Nothing Special   »   [go: up one dir, main page]

WO2011012080A1 - Glp-1类似物的衍生物或其可药用盐和用途 - Google Patents

Glp-1类似物的衍生物或其可药用盐和用途 Download PDF

Info

Publication number
WO2011012080A1
WO2011012080A1 PCT/CN2010/075548 CN2010075548W WO2011012080A1 WO 2011012080 A1 WO2011012080 A1 WO 2011012080A1 CN 2010075548 W CN2010075548 W CN 2010075548W WO 2011012080 A1 WO2011012080 A1 WO 2011012080A1
Authority
WO
WIPO (PCT)
Prior art keywords
glp
derivative
group
pharmaceutically acceptable
lys
Prior art date
Application number
PCT/CN2010/075548
Other languages
English (en)
French (fr)
Inventor
王亚里
吕爱锋
孙长安
袁恒立
Original Assignee
江苏豪森医药集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PL10803913T priority Critical patent/PL2460825T3/pl
Priority to US13/388,056 priority patent/US20120129768A1/en
Priority to CN201080021344.0A priority patent/CN102421797B/zh
Priority to BR112012001915-5A priority patent/BR112012001915B1/pt
Application filed by 江苏豪森医药集团有限公司 filed Critical 江苏豪森医药集团有限公司
Priority to ES10803913.2T priority patent/ES2694394T3/es
Priority to DK10803913.2T priority patent/DK2460825T3/en
Priority to RU2012105355/10A priority patent/RU2565536C2/ru
Priority to MX2012001186A priority patent/MX2012001186A/es
Priority to EP10803913.2A priority patent/EP2460825B1/en
Priority to JP2012521950A priority patent/JP5768048B2/ja
Priority to AU2010278466A priority patent/AU2010278466B2/en
Priority to CA2769229A priority patent/CA2769229C/en
Publication of WO2011012080A1 publication Critical patent/WO2011012080A1/zh
Priority to ZA2012/00239A priority patent/ZA201200239B/en
Priority to US13/362,593 priority patent/US8614182B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/605Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a derivative of a human glucagon-like peptide-1 (GLP-1) analog or a pharmaceutically acceptable salt thereof, and the derivative of the GLP-1 analogue provided by the present invention has the function of human GLP-1, and It has a longer half-life in vivo compared to human GLP-1.
  • the present invention also relates to a pharmaceutical composition of a derivative of a GLP-1 analogue or a pharmaceutically acceptable salt thereof or a derivative containing the GLP-1 analogue or a pharmaceutically acceptable salt thereof for the treatment of non-insulin dependent diabetes, insulin dependence Use of diabetes and obesity. Background technique
  • Diabetes is a global epidemic, a syndrome of glucose, protein, and lipid metabolism caused by absolute or relative deficiency of insulin in the body (Chen Ruijie. Research status of diabetes drugs. Journal of Guangdong College of Pharmacy, 2001, 7( 2): 131-133), according to the pathogenesis can be divided into type I and type II diabetes (Type 2 diabetes mellitus, T2DM, the same below).
  • Type 2 diabetes mellitus Type 2 diabetes mellitus, T2DM, the same below.
  • T2DM Type 2 diabetes mellitus
  • T2DM is characterized by insulin inhibition and pancreatic ⁇ -cell dysfunction, leading to insulin deficiency and insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocr Rev. 1998, 19 (4 ): 477 ⁇ 90). T2DM patients usually have a meal and fasting blood Sugar (fasting blood glucose > 125 mg/dL), and hyperglycemia is mainly due to the fact that pancreatic ⁇ -cells cannot secrete enough insulin to compensate for insulin inhibition in peripheral tissues (Weyer C, Bogardus C, Mott DM., et al. The Natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin. Invest. 1999, 104(6): 787-794).
  • the main risk factor for T2DM is obesity, which is very harmful to human health. Patients are at increased risk of developing cardiovascular disease and abnormal death, and T2DM is often associated with other high-risk diseases such as hypertension, dyslipidemia, and obesity; 60% of patients with T2DM are accompanied by microvascular complications. Retinopathy and neuropathy and cardiovascular morbidities associated with T2DM such as coronary heart disease, myocardial infarction, and shock. In the United States, cardiovascular disease (CVD) is a major cause of morbidity and mortality, while T2DM is a macrovascular complication such as atherosclerosis, myocardial infarction, shock and sputum. The main risk factor for the occurrence of vascular disease in the week. In adults with diabetes, heart disease and shock are 2-4 times more likely to die than non-diabetics. In addition, nearly 65% of people with diabetes die from heart disease and shock.
  • T2DM In addition to physical and physical harm to patients, T2DM also imposes a large economic burden on society. According to statistics, the annual cost of treating diabetes complications in the United States is approximately $22.9 billion, which is used annually for T2DM and its complications. The total cost is close to $57.1 billion, and the total unbudgeted cost exceeds $8 billion.
  • T2DM therapeutics have always been the focus of attention, from early sulfonamides, biguanide oral hypoglycemic agents to recent insulin sensitizers and alpha-glucosidase inhibitors, from animal insulin to human insulin and various new dosage forms. Development, from the simple mechanism of drug treatment to increase insulin to a new way to produce insulin earlier. Weight gain is a common side effect of this type of oral or hypoglycemic drug, which may reduce compliance and may increase the risk of developing cardiovascular disease. Therefore, the development of new T2DM therapeutic drugs with high safety, patient compliance and low adverse reactions has become a hot spot for many research institutions and pharmaceutical companies.
  • GIP and GLP-1 are secreted by specific enteric neurosecretory cells during nutrient absorption, wherein GIP is secreted by the duodenum and adjacent jejunal K cells, and GLP-1 is synthesized in L cells. Mainly found in the distal small intestine and colon (Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care. 2003, 26(10): 2929-2940) o
  • GLP-1 exists in the blood plasma in the form of two biologically active forms of GLP-1 (7-37) and GLP-1 (7-36) amide. These two polypeptides differ only in one amino acid, and their biological effects and in vivo The half-life is the same (Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care. 2003, 26(10): 2929-2940).
  • GLP-1 is a general term for GLP-1 (7-37) and GLP-1 (7-36) amides.
  • GIP and GLP-1 are rapidly degraded into inactive forms by dipeptidyl peptidase-IV (DPP-IV) in the gastrointestinal tract, resulting in GIP and GLP-1.
  • DPP-IV dipeptidyl peptidase-IV
  • the half-life in vivo is very low (GIP has an in vivo half-life of about 5-7 min and GLP-1 has a half-life of about 2 min in vivo) (Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care. 2003, 26(10): 2929-2940 ).
  • GIP and GLP-1 enter the blood vessels containing DPP-IV, and a small amount of undegraded GLP-1 and GIP enter the pancreas and bind to its binding site to stimulate ⁇ -cell release. insulin.
  • the incretin effect is mostly glucose-dependent.
  • GLP-1 also has alpha-cell inhibition and reduced glucagon hypersecretion.
  • T2DM patients have normal blood plasma GIP levels but their incretin effect is significantly reduced or lost, and GLP-1 levels are reduced in T2DM patients, the study of GLP-1 based drugs is more helpful in the treatment of T2DM.
  • GLP-1 (7-37) and GLP-1 (7-36) amide levels increased in a few minutes after a meal, GLP-1 (7-36) amide content was more, so endocrine and neuronal signaling
  • the dual effect can be on the digested food from the lower end of the digestive tract GLP-1 secretion has been greatly increased before entering the small intestine and colon.
  • the GLP-1 level in the blood paddle was very low (about 5-10 pmol/L) in the fasting state, and its level increased rapidly after eating (up to 15-50 pmol/L).
  • the level of GLP-1 circulating in the body rapidly decreases, while other enzymes such as human neutral endopeptidase 24.11 (human neutral endopeptidase 24-11) also affect GLP-1.
  • Research work on the loss of activity plays a decisive role. Since GLP-1 is alanine at the 2-position amino acid, it is a good substrate for DPP-IV and is more susceptible to degradation to inactive peptides. In fact, DPP-IV is the main cause of loss of incretin activity in vivo.
  • DLP-IV gene silenced mice significantly increased GLP-1 levels and increased insulin secretion. It is under the action of DPP-IV that the intact and biologically active GLP-1 is only 10-20% of the total GLP-1 content of blood plasma (Deacon CF, Nauck MA, Toft-Nielsen M, et al. Both subcutaneously And intravenously administered glucagon-like peptide 1 are rapidly degraded from the NH2-terminus in type 2-diabetic patients and in healthy subjects. Diabetes. 1995, 44(9): 1126-1131 ).
  • GLP-1 and GIP pass through G-protein coupled receptors that are completely different in structure
  • GIP receptors G-protein-coupled receptors, GPCRs
  • GIP receptors Most of the GIP receptors are expressed by islet ⁇ -cells, and a small part is expressed in adipose tissue and the central nervous system.
  • GLP-1 receptor is expressed mainly in islet ⁇ - and ⁇ -cells as well as in peripheral tissues including the central and peripheral nervous systems, brain, kidney, lung, and gastrointestinal tract.
  • Activation of two incretins in beta-cells leads to a rapid increase in cAMP and intracellular calcium levels, leading to extracellular secretion in a glucose-dependent manner, and sustained incretin receptor signaling is associated with protein kinase A.
  • Activation of GLP-1 and GIP receptors also inhibits ⁇ -cell apoptosis in rodents and human islets while increasing their survival rate (Li Y, Hansotia T, Yusta B, et al. Glucagon-like peptide- 1 receptor signaling Modulate beta cell apoptosis. J Biol Chem. 2003, 278(1): 471478 ).
  • GLP-1 also inhibits glucagon secretion, gastric emptying, and food intake, while enhancing glucose degradation through a neural mechanism. It should be noted that, like other insulin secretion reactions, the effect of GLP-1 on glucose secretion is glucagon. Reactive regulation of glucagon due to hypoglycemia
  • the glucagon effect of the counter-regulatory release of glucagon is still fully retained at the pharmacological concentration of GLP-1.
  • GLP-1 and GIP The important physiological role of endogenous GLP-1 and GIP in glucose homeostasis has been extensively studied through the use of receptor antagonists or in knockout mice. Antagonism of acute GLP-1 or GIP reduces insulin secretion in rodents and increases blood glucose levels. Similarly, GIP or GLP-1 receptor-inactivated mutant mice also have defective glucose-stimulated insulin secretion and impaired glucose tolerance.
  • GLP-1 also has a fasting blood glucose regulation function, because acute antagonism or genetic destruction of GLP-1 effects leads to an increase in fasting glucose levels in rodents; meanwhile, GLP-1 is the basis of glucose control in humans, antagonizing Exendin (9) -39) Studies have shown that disruption of GLP-1 results in defective glucose-stimulated insulin secretion, reduced glucose clearance, increased glucagon levels, and accelerated gastric emptying. Furthermore, the physiological role of GLP-1 (Deacon CF. Therapeutic strategies based on glucagon-like peptide 1. Diabetes.
  • GLP-1 and GIP have a good effect in controlling blood sugar and other aspects, especially the characteristics of not producing hypoglycemia and delaying gastric emptying to control body weight have attracted the interest of many scientists.
  • GLP-1 levels in T2DM patients are very low, and GLP-1 is produced by dietary stimulation. Significantly reduced levels (Toft-Nielsen MB, Damholt MB, Madsbad S, et al.
  • GLP-1 analogues like endogenous GLP or GIP, can be glucose-dependent
  • the method stimulates the secretion of insulin in the body while inhibiting the in vivo release of glucagon.
  • GLP-1 analogues have effects on the following symptoms: (1) Hypoglycemia. Unlike other secretagogues, GLP-1 analogues are self-limiting in their ability to promote insulin secretion in a glucose-dependent manner, and generally do not cause severe hypoglycemia at high doses. Although it has been reported in the literature that GLP-1 can lower blood glucose below normal levels, this effect is transient and is considered to be a natural consequence of GLP-1 insulinotropic secretion. Since the inactivation of insulin requires a certain period of time, when the stimulation effect of GLP-1 is weakened and no new insulin is secreted due to a decrease in blood glucose concentration, the original insulin is still functioning.
  • GLP-1 temporarily lowers blood glucose below normal levels, but does not cause severe and persistent hypoglycemia.
  • the effect on satiety and weight In addition to directly lowering blood sugar, GLP-1 also reduces food intake, which has been proven in rodents and humans. This can indirectly control blood sugar levels by reducing body weight. GLP-1 also has the potential to inhibit gastric acid secretion from gastrin and feeding stimuli. These effects suggest that GLP-1 may also have a role in preventing peptic ulcers.
  • the mechanism of action of GLP-1 not only makes it an ideal treatment for patients with type 2 diabetes, but also a therapeutic drug for obese diabetic patients.
  • GLP-1 can enhance a patient's satiety, reduce food intake and maintain weight or lose weight; (maintaining beta-cell health. Some studies suggest that GLP-1 can prevent the conversion from impaired glucose tolerance to diabetes, and some literature reports GLP-1 compounds have a direct effect on the growth and proliferation of islet ⁇ cells in experimental animals, and it has been found that GLP-1 can promote the differentiation of pancreatic stem cells into functional ⁇ cells. These results suggest that GLP-1 has protective islets and The function of delaying the progression of diabetes can maintain the morphology and function of ⁇ -cells while reducing its apoptosis; (4) The effect on postprandial hyperglycemia. This phenomenon represents a new direction in the treatment of T2DM.
  • GLP-1 analogues may be able to produce pancreatic hyperglycemia by directly inhibiting glucagon release or promoting paracrine inhibition by promoting insulin secretion The effect of high secretion is effective. These two mechanisms can effectively reduce postprandial hyperglycemia; Maintaining beta-cell function may also have an effect on long-term control of postprandial hyperglycemia.
  • GLP-1 analogues are administered by subcutaneous injection, do not need to calculate the amount of carbohydrates to estimate the optimal drug dosage, and do not need to self-monitor blood glucose, making the use of such drugs more convenient than insulin.
  • Exenatide is a synthetic Exendin-4, developed by Lilly and Amylin under the trade name Byetta®, FDA and EMEA, which have been approved for use in the treatment of T2DM. It is 50% homologous to mammalian GLP-1 and binds to the GLP-1 receptor affinity site ⁇ GLP-1 (Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide- 1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet.
  • Exenatide will be the second in GLP-1 compared to GLP-1 Alanine is replaced by glycine, which effectively inhibits DPP-IV enzymatic hydrolysis and has a half-life of about 60-90 min in vivo (Kolterman OG, Kim DD, Shen L, et al. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 Diabetes melllitus. Am Health Syst Pharm.
  • Exenatide has specific glucose-regulating activities, including glucose-dependent enhancement of insulin secretion, glucose-dependent inhibition of excessive glucagon secretion, slowing of gastric emptying, and reduced food intake. In vivo and in vitro diabetes model studies have also found that Exenatide also has the role of storing first-phase insulin secretion, promoting beta-cell proliferation, and insulin regeneration from its precursor cells.
  • Exenatide In order to achieve better blood sugar control, two injections of Exenatide are required every day, which brings great inconvenience to the patient. In addition, Exenatide also has mild to moderate nausea (about 40% of patients will have this reaction), diarrhea and vomiting (less than 15% of patients will have these two reactions); about 50% of Exenatide-treated patients will produce antibodies, Although these antibodies do not affect the efficacy or cause other clinical effects. Recently, 6 cases of bleeding or necrosis occurred after taking Byetta. The condition of pancreatic inflammation.
  • CJC-1131 is a peptidase-inhibiting GLP-1 analogue developed by ConjuChem Biotechnologies Inc., replacing Ala at position 2 in the GLP-1 sequence with D-Ala to enhance the ability to resist DPP-IV enzymatic hydrolysis. Its structure contains a reactive linker to facilitate its binding to serum albumin in a covalent (non-reversible) manner (Kij JG, Baggio LL, Bridon DP, et al. Development and characterization of a Glucagon-like peptide- 1 albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo. Diabetes.
  • GLP-1-serum albumin complex remains The activity of GLP-1 also increases the stability of DPP-IV enzymatic hydrolysis and prolongs the in vivo action time, and its blood plasma elimination half-life is about 20 days.
  • CJC-1131 - serum albumin complex binds to Chinese hamster ovary cells transfected with human recombinant pancreatic GLP-1 receptor with a Ki of approximately 12 nM (KLP of GLP-1 is 5.2 nM) At the same time the complex activates the EC 5 of cAMP. For 11-13 ⁇ , EC 5 . Similar to GLP-1.
  • the existing literature indicates that the binding molecule can lower postprandial blood glucose concentration in mice with normal blood glucose and hyperglycemia, and experiments have shown that this activity of CJC-1131 acts on a functional receptor of GLP-1, while in mice. CJC-1131 also has the effect of slowing gastric emptying and inhibiting food intake.
  • CJC-1131 has completed some Phase II clinical trials.
  • ConjuChem analyzed the results of the existing trials and concluded that CJC-1131 may not be suitable for chronic dosing regimens, thus halting the clinical study of CJC-1131.
  • the CJC-1131 clinical trial has not been restarted.
  • albumin-GLP-1 is a long-acting T2DM therapeutic developed by GlaxoSmithKline under the authority of Human Genome Sciences Inc. It is a GLP-1 (with mutations that increase resistance to DDP-IV:) and A fusion of albumin. Its half-life in monkeys is 3 days. The basic research and development idea is to combine recombinant GLP-1 with serum albumin to form a complex, which significantly increases its half-life in vivo. After taking Albugon, it effectively reduced blood sugar levels, increased insulin secretion, slowed gastric emptying and reduced food intake ( Baggio LL, Huang Q, Brown TJ, et al.
  • GLP Human Glucagon-Like Peptide
  • Albugon - 1 -Albumin Protein
  • Albugon is currently undergoing Phase III clinical trials.
  • WO9808871 discloses a fatty acid-modified GLP-1 derivative based on GLP-1 (7-37), which greatly enhances the half-life of GLP-1 in vivo.
  • WO9943705 discloses a chemically modified derivative at the N-terminus of GLP-1, but it has been reported in the literature that modification of the amino acid at the N-terminus results in greatly reduced activity of the entire GLP-1 derivative (J. Med. Chem. 2000, 43, 1664 1669 ).
  • CN200680006362, CN200680006474, WO2007113205, CN200480004658, CN200810152147, WO2006097538 and the like also disclose a series of GLP-1 analogues or derivatives thereof obtained by chemical modification or amino acid substitution, the most representative of which is the development of Novo Nordisk Company.
  • Liraglutide has completed Phase III clinical.
  • Liraglutide is a GLP-1 derivative whose structure contains a GLP-1 analogue with 97% homology to human GLP-1, which is covalently linked to palmitic acid to form Liraglutide [ , Liraglutide structure The palmitic acid is attached to serum albumin in a non-covalent form.
  • Liraglutide has a half-life of about 10-14 hours in the human body after subcutaneous injection, and can theoretically be administered once a day at a dose of 0.6-1.8 mg per day.
  • EMEA's Committee for Medicinal products for Human Use evaluated positive for Liraglutide and recommended approval for its listing.
  • Novo Nordisk expects the European Commission to approve its listing application within two months. Summary of the invention
  • Another object of the present invention is to provide a pharmaceutical composition comprising the above derivative of GLP-1 analogue or a pharmaceutically acceptable salt thereof for the treatment of insulin-dependent diabetes, non-insulin-dependent diabetes and obesity.
  • the object of the present invention is achieved by the following technical solutions.
  • the invention provides a a derivative of a GLP-1 analogue having the amino acid sequence of formula (I) or a pharmaceutically acceptable salt thereof,
  • Xi-X 2 -Glu-Gly-Thr-Phe-Thr-Ser-Asp-Xio-Ser-X 12 -X 13 -X 14 -Glu-Xi 6 -Xi 7 -Ala-X 1 9 -X 2 o- X2 i-Phe-Ile-X2 4 -Trp-Leu-X2 7 -X28"X29"X30"X31 -X3 2 -X3 3 -X 34 -
  • the GLP-1 analog refers to a human GLP-K 7-37) peptide as a parent, including GLP-1 (7-36) amide and GLP-1 (7-37), for partial amino acid substitution or Extension of the C-terminus results in a new GLP-1 peptide having the function of human GLP-1.
  • the derivative refers to the chemical modification of the amino acid residue of the GLP-1 analog by a lipophilic substituent, and the typical modification is to form an amide or an ester, and the preferred modification is to form an amide.
  • a preferred embodiment of the invention is a lipophilic substituent of the formula R ⁇ CH ⁇ u-CO- and an amino group of the amino acid residue of the GLP-1 analog linked by an amide bond, wherein is selected from the group consisting of C3 ⁇ 4- Or HOOC-, n is an integer between 8-25.
  • Another preferred embodiment of the present invention is that the lipophilic substituent of the formula R ⁇ CH ⁇ u-CO- and the epsilon amino group of the C-terminal Lys of the GLP-1 analog are linked by an amide bond, wherein Ri is selected from CH 3 - or HOOC- , n is an integer between 8 and 25.
  • lipophilic substituent of the formula R ⁇ CH ⁇ u-CO- and the alpha amino group of the C-terminal Lys of the GLP-1 analog are linked by an amide bond, wherein Ri is selected from CH 3 - or HOOC- , n is an integer between 8 and 25, preferably 14.
  • amino acid sequence of the GLP-1 analogue is selected from the group consisting of L-His, D-His; and X 2 is selected from the group consisting of Ala, D-Ala, Gly, Val, Leu, Ile, Lys, Aib
  • X 10 is selected from the group consisting of Val, Leu;
  • X 12 is selected from Ser, Lys, Arg;
  • X 13 is selected from Tyr, Gin;
  • X 14 is selected from Leu, Met;
  • X 16 is selected from Gly, Glu, Aib; and X 17 is selected from Gln; , Glu, Lys, Arg;
  • X 19 is selected from Ala, Val;
  • X 20 is selected from Lys, Glu, Arg;
  • X 21 is selected from Glu, Leu;
  • X 2 4 is selected from Val, Lys;
  • X 27 is selected from Val, Lys;
  • X 28 is selected from Lys, Glu, Asn,
  • X 32 is selected from Lys, Ser; X 33 is selected from Lys, Ser;.
  • X 34 is selected from Gly, Ala Sar;
  • X 35 is selected from Gly, Ala, Sar;
  • X 36 is selected from From Pro, Gly;
  • X 37 is selected from Pro, Gly;
  • X 38 is selected from Pro, Gly;
  • X 39 is selected from Ser, Tyr.
  • amino acid sequence of the GLP-1 analog is selected from the group consisting of SEQ ID Nos 1-120.
  • Another preferred embodiment of the invention is a lipophilic substituent of the formula R ⁇ Ci ⁇ :) n -CO- and a GLP-1 analogue selected from the group consisting of the sequences SEQ ID No: 1-120
  • the amino group of the amino acid residue is linked by an amide bond selected from CH 3 - or HOOC- and n is an integer between 8 and 25.
  • a still further preferred embodiment is a lipophilic substituent of the formula R ⁇ CH 2 :) n -CO- and a C-terminal Lys selected from the GLP-1 analogs of the sequence SEQ ID No: 1-120
  • the epsilon amino group is linked by an amide bond selected from C3 ⁇ 4- or HOOC-, and n is an integer between 8 and 25.
  • a still further preferred embodiment is a lipophilic substituent of the formula R ⁇ CH ⁇ u-CO- and a C-terminal Lys selected from the sequence of GLP-1 analogs represented by SEQ ID No: 1-120
  • the amino group is bonded by an amide bond, wherein is selected from CH 3 - or HOOC-, n is an integer between 8 and 25, preferably n is 8, 10, 12, 14, 16, 18, 20 or 22, further preferably n Is 14.
  • Another preferred embodiment of the invention is a C-terminal end of a lipophilic substituent of the formula R ⁇ CH ⁇ u-CO- and a GLP-1 analogue selected from the group consisting of SEQ ID Nos: 1-20
  • the alpha amino group of Lys is linked by an amide bond, wherein is selected from CH 3 - or HOOC-, n is an integer between 8 and 25, preferably n is 8, 10, 12, 14, 16, 18, 20 or 22. More preferably, n is 14.
  • Another preferred embodiment of the invention is a C-terminal end of a lipophilic substituent of the formula R ⁇ CH ⁇ u-CO- and a GLP-1 analogue selected from the group consisting of SEQ ID Nos: 1-8
  • the alpha amino group of Lys is linked by an amide bond selected from CH 3 - and n is 14.
  • the derivatives of the GLP-1 analogs provided by the present invention belong to the amphoteric compound, and those skilled in the art can react with them to form a salt by using an acidic or basic compound by a known technique.
  • the acid which is usually used to form an acid addition salt is: Hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, p-bromophenylsulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, acetic acid; salts including sulfates, Pyrosulfate, trifluoroacetate, sulfite, bisulfite, phosphate, hydrogen phosphate, dihydrogen phosphate, metaphosphate, pyrophosphate, hydrochloride, bromide, iodide, B Acid salt, propionate, octanoate,
  • the alkaline substance may also form a salt with a derivative of the GLP-1 analog, including ammonium, alkali metal or alkaline earth metal hydroxide, and carbonate, hydrogencarbonate, typically sodium hydroxide, Potassium hydroxide, ammonium hydroxide, sodium carbonate, potassium carbonate, and the like.
  • a derivative of the GLP-1 analog including ammonium, alkali metal or alkaline earth metal hydroxide, and carbonate, hydrogencarbonate, typically sodium hydroxide, Potassium hydroxide, ammonium hydroxide, sodium carbonate, potassium carbonate, and the like.
  • the pharmaceutical composition containing the GLP-1 derivative according to the present invention can be used for the treatment of a patient in need of such treatment by means of parenteral administration.
  • Parenteral routes of administration may be subcutaneous, intramuscular or intravenous.
  • the GLP-1 derivative of the present invention may also be administered by a transdermal route, such as a patch scalp, an iontophoresis patch, or a transmucosal route.
  • compositions of the GLP-1 derivatives provided herein can be prepared using conventional techniques of the pharmaceutical industry, including the proper dissolution and mixing of the components to provide the desired final composition.
  • the GLP-1 derivative is dissolved in a quantity of water wherein the amount of water is slightly less than the final volume of the composition being prepared.
  • Isotonic agents, preservatives, surfactants and buffers, isotonic agents such as sodium chloride, mannitol, glycerol, propylene glycol, sugars or sugar alcohols are added as needed.
  • Preservatives such as phenol, o-cresol, p-cresol, m-cresol, methyl paraben, benzyl alcohol.
  • Suitable buffers such as sodium acetate, sodium carbonate, glycine, histidine, lysine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, surfactants such as poloxamer, poloxamer-188, Boluo-Sam-407, Tween-80, Tween-20.
  • the pH of the solution is adjusted with an acid such as hydrochloric acid or a base such as aqueous sodium hydroxide as needed, and finally the volume of the solution is adjusted with water to obtain the desired component concentration.
  • the pharmaceutical composition provided by the present invention further comprises a sufficient amount of a basic amino acid or an alkaline agent having the same effect to reduce the storage of the composition. Aggregates formed during the process, such as lysine, histidine, arginine, and imidazole.
  • the derivative of the GLP-1 analogue provided by the present invention is a manual synthesis method, the resin is HMPA-AM resin, and the amino group of the amino acid derivative used is protected by Fmoc (nonylcarbonyl), cysteine side chain thiol group.
  • the intermediate control of the condensation and deprotection reaction steps is a method for detecting ninhydrin, that is, when there is a free amino group on the resin peptide chain, it is blue by the ninhydrin reagent, and does not develop color when there is no free amino group. (The ninhydrin reagent itself is yellow).
  • the coupling of the next step can be carried out before the coupling of the next amino acid, if it is blue , it is proved that there are some free amino groups on the peptide chain, and further repeated coupling or modification of the existing condensing agent is required until the resin peptide is detected as yellow by ninhydrin.
  • the resin was washed twice with 1 L of 50% MeOH/DMF and 50% of DCM/DMF, and the resin was washed three times with DCM, washed three times with anhydrous ethanol, and dried under reduced pressure to give Fmoc-Lys(Mtt)-HMP-AM resin.
  • Fmoc-Lys(Mtt)-HMPA-AM resin (0.4 mmol/g) 50 g (20 mmol) was placed in a 2 L bubbling bottle, and 500 mL of hydrazine, ⁇ -dimethylformamide (DMF) was added to swell. The resin was dehydrated for 30 min.
  • the amount of amino acid and condensation reagent is the same as Fmoc-Ser(tBu)-OH, and the protected amino acids are Fmoc-Ser(tBu)-OH, Fmoc-Pro-OH, Fmoc -Ala-OH, Fmoc-Gly-OH, Fmoc-Gln(Trt)-OH, Fmoc
  • the obtained HS-20001 resin peptide was washed with DMF, IPA and DMF in this order, washed twice with anhydrous diethyl ether and dried in vacuo to give an HS-20001 resin peptide.
  • TFA trifluoroacetic acid
  • TFS triisopropylsilyl
  • the lysate was reacted at room temperature for 4 h. After the reaction, the mixture was filtered, and the resin was washed twice with TFA. The filtrate was collected and combined, and evaporated to 1/3 of the original volume. After stirring, a large amount of ice-free ether was added to precipitate HS-20001, and the mixture was centrifuged and vacuum-dried to obtain white HS-20001. Crude.
  • the column was a Denali C-18 column (particle size 8.3 ⁇ , 5x30cm), the column temperature was 45 degrees, the detection wavelength was 220nm, and the flow rate was 120mL/min.
  • the product peak was collected, concentrated under reduced pressure to remove most of the acetonitrile, and then lyophilized to obtain 2.25 g of the finished product of HS-20001, purity 98.5%, yield 22.5%.
  • Example 2 Solid phase synthesis method of HS-20002
  • the amount of amino acid and condensation reagent is the same as Fmoc-Ser(tBu)-OH, and the protected amino acids are Fmoc-Ser(tBu)-OH, Fmoc-Pro-OH, Fmoc-Ala-OH, respectively.
  • HS-20002 resin peptides were washed successively with DMF, IPA and DMF, washed twice with anhydrous diethyl ether and dried in vacuo to give HS-20002 resin peptide.
  • Palmitic acid-Lys Mt ⁇ -HMPA-AM resin removes Mtt protecting group Wash the resin with 200 mL DCM, repeat once, add 1200 mL of 1% TFA/DCM (about 8 times excess of TFA) to remove Mtt protecting group, reaction time lh, cross wash 3 times with 200 mL 5% DIEA/DMF and DMF, DMF wash 3 Times.
  • the amount of amino acid and condensation reagent is the same as Fmoc-Ser(tBu)-OH, and the protected amino acids are Fmoc-Ser(tBu)-OH, Fmoc-Pro-OH, Fmoc-Ala -OH, Fmoc-Gly-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Val-OH, Fm
  • HS-20003 resin peptides were washed successively with DMF, IPA and DMF, washed twice with anhydrous diethyl ether and dried in vacuo to give HS-20003 resin peptide.
  • the Mtt protecting group was removed by 1% TFA/DCM (about 8 times excess of TFA), the reaction time was lh, washed three times with 200 mL of 5% DIEA/DMF and DMF, and washed three times with DMF.
  • the amount of amino acid and condensation reagent is the same as Fmoc-Ser(tBu)-OH, and the protected amino acids are Fmoc-Ser(tBu)-OH, Fmoc-Pro-OH, Fmoc-Ala-OH, Fmoc-Gly-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Val-OH, Fmoc-Leu-
  • HS-20004 resin peptides were washed successively with DMF, IPA and DMF, washed twice with anhydrous diethyl ether and dried in vacuo to give HS-20004 resin peptide.
  • the column was a Denali C-18 column (particle size 8.3 ⁇ , 5 x 30 cm), the column temperature was 45 degrees, the detection wavelength was 220 nm, and the flow rate was 120 mL/min.
  • the product peak was collected, concentrated under reduced pressure to remove most of the acetonitrile, and then lyophilized to obtain 2.25 g of the finished product of HS-20004, with a purity of 98.5% and a yield of 22.5%.
  • Example 5 Solid phase synthesis of HS-20005
  • the preparation method was the same as that in the fourth embodiment except that the amino acid sequence was changed to SEQ ID NO: 5, and the finished product of HS-20005 was 2.5 g, the purity was 98.5%, and the yield was 25%.
  • the preparation method was the same as that in the fourth embodiment except that the amino acid sequence was changed to SEQ ID NO: 6, and the finished product of HS-20006 was 2.25 g, the purity was 98.5%, and the yield was 22.5%.
  • the preparation method is the same as that in the fourth embodiment, except that the amino acid sequence is converted into the SEQ ID.
  • the preparation method was the same as that in the fourth embodiment except that the amino acid sequence was changed to SEQ ID NO: 8, and the finished product of HS-20008 was 2.5 g, the purity was 98.5%, and the yield was 25%.
  • the resin was washed twice with 1 L of 50% MeOH/DMF, 50% DCM/DMF, washed with DCM three times, washed three times with anhydrous ethanol, and dried under reduced pressure to give Fmoc-Lys(Mtt)-HMP-AM resin.
  • Fmoc-Gly-HMP-AM resin (0.4 mmol/g) 50 g (20 mmol) was placed in a 2 L bubbling bottle, and 500 mL of N,N-dimethylformamide (DMF) swelling resin was added for 30 min. Draw off the DMF solution.
  • DMF N,N-dimethylformamide
  • Liraglutide resin peptide was washed successively with DMF, IPA and DMF, washed three times with DCM, washed twice with anhydrous diethyl ether and dried in vacuo to give Liraglutide resin peptide.
  • TFA trifluoroacetic acid
  • TIS triisopropylsilyl
  • Test Example 1 Detection of agonistic activity of compounds on glucagon-like peptide 1 receptor (GLP1R)
  • GLP1R is a receptor coupled to a Gs protein that, when bound to an agonist, causes an increase in intracellular cAMP concentration.
  • HEK293 cells were co-transfected with a luciferase reporter plasmid regulated by GLP1R and cAMP response elements, and luciferase expression was increased when the compound binds to the receptor and activates the receptor.
  • the activation of GLP1R by the compound is known by the detection of luciferase activity.
  • HEK293 cells stably transfected with GLP1R and pCRE-Luc plasmids were seeded into 96-well plates at a density of 40,000/well/100 ⁇ and incubated at 37 ° C for 24 h.
  • Type 2 diabetic db/db mice were divided into 6 groups according to random blood glucose and body weight, 8 rats in each group, respectively, subcutaneous single injection of physiological saline, 3 or 10 g / kg HS series of new compounds (lipalupin, 20001) 20002, 20003, 20004, 2005, 2006, 2007, 2008). Random blood glucose was measured at different times after administration.
  • test animals were db/db mice, introduced into Jackson Company of the United States, and preserved and propagated by Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Certificate No.: SCXK (; Shanghai) 2008-0017, Weight: 35-50g, Gender: Male 85, 86 females, fed by SPF animal room, temperature: 22-24 °C, humidity: 45-80%, light: 150-300Lx, 12h alternate day and night.
  • test drugs were HS-20001, HS-20002, HS-20003, HS-20004, HS-20005, HS-20006, HS-20007, HS-20008, liraglutide, developed by Novo Nordisk. As a positive control).
  • Preparation method Take 2mg/bottle of compound 1 bottle, completely dissolve with double distilled water, prepare 2mg/ml colorless transparent solution, then use physiological saline (sodium chloride injection, Anhui Shuanghe Pharmaceutical Co., Ltd., Batch number: 080728 6C) Dilute to 0.6, 2 g/ml. Blood glucose measurement Roche superior blood glucose meter ACCU-CHEK® Advantage
  • Blank control group saline
  • Liraglutide group 3 g/kg
  • HS-20008 group 3 g/kg test 2 groups: Blank control group: saline
  • Liraglutide group lO g/kg
  • HS-20008 group lO g/kg route and volume of administration: single subcutaneous injection, the administration volume is 5ml/kg.
  • mice 171 db/db mice (85 males and 86 females) were reared in single cages after weaning and fed with high fat diet. After db/db mice were 7 weeks old, randomized and fasting blood glucose were predicted. Eighty db/db mice were selected and the mice were divided into 10 groups according to random blood glucose, fasting blood glucose and body weight.
  • Model control group liraglutide-3 g/kg, HS-20001-3 g/kg, HS-20002-3 g/kg, HS-20003-3 g/kg, HS-20004-3 g/ Kg, HS-20005-3 g/kg, HS-2 0006-3 g/kg, HS-20007-3 g/kg, HS-20008-3 g/kg group.
  • mice predicted random blood glucose, and 80 db/db mice were selected, and the mice were divided into 10 groups according to random blood glucose and body weight.
  • Model control group liraglutide-10 ⁇ 8 / kg, HS-20001- lO g/kg HS-20002- 10 g/kg, HS-20003-l ( ⁇ g/kg, HS-20 004-l ( ⁇ g/kg, HS-20005-10g/kg, HS-20006-10g/kg, HS-20007- lO g/kg, HS-20008- lO g/kg group.
  • Test 1 The effect of single dose of low dose new compound on random blood glucose in db/db mice is shown in Tables 2 and 3.
  • db/db mice were given a subcutaneous injection of 3 g/kg for HS-20002, 20004, 20005, 20006, 20007 or 20008, the random blood glucose level was significantly lower than that of the blank control group (P ⁇ 0.05), and the decrease rate was 24.51. %, 15.00%, 14.00%, 14.25%, 13.98% and 13.90%; 2h and 41 after administration!
  • the random blood glucose level remained lower than that of the blank control group (P ⁇ 0.05), and there was no significant difference between the random blood glucose and the control group at 8 hours after administration.
  • Test 2 The effect of single dose of high dose new compound on random blood glucose in db/db mice is shown in Tables 4 and 5.
  • the random blood glucose level was significantly lower in the db/db mice after a single subcutaneous injection of lO g/kg HS-20002 (P ⁇ 0.01).
  • the low level which was the most obvious at 4h after administration, was 40.67%.
  • the difference was significant (PO.001).
  • the random blood glucose was still significantly higher than that of the control group. low.
  • a single subcutaneous injection of a series of compounds can significantly reduce random blood glucose in db/db mice.
  • HS-20002, 20003, 20004, 20005, 20006, 20007, 20008 can show significant reduction in randomness at a dose of 3 g/kg. Blood sugar effect.
  • HS-20002 and 20004 showed better effects of lowering random blood glucose.
  • the maintenance time of hypoglycemic effect after single subcutaneous injection was dose-related, and the hypoglycemic effect of HS-20002 and 20004 of 3 g/kg could be maintained for more than 4 hours.
  • the hypoglycemic effects of HS-20001, 20002, 20003, 20004, 20005, 20006, 20007, 20008 can be maintained for more than 8 hours.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Diabetes (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Endocrinology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Obesity (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Emergency Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

GLP-1类似物的衍生物或其可药用盐和用途
技术领域
本发明涉及人胰高血糖素样肽 -1 (GLP-1 )类似物的衍生物或其可 药用盐, 本发明提供的 GLP-1类似物的衍生物具有人 GLP-1的功能, 并且与人 GLP-1 相比在体内具有更长时间的半衰期。 本发明还涉及 GLP-1类似物的衍生物或其可药用盐或含有 GLP-1类似物的衍生物或 其可药用盐的药物组合物用于治疗非胰岛素依赖性糖尿病、 胰岛素依 赖性糖尿病、 肥胖症的用途。 背景技术
糖尿病是一种全球性流行病, 是由于体内胰岛素绝对或相对不足 而导致的葡萄糖、 蛋白质、 脂质代谢紊乱的综合症(陈睿杰. 糖尿病治 疗药物的研究现状. 广东药学院学报, 2001, 7(2): 131-133 ) , 根据发病 机理可分为 I型和 II型糖尿病 (Type 2 diabetes mellitus, T2DM, 下同)。 在所有确诊的糖尿病患者中, 90-95%病人患有 T2DM, 并且病人往往 伴随着肥胖、 体能活动不足 (physical inactivity) 、 年龄偏大、 家族糖 尿病史、葡萄糖代谢损伤以及有家族糖尿病史等。 T2DM也是一种进行 性疾病(progressive disease) 。 2000年, 世界卫生组织统计数据估计全 球约有 1.71亿人患有糖尿病; 2005年,美国疾病控制和预防中心(Centers for Disease Control and Prevention)估计约有 0.208亿美国人患有糖尿病, 约占美国人口的 7%; 2006年据国际糖尿病联盟统计, 全球糖尿病患病 人数约为 2.46亿(约占全球总人口的 5.9% )并且 46%的患者年龄在 40-59 岁之间。研究表明, 正常人和 T2DM患者对葡萄糖反应有着非常重要的 区别。 正常人在饭后对血糖升高的反应属于早期胰岛素反应 (early insulin response ) 。
T2DM特征是胰岛素抑制和胰腺 β-细胞功能损伤, 导致胰岛素缺 乏禾口高血糖 ( Ferrannini E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocr Rev. 1998, 19(4):477^90) 。 T2DM病人一般会出现饭后以及空腹高血 糖 (空腹血糖〉 125mg/dL) , 而高血糖主要是由于胰腺 β-细胞不能分 泌足够的胰岛素来补偿周边组织中的胰岛素抑制造成的 (Weyer C, Bogardus C, Mott DM., et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin. Invest. 1999, 104(6): 787-794 ) 。
T2DM的主要危险因素是肥胖, 它对人类健康具有非常大的危害。 患者患上心血管疾病和非正常死亡的危险会变大,同时 T2DM往往与其 它一些高危险性疾病如高血压、 血脂障碍和肥胖等同时存在; 60%的 T2DM病人伴随着微血管并发症者包括视网膜病 (retinopathy) 和神经 病变 ( neuropathy ) 以及与 T2DM有关的心血管病状 ( cardiovascular morbidities)如冠状动脉心脏病、 心肌梗塞和休克等。 在美国, 心血管 疾病 ( cardiovascular disease, CVD )是导致发病和死亡的主要因素, 而 T2DM是大血管 ( macrovascular ) 并发症如动脉粥样硬化 (atherosclerosis) 、 心肌梗塞 (myocardial infarction) 、 休克禾口夕卜周血 管病的发生的主要危险因素(major risk factor) 。 患糖尿病的成人发生 心脏病和休克导致死亡的机率是非糖尿病人的 2-4倍, 此外, 接近 65% 的糖尿病人死于心脏病和休克。
除了对患者生理和身体的伤害之外, T2DM还会给社会造成很大的 经济负担, 据统计, 在美国每年用于治疗糖尿病并发症的费用大约 229 亿美元, 每年用于 T2DM及其并发症的总费用接近 571亿美元, 不列入 预算的花费总额超过 80亿美元。
T2DM 治疗药物向来是人们关注的焦点, 从早期的磺酰类、 双胍 类口服降糖药物到近期的胰岛素增敏剂和 α-糖苷酶抑制剂, 从动物胰 岛素到人胰岛素及各种新剂型的开发, 从单纯的增加胰岛素出发的药 物治疗机理到作用于更早产生胰岛素的新途径。 体重增加是这类口服 或注射降糖药用药后常见的不良反应, 这一点可能降低依从性, 并且 可能增加发生心血管病的风险。 因此开发安全性高, 病人顺从性好, 不良反应低的新型 T2DM治疗药物成为众多研究机构和制药企业争相 研制的热点。
早在 100多年前, Moore就提出十二指肠能分泌刺激胰腺分泌的"化 学兴奋剂", 并试图注射肠道提取物来治疗糖尿病。 随后发现肠道分泌 的体液因子能增强胰腺的内分泌功能, 无论静脉还是口服葡萄糖所引 发的胰岛素分泌,约 50%源于肠道所产生的肽类的刺激作用,为此 Zimz 和 Labarre提出"肠降血糖素 (incretin)"的概念。 至今已分离出 2种肠降血 糖素, 即葡萄糖依赖性胰岛素释放肽 (glucose-dependent insulinotropic polypeptide, GIP)和胰高血糖素样肽 -l(glucagon-like peptide- 1, GLP-1)。 GIP和 GLP-1都是在营养吸收时由特定的肠神经分泌细胞分泌, 其中 GIP由十二指肠和邻近空肠 K细胞(proximal jejunal K cells)分泌, GLP-1 则在 L细胞中合成且主要存在于远端小肠和结肠中 (Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care. 2003, 26(10):2929-2940) o
GLP-1在血桨中以 GLP-l(7-37)和 GLP-1 (7-36)酰胺两种生物活性 形式存在, 这两个多肽仅有一个氨基酸差异, 而且它们的生物作用和 体内半衰期是相同的 ( Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care. 2003, 26(10):2929-2940 ) 。
通常所说的 GLP-1是对 GLP-l(7-37)和 GLP-1 (7-36)酰胺的统称。
GIP 和 GLP-1 在胃肠道释放出来后会很快被体内的二肽基肽酶 -IV(dipeptidyl peptidase-IV , DPP-IV)降解为没有活性的形式, 从而使 GIP和 GLP-1在体内的半衰期非常低(GIP体内半衰期约 5-7min, GLP-1 体内半衰期约 2min) (Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care. 2003, 26(10):2929-2940 ) 。 研 究表明, 大多数降解过程发生在 GIP和 GLP-1进入含有 DPP-IV的血 管时发生, 少量没有被降解的 GLP-1和 GIP会进入胰腺并跟其结合位 点结合而刺激 β-细胞释放胰岛素。 与磺酰脲 (sulfonylureas)通过直接促 进功能 β-细胞释放胰岛素机制不同, 肠促胰岛素效应大部分都是葡萄 糖依赖型。 此外, 一些动物和人体体外试验表明 GLP-1还具有 α-细胞 抑制和降低胰高血糖素过度分泌 (glucagon hypersecretion) 等作用。
虽然 T2DM患者体内血桨 GIP水平正常但其肠促胰岛素作用显著下 降或丧失, 而 GLP-1在 T2DM患者体内水平则是降低, 因此研究基于 GLP- 1的药物更有助于治疗 T2DM。 虽然饭后几 min内 GLP- 1 (7-37)和 GLP-l(7-36)酰胺水平均会提高, 但 GLP-l(7-36)酰胺含量更多些, 因此 内分泌和神经信号传递的双重作用可能在被消化的食物从消化道下端 进入小肠和结肠前已经大大提高了 GLP-1的分泌。 空腹状态下血桨中 GLP-1水平是很低的(约 5-10pmol/L),而在进食后其水平迅速增加(达 到 15-50pmol/L) 。 在 DPP-IV和肾清除双重作用下, 体内循环的 GLP-1 水平迅速降低,而其它的酶如人体中性肽链内切酶 24.11 (human neutral endopeptidase 24-11 ) 等是否也对 GLP-1活性的丧失起决定性的作用的 研究工作正在进行中。 由于 GLP-1在 2位氨基酸是丙氨酸, 是 DPP-IV的 良好的底物, 更容易降解为无活性的肽段。 实际上, 体内 DPP-IV才是 肠促胰岛素活性丧失的主要原因, 实验表明 DPP-IV基因被沉默的小鼠 体内 GLP-1水平显著提高, 增加了胰岛素的分泌。 正是在 DPP-IV作用 下, 体内完整且具有生物活性的 GLP-1仅仅为血桨 GLP-1总含量的 10-20% ( Deacon CF, Nauck MA, Toft-Nielsen M, et al. Both subcutaneously and intravenously administered glucagon-like peptide 1 are rapidly degraded from the NH2-terminus in type 2-diabetic patients and in healthy subjects. Diabetes. 1995, 44(9): 1126-1131 ) 。
GLP-1 和 GIP 通过与结构完全不同的 G-蛋白偶联受体
(G-protein-coupled receptors, GPCRs)结合而发挥各自作用。 GIP受体大 部分是由胰岛 β-细胞表达, 少部分在脂肪组织和中枢神经系统表达。 与此相反, GLP-1受体则主要是在胰岛 α-和 β-细胞以及周缘组织包括 中枢和周围神经系统、 脑、 肾、 肺和胃肠道等中表达。 两个肠促胰岛 素在 β-细胞中的激活会导致 cAMP和胞内钙水平的迅速增加, 从而导 致其以葡萄糖依赖方式向胞外分泌, 持续的肠促胰岛素受体信号传递 跟蛋白激酶 A相关, 会导致基因转录、 增加胰岛素的生物合成并且刺 激 β-细胞的增殖 (Gallwitz B. Glucagon-like peptide- 1 -based therapies for the treatment of type 2 diabetes mellitus. Treat Endocrinol. 2005, 4(6):361-370) 。 GLP-1和 GIP受体的激活也可以抑制啮齿目动物和人 类胰岛中 β-细胞凋亡同时增加其存活率(Li Y, Hansotia T, Yusta B,et al. Glucagon-like peptide- 1 receptor signaling modulates beta cell apoptosis. J Biol Chem. 2003, 278(1): 471478 ) 。 与 GLP-1受体表达相一致的是 GLP-1 也可以抑制胰高血糖素分泌、 胃排空和食物摄入, 同时通过神 经机制 (neural mechanism)增强对葡萄糖的降解。 需要注意的是, 跟其 它胰岛素分泌反应相同, GLP-1 对葡萄糖分泌的作用是胰高血糖素依 赖性的, 而由于低血糖作用而引起胰高血糖素反调节释放
( counter-regulatory release of glucagon ) 的胰高血糖素作用艮卩使在 GLP-1药理学浓度下仍然得到了完全保留。
内源性 GLP-1和 GIP在葡萄糖体内平衡中发挥的重要生理学作用 已经通过使用受体拮抗剂或在基因敲除小鼠中进行了深入研究。 急性 GLP-1或 GIP的拮抗作用减少了啮齿目动物体内胰岛素的分泌并且增 加了血桨葡萄糖含量。 同样, GIP或 GLP-1受体失活突变小鼠同样有 缺陷型葡萄糖刺激胰岛素分泌和损伤性葡萄糖耐受性。 GLP-1 还具有 空腹血糖调节功能, 因为 GLP-1作用的急性拮抗或遗传破坏会导致啮 齿目动物空腹葡萄糖水平的提高; 同时, GLP-1 是人体内葡萄糖控制 的基础, 对拮抗 Exendin(9-39)的研究表明 GLP-1作用被破坏后会造成 缺陷性葡萄糖刺激胰岛素分泌 (defective glucose- stimulated insulin secretion) 、 减少葡萄糖清除率、 增加胰高血糖素水平和加快胃排空作 用。此夕卜, GLP-1的生理作用 (Deacon CF. Therapeutic strategies based on glucagon-like peptide 1. Diabetes. 2004, 53(9):2181-2189 ) 还包括: (1)帮 助组织血糖吸收, 介导葡萄糖依赖型胰岛素分泌; ( 抑制餐后胰高血 糖素分泌, 降低肝糖释放; ( 调节胃排空, 防止食物在肠道吸收时葡 萄糖的过度循环; (4)抑制食物摄入 (如食欲) 。 此外动物试验还表明 GLP-1的一个生理学作用是稳定体内胰腺 β-细胞数量。
因为 GLP-1和 GIP在控制血糖等多方面具有良好作用, 特别是其 不产生低血糖和延缓胃排空控制体重的特点引起了众多科学家的兴 趣。人们开始尝试研究基于 GLP-1和 GIP药物治疗 T2DM。众所周知, T2DM病人缺乏或丧失了肠促胰岛素效应, 其中一个原因是 T2DM病 人体内 GIP的肠促胰岛素作用大大减弱;同时, T2DM患者体内 GLP-1 水平很低,且因饮食刺激产生的 GLP-1水平显著减少(Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide- 1 in type 2 diabetic patients. J Clin Endocrinol Metab. 2001, 86(8):3717-3723 )。因为 T2DM患者体内 GLP-1作用得到 了部分保留, 旨在增强 T2DM患者体内肠促胰岛素效应的药物研究方 向之一就是 GLP-1增效剂。
GLP-1类似物与内源性 GLP或 GIP—样, 可以以葡萄糖依赖型的 方式刺激体内胰岛素的分泌, 同时抑制胰高血糖素的体内释放。 此外
GLP-1 类似物对以下症状具有作用: (1)低血糖。 与其它促分泌药物不 同, GLP-1 类似物由于以一种葡萄糖依赖方式促进体内胰岛素分泌, 因此其降血糖作用具有自限性, 在大剂量时一般不会引起严重的低血 糖。 尽管有文献报告 GLP-1可以将血糖降低到正常水平以下, 但该效 应短暂, 而且被认为是 GLP-1促胰岛素分泌作用的自然结果。 由于胰 岛素的灭活需要一定时间, 因此当因血糖浓度降低, GLP-1 的刺激作 用减弱而没有新胰岛素分泌的时候, 原有的胰岛素仍在起作用。 总之, GLP-1 可以使血糖暂时降低到正常水平之下, 但不会引起严重和持久 的低血糖。 (2)对饱食和体重的作用。 除了直接降低血糖之外, GLP-1 还可以降低食物的摄入量, 这在啮齿类动物和人身上都得到了验证。 这样可以通过降低体重间接控制血糖水平。 GLP-1 还有潜在的抑制胃 泌素和进食刺激的胃酸分泌的作用, 这些效果表明 GLP-1可能还具有 预防消化道溃疡的作用。 GLP-1的作用机制使其不但可以成为理想的 2 型糖尿病患者的治疗药物, 还可以成为肥胖型糖尿病患者的治疗药物。
GLP-1 可以增强病人的饱食感、 减少食物摄入和保持体重或减肥; ( 维持 β-细胞健康。 一些研究提示 GLP-1可以预防由糖耐量异常到糖尿 病的转化, 还有一些文献报告了 GLP-1类化合物对实验动物胰岛 β细 胞的生长和增殖具有直接的作用, 而且有实验发现 GLP-1可以促进胰 腺干细胞向功能性 β细胞的分化。 这些结果暗示 GLP-1具有保护胰岛 及延缓糖尿病进展的功能, 可以保持 β-细胞的形态和功能, 同时减少 其凋亡; (4)对餐后高血糖的作用。 这一现象代表了 T2DM治疗的一种 新方向。 由于一些口服药物和外源胰岛素不能抑制或减少 T2DM患者 胰高血糖素的过高分泌, GLP-1 类似物可以可能通过直接抑制胰高血 糖素释放或因促进胰岛素分泌而产生旁分泌抑制作用而对胰高血糖素 高分泌产生影响。 通过这两个机制可以有效减少餐后高血糖现象; 同 时, 保持 β-细胞功能也可能对长期控制餐后高血糖有作用。
同时 GLP-1类似物是通过皮下注射服用,不需要计算碳水化合物的 量来估计最佳的药物用量, 也不需要对血糖进行自行监测, 使这类药 物的使用比胰岛素更加方便。
天然 GLP-1多种功效的证实为 T2DM的治疗带来了新希望, 但是, 人体天然的 GLP-1很不稳定, 可被二肽基肽酶 IV(DPP-IV)降解, 半衰期 仅为 l~2min。若采用天然 GLP-1来降低血糖,需持续静脉输注或持续皮 下注射, 临床可行性较差。 面对这种情况, 人们不断探索, 希望能找 到延长 GLP-1作用时间的方法。 因此开发长效的 GLP-1类似物或其衍生 物, 成为医药界关注的重要领域。
Exenatide是合成的 Exendin-4, 由礼来公司和 Amylin公司合作开 发,商品名 Byetta®, FDA和 EMEA已经批准其上市,用于治疗 T2DM。 它在序列上与哺乳动物 GLP-1有 50%同源性且其与 GLP-1受体亲和位 点 艮 GLP-1 相 以 ( Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide- 1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006, 368(9548): 1696-1705 ) , 由蜥 蜴特有的基因编码; 与 GLP-1相比, Exenatide将 GLP-1第 2位丙氨酸 替换成甘氨酸,有效的抑制了 DPP-IV酶解,在体内半衰期约 60-90min ( Kolterman OG, Kim DD, Shen L, et al. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes melllitus. Am Health Syst Pharm. 2005, 62(2): 173-181 ) , 单次皮下注射 后 Exenatide在体内浓度持续增加, 2h左右可以在血桨中达到最大浓 度, 可维持 4-6h (Nielsen LL, Baron AD. Pharmacology of exenatide (synthetic exendin-4) for the treatment of type 2 diabetes. Curr Opin Investig Drugs. 2003, 4(4):401-05 ) 。 需要注意的是 Exenatide的代谢不 发生在肝脏中, 而主要经肾小球过滤后经蛋白酶降解。
Exenatide具有特殊的葡萄糖调节活性, 包括葡萄糖依赖型增强胰 岛素分泌作用、 葡萄糖依赖型抑制不正确过高胰高血糖素分泌作用、 减缓胃排空和减少食物摄入等作用。 体内和体外糖尿病模型研究还发 现, Exenatide还具有储存第一阶段 (first-phase ) 胰岛素分泌、 促进 β- 细胞增殖和胰岛素从其前体细胞再生的作用。
为了达到较好的血糖控制, 每天需要两次注射 Exenatide, 这给病 人带来了很大的不便。 再者 Exenatide还具有轻微至中等反胃 (约 40% 病人会有此反应) 、 腹泻和呕吐 (少于 15%的病人会有这两种反应) ; Exenatide治疗的病人中约 50%会产生抗体,虽然这些抗体不会影响药效 或引起其它临床作用。 最近又发现 6例服用 Byetta后发生出血或坏死性 胰腺炎症状的情况。
CJC-1131是 ConjuChem Biotechnologies Inc开发的一种肽酶抑制型 GLP-1类似物, 将 GLP-1序列中 2位的 Ala替换成了 D-Ala, 用以增强抵 抗 DPP-IV酶解的能力, 其结构中包含一个具有反应活性的链接剂 (reactive linker) 以便于其通过共价(非可逆)方式结合到血清白蛋白 上 ( Kim JG, Baggio LL, Bridon DP, et al. Development and characterization of a glucagon-like peptide- 1 albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo. Diabetes. 2003, 52(3):751-759 ),产生的 GLP-1-血清白蛋白复合物保留了 GLP-1的活性, 同时增加了对 DPP-IV酶解的稳定性, 延长了体内作用时间, 其血桨清 除半衰期约 20天。
已经进行的一项研究发现, CJC- 1131 -血清白蛋白复合物与用人类 重组胰腺 GLP-1受体转染的中国仓鼠卵巢细胞结合时 Ki约为 12nM (GLP-1的 Ki为 5.2nM) ; 同时该复合物活化 cAMP的 EC5。为 11-13ηΜ, EC5。与 GLP-1相似。现有文献表明, 该结合分子可以降低血糖正常和高 血糖小鼠餐后血糖浓度, 而且试验表明 CJC-1131的这一活性作用于 GLP- 1某一功能性受体上,同时在小鼠中 CJC- 1131还具有减缓胃排空和 抑制食物摄入等作用。
CJC-1131已经完成了部分 II期临床试验。 2005年 9月, ConjuChem 对已有的试验结果分析后认为 CJC-1131可能不适合慢性剂量策略 (chronic dosing regimens) , 因而暂停了 CJC-1131的临床研究。 目前 CJC-1131临床试验仍未重新启动。
Albugon ( albumin-GLP-1 ) 是由葛兰素史克在 Human Genome Sciences Inc授权下开发的一种长效 T2DM治疗药物,它是 GLP-1(带增 加对 DDP-IV抗性的突变:)和白蛋白的融合体。 它在猴子体内的半衰期 为 3天。 其基本的研发思路是将重组 GLP-1与血清白蛋白偶联后形成 一个复合物, 这样便显著增加了其体内半衰期。 服用 Albugon后有效 降低了小鼠血糖水平、 增加了胰岛素分泌、 减缓了胃排空和减少食物 摄入等 ( Baggio LL, Huang Q, Brown TJ, et al. A Recombinant Human Glucagon-Like Peptide (GLP)- 1 -Albumin Protein (Albugon) Mimics Peptidergic Activation of GLP- 1 Receptor-Dependent Pathways Coupled With Satiety, Gastrointestinal Motility, and Glucose Homeostasis. Diabetes. 2004, 53(9):2492- 2500) 。 目前 Albugon正在进行 III期临床试验。
WO9808871公开了一种在 GLP-l(7-37)的基础上进行脂肪酸修饰 的 GLP-1衍生物, 使得 GLP-1在体内的半衰期得到大大增强。 WO9943705公开了一种在 GLP-1的 N端进行化学修饰的衍生物,但是有 文献报道在 N端的氨基酸进行修饰会造成整个 GLP-1衍生物的活性大 大降低 (J. Med. Chem. 2000, 43, 1664 1669 ) 。 另外 CN200680006362、 CN200680006474 、 WO2007113205 、 CN200480004658 、 CN200810152147、 WO2006097538等专利也公开了一系列经化学修饰 或氨基酸替换得到的 GLP-1类似物或其衍生物,其中最具有代表性的是 诺和诺德公司开发的 liraglutide, 已经完成了 III期临床。 Liraglutide是一 种 GLP-1衍生物, 其结构中含有序列与人源 GLP-1具有 97%同源性的 GLP- 1类似物, 该类似物与棕榈酸共价连接构成了 Liraglutide[, Liraglutide结构中的棕榈酸以非共价形式连接到血清白蛋白上, 这一结 构特征决定了它会缓慢的从注射位点释放,在不改变其 GLP-1活性基础 上延长了体内循环半衰期; 同时结构中的棕榈酸会形成一定空间位阻, 从而防止 DPP-IV的降解作用, 减少了肾脏清除作用。 由于具有以上特 性, Liraglutide在通过皮下注射之后在人体内的半衰期约 10-14h, 理论 上可以一天给药一次, 每天剂量为 0.6-1.8mg。 2009年 4月 23日, 诺和诺 德宣布 EMEA下属的人用药物委员会 (CHMP, Committee for Medicinal products for Human Use)对 Liraglutide评价积极, 并且建议批准其上市。 诺和诺德期待欧盟委员会可以在两个月以内批准其上市申请。 发明内容
本发明的目的在于提供一种活性更高、 体内半衰期更长的 GLP-1 类似物的衍生物, 本发明提供的 GLP-1类似物的衍生物具有人 GLP-1 的功能, 并且与人 GLP-1相比有着较长的体内半衰期。
本发明的另一目的在于提供一种含上述 GLP-1类似物的衍生物或 其可药用盐的药物组合物, 用于治疗胰岛素依赖性糖尿病、 非胰岛素 依赖性糖尿病和肥胖病。
本发明的目的是通过以下技术方案来达到的。 本发明提供一种含 有氨基酸序列通式为 (I ) 的 GLP-1类似物的衍生物或其可药用盐,
Xi-X2-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Xio-Ser-X12-X13-X14-Glu-Xi6-Xi 7-Ala-X 19-X2o-X2 i-Phe-Ile-X24-Trp-Leu-X27-X28"X29"X30"X31 -X32-X33-X34-
X35-X36-X37-X38-X39-LyS
(I )
其中所述 GLP-1 类似物的衍生物具有一个结构通式为 Ri CH^-CO-的亲脂性取代基, 选自 CH3-或者 HOOC- , n为 8-25之 间的整数? Xl、 X2、 Xl0、 Xl2、 Xl3、 Xl4、 Xl6、 Xl7、 Xl9、 20、 21、 X24、 X27、 X28、 X29、 30、 X;31、 X;32、 X;33、 X;34、 X;35、 X;36、 X;37、 38、 X39各自独立的选自任意天然的氨基酸或非天然氨基酸或由其组成的 肽段。
所述的 GLP-1类似物是指以人 GLP-K 7-37 )肽为母体,包括 GLP-1 (7-36 )酰胺和 GLP- 1(7-37), 进行部分氨基酸的替换或在 C端的延伸 得到新的 GLP-1肽, 该 GLP-1肽具备人 GLP-1的功能。
所述的衍生物是指利用亲脂性取代基对 GLP-1类似物的氨基酸残 基进行化学修饰, 典型的修饰方式为形成酰胺或酯, 优选的修饰方式 为形成酰胺。
本发明的一个优选的实施方案是结构通式为 R^CH^u-CO-的亲脂 性取代基和 GLP-1 类似物的氨基酸残基的氨基通过酰胺键的方式连 接, 其中 选自 C¾-或者 HOOC- , n为 8-25之间的整数。
本发明的另一优选的实施方案是结构通式为 R^CH^u-CO-的亲脂 性取代基和 GLP-1类似物 C端 Lys的 ε氨基通过酰胺键的方式连接, 其中 Ri选自 CH3-或者 HOOC- , n为 8-25之间的整数。
本发明的另一优选的实施方案是结构通式为 R^CH^u-CO-的亲脂 性取代基和 GLP-1类似物 C端 Lys的 α氨基通过酰胺键的方式连接, 其中 Ri选自 CH3-或者 HOOC- , n为 8-25之间的整数, 优选 14。
本发明的另一优选的实施方案是 GLP-1类似物的氨基酸序列中 选自 L-His、 D-His; X2选自 Ala、 D-Ala、 Gly、 Val、 Leu、 Ile、 Lys、 Aib; X10选自 Val、 Leu; X12选自 Ser、 Lys、 Arg; X13选自 Tyr、 Gin; X14选自 Leu、 Met; X16选自 Gly、 Glu、 Aib; X17选自 Gln、 Glu、 Lys、 Arg; X19选自 Ala、 Val; X20选自 Lys、 Glu、 Arg; X21选自 Glu、 Leu; X24选自 Val、 Lys; X27选自 Val、 Lys; X28选自 Lys、 Glu、 Asn、 Arg; X29选自 Gly、 Aib; X30选自 Arg、 Gly、 Lys; X31选自 Gly、 Ala, Glu、 Pro. Lys; X32选自 Lys、 Ser; X33选自 Lys、 Ser; X34选自 Gly、 Ala. Sar; X35选自 Gly、 Ala、 Sar; X36选自 Pro、 Gly; X37选自 Pro、 Gly; X38选自 Pro、 Gly; X39选自 Ser、 Tyr。
更进一步的优选的实施方案是 GLP-1 类似物的氨基酸序列选自 SEQ ID NO 1-120。
本发明的另一优选的实施方案是结构通式为 R^Ci^:) n-CO-的亲脂 性取代基与选自序列如 SEQ ID No: 1-120所示的 GLP-1类似物的氨基 酸残基的氨基通过酰胺键的方式连接,其中 选自 CH3 -或者 HOOC- , n为 8-25之间的整数。
更进一步优选的实施方案是结构通式为 R^CH2:) n-CO-的亲脂性取 代基与选自序列如 SEQ ID No: 1-120所示的 GLP-1类似物的 C端 Lys 的 ε氨基通过酰胺键的方式连接, 其中 选自 C¾-或者 HOOC- , n 为 8-25之间的整数。
更进一步优选的实施方案是结构通式为 R^CH^u-CO-的亲脂性取 代基与选自序列如 SEQ ID No: 1-120所示的 GLP-1类似物的 C端 Lys 的 α氨基通过酰胺键的方式连接, 其中 选自 CH3-或者 HOOC- , n 为 8-25之间的整数, 优选 n为 8、 10、 12、 14、 16、 18、 20或 22, 进 一步优选 n为 14。
本发明的另一优选的实施方案是结构通式为 R^CH^u-CO-的亲脂 性取代基与选自序列如 SEQ ID No: 1-20所示的 GLP-1类似物的 C端 Lys的 α氨基通过酰胺键的方式连接, 其中 选自 CH3-或者 HOOC- , n为 8-25之间的整数, 优选 n为 8、 10、 12、 14、 16、 18、 20或 22, 进一步优选 n为 14。
本发明的另一优选的实施方案是结构通式为 R^CH^u-CO-的亲脂 性取代基与选自序列如 SEQ ID No: 1-8所示的 GLP-1类似物的 C端 Lys 的 α氨基通过酰胺键的方式连接, 其中 选自 CH3-, n为 14。
本发明提供的 GLP-1类似物的衍生物属于两性化合物, 所属领域 技术人员通过公知技术可使用酸性或碱性化合物与之反应成盐, 通常 采用的形成酸加成盐的酸为: 盐酸、 氢溴酸、 氢碘酸、 硫酸、 磷酸、 对甲苯磺酸、 甲磺酸、 草 酸、 对溴苯基磺酸、 碳酸、 琥珀酸、 柠檬酸、 苯甲酸、 乙酸; 盐包括 硫酸盐、 焦硫酸盐、 三氟乙酸盐、 亚硫酸盐、 亚硫酸氢盐、 磷酸盐、 磷酸氢盐、 磷酸二氢盐、 偏磷酸盐、 焦磷酸盐、 盐酸盐、 溴化物、 碘 化物、 乙酸盐、 丙酸盐、 辛酸盐、 丙烯酸盐、 甲酸盐、 异丁酸盐、 己 酸盐、 庚酸盐、 丙炔酸盐、 草酸盐、 丙二酸盐、 丁二酸盐、 辛二酸盐、 富马酸盐、 马来酸盐、 丁炔一 1, 4一二酸盐、 己炔一 1, 6—二酸盐、 苯甲酸盐、 氯苯甲酸盐、 甲基苯甲酸盐、 二硝基苯甲酸盐、 羟基苯甲 酸盐、 甲氧基苯甲酸盐、 苯乙酸盐、 苯丙酸盐、 苯丁酸盐、 柠檬酸盐、 乳酸盐、 γ—羟基丁酸盐、 甘醇酸盐、 酒石酸盐、 甲磺酸盐、 丙磺酸盐、 奈一 1一磺酸盐、 奈一 2—磺酸盐、 扁桃酸盐等, 优选三氟乙酸盐。 碱 性物质也可以和 GLP-1类似物的衍生物成盐, 这些碱性物质包括铵, 碱金属或碱土金属的氢氧化物, 以及碳酸盐、 碳酸氢盐, 典型的有氢 氧化钠、 氢氧化钾、 氢氧化铵、 碳酸钠、 碳酸钾等。
根据本发明的含有 GLP-1衍生物的药物组合物可以通过胃肠外给 药的方式用于治疗需要这种治疗的病人。 胃肠外给药途径可选择皮下 注射、 肌肉注射或静脉注射。 本发明的 GLP-1衍生物还可以选择透皮 途径给药, 如经贴剂头皮给药, 可选择离子透入贴剂; 或经透粘膜途 径给药。
本发明提供的 GLP-1衍生物的组合物可以使用制药工业常规的技 术制备, 这些技术包括适当的溶解和混合各组分以得到所需的最终组 合物。 比如将 GLP-1衍生物溶解于一定量的水中, 其中水的量稍小于 所制备的组合物的最终体积。 按需要加入等渗剂、 防腐剂、 表面活性 剂和缓冲剂, 等渗剂例如氯化钠、 甘露醇、 甘油、 丙二醇、 糖或糖醇。 防腐剂例如苯酚、 邻甲酚、 对甲酚、 间甲酚、 甲基对羟基苯甲酸酯、 苄醇。 适宜的缓冲剂如乙酸钠、 碳酸钠、 甘氨酸、 组氨酸、 赖氨酸、 磷酸二氢钠、 磷酸氢二钠、 磷酸钠, 表面活性剂如泊络沙姆、 泊络沙 姆 -188、 泊络沙姆 -407、 吐温 -80、 吐温 -20。 并在需要时用酸如盐酸、 或碱如氢氧化钠水溶液调节溶液的 ρΗ值,最后用水调节溶液体积得到 所需的组分浓度。 除上述成分外, 本发明提供的药物组合物还包括足 够量的碱性氨基酸或具有相同作用的碱性试剂用以减少组合物在贮存 过程中形成的聚集体, 比如赖氨酸、 组氨酸、 精氨酸、 咪唑。
本发明提供的 GLP-1类似物的衍生物采用手工合成的方法, 树脂 为 HMPA-AM resin,所用的氨基酸衍生物的 α氨基由 Fmoc (芴甲酰羰 基) 保护, 半胱氨酸侧链巯基、 谷胺酰胺侧链氨基、 组氨酸侧链咪唑 基由 Trt (三苯甲基) 保护、 精氨酸侧链胍基由 Pbf (2,2,4,6,7-五甲基 二氢化苯并呋喃一 5—磺酰基)保护, 色氨酸侧链吲哚基、 赖氨酸侧链 氨基由 Boc (叔丁氧羰基)保护,苏氨酸侧链羟基、酪氨酸侧链苯酚基、 丝氨酸侧链羟基由 tBu (叔丁基)保护。将所要合成促红细胞生成素模 拟肽衍生物单体肽肽链的 C末端氨基酸的羧基以共价键的结构同高分 子的不溶性树脂(rink amind resin)相连, 然后以此结合在固相载体上 的氨基酸作为氨基组份经过 20%六氢吡啶 /DMF溶液脱去氨基保护基, 然后和过量的氨基酸衍生物反应, 接长肽链。 重复 (缩合→洗涤→去 保护→洗涤→下一轮缩合) 操作, 达到所要合成的肽链长度, 最后用 三氟乙酸:水:乙二硫醇:三异丙基硅垸 = 92.5:2.5:2.5:2.5混合溶液将肽链 从树脂上裂解下来, 经乙醚沉降得到 GLP-1类似物的衍生物粗品, 单 体肽粗品使用 C18反相制备柱分离纯化, 即得所要的 GLP-1类似物的 衍生物。 其中缩合和去保护反应步骤的中间控制采取的是茚三酮检测 的方法, 即当树脂肽链上有游离的氨基时, 经茚三酮试剂检测会显蓝 色, 没有游离氨基时不显色 (茚三酮试剂本身为黄色)。 因此在进行缩 合反应完毕后, 通过茚三酮检测, 如果显黄色 (茚三酮试剂本身的颜 色), 则说明本步偶合完毕可以进行下一个氨基酸的偶合前的脱保护操 作, 如果显蓝色, 则证明肽链上还有些游离氨基, 需进一步的重复偶 合或改变现有的缩合剂直至树脂肽经茚三酮检测为黄色。 具体实施方式
为了更详细地说明本发明, 给出下列实例。 但本发明的范围并非 限定于此。
实施例一 HS-20001的固相合成方法
1、 Fmoc-Lys(Mtt)-HMP-AM树脂的制备
(DHMP-AM树脂的干燥及溶胀
称量真空干燥 24h的 HMP-AM树脂 (0.6mmol/g) 50g (30mmol)g 于 2L鼓泡瓶中,加入 500mL Ν,Ν-二甲基甲酰胺 (DMF)溶胀树脂 30min, 抽掉 DMF溶液, 加入 DMF洗涤 lmin, 重复洗涤 2次。
(2) Fmoc-Lys(Mtt)-HMP-AM树脂的制备
① Fmoc-Lys(Mtt)-OH与 HMP-AM树脂的偶联
用 500mL DCM洗涤树脂 1次,重复 2次,称取 Fmoc-Lys(Mtt)-OH
56.2g (90mmol)和 DIC11.4g (90mmol), 加入 IL DCM溶解, 加入到溶 胀后的 HMP-AM树脂中, 之后加入 DMAP 366mg(3mmol), 反应 24h;
②树脂的洗涤
反应结束后用 DMF、 IPA交替洗涤树脂肽两次, DMF洗涤 3次; ③羟基的封闭
称取乙酸酐 15.3g (150mmol)和 DIEA 19.4g (150mmol)溶解于 IL DMF中, 加入到树脂中, 反应 lOmin;
④树脂的洗涤
依次用 1 L 50% MeOH/DMF、50% DCM/DMF洗涤树脂两次, DCM 洗涤树脂 3 次, 无水乙醇洗涤 3 次, 减压干燥, 得 Fmoc-Lys(Mtt)-HMP-AM树脂。
(3) Fmoc-Lys Mtt)-HMP-AM树脂载量测定
精确称量 5~10 mg树脂定容在 lmL 20%六氢吡啶 /DMF中, 搅匀 20min后, 移液枪取出上清液 50uL溶解在 2.5mL DMF中;
空白样品: 移液枪取出 50uL 20%六氢吡啶 /DMF 溶解在 2.5mL
DMF中;
取代度计算公式如下:
Sub=(AX 51)/(7.8 Xm)
其中, A为 301nm紫外吸光值; m为树脂质量, 单位 mg。
2、 固相合成树脂的干燥及溶胀
称量真空干燥 24h的 Fmoc-Lys(Mtt)-HMPA-AM树脂 (0.4mmol/g) 50g (20mmol)置于 2L鼓泡瓶中, 加入 500mL Ν,Ν-二甲基甲酰胺 (DMF) 溶胀树脂 30min, 抽掉 DMF溶液。
3、 Fmoc-Lys(Mtt)-HMPA-AM树脂脱除 4-甲基三苯甲基 (Mtt)保护 基 用 200mL DCM 洗涤树脂, 重复 1 次, 加入 1200mL 1% TFA/DCM(TFA约 8倍过量:)脱除 Mtt保护基, 反应时间 lh, 用 200mL 5% Ν,Ν-二异丙基乙胺 (DIEA)/DMF和 DMF交叉洗涤 3次, DMF洗涤
3次。
4、 棕榈酸的缩合
称量棕榈酸和 3- (二乙氧基磷酰氧基 )-1,2,3-苯并三嗪 -4-酮 (DEPBT) 各 50mmol, 加入 400mLDMF溶解, 再加入 lOOmmol DIEA室温下搅拌 反应 3min, 将上述溶液加入到树脂中, 37度水浴下通入 N2反应 2h。 反 应结束后抽掉反应液, 依次用 DMF、 异丙醇 (IPA)和 DMF洗涤树脂。
5、 Fmoc-Lys N-ε-棕榈酸) -HMPA-AM 树脂脱除 9-芴甲氧羰基
(Fmoc)保护基
向装有 Fmoc-Lys Mtt)-HMPA-AM 树脂的鼓泡瓶中加入 200mL 20%哌啶 /DMF溶液, 反应 5min后抽出, 再加入 200mL 20%哌啶 /DMF 溶液室温反应 20min。 反应结束后用 DMF 200mL洗涤树脂 4次。
6、 HS-20001肽链部分的固相合成
①缩合 Fmoc-Ser(tBu)-OH
称量 50mmol Fmoc-Ser(tBu)-OH, 加入 125mL 0.4M 1-羟基苯并三 氮唑 (HOBt)/DMF溶解, 再加入 125mL 0.4M Ν,Ν'-二异丙基碳二亚胺 (DIC)/DCM室温下活化反应 lOmin; 将上述溶液加入到树脂中, 室温 下通入 N2反应, 采用茚三酮检测中控反应进行程度。 反应结束后抽掉 反应液, 依次用 DMF、 IPA和 DMF洗涤树脂。
②肽链的延长
按照 HS-20001 肽链部分从氨基端 (N-端:)到羧基端 (C-端:)的顺序 (His-(D)-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Nle-Glu-Gl u-Glu-Ala-Val-Arg-Leu-Phe-Ile-Glu-Trp-Leu-Lys-Gln-Gly-Gly-Pro-Ser-Se r-Gly-Ala-Pro-Pro-Pro-Ser) , 氨 基酸 和 缩 合试 剂 的 用 量 和 Fmoc-Ser(tBu)-OH 相同, 保护氨基酸分别是 Fmoc-Ser(tBu)-OH、 Fmoc-Pro-OH , Fmoc-Ala-OH、 Fmoc-Gly-OH、 Fmoc-Gln(Trt)-OH、 Fmoc-Lys(Boc)-OH 、 Fmoc-Leu-OH 、 Fmoc-Trp(Boc)-OH 、 Fmoc-Glu(OtBu)-OH、 Fmoc-Ile-OH、 Fmoc-Phe-OH、 Fmoc-Arg(Pbf)-OH、 Fmoc-Val-OH、Fmoc-Nle-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Thr(tBu)-OH、 Fmoc-D-Ala-OH和 Fmoc-His(Trt)-OH, 重复缩合和脱保护 2步反应, 合成 HS-20001树脂肽。
③ HS-20001树脂肽的后处理
将②所得到的 HS-20001树脂肽依次用 DMF、 IPA和 DMF洗涤树 脂, 用无水乙醚洗涤 2次后真空干燥, 得 HS-20001树脂肽。
④ HS-20001粗品肽的制备
取干燥后的 HS-20001树脂肽, 加入新鲜配制的 10mL/(g树脂肽:) 的三氟乙酸 (TFA):三异丙基硅垸 (TIS):水 =95:2.5:2.5(体积比)的裂解液, 室温下反应 4h。 反应结束后过滤, 用 TFA洗涤树脂 2次, 收集并合并 滤液, 旋转蒸发至原体积的 1/3, 搅拌下加入到大量冰无水乙醚析出 HS-20001 , 离心后真空干燥得白色 HS-20001粗品。
⑤ HS-20001的反相液相色谱制备
取 HS-20001粗品 10g溶于一定量水中, 后经 0.45μηι膜过滤后用 反相高效液相色谱 (RP-HPLC)进行分离, 流动相为 A 0.1%TFA/H2O, B 0.1%TFA/乙腈,
其中,色谱柱为 Denali C-18柱 (粒径 8.3μηι, 5x30cm),柱温 45度, 检测波长 220nm, 流速 120mL/min。 收集产物峰, 减压浓缩除去大部 分乙腈后冻干得 HS-20001成品 2.25g, 纯度 98.5%, 收率 22.5%。 实施例二 HS-20002的固相合成方法
1、 Fmoc-Lys(Mtt)-HMP-AM树脂的制备
参见实施例一。
2、 固相合成树脂的干燥及溶胀
称量真空干燥 24h的 Fmoc-Lys(Mtt)-HMPA-AM树脂 (0.4mmol/g) 50g (20mmol)置于 2L鼓泡瓶中, 加入 500mL DMF溶胀树脂 30min, 抽掉 DMF溶液。
3、 Fmoc-Lys(Mtt)-HMPA-AM树脂脱除 Mtt保护基
用 200mL DCM洗涤树脂, 重复一次, 加入 1200mL 1% TFA/DCM (TFA 约 8 倍过量:)脱除 Mtt保护基, 反应时间 lh, 用 200mL 5% DIEA/DMF和 DMF交叉洗涤 3次, DMF洗涤 3次。
4、 棕榈酸的缩合 称量棕榈酸和 DEPBT各 50mmol, 加入 400mLDMF溶解, 再加入 lOOmmol DIEA 室温下搅拌反应 3min, 将上述溶液加入到树脂中, 37 度水浴下通入 N2反应 2h。 反应结束后抽掉反应液, 依次用 DMF、 IPA 和 DMF洗涤树脂。
5、 Fmoc-Lys(N-s-棕榈酸) -HMPA-AM树脂脱除 Fmoc保护基 向装有 Fmoc-Lys Mtt)-HMPA-AM 树脂的鼓泡瓶中加入 200mL
20%哌啶 /DMF溶液, 反应 5min后抽出, 再加入 200mL 20%哌啶 /DMF 溶液室温反应 20min。 反应结束后用 DMF 200mL洗涤树脂 4次。
-20002肽链部分的固相合成
Figure imgf000019_0001
称量 50mmol Fmoc-Ser(tBu)-OH, 加入 125mL 0.4M HOBt/DMF溶 解, 再加入 125mL 0.4M DIC/DCM室温下活化反应 lOmin; 将上述溶 液加入到树脂中, 室温下通入 N2反应, 采用茚三酮检测中控反应进行 程度。 反应结束后抽掉反应液, 依次用 DMF、 IPA和 DMF洗涤树脂。
②肽链的延长
按照 HS-20002 肽链部分从氨基端 (N-端:)到羧基端 (C-端:)的顺序 (His-Gly-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Met-Glu-Glu-Gl u-Ala-Val-Arg-Leu-Phe-Ile-Glu-Trp-Leu-Lys-Asn-Gly-Gly-Pro-Ser-Ser-Gl y-Ala-Pro-Pro-Pro-Ser), 氨基酸和缩合试剂的用量和 Fmoc-Ser(tBu)-OH 相同, 保护氨基酸分别是 Fmoc-Ser(tBu)-OH、 Fmoc-Pro-OH、 Fmoc-Ala-OH、 Fmoc-Gly-OH、 Fmoc-Asn( rt)-OH、 Fmoc-Lys(Boc)-OH、 Fmoc-Leu-OH、 Fmoc-Trp(Boc)-OH、 Fmoc-Glu(OtBu)-OH、 Fmoc-Ile-OH、 Fmoc-Phe-OH、 Fmoc-Arg(Pbf)-OH、 Fmoc-Val-OH、 Fmoc-Met-OH、 Fmoc-Gln(Trt)-OH 、 Fmoc-Asp(OtBu)-OH 、 Fmoc-Thr(tBu)-OH 和 Fmoc-His(Trt)-OH, 重复缩合和脱保护两步反应, 合成 HS-20002树脂 肽。
③ HS-20002树脂肽的后处理
将②所得到的 HS-20002树脂肽依次用 DMF、 IPA和 DMF洗涤树 月旨, 用无水乙醚洗涤两次后真空干燥, 得 HS-20002树脂肽。
④ HS-20002粗品肽的制备 取干燥后的 HS-20002树脂肽, 加入新鲜配制的 10mL/(g树脂肽:) 的 TFA:TIS:水: 1,2-乙二硫醇 (EDT)=94:1:2.5:2.5(体积比)的裂解液,室温 下反应 4h。反应结束后过滤,用 TFA洗涤树脂 2次,收集并合并滤液, 旋转蒸发至原体积的 1/3, 搅拌下加入到大量冰无水乙醚析出 HS-20002, 离心后真空干燥得白色 HS-20002粗品。
⑤ HS-20002的反相液相色谱制备
取 HS-20002粗品 10g溶于一定量的水中, 后经 0.45μηι膜过滤后 用反相高效液相色谱 (RP-HPLC)进行分离, 流动相为 A 0.1%TFA/H2O, B 0.1%TFA/乙腈,其中,色谱柱为 Denali C-18柱 (粒径 8.3μηι, 5x30cm), 柱温 45度, 检测波长 220nm, 流速 120mL/min。 收集产物峰, 减压浓 缩除去大部分乙腈后冻干得 HS-20002 成品 2.1g, 纯度 98.%, 收率 20.5%。 实施例三 HS-20003的固相合成方法
1、 Fmoc-Lys(Mtt)-HMP-AM树脂的制备
参见实施例一。
2、 固相合成树脂的干燥及溶胀
称量真空干燥 24h的 Fmoc-Lys(Mtt)-HMPA-AM树脂 (0.4mmol/g) 50g (20mmol)置于 2L鼓泡瓶中, 加入 500mLDMF溶胀树脂 30min, 抽 掉 DMF溶液;
3、 Fmoc-Lys(Mtt)-HMPA-AM树脂脱除 Fmoc保护基
向装有 Fmoc-Lys Mtt)-HMPA-AM 树脂的鼓泡瓶中加入 200mL 20%哌啶 /DMF溶液, 反应 5min后抽出, 再加入 200mL 20%哌啶 /DMF 溶液室温反应 20min。 反应结束后用 DMF 200mL洗涤树脂 4次。
4、 棕榈酸的缩合
称量棕榈酸和 DEPBT各 50mmol, 加入 400mLDMF溶解, 再加入 lOOmmol DIEA 室温下搅拌反应 3min, 将上述溶液加入到树脂中, 37 度水浴下通入 N2反应 2h。 反应结束后抽掉反应液, 依次用 DMF、 IPA 和 DMF洗涤树脂。
5、 棕榈酸 -Lys Mt^-HMPA-AM树脂脱除 Mtt保护基 用 200mL DCM 洗涤树脂, 重复一次, 加入 1200mL 1%TFA/DCM(TFA约 8倍过量)脱除 Mtt保护基,反应时间 lh,用 200mL 5%DIEA/DMF和 DMF交叉洗涤 3次, DMF洗涤 3次。
6、 HS-20003肽链部分的固相合成
①缩合 Fmoc-Ser(tBu)-OH
称量 Fmoc-Ser(tBu)-OH和 DEPBT各 50mmol, 加入一定量 DMF 溶解, 再加入 lOOmmol DIEA室温下活化 3min, 将上述溶液加入到树 脂中, 室温下通入 N2反应, 采用茚三酮检测中控反应进行程度。 反应 结束后抽掉反应液, 依次用 DMF、 IPA和 DMF洗涤树脂。
②肽链的延长
按照 HS-20003 肽链部分从氨基端 (N-端:)到羧基端 (C-端:)的顺序 (His-(D)-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Glu- Glu-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-Arg-Gly-Gly-Pro-Ser-Ser- Gly-Ala-Pro-Pro-Pro-Ser) , 氨 基 酸 和 缩 合 试 剂 的 用 量 和 Fmoc-Ser(tBu)-OH 相同, 保护氨基酸分别是 Fmoc-Ser(tBu)-OH、 Fmoc-Pro-OH , Fmoc-Ala-OH、 Fmoc-Gly-OH、 Fmoc-Arg(Pbf)-OH、 Fmoc-Val-OH、 Fmoc-Leu-OH、 Fmoc-Trp(Boc)-OH、 Fmoc-Ile-OH、 Fmoc-Phe-OH 、 Fmoc-Glu(OtBu)-OH 、 Fmoc-Lys(Boc)-OH 、 Fmoc-Tyr(tBu)-OH 、 Fmoc-Asp(OtBu)-OH 、 Fmoc-Thr(tBu)-OH 、 Fmoc-D-Ala-OH和 Fmoc-His(Trt)-OH, 重复缩合和脱保护两步反应, 合成 HS-20003树脂肽。
③ HS-20003树脂肽的后处理
将②所得到的 HS-20003树脂肽依次用 DMF、 IPA和 DMF洗涤树 月旨, 用无水乙醚洗涤两次后真空干燥, 得 HS-20003树脂肽。
④ HS-20003粗品肽的制备
取干燥后的 HS-20003树脂肽, 加入新鲜配制的 10mL/(g树脂肽:) 的 TFA:TIS:水 =95:2.5:2.5(体积比)的裂解液, 室温下反应 4h。反应结束 后过滤, 用 TFA洗涤树脂 2次, 收集并合并滤液, 旋转蒸发至原体积 的 1/3, 搅拌下加入到大量冰无水乙醚析出 HS-20003 , 离心后真空干 燥得白色 HS-20003粗品。
⑤ HS-20003的反相液相色谱制备 取 HS-20003粗品 lOg溶于一定量的 20%乙酸 /水中搅拌不少于 4h, 后经 0.45μηι膜过滤后用反相高效液相色谱 (RP-HPLC)进行分离, 流动 相为 A 0.1%TFA/H2O, B 0.1%TFA/乙腈, 其中, 色谱柱为 Denali C-18 柱 (粒径 8.3μηι, 5x30cm),柱温 45度,检测波长 220nm,流速 120mL/min。 收集产物峰, 减压浓缩除去大部分乙腈后冻干得 HS-20003成品 2.5g, 纯度 98.5%, 收率 25%。 实施例四 HS-20004的固相合成方法
1、 Fmoc-Lys(Mtt)-HMP-AM树脂的制备
参见实施例一。
2、 固相合成树脂的干燥及溶胀
称量真空干燥 24h的 Fmoc-Lys(Mtt)-HMPA-AM树脂 (0.4mmol/g) 50g (20mmol)置于 2L鼓泡瓶中, 加入 500mL DMF溶胀树脂 30min, 抽掉 DMF溶液;
3、 Fmoc-Lys(Mtt)-HMPA-AM树脂脱除 Fmoc保护基
向装有 Fmoc-Lys Mtt)-HMPA-AM 树脂的鼓泡瓶中加入 200mL 20%哌啶 /DMF溶液, 反应 5min后抽出, 再加入 200mL 20%哌啶 /DMF 溶液室温反应 20min。 反应结束后用 DMF 200mL洗涤树脂 4次。
4、 棕榈酸的缩合
称量棕榈酸和 DEPBT各 50mmol, 加入 400mLDMF溶解, 再加入 lOOmmol DIEA 室温下搅拌反应 3min, 将上述溶液加入到树脂中, 37 度水浴下通入 N2反应 2h。 反应结束后抽掉反应液, 依次用 DMF、 IPA 和 DMF洗涤树脂。
5、 棕榈酸 -Lys Mt^-HMPA-AM树脂脱除 Mtt保护基
用 200mL DCM 洗涤树脂, 重复一次, 力 B入 1200mL
1%TFA/DCM(TFA约 8倍过量)脱除 Mtt保护基,反应时间 lh,用 200mL 5%DIEA/DMF和 DMF交叉洗涤 3次, DMF洗涤 3次。
6、 HS-20004肽链部分的固相合成
①缩合 Fmoc-Ser(tBu)-OH
称量 Fmoc-Ser(tBu)-OH和 DEPBT各 50mmol, 加入一定量 DMF 溶解, 再加入 lOOmmol DIEA室温下活化 3min, 将上述溶液加入到树 脂中, 室温下通入 N2反应, 采用茚三酮检测中控反应进行程度。 反应 结束后抽掉反应液, 依次用 DMF、 IPA和 DMF洗涤树脂。
②肽链的延长
按照 HS-20004 肽链部分从氨基端 (N-端:)到羧基端 (C-端:)的顺序 (His-Aib-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Glu-Glu -Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-Arg-Gly-Gly-Pro-Ser-Ser-Gly- Ala-Pro-Pro-Pro-Ser) , 氨基酸和缩合试剂的用量和 Fmoc-Ser(tBu)-OH 相同, 保护氨基酸分别是 Fmoc-Ser(tBu)-OH、 Fmoc-Pro-OH、 Fmoc-Ala-OH、 Fmoc-Gly-OH、 Fmoc-Arg(Pbf)-OH、 Fmoc-Val-OH、 Fmoc-Leu-OH、 Fmoc-Trp(Boc)-OH、 Fmoc-Ile-OH、 Fmoc-Phe-OH、 Fmoc-Glu(OtBu)-OH 、 Fmoc-Lys(Boc)-OH 、 Fmoc-Tyr(tBu)-OH 、 Fmoc-Asp(OtBu)-OH 、 Fmoc-Thr(tBu)-OH 、 Fmoc-Aib-OH 和 Fmoc-His(Trt)-OH, 重复缩合和脱保护两步反应, 合成 HS-20004树脂 肽。
③ HS-20004树脂肽的后处理
将②所得到的 HS-20004树脂肽依次用 DMF、 IPA和 DMF洗涤树 月旨, 用无水乙醚洗涤两次后真空干燥, 得 HS-20004树脂肽。
④ HS-20004粗品肽的制备
取干燥后的 HS-20004树脂肽, 加入新鲜配制的 10mL/(g树脂肽:) 的 TFA:TIS:水 =95:2.5:2.5(体积比)的裂解液, 室温下反应 4h。反应结束 后过滤, 用 TFA洗涤树脂 2次, 收集并合并滤液, 旋转蒸发至原体积 的 1/3, 搅拌下加入到大量冰无水乙醚析出 HS-20004, 离心后真空干 燥得白色 HS-20004粗品。
⑤ HS-20004的反相液相色谱制备
取 HS-20004粗品 10g溶于一定量的 20%乙酸 /水中搅拌不少于 4h, 后经 0.45μηι膜过滤后用反相高效液相色谱 (RP-HPLC)进行分离, 流动 相为 A 0.1%TFA/H2O, B 0.1%TFA/乙腈, 梯度如下:
其中,色谱柱为 Denali C-18柱 (粒径 8.3μηι, 5x30cm),柱温 45度, 检测波长 220nm, 流速 120mL/min。 收集产物峰, 减压浓缩除去大部 分乙腈后冻干得 HS-20004成品 2.25g, 纯度 98.5%, 收率 22.5%。 实施例五 HS-20005的固相合成
制备方法同实施例四, 不同之处是将氨基酸序列变换为 SEQ ID NO:5, 得 HS-20005成品 2.5g, 纯度 98.5%, 收率 25%。
实施例六 HS-20006的固相合成
制备方法同实施例四, 不同之处是将氨基酸序列变换为 SEQ ID NO:6, 得 HS-20006成品 2.25g, 纯度 98.5%, 收率 22.5%。
实施例七 HS-20007的固相合成
制备方法同实施例四, 不同之处是将氨基酸序列变换为 SEQ ID
NO:7, 得 HS-20007成品 2.1g, 纯度 98%, 收率 20.5%。
实施例八 HS-20008的固相合成
制备方法同实施例四, 不同之处是将氨基酸序列变换为 SEQ ID NO:8, 得 HS-20008成品 2.5g, 纯度 98.5%, 收率 25%。 参考例 Liraglutide的固相合成
1、 Fmoc-Lys(Mtt)-HMP-AM树脂的制备
(DHMP-AM树脂的干燥及溶胀
称量真空干燥 24h的 HMP-AM树脂 (0.6mmol/g) 50g (30mmol)g 于 2L鼓泡瓶中,加入 500mL Ν,Ν-二甲基甲酰胺 (DMF)溶胀树脂 30min, 抽掉 DMF溶液, 加入 DMF洗涤 lmin, 重复洗涤 2次。
(2)Fmoc-Lys(Mtt)-HMP-AM树脂的制备
① Fmoc-Lys(Mtt)-OH与 HMP-AM树脂的偶联
用 500mL DCM洗涤树脂 1次,重复 2次,称取 Fmoc-Lys(Mtt)-OH 56.2g (90mmol)和 DIC11.4g (90mmol), 加入 1L DCM溶解, 加入到溶 胀后的 HMP-AM树脂中,之后加入 DMAP 366mg (3mmol),反应 24h;
②树脂的洗涤
反应结束后用 DMF、 IPA交替洗涤树脂肽 2次, DMF洗涤 3次;
③羟基的封闭 称取乙酸酐 15.3g (150mmol)和 DIEA 19.4g (150mmol)溶解于 1L DMF中, 加入到树脂中, 反应 lOmin;
④树脂的洗涤
依次用 1 L 50%MeOH/DMF、 50%DCM/DMF洗涤树脂 2次, DCM 洗涤树脂 3 次, 无水乙醇洗涤 3 次, 减压干燥, 得 Fmoc-Lys(Mtt)-HMP-AM树脂。
(3)Fmoc-Lys Mtt)-HMP-AM树脂载量测定
精确称量 5~10 mg树脂定容在 lmL 20%六氢吡啶 /DMF中, 搅匀 20min后, 移液枪取出上清液 50uL溶解在 2.5mL DMF中;
空白样品: 移液枪取出 50uL 20%六氢吡啶 /DMF 溶解在 2.5mL
DMF中;
取代度计算公式如下:
Sub=(AX 51)/(7.8 Xm)
其中, A为 301nm紫外吸光值; m为树脂质量, 单位 mg。
2、 固相合成树脂的干燥及溶胀
称量真空干燥 24h的 Fmoc-Gly-HMP-AM树脂 (0.4mmol/g) 50g (20mmol)置于 2L鼓泡瓶中,加入 500mL N,N-二甲基甲酰胺 (DMF)溶胀 树脂 30min, 抽掉 DMF溶液。
3、 Liraglutide肽链部分的固相合成
①缩合 Fmoc-Arg(Pbf)-OH
称量 50mmol Fmoc-Arg(Pbf)-OH, 加入 125mL 0.4M 1-羟基苯并三 氮唑 (HOBt)/DMF溶解, 再加入 125mL 0.4M Ν,Ν'-二异丙基碳二亚胺 (DIC)/DCM室温下活化反应 lOmin; 将上述溶液加入到树脂中, 室温 下通入 N2反应, 采用茚三酮检测中控反应进行程度。 反应结束后抽掉 反应液, 依次用 DMF、 IPA和 DMF洗涤树脂;
②肽链的延长
按照 Liraglutide 肽链部分从羧基端 (C-端:)到氨基端 (N-端:)的顺序 (His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln -Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-Arg-Gly-Arg-Gly), 氨基酸和 缩合试剂的用量和 Fmoc-Arg(Pbf)-OH 相同, 保护氨基酸分别是 Fmoc-Arg(Pbf)-OH ^ Fmoc-Val-OH、 Fmoc-Leu-OH、 Fmoc-Trp(Boc)-OH、 Fmoc-Ala-OH、 Fmoc-Ile-OH、 Fmoc-Phe-OH、 Fmoc-Glu(OtBu)-OH、 Fmoc-Lys(Mtt)-OH 、 Fmoc-Gln(Trt)-OH 、 Fmoc-Tyr(tBu)-OH 、 Fmoc-Ser(tBu)-OH 、 Fmoc-Asp(OtBu)-OH 、 Fmoc-Thr(tBu)-OH 、 Fmoc-His(Trt)-OH, 重复缩合和脱保护两步反应, 合成 Liraglutide前体 肽;
③ Liraglutide前体肽中 Mtt保护基的脱除
用 200mL DCM 洗涤树脂, 重复一次, 加入 1200mL 1% TFA/DCM(TFA约 8倍过量:)脱除 Mtt保护基, 反应时间 lh,重复 1次, 用 200mL 5%N,N-二异丙基乙胺 (DIEA)/DMF和 DMF交叉洗涤 3次, DMF洗涤 3次;
④棕榈酸修饰 Liraglutide前体肽
称量 50mmol Fmoc-Glu-OtBu, 加入 125mL 0.4M 1-羟基苯并三氮 唑 (HOBt)/DMF 溶解, 再加入 125mL 0.4M Ν,Ν'-二异丙基碳二亚胺 (DIC)/DCM室温下活化反应 lOmin; 将上述溶液加入到树脂中, 室温 下通入 N2反应, 采用茚三酮检测中控反应进行程度。 反应结束后抽掉 反应液, 依次用 DMF、 IPA和 DMF洗涤树脂;
加入 1 L 20%PIP/DMF脱除 Fmoc保护基 5min, 抽干, 再加入 1 L
20% PIP/DMF脱除 Fmoc保护基 20min,抽干,用 DMF洗涤树脂 4次; 称量棕榈酸和 3- (二乙氧基磷酰氧基 )-1,2,3-苯并三嗪 -4-酮 (DEPBT) 各 50mmol, 加入 400mLDMF溶解, 再加入 lOOmmol DIEA室温下搅拌 反应 3min, 将上述溶液加入到树脂中, 37度水浴下通入 N2反应 2h。 反 应结束后抽掉反应液。
4、 Liraglutide树脂肽的后处理
将 ( 所得到的 Liraglutide树脂肽依次用 DMF、 IPA和 DMF洗涤, 用 DCM洗涤 3次、无水乙醚洗涤 2次后真空干燥, 得 Liraglutide树脂 肽。
5、 Liraglutide粗品肽的制备
取干燥后的 Liraglutide树脂肽, 加入新鲜配制的 lOml^g树脂肽:) 的三氟乙酸 (TFA):三异丙基硅垸 (TIS):水 =95:2.5:2.5(体积比)的裂解液, 室温下反应 4h。 反应结束后过滤, 用 TFA洗涤树脂 2次, 收集并合并 滤液, 旋转蒸发至原体积的 1/3, 搅拌下加入到大量冰无水乙醚析出 Liraglutide, 离心后真空干燥得白色 Liraglutide粗品。
6、 Liraglutide的反相液相色谱制备
取 Liraglutide粗品 10g溶于一定量 NH4HC03溶液中,后经 0.45μηι 膜过滤后用反相高效液相色谱 (RP-HPLC)进行分离, 流动相为 A 0.1%TFA/H2O, B 0.1%TFA/乙腈, 其中, 色谱柱为 Denali C-18柱 (粒径 8.3μηι, 5x30cm), 柱温 45度, 检测波长 220nm, 流速 120mL/min。 收 集产物峰, 减压浓缩除去大部分乙腈后冻干得 Liraglutide成品 1.25g, 纯度 98 %, 收率 12.5%。 试验例一: 检测化合物对胰高血糖素样肽 1 受体 (GLP1R) 的激 动活性
GLP1R是与 Gs蛋白偶联的受体, 当受体与激动剂结合时会导致 细胞内 cAMP浓度升高。 本实验在 HEK293细胞中共转染 GLP1R和 cAMP反应元件调控的荧光素酶报告基因质粒,当化合物与受体结合并 激活受体时, 荧光素酶表达就会增加。 通过对荧光素酶活性的检测即 可获知化合物对 GLP1R的激活状况。
Figure imgf000027_0002
Figure imgf000027_0001
1. 将稳定转染 GLP1R和 pCRE-Luc质粒的 HEK293细胞以 4 万个 /孔 /100 μΐ的密度种入 96孔板, 在 37°C孵育 24h。
2. 加入一定浓度梯度的化合物(每个浓度为 3复孔)或阳性药, 在 37°C孵育 5h。 溶剂 DMSO为阴性对照。
3. 每孔取出 50μ1培养基,加入 50μ1荧光素酶底物,振荡 10min。
4. 取出 80μ1反应液加入到白色的 96孔板中, 在 Invision酶标 实验结果: 同阳性化合物利拉鲁肽 (liraglutide) 相比, 本发明化 合物 HS-20001与其活性相当,而 HS-20002—— 20008显示了更好的激 动活性。 表 1. 系列化合物合物 EC5Q值列表:
95 %可信限 最大反应率 化合物 EC50 (nM) (nM) ( % )
9.726e-012至
利拉鲁肽 0.014707 2.223e-011 96.84616
7.6757e-012至
HS-20001 0.013552 2.3963e-011 98.11013
1.2036e-012至
HS-20002 0.0014145 1.6623e-012 87.99447
4.9657e-013至
HS-20003 0.00071876 1.0404e-012 87.86082
2.1453e-013至
HS-20004 0.00037259 6.4710e-013 90.81368
7.3567e-012至
HS-20005 0.00023552 2.2346e-011 89.13468
1.3581e-012至
HS-20006 0.00064358 1.4523e-012 87.4281
4.1354e-013至
HS-20007 0.00054921 1.2514e-012 87.0389
2.2436e-013至
HS-20008 0.00021002 6.0245e-013 88.4628 试验例二、 体内活性测试
将 2型糖尿病 db/db小鼠根据随机血糖和体重分为 6组, 每组 8 只, 分别皮下单次注射生理盐水、 3或 lO g/kg HS系列新化合物 (利拉 鲁肽、 20001、 20002、 20003、 20004、 2005、 2006、 2007、 2008)。 于 给药后不同时间测定小鼠随机血糖。
受试动物为 db/db小鼠, 引种于美国 Jackson公司, 由中国科学院 上海药物研究所保种和繁殖, 合格证号: SCXK (;沪 )2008-0017, 体重: 35-50g, 性别: 雄性 85只、 雌性 86只, 经 SPF级动物房饲养, 温度: 22— 24°C, 湿度: 45 -80%, 光照: 150— 300Lx, 12h昼夜交替。
受试药物为 HS-20001、 HS-20002、 HS-20003、 HS-20004、 HS-20005、 HS-20006, HS-20007, HS-20008, 利拉鲁肽 (liraglutide, 诺和诺德公 司开发, 作为阳性对照)。
配制方法: 取 2mg/瓶的化合物 1 瓶, 用双蒸水完全溶解, 配成 2mg/ml的无色透明溶液, 然后用生理盐水 (氯化钠注射液, 安徽双鹤 药业有限责任公司, 批号: 080728 6C)稀释至 0.6、 2 g/ml。 血糖测定 使用罗氏优越型血糖仪 ACCU-CHEK® Advantage
剂量设置与组别
试验 1组:
空白对照组: 生理盐水
利拉鲁肽组: 3 g/kg
HS-20001组: 3 g/kg
HS-20002组: 3 g/kg
HS-20003组: 3 g/kg
HS-20004组: 3 g/kg
HS-20005组: 3 g/kg
HS-20006组: 3 g/kg
HS-20007组: 3 g/kg
HS-20008组: 3 g/kg 试验 2组: 空白对照组: 生理盐水
利拉鲁肽组: lO g/kg
HS-20001组: lO g/kg
HS-20002组: lO g/kg
HS-20003组: lO g/kg
HS-20004组: lO g/kg
HS-20005组: lO g/kg
HS-20006组: lO g/kg
HS-20007组: lO g/kg
HS-20008组: lO g/kg 给药途径和容积: 单次皮下注射给药, 给药容积为 5ml/kg。
试验方法
2型糖尿病 db/db小鼠的筛选、 分组和给药
试验 1组:
171只 db/db小鼠 (;雄性 85只、 雌性 86只:), 断奶后单笼饲养, 喂 以高脂饲料。 db/db小鼠满 7周龄后预测随机和空腹血糖, 挑选发病的 80只 db/db小鼠, 根据随机血糖、 空腹血糖和体重将小鼠分为 10组。 分别为模型对照组、 利拉鲁肽 -3 g/kg、 HS-20001-3 g/kg、 HS-20002-3 g/kg、 HS-20003-3 g/kg、 HS-20004-3 g/kg、 HS-20005-3 g/kg、 HS-2 0006-3 g/kg、 HS-20007-3 g/kg、 HS-20008-3 g/kg组。
试验 2组:
db/db小鼠预测随机血糖,挑选发病的 80只 db/db小鼠,根据随机 血糖、 和体重将小鼠分为 10组。 分别为模型对照组、 利拉鲁肽 -10μ8/ kg、 HS-20001- lO g/kg HS-20002- 10 g/kg、 HS-20003-l(^g/kg、 HS-20 004-l(^g/kg、 HS-20005- 10 g/kg、 HS-20006- 10 g/kg、 HS-20007- lO g/ kg、 HS-20008- lO g/kg组。 每组小鼠 8只, 雌雄各半。 各组动物分别单次皮下注射给予受试 物或溶剂对照, 于给药后 1、 2、 4、 8h及 24h测定随机血糖, 并计算 血糖下降率; 血糖下降率 = (对照组血糖一给药组血糖) /对照组血糖 X 100%。
试验结果
试验 1: 低剂量新化合物单次给药对 db/db小鼠随机血糖的影响 结果见表 2、 3。 db/db小鼠单次皮下注射 3 g/kg HS-20002、 20004、 20005、 20006、 20007或 20008后 lh时, 随机血糖值比空白对照组明 显下降 (P<0.05), 下降率分别为 24.51%、 15.00%、 14.00%、 14.25%、 13.98%和 13.90%; 给药后 2h和 41!时, 随机血糖值保持较低的水平, 与空白对照组相比, 差异明显 (P<0.05), 至给药后 8h, 随机血糖与对照 组无显著差别。 小鼠皮下注射 3 g/kg HS-20003后 lh, 随机血糖值比 空白对照组明显下降 (PO.05), 达 17.33%, 给药 2、 4和 8h时, 随机血 糖与对照组无显著差别。 db/db小鼠单次皮下注射 3 g/kg HS-20001后, 随机血糖值与空白对照组相比有所下降, 但没有显著性差异。 利拉鲁 肽组小鼠给药后, 随机血糖值未见明显下降。
Figure imgf000031_0001
(mmol/L, X士 s, n=8)
给药后时间 (h)
组别 给药前
1 2 4 8 对照 25.14±1.09 23.66+0.73 22.63±0.97 22.00+1.00 25.39+1.08 利 拉 鲁 肽
25.11+2.33 21.78±2.31 23.15+2.62 21.56±1.37 23.93+2.09
-3 g/kg
Η8-20001-3μ
25.21+1.44 20.34+2.29 19.84+1.76 20.74±2.51 24.29+1.60 g/kg
Η8-20002-3μ
25.25±1.57 17.86+1.90* 19.56+0.90* 18.10+0.79** 24.19±1.79 g/kg
Η8-20003-3μ
25.16+1.49 19.56+1.19* 19.44+1.48 19.63±1.12 22.59+1.05 g/kg
Η8-20004-3μ
25.11±1.63 20.11+1.28* 18.81+1.50* 17.98±1.38* 23.30+1.47 g/kg
HS-20005-3 g
25.21+1.56 20.11±1.19* 18.96+1.50* 18.98±1.48* 22.36+1.67
/kg
HS-20006-3 g
25.11+1.49 20.36+1.25* 19.91+1.70* 19.58±1.54* 24.30+1.50
/kg
HS-20007-3 g 25.16±1.63 20.43±1.19* 19.81+1.610* 20.98+2.38* 23.42+1.38 /kg
HS-20008 g
25.11±1.58 20.56+1.30* 20.81+1.70* 19.30+2.02* 22.41+1.51
/kg
P<0.05, P<0.01, 与空白对照组相比
给药后时间 (h)
组别
1 2 4 8 利拉鲁肽
7.98% -2.32% 1.99% 5.76%
-3 g/kg
HS-20001 -3
14.05% 12.32% 5.74% 4.33% g/kg
HS-20002-3
24.51% 13.54% 17.73% 4.73% g/kg
HS-20003-3
17.33% 14.09% 10.80% 11.03% g/kg
HS-20004-3
15.00% 16.85% 18.30% 8.22% g/kg
HS-20005-3
14.00% 12.87% 10.53% 8.02% g/kg
HS-20006-3
14.25% 13.12% 10.86% 8.14% g/kg
HS-20007-3
13.98% 11.85% 9.30% 6.54% g/kg
HS-20008-3
13.90% 11.62% 8.90% 6.25%
试验 2: 高剂量新化合物单次给药对 db/db小鼠随机血糖的影响 结果见表 4、 5。 db/db小鼠单次皮下注射 lO g/kg HS-20002后 lh 时, 随机血糖值比空白对照组明显下降 (P<0.01),给药后 2、 4和 8h时, 随机血糖值保持较低的水平, 其中给药后 4h 最为明显, 其降幅达 40.67%, 与空白对照组相比, 差异明显 (PO.001), 至给药后 24h, 随机 血糖与对照组相比, 仍明显较低。 小鼠皮下注射 l(^g/kg HS-20003后 lh, 随机血糖值比空白对照组明显下降 (P<0.01), 达 23.62%, 给药 2、 4和 8h时, 随机血糖仍保持在较低的水平, 至给药后 24h与对照组无 显著差别。 db/db小鼠单次皮下注射 lO g/kg HS-20001后 2h时, 随机 血糖值与空白对照组相比明显下降, 给药后 4和 8h时血糖仍保持在较 低的水平, 至给药后 24h, 随机血糖与空白对照组相比, 没有显著性差 异。 HS-20004, 20005、 20006、 20007、 20008-l(^g/kg 组小鼠给药后 lh时随机血糖即明显下降, 其降幅达 36.20%, 此后的 2、 4和 8h时,
5 血糖仍保持在较低的水平, 给药后 24h, 随机血糖与空白对照组相比, 没有显著性差异。 利拉鲁肽组小鼠给药后, 随机血糖值未见明显下降。
表 4 : 新化合物单次给药后当天对 db/db 小鼠随机血糖的影响
士 s, n=8)
组别 给药前 给药后时间 (h)
1 2 4 8 24 对照 23.08±1.37 27.15±1.51 28.49+1.58 30.76±1.15 29.96+0.88 27.75+1.64 利拉鲁肽
23.19±1.35 28.59±1.50 28.89±1.17 28.55±1.31 31.84+0.65 27.78±1.14
-10μ8^§
HS-20001- 20.94+1.57 20.20±1.78
23.16±1.57 23.90+1.79 23.86+1.87* 24.60+1.92 l(Wkg
HS-20002- 19.74+1.16 20.31+2.01 18.25±1.98
23.15±1.32 22.55+2.20** 22.60+1.46* l(Wkg
HS-20003- 20.74+0.98 21.10+0.80 19.54±1.80
23.20±1.36 22.14+2.16** 24.45+1.55 l(Wkg 组别 给药前 给药后时间 (h)
1 2 4 8 24
23.08±1.3 28.98士 对照 30.76+1.15 30.29+0.98 29.90+0.89 31.04±0.94
7 1.62
HS-20004- 23.18±1.6 19.63+1.81 ** 21.86+1.66** 21.44+1.68* 23.80+1.46** 25.64士 l(Wkg 5 1.85
HS-20005- 23.64±1.3 19.39+1.61 ** 21.56+1.56** 21.49±1.34* 23.46+1.51 25.52士 l(Wkg 5 1.68
HS-20006- 23.54±1.3 19.52+1.72** 21.43+1.49** 21.53±1.67* 23.39±1.55 25.59士 l(Wkg 9 1.74
HS-20007- 23.56+1.4 19.41+1.54** 21.84+1.57** 21.64+1.56* 23.81+1.67** 25.51+ l(Wkg 2 1.53
HS-20008- 23.49+1.4 19.38+1.83** 21.61+1.68 ** 21.72+1.63* 23.56+1.80** 25.72士 l(Wkg 9 1.69
10
Ρ<0·05, Ρ<0·01, PO.001与空白对照组相比 表 5 :新化合物单次给药后当天 db/db小鼠随机血糖下降率 ( ;%, n=8) 组别 给药后时间 (h)
1 2 4 8 24 利拉鲁肽
-5.29% -1.40% 7.19% -6.26% -0.09% -l(Wkg
HS-20001
11.97% 26.50% 34.34% 20.36% 11.35% -l(Wkg
HS-20002
27.30% 28.71% 40.67% 24.74% 18.56% -l(Wkg
HS-20003
23.62% 25.93% 36.49% 26.12% 11.89% -l(Wkg
HS-20004
36.20% 27.82% 28.30% 23.32% 11.52% -l(Wkg
HS-20005
37.58% 28.32% 29.12% 24.10% 12.46% -l(Wkg
HS-20006
38.12% 27.66% 29.78% 23.72% 13.66% -l(Wkg
HS-20007
36.72% 25.43% 26.54% 23.03% 12.16% -l(Wkg
HS-20008
35.49% 25.79% 27.33% 22.57% 14.58% -l(Wkg
试验结论:
系列化合物单次皮下注射后可明显降低 db/db 小鼠的随机血糖, HS-20002、 20003、 20004、 20005、 20006、 20007、 20008在剂量为 3 g/kg 时即可表现出明显的降低随机血糖作用。其中 HS-20002和 20004表现 出较好的降随机血糖作用, 单次皮下注射后的降血糖作用维持时间与 剂量相关, 3 g/kg 的 HS-20002和 20004的降随机血糖作用可维持 4h 以上, 而剂量为 lO g/kg时, HS-20001、 20002、 20003、 20004、 20005、 20006、 20007、 20008的降随机血糖作用均可维持 8h以上。

Claims

权利要求书
1、 一种含有氨基酸序列通式为 (I) 的 GLP-1类似物的衍生物 或其可药用盐:
Xi-X2-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Xio-Ser-X12-X13-X14-Glu-Xi6-Xi 7-Ala-X 19-X20-X2 i-Phe-Ile-X24-Trp-Leu-X27-X28-X29"X3o_X31 -X32-X33-X34-
X35-X36-X37-X38-X39-LyS
(I)
其特征在于所述 GLP-1 类似物的衍生物具有一个结构通式为 Ri CH^-CO-的亲脂性取代基, 选自 CH3-或者 HOOC-, n为 8-25之间 的整数? Xl、 X2、 Xl0、 Xl2、 Xl3、 Xl4、 Xl6、 Xl7、 Xl9、 20、 21、 24、 X27、 X28、 X29、 X;30、 X;31、 ^32 X3 ^34 ^35 36、 X;37、 ¾8 X39各 自独立的选自任意天然的氨基酸或非天然氨基酸或由其组成的肽段。
2、 根据权利要求 1 所述的 GLP-1 类似物的衍生物或其可药用 盐,其特征在于结构通式为 ^!^^^^的亲脂性取代基和 GLP-1类似 物的氨基酸残基的氨基是通过酰胺键的方式连接, 其中 选自 CH3 -或 者 HOOC-, n为 8-25之间的整数。
3、 根据权利要求 2 所述的 GLP-1 类似物的衍生物或其可药用 盐,其特征在于结构通式为 ^!^^^^的亲脂性取代基和 GLP-1类似 物 C端 1^8£氨基通过酰胺键的方式连接, 其中 选自 CH3 -或者 HOOC-, n为 8-25之间的整数。
4、 根据权利要求 2 所述的 GLP-1 类似物的衍生物或其可药用 盐,其特征在于结构通式为 ^!^^^^的亲脂性取代基和 GLP-1类似 物 C端 Lys的 α氨基通过酰胺键的方式连接, 其中 选自 CH3 -或者 HOOC-, n为 8-25之间的整数。
5、 根据权利要求 4 所述的 GLP-1 类似物的衍生物或其可药用 盐, 其特征在于 选自 CH3-, n选自整数 8、 10、 12、 14、 16、 18、 20 或 22。
6、 根据权利要求 5 所述的 GLP-1 类似物的衍生物或其可药用 盐, 其特征在于 选自 CH3-, n选自整数 14。
7、 根据权利要求 4 所述的 GLP-1 类似物的衍生物或其可药用 盐, 其特征在于 选自 HOOC-, n选自整数 14、 16、 18、 20或 22。
8、 根据权利要求 7 所述的 GLP-1 类似物的衍生物或其可药用 盐, 其特征在于 选自 HOOC-, n选自整数 14。
9、 根据权利要求 1-8任意一项所述的 GLP-1类似物的衍生物或 其可药用盐, 其特征在于 选自 L-His、 D-His; X2选自 Ala、 D-Ala、 Gly、 Val、 Leu、 Ile、 Lys、 Aib; X10选自 Val、 Leu; X12选自 Ser、 Lys、 Arg; X13选自 Tyr、 Gin; X14选自 Leu、 Met; X16选自 Gly、 Glu、 Aib; Xi7选自 Gln、 Glu、 Lys、 Arg; X19选自 Ala、 Val; X20选自 Lys、 Glu、 Arg; X21选自 Glu、 Leu; X24选自 Val、 Lys; X27选自 Val、 Lys; X28选自 Lys、 Glu、 Asn、 Arg; X29选自 Gly、 Aib; X30选自 Arg、 Gly、 Lys; X31 选自 Gly、 Ala, Glu、 Pro, Lys; X32选自 Lys、 Ser; X33选自 Lys、 Ser; X34选自 Gly、 Ala、 Sar; X35选自 Gly、 Ala、 Sar; X36选自 Pro、 Gly; X37 选自 Pro、 Gly; X38选自 Pro、 Gly; X39选自 Ser、 Tyr。
10、 根据权利要求 9所述的 GLP-1类似物的衍生物或其可药用 盐,其特征在于 GLP-1类似物的氨基酸序列选自 SEQ ID NO: 1至 SEQ
Figure imgf000036_0001
11、 根据权利要求 10所述的 GLP-1类似物的衍生物或其可药用 盐,其特征在于结构通式为 ^!^:) n-CO-的亲脂性取代基和选自序列如 SEQ ID NO: 1-120所示的 GLP-1类似物的氨基酸残基的氨基是通过酰 胺键的方式连接, 其中 选自 CH3-或者 HOOC- , n为 8-25之间的整数。
12、 根据权利要求 11所述的 GLP-1类似物的衍生物及其可药用 盐,其特征在于结构通式为 ^!^:) n-CO-的亲脂性取代基和选自序列如 SEQ ID NO: 1-120所示的 GLP-1类似物 C端 Lys的 ε氨基通过酰胺键的方 式连接, 其中 选自 CH3-或者 HOOC-, n为 8-25之间的整数。
13、 根据权利要求 12所述的 GLP-1类似物的衍生物及其可药用 盐, 其特征在于 选自 CH3-或者 HOOC-, n选自整数 8、 10、 12、 14、 16、 18、 20或 22。
14、 根据权利要求 12所述的 GLP-1类似物的衍生物及其可药用 盐, 其特征在于 选自 C¾-, n选自整数 14。
15、 根据权利要求 14所述的 GLP-1类似物的衍生物或其可药用 盐, 其特征在于 GLP-1类似物的序列选自 SEQ ID ΝΟ:1 至 SEQ ID NO:20 o
16、 根据权利要求 11所述的 GLP-1类似物的衍生物或其可药用 盐,其特征在于结构通式为!^^!^:^-^)-的亲脂性取代基和选自序列如 SEQ ID NO 1-20所示的 GLP-1类似物 C端 Lys的 α氨基通过酰胺键的方 式连接, 其中 选自 CH3-或者 HOOC-, n为 8-25之间的整数。
17、 根据权利要求 16所述的 GLP-1类似物的衍生物及其可药用 盐, 其特征在于 选自 CH3-或者 HOOC-, n选自整数 8、 10、 12、 14、 16、 18、 20或 22。
18、 根据权利要求 17所述的 GLP-1类似物的衍生物及其可药用 盐, 其特征在于 选自 C¾-, n选自整数 14。
19、 根据权利要求 18所述的 GLP-1类似物的衍生物及其可药用 盐,其特征在于 GLP-1类似物的序列选自 SEQ ID ΝΟ:1至 SEQ ID NO:8, 其中 选自 C¾-, n选自整数 14。
20、 根据权利要求 19所述的 GLP-1类似物的衍生物及其可药用 盐, 其特征在于 GLP-1类似物的序列选自 SEQ ID NO:4。
21、 一种药物组合物, 包含:
( 1 ) 治疗量的如权利要求 1-20任一项所述的 GLP-1
Figure imgf000038_0001
生物或其可药用盐, 和
(2) 药学可接受的赋形剂或药物载体。
22、 根据权利要求 1-20任一项所述的 GLP-1的类似物的衍生物 或其可药用盐或者根据权利要求 21所述的药物组合物在制备用于治疗 非胰岛素依赖性糖尿病、 胰岛素依赖性糖尿病或肥胖症的药物中的用 途。
PCT/CN2010/075548 2009-07-30 2010-07-29 Glp-1类似物的衍生物或其可药用盐和用途 WO2011012080A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
DK10803913.2T DK2460825T3 (en) 2009-07-30 2010-07-29 DERIVATIVE OF GLP-1 ANALOGUE OR ITS PHARMACEUTICAL SALTS AND THEIR APPLICATIONS
CN201080021344.0A CN102421797B (zh) 2009-07-30 2010-07-29 Glp-1类似物的衍生物或其可药用盐和用途
BR112012001915-5A BR112012001915B1 (pt) 2009-07-30 2010-07-29 derivado do análogo de glp-1 ou um sal farmaceuticamente aceitável do mesmo, composição farmacêutica e uso dos mesmos
MX2012001186A MX2012001186A (es) 2009-07-30 2010-07-29 Derivado de analogo glp-1 o su sal farmaceutica y su uso.
ES10803913.2T ES2694394T3 (es) 2009-07-30 2010-07-29 Derivado del analógico del GLP-1 o sus sales farmacéuticas y su uso
US13/388,056 US20120129768A1 (en) 2009-07-30 2010-07-29 Glp-1 analogues and their pharmaceutical salts and uses
RU2012105355/10A RU2565536C2 (ru) 2009-07-30 2010-07-29 Производное аналога glp-1 или его фармацевтически приемлемые соли и их применение
PL10803913T PL2460825T3 (pl) 2009-07-30 2010-07-29 Pochodne analogu glp-1 lub jego farmaceutyczne sole i ich zastosowanie
EP10803913.2A EP2460825B1 (en) 2009-07-30 2010-07-29 Derivative of glp-1 analogue or its pharmaceutical salts and their use
JP2012521950A JP5768048B2 (ja) 2009-07-30 2010-07-29 Glp−1類縁体の誘導体、その薬学的に許容される塩およびその用途
AU2010278466A AU2010278466B2 (en) 2009-07-30 2010-07-29 Derivative of GLP-1 analogue or its pharmaceutical salts and their use
CA2769229A CA2769229C (en) 2009-07-30 2010-07-29 Derivative of glp-1 analogue or its pharmaceutical salts and their use
ZA2012/00239A ZA201200239B (en) 2009-07-30 2012-01-12 Derivative of glp-1 analogue or its pharmaceutical salts and their use
US13/362,593 US8614182B2 (en) 2009-07-30 2012-01-31 GLP-1 analogues and their pharmaceutical salts and uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910165559.9 2009-07-30
CN2009101655599A CN101987868B (zh) 2009-07-30 2009-07-30 Glp-1类似物的衍生物或其可药用盐和用途

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/388,056 A-371-Of-International US20120129768A1 (en) 2009-07-30 2010-07-29 Glp-1 analogues and their pharmaceutical salts and uses
US13/362,593 Continuation US8614182B2 (en) 2009-07-30 2012-01-31 GLP-1 analogues and their pharmaceutical salts and uses

Publications (1)

Publication Number Publication Date
WO2011012080A1 true WO2011012080A1 (zh) 2011-02-03

Family

ID=43528782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075548 WO2011012080A1 (zh) 2009-07-30 2010-07-29 Glp-1类似物的衍生物或其可药用盐和用途

Country Status (16)

Country Link
US (1) US20120129768A1 (zh)
EP (1) EP2460825B1 (zh)
JP (1) JP5768048B2 (zh)
CN (2) CN101987868B (zh)
AU (1) AU2010278466B2 (zh)
BR (1) BR112012001915B1 (zh)
CA (1) CA2769229C (zh)
DK (1) DK2460825T3 (zh)
ES (1) ES2694394T3 (zh)
HK (1) HK1154027A1 (zh)
MX (1) MX2012001186A (zh)
PL (1) PL2460825T3 (zh)
PT (1) PT2460825T (zh)
RU (1) RU2565536C2 (zh)
WO (1) WO2011012080A1 (zh)
ZA (1) ZA201200239B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018121702A1 (zh) * 2016-12-30 2018-07-05 江苏恒瑞医药股份有限公司 一种glp-1类似物的药物组合物及其制备方法
CN110540587A (zh) * 2019-08-30 2019-12-06 杭州诺泰澳赛诺医药技术开发有限公司 一种有效提高合成肽纯化收率的色谱方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102229668A (zh) * 2011-06-03 2011-11-02 浙江贝达药业有限公司 一种glp-1衍生物及其应用
CN103566354B (zh) * 2012-07-25 2017-12-05 江苏豪森药业集团有限公司 含有glp‑1类似物的衍生物或其可药用盐的药物组合物
CN103861089B (zh) * 2012-12-17 2019-06-28 江苏豪森药业集团有限公司 Glp-1类似物的衍生物或其可药用盐注射液及其制备方法和用途
EP3433267B1 (en) * 2016-03-23 2022-08-24 Bachem Holding AG Method for preparing glucagon-like peptides
TW201821434A (zh) * 2016-10-10 2018-06-16 法商賽諾菲公司 製備包含親脂性修飾的離胺酸側鏈的肽的方法
JP7203025B2 (ja) * 2016-12-10 2023-01-12 バイオコン・リミテッド リラグルチドの合成
CN109806386A (zh) * 2017-11-20 2019-05-28 江苏恒瑞医药股份有限公司 Fxr激动剂与glp-1类似物的药物组合物和用途
CN113214382B (zh) * 2018-04-19 2024-01-19 杭州先为达生物科技股份有限公司 酰化的glp-1衍生物
CN110386974B (zh) * 2018-04-19 2022-12-09 杭州先为达生物科技有限公司 Glp-1衍生物及其治疗用途
WO2020104833A1 (en) * 2018-11-19 2020-05-28 4P-Pharma Composition and methods for regulating chondrocyte proliferation and increasing of cartilage matrix production
AU2020256648A1 (en) * 2019-04-11 2021-11-04 Jiangsu Hansoh Pharmaceutical Group Co., Ltd. Multi-receptor agonist and medical use thereof
CN111825758A (zh) * 2019-04-19 2020-10-27 上海翰森生物医药科技有限公司 Glp-1和gip共激动剂化合物
CN110551203B (zh) * 2019-09-25 2023-02-10 成都奥达生物科技有限公司 一种艾塞那肽类似物
CN110684082B (zh) * 2019-10-08 2021-12-10 江苏诺泰澳赛诺生物制药股份有限公司 Gip和glp-1双激动多肽化合物及药学上可接受的盐与用途
CN114617956B (zh) * 2020-12-10 2023-10-03 江苏中新医药有限公司 一种高效降糖的蛋白质药物
CN114685643A (zh) * 2020-12-29 2022-07-01 苏州康宁杰瑞生物科技有限公司 一种人glp-1多肽变体及其应用
CN114685644A (zh) * 2020-12-29 2022-07-01 苏州康宁杰瑞生物科技有限公司 一种人glp-1多肽变体及其应用
AU2022386489A1 (en) * 2021-11-12 2024-05-23 Fujian Shengdi Pharmaceutical Co., Ltd. Pharmaceutical composition of glp-1 receptor and gip receptor dual agonist, and use thereof
CN115785249B (zh) * 2022-10-13 2023-07-21 江苏师范大学 一类glp-1类似物及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424286A (en) * 1993-05-24 1995-06-13 Eng; John Exendin-3 and exendin-4 polypeptides, and pharmaceutical compositions comprising same
US5545618A (en) * 1990-01-24 1996-08-13 Buckley; Douglas I. GLP-1 analogs useful for diabetes treatment
WO1998008871A1 (en) 1996-08-30 1998-03-05 Novo Nordisk A/S Glp-1 derivatives
WO1999043705A1 (en) 1998-02-27 1999-09-02 Novo Nordisk A/S N-terminally truncated glp-1 derivatives
US20030199672A1 (en) * 1996-08-30 2003-10-23 Knudsen Liselotte Bjerre Derivatives of GLP-1 analogs
WO2006097538A1 (en) 2005-03-18 2006-09-21 Novo Nordisk A/S Extended glp-1 compounds
WO2007113205A1 (en) 2006-04-03 2007-10-11 Novo Nordisk A/S Glp-1 peptide agonists
WO2007124461A2 (en) * 2006-04-20 2007-11-01 Amgen Inc. Glp-1 compounds

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ512657A (en) * 1999-01-14 2004-01-30 Amylin Pharmaceuticals Inc Glucagon suppression
US7399489B2 (en) * 1999-01-14 2008-07-15 Amylin Pharmaceuticals, Inc. Exendin analog formulations
PT1180121E (pt) * 1999-05-17 2004-03-31 Conjuchem Inc Peptidos insulinotropicos de longa duracao
EP1076066A1 (en) * 1999-07-12 2001-02-14 Zealand Pharmaceuticals A/S Peptides for lowering blood glucose levels
US7307148B2 (en) * 2004-04-23 2007-12-11 Conjuchem Biotechnologies Inc. Method for purification of albumin conjugates
DE102004043153B4 (de) * 2004-09-03 2013-11-21 Philipps-Universität Marburg Erfindung betreffend GLP-1 und Exendin
CN101125207B (zh) * 2006-11-14 2012-09-05 上海华谊生物技术有限公司 带有聚乙二醇基团的艾塞丁或其类似物及其制剂和用途

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545618A (en) * 1990-01-24 1996-08-13 Buckley; Douglas I. GLP-1 analogs useful for diabetes treatment
US5424286A (en) * 1993-05-24 1995-06-13 Eng; John Exendin-3 and exendin-4 polypeptides, and pharmaceutical compositions comprising same
WO1998008871A1 (en) 1996-08-30 1998-03-05 Novo Nordisk A/S Glp-1 derivatives
CN1232470A (zh) * 1996-08-30 1999-10-20 诺沃挪第克公司 Glp-1衍生物
US20030199672A1 (en) * 1996-08-30 2003-10-23 Knudsen Liselotte Bjerre Derivatives of GLP-1 analogs
WO1999043705A1 (en) 1998-02-27 1999-09-02 Novo Nordisk A/S N-terminally truncated glp-1 derivatives
WO2006097538A1 (en) 2005-03-18 2006-09-21 Novo Nordisk A/S Extended glp-1 compounds
CN101128214A (zh) * 2005-03-18 2008-02-20 诺和诺德公司 长效glp-1化合物
WO2007113205A1 (en) 2006-04-03 2007-10-11 Novo Nordisk A/S Glp-1 peptide agonists
WO2007124461A2 (en) * 2006-04-20 2007-11-01 Amgen Inc. Glp-1 compounds

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
BAGGIO LL; HUANG Q; BROWN TJ ET AL.: "A Recombinant Human Glucagon-Like Peptide (GLP)-I-Albumin Protein (Albugon) Mimics Peptidergic Activation of GLP-IReceptor-Dependent Pathways Coupled With Satiety, Gastrointestinal Motility, and Glucose Homeostasis", DIABETES, vol. 53, no. 9, 2004, pages 2492 - 2500, XP003004469, DOI: doi:10.2337/diabetes.53.9.2492
CHEN RUIJIE: "Status of research on diabetes drugs", ACADEMIC JOURNAL OF GUANGDONG COLLEGE OF PHARMACY, vol. 7, no. 2, 2001, pages 131 - 133
DEACON CF.: "Therapeutic strategies based on glucagon-like peptide 1", DIABETES, vol. 53, no. 9, 2004, pages 2181 - 2189, XP002524064, DOI: doi:10.2337/diabetes.53.9.2181
DEACON CF; NAUCK MA; TOFT-NIELSEN M ET AL.: "Both subcutaneously and intravenously administered glucagon-like peptide 1 are rapidly degraded from the NH2-terminus in type 2-diabetic patients and in healthy subjects", DIABETES, vol. 44, no. 9, 1995, pages 1126 - 1131, XP002988323, DOI: doi:10.2337/diabetes.44.9.1126
DRUCKER DJ.: "Enhancing incretin action for the treatment of type 2 diabetes", DIABETES CARE, vol. 26, no. 10, 2003, pages 2929 - 2940
DRUCKER DJ; NAUCK MA: "The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes", LANCET, vol. 368, no. 9548, 2006, pages 1696 - 1705, XP025093592, DOI: doi:10.1016/S0140-6736(06)69705-5
FERRANNINI E.: "Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects", ENDOCR REV., vol. 19, no. 4, 1998, pages 477 - 490
GALLWITZ B.: "Glucagon-like peptide-1-based therapies for the treatment of type 2 diabetes mellitus", TREAT ENDOCRINOL., vol. 4, no. 6, 2005, pages 361 - 370
J. MED. CHEM., vol. 43, 2000, pages 1664 - 1669
KIM JG; BAGGIO LL; BRIDON DP ET AL.: "Development and characterization of a glucagon-like peptide-1 albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo", DIABETES, vol. 52, no. 3, 2003, pages 751 - 759, XP008042628, DOI: doi:10.2337/diabetes.52.3.751
KOLTERMAN OG; KIM DD; SHEN L ET AL.: "Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes melllitus", AM HEALTH SYST PHARM., vol. 62, no. 2, 2005, pages 173 - 181
LI Y; HANSOTIA T; YUSTA B ET AL.: "Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis", J BIOL CHEM., vol. 278, no. 1, 2003, pages 471 - 478, XP002247446, DOI: doi:10.1074/jbc.M209423200
NIELSEN LL; BARON AD: "Pharmacology of exenatide (synthetic exendin-4) for the treatment of type 2 diabetes", CURR OPIN INVESTIG DRUGS, vol. 4, no. 4, 2003, pages 401 - 405, XP009075064
TOFT-NIELSEN MB; DAMHOLT MB; MADSBAD S ET AL.: "Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients", J CLIN ENDOCRINOL METAB., vol. 86, no. 8, 2001, pages 3717 - 3723
WEYER C.; BOGARDUS C.; MOTT DM. ET AL.: "The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus", J. CLIN. INVEST., vol. 104, no. 6, 1999, pages 787 - 794

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018121702A1 (zh) * 2016-12-30 2018-07-05 江苏恒瑞医药股份有限公司 一种glp-1类似物的药物组合物及其制备方法
CN110540587A (zh) * 2019-08-30 2019-12-06 杭州诺泰澳赛诺医药技术开发有限公司 一种有效提高合成肽纯化收率的色谱方法

Also Published As

Publication number Publication date
DK2460825T3 (en) 2018-11-19
EP2460825A1 (en) 2012-06-06
RU2012105355A (ru) 2013-09-10
JP2013500278A (ja) 2013-01-07
AU2010278466A1 (en) 2012-03-15
CN101987868B (zh) 2013-09-04
RU2565536C2 (ru) 2015-10-20
AU2010278466B2 (en) 2014-10-30
CN102421797B (zh) 2014-12-31
CN102421797A (zh) 2012-04-18
PT2460825T (pt) 2018-11-23
CA2769229A1 (en) 2011-02-03
EP2460825A4 (en) 2014-03-19
CA2769229C (en) 2019-12-31
CN101987868A (zh) 2011-03-23
MX2012001186A (es) 2012-06-27
BR112012001915A2 (pt) 2016-11-08
HK1154027A1 (en) 2012-04-20
ES2694394T3 (es) 2018-12-20
ZA201200239B (en) 2012-09-26
US20120129768A1 (en) 2012-05-24
JP5768048B2 (ja) 2015-08-26
EP2460825B1 (en) 2018-08-22
PL2460825T3 (pl) 2019-01-31
BR112012001915B1 (pt) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2011012080A1 (zh) Glp-1类似物的衍生物或其可药用盐和用途
JP7386218B2 (ja) グルカゴン及びglp-1共アゴニスト化合物
WO2022111370A1 (zh) 一类glp-1/胰高血糖素受体双重激动剂及其应用
CN104902919B (zh) Glp1/gip双重激动剂或glp1/gip/胰高血糖素三重激动剂
US8614182B2 (en) GLP-1 analogues and their pharmaceutical salts and uses
JP6438563B2 (ja) 新規なエキセナチド類似体及びその用途
JP2017517483A (ja) エキセンジン−4に由来する二重glp−1/グルカゴン受容体アゴニスト
CN110845601B (zh) 不同构型的glp-1类似肽修饰二聚体及其制备方法在治疗ii型糖尿病中的应用
KR20230008846A (ko) 이중 수용체 아고니즘 작용을 갖는 폴리펩티드 유도체 및 그 용도
AU2019259790B2 (en) Glucagon like peptide 1 (GLP-1) fusion peptide coupled cyclic peptide tyrosine tyrosine conjugates and uses thereof
KR20240013798A (ko) 다중 작용제 및 이의 사용
TWI494122B (zh) Glp-1類似物的衍生物或其醫藥用鹽及其用途
CN116120425A (zh) 一种glp-1/gip受体双重激动剂及其应用
CN109694404B (zh) 一种降糖肽及其应用
CN117624333A (zh) 一类GLP-1受体、glucagon受体和GIP受体三激动多肽化合物及其应用
CN117417431A (zh) 一类对glp-1、胰高血糖素和gip受体具有激动活性的多肽及其应用
CN115960258A (zh) 一类GLP-1/glucagon/Y2受体三重激动剂及其应用
JP2012513981A (ja) Glp−1アナログおよびその使用
CN116514952A (zh) 一类glp-1类似物及其应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080021344.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10803913

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 59/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012521950

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2769229

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/001186

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13388056

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010278466

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010803913

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012105355

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2010278466

Country of ref document: AU

Date of ref document: 20100729

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012001915

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012001915

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120127