式(11)で表される。
Figure JPOXMLDOC01-appb-M000011
 
 ここで、面積Sは、大気開放となるため、その面積Sは∞、すなわち無限大となる。したがって、式(11)の面積Sを∞として計算すると、前述の式(6)が得られることになる。
 次に、排気装置20の作用および気柱共鳴の発生する理由について説明する。 
 排気装置20の上流側のエンジン21が始動されると、エンジン21の各気筒から排気される排気ガスは、排気マニホールド22から触媒コンバータ24に導入され、触媒コンバータ24によってNOxの還元やCO、HCの酸化が行われる。
 触媒コンバータ24で浄化されて排気される排気ガスは、フロントパイプ25およびセンターパイプ26を通して排気装置20のマフラ27に導入される。マフラ27に導入される排気ガスは、図7の矢印で示すように、インレットパイプ部26Aの小孔26aを介して拡張室35に導入されるとともに、インレットパイプ部26Aの下流開口端26bから共鳴室36に導入される。
 拡張室35に導入された排気ガスは、アウトレットパイプ部28Aの上流開口端28aを通してテールパイプ28に導入された後、テールパイプ28の下流開口端28bにおける拡径構造38の先端部38bに設けられたプレート41の開口部41dを通って大気に排出される。この下流開口端28b側に設けられたプレート41は、拡径構造38によって、テールパイプ28内径Dよりも、大きい内径Dになっており、プレート41の開口部41dがテールパイプ28の内径Dと同等の大きさを有する内径Dで形成されているので、排気ガスが開口部41dを通過する際、スムースに通過し、排気ガスの背圧が高まるのが抑制される。
 エンジン21の運転時にエンジン21の各爆発気筒で励起される排気脈動により、エンジン21の回転数(rpm)に応じて変化する周波数(Hz)の排気音が各爆発気筒から発生する。この排気音は、エンジン21の回転数が増大するにつれて周波数が大きくなるものであり、排気ガスを媒体として、排気マニホールド22、触媒コンバータ24、フロントパイプ25およびセンターパイプ26を通ってマフラ27のインレットパイプ部26Aに入射する。
 インレットパイプ部26Aに入射した排気音は、インレットパイプ部26Aの小孔26aを介して拡張室35に侵入し、拡張されて、全周波数帯域に亘って排気音の音圧レベルが低減される。また、インレットパイプ部26Aに入射した排気音は、下流開口端26bから共鳴室36に侵入する。共鳴室36に侵入した排気音は、ヘルムホルツ共鳴によって設定された特定周波数の排気音の音圧レベルが低減される。 
 また、拡張室35に侵入した排気音は、テールパイプ28に入射し、この入射波がテールパイプ28の下流開口端28bのプレート41で反射して反射波となる。
 ここで、下流開口端28b側に形成された拡径構造38によって、プレート41の開口部41dを含む側面部41bの総面積Sが、テールパイプ28の断面積よりも大きくなっているが、拡径構造38が、前述の円錐部38cを有しているので、拡径構造38内で、排気音が反射することを抑制することができる。 
 したがって、テールパイプ28に入射した排気音は、拡径構造38内を通過する際、反射することなく、確実にプレート41の反射面部41fに到達する。
 また、開口端反射による反射波および閉口端反射による反射波は、互いに打ち消し合う干渉が起きるとともに、開口端反射による反射波および閉口端反射による反射波は、テールパイプ28の上流開口端28aでさらに反射し下流開口端28b方向に入射波と同様にそれぞれ進行し、プレート41で入射波と同様に再反射する。このような反射が繰り返されることになり、定在波が発生する。
 本来、パイプの開口端のような同じ媒質を有する媒体同士の境界では、媒質が同じであり、反射は起きず音波は透過してしまうようにも思われる。しかしながら、テールパイプ28のような、排気音の波長に対して充分に小さな断面の寸法を有するパイプ内を進行する排気音は疎密波からなる平面波となり、下流開口端28bおよび上流開口端28aで反射する。
 下流開口端28bで開口端反射が起こる理由としては、次のものが挙げられる。すなわち、テールパイプ28内を流れる排気ガスの圧力は高くなっており、テールパイプ28の下流開口端28bの外側の大気圧はテールパイプ28内を流れる排気ガスの圧力よりも低くなっている。このため、入射波が下流開口端28bから勢いよく大気に飛び出すことで下流開口端28b内の排気ガスの圧力が低くなる低圧部が発生し、この低圧部分がテールパイプ28内を上流開口端28aに向かって進行し始めるからである。
 したがって、反射波は、入射波と逆向きの平面波となり入射波と逆向きに進行することになる。また、上流開口端28a側で反射波が発生する理由も下流開口端28bで反射波が発生する理由と同様である。
 そして、下流開口端28bの開口部41dに向かう入射波と下流開口端28bの開口部41dと離隔する方向に向かう第1の反射波とが干渉する。さらに、第1の反射波が、上流開口端28aの開口で反射し、開口部41dに向かう第2の反射波となり、この第2の反射波と、第1の反射波および入射波が上流開口端28aと下流開口端28bとの間で繰り返され、それぞれが干渉する。 
 このように、入射波の反射が繰り返されることで、テールパイプ28の上流開口端28aの開口および下流開口端28bの開口部41dとの間で定在波ができることになる。
 また、この定在波は、テールパイプ28の管長Lと定在波の波長λとが特定の関係にあるとき、テールパイプ28の上流開口端28aの開口および下流開口端28bの開口部41dがそれぞれ粒子速度の腹となるような定在波ができ、この場合には、振幅が著しく大きくなり、気柱共鳴が生じる。この気柱共鳴は、テールパイプ28の管長Lを半波長とした周波数を基本として、この基本周波数の自然数倍の周波数の気柱共鳴が発生、波長としては基本の波長を自然数で割った長さの波長の気柱共鳴が発生して音圧が著しく増大し、騒音となってしまう。
 具体的には、図8に気柱共鳴の定在波の粒子速度分布を示すように、排気音の基本振動からなる一次成分の気柱共鳴の波長λは、テールパイプ28の管長Lの略2倍となり、基本振動の二倍の二次成分の気柱共鳴の波長λは、管長Lの略1倍となる。また、基本振動の三倍の三次成分の気柱共鳴の波長λは、管長Lの2/3倍となり、図8から明らかなように、それぞれの定在波は、テールパイプ28の上流開口端28aおよび下流開口端28bが粒子速度の腹となり、粒子速度が最大となる。
 また、排気音の一次成分ないし三次成分の気柱共鳴の定在波における音圧分布は、図8に示す粒子速度分布の腹と節がそれぞれと逆になり、テールパイプ28の上流開口端28aおよび下流開口端28bが音圧の節となり、音圧が0となる。
 さらに、図9に示すように、排気音の音圧レベル(dB)は、エンジン回転数Ne(rpm)が増大するのに伴って一次成分f、二次成分fの共鳴周波数(Hz)に対応するエンジン回転数Neで増大する。
 ここで、音速をc(m/s)、テールパイプ28の長さをL(m)、次数をnとしたときの気柱共鳴周波数fc(Hz)は、次式(12)で表される。
Figure JPOXMLDOC01-appb-M000012
 
 音速cを400m/sとし、テールパイプ28の管長Lを3.0mとした場合には、上記式(12)に基づいてテールパイプ28の気柱共鳴による排気音の一次成分fは、66.7Hz、二次成分fは、133.3Hzとなり、エンジン21の回転数に対応した気柱共鳴による共鳴周波数の一次成分fと二次成分fで排気音の音圧レベル(dB)が高くなる。
 また、本第1実施形態では、エンジン21が4気筒であるため、前述の式(3)において、N=4となり、エンジン回転数Neが2000rpmのときに一次成分fの気柱共鳴により排気音の音圧レベル(dB)が増大し、エンジン回転数Neが4000rpmのときに二次成分fの気柱共鳴により排気音の音圧レベル(dB)が増大する。
 特に、排気音の一次成分fの気柱共鳴のような100Hz以下の低周波の低速回転域では、車室内にこもり音を生じさせてしまい、運転者に不快感を与えてしまうことになる。三次成分の気柱共鳴周波数では、エンジン回転数Neは、6000rpmとなり、四次成分の気柱共鳴周波数では、エンジン回転数Neは、8000rpmとなるように、多数次成分の気柱共鳴周波数も起こりうるが、このような気柱共鳴による騒音は、運転者に気にならないものとなるので、図9では、三次成分以降の多数次成分については、図示していない。
 本第1実施形態に係る排気装置においては、エンジン回転数Neが低回転の2000rpm(一次成分f)および中回転の4000rpm(二次成分f)のときに、従来のテールパイプにおいて発生する気柱共鳴によって音圧レベル(dB)が増大してしまうのを確実に抑制するようにしたものである。
 次に、気柱共鳴によって音圧レベルが増大してしまうのを抑制することができる理由を説明する。
 前述のようにプレート41の開口部41dで、テールパイプ28に入射した入射波に対して、開口端反射が起き、閉口部41eで、閉口端反射が起きる。換言すれば、プレート41の反射面部41fで開口端反射および閉口端反射が起きる。
 具体的には、反射波は、入射波に対して同位相で、プレート41の開口部41dを含む側面部41bの総面積Sの約33%を占める開口部41dで反射する開口端反射による反射波と、入射波に対して180°位相が異なり、前述の総面積Sの約67%を占めるプレート41の側面部41bの閉口部41eで反射する閉口端反射による反射波とに分配される。開口部41dおよび閉口部41eで分配された開口端反射および閉口端反射による反射波は、互いに打ち消し合い、その結果、反射音の音圧レベルが低減され、気柱共鳴によって音圧レベル(dB)が増大してしまうのが抑制される。
 この場合、この反射音の最適な消音効果を得るため、前述のように開口端反射と閉口端反射との分配の割合が半分づつになるよう、プレート41における入射する排気音の反射率Rpが0.5に設定されている。この反射率Rpを0.5にするため、図5に示す開口部41dの開口面積S(m)と、プレート41の開口部41dを含む側面部41bの総面積S(m)は、前述の式(6)に示すように、S≒(1/3)Sを満たすよう、その開口部41dが形成されている。
 まず、図10を参照して、エンジン21の運転時の排気脈動による排気音の入射波Gがテールパイプ28内に入射し、この入射波Gがテールパイプ28の管長Lを半波長とする入射波Gである場合、すなわち開口端反射について説明する。
 入射波Gの周波数がテールパイプ28が有している気柱共鳴周波数に合致すると、図10に示すように、テールパイプ28の下流開口端28b側に設けられたプレート41の開口部41dから入射波Gの一部が透過波Gとなって大気中に侵入する。他方、プレート41の開口部41dにおいて前述の開口端反射が起こり、開口部41dにおける入射波Gが実線で示す反射波Rとなってプレート41と離隔する方向に進行する。
 この反射波Rは、入射波Gに対して同位相となる。すなわち、テールパイプ28内の狭い気柱を伝わってきた密または疎の排気ガスや空気の固まりは、開口部41dにおいて大気の広い空間との境界に達した途端、一気に膨張し、その慣性でそれまで密だったところに疎が形成され、この疎が新たな波源となって反射波Rは気柱を今進行してきた向きに引き返していくことになり、密は疎に、疎は密になるので入射波Gの位相がそのまま反射波Rの位相となり、反射波Rは、入射波Gに対して同位相となる。
 このように、入射波Gと反射波Rとが同位相であるので、本来この反射波Rは入射波Gと同一線上に重なっているが、説明の便宜上、図10においては、反射波Rを入射波Gに対して下方にずらしている。
 他方、テールパイプ28の下流開口端28b側に設けられたプレート41の閉口部41eにおいて前述の閉口端反射が起こり、閉口部41eにおける入射波Gが破線で示す反射波Rとなってプレート41と離隔する方向に進行する。
 この反射波Rは、入射波Gに対して逆位相となり、反射波Rに対して180°位相が異なっている。すなわち、テールパイプ28内の狭い気柱を伝わってきた密または疎の排気ガスや空気の固まりは、閉口部41eにおいて、その壁面に衝突し密は密のまま、疎は疎のまま跳ね返るので入射波Gの位相が逆転し、反射波Rの位相となり、反射波Rは、入射波Gに対して逆位相となる。
 このように、入射波Gと反射波Rとが逆位相となる。本来この反射波Rは入射波Gと位相0の横線を中心として対称となっているが、説明の便宜上、図10においては、反射波Rと反射波Rとが位相0の横線を中心として対称になるよう、反射波Rを位相0の横線方向にずらしている。
 この反射波Rと反射波Rは位相が逆であるが、粒子速度の大きさは同じであるため、互いに打ち消し合うよう干渉し、テールパイプ28内の気柱においては、気柱共鳴は起きないことになる。その結果、図9に示すように、気柱共鳴による排気音の破線で示す一次成分fが実線で示すように抑制され、排気音の音圧レベルが大幅に低減される。
 また、一次成分fを基本振動とした二次成分fの気柱共鳴に対しても、図10と同様にテールパイプ28の下流開口端28bから反射される反射波が、入射波Gに対して同位相の開口部41dによる反射波Rと入射波Gに対して180°位相が異なる閉口部41eによる反射波Rとに分配されて、反射波Rと反射波Rとが互いに打ち消し合うよう干渉する。その結果、図9に示すように、気柱共鳴による排気音の破線で示す二次成分fが実線で示すように抑制され、排気音の音圧レベルが大幅に低減される。
 次に、エンジン21の運転時の排気脈動による入射波Gがテールパイプ28内に入射し、この入射波Gの波長がテールパイプ28の管長Lの1/4波長を基本とする入射波Gである場合について説明する。
 開口端反射は、図8に示すように、テールパイプ28の管長Lを半波長とした周波数を基本として、このときの基本波長を自然数で割った長さの波長の気柱共鳴が発生するものである。 
 これに対し、閉口端反射は、図11に示すように、テールパイプ28の管長Lを1/4波長とした周波数の気柱共鳴を基本成分として、このときの基本波長を奇数で割った長さの波長の気柱共鳴が発生するものであり、テールパイプ28の上流開口端28aから管内に入射された入射波が閉口端で入射波と180°異なる位相で反射するものである。
 具体的には、図11に示すように、基本振動からなる一次成分の気柱共鳴の波長λは、テールパイプ28の管長Lの略4倍となり、二次成分の気柱共鳴の波長λは、管長Lの略4/3倍となる。また、三次成分の気柱共鳴の波長λは、管長Lの4/5倍となり、閉口端が粒子速度の節、開口端が粒子速度の腹となるような定在波ができる。
 また、一次成分ないし三次成分の気柱共鳴の定在波における音圧分布は、粒子速度分布と腹と節がそれぞれ逆になり、閉口端が音圧の腹、開口端が音圧の節となるような定在波ができる。
 排気音の音圧レベル(dB)の共鳴周波数による増大は、入射波Gの波長がテールパイプ28の管長Lの1/4波長を基本とする入射波Gである場合も、入射波Gの波長がテールパイプ28の管長Lの半波長を基本とする入射波Gである場合と同様に起きる。 
 すなわち、図9に示すグラフと同様に、排気音の音圧レベル(dB)は、エンジン回転数Ne(rpm)が増大するのに伴って一次成分f、二次成分fの共鳴周波数(Hz)に対応するエンジン回転数Neで増大する。
 ここで、音速をc(m/s)、テールパイプ28の長さをL(m)、次数をnとしたときの気柱共鳴周波数fd(Hz)は、次式(13)で表される。
Figure JPOXMLDOC01-appb-M000013
 
 音速cを400m/sとし、テールパイプ28の管長Lを3.0mとした場合には、上記式(13)に基づいてテールパイプ28の気柱共鳴による排気音の一次成分fは、33.3Hz、二次成分fは100Hzとなり、エンジン21の回転数に対応した気柱共鳴による共鳴周波数の一次成分fと二次成分fで排気音の音圧レベル(dB)が高くなる。
 また、本第1実施形態では、エンジン21が4気筒であるため、前述の式(3)において、N=4となり、エンジン回転数Neが1000rpmのときに一次成分fの気柱共鳴により排気音の音圧レベル(dB)が増大し、エンジン回転数Neが3000rpmのときに二次成分fの気柱共鳴により排気音の音圧レベル(dB)が増大する。
 本第1実施形態では、エンジン21の運転時の排気脈動によりテールパイプ28の管長Lを1/4波長とする入射波Gがテールパイプ28内に入射すると、この入射波Gの周波数とテールパイプ28の気柱共鳴周波数とが一致することになる。
 このとき、テールパイプ28の下流開口端28bから反射される反射波が、入射波Gに対して同位相の開口部41dによる開口端反射の反射波Rと入射波Gに対して180°位相が異なる閉口部41eによる閉口端反射の反射波Rとに分配される。
 この反射波Rと反射波Rは位相が逆であるが、粒子速度の大きさは同じであるため、互いに打ち消し合うよう干渉し、気柱共鳴による排気音の一次成分fが抑制され、排気音の音圧レベルが大幅に低減される。
 また、一次成分fを基本振動とした二次成分fの気柱共鳴に対しても、図10と同様にテールパイプ28の下流開口端28bから反射される反射波が、入射波Gに対して同位相のプレート41の開口部41dで反射する反射波Rと入射波Gに対して180°位相が異なるプレート41の閉口部41eで反射する反射波Rとに分配される。このとき、反射波Rと反射波Rとが互いに打ち消し合い、気柱共鳴による排気音の二次成分fが抑制され、排気音の音圧レベルが大幅に低減される。
 本第1実施形態に係る排気装置20のマフラ27の長さ(mm)、外形の大きさ(mm)および共鳴室や拡張室の個数、インレットパイプ部26Aおよびテールパイプ28の内径(mm)、厚さ(mm)および長さ(mm)、プレート41の厚さ(mm)、プレート41の開口部41dを含む側面部41bの総面積S、開口面積S、距離L(mm)、L(mm)、L(mm)、L(mm)は、本第1実施形態に係る排気装置20が適用される車両の設計諸元、シミュレーション、実験や経験値などのデータに基づいて適宜選択される。
 本第1実施形態に係る内燃機関の排気装置20においては、前述のように構成されているので、次の効果が得られる。
 すなわち、本第1実施形態に係る内燃機関の排気装置20は、エンジン21から排出された排気ガスを大気に排出するテールパイプ28を備えている。そして、このテールパイプ28が、排気ガスの排気方向上流側のマフラ27に接続される上流開口端28aと、マフラ27よりも下流側で大気に排気ガスを排出するための下流開口端28bとを有している。このテールパイプ28の排気方向下流側に、下流開口端28bに向かうに従って拡径される拡径構造38が設けられるとともに、この拡径構造38の内部に排気ガスの排気方向に対向してプレート41が設けられ、このプレート41の排気方向に貫通する1つの開口部41dが形成されたことを特徴としている。そして、この開口部41dの開口面積Sは、プレート41の開口部41dを含む側面部41bの総面積Sに対して約1/3の大きさに設定されている。そして、この拡径構造38には、円錐部38cが形成されている。
 その結果、テールパイプ28の下流側に拡径構造38が設けられているので、プレート41に形成する開口部41dの開口面積Sを大きくすることができる。そして、この拡径構造38に円錐部38cが形成されているので、テールパイプ28内に入射した排気音は、この拡径構造38で反射することなく、確実にプレート41の反射面部41fに到達することができるという効果が得られる。 
 そして、プレート41に開口部41dが形成されるので、プレート41によって下流開口端28bに開口部41dだけでなく閉口部41eも画成されることになる。
 このように下流開口端28bに閉口部41eも画成されるようにすれば、エンジン21の運転時の排気脈動による入射波が、テールパイプ28内に入射し下流開口端28bに到達した際、テールパイプ28の下流開口端28bから反射される反射波を、次のように分配することができる。
 すなわち、入射波に対して同位相で開口部41dから反射される、いわゆる開口端反射による反射波と、入射波に対して180°位相が異なる閉口部41eから反射される、いわゆる閉口端反射による反射波とに分配することができる。
 このため、開口端反射による反射波と閉口端反射による反射波とが互いに打ち消し合うよう干渉することで、テールパイプ28の気柱共鳴によって音圧レベルが増大してしまうのを抑制することができ、高い消音効果が得られる。
 特に、この入射波の周波数とテールパイプ28の固有の気柱共鳴周波数とが一致したときに、開口端反射による反射波と閉口端反射による反射波との干渉効果が顕著に現われ、テールパイプ28における気柱共鳴の発生が抑制されるという効果が得られる。
 このようにテールパイプ28の下流開口端28b側に開口部41dを有するプレート41が設けられると、テールパイプ28の気柱共鳴による音圧の増大が抑制される。特に、エンジン21の低回転時に車室内におけるこもり音の発生が防止されるという効果が得られる。
 また、従来のようにメインマフラに相当する消音器を大型化したり、テールパイプ28にサブマフラを介装することが不要となるため、テールパイプ28にプレート41を設けるだけの簡単構造で、排気装置の重量の増大が防止されるとともに、排気装置の製造コストの増大が防止され、設置スペースが低減されるという効果が得られる。
 特に、プレート41の側面の開口部41dを含む側面部41bの総面積Sに対して開口部41dの開口面積Sが約1/3の大きさ、すなわちテールパイプ28の下流開口端28bの開口率を約33%にすることができる。この場合、エンジン21の運転時の排気脈動による入射波がテールパイプ28内に入射し下流開口端28bに到達した際、テールパイプ28の下流開口端28bから反射される反射波を、次のように効果的に分配することができる。
 すなわち、入射波に対して同位相で、総面積の約33%を占める開口部41dから反射される開口端反射による反射波と、入射波に対して180°位相が異なり、前述の総面積の約67%を占める閉口部41eから反射される閉口端反射による反射波とに分配することができる。
 このため、開口端反射による反射波と閉口端反射による反射波とが互いに確実に打ち消し合うよう干渉することで、テールパイプ28の気柱共鳴によって音圧が増大してしまうのを確実に抑制することができるという効果が得られる。したがって、高い消音効果を得ることができる。
 この入射波の周波数とテールパイプ固有の気柱共鳴周波数とが一致したときに、開口端反射による反射波と閉口端反射による反射波との干渉効果が顕著に現われ、テールパイプ28における気柱共鳴の発生がより一層抑制されるという効果が得られる。
 本第1実施形態に係る排気装置20においては、テールパイプ28の管長Lを半波長とする波長を基本波長として、この基本波長を自然数で割った長さの波長の気柱共鳴が発生した場合であっても、テールパイプ28の気柱共鳴によって音圧が増大してしまうのを抑制することができ、エンジン21の低回転時(2000rpm)に車室内にこもり音が発生するのを防止することができるという効果が得られる。
 また、テールパイプ28の管長Lを1/4波長とする波長を基本波長として、この基本波長を奇数で割った長さの波長の気柱共鳴が発生した場合であっても、テールパイプ28の気柱共鳴によって音圧が増大してしまうのを抑制することができ、エンジン21の低回転時(1000rpm)に室内にこもり音が発生するのを防止することができる。
 すなわち、本第1実施形態に係る排気装置20においては、下流開口端28bの開口率を33%に設定したので、テールパイプ28の管長Lを半波長とする波長を基本波長として、この基本波長を自然数で割った長さの波長の気柱共鳴の定在波を有する完全開口端の反射モードと、テールパイプ28の管長Lを1/4波長とする波長を基本波長として、この基本波長を奇数で割った長さの波長の気柱共鳴の定在波を有する完全閉口端の2つの反射モードが発生することがある。
 しかしながら、いずれの反射モードが発生した場合であっても、図10に示すように反射波Rと反射波Rとを互いに打ち消し合うことができ、気柱共鳴による排気音の音圧レベルを大幅に低減することができるという効果が得られる。したがって、高い消音効果を得ることができる。特に、エンジン21の低回転領域におけるテールパイプ28の気柱共鳴の発生を反射モードにかかわらず確実に抑制することができるという効果が得られる。
 また、本第1実施形態に係る排気装置20においては、拡径構造38およびプレート41をテールパイプ28の下流開口端28bのみに設けた場合について説明した。しかしながら、拡径構造38およびプレート41をテールパイプ28の下流開口端28bのみに設けた構造以外の構造であってもよい。
 例えば、図12および図13に示すように、拡径構造38およびプレート41を、テールパイプ28の上流開口端28aおよび下流開口端28bの両方に設けた構造であってもよい。また、拡径構造38およびプレート41を、テールパイプ28の上流開口端28aのみに設けた構造であってもよい。 
 このような拡径構造38およびプレート41を、テールパイプ28の上流開口端28aおよび下流開口端28bの両方に設けた構造、および、テールパイプ28の上流開口端28aのみに設けた構造においても、上記と同様の作用効果を得ることができる。
 (第2実施形態)
 図14ないし図20に示すように、本第2実施形態に係る排気装置60は、第1実施形態に係る排気装置20と同様に構成されている。 
 なお、第2実施形態に係る排気装置60においては、第1実施形態に係る排気装置20のマフラ27のテールパイプ28が異なっているが、他の構成要素は同様に構成されている。したがって、同一の構成については、図1ないし図13に示した第1実施形態と同一の符号を用いて説明し、特に相違点についてのみ詳述する。 
 まず、構成を説明する。
 本第2実施形態に係る排気装置60は、図14に示すように、第1実施形態と同様、エンジン21に適用されたもので、排気装置60を構成するテールパイプ68のみが第1実施形態と異なっている。
 テールパイプ68は、図15および図16に示すように、円筒状のパイプからなり、アウトレットパイプ部68Aの上流側の端部には、上流開口端68aが設けられており、テールパイプ68の下流側の端部には下流開口端68bが、図16に示すように、上流開口端68aから距離Lだけ離隔して設けられている。また、アウトレットパイプ部68Aは、上流開口端68aが拡張室35に開口するようにして挿通孔34b、33aに挿通されることにより、マフラ27に接続されている。
 このテールパイプ68の下流開口端68bには、図17、図18および図19に示すように、その下流開口端68bの外方に向かうに従って拡径される拡径構造78が設けられるとともに、排気ガスの排気方向に対向してプレート41が設けられている。
 この拡径構造78は、図19および図20に示すように、テールパイプ68と同じ内径Dを有する基端部78aと、内径Dよりも大きい内径Dを有する先端部78bと、基端部78aと先端部78bとの間に形成され、断面の形状が基端部78aから先端部78bに向かうに従って指数曲線に沿って拡径されたエクスポネンシャル形状部78cとを備えている。
 エクスポネンシャル形状部78cにおいては、基端部78aの内周上の点Eaと、先端部78bの内周上の点Ebとを結ぶ曲線Ecが、指数曲線となるように形成されている。ここで、点Eaを通る断面積をSとし、点Eaを通りテールパイプ68に直交する基準線をLとし、この位置をx=0とする。
 また、点Ebを通るエクスポネンシャル形状部78cの断面積をSとし、点Ebを通りテールパイプ68に直交する基準線をLとし、この位置をx=Lとし、xをx=0からx=Lまでの間のx=0からの任意の距離とし、εを定数とし、mをエクスポネンシャル形状部78cの断面積Sxの増加率とし、mを自然対数に基づく次式(14)で表されるものとする。この場合、この指数曲線に基づくxの位置における断面積Sxは、次式(15)の指数関数で表される。なお、Lnは、定数e(2.71828182845904)を底とする自然対数を表す。
Figure JPOXMLDOC01-appb-M000014
 
Figure JPOXMLDOC01-appb-M000015
 
 この場合、拡径された各断面の中心が、テールパイプ68の軸線Lpと同一になっている。すなわち、図20に示すように、断面積Sの断面、断面積Sの断面、断面積Sxの断面、断面積Sの断面のそれぞれの中心は、軸線Lpと同一になっている。
 この拡径構造78は、エクスポネンシャル形状部78cを備えているので、排気音がテールパイプ68に入射し、その入射波が、プレート41に到達する際、拡径構造78内で反射が起きないよう確実に抑制されるようになっている。
 一般に、断面積が一定のパイプ内を通過する音波は、平面波となって進行するが、その断面積が変化すると、その変化した部分で音波の反射が起きることが知られている。 
 しかしながら、その断面積が変化した場合でも、その変化した部分が指数曲線に基づく次式(15)で表されるエクスポネンシャル形状で形成されると、0≦x≦Lの範囲における位置xの指数曲線に基づいて断面積Sxが変化することになる。
 この場合、エクスポネンシャル形状部78c内において、ほぼ理想的な平面波伝播が実現され、エクスポネンシャル形状部78c内を通過する入射波は、反射することがない。したがって、テールパイプ68に入射した入射波は、エクスポネンシャル形状部78c内を通過する際、反射することなく、プレート41の反射面部41fに平面波の状態で到達することになる。
 ここで、断面積S、断面積をSおよび距離Lは、本第2実施形態に係る排気装置60が適用される車両の設計諸元、シミュレーション、実験や経験値などのデータに基づいて適宜選択される。
 なお、エクスポネンシャル形状部78cは、前述の指数関数だけでなく、次式(16)で表される、いわゆるハイパボリック形状を有するハイパボリック形状部で形成するようにしてもよい。
Figure JPOXMLDOC01-appb-M000016
 
 ここで、coshは、ハイパボリックコサイン、sinhはハイパボリックサイン、mは前述の式(14)で表される関数、Sxは、このハイパボリック形状に基づくxの位置におけるハイパボリック形状部の断面積、Tは、0ないし∞をそれぞれ表す。
 この場合にも、ハイパボリック形状部が式(16)で表される形状に形成されると、0≦x≦Lの範囲における位置xの関数に基づいて断面積Sxが変化することになる。この場合にも、ハイパボリック形状部内において、ほぼ理想的な平面波伝播が実現され、ハイパボリック形状部内を通過する入射波は、反射することがない。したがって、テールパイプ68に入射した入射波は、ハイパボリック形状部内を通過する際、反射することなく、プレート41の反射面部41fに平面波の状態で到達することになる。
 次に、排気装置60の作用および気柱共鳴の発生する理由について説明する。 
 排気装置60の上流側のエンジン21が始動されると、エンジン21の各気筒から排気される排気ガスは、第1実施形態と同様に、拡径構造78の先端部78bに設けられたプレート41の開口部41dを通って大気に排出される。
 この下流開口端68b側のプレート41は、第1実施形態と同様に、拡径構造78によって、テールパイプ68の内径Dよりも、大きい内径Dになっており、プレート41の開口部41dがテールパイプ68の内径Dと同等の内径Dで形成されているので、排気ガスが開口部41dを通過する際、スムースに通過し、排気ガスの背圧が高まるのが抑制される。
 第1実施形態と同様に、エンジン21の運転時にエンジン21の各爆発気筒で励起される排気脈動により、エンジン21の回転数(rpm)に応じて変化する周波数(Hz)の排気音が各爆発気筒から発生する。この排気音は、インレットパイプ部26Aに入射する。インレットパイプ部26Aに入射した排気音は、下流開口端26bから共鳴室36に侵入する。共鳴室36に侵入した排気音は、ヘルムホルツ共鳴によって設定された特定周波数の排気音の音圧レベルが低減される。
 また、拡張室35に侵入した排気音は、テールパイプ68に入射し、この入射波がテールパイプ68の下流開口端68bのプレート41で反射して反射波となる。 
 ここで、下流開口端68bに形成された拡径構造78によって、プレート41の開口部41dを含む側面部41bの総面積Sが、テールパイプ68の断面積よりも大きくなっているが、拡径構造78が、前述のエクスポネンシャル形状部78cを有しており、拡径構造78内で、ほぼ完全な平面波として伝播するので、排気音が反射してしまい、プレート41の反射面部41fに到達しないことが防止される。したがって、テールパイプ68に入射した排気音は、拡径構造78内を通過する際に、反射による損失を受けることなく、確実にプレート41の反射面部41fに到達する。
 また、開口端反射による反射波および閉口端反射による反射波は、互いに打ち消し合う干渉が起きるとともに、開口端反射による反射波および閉口端反射による反射波は、テールパイプ68の上流開口端68aでさらに反射し下流開口端68b方向に入射波と同様にそれぞれ進行し、プレート41で入射波と同様に再反射する。このような反射が繰り返されることになる。
 本第2実施形態に係る内燃機関の排気装置60においては、前述のように構成されているので、次の効果が得られる。
 すなわち、本第2実施形態に係る内燃機関の排気装置60は、エンジン21から排出された排気ガスを大気に排出するテールパイプ68を備えている。そして、このテールパイプ68が、排気ガスの排気方向上流側のマフラ27に接続される上流開口端68aと、マフラ27よりも下流側で大気に排気ガスを排出するための下流開口端68bとを有している。
 この下流開口端68bに、その外方に向かうに従って拡径される拡径構造78が設けられるとともに、排気ガスの排気方向に対向してプレート41が設けられ、このプレート41の排気方向に対向する側面部41bに1つの開口部41dが形成されたことを特徴としている。そして、この開口部41dの開口面積Sは、プレート41の開口部41dを含む側面部41bの総面積Sに対して約1/3の大きさに設定されている。拡径構造38には、エクスポネンシャル形状部78cが形成されている。
 その結果、テールパイプ68の下流開口端68bに拡径構造78が設けられているので、プレート41に形成する開口部41dの開口面積Sを大きくすることができる。そして、この拡径構造78にエクスポネンシャル形状部78cが形成されているので、テールパイプ68内に入射した排気音は、この拡径構造78で反射することなく、ほぼ完全な平面波として、確実にプレート41の反射面部41fに到達することができるという効果が得られる。したがって、開口端反射による反射波と閉口端反射による反射波とが、確実に打ち消し合い、排気音の反射波による気柱共鳴の発生がより確実に抑制される。
 また、本第2実施形態に係る排気装置60においては、拡径構造78およびプレート41をテールパイプ68の下流開口端68bのみに設けた場合について説明した。しかしながら、拡径構造78およびプレート41をテールパイプ68の下流開口端68bのみに設けた構造以外の構造であってもよい。
 例えば、拡径構造78およびプレート41をテールパイプ68の上流開口端68aおよび下流開口端68bの両方に設けた構造であってもよい。また、拡径構造78およびプレート41を、テールパイプ68の上流開口端68aのみに設けた構造であってもよい。 
 このような拡径構造78およびプレート41を、テールパイプ68の上流開口端68aおよび下流開口端68bの両方に設けた構造、および、テールパイプ68の上流開口端68aのみに設けた構造においても、上記と同様の作用効果を得ることができる。
 (第3実施形態)
 図21ないし図23は、第3実施形態に係るテールパイプ110を示す図である。 
 第3実施形態に係るテールパイプ110は、図21に示すように、第2実施形態に係る排気装置60のテールパイプ68に対して、貫通孔78dを新たに設けたものである。この貫通孔78dは、プレート41の開口部41dでの開口端反射における入射波の反射位置を補正するために設けられたものであり、以下、この開口端補正について説明する。
 (開口端補正)
 一般に、このようなパイプの開口端反射がある場合、厳密にはパイプ内で発生する気柱共鳴における気柱の長さは、パイプの両端で画成される実際のパイプの気柱の長さよりも長くなることが知られている。開口端反射の場合は、実際の音波の反射位置が、パイプから所定の距離だけ離隔した位置になるからである。
 例えば、図23に模式的に示すように、テールパイプP内で発生する気柱共鳴における実際の気柱の長さは、テールパイプPの上流開口端aから下流開口端bまでの管長Lよりも僅かに長い気柱の長さLhとなってしまう。このような実際の気柱の長さをより正確に把握するには、一般的に開口端補正といわれる長さ補正が必要となる。
 具体的には、上流開口端aから外方に離隔した実際の排気音の反射位置までの距離および下流開口端bから外方に離隔した実際の排気音の反射位置までの距離をそれぞれΔLとし、テールパイプPの内径をDとすると、距離ΔLは次式(17)で表される。
Figure JPOXMLDOC01-appb-M000017
 
 したがって、開口端補正を考慮した気柱の長さLhは、Lh=L+2ΔLで表される。
 このような開口端補正を必要とする理由としては、次のものが挙げられる。 
 すなわち、前述のようにテールパイプP内を伝播する進行波は、下流開口端bのから下流側にΔLだけ離隔した位置で実際に反射し、この反射波は、上流開口端aから上流側にΔLだけ離隔した位置で実際に反射することになる。このような両端が開口するテールパイプPにおいては、下流開口端bおよび上流開口端aから外側にもテールパイプP内の排気ガスと同じ温度(℃)を有する同様の排気ガスが存在しており、厳密には音のエネルギ(J)は、テールパイプPから排出される下流開口端bおよび上流開口端a近傍の外側にも伝達されてしまう。
 そのため、下流開口端bおよび上流開口端aで音圧(Pa)はゼロにならず、下流開口端bおよび上流開口端aからΔLだけ外側に離隔した位置で音圧(Pa)がゼロとなり、下流開口端bおよび上流開口端aからΔLだけ外側に離隔した位置が実効的な管端になってしまう。その結果、入射波は、下流開口端bからΔLだけ外側に離隔した実効的な管端で反射することになる。また、下流開口端bで反射した反射波は、上流開口端aからΔLだけ外側に離隔した位置が実効的な管端で反射することになる。
 このように、より高い消音効果を得るためには、下流開口端bからΔLだけ補正して下流開口端bを実効的な管端とすることが好ましい。
 本第3実施形態に係るテールパイプ110においては、貫通孔78dを設け、実効的な管端をテールパイプ110の下流開口端110bに近づけるよう補正することにより、高い消音効果を得るようにしている。
 すなわち、図21および図22に示すように、テールパイプ110のエクスポネンシャル形状部78cにおいて、直径Dの貫通孔78dが、プレート41の側面部41bに対してテールパイプ110の軸線方向内方に、プレート41の側面部41bから距離Lだけ離隔した位置に、テールパイプ110の内周部110aと外周部110cとを貫通して形成される。換言すれば、貫通孔78dは、プレート41に対して、テールパイプ110内の排気ガスの、下流開口端110bに対して排気方向上流側に位置する。
 なお、この貫通孔78dを、複数の貫通孔で構成するようにしてもよい。例えば、図24に示すように、貫通孔78dを、プレート41に対して、テールパイプ110内の排気ガスの、下流開口端110bに対して排気方向上流側に位置するよう、プレート41の側面部41bから距離Lだけ離隔した位置に、3個形成するようにしてもよい。
 これにより、この1または複数の貫通孔78dが擬似的にプレート41の開口部41dの一部を構成することになり、下流開口端110bから距離ΔLだけ外方に離隔していた気柱共鳴の実効的な管端が、下流開口端110bに近づくことになる。すなわち、距離ΔLが限りなく0に近づき、実効的な開口端反射がプレート41の開口部41dで行われることになる。
 ここで、直径D、距離Lは、本第3実施形態のテールパイプ110が適用される車両の設計諸元、シミュレーション、実験や経験値などのデータに基づいて適宜選択される。なお、距離Lは、前述の開口端補正における式(17)で表される距離ΔLとほぼ等しいことが好ましい。この距離Lは、貫通孔78dにより擬似的にプレート41の開口部41dの一部を構成し、実効的な開口端反射がプレート41の開口部41dで行われるという効果を得るために設定されている。
 したがって、本第3実施形態に係るテールパイプ110は、貫通孔78dを設けるだけの簡単な構造で、プレート41の開口部41dにおける開口端反射と、閉口部41eにおける閉口端反射とをほぼ完全な逆位相にすることができる。
 このため、開口端反射による反射波と閉口端反射による反射波とが互いに確実に打ち消し合うよう干渉することで、テールパイプ110の気柱共鳴によって音圧が増大してしまうのを確実に抑制することができるという効果が得られる。
 (第4実施形態)
 図25および図26は、第4実施形態に係るテールパイプ120を示す図である。 
 図25に示すように、第2実施形態に係るテールパイプ68が、円形の断面を有しているのに対して、本第4実施形態に係るテールパイプ120は、略楕円形の断面を有している。また、テールパイプ120には、その排気方向下流側に拡径構造121およびプレート部122が一体的に形成されている。
 この拡径構造121は、図26に示すように、テールパイプ120と同じ略楕円形の断面積Sを有する基端部121aと、略楕円形の断面積Sを有する先端部121bと、基端部121aと先端部121bとの間に形成され、断面の形状が基端部121aから先端部121bに向かうに従って指数曲線に沿って拡径され、略楕円形の断面積Sを有するエクスポネンシャル形状部121cとを備えている。この拡径構造121は、第2実施形態に係る拡径構造78とは異なり、図26に示すように、徐々に拡径されたそれぞれの断面が、各図面の下方で同一直線上になるよう形成されている。すなわち、図26に示すように、断面積Sの下方と、断面積Sの下方と、断面積Sの下方が同一直線上になっている。
 エクスポネンシャル形状部121cにおいては、その断面積の変化は第2実施形態に係るテールパイプ68と同様に形成されている。すなわち、前述の式(14)および式(15)をも満たすよう形成されている。
 プレート部122は、例えば、絞り加工などの機械加工やダイカストなどの成形加工により先端部121bと一体的に形成されており、側面部122aと、この側面部を貫通して形成された開口部122bと、この開口部122b以外の部分からなる閉口部122cとを有している。この開口部122bは、図34および図35に示すように、その下方が、側面部122aの下方側を貫通して形成されており、テールパイプ120内に滞留した排気ガス凝縮水が外部に排出されるようになっている。
 この構成により、第2実施形態に係るプレート41と同様に、開口部122bにおける開口端反射と、閉口部122cにおける閉口端反射とが完全な逆位相になり、互いの打消し効果が得られ、高い消音効果が得られる。さらに、プレート41の下方に開口部122bが形成されているので、テールパイプ120内に滞留した排気ガス凝縮水を開口部122bから排出させることができ、簡単な構造で、テールパイプ120の耐蝕性などの耐久性の向上を図ることができる。
 (第5実施形態)
 図27および図28は、第5実施形態に係るテールパイプ130を示す図である。 
 図27に示すように、第2実施形態に係るテールパイプ68が、その排気方向下流側に拡径構造78および中央部が開口したプレート41を有するのに対して、本第5実施形態に係るテールパイプ130は、その排気方向下流側に拡径構造78および中央部が閉口したプレート131を有している。
 詳細には、第2実施形態に係るプレート41が、中央部に円形の断面を有する開口部41dを有しているのに対して、本第5実施形態に係るプレート131は、中央部に閉口部131aを有するとともに、閉口部131aの周囲に均等間隔で形成された切欠きからなる開口部131b、131c、131d、131eを有している。
 この構成により、第2実施形態に係るプレート41と同様に、開口部131b、131c、131d、131eにおける開口端反射と、閉口部131aにおける閉口端反射とが完全な逆位相になり、互いの打消し効果が得られ、高い消音効果が得られる。さらに、プレート131に開口部131dが形成されているので、テールパイプ130内に滞留した排気ガス凝縮水を開口部131dから排出させることができ、簡単な構造で、テールパイプ130の耐蝕性などの耐久性の向上を図ることができる。
 (第6実施形態)
 図29は、第6実施形態に係るテールパイプ140を示す図である。 
 第6実施形態に係るテールパイプ140は、図29に示すように、第2実施形態に係るテールパイプ68が拡径構造78および中央部に1つの開口部41dが形成されたプレート41を有しているのに対して、本第6実施形態に係るテールパイプ140は、排気方向下流側に拡径構造78および中央部に複数の貫通孔141aが形成されたプレート141を有している。
 詳細には、第2実施形態に係るプレート41が、中央部に円形の断面を有する1つの開口部41dを有しているのに対して、本第6実施形態に係るプレート141は、中央部に8個の貫通孔141aからなる開口部141bを有するとともに、下部に切欠きからなる開口部141cを有している。また、この開口部141bおよび開口部141c以外の側面部141dで構成される閉口部141eを有している。
 この構成により、第2実施形態に係るプレート41と同様に、開口部141b、141cにおける開口端反射と、閉口部141eにおける閉口端反射とが完全な逆位相になり、互いの打消し効果が得られ、高い消音効果が得られる。さらに、開口部141cが、プレート141の下部に設けられているため、テールパイプ140内に滞留した排気ガス凝縮水を排出させることができ、簡単な構造で、テールパイプ140の耐蝕性などの耐久性の向上を図ることができる。
 (第7実施形態)
 図30および図31は、第7実施形態に係るテールパイプ150を示す図である。 
 第7実施形態に係るテールパイプ150は、図30に示すように、第2実施形態に係るテールパイプ68が拡径構造78と一体形成されているのに対して、本第7実施形態に係るテールパイプ150は、テールパイプ150と別体の拡径構造151を有している。
 詳細には、このテールパイプ150は、第2実施形態に係る拡径構造78がテールパイプ68と一体的に形成されているのに対し、拡径構造151はテールパイプ150とは別個に形成され、テールパイプ150の下流開口端150aを囲むようにしてテールパイプ150に取り付けられている。
 また、この拡径構造151は、テールパイプ150と接続される基端部151aと、この基端部151aと対向し基端部151aよりも内径の大きな先端部151bと、基端部151aと先端部151bとの間に位置するエクスポネンシャル形状部151cとを有している。
 このエクスポネンシャル形状部151cは、第2実施形態に係る拡径構造78のエクスポネンシャル形状部78cと同様に、前述の式(14)および式(15)を満たすよう各構成要素が形成されている。
 また、先端部151bは、図31に示すように、その端部が絞り加工などの形成加工により、折り返し加工が施されており、円周の縁部151dが滑らかに形成され美観を向上させている。
 また、第2実施形態に係るテールパイプ68のプレート41が、円盤状に形成されているのに対して、本第7実施形態に係るプレート152は、円周の縁部分が一方向に突出して形成され、この突出部分が、先端部151bの折り返し部分に収容されるよう先端部151bに組み込まれている。
 このプレート152の中央部分には、貫通孔152aからなる開口部152bが形成され、さらにこの貫通孔152aを囲んで、プレート152に形成された突出部分と同じ方向に突出した環状突出部152cが形成されている。また、この開口部152b以外の側面部152dで構成される閉口部152eを有している。
 この構成により、第2実施形態に係るプレート41と同様に、開口部152bにおける開口端反射と、閉口部152eにおける閉口端反射とが完全な逆位相になり、互いの打消し効果が得られ、高い消音効果が得られる。さらに、このテールパイプ150は、拡径構造151およびプレート152を有しているので、できるだけ僅かな圧力損失で流体を所要箇所へ導くことができるいわゆるディフューザと、その外観のみを同じくすることができる。このテールパイプ150の下流開口端150aにディフューザが装着しているという外観を呈することができ、美観の向上を図ることができる。
 以上説明したように、本発明に係る内燃機関の排気装置は、テールパイプにサブマフラを介装したり、テールパイプの上流開口端に大容量の共鳴室を有する消音器を設けるのを不要にして、テールパイプの気柱共鳴によって音圧レベルが増大してしまうのを抑制することができ、重量を低減することができるとともに製造コストおよび設置スペースを低減することができる内燃機関の排気装置全般に有用である。
 20、60 排気装置
 21 エンジン
 22 排気マニホールド
 24 触媒コンバータ
 25 フロントパイプ
 26 センターパイプ
 26A インレットパイプ部
 27 マフラ
 28、68、110、120、130、140、150 テールパイプ
 28A、68A アウトレットパイプ部
 28a、68a 上流開口端
 28b、68b、110b、150a 下流開口端
 28c 内周部
 38、78、121、151 拡径構造
 41、131、141、152 プレート
 41b、141d、152d 側面部
 41d、131b、131c、131d、131e、141b、141c、152b 開口部
 41e、131a、141e、152e 閉口部
 41f 反射面部
 78c、121c、151c エクスポネンシャル形状部
 78d 貫通孔
 L、L 距離
 S 総面積
 S 開口面積
 

Claims (3)

  1.  一端部に内燃機関から排出された排気ガスの排気方向上流側の消音器に接続される上流開口端と、他端部に前記排気ガスを大気に排出するための下流開口端と、を有する排気管を備えた内燃機関の排気装置であって、
     前記排気管の前記排気方向上流側および前記排気方向下流側の少なくとも一方が、前記上流開口端および前記下流開口端のいずれかに向かうに従って拡径される拡径構造を有し、
     前記拡径構造の内部に、前記排気ガスの排気方向に貫通する開口部および前記排気管を閉口する閉口部を形成したプレートを、前記排気ガスの排気方向に対向して設け、
     前記開口部により生じる開口端反射波と、前記閉口部により生じる閉口端反射波と、が干渉するように、前記プレートを設けたことを特徴とする内燃機関の排気装置。
  2.  前記排気管の前記排気方向上流側および前記排気方向下流側の少なくとも一方に設けた前記拡径構造が、エクスポネンシャル形状部を有し、前記エクスポネンシャル形状部は、開口端に向かうに従って指数曲線を描くように拡径したことを特徴とする請求項1に記載の内燃機関の排気装置。
  3.  前記プレートの前記開口部と前記閉口部とを合わせた総面積に対して前記開口部の開口面積を、1/3の大きさに設定したことを特徴とする請求項1または請求項2に記載の内燃機関の排気装置。
     
PCT/JP2009/004227 2009-08-28 2009-08-28 内燃機関の排気装置 WO2011024234A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/383,507 US8356690B2 (en) 2009-08-28 2009-08-28 Exhaust apparatus for an internal combustion engine
JP2011528524A JP5229391B2 (ja) 2009-08-28 2009-08-28 内燃機関の排気装置
CN200980161153.1A CN102482964B (zh) 2009-08-28 2009-08-28 内燃机的排气装置
DE112009005180.4T DE112009005180B4 (de) 2009-08-28 2009-08-28 Abgasvorrichtung für eine Verbrennungskraftmaschine
PCT/JP2009/004227 WO2011024234A1 (ja) 2009-08-28 2009-08-28 内燃機関の排気装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004227 WO2011024234A1 (ja) 2009-08-28 2009-08-28 内燃機関の排気装置

Publications (1)

Publication Number Publication Date
WO2011024234A1 true WO2011024234A1 (ja) 2011-03-03

Family

ID=43627364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004227 WO2011024234A1 (ja) 2009-08-28 2009-08-28 内燃機関の排気装置

Country Status (5)

Country Link
US (1) US8356690B2 (ja)
JP (1) JP5229391B2 (ja)
CN (1) CN102482964B (ja)
DE (1) DE112009005180B4 (ja)
WO (1) WO2011024234A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010045551A1 (de) * 2010-09-16 2012-05-03 Friedrich Boysen Gmbh & Co. Kg Abgasanlage
JP2014153634A (ja) * 2013-02-13 2014-08-25 Yamaha Corp 消音器
JP2015068505A (ja) * 2013-09-26 2015-04-13 株式会社Ihi グランドフレア

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472321B2 (ja) * 2009-12-28 2014-04-16 トヨタ自動車株式会社 内燃機関の排気装置
KR101744804B1 (ko) * 2011-07-28 2017-06-09 현대자동차 주식회사 차량용 테일 파이프 어셈블리
US20140326350A1 (en) * 2013-05-01 2014-11-06 Timothy Riley Tailpipe customization
JP5811155B2 (ja) 2013-10-07 2015-11-11 トヨタ自動車株式会社 燃料電池用の配管部材およびそれを備えた燃料電池車両
CN105673138B (zh) * 2016-02-23 2018-11-23 广州三雅摩托车有限公司 一种内燃机多气室回旋消音方法
CN105545413B (zh) * 2016-02-23 2018-12-04 绍兴市华锐汽车零部件有限公司 一种内燃机多气室排气消音器
WO2020080152A1 (ja) * 2018-10-19 2020-04-23 富士フイルム株式会社 防音構造体
US11236653B2 (en) 2019-01-24 2022-02-01 Caterpillar Inc. Multi-chambered sound attenuation with resonant frequency targeting
CN111794828A (zh) * 2019-04-09 2020-10-20 罗伯特·博世有限公司 集成有消音结构的机动车发动机废气处理系统
CN110450652A (zh) * 2019-09-02 2019-11-15 恒勃控股股份有限公司 一种氢能源汽车用储排水装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54166624U (ja) * 1978-05-16 1979-11-22
JPS5823929Y2 (ja) * 1978-05-16 1983-05-23 カルソニックカンセイ株式会社 排気導管
JPS5943916A (ja) * 1982-09-04 1984-03-12 Makoto Minamidate 圧気消音装置
JPH055213Y2 (ja) * 1987-11-12 1993-02-10
JP2002089230A (ja) * 2000-09-20 2002-03-27 Daihatsu Motor Co Ltd 排気消音器の流出パイプ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE698589C (de) * 1936-09-13 1940-11-13 Eberspaecher J Schalldaempfer fuer Ansaug- und Auspuffschall mit Schallreflexion und Interferenz des ankommenden und reflektierten Schalles, insbesondere fuer Brennkraftmaschinen
DE755035C (de) * 1942-05-28 1952-10-20 Eberspaecher J Schalldaempfer mit Schallreflexion und Interferenz des ankommenden und reflektiertenSchalles, insbesondere fuer Brennkraftmaschinen
US2570728A (en) * 1948-11-29 1951-10-09 William D Storey Muffler with frusto-conical baffle and removably disposed perforated extension tube
US3202240A (en) * 1963-12-09 1965-08-24 Kenneth L Treiber Muffler with aspirating means
FR1571626A (ja) * 1968-06-07 1969-06-20
US3788417A (en) * 1972-04-26 1974-01-29 Raymond Lee Organization Inc Exhaust device for automotive vehicles
JPS5823929A (ja) * 1981-07-31 1983-02-12 尾池工業株式会社 難染金銀糸
JPH0681901B2 (ja) * 1986-06-19 1994-10-19 ヤマハ発動機株式会社 2サイクルエンジンの排気装置
DD286727A7 (de) 1989-03-15 1991-02-07 Veb Motorradwerk Zschopau,De Auspuffanlage fuer eine brennkraftmaschine
JPH055213A (ja) * 1991-06-24 1993-01-14 Toray Ind Inc ポリエステル繊維の製造法
JPH0577536U (ja) 1992-03-30 1993-10-22 カルソニック株式会社 フィニッシャ
JP3010341B2 (ja) 1995-05-09 2000-02-21 ティーオーエー株式会社 消音装置
JP2003041934A (ja) 2001-07-30 2003-02-13 Fuji Heavy Ind Ltd 排気系のテールパイプ
US7364011B2 (en) * 2002-04-05 2008-04-29 Martin Hirschorn Attenuating power booster
JP2004204802A (ja) 2002-12-26 2004-07-22 Apex:Kk 車両用マフラー
JP4759700B2 (ja) * 2004-08-02 2011-08-31 トヨタ自動車株式会社 排気構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54166624U (ja) * 1978-05-16 1979-11-22
JPS5823929Y2 (ja) * 1978-05-16 1983-05-23 カルソニックカンセイ株式会社 排気導管
JPS5943916A (ja) * 1982-09-04 1984-03-12 Makoto Minamidate 圧気消音装置
JPH055213Y2 (ja) * 1987-11-12 1993-02-10
JP2002089230A (ja) * 2000-09-20 2002-03-27 Daihatsu Motor Co Ltd 排気消音器の流出パイプ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010045551A1 (de) * 2010-09-16 2012-05-03 Friedrich Boysen Gmbh & Co. Kg Abgasanlage
JP2014153634A (ja) * 2013-02-13 2014-08-25 Yamaha Corp 消音器
JP2015068505A (ja) * 2013-09-26 2015-04-13 株式会社Ihi グランドフレア

Also Published As

Publication number Publication date
JP5229391B2 (ja) 2013-07-03
US8356690B2 (en) 2013-01-22
CN102482964B (zh) 2014-01-29
CN102482964A (zh) 2012-05-30
DE112009005180B4 (de) 2015-10-01
US20120138384A1 (en) 2012-06-07
JPWO2011024234A1 (ja) 2013-01-24
DE112009005180T5 (de) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5229391B2 (ja) 内燃機関の排気装置
JP5257517B2 (ja) 内燃機関の排気装置
JP5472321B2 (ja) 内燃機関の排気装置
US7942239B2 (en) Exhaust muffler
US7798286B2 (en) Exhaust muffler having a horizontally extending sound attenuation chamber
JP5912221B2 (ja) 内燃機関用マフラ
US6595319B1 (en) Muffler
JP5282825B2 (ja) 排気管部品および内燃機関の排気装置
WO2011116447A1 (en) Exhaust subsystem with polymer housing
US3382948A (en) Mufflers with side branch tuning chambers
US20120160600A1 (en) Tubular acoustic insulating element
JP2011027038A (ja) マフラ
WO2009107376A1 (ja) 消音器
KR101693887B1 (ko) 다중 공명기 삽입 건설장비용 소음기
US11143070B2 (en) Muffler for an exhaust system of an internal combustion engine
JP2009209854A (ja) 消音器
JP5119230B2 (ja) 内燃機関の排気装置
CN220890297U (zh) 一种汽车消声器筒体
JP2023090105A (ja) 車両用排気管
JP2007187089A (ja) 車両用排気構造
KR100802824B1 (ko) 차량 소음기용 배플
JP2021116732A (ja) 消音装置
JP2011080382A (ja) 内燃機関の排気装置
JP2011069244A (ja) 排気管部品および内燃機関の排気装置
JPH0419319A (ja) 内燃機関のデュアル排気系における消音装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161153.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848685

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528524

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13383507

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112009005180

Country of ref document: DE

Ref document number: 1120090051804

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848685

Country of ref document: EP

Kind code of ref document: A1