Nothing Special   »   [go: up one dir, main page]

WO2011090004A1 - Method for manufacturing laminate, and laminate - Google Patents

Method for manufacturing laminate, and laminate Download PDF

Info

Publication number
WO2011090004A1
WO2011090004A1 PCT/JP2011/050680 JP2011050680W WO2011090004A1 WO 2011090004 A1 WO2011090004 A1 WO 2011090004A1 JP 2011050680 W JP2011050680 W JP 2011050680W WO 2011090004 A1 WO2011090004 A1 WO 2011090004A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
device substrate
laminate
support plate
substrate
Prior art date
Application number
PCT/JP2011/050680
Other languages
French (fr)
Japanese (ja)
Inventor
聡 近藤
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201180007092.0A priority Critical patent/CN102725143B/en
Priority to JP2011550901A priority patent/JP5716678B2/en
Priority to KR1020127019623A priority patent/KR101538835B1/en
Publication of WO2011090004A1 publication Critical patent/WO2011090004A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10743Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing acrylate (co)polymers or salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10128Treatment of at least one glass sheet
    • B32B17/10155Edge treatment or chamfering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10293Edge features, e.g. inserts or holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10798Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing silicone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • B32B2037/268Release layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present invention relates to a laminate manufacturing method and a laminate.
  • devices such as solar cells (PV), liquid crystal panels (LCD), and organic EL panels (OLED) have been made thinner and lighter, and substrates used for these devices (hereinafter referred to as “devices”).
  • substrate used for these devices (hereinafter referred to as “devices”).
  • Substrate ”) is becoming thinner.
  • the strength of the device substrate is insufficient due to the thin plate, the handling property of the device substrate is deteriorated in the device manufacturing process.
  • a concave groove may be formed on the outer peripheral surface of the laminate.
  • the outer peripheral surface of the laminate is rounded, a concave groove is formed on the outer peripheral surface of the laminate.
  • the device manufacturing process includes a process of forming a pattern such as wiring or element formation by subjecting the conductive film formed on the surface of the device substrate to a process such as sandblasting or etching. Before this pattern formation step, there is an application step of applying a coating solution such as a resist solution to the surface of the conductive film in order to protect a part of the surface of the conductive film.
  • a coating solution such as a resist solution
  • the coating liquid In the coating process of the device manufacturing process, the coating liquid easily enters the concave groove due to the capillary phenomenon and accumulates easily.
  • the coating liquid accumulated in the groove is not easily removed even by washing, and a residue is likely to remain after drying. Since this residue becomes a dust generation source in the heat treatment process in the device manufacturing process, the dust generation contaminates the inside of the heat treatment process and reduces the yield of devices that are products.
  • the present invention has been made in view of the above problems, and a main object of the present invention is to provide a laminate manufacturing method and a laminate capable of suppressing dust generation in a device manufacturing process.
  • the method for producing a laminate of the present invention includes: A resin layer is interposed between the device substrate and the support plate, the resin layer is detachably adhered to the first main surface of the device substrate, and the laminate block fixed on the support plate has a predetermined size. And at least a part in the circumferential direction of the outer peripheral surface of the laminate block is planarized.
  • the manufacturing method of the laminated body of this invention includes the process of chamfering the corner
  • the planarized part of the outer peripheral surface of the resin layer is substantially parallel to the thickness direction of the resin layer.
  • the device substrate is a glass substrate manufactured by a float process, and includes a step of polishing the second main surface of the device substrate after chamfering the corner portion.
  • the device substrate is preferably a glass substrate having a thickness of 0.03 mm or more and less than 0.8 mm.
  • the resin layer preferably includes at least one selected from the group consisting of an acrylic resin layer, a polyolefin resin layer, a polyurethane resin layer, and a silicone resin layer.
  • the resin layer preferably has a thickness of 5 to 50 ⁇ m.
  • the laminate of the present invention is A resin layer is interposed between the device substrate and the support plate, the resin layer is detachably adhered to the first main surface of the device substrate, and the laminate block fixed on the support plate has a predetermined size. And at least a part in the circumferential direction of the outer peripheral surface of the laminate block is planarized.
  • FIG. 1 is a process diagram of a method for manufacturing a laminate according to the first embodiment of the present invention.
  • FIG. 2 is a partial side view of the laminate block before planarization according to the first embodiment of the present invention.
  • FIG. 3 is a partial side view of the laminate block after planarization according to the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram (1) of the chamfering method according to the first embodiment of the present invention.
  • FIG. 5 is an explanatory diagram (2) of the chamfering method according to the first embodiment of the present invention.
  • FIG. 6 is an explanatory diagram (3) of the chamfering method according to the first embodiment of the present invention.
  • FIG. 7 is a partial side view of the laminated body block after chamfering according to the first embodiment of the present invention.
  • FIG. 8 is a partial side view of the laminated block after polishing in the first embodiment of the present invention.
  • FIG. 9 is a process diagram of a device manufacturing method according to the first embodiment of the present invention.
  • FIG. 10 is a process diagram of the LCD manufacturing method according to the first embodiment of the present invention.
  • FIG. 11 is a process diagram of the method for manufacturing an OLED in the first embodiment of the present invention.
  • FIG. 12 is a partial side view of the laminate block before planarization according to the second embodiment of the present invention.
  • FIG. 13 is a partial side view of the laminated body block before planarization in 3rd Embodiment of this invention.
  • FIG. 1 is a process diagram of a method for manufacturing a laminate according to the first embodiment of the present invention.
  • a resin layer is interposed between a device substrate and a support plate, and the resin layer is detachably adhered to the first main surface of the device substrate and supported.
  • step S11 cutting the laminated body block fixed on the plate into a predetermined size and planarizing at least a part of the outer circumferential surface of the laminated body block in the circumferential direction.
  • the layered product after planarization is used for manufacturing a device as will be described in detail later.
  • the support plate with a resin layer in the laminate after planarization is used until the middle of the device manufacturing process (until the device substrate and the resin layer are peeled off by the peeling operation). After the device substrate and the resin layer are peeled off, the support plate with the resin layer is removed from the device manufacturing process and does not become a member constituting the device.
  • the support plate with a resin layer peeled from the device substrate can be reused in the production process of the laminate. That is, a new device substrate can be laminated on the resin layer of the support plate with a resin layer to obtain a new laminate block.
  • the laminate block before planarization will be described, then the laminate block after planarization will be described, and finally the device manufacturing process will be described.
  • FIG. 2 is a partial side view of the laminate block before planarization in the first embodiment of the present invention.
  • the laminate block 10 before planarization has a resin layer 13 interposed between a device substrate 11 and a support plate 12.
  • the resin layer 13 is detachably adhered to the first main surface 111 of the device substrate 11 and is fixed on the support plate 12.
  • the device substrate 11 has a device member formed on the second main surface 112 to constitute a device.
  • the device member refers to a member constituting at least a part of the device (electronic apparatus). Specific examples include a thin film transistor (TFT) and a color filter (CF). Examples of the device include a solar cell (PV), a liquid crystal panel (LCD), and an organic EL panel (OLED).
  • TFT thin film transistor
  • CF color filter
  • the device include a solar cell (PV), a liquid crystal panel (LCD), and an organic EL panel (OLED).
  • the device member is formed on the second main surface 112 of the device substrate 11 after the outer peripheral surface of the multilayer block 10 is planarized.
  • the type of the device substrate 11 may be a general one, for example, a glass substrate, a resin substrate, or a metal substrate such as a SUS substrate.
  • a glass substrate is preferable. This is because the glass substrate is excellent in chemical resistance and moisture permeability resistance and has a low heat shrinkage rate.
  • As an index of the heat shrinkage rate a linear expansion coefficient defined in JIS R 3102-1995 is used.
  • the device manufacturing process often involves heat treatment, and various inconveniences are likely to occur.
  • the TFT may be excessively misaligned due to thermal contraction of the device substrate 11.
  • the glass substrate is obtained by melting a glass raw material and molding the molten glass into a plate shape.
  • a molding method may be a general one, and for example, a float method, a fusion method, a slot down draw method, a full call method, a rubber method, or the like is used.
  • a glass substrate having a particularly small thickness can be obtained by heating a glass once formed into a plate shape to a moldable temperature and stretching it by means of stretching or the like to make it thin (redraw method).
  • the glass of the glass substrate is not particularly limited, but non-alkali glass, borosilicate glass, soda lime glass, high silica glass, and other oxide-based glass mainly containing silicon oxide are preferable.
  • oxide-based glass a glass having a silicon oxide content of 40 to 90% by mass in terms of oxide is preferable.
  • a glass substrate for a liquid crystal panel is preferably made of glass (non-alkali glass) that does not substantially contain an alkali metal component because elution of the alkali metal component easily affects the liquid crystal.
  • the glass of the glass substrate is appropriately selected based on the type of device to be applied and its manufacturing process.
  • the thickness of the device substrate is not particularly limited, but is usually less than 0.8 mm, preferably 0.3 mm or less, and more preferably 0.15 mm or less. Moreover, it is preferable that it is 0.03 mm or more.
  • the device substrate when the device substrate is a glass substrate, it is usually less than 0.8 mm, preferably 0.3 mm or less, more preferably 0.15 mm or less, from the viewpoint of reducing the thickness and / or weight of the glass substrate. is there.
  • the demand for reducing the thickness and / or weight of the glass substrate cannot be satisfied.
  • the glass substrate can be wound into a roll.
  • the thickness of the glass substrate is preferably 0.03 mm or more for reasons such as easy manufacture of the glass substrate and easy handling of the glass substrate.
  • the resin type of the resin substrate is not particularly limited.
  • Transparent resins include polyethylene terephthalate resin, polycarbonate resin, transparent fluororesin, transparent polyimide resin, polyethersulfone resin, polyethylene naphthalate resin, polyacrylic resin, cycloolefin resin, silicone resin, silicone-based organic-inorganic hybrid resin, organic Examples thereof include polymer / bionanofiber hybrid resins.
  • the opaque resin include polyimide resin, fluorine resin, polyamide resin, polyaramid resin, polyether ether ketone resin, polyether ketone resin, and various liquid crystal polymer resins.
  • the resin substrate may have a functional layer such as a protective layer formed on the surface.
  • the support plate 12 supports and reinforces the device substrate 11 and prevents the device substrate 11 from being deformed, scratched or damaged in the device manufacturing process.
  • the laminated body block 10 having the same thickness as that of the conventional device substrate is adapted to the device substrate having the conventional thickness in the device manufacturing process.
  • One of the purposes of using the support plate 12 is to make the manufacturing technology and manufacturing equipment usable.
  • the thickness of the support plate 12 may be thicker or thinner than the device substrate 11.
  • the thickness of the support plate 12 is selected based on the thickness of the device substrate 11, the thickness of the resin layer 13, and the thickness of the laminated body block 10.
  • the thickness of the support plate 12 is 0.4 mm.
  • the thickness of the glass plate is preferably 0.08 mm or more because it is easy to handle and difficult to break.
  • the type of the support plate 12 may be a general one, for example, a glass plate, a resin plate, a metal plate, or the like.
  • the support plate 12 is preferably formed of a material having a small difference in linear expansion coefficient from the device substrate 11, and more preferably formed of the same material as the device substrate 11. .
  • the difference in average linear expansion coefficient between the device substrate 11 and the support plate 12 at 25 to 300 ° C. is preferably 700 ⁇ 10 ⁇ 7 / ° C. or less, more preferably It is 500 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 300 ⁇ 10 ⁇ 7 / ° C. or less. If the difference is too large, the laminate block 10 may be warped severely or the device substrate 11 and the support plate 12 may be peeled off during heating and cooling in the device manufacturing process. When the material of the device substrate 11 and the material of the support plate 12 are the same, there is no possibility of causing such a problem.
  • the resin layer 13 is fixed on the support plate 12 and is in close contact with the first main surface 111 of the device substrate 11 in a peelable manner.
  • the resin layer 13 prevents the positional deviation of the device substrate 11 until the peeling operation is performed, and easily peels from the device substrate 11 by the peeling operation, and prevents the device substrate 11 and the like from being damaged by the peeling operation.
  • the surface of the resin layer 13 is attached to the first main surface 111 of the device substrate 11 by a force resulting from van der Waals force between solid molecules, not the adhesive force that a general adhesive has. Is preferred. It is because it can peel easily. In this invention, the property which can peel this resin layer surface easily is called peelability.
  • the bonding force of the resin layer 13 to the surface of the support plate 12 is relatively higher than the bonding force of the resin layer 13 to the first main surface 111 of the device substrate 11.
  • bonding of the surface of the resin layer 13 to the surface of the device substrate 11 is referred to as adhesion
  • bonding to the surface of the support plate 32 is referred to as fixing.
  • the thickness of the resin layer 13 is not particularly limited, but is preferably 5 to 50 ⁇ m, more preferably 5 to 30 ⁇ m, and even more preferably 7 to 20 ⁇ m. This is because when the thickness of the resin layer 13 is within such a range, the resin layer 13 and the device substrate 11 are sufficiently adhered. In addition, even if bubbles or foreign substances are present between the resin layer 13 and the device substrate 11, it is possible to suppress the occurrence of distortion defects in the device substrate 11. In addition, if the thickness of the resin layer 13 is too thick, it takes time and materials to form the resin layer 13 and is not economical.
  • the resin layer 13 may consist of two or more layers.
  • the thickness of the resin layer means the total thickness of all the resin layers.
  • the kind of resin forming each layer may be different.
  • the surface tension of the resin layer 13 is preferably 30 mN / m or less, more preferably 25 mN / m or less, and further preferably 22 mN / m or less. Moreover, it is preferable that it is 15 mN / m or more. If the surface tension is in such a range, it can be more easily peeled off from the device substrate 11, and at the same time, the contact with the device substrate 11 is sufficient.
  • the resin layer 13 is preferably made of a material having a glass transition point lower than room temperature (about 25 ° C.) or having no glass transition point. This is because it becomes a non-adhesive resin layer and can be more easily peeled off from the device substrate 11, and at the same time, the contact with the device substrate 11 becomes sufficient.
  • the resin layer 13 is often heat-treated in the device manufacturing process, it is preferable to have heat resistance.
  • the elastic modulus of the resin layer 13 is too high, the adhesion with the device substrate 11 tends to be low. On the other hand, if the elastic modulus of the resin layer 13 is too low, the peelability tends to be low.
  • the type of resin forming the resin layer 13 is not particularly limited.
  • acrylic resin, polyolefin resin, polyurethane resin, and silicone resin can be used. These resins can be used alone, or several kinds of resins can be mixed and used. Of these, silicone resins are preferred. This is because the silicone resin is excellent in heat resistance and peelability.
  • the support plate 12 is a glass plate, it is easy to fix to the support plate 12 by a condensation reaction with the silanol groups on the surface.
  • the silicone resin layer is also preferable in that the peelability does not substantially deteriorate even when it is treated at, for example, about 300 to 400 ° C. for about 1 hour.
  • the resin layer 13 is preferably made of a silicone resin (cured product) used for release paper among silicone resins.
  • a resin layer 13 formed by curing a curable resin composition to be a silicone resin for release paper on the surface of the support plate 12 is preferable because it has excellent peelability.
  • the flexibility is high, even if foreign matter such as bubbles or dust is mixed between the resin layer 13 and the device substrate 11, it is possible to suppress the occurrence of the distortion defect of the device substrate 11.
  • the curable silicone that becomes the silicone resin for release paper is classified into a condensation reaction type silicone, an addition reaction type silicone, an ultraviolet curable type silicone, and an electron beam curable type silicone depending on its curing mechanism. Can do.
  • addition reaction type silicone is preferable. This is because the curing reaction is easy and the degree of peelability is good when the resin layer 13 is formed, and the heat resistance is also high.
  • the addition reaction type silicone is a curable resin obtained from a combination of an organoalkenylpolysiloxane having an unsaturated group such as a vinyl group, an organohydrogenpolysiloxane having a hydrogen atom bonded to a silicon atom, and a catalyst such as a platinum-based catalyst.
  • the composition is a silicone resin that is cured at room temperature or by heating.
  • the curable silicone used as the silicone resin for the release paper is classified into a solvent type, an emulsion type and a solventless type, and any type can be used.
  • a solventless type is preferable. This is because productivity, safety, and environmental characteristics are excellent.
  • it does not contain a solvent that causes foaming at the time of curing when forming the resin layer 13, that is, at the time of heat curing, ultraviolet curing, or electron beam curing.
  • curable silicone used as the silicone resin for release paper specifically, commercially available product names or model numbers are KNS-320A, KS-847 (both manufactured by Shin-Etsu Silicone), TPR6700 (manufactured by GE Toshiba Silicone).
  • KNS-320A, KS-847, and TPR6700 are curable silicones that contain a main agent and a crosslinking agent in advance.
  • the silicone resin forming the resin layer 13 has a property that the components in the silicone resin layer are difficult to migrate to the device substrate 11, that is, low silicone migration.
  • the method of fixing the resin layer 13 on the support plate 12 is not particularly limited, for example, a method of fixing a film-like resin on the surface of the support plate 12 can be mentioned.
  • a surface modification treatment for example, chemical methods (primer treatment) that improve the fixing force chemically such as silane coupling agents, physical methods that increase surface active groups such as flame (flame) treatment, surface treatments such as sandblast treatment Examples thereof include a mechanical processing method for increasing the catch by increasing the roughness.
  • a method of coating the support plate 12 with a curable resin composition that becomes the resin layer 13 may be mentioned.
  • the coating method include spray coating, die coating, spin coating, dip coating, roll coating, bar coating, screen printing, and gravure coating. From such a method, it can select suitably according to a kind to a resin composition.
  • the coating amount is preferably 1 to 100 g / m 2 and more preferably 5 to 20 g / m 2. preferable.
  • the resin layer 13 is formed from a curable resin composition of addition reaction type silicone
  • a curable resin composition composed of a mixture of an alkenyl polysiloxane, an organohydrogenpolysiloxane, and a catalyst is used for the spray coating method described above. It coats on the support plate 12 by a well-known method, and is hardened by heating after that.
  • the heat curing conditions vary depending on the blending amount of the catalyst. For example, when 2 parts by weight of a platinum-based catalyst is blended with respect to 100 parts by weight of the total amount of alkenylpolysiloxane and organohydrogenpolysiloxane, 50 in the atmosphere.
  • the reaction is carried out at a temperature of from ° C to 250 ° C, preferably 100 ° C to 200 ° C. In this case, the reaction time is 5 to 60 minutes, preferably 10 to 30 minutes.
  • the reaction temperature and reaction time as described above are preferable because almost no unreacted silicone component remains in the silicone resin layer. If the reaction time is too long or the reaction temperature is too high, the oxidative decomposition of the silicone resin occurs at the same time, and a low molecular weight silicone component is produced, which may increase the silicone transferability. It is preferable to allow the curing reaction to proceed as much as possible so that an unreacted silicone component does not remain in the silicone resin layer in order to improve the peelability after the heat treatment.
  • the curable resin composition coated on the support plate 12 is heated and cured to form a silicone resin layer.
  • the silicone resin is chemically bonded to the support plate 12 during the curing reaction.
  • the silicone resin layer is bonded to the support plate 12 by the anchor effect. By these actions, the silicone resin layer is firmly fixed to the support plate 12.
  • the method of sticking the resin layer 13 formed on the support to the device substrate 11 so as to be peelable may be a known method.
  • substrate 11 using a roll or a press is mentioned. It is preferable because the resin layer 13 and the device substrate 11 are more closely adhered by pressure bonding with a roll or a press. Further, it is preferable because bubbles mixed between the resin layer 13 and the device substrate 11 are removed relatively easily by pressure bonding with a roll or a press.
  • the resin layer 13 formed on the support and the device substrate 11 are pressure-bonded by a vacuum laminating method or a vacuum press method, it is more preferable because suppression of air bubbles and securing of good adhesion are more preferably performed.
  • press-bonding under vacuum even if minute bubbles remain, there is an advantage that the bubbles do not grow by heating and are less likely to cause a distortion defect of the device substrate 11.
  • the surfaces of the resin layer 13 and the device substrate 11 that are in contact with each other are sufficiently washed and laminated in a clean environment. Even if a foreign substance is mixed between the resin layer 13 and the device substrate 11, the resin layer 13 is deformed and thus does not affect the flatness of the surface of the device substrate 11. Is preferable because it becomes favorable.
  • a groove 15 may be formed on the outer peripheral surface 14 of the laminate block 10 obtained in this way.
  • the device substrate 11 and the support plate 12 are chamfered, or the resin layer 13 is obtained by applying a liquid resin composition to the support plate 12 and heat-curing it.
  • the concave grooves 15 are formed in the outer peripheral surface 14 of the multilayer block 10.
  • the laminate block is cut into a predetermined dimension, and at least a part in the circumferential direction of the outer peripheral surface of the laminate block is planarized (step S ⁇ b> 11).
  • the laminate block is cut into a predetermined size, and at least a part in the circumferential direction of the laminate block (preferably, the entire circumference in the circumferential direction) is removed, and at least the circumferential direction of the outer circumference of the laminate block.
  • a part (preferably the entire circumference in the circumferential direction) is planarized.
  • the method of cutting the laminated body block 10 may be a general method. For example, a method of cutting with a blade, a method of fusing with a high energy beam such as a laser, a scribe line is formed on the principal surface of at least one of the device substrate and the support plate using a blade or a laser, and the scribe line And a method of cleaving along the line. These cutting methods are used alone or in combination. Thus, cutting includes fusing and cleaving.
  • the cutting method is appropriately selected according to the type and thickness of the device substrate 11, the support plate 12, and the resin layer 13.
  • the device substrate 11 or the support plate 12 is made of glass
  • a method in which a scribe line is formed on the main surface of the glass, and then the laminate block 10 is bent and deformed along the scribe line is preferable.
  • the device substrate 11 and the support plate 12 are made of glass, there is a method in which scribe lines are formed on the main surfaces of both glasses, and then the laminate block 10 is bent and deformed along both scribe lines.
  • the thickness of the resin layer 13 is preferably 50 ⁇ m or less. If the resin layer 13 is too thick, it becomes difficult to cleave.
  • the cutting direction may be a direction from the device substrate 11 toward the support plate 12 or a direction from the support plate 12 toward the device substrate 11. Further, the cutting direction may be one direction or both directions. Furthermore, the cutting direction is preferably substantially parallel to the thickness direction of the laminate block (that is, the thickness direction of the resin layer). This is because the exposed area of the resin layer 13 can be reduced and deterioration of the resin layer 13 due to heat treatment in the device manufacturing process can be suppressed.
  • FIG. 3 is a partial side view of the laminate block after the outer peripheral surface is planarized in the first embodiment of the present invention.
  • the laminate block 10A in FIG. 3 is obtained by cutting the laminate block 10 along the line AA ′ in FIG.
  • the device substrate 11A, the support plate 12A, and the resin layer 13A after planarization correspond to the device substrate 11, the support plate 12, and the resin layer 13 before planarization, respectively.
  • the laminated block 10A after planarization has a resin layer 13A interposed between a device substrate 11A and a support plate 12A.
  • the resin layer 13A is detachably adhered to the first main surface 111A of the device substrate 11A and is fixed on the support plate 12A.
  • a device member is formed on the second main surface 112A of the device substrate 11A, as will be described in detail later.
  • the outer peripheral surface 14 ⁇ / b> A of the laminated body block 10 ⁇ / b> A after planarization is a flat surface, and the concave groove 15 (see FIG. 2) is removed.
  • the manufacturing method of a laminated body may further have the process (step S12) which chamfers the corner
  • the corners of the laminate block are chamfered after the outer peripheral surface of the laminate block is planarized, the concave grooves are removed in advance. For this reason, it can suppress that the edge part of a device board
  • the chamfering method may be a general method. For example, a method using a chamfering machine such as a grinder can be mentioned.
  • the type of chamfering may be chamfering that processes the corners 110 and 120 after planarization as shown in FIG. 4, or the corners 110 and 120 after planarization as shown in FIG. 5.
  • R may be a chamfered surface that is processed into an arcuate surface, or may be a chamfered surface that is processed into a combination of a flat surface and an arcuate surface as shown in FIG.
  • the chamfering which cuts a resin layer may be sufficient and the chamfering which does not cut a resin layer may be sufficient.
  • the chamfer dimension is appropriately selected according to the type and thickness of the device substrate, support plate, and resin layer.
  • the curvature radius R1 on the device substrate side and the curvature radius R2 on the support plate side may be the same or different.
  • the chamfering angle ⁇ 1 on the device substrate side and the chamfering angle ⁇ 2 on the support plate side may be the same or different.
  • the planarized portion of the outer peripheral surface of the resin layer is preferably substantially parallel to the thickness direction of the resin layer. Thereby, the exposed area of the resin layer can be reduced.
  • the resin layer tends to deteriorate due to heat treatment in the device manufacturing process.
  • the exposed area of the resin layer can be reduced, deterioration of the resin layer can be suppressed in the device manufacturing process.
  • FIG. 7 is a partial side view of the laminate block after chamfering according to the first embodiment of the present invention.
  • the shape of the laminated body block before chamfering is shown by a dotted line.
  • the laminated body block 10B in FIG. 7 is obtained by rounding both corners of the cut surface of the laminated body block 10A in FIG.
  • the device substrate 11B, the support plate 12B, and the resin layer 13B after chamfering correspond to the device substrate 11A, the support plate 12A, and the resin layer 13A before chamfering, respectively.
  • the laminated block 10B after chamfering is such that a resin layer 13B is interposed between the device substrate 11B and the support plate 12B.
  • the resin layer 13B is detachably adhered to the first main surface 111B of the device substrate 11B and is fixed on the support plate 12B.
  • the laminated block 10B after chamfering is excellent in impact resistance and safety because the outer peripheral surface 14B is rounded as shown in FIG.
  • the laminated body block 10B after chamfering has an outer peripheral surface 134B of the resin layer 13B that is substantially parallel to the thickness direction of the resin layer 13B (the direction of arrow A in FIG. 7).
  • the exposed area of the layer 13B is small. For this reason, it can suppress that resin layer 13B deteriorates by the heat processing in the manufacturing process of a device.
  • the laminated body is manufactured by polishing the second main surface of the device substrate after chamfering (that is, after planarization). You may further have a process (step S13).
  • the glass substrate manufactured by the float process includes a glass substrate that is further reduced in thickness by stretching the glass substrate manufactured by the float process by the redraw method.
  • the float method is a method in which molten glass flows out onto molten tin in a float bath and flows in the downstream direction to form a strip-shaped glass.
  • a glass substrate is manufactured by cutting a strip-shaped glass, but minute irregularities and undulations are generated on the surface of the glass substrate.
  • the polishing in the polishing step minute irregularities and undulations on the glass substrate surface can be removed, and the flatness of the surface on which the device member is formed can be improved. Therefore, the reliability of the device which is a product can be improved.
  • This effect is remarkable when the thickness of the glass substrate is 0.03 to 0.3 mm. This is because a glass substrate having a thickness of 0.03 to 0.3 mm is difficult to polish by itself, and it is difficult to polish it in advance before forming a laminate block.
  • the abrasive when polishing the second main surface of the device substrate before flattening, if there is a concave groove on the outer peripheral surface of the laminated body block, the abrasive will not enter the concave groove, or the device substrate may be bent and damaged. There are things to do. Even after planarization, sharp corners of the device substrate are likely to be damaged when the second main surface of the device substrate is polished before chamfering.
  • the second main surface of the device substrate is polished after chamfering (that is, after planarization)
  • the corners of the device substrate are chamfered in advance and the concave grooves are removed in advance.
  • polishing it can suppress that the abrasive
  • the polishing method may be a general method.
  • a polishing method using abrasive grains such as cerium oxide can be given.
  • the polishing allowance is appropriately set according to the thickness of the device substrate and the device to be used, and is, for example, 0.05 to 10 ⁇ m.
  • FIG. 8 is a partial side view of the laminated body block after polishing in the first embodiment of the present invention.
  • the shape of the laminate block before polishing is indicated by a dotted line.
  • the laminated body block 10C in FIG. 8 is obtained by polishing the second main surface 112B of the device substrate 11B of the laminated body block 10B in FIG.
  • the device substrate 11C after polishing corresponds to the device substrate 11B before polishing.
  • the laminated block 10C after polishing has a resin layer 13B interposed between the device substrate 11C and the support plate 12B.
  • the resin layer 13B is detachably adhered to the first main surface 111C of the device substrate 11C and is fixed on the support plate 12B.
  • the laminated block 10C after polishing has higher flatness and cleanliness of the second main surface 112C on which the device member is formed, compared to the laminated block 10B before polishing.
  • FIG. 9 is a process diagram showing a device manufacturing method according to the first embodiment of the present invention.
  • the device manufacturing method includes a step (step S61) of forming a device member using a coating liquid on the second main surface of the device substrate of the planarized laminate block (laminate), the device substrate and the resin. And a step of separating the layer (step S62).
  • the laminated body block (laminated body) after planarization naturally includes a laminated body block (laminated body) after chamfering and a laminated body block (laminated body) after polishing.
  • the device member is a member that is formed on the second main surface of the device substrate and constitutes at least a part of the device.
  • the device member is not all of the members finally formed on the second main surface of the device substrate (hereinafter referred to as “all members”) but part of all the members (hereinafter referred to as “partial members”). May be. This is because the device substrate with partial members peeled from the resin layer can be used as a device substrate with all members in the subsequent steps. Thereafter, a device is manufactured using the device substrate with all members. Further, other device members may be formed on the peeled surface (first main surface) of the device substrate with all members peeled from the resin layer.
  • a device can be manufactured by assembling a device using the laminate with all members, and then peeling the support plate with a resin layer from the laminate with all members. Furthermore, a device can be manufactured by assembling a device using two laminates with all members, and then peeling the two support plates with resin layers from the laminate with all members.
  • the method for peeling the device substrate and the resin layer may be a known method. For example, a peeling blade is inserted between the device substrate and the resin layer, and then a fluid in which compressed air and water are mixed is sprayed on the insertion position of the peeling blade. In this state, one main surface of the laminate is held flat, and the other main surface is sequentially bent and deformed from the vicinity of the insertion position. In this way, the device substrate and the resin layer can be peeled off.
  • FIG. 10 is a process diagram of the LCD manufacturing method according to the first embodiment of the present invention.
  • a method for manufacturing a TFT-LCD will be described.
  • the present invention may be applied to a method for manufacturing an STN-LCD, and there is no limitation on the type or method of the liquid crystal panel.
  • the TFT-LCD manufacturing method uses a resist solution on the second main surface of the planarized device block (laminate) device substrate by a general film-forming method such as a CVD method or a sputtering method.
  • a step of forming a thin film transistor (TFT) by patterning a metal film and a metal oxide film to be formed (step S71), and the second main surface of the device substrate of another planarized laminated body block (laminated body)
  • a step of forming a color filter (CF) using a resist solution for pattern formation step S72
  • a step of laminating a device substrate with TFT and a device substrate with CF step S73
  • both devices And a step of peeling the substrate and the resin layer.
  • the order of the TFT formation process (step S71) and the CF formation process (step S72) is not limited, and may be substantially simultaneous. Further, the peeling process (step S74) may be before the lamination process (step S73), or may be in the middle of the TFT forming process or the CF forming process.
  • a TFT or CF is formed on the second main surface of the device substrate using a well-known photolithography technique, etching technique, or the like. At this time, a resist solution is used as a coating solution for pattern formation.
  • substrate as needed before forming TFT and CF.
  • a cleaning method known dry cleaning or wet cleaning can be used.
  • a liquid crystal material is injected and laminated between the laminated body with TFT and the laminated body with CF.
  • the method for injecting the liquid crystal material include a reduced pressure injection method and a drop injection method.
  • both laminates are bonded using a sealing material and a spacer material so that the surface on which the TFT is present and the surface on which the CF is present are opposed to each other.
  • the two support plates with a resin layer are peeled from both laminates.
  • the bonded two device substrates are cut into a plurality of cells.
  • a liquid crystal material is injected into each cell from the injection hole to seal the injection hole.
  • a polarizing plate is attached to each cell, a backlight or the like is incorporated, and a liquid crystal panel is manufactured.
  • the two support plates with a resin layer are peeled from both laminates, and then the bonded two device substrates are cut into a plurality of cells.
  • the present invention is not limited to this.
  • the support plate with a resin layer may be peeled from each laminate before the two laminates are bonded together using a sealing material and a pacer material.
  • a liquid crystal material is dropped on one of both laminates, and both laminates are bonded to each other using a sealing material and a spacer material. Are stacked so that they face each other.
  • the two support plates with a resin layer are peeled from both laminates.
  • both stacked device substrates are cut into a plurality of cells.
  • a polarizing plate is attached to each cell, a backlight or the like is incorporated, and a liquid crystal panel is manufactured.
  • the method for producing a liquid crystal panel may further include a step (Step S75) of thinning the glass substrate by chemical etching after peeling the support plate with a resin layer from the glass substrate which is a device substrate. Good. Since the 1st main surface of the glass substrate was protected by the support plate, even if it etched, an etch pit does not generate
  • one laminated body is used for manufacturing each of the device substrate with TFT and the device substrate with CF.
  • the present invention is not limited to this.
  • the laminate may be used for manufacturing only one of the device substrate with TFT and the device substrate with CF.
  • FIG. 11 is a process diagram of a method for manufacturing an organic EL panel (OLED) in the first embodiment of the present invention.
  • the organic EL panel manufacturing method includes a step of forming an organic EL element on the second main surface of the planarized device substrate using a resist solution for pattern formation (step S81), and an organic EL element. It includes a step of stacking the counter substrate on top (step S82) and a step of peeling the device substrate and the resin layer (step S83). Note that the peeling step (step S83) may be before the stacking step (step S82), or may be in the middle of the organic EL element forming step (step S81).
  • the organic EL element is formed on the second main surface of the device substrate using a known photolithography technique, vapor deposition technique, or the like. At this time, a resist solution is applied as a pattern forming coating solution onto the second main surface of the device substrate.
  • An organic EL element consists of a transparent electrode layer, a positive hole transport layer, a light emitting layer, an electron carrying layer etc., for example.
  • the cleaning method for example, dry cleaning or wet cleaning can be used.
  • the support plate with the resin layer is peeled from the device substrate with the organic EL element. Thereafter, the device substrate with an organic EL element is cut into a plurality of cells. Subsequently, each cell and the counter substrate are bonded together so that the organic EL element and the counter substrate are in contact with each other. In this way, an organic EL display is manufactured.
  • the display panel such as LCD and OLED manufactured in this way is not particularly limited in its application, but is suitably used for portable electronic devices such as mobile phones, PDAs, digital cameras, and game machines.
  • the second embodiment relates to a laminate block before planarization.
  • FIG. 12 is a partial side view of the laminate block before planarization in the second embodiment of the present invention.
  • the laminate block 20 before planarization has a resin layer 23 interposed between a device substrate 21 and a support plate 22.
  • the resin layer 23 is detachably adhered to the first main surface 211 of the device substrate 21 and is fixed on the support plate 22.
  • the support plate 22 is larger than the resin layer 23, and the resin layer 23 is larger than the device substrate 21.
  • the outer peripheral surface of the device substrate 21 is rounded, so that the concave groove 25 is formed on the outer peripheral surface 24 of the laminate block 20. Will be formed.
  • the outer peripheral surface 24 of the laminate block 20 can be planarized, and the concave groove 25 can be removed.
  • the outer peripheral surface 24 of the laminated body block 20 cannot be planarized, so that the groove 25 remains. To do.
  • the residue of the coating liquid tends to remain in the device manufacturing process due to the remaining concave grooves 25. Since this residue becomes a dust generation source in the heat treatment process in the device manufacturing process, the dust generation contaminates the inside of the heat treatment process and reduces the yield of devices that are products.
  • the concave groove 25 can be removed, dust generation can be suppressed in the device manufacturing process, and a decrease in the yield of devices that are products can be suppressed.
  • FIG. 13 is a partial side view of the laminated body block before planarization in 3rd Embodiment of this invention.
  • the laminate block 30 before planarization has a resin layer 33 interposed between a device substrate 31 and a support plate 32.
  • the resin layer 33 is detachably adhered to the first main surface 311 of the device substrate 31 and is fixed on the support plate 32.
  • the resin layer 33 is smaller than the device substrate 31 and the support plate 32. For this reason, as shown in FIG. 13, a concave groove 35 is formed on the outer peripheral surface 34 of the laminate block 30.
  • the outer peripheral surface 34 of the laminate block 30 can be planarized, and the concave groove 35 can be removed.
  • the outer peripheral surface 34 of the laminated body block 30 cannot be planarized. Part or all remains.
  • the residue of the coating liquid tends to remain in the device manufacturing process due to the remaining part or all of the concave groove 35. Since this residue becomes a dust generation source in the heat treatment process in the device manufacturing process, the dust generation contaminates the inside of the heat treatment process and reduces the yield of devices that are products.
  • Example 1 A glass plate (manufactured by Asahi Glass Co., Ltd., AN100, alkali-free glass) having a length of 370 mm, a width of 320 mm, and a thickness of 0.6 mm obtained by a float process was used as the support plate.
  • the average linear expansion coefficient of this glass plate was 38 ⁇ 10 ⁇ 7 / ° C.
  • This glass plate was cleaned with pure water and UV to clean the surface of the glass plate. Thereafter, a mixture of 100 parts by mass of solvent-free addition-reactive silicone (Shin-Etsu Silicone Co., KNS-320A) and 5 parts by mass of a platinum catalyst (Shin-Etsu Silicone Co., Ltd., CAT-PL-56) is applied to the surface of the glass plate. Coating was performed by a spin coater (coating amount 20 g / m 2 ).
  • the above solvent-free addition reaction type silicone is a linear organoalkenylpolysiloxane (main agent) having a vinyl group and a methyl group bonded to a silicon atom, and a linear chain having a hydrogen atom and a methyl group bonded to a silicon atom. It contains an organohydrogenpolysiloxane (crosslinking agent).
  • the mixture coated on the glass plate was heat-cured at 180 ° C. for 10 minutes in the air to form a resin layer of 366 mm length ⁇ 316 mm width on the glass plate and fixed.
  • a resin substrate made of polyethersulfone and having a length of 370 mm ⁇ width of 320 mm ⁇ thickness of 0.1 mm (Sumilite FS-5300, manufactured by Sumitomo Bakelite Co., Ltd.) was used as the device substrate.
  • the average linear expansion coefficient of this resin substrate was 540 ⁇ 10 ⁇ 7 / ° C.
  • the resin substrate was cleaned with pure water and UV to clean the surface of the resin substrate. Then, after aligning a resin substrate and a glass plate, the resin layer fixed on the glass plate was stuck to the 1st main surface of the resin substrate using the vacuum press apparatus at room temperature.
  • a laminate block substantially identical to the laminate block shown in FIG. 2 was obtained.
  • the obtained laminated body block was cut
  • the laminate block is bent and deformed. Cleaving along the scribe line, the outer peripheral portion of the laminate block was removed over the entire circumference.
  • the planarized laminate block was dipped in a CF black matrix resist solution (manufactured by Asahi Glass Co., Ltd., PMA-ST), and then washed with propylene glycol monomethyl ether acetate (resist solution main solvent). Thereafter, the laminate was dried in a hot air oven at 120 ° C. for 30 minutes, and the outer peripheral surface of the laminate was observed with a microscope. As a result, no resist solution residue was found.
  • a CF black matrix resist solution manufactured by Asahi Glass Co., Ltd., PMA-ST
  • Example 2 In Example 2, the same as Example 1 except that a glass plate (Asahi Glass Co., Ltd., AN100, non-alkali glass) having a length of 370 mm ⁇ width of 320 mm ⁇ thickness of 0.4 mm obtained by the float method was used as the support plate. Then, a resin layer was formed on the glass plate and fixed.
  • a glass plate Alkali Glass Co., Ltd., AN100, non-alkali glass
  • Example 2 Example 1 was used except that a glass substrate (manufactured by Asahi Glass Co., Ltd., AN100, alkali-free glass) having a length of 370 mm ⁇ width of 320 mm ⁇ thickness of 0.3 mm obtained by the float process was used as the device substrate. In the same manner as described above, the resin layer fixed on the glass plate was adhered to the first main surface of the glass substrate.
  • a glass substrate manufactured by Asahi Glass Co., Ltd., AN100, alkali-free glass
  • the resin layer fixed on the glass plate was adhered to the first main surface of the glass substrate.
  • a laminate block substantially identical to the laminate block shown in FIG. 2 was obtained.
  • the obtained laminated body block was cut
  • a scribe line is formed on the second main surface of the glass substrate using a glass cutter, and a scribe line is formed on the main surface of the glass plate using the glass cutter, and then the laminate block is bent and deformed.
  • the laminate was cleaved along the scribe line, and the outer peripheral portion of the laminate block was removed over the entire circumference.
  • the corner of the outer peripheral surface of this laminate block was chamfered over the entire circumference in the circumferential direction using a grindstone.
  • the chamfered laminate block was dipped in a resist solution, washed and dried, and the outer peripheral surface of the laminate was observed with a microscope. As a result, no resist solution residue was observed.
  • Comparative Example 1 In Comparative Example 1, the laminate block before cutting obtained in the same manner as in Example 2 was immersed in a resist solution, washed and dried in the same manner as in Example 1, and then the outer periphery of the laminate was examined with a microscope. The surface was observed. As a result, a resist solution residue was observed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electroluminescent Light Sources (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Disclosed is a method for manufacturing a laminate, which includes a step wherein a resin layer is disposed between a device board and a supporting board, the resin layer is peelably adhered on the first main surface of the device board, a laminate block fixed on the supporting board is cut into a predetermined size, and at least a laminate block outer circumferential surface part in the circumferential direction is planarized.

Description

積層体の製造方法および積層体LAMINATE MANUFACTURING METHOD AND LAMINATE
 本発明は、積層体の製造方法および積層体に関する。 The present invention relates to a laminate manufacturing method and a laminate.
 近年、太陽電池(PV)、液晶パネル(LCD)、有機ELパネル(OLED)等のデバイス(電子機器)の薄型化、軽量化が進行しており、これらのデバイスに用いる基板(以下、「デバイス基板」という)の薄板化が進行している。薄板化によりデバイス基板の強度が不足すると、デバイスの製造工程において、デバイス基板のハンドリング性が低下する。 In recent years, devices (electronic devices) such as solar cells (PV), liquid crystal panels (LCD), and organic EL panels (OLED) have been made thinner and lighter, and substrates used for these devices (hereinafter referred to as “devices”). Substrate ") is becoming thinner. When the strength of the device substrate is insufficient due to the thin plate, the handling property of the device substrate is deteriorated in the device manufacturing process.
 そこで、従来から、最終厚さよりも厚いデバイス基板上にデバイス用部材を形成し、その後デバイス基板を化学エッチング処理により薄板化する方法が広く採用されている。しかしながら、この方法では、例えば、1枚のデバイス基板の厚さを0.7mmから0.2mmや0.1mmに薄板化する場合、元々のデバイス基板の材料の大半をエッチング液で削り落とすことになるので、生産性や原材料の使用効率という観点では好ましくない。 Therefore, conventionally, a method in which a device member is formed on a device substrate thicker than the final thickness and then the device substrate is thinned by a chemical etching process has been widely adopted. However, in this method, for example, when the thickness of one device substrate is reduced from 0.7 mm to 0.2 mm or 0.1 mm, most of the original device substrate material is scraped off with an etching solution. Therefore, it is not preferable from the viewpoint of productivity and use efficiency of raw materials.
 また、上記の化学エッチング処理によるデバイス基板の薄板化方法においては、デバイス基板表面に微細な傷が存在する場合、エッチング処理によって傷を起点として微細な窪み(エッチピット)が形成され、光学的な欠陥となる場合があった。 Further, in the method of thinning a device substrate by the above chemical etching process, when a fine scratch exists on the surface of the device substrate, a fine depression (etch pit) is formed from the scratch as a starting point by the etching process. There was a case where it became a defect.
 最近では、上記の課題に対応するため、デバイス基板の第1主面に、支持板上に固定した樹脂層を剥離可能に密着させた積層体を用意し、積層体のデバイス基板の第2主面上にデバイス用部材を形成した後、デバイス基板から樹脂層付き支持板を剥離する方法が提案されている(例えば、特許文献1参照)。 Recently, in order to cope with the above-described problem, a laminate in which a resin layer fixed on a support plate is detachably adhered to a first main surface of a device substrate is prepared, and a second main device substrate of the laminate is prepared. There has been proposed a method of peeling a support plate with a resin layer from a device substrate after forming a device member on the surface (see, for example, Patent Document 1).
国際公開第07/018028号パンフレットInternational Publication No. 07/018028 Pamphlet
 しかしながら、上記従来の積層体では、積層体の外周面に凹溝が形成されてしまうことがある。例えば、デバイス基板や支持板が面取り加工されたものである場合や、樹脂層が液状の樹脂組成物を支持板に塗布して加熱硬化させたものである場合、デバイス基板や支持板の外周面や樹脂層の外周面が丸みを帯びているので、積層体の外周面に凹溝が形成されてしまう。 However, in the conventional laminate described above, a concave groove may be formed on the outer peripheral surface of the laminate. For example, when the device substrate or the support plate is chamfered, or when the resin layer is obtained by applying a liquid resin composition to the support plate and heat-curing, the outer peripheral surface of the device substrate or the support plate Further, since the outer peripheral surface of the resin layer is rounded, a concave groove is formed on the outer peripheral surface of the laminate.
 デバイスの製造工程には、デバイス基板の表面に形成された導電膜を、サンドブラスト、エッチング等の処理をして、配線や素子形成等のパターン形成する工程がある。このパターン形成工程の前には、導電膜の表面の一部を保護するため、導電膜の表面にレジスト液等のコーティング液を塗布する塗布工程がある。 The device manufacturing process includes a process of forming a pattern such as wiring or element formation by subjecting the conductive film formed on the surface of the device substrate to a process such as sandblasting or etching. Before this pattern formation step, there is an application step of applying a coating solution such as a resist solution to the surface of the conductive film in order to protect a part of the surface of the conductive film.
 デバイスの製造工程の塗布工程において、コーティング液が毛細管現象によって凹溝に浸入し、溜まりやすい。凹溝内に溜まったコーティング液は、洗浄によっても除去されにくく、乾燥後に残渣が残りやすい。この残渣は、デバイス製造工程における加熱処理工程において発塵源となるので、発塵が加熱処理工程内を汚染し、製品であるデバイスの歩留まりを低下させる。 In the coating process of the device manufacturing process, the coating liquid easily enters the concave groove due to the capillary phenomenon and accumulates easily. The coating liquid accumulated in the groove is not easily removed even by washing, and a residue is likely to remain after drying. Since this residue becomes a dust generation source in the heat treatment process in the device manufacturing process, the dust generation contaminates the inside of the heat treatment process and reduces the yield of devices that are products.
 本発明は、上記課題に鑑みてなされたものであって、デバイスの製造工程において、発塵を抑制することができる積層体の製造方法および積層体を提供することを主な目的とする。 The present invention has been made in view of the above problems, and a main object of the present invention is to provide a laminate manufacturing method and a laminate capable of suppressing dust generation in a device manufacturing process.
 上記目的を解決するため、本発明の積層体の製造方法は、
 デバイス基板と支持板との間に樹脂層が介装され、該樹脂層が前記デバイス基板の第1主面に剥離可能に密着されると共に前記支持板上に固定された積層体ブロックを所定寸法に切断し、前記積層体ブロックの外周面の少なくとも周方向一部を平面化する工程を含む方法である。
In order to solve the above-mentioned object, the method for producing a laminate of the present invention includes:
A resin layer is interposed between the device substrate and the support plate, the resin layer is detachably adhered to the first main surface of the device substrate, and the laminate block fixed on the support plate has a predetermined size. And at least a part in the circumferential direction of the outer peripheral surface of the laminate block is planarized.
 さらに、本発明の積層体の製造方法は、前記積層体ブロックの外周面の平面化された部分の角部を面取りする工程を含むことが好ましい。
 また、前記樹脂層の外周面の平面化された部分が前記樹脂層の厚さ方向に略平行であることが好ましい。
 また、前記デバイス基板がフロート法により製造されたガラス基板であって、前記角部を面取り後、前記デバイス基板の第2主面を研磨する工程を含むことが好ましい。
Furthermore, it is preferable that the manufacturing method of the laminated body of this invention includes the process of chamfering the corner | angular part of the planarized part of the outer peripheral surface of the said laminated body block.
Moreover, it is preferable that the planarized part of the outer peripheral surface of the resin layer is substantially parallel to the thickness direction of the resin layer.
Moreover, it is preferable that the device substrate is a glass substrate manufactured by a float process, and includes a step of polishing the second main surface of the device substrate after chamfering the corner portion.
 前記デバイス基板は、厚さ0.03mm以上0.8mm未満のガラス基板であることが好ましい。
 前記樹脂層は、アクリル樹脂層、ポリオレフィン樹脂層、ポリウレタン樹脂層、及びシリコーン樹脂層からなる群から選ばれる少なくとも一種を含むことが好ましい。
 前記樹脂層の厚さが5~50μmであることが好ましい。
The device substrate is preferably a glass substrate having a thickness of 0.03 mm or more and less than 0.8 mm.
The resin layer preferably includes at least one selected from the group consisting of an acrylic resin layer, a polyolefin resin layer, a polyurethane resin layer, and a silicone resin layer.
The resin layer preferably has a thickness of 5 to 50 μm.
 また、本発明の積層体は、
 デバイス基板と支持板との間に樹脂層が介装され、該樹脂層が前記デバイス基板の第1主面に剥離可能に密着されると共に前記支持板上に固定された積層体ブロックを所定寸法に切断し、前記積層体ブロックの外周面の少なくとも周方向一部を平面化したものである。
The laminate of the present invention is
A resin layer is interposed between the device substrate and the support plate, the resin layer is detachably adhered to the first main surface of the device substrate, and the laminate block fixed on the support plate has a predetermined size. And at least a part in the circumferential direction of the outer peripheral surface of the laminate block is planarized.
 本発明によれば、デバイスの製造工程において、発塵を抑制することができる積層体の製造方法および積層体を提供することができる。 According to the present invention, it is possible to provide a laminate manufacturing method and a laminate that can suppress dust generation in the device manufacturing process.
図1は、本発明の第1実施形態における積層体の製造方法の工程図である。FIG. 1 is a process diagram of a method for manufacturing a laminate according to the first embodiment of the present invention. 図2は、本発明の第1実施形態における平面化前の積層体ブロックの部分側面図である。FIG. 2 is a partial side view of the laminate block before planarization according to the first embodiment of the present invention. 図3は、本発明の第1実施形態における平面化後の積層体ブロックの部分側面図である。FIG. 3 is a partial side view of the laminate block after planarization according to the first embodiment of the present invention. 図4は、本発明の第1実施形態における面取り方法の説明図(1)である。FIG. 4 is an explanatory diagram (1) of the chamfering method according to the first embodiment of the present invention. 図5は、本発明の第1実施形態における面取り方法の説明図(2)である。FIG. 5 is an explanatory diagram (2) of the chamfering method according to the first embodiment of the present invention. 図6は、本発明の第1実施形態における面取り方法の説明図(3)である。FIG. 6 is an explanatory diagram (3) of the chamfering method according to the first embodiment of the present invention. 図7は、本発明の第1実施形態における面取り後の積層体ブロックの部分側面図である。FIG. 7 is a partial side view of the laminated body block after chamfering according to the first embodiment of the present invention. 図8は、本発明の第1実施形態における研磨後の積層体ブロックの部分側面図である。FIG. 8 is a partial side view of the laminated block after polishing in the first embodiment of the present invention. 図9は、本発明の第1実施形態におけるデバイスの製造方法の工程図である。FIG. 9 is a process diagram of a device manufacturing method according to the first embodiment of the present invention. 図10は、本発明の第1実施形態におけるLCDの製造方法の工程図である。FIG. 10 is a process diagram of the LCD manufacturing method according to the first embodiment of the present invention. 図11は、本発明の第1実施形態におけるOLEDの製造方法の工程図である。FIG. 11 is a process diagram of the method for manufacturing an OLED in the first embodiment of the present invention. 図12は、本発明の第2実施形態における平面化前の積層体ブロックの部分側面図である。FIG. 12 is a partial side view of the laminate block before planarization according to the second embodiment of the present invention. 図13は、本発明の第3実施形態における平面化前の積層体ブロックの部分側面図である。FIG. 13: is a partial side view of the laminated body block before planarization in 3rd Embodiment of this invention.
 以下、本発明を実施するための形態について図面を参照して説明する。各図中、同一構成は同一符号を付して説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals and description thereof is omitted.
 (第1実施形態)
 図1は、本発明の第1実施形態における積層体の製造方法の工程図である。図1に示すように、積層体の製造方法は、デバイス基板と支持板との間に樹脂層が介装され、該樹脂層がデバイス基板の第1主面に剥離可能に密着されると共に支持板上に固定された積層体ブロックを所定寸法に切断し、積層体ブロックの外周面の少なくとも周方向一部を平面化する工程(ステップS11)を有する。
(First embodiment)
FIG. 1 is a process diagram of a method for manufacturing a laminate according to the first embodiment of the present invention. As shown in FIG. 1, in the method for manufacturing a laminate, a resin layer is interposed between a device substrate and a support plate, and the resin layer is detachably adhered to the first main surface of the device substrate and supported. There is a step (step S11) of cutting the laminated body block fixed on the plate into a predetermined size and planarizing at least a part of the outer circumferential surface of the laminated body block in the circumferential direction.
 平面化後の積層体は、詳しくは後述するが、デバイスの製造に使用される。平面化後の積層体における樹脂層付き支持板は、デバイスの製造工程の途中まで(デバイス基板と樹脂層とが剥離操作によって剥離されるまで)使用される。デバイス基板と樹脂層とが剥離された後は、樹脂層付き支持板は、デバイスの製造工程から除かれ、デバイスを構成する部材とはならない。デバイス基板から剥離された樹脂層付き支持板は、積層体の製造工程に再利用することができる。すなわち、樹脂層付き支持板の樹脂層上に新たなデバイス基板が積層されて、新たな積層体ブロックを得ることができる。 The layered product after planarization is used for manufacturing a device as will be described in detail later. The support plate with a resin layer in the laminate after planarization is used until the middle of the device manufacturing process (until the device substrate and the resin layer are peeled off by the peeling operation). After the device substrate and the resin layer are peeled off, the support plate with the resin layer is removed from the device manufacturing process and does not become a member constituting the device. The support plate with a resin layer peeled from the device substrate can be reused in the production process of the laminate. That is, a new device substrate can be laminated on the resin layer of the support plate with a resin layer to obtain a new laminate block.
 はじめに、平面化前の積層体ブロックについて説明し、次いで、平面化後の積層体ブロックについて説明し、最後に、デバイスの製造工程について説明する。 First, the laminate block before planarization will be described, then the laminate block after planarization will be described, and finally the device manufacturing process will be described.
 図2は、本発明の第1実施形態における平面化前の積層体ブロックの部分側面図である。図2に示すように、平面化前の積層体ブロック10は、デバイス基板11と支持板12との間に樹脂層13が介装されたものである。樹脂層13は、デバイス基板11の第1主面111に剥離可能に密着されると共に、支持板12上に固定されている。 FIG. 2 is a partial side view of the laminate block before planarization in the first embodiment of the present invention. As shown in FIG. 2, the laminate block 10 before planarization has a resin layer 13 interposed between a device substrate 11 and a support plate 12. The resin layer 13 is detachably adhered to the first main surface 111 of the device substrate 11 and is fixed on the support plate 12.
 (デバイス基板)
 デバイス基板11は、第2主面112にデバイス用部材が形成されてデバイスを構成する。ここで、デバイス用部材とは、デバイス(電子機器)の少なくとも一部を構成する部材をいう。具体例としては、薄膜トランジスタ(TFT)、カラーフィルタ(CF)が挙げられる。デバイスとしては、太陽電池(PV)、液晶パネル(LCD)、有機ELパネル(OLED)等が例示される。デバイス用部材は、積層体ブロック10の外周面を平面化した後に、デバイス基板11の第2主面112に形成される。
(Device substrate)
The device substrate 11 has a device member formed on the second main surface 112 to constitute a device. Here, the device member refers to a member constituting at least a part of the device (electronic apparatus). Specific examples include a thin film transistor (TFT) and a color filter (CF). Examples of the device include a solar cell (PV), a liquid crystal panel (LCD), and an organic EL panel (OLED). The device member is formed on the second main surface 112 of the device substrate 11 after the outer peripheral surface of the multilayer block 10 is planarized.
 デバイス基板11の種類は、一般的なものであってよく、例えば、ガラス基板、または樹脂基板、あるいはSUS基板等の金属基板であってよい。これらの中でも、ガラス基板が好ましい。ガラス基板は耐薬品性、耐透湿性に優れ、且つ、熱収縮率が低いからである。熱収縮率の指標としては、JIS R 3102-1995に規定されている線膨張係数が用いられる。 The type of the device substrate 11 may be a general one, for example, a glass substrate, a resin substrate, or a metal substrate such as a SUS substrate. Among these, a glass substrate is preferable. This is because the glass substrate is excellent in chemical resistance and moisture permeability resistance and has a low heat shrinkage rate. As an index of the heat shrinkage rate, a linear expansion coefficient defined in JIS R 3102-1995 is used.
 デバイス基板11の線膨張係数が大きいと、デバイスの製造工程は加熱処理を伴うことが多いので、様々な不都合が生じやすい。例えば、デバイス基板11上にTFTを形成する場合、加熱下でTFTが形成されたデバイス基板11を冷却すると、デバイス基板11の熱収縮によって、TFTの位置ずれが過大になるおそれがある。 If the linear expansion coefficient of the device substrate 11 is large, the device manufacturing process often involves heat treatment, and various inconveniences are likely to occur. For example, when a TFT is formed on the device substrate 11, if the device substrate 11 on which the TFT is formed is cooled under heating, the TFT may be excessively misaligned due to thermal contraction of the device substrate 11.
 ガラス基板は、ガラス原料を溶融し、溶融ガラスを板状に成形して得られる。このような成形方法は、一般的なものであってよく、例えばフロート法、フュージョン法、スロットダウンドロー法、フルコール法、ラバース法等が用いられる。また、特に厚さが薄いガラス基板は、いったん板状に成形したガラスを成形可能温度に加熱し、延伸等の手段で引き伸ばして薄くする方法(リドロー法)で成形して得られる。 The glass substrate is obtained by melting a glass raw material and molding the molten glass into a plate shape. Such a molding method may be a general one, and for example, a float method, a fusion method, a slot down draw method, a full call method, a rubber method, or the like is used. In addition, a glass substrate having a particularly small thickness can be obtained by heating a glass once formed into a plate shape to a moldable temperature and stretching it by means of stretching or the like to make it thin (redraw method).
 ガラス基板のガラスは、特に限定されないが、無アルカリガラス、ホウケイ酸ガラス、ソーダライムガラス、高シリカガラス、その他の酸化ケイ素を主な成分とする酸化物系ガラスが好ましい。酸化物系ガラスとしては、酸化物換算による酸化ケイ素の含有量が40~90質量%のガラスが好ましい。 The glass of the glass substrate is not particularly limited, but non-alkali glass, borosilicate glass, soda lime glass, high silica glass, and other oxide-based glass mainly containing silicon oxide are preferable. As the oxide-based glass, a glass having a silicon oxide content of 40 to 90% by mass in terms of oxide is preferable.
 ガラス基板のガラスとしては、デバイスの種類やその製造工程に適したガラスが採用されることが好ましい。例えば、液晶パネル用のガラス基板は、アルカリ金属成分の溶出が液晶に影響を与えやすいことから、アルカリ金属成分を実質的に含まないガラス(無アルカリガラス)からなることが好ましい。このように、ガラス基板のガラスは、適用されるデバイスの種類およびその製造工程に基づいて適宜選択される。 As the glass of the glass substrate, glass suitable for the type of device and its manufacturing process is preferably adopted. For example, a glass substrate for a liquid crystal panel is preferably made of glass (non-alkali glass) that does not substantially contain an alkali metal component because elution of the alkali metal component easily affects the liquid crystal. Thus, the glass of the glass substrate is appropriately selected based on the type of device to be applied and its manufacturing process.
 デバイス基板の厚さは、特に限定されないが、通常0.8mm未満であり、好ましくは0.3mm以下であり、さらに好ましくは0.15mm以下である。また、0.03mm以上であることが好ましい。特に、デバイス基板がガラス基板である場合、ガラス基板の薄型化および/または軽量化の観点から、通常0.8mm未満であり、好ましくは0.3mm以下であり、さらに好ましくは0.15mm以下である。0.8mm以上の場合、ガラス基板の薄型化および/または軽量化の要求を満たせない。0.3mm以下の場合、ガラス基板に良好なフレキシブル性を与えることが可能である。0.15mm以下の場合、ガラス基板をロール状に巻き取ることが可能である。また、ガラス基板の厚さは、ガラス基板の製造が容易であること、ガラス基板の取り扱いが容易であること等の理由から、0.03mm以上であることが好ましい。 The thickness of the device substrate is not particularly limited, but is usually less than 0.8 mm, preferably 0.3 mm or less, and more preferably 0.15 mm or less. Moreover, it is preferable that it is 0.03 mm or more. In particular, when the device substrate is a glass substrate, it is usually less than 0.8 mm, preferably 0.3 mm or less, more preferably 0.15 mm or less, from the viewpoint of reducing the thickness and / or weight of the glass substrate. is there. In the case of 0.8 mm or more, the demand for reducing the thickness and / or weight of the glass substrate cannot be satisfied. In the case of 0.3 mm or less, it is possible to give good flexibility to the glass substrate. In the case of 0.15 mm or less, the glass substrate can be wound into a roll. Further, the thickness of the glass substrate is preferably 0.03 mm or more for reasons such as easy manufacture of the glass substrate and easy handling of the glass substrate.
 樹脂基板の樹脂の種類は、特に限定されない。透明な樹脂としては、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、透明フッ素樹脂、透明ポリイミド樹脂、ポリエーテルスルホン樹脂、ポリエチレンナフタレート樹脂、ポリアクリル樹脂、シクロオレフィン樹脂、シリコーン樹脂、シリコーン系有機無機ハイブリッド樹脂、有機ポリマー/バイオナノファイバーハイブリッド樹脂などが例示される。また、不透明な樹脂としては、ポリイミド樹脂、フッ素樹脂、ポリアミド樹脂、ポリアラミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、各種液晶ポリマー樹脂などが例示される。なお、樹脂基板は、表面に保護層等の機能層が形成されてなるものであってもよい。 The resin type of the resin substrate is not particularly limited. Transparent resins include polyethylene terephthalate resin, polycarbonate resin, transparent fluororesin, transparent polyimide resin, polyethersulfone resin, polyethylene naphthalate resin, polyacrylic resin, cycloolefin resin, silicone resin, silicone-based organic-inorganic hybrid resin, organic Examples thereof include polymer / bionanofiber hybrid resins. Examples of the opaque resin include polyimide resin, fluorine resin, polyamide resin, polyaramid resin, polyether ether ketone resin, polyether ketone resin, and various liquid crystal polymer resins. The resin substrate may have a functional layer such as a protective layer formed on the surface.
 (支持板)
 支持板12は、デバイス基板11を支持して補強し、デバイスの製造工程においてデバイス基板11の変形、傷付き、破損等を防止する。また、従来よりも厚さが薄いデバイス基板11を使用する場合、従来のデバイス基板と同じ厚さの積層体ブロック10とすることにより、デバイスの製造工程において、従来の厚さのデバイス基板に適合した製造技術や製造設備を使用可能にすることも、支持板12を使用する目的の1つである。
(Support plate)
The support plate 12 supports and reinforces the device substrate 11 and prevents the device substrate 11 from being deformed, scratched or damaged in the device manufacturing process. When the device substrate 11 having a thickness smaller than that of the conventional device is used, the laminated body block 10 having the same thickness as that of the conventional device substrate is adapted to the device substrate having the conventional thickness in the device manufacturing process. One of the purposes of using the support plate 12 is to make the manufacturing technology and manufacturing equipment usable.
 支持板12の厚さは、デバイス基板11よりも厚くてもよいし、薄くてもよい。好ましくは、デバイス基板11の厚さ、樹脂層13の厚さ、および積層体ブロック10の厚さに基づいて、支持板12の厚さが選択される。例えば、現行のデバイスの製造工程が厚さ0.5mmの基板を処理するように設計されたものであって、デバイス基板11の厚さと樹脂層13の厚さとの和が0.1mmの場合、支持板12の厚さを0.4mmとする。支持板12がガラス板の場合、ガラス板の厚さは、扱いやすく、割れにくい等の理由から、0.08mm以上であることが好ましい。 The thickness of the support plate 12 may be thicker or thinner than the device substrate 11. Preferably, the thickness of the support plate 12 is selected based on the thickness of the device substrate 11, the thickness of the resin layer 13, and the thickness of the laminated body block 10. For example, when the current device manufacturing process is designed to process a substrate having a thickness of 0.5 mm, and the sum of the thickness of the device substrate 11 and the thickness of the resin layer 13 is 0.1 mm, The thickness of the support plate 12 is 0.4 mm. When the support plate 12 is a glass plate, the thickness of the glass plate is preferably 0.08 mm or more because it is easy to handle and difficult to break.
 支持板12の種類は、一般的なものであってよく、例えば、ガラス板、樹脂板、金属板等であってよい。支持板12は、デバイスの製造工程が熱処理を伴う場合、デバイス基板11との線膨張係数の差の小さい材料で形成されることが好ましく、デバイス基板11と同一材料で形成されることがより好ましい。 The type of the support plate 12 may be a general one, for example, a glass plate, a resin plate, a metal plate, or the like. When the device manufacturing process involves heat treatment, the support plate 12 is preferably formed of a material having a small difference in linear expansion coefficient from the device substrate 11, and more preferably formed of the same material as the device substrate 11. .
 デバイス基板11と支持板12との25~300℃における平均線膨張係数(以下、単に「平均線膨張係数」という)の差は、好ましくは700×10-7/℃以下であり、より好ましくは500×10-7/℃以下であり、さらに好ましくは300×10-7/℃以下である。差が大き過ぎると、デバイスの製造工程における加熱冷却時に、積層体ブロック10が激しく反ったり、デバイス基板11と支持板12とが剥離する可能性がある。デバイス基板11の材料と支持板12の材料が同じ場合、このような問題を生じるおそれがない。 The difference in average linear expansion coefficient between the device substrate 11 and the support plate 12 at 25 to 300 ° C. (hereinafter simply referred to as “average linear expansion coefficient”) is preferably 700 × 10 −7 / ° C. or less, more preferably It is 500 × 10 −7 / ° C. or less, more preferably 300 × 10 −7 / ° C. or less. If the difference is too large, the laminate block 10 may be warped severely or the device substrate 11 and the support plate 12 may be peeled off during heating and cooling in the device manufacturing process. When the material of the device substrate 11 and the material of the support plate 12 are the same, there is no possibility of causing such a problem.
 (樹脂層)
 樹脂層13は、支持板12上に固定されており、また、デバイス基板11の第1主面111に剥離可能に密着されている。樹脂層13は、剥離操作が行われるまでデバイス基板11の位置ずれを防止すると共に、剥離操作によってデバイス基板11から容易に剥離し、デバイス基板11等が剥離操作によって破損するのを防止する。
(Resin layer)
The resin layer 13 is fixed on the support plate 12 and is in close contact with the first main surface 111 of the device substrate 11 in a peelable manner. The resin layer 13 prevents the positional deviation of the device substrate 11 until the peeling operation is performed, and easily peels from the device substrate 11 by the peeling operation, and prevents the device substrate 11 and the like from being damaged by the peeling operation.
 樹脂層13の表面は、一般的な粘着剤が有するような粘着力ではなく、固体分子間におけるファンデルワールス力に起因する力によって、デバイス基板11の第1主面111に貼り付いていることが好ましい。容易に剥離することができるからである。本発明では、この樹脂層表面の容易に剥離できる性質を剥離性という。 The surface of the resin layer 13 is attached to the first main surface 111 of the device substrate 11 by a force resulting from van der Waals force between solid molecules, not the adhesive force that a general adhesive has. Is preferred. It is because it can peel easily. In this invention, the property which can peel this resin layer surface easily is called peelability.
 一方、樹脂層13の支持板12の表面に対する結合力は、樹脂層13のデバイス基板11の第1主面111に対する結合力よりも相対的に高い。本発明では、樹脂層13表面のデバイス基板11表面に対する結合を密着といい、支持板32表面に対する結合を固定という。 On the other hand, the bonding force of the resin layer 13 to the surface of the support plate 12 is relatively higher than the bonding force of the resin layer 13 to the first main surface 111 of the device substrate 11. In the present invention, bonding of the surface of the resin layer 13 to the surface of the device substrate 11 is referred to as adhesion, and bonding to the surface of the support plate 32 is referred to as fixing.
 樹脂層13の厚さは、特に限定されないが、5~50μmであることが好ましく、5~30μmであることがより好ましく、7~20μmであることがさらに好ましい。樹脂層13の厚さがこのような範囲であると、樹脂層13とデバイス基板11との密着が十分になるからである。また、樹脂層13とデバイス基板11との間に気泡や異物が介在しても、デバイス基板11のゆがみ欠陥の発生を抑制することができるからである。また、樹脂層13の厚さが厚すぎると、形成するのに時間および材料を要するため経済的ではない。 The thickness of the resin layer 13 is not particularly limited, but is preferably 5 to 50 μm, more preferably 5 to 30 μm, and even more preferably 7 to 20 μm. This is because when the thickness of the resin layer 13 is within such a range, the resin layer 13 and the device substrate 11 are sufficiently adhered. In addition, even if bubbles or foreign substances are present between the resin layer 13 and the device substrate 11, it is possible to suppress the occurrence of distortion defects in the device substrate 11. In addition, if the thickness of the resin layer 13 is too thick, it takes time and materials to form the resin layer 13 and is not economical.
 なお、樹脂層13は2層以上からなっていてもよい。この場合「樹脂層の厚さ」は全ての樹脂層の合計の厚さを意味するものとする。 In addition, the resin layer 13 may consist of two or more layers. In this case, “the thickness of the resin layer” means the total thickness of all the resin layers.
 また、樹脂層13が2層以上からなる場合は、各々の層を形成する樹脂の種類が異なってもよい。 Moreover, when the resin layer 13 consists of two or more layers, the kind of resin forming each layer may be different.
 樹脂層13の表面張力は、30mN/m以下であることが好ましく、25mN/m以下であることがより好ましく、22mN/m以下であることがさらに好ましい。また、15mN/m以上であることが好ましい。このような範囲の表面張力であると、より容易にデバイス基板11と剥離することができ、同時にデバイス基板11との密着も十分になるからである。 The surface tension of the resin layer 13 is preferably 30 mN / m or less, more preferably 25 mN / m or less, and further preferably 22 mN / m or less. Moreover, it is preferable that it is 15 mN / m or more. If the surface tension is in such a range, it can be more easily peeled off from the device substrate 11, and at the same time, the contact with the device substrate 11 is sufficient.
 表面張力は次のように測定する。まず、樹脂層13に対して表面張力が既知である複数の液体を用い、20℃における各液体の接触角を測定する。次に、各液体の表面張力と接触角(cosθ)をプロットし、直線近似して、cosθ=1となる表面張力値を外挿し、樹脂層13の臨界表面張力を求める。この臨界表面張力を樹脂層13の表面張力とする。 Measure surface tension as follows. First, the contact angle of each liquid at 20 ° C. is measured using a plurality of liquids whose surface tension is known with respect to the resin layer 13. Next, the surface tension and contact angle (cos θ) of each liquid are plotted and linear approximation is performed, and the surface tension value at which cos θ = 1 is extrapolated to obtain the critical surface tension of the resin layer 13. This critical surface tension is defined as the surface tension of the resin layer 13.
 樹脂層13は、ガラス転移点が室温(25℃程度)よりも低い、またはガラス転移点を有しない材料からなることが好ましい。非粘着性の樹脂層となり、より容易にデバイス基板11と剥離することができ、同時にデバイス基板11との密着も十分になるからである。 The resin layer 13 is preferably made of a material having a glass transition point lower than room temperature (about 25 ° C.) or having no glass transition point. This is because it becomes a non-adhesive resin layer and can be more easily peeled off from the device substrate 11, and at the same time, the contact with the device substrate 11 becomes sufficient.
 また、樹脂層13は、デバイスの製造工程において加熱処理されることが多いので、耐熱性を有していることが好ましい。 Moreover, since the resin layer 13 is often heat-treated in the device manufacturing process, it is preferable to have heat resistance.
 また、樹脂層13の弾性率が高すぎるとデバイス基板11との密着性が低くなる傾向にある。一方、樹脂層13の弾性率が低すぎると剥離性が低くなる傾向にある。 Further, if the elastic modulus of the resin layer 13 is too high, the adhesion with the device substrate 11 tends to be low. On the other hand, if the elastic modulus of the resin layer 13 is too low, the peelability tends to be low.
 樹脂層13を形成する樹脂の種類は、特に限定されない。例えば、アクリル樹脂、ポリオレフィン樹脂、ポリウレタン樹脂およびシリコーン樹脂が挙げられる。これらの樹脂は、単独で用いることもでき、いくつかの種類の樹脂を混合して用いることもできる。中でもシリコーン樹脂が好ましい。シリコーン樹脂は、耐熱性や剥離性に優れるためである。また、支持板12がガラス板である場合、表面のシラノール基との縮合反応によって、支持板12に固定し易いからである。シリコーン樹脂層は、例えば300~400℃程度で1時間程度処理しても、剥離性がほぼ劣化しない点も好ましい。 The type of resin forming the resin layer 13 is not particularly limited. For example, acrylic resin, polyolefin resin, polyurethane resin, and silicone resin can be used. These resins can be used alone, or several kinds of resins can be mixed and used. Of these, silicone resins are preferred. This is because the silicone resin is excellent in heat resistance and peelability. Moreover, when the support plate 12 is a glass plate, it is easy to fix to the support plate 12 by a condensation reaction with the silanol groups on the surface. The silicone resin layer is also preferable in that the peelability does not substantially deteriorate even when it is treated at, for example, about 300 to 400 ° C. for about 1 hour.
 樹脂層13は、シリコーン樹脂の中でも剥離紙用に使用されるシリコーン樹脂(硬化物)からなることが好ましい。剥離紙用シリコーン樹脂となる硬化性樹脂組成物を支持板12の表面に硬化させて形成した樹脂層13は、優れた剥離性を有するので好ましい。また、柔軟性が高いので、樹脂層13とデバイス基板11との間へ気泡や塵介等の異物が混入してもデバイス基板11のゆがみ欠陥の発生を抑制することができる。 The resin layer 13 is preferably made of a silicone resin (cured product) used for release paper among silicone resins. A resin layer 13 formed by curing a curable resin composition to be a silicone resin for release paper on the surface of the support plate 12 is preferable because it has excellent peelability. In addition, since the flexibility is high, even if foreign matter such as bubbles or dust is mixed between the resin layer 13 and the device substrate 11, it is possible to suppress the occurrence of the distortion defect of the device substrate 11.
 このような剥離紙用シリコーン樹脂となる硬化性シリコーンは、その硬化機構により縮合反応型シリコーン、付加反応型シリコーン、紫外線硬化型シリコーンおよび電子線硬化型シリコーンに分類されるが、いずれも使用することができる。これらの中でも付加反応型シリコーンが好ましい。硬化反応のしやすさ、樹脂層13を形成した際に剥離性の程度が良好で、耐熱性も高いからである。 The curable silicone that becomes the silicone resin for release paper is classified into a condensation reaction type silicone, an addition reaction type silicone, an ultraviolet curable type silicone, and an electron beam curable type silicone depending on its curing mechanism. Can do. Among these, addition reaction type silicone is preferable. This is because the curing reaction is easy and the degree of peelability is good when the resin layer 13 is formed, and the heat resistance is also high.
 付加反応型シリコーンは、ビニル基などの不飽和基を有するオルガノアルケニルポリシロキサンとケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサンと白金系触媒などの触媒との組み合わせから得られる硬化性樹脂組成物であり、常温下でまたは加熱により硬化して硬化したシリコーン樹脂となるものである。 The addition reaction type silicone is a curable resin obtained from a combination of an organoalkenylpolysiloxane having an unsaturated group such as a vinyl group, an organohydrogenpolysiloxane having a hydrogen atom bonded to a silicon atom, and a catalyst such as a platinum-based catalyst. The composition is a silicone resin that is cured at room temperature or by heating.
 また、剥離紙用シリコーン樹脂となる硬化性シリコーンは形態的に溶剤型、エマルジョン型および無溶剤型があり、いずれの型も使用可能である。これらの中でも無溶剤型が好ましい。生産性、安全性、環境特性の面が優れるからである。また、樹脂層13を形成する際の硬化時、すなわち、加熱硬化、紫外線硬化または電子線硬化の時に発泡を生じる溶剤を含まないため、樹脂層13中に気泡が残留しにくいからである。 Further, the curable silicone used as the silicone resin for the release paper is classified into a solvent type, an emulsion type and a solventless type, and any type can be used. Among these, a solventless type is preferable. This is because productivity, safety, and environmental characteristics are excellent. In addition, it does not contain a solvent that causes foaming at the time of curing when forming the resin layer 13, that is, at the time of heat curing, ultraviolet curing, or electron beam curing.
 また、剥離紙用シリコーン樹脂となる硬化性シリコーンとして、具体的には市販されている商品名または型番としてKNS-320A、KS-847(いずれも信越シリコーン社製)、TPR6700(GE東芝シリコーン社製)、ビニルシリコーン「8500」(荒川化学工業株式会社製)とメチルハイドロジェンポリシロキサン「12031」(荒川化学工業株式会社製)との組み合わせ、ビニルシリコーン「11364」(荒川化学工業株式会社製)とメチルハイドロジェンポリシロキサン「12031」(荒川化学工業株式会社製)との組み合わせ、ビニルシリコーン「11365」(荒川化学工業株式会社製)とメチルハイドロジェンポリシロキサン「12031」(荒川化学工業株式会社製)との組み合わせ等が挙げられる。 Further, as the curable silicone used as the silicone resin for release paper, specifically, commercially available product names or model numbers are KNS-320A, KS-847 (both manufactured by Shin-Etsu Silicone), TPR6700 (manufactured by GE Toshiba Silicone). ), A combination of vinyl silicone “8500” (Arakawa Chemical Industries, Ltd.) and methylhydrogenpolysiloxane “12031” (Arakawa Chemical Industries, Ltd.), vinyl silicone “11364” (Arakawa Chemical Industries, Ltd.) Combination with methyl hydrogen polysiloxane “12031” (Arakawa Chemical Industries, Ltd.), vinyl silicone “11365” (Arakawa Chemical Industries, Ltd.) and methyl hydrogen polysiloxane “12031” (Arakawa Chemical Industries, Ltd.) And the like.
 なお、KNS-320A、KS-847およびTPR6700は、あらかじめ主剤と架橋剤とを含有している硬化性シリコーンである。 KNS-320A, KS-847, and TPR6700 are curable silicones that contain a main agent and a crosslinking agent in advance.
 また、樹脂層13を形成するシリコーン樹脂は、シリコーン樹脂層中の成分がデバイス基板11に移行しにくい性質、すなわち低シリコーン移行性を有することが好ましい。 Further, it is preferable that the silicone resin forming the resin layer 13 has a property that the components in the silicone resin layer are difficult to migrate to the device substrate 11, that is, low silicone migration.
 (固定方法)
 樹脂層13を支持板12上に固定する方法は、特に限定されないが、例えばフィルム状の樹脂を支持板12の表面に固定する方法が挙げられる。具体的には、支持板12の表面に、フィルムの表面に対する高い固定力(高い剥離強度)を付与するために、支持板12の表面に表面改質処理(プライミング処理)を行い、支持板12上に固定する方法が挙げられる。例えば、シランカップリング剤のような化学的に固定力を向上させる化学的方法(プライマー処理)、フレーム(火炎)処理のように表面活性基を増加させる物理的方法、サンドブラスト処理のように表面の粗度を増加させることにより引っかかりを増加させる機械的処理方法などが例示される。
(Fixing method)
Although the method of fixing the resin layer 13 on the support plate 12 is not particularly limited, for example, a method of fixing a film-like resin on the surface of the support plate 12 can be mentioned. Specifically, in order to impart a high fixing force (high peel strength) to the surface of the film on the surface of the support plate 12, the surface of the support plate 12 is subjected to a surface modification treatment (priming treatment), and the support plate 12 The method of fixing on top is mentioned. For example, chemical methods (primer treatment) that improve the fixing force chemically such as silane coupling agents, physical methods that increase surface active groups such as flame (flame) treatment, surface treatments such as sandblast treatment Examples thereof include a mechanical processing method for increasing the catch by increasing the roughness.
 また、例えば樹脂層13となる硬化性樹脂組成物を、支持板12上にコートする方法が挙げられる。コートする方法としては、スプレーコート法、ダイコート法、スピンコート法、ディップコート法、ロールコート法、バーコート法、スクリーン印刷法、グラビアコート法等が挙げられる。このような方法の中から、樹脂組成物に種類に応じて適宜選択することができる。 Further, for example, a method of coating the support plate 12 with a curable resin composition that becomes the resin layer 13 may be mentioned. Examples of the coating method include spray coating, die coating, spin coating, dip coating, roll coating, bar coating, screen printing, and gravure coating. From such a method, it can select suitably according to a kind to a resin composition.
 また、樹脂層13となる硬化性樹脂組成物を支持板12上にコートする場合、その塗工量は1~100g/mであることが好ましく、5~20g/mであることがより好ましい。 When the curable resin composition to be the resin layer 13 is coated on the support plate 12, the coating amount is preferably 1 to 100 g / m 2 and more preferably 5 to 20 g / m 2. preferable.
 例えば付加反応型シリコーンの硬化性樹脂組成物から樹脂層13を形成する場合、アルケニルポリシロキサンとオルガノハイドロジェンポリシロキサンと触媒との混合物からなる硬化性樹脂組成物を、上記のスプレーコート法等の公知の方法により支持板12上に塗工し、その後に加熱硬化させる。加熱硬化条件は、触媒の配合量によっても異なるが、例えば、アルケニルポリシロキサンとオルガノハイドロジェンポリシロキサンの合計量100質量部に対して、白金系触媒を2質量部配合した場合、大気中で50℃~250℃、好ましくは100℃~200℃で反応させる。また、この場合の反応時間は5~60分間、好ましくは10~30分間とする。低シリコーン移行性を有するシリコーン樹脂層とするためには、シリコーン樹脂層中に未反応のシリコーン成分が残らないように、硬化反応をできるだけ進行させることが好ましい。上記のような反応温度および反応時間であると、シリコーン樹脂層中に未反応のシリコーン成分がほとんど残らないようにすることができるので好ましい。上記した反応時間よりも長すぎたり、反応温度が高すぎる場合には、シリコーン樹脂の酸化分解が同時に起こり、低分子量のシリコーン成分が生成して、シリコーン移行性が高くなる可能性がある。シリコーン樹脂層中に未反応のシリコーン成分が残らないように硬化反応をできるだけ進行させることは、加熱処理後の剥離性を良好にするためにも好ましい。 For example, when the resin layer 13 is formed from a curable resin composition of addition reaction type silicone, a curable resin composition composed of a mixture of an alkenyl polysiloxane, an organohydrogenpolysiloxane, and a catalyst is used for the spray coating method described above. It coats on the support plate 12 by a well-known method, and is hardened by heating after that. The heat curing conditions vary depending on the blending amount of the catalyst. For example, when 2 parts by weight of a platinum-based catalyst is blended with respect to 100 parts by weight of the total amount of alkenylpolysiloxane and organohydrogenpolysiloxane, 50 in the atmosphere. The reaction is carried out at a temperature of from ° C to 250 ° C, preferably 100 ° C to 200 ° C. In this case, the reaction time is 5 to 60 minutes, preferably 10 to 30 minutes. In order to obtain a silicone resin layer having low silicone migration, it is preferable to proceed the curing reaction as much as possible so that an unreacted silicone component does not remain in the silicone resin layer. The reaction temperature and reaction time as described above are preferable because almost no unreacted silicone component remains in the silicone resin layer. If the reaction time is too long or the reaction temperature is too high, the oxidative decomposition of the silicone resin occurs at the same time, and a low molecular weight silicone component is produced, which may increase the silicone transferability. It is preferable to allow the curing reaction to proceed as much as possible so that an unreacted silicone component does not remain in the silicone resin layer in order to improve the peelability after the heat treatment.
 また、例えば樹脂層13を、剥離紙用シリコーン樹脂となる硬化性樹脂組成物を用いて製造した場合、支持板12上に塗工した硬化性樹脂組成物を加熱硬化してシリコーン樹脂層を形成する。硬化性樹脂組成物を加熱硬化させることによって、硬化反応の際にシリコーン樹脂が支持板12と化学的に結合する。また、アンカー効果によってシリコーン樹脂層が支持板12と結合する。これらの作用によって、シリコーン樹脂層が支持板12に強固に固定される。 For example, when the resin layer 13 is manufactured using a curable resin composition that becomes a silicone resin for release paper, the curable resin composition coated on the support plate 12 is heated and cured to form a silicone resin layer. To do. By thermally curing the curable resin composition, the silicone resin is chemically bonded to the support plate 12 during the curing reaction. Further, the silicone resin layer is bonded to the support plate 12 by the anchor effect. By these actions, the silicone resin layer is firmly fixed to the support plate 12.
 (密着方法)
 支持体上に形成した樹脂層13をデバイス基板11上に剥離可能に密着させる方法は、公知の方法であってよい。例えば、常圧環境下で樹脂層13の剥離性表面にデバイス基板11を重ねた後、ロールやプレスを用いて樹脂層13とデバイス基板11とを圧着させる方法が挙げられる。ロールやプレスで圧着することにより樹脂層13とデバイス基板11とがより密着するので好ましい。また、ロールまたはプレスによる圧着により、樹脂層13とデバイス基板11との間に混入している気泡が比較的容易に除去されるので好ましい。
(Adhesion method)
The method of sticking the resin layer 13 formed on the support to the device substrate 11 so as to be peelable may be a known method. For example, after laminating | stacking the device board | substrate 11 on the peelable surface of the resin layer 13 in a normal pressure environment, the method of crimping | bonding the resin layer 13 and the device board | substrate 11 using a roll or a press is mentioned. It is preferable because the resin layer 13 and the device substrate 11 are more closely adhered by pressure bonding with a roll or a press. Further, it is preferable because bubbles mixed between the resin layer 13 and the device substrate 11 are removed relatively easily by pressure bonding with a roll or a press.
 支持体上に形成した樹脂層13とデバイス基板11を真空ラミネート法や真空プレス法により圧着すると、気泡の混入の抑制や良好な密着の確保がより好ましく行われるのでより好ましい。真空下で圧着することにより、微小な気泡が残存した場合でも、加熱により気泡が成長することがなく、デバイス基板11のゆがみ欠陥につながりにくいという利点もある。 When the resin layer 13 formed on the support and the device substrate 11 are pressure-bonded by a vacuum laminating method or a vacuum press method, it is more preferable because suppression of air bubbles and securing of good adhesion are more preferably performed. By press-bonding under vacuum, even if minute bubbles remain, there is an advantage that the bubbles do not grow by heating and are less likely to cause a distortion defect of the device substrate 11.
 樹脂層13をデバイス基板11上に剥離可能に密着させる際には、樹脂層13およびデバイス基板11の互いに接触する側の面を十分に洗浄し、クリーン度の高い環境で積層することが好ましい。樹脂層13とデバイス基板11との間に異物が混入しても、樹脂層13が変形するのでデバイス基板11の表面の平坦性に影響を与えることはないが、クリーン度が高いほどその平坦性は良好となるので好ましい。 When the resin layer 13 is detachably adhered to the device substrate 11, it is preferable that the surfaces of the resin layer 13 and the device substrate 11 that are in contact with each other are sufficiently washed and laminated in a clean environment. Even if a foreign substance is mixed between the resin layer 13 and the device substrate 11, the resin layer 13 is deformed and thus does not affect the flatness of the surface of the device substrate 11. Is preferable because it becomes favorable.
 なお、樹脂層13を支持板12上に固定する工程と、樹脂層13をデバイス基板11上に剥離可能に密着させる工程との順序に制限はなく、例えば略同時であってもよい。 In addition, there is no restriction | limiting in the order of the process of fixing the resin layer 13 on the support plate 12, and the process of closely_contact | adhering the resin layer 13 on the device board | substrate 11, and may be substantially simultaneous, for example.
 (積層体ブロックの切断)
 このようにして得られた積層体ブロック10の外周面14には、凹溝15が形成されてしまうことがある。例えば、図2に示すように、デバイス基板11や支持板12が面取り加工されたものである場合や、樹脂層13が液状の樹脂組成物を支持板12に塗布して加熱硬化させたものである場合、デバイス基板11や支持板12、樹脂層13の外周面が丸みを帯びているので、積層体ブロック10の外周面14に凹溝15が形成されてしまう。
(Cutting the laminated body block)
A groove 15 may be formed on the outer peripheral surface 14 of the laminate block 10 obtained in this way. For example, as shown in FIG. 2, the device substrate 11 and the support plate 12 are chamfered, or the resin layer 13 is obtained by applying a liquid resin composition to the support plate 12 and heat-curing it. In some cases, since the outer peripheral surfaces of the device substrate 11, the support plate 12, and the resin layer 13 are rounded, the concave grooves 15 are formed in the outer peripheral surface 14 of the multilayer block 10.
 本実施形態では、図1に示すように、積層体の製造方法は、積層体ブロックを所定寸法に切断し、積層体ブロックの外周面の少なくとも周方向一部を平面化する工程(ステップS11)を有する。より詳細には、積層体ブロックを所定寸法に切断し、積層体ブロックの外周部の少なくとも周方向一部(好ましくは、周方向全周)を取り除いて、積層体ブロックの外周面の少なくとも周方向一部(好ましくは、周方向全周)を平面化する。 In the present embodiment, as shown in FIG. 1, in the method for manufacturing a laminate, the laminate block is cut into a predetermined dimension, and at least a part in the circumferential direction of the outer peripheral surface of the laminate block is planarized (step S <b> 11). Have More specifically, the laminate block is cut into a predetermined size, and at least a part in the circumferential direction of the laminate block (preferably, the entire circumference in the circumferential direction) is removed, and at least the circumferential direction of the outer circumference of the laminate block. A part (preferably the entire circumference in the circumferential direction) is planarized.
 積層体ブロック10を切断する方法は、一般的な方法であってよい。例えば、刃物で切断する方法、レーザ等の高エネルギー線で溶断する方法、デバイス基板および支持板の少なくとも一方の板状物の主面に刃物やレーザ等を用いてスクライブ線を形成し、スクライブ線に沿って割断する方法等が挙げられる。これらの切断方法は、単独でまたは組み合わせて用いられる。このように、切断とは、溶断や割断を含む。 The method of cutting the laminated body block 10 may be a general method. For example, a method of cutting with a blade, a method of fusing with a high energy beam such as a laser, a scribe line is formed on the principal surface of at least one of the device substrate and the support plate using a blade or a laser, and the scribe line And a method of cleaving along the line. These cutting methods are used alone or in combination. Thus, cutting includes fusing and cleaving.
 切断方法は、デバイス基板11、支持板12、樹脂層13の種類や厚さ等に応じても適宜選択される。例えば、デバイス基板11または支持板12がガラスからなる場合、ガラスの主面にスクライブ線を形成し、その後、積層体ブロック10を曲げ変形してスクライブ線に沿って割断する方法が好適である。また、デバイス基板11および支持板12がガラスからなる場合、両方のガラスの主面にスクライブ線を形成し、その後、積層体ブロック10を曲げ変形して両方のスクライブ線に沿って割断する方法が好適である。割断する場合、樹脂層13の厚さが50μm以下であることが好ましい。樹脂層13が厚すぎると、割断するのが困難になる。 The cutting method is appropriately selected according to the type and thickness of the device substrate 11, the support plate 12, and the resin layer 13. For example, when the device substrate 11 or the support plate 12 is made of glass, a method in which a scribe line is formed on the main surface of the glass, and then the laminate block 10 is bent and deformed along the scribe line is preferable. Moreover, when the device substrate 11 and the support plate 12 are made of glass, there is a method in which scribe lines are formed on the main surfaces of both glasses, and then the laminate block 10 is bent and deformed along both scribe lines. Is preferred. When cleaving, the thickness of the resin layer 13 is preferably 50 μm or less. If the resin layer 13 is too thick, it becomes difficult to cleave.
 切断方向は、デバイス基板11から支持板12に向かう方向であってもよいし、支持板12からデバイス基板11に向かう方向であってもよい。また、切断方向は、一方向であってもよいし、両方向であってもよい。さらに、切断方向は、積層体ブロックの厚さ方向(即ち、樹脂層の厚さ方向)に略平行であることが好ましい。樹脂層13の露出面積を小さくすることができ、デバイス製造工程における加熱処理による樹脂層13の劣化を抑制することができるからである。 The cutting direction may be a direction from the device substrate 11 toward the support plate 12 or a direction from the support plate 12 toward the device substrate 11. Further, the cutting direction may be one direction or both directions. Furthermore, the cutting direction is preferably substantially parallel to the thickness direction of the laminate block (that is, the thickness direction of the resin layer). This is because the exposed area of the resin layer 13 can be reduced and deterioration of the resin layer 13 due to heat treatment in the device manufacturing process can be suppressed.
 図3は、本発明の第1実施形態における外周面平面化後の積層体ブロックの部分側面図である。図3の積層体ブロック10Aは、図2のA-A'線に沿って積層体ブロック10を切断したものである。平面化後のデバイス基板11A、支持板12A、樹脂層13Aは、それぞれ、平面化前のデバイス基板11、支持板12、樹脂層13に対応する。 FIG. 3 is a partial side view of the laminate block after the outer peripheral surface is planarized in the first embodiment of the present invention. The laminate block 10A in FIG. 3 is obtained by cutting the laminate block 10 along the line AA ′ in FIG. The device substrate 11A, the support plate 12A, and the resin layer 13A after planarization correspond to the device substrate 11, the support plate 12, and the resin layer 13 before planarization, respectively.
 平面化後の積層体ブロック10Aは、デバイス基板11Aと支持板12Aとの間に樹脂層13Aが介装されたものである。樹脂層13Aは、デバイス基板11Aの第1主面111Aに剥離可能に密着されると共に、支持板12A上に固定されている。なお、デバイス基板11Aの第2主面112Aには、詳しくは後述するが、デバイス用部材が形成される。 The laminated block 10A after planarization has a resin layer 13A interposed between a device substrate 11A and a support plate 12A. The resin layer 13A is detachably adhered to the first main surface 111A of the device substrate 11A and is fixed on the support plate 12A. A device member is formed on the second main surface 112A of the device substrate 11A, as will be described in detail later.
 平面化後の積層体ブロック10Aの外周面14Aは、図3に示すように、平面になっており、凹溝15(図2参照)が取り除かれている。 As shown in FIG. 3, the outer peripheral surface 14 </ b> A of the laminated body block 10 </ b> A after planarization is a flat surface, and the concave groove 15 (see FIG. 2) is removed.
 ところで、このような凹溝15が存在すると、デバイスの製造工程において、レジスト液等のコーティング液が毛細管現象によって浸入し、溜まりやすい。凹溝15内に溜まったコーティング液は、洗浄によっても除去されにくく、乾燥後に残渣が残りやすい。この残渣は、デバイス製造工程における加熱処理工程において発塵源となるので、発塵が加熱処理工程内を汚染し、製品であるデバイスの歩留まりを低下させる。 By the way, when such a concave groove 15 exists, in the device manufacturing process, a coating solution such as a resist solution enters due to a capillary phenomenon and tends to accumulate. The coating liquid accumulated in the concave groove 15 is not easily removed by washing, and a residue is likely to remain after drying. Since this residue becomes a dust generation source in the heat treatment process in the device manufacturing process, the dust generation contaminates the inside of the heat treatment process and reduces the yield of devices that are products.
 本実施形態では、凹溝15が取り除かれているので、デバイスの製造工程において、コーティング液の残渣が溜まりにくい。従って、加熱処理工程において発塵を抑制することができ、製品であるデバイスの歩留まりの低下を抑制することができる。 In this embodiment, since the concave groove 15 is removed, it is difficult for the coating liquid residue to accumulate in the device manufacturing process. Therefore, dust generation can be suppressed in the heat treatment step, and a decrease in the yield of devices that are products can be suppressed.
 (積層体ブロックの面取り)
 図1に示すように、積層体の製造方法は、積層体ブロックの外周面の平面化された部分の角部を面取りする工程(ステップS12)をさらに有してよい。面取りによって、耐衝撃性、安全性を高めることができる。
(Chamfer of laminated block)
As shown in FIG. 1, the manufacturing method of a laminated body may further have the process (step S12) which chamfers the corner | angular part of the planarized part of the outer peripheral surface of a laminated body block. Chamfering can improve impact resistance and safety.
 ところで、積層体ブロックの外周面を平面化する前に、積層体ブロックの角部を面取りする場合、積層体ブロックの外周面に凹溝があると、デバイス基板の端部や支持板の端部が撓んで破損することがある。 By the way, if the corners of the laminate block are chamfered before the outer peripheral surface of the laminate block is flattened, if there are concave grooves on the outer peripheral surface of the laminate block, the end of the device substrate or the end of the support plate May be bent and damaged.
 本実施形態では、積層体ブロックの外周面を平面化した後に、積層体ブロックの角部を面取りするので、凹溝が予め取り除かれている。このため、面取り時に、デバイス基板の端部や支持板の端部が撓んで破損するのを抑制することができる。 In the present embodiment, since the corners of the laminate block are chamfered after the outer peripheral surface of the laminate block is planarized, the concave grooves are removed in advance. For this reason, it can suppress that the edge part of a device board | substrate and the edge part of a support plate are bent and damaged at the time of chamfering.
 面取り方法は、一般的な方法であってよい。例えば、グラインダー等の面取り機を用いる方法が挙げられる。面取りの種類は、図4に示すように、平面化後の角部110、120を平面に加工する面取りであってもよいし、図5に示すように、平面化後の角部110、120を円弧状面に加工するR面取りであってもよいし、図6に示すように、平面化後の角部110、120を平面と円弧状面との組み合わせに加工する面取りであってもよく、特に限定されない。また、樹脂層を削る面取りであってもよいし、樹脂層を削らない面取りであってもよい。 The chamfering method may be a general method. For example, a method using a chamfering machine such as a grinder can be mentioned. The type of chamfering may be chamfering that processes the corners 110 and 120 after planarization as shown in FIG. 4, or the corners 110 and 120 after planarization as shown in FIG. 5. R may be a chamfered surface that is processed into an arcuate surface, or may be a chamfered surface that is processed into a combination of a flat surface and an arcuate surface as shown in FIG. There is no particular limitation. Moreover, the chamfering which cuts a resin layer may be sufficient and the chamfering which does not cut a resin layer may be sufficient.
 面取り寸法は、デバイス基板、支持板、樹脂層の種類や厚さ等に応じて適宜選択される。R面取りの場合、デバイス基板側の曲率半径R1と支持板側の曲率半径R2とが同一であってもよいし、異なっていてもよい。角部を平面に加工する場合、デバイス基板側の面取り角度θ1と支持板側の面取り角度θ2とが同一であってもよいし、異なっていてもよい。 The chamfer dimension is appropriately selected according to the type and thickness of the device substrate, support plate, and resin layer. In the case of R chamfering, the curvature radius R1 on the device substrate side and the curvature radius R2 on the support plate side may be the same or different. When processing the corner into a flat surface, the chamfering angle θ1 on the device substrate side and the chamfering angle θ2 on the support plate side may be the same or different.
 面取り後、樹脂層の外周面の平面化された部分が樹脂層の厚さ方向に略平行になっていることが好ましい。これによって、樹脂層の露出面積を小さくすることができる。 After chamfering, the planarized portion of the outer peripheral surface of the resin layer is preferably substantially parallel to the thickness direction of the resin layer. Thereby, the exposed area of the resin layer can be reduced.
 樹脂層の露出面積が大きいと、デバイスの製造工程における加熱処理によって、樹脂層が劣化しやすくなる。 If the exposed area of the resin layer is large, the resin layer tends to deteriorate due to heat treatment in the device manufacturing process.
 本実施形態では、樹脂層の露出面積を小さくすることができるので、デバイスの製造工程において、樹脂層の劣化を抑制することができる。 In this embodiment, since the exposed area of the resin layer can be reduced, deterioration of the resin layer can be suppressed in the device manufacturing process.
 図7は、本発明の第1実施形態における面取り後の積層体ブロックの部分側面図である。図7において、面取り前の積層体ブロックの形状を点線で示す。図7の積層体ブロック10Bは、図3の積層体ブロック10Aの切断面の両角部をR面取りしたものである。面取り後のデバイス基板11B、支持板12B、樹脂層13Bは、それぞれ、面取り前のデバイス基板11A、支持板12A、樹脂層13Aに対応する。 FIG. 7 is a partial side view of the laminate block after chamfering according to the first embodiment of the present invention. In FIG. 7, the shape of the laminated body block before chamfering is shown by a dotted line. The laminated body block 10B in FIG. 7 is obtained by rounding both corners of the cut surface of the laminated body block 10A in FIG. The device substrate 11B, the support plate 12B, and the resin layer 13B after chamfering correspond to the device substrate 11A, the support plate 12A, and the resin layer 13A before chamfering, respectively.
 面取り後の積層体ブロック10Bは、デバイス基板11Bと支持板12Bとの間に樹脂層13Bが介装されたものである。樹脂層13Bは、デバイス基板11Bの第1主面111Bに剥離可能に密着されると共に、支持板12B上に固定されている。 The laminated block 10B after chamfering is such that a resin layer 13B is interposed between the device substrate 11B and the support plate 12B. The resin layer 13B is detachably adhered to the first main surface 111B of the device substrate 11B and is fixed on the support plate 12B.
 面取り後の積層体ブロック10Bは、図7に示すように、外周面14Bが丸みを帯びているので、耐衝撃性や安全性に優れている。 The laminated block 10B after chamfering is excellent in impact resistance and safety because the outer peripheral surface 14B is rounded as shown in FIG.
 面取り後の積層体ブロック10Bは、図7に示すように、樹脂層13Bの外周面134Bが樹脂層13Bの厚さ方向(図7中、矢印A方向)に略平行になっているので、樹脂層13Bの露出面積が小さくなっている。このため、デバイスの製造工程における加熱処理によって、樹脂層13Bが劣化するのを抑制することができる。 As shown in FIG. 7, the laminated body block 10B after chamfering has an outer peripheral surface 134B of the resin layer 13B that is substantially parallel to the thickness direction of the resin layer 13B (the direction of arrow A in FIG. 7). The exposed area of the layer 13B is small. For this reason, it can suppress that resin layer 13B deteriorates by the heat processing in the manufacturing process of a device.
 (積層体ブロックの研磨)
 図1に示すように、積層体の製造方法は、デバイス基板がフロート法により製造されたガラス基板である場合、面取り後(即ち、平面化後)、デバイス基板の第2主面を研磨する研磨工程(ステップS13)をさらに有してよい。ここで、フロート法により製造されたガラス基板には、フロート法により製造されたガラス基板をリドロー法により引き伸ばして、厚さをさらに薄くしたガラス基板が含まれる。
(Polishing the laminated block)
As shown in FIG. 1, when the device substrate is a glass substrate manufactured by a float process, the laminated body is manufactured by polishing the second main surface of the device substrate after chamfering (that is, after planarization). You may further have a process (step S13). Here, the glass substrate manufactured by the float process includes a glass substrate that is further reduced in thickness by stretching the glass substrate manufactured by the float process by the redraw method.
 フロート法は、フロートバス内の溶融錫上に溶融ガラスを流出し、下流方向に流動させて帯板状のガラスに成形する方法である。帯板状のガラスを切断して、ガラス基板を製造するが、ガラス基板表面には微小な凹凸やうねりが生じる。 The float method is a method in which molten glass flows out onto molten tin in a float bath and flows in the downstream direction to form a strip-shaped glass. A glass substrate is manufactured by cutting a strip-shaped glass, but minute irregularities and undulations are generated on the surface of the glass substrate.
 前記研磨工程における研磨によって、ガラス基板表面の微小な凹凸やうねりを除去することができ、デバイス用部材が形成される面の平坦性を向上することができる。よって、製品であるデバイスの信頼性を高めることができる。この効果は、ガラス基板の厚さが0.03~0.3mmである場合に顕著である。厚さ0.03~0.3mmのガラス基板は、単独で研磨することが難しく、積層体ブロックにする前に予め研磨することが難しいからである。 By the polishing in the polishing step, minute irregularities and undulations on the glass substrate surface can be removed, and the flatness of the surface on which the device member is formed can be improved. Therefore, the reliability of the device which is a product can be improved. This effect is remarkable when the thickness of the glass substrate is 0.03 to 0.3 mm. This is because a glass substrate having a thickness of 0.03 to 0.3 mm is difficult to polish by itself, and it is difficult to polish it in advance before forming a laminate block.
 ところで、平面化前に、デバイス基板の第2主面を研磨する場合、積層体ブロックの外周面に凹溝があると、研磨剤が凹溝に入り込んで取れなくなったり、デバイス基板が撓んで破損することがある。また、平面化後であっても、面取り前にデバイス基板の第2主面を研磨する場合には、デバイス基板の鋭利な角部が破損しやすい。 By the way, when polishing the second main surface of the device substrate before flattening, if there is a concave groove on the outer peripheral surface of the laminated body block, the abrasive will not enter the concave groove, or the device substrate may be bent and damaged. There are things to do. Even after planarization, sharp corners of the device substrate are likely to be damaged when the second main surface of the device substrate is polished before chamfering.
 本実施形態では、面取り後(即ち、平面化後)に、デバイス基板の第2主面を研磨するので、デバイス基板の角部が予め面取りされており、且つ、凹溝が予め取り除かれている。このため、研磨時に、凹溝への研磨剤の付着やデバイス基板が破損するのを抑制することができる。 In this embodiment, since the second main surface of the device substrate is polished after chamfering (that is, after planarization), the corners of the device substrate are chamfered in advance and the concave grooves are removed in advance. . For this reason, at the time of grinding | polishing, it can suppress that the abrasive | polishing agent adheres to a ditch | groove, or a device substrate is damaged.
 研磨方法は、一般的な方法であってよい。例えば、酸化セリウム等の砥粒を用いた研磨方法が挙げられる。 The polishing method may be a general method. For example, a polishing method using abrasive grains such as cerium oxide can be given.
 研磨代は、デバイス基板の厚さや使用するデバイスに応じて適宜設定されるが、例えば0.05~10μmである。 The polishing allowance is appropriately set according to the thickness of the device substrate and the device to be used, and is, for example, 0.05 to 10 μm.
 図8は、本発明の第1実施形態における研磨後の積層体ブロックの部分側面図である。図8において、研磨前の積層体ブロックの形状を点線で示す。図8の積層体ブロック10Cは、図7の積層体ブロック10Bのデバイス基板11Bの第2主面112Bを研磨したものである。研磨後のデバイス基板11Cは、研磨前のデバイス基板11Bに対応する。 FIG. 8 is a partial side view of the laminated body block after polishing in the first embodiment of the present invention. In FIG. 8, the shape of the laminate block before polishing is indicated by a dotted line. The laminated body block 10C in FIG. 8 is obtained by polishing the second main surface 112B of the device substrate 11B of the laminated body block 10B in FIG. The device substrate 11C after polishing corresponds to the device substrate 11B before polishing.
 研磨後の積層体ブロック10Cは、デバイス基板11Cと支持板12Bとの間に樹脂層13Bが介装されたものである。樹脂層13Bは、デバイス基板11Cの第1主面111Cに剥離可能に密着されると共に、支持板12B上に固定されている。 The laminated block 10C after polishing has a resin layer 13B interposed between the device substrate 11C and the support plate 12B. The resin layer 13B is detachably adhered to the first main surface 111C of the device substrate 11C and is fixed on the support plate 12B.
 研磨後の積層体ブロック10Cは、研磨前の積層体ブロック10Bに比べて、デバイス用部材が形成される第2主面112Cの平坦性、清浄度が高くなっている。 The laminated block 10C after polishing has higher flatness and cleanliness of the second main surface 112C on which the device member is formed, compared to the laminated block 10B before polishing.
 (デバイスの製造方法)
 図9は、本発明の第1実施形態におけるデバイスの製造方法を示す工程図である。
(Device manufacturing method)
FIG. 9 is a process diagram showing a device manufacturing method according to the first embodiment of the present invention.
 デバイスの製造方法は、平面化後の積層体ブロック(積層体)のデバイス基板の第2主面上に、コーティング液を用いてデバイス用部材を形成する工程(ステップS61)と、デバイス基板と樹脂層とを剥離する工程(ステップS62)とを有する。ここで、平面化後の積層体ブロック(積層体)は、面取り後の積層体ブロック(積層体)、研磨後の積層体ブロック(積層体)を当然に含む。 The device manufacturing method includes a step (step S61) of forming a device member using a coating liquid on the second main surface of the device substrate of the planarized laminate block (laminate), the device substrate and the resin. And a step of separating the layer (step S62). Here, the laminated body block (laminated body) after planarization naturally includes a laminated body block (laminated body) after chamfering and a laminated body block (laminated body) after polishing.
 デバイス用部材は、デバイス基板の第2主面に形成されてデバイスの少なくとも一部を構成する部材である。デバイス用部材は、デバイス基板の第2主面に最終的に形成される部材の全部(以下、「全部材」という)ではなく、全部材の一部(以下、「部分部材」という)であってもよい。樹脂層から剥離された、部分部材付きデバイス基板を、その後の工程で、全部材付きデバイス基板とすることができるからである。さらにその後、全部材付きデバイス基板を用いてデバイスが製造される。また、樹脂層から剥離された、全部材付きデバイス基板には、その剥離面(第1主面)に他のデバイス用部材が形成されてもよい。また、全部材付き積層体を用いてデバイスを組み立て、その後、全部材付き積層体から樹脂層付き支持板を剥離して、デバイスを製造することができる。さらに、全部材付き積層体を2枚用いてデバイスを組み立て、その後、全部材付き積層体から2枚の樹脂層付き支持板を剥離して、デバイスを製造することもできる。 The device member is a member that is formed on the second main surface of the device substrate and constitutes at least a part of the device. The device member is not all of the members finally formed on the second main surface of the device substrate (hereinafter referred to as “all members”) but part of all the members (hereinafter referred to as “partial members”). May be. This is because the device substrate with partial members peeled from the resin layer can be used as a device substrate with all members in the subsequent steps. Thereafter, a device is manufactured using the device substrate with all members. Further, other device members may be formed on the peeled surface (first main surface) of the device substrate with all members peeled from the resin layer. Moreover, a device can be manufactured by assembling a device using the laminate with all members, and then peeling the support plate with a resin layer from the laminate with all members. Furthermore, a device can be manufactured by assembling a device using two laminates with all members, and then peeling the two support plates with resin layers from the laminate with all members.
 デバイス基板と樹脂層とを剥離する方法は、公知の方法であってよい。例えば、デバイス基板と樹脂層との間に剥離刃を刺入し、その後、剥離刃の刺入位置に圧縮空気と水とを混合した流体を吹き付ける。この状態で、積層体の一方の主面を平坦に保持し、他方の主面を刺入位置付近から順次撓み変形させる。このようにして、デバイス基板と樹脂層とを剥離することができる。 The method for peeling the device substrate and the resin layer may be a known method. For example, a peeling blade is inserted between the device substrate and the resin layer, and then a fluid in which compressed air and water are mixed is sprayed on the insertion position of the peeling blade. In this state, one main surface of the laminate is held flat, and the other main surface is sequentially bent and deformed from the vicinity of the insertion position. In this way, the device substrate and the resin layer can be peeled off.
 図10は、本発明の第1実施形態におけるLCDの製造方法の工程図である。本実施形態では、TFT-LCDの製造方法について説明するが、本発明をSTN-LCDの製造方法に適用してもよく、液晶パネルの種類ないし方式に制限はない。 FIG. 10 is a process diagram of the LCD manufacturing method according to the first embodiment of the present invention. In this embodiment, a method for manufacturing a TFT-LCD will be described. However, the present invention may be applied to a method for manufacturing an STN-LCD, and there is no limitation on the type or method of the liquid crystal panel.
 TFT-LCDの製造方法は、平面化後の積層体ブロック(積層体)のデバイス基板の第2主面上に、レジスト液を用いて、CVD法およびスパッター法など、一般的な成膜法により形成される金属膜および金属酸化膜等にパターン形成して薄膜トランジスタ(TFT)を形成する工程(ステップS71)と、別の平面化後の積層体ブロック(積層体)のデバイス基板の第2主面上に、レジスト液をパターン形成に用いてカラーフィルタ(CF)を形成する工程(ステップS72)と、TFT付きデバイス基板と、CF付きデバイス基板とを積層する工程(ステップS73)と、両方のデバイス基板と樹脂層とを剥離する工程(ステップS74)とを有する。なお、TFT形成工程(ステップS71)と、CF形成工程(ステップS72)との順序に制限はなく、略同時であってもよい。また、剥離工程(ステップS74)は、積層工程(ステップS73)の前であってもよく、TFT形成工程やCF形成工程の途中であってもよい。 The TFT-LCD manufacturing method uses a resist solution on the second main surface of the planarized device block (laminate) device substrate by a general film-forming method such as a CVD method or a sputtering method. A step of forming a thin film transistor (TFT) by patterning a metal film and a metal oxide film to be formed (step S71), and the second main surface of the device substrate of another planarized laminated body block (laminated body) On top, a step of forming a color filter (CF) using a resist solution for pattern formation (step S72), a step of laminating a device substrate with TFT and a device substrate with CF (step S73), and both devices And a step of peeling the substrate and the resin layer (step S74). The order of the TFT formation process (step S71) and the CF formation process (step S72) is not limited, and may be substantially simultaneous. Further, the peeling process (step S74) may be before the lamination process (step S73), or may be in the middle of the TFT forming process or the CF forming process.
 TFT形成工程やCF形成工程では、周知のフォトリソグラフィ技術やエッチング技術等を用いて、デバイス基板の第2主面上にTFTやCFを形成する。この際、パターン形成用のコーティング液としてレジスト液が用いられる。 In the TFT formation process and the CF formation process, a TFT or CF is formed on the second main surface of the device substrate using a well-known photolithography technique, etching technique, or the like. At this time, a resist solution is used as a coating solution for pattern formation.
 なお、TFTやCFを形成する前に、必要に応じて、デバイス基板の第2主面を洗浄してもよい。洗浄方法としては、周知のドライ洗浄やウェット洗浄を用いることができる。 In addition, you may wash | clean the 2nd main surface of a device board | substrate as needed before forming TFT and CF. As a cleaning method, known dry cleaning or wet cleaning can be used.
 積層工程では、TFT付き積層体と、CF付き積層体との間に液晶材を注入して積層する。液晶材を注入する方法としては、例えば、減圧注入法、滴下注入法がある。 In the laminating process, a liquid crystal material is injected and laminated between the laminated body with TFT and the laminated body with CF. Examples of the method for injecting the liquid crystal material include a reduced pressure injection method and a drop injection method.
 減圧注入法では、例えば、最初に、シール材およびスペーサ材を用いて両積層体を、TFTが存在する面とCFが存在する面とが対向するように貼り合わせる。次に、両積層体から2枚の樹脂層付き支持板を剥離する。その後、貼り合わせた両デバイス基板を複数のセルに切断する。切断された各セルの内部を減圧雰囲気としたうえで、注入孔から各セルの内部に液晶材を注入し、注入孔を封止する。続いて、各セルに偏光板を貼り付け、バックライト等を組み込み、液晶パネルを製造する。 In the reduced pressure injection method, for example, first, both laminates are bonded using a sealing material and a spacer material so that the surface on which the TFT is present and the surface on which the CF is present are opposed to each other. Next, the two support plates with a resin layer are peeled from both laminates. Thereafter, the bonded two device substrates are cut into a plurality of cells. After making the inside of each cut cell into a reduced-pressure atmosphere, a liquid crystal material is injected into each cell from the injection hole to seal the injection hole. Subsequently, a polarizing plate is attached to each cell, a backlight or the like is incorporated, and a liquid crystal panel is manufactured.
 なお、本実施形態では、両積層体から2枚の樹脂層付き支持板を剥離し、その後、貼り合わせた両デバイス基板を複数のセルに切断するとしたが、本発明はこれに限定されない。例えば、シール材およびペーサ材を用いて両積層体を貼り合わせる前に、各積層体から樹脂層付き支持板を剥離してもよい。 In this embodiment, the two support plates with a resin layer are peeled from both laminates, and then the bonded two device substrates are cut into a plurality of cells. However, the present invention is not limited to this. For example, the support plate with a resin layer may be peeled from each laminate before the two laminates are bonded together using a sealing material and a pacer material.
 滴下注入法では、例えば、最初に、両積層体のいずれか一方に液晶材を滴下しておき、シール材およびスペーサ材を用いて両積層体を、TFTが存在する面とCFが存在する面とが対向するように積層する。次に、両積層体から2枚の樹脂層付き支持板を剥離する。その後、積層した両デバイス基板を複数のセルに切断する。続いて、各セルに偏光板を貼り付け、バックライト等を組み込み、液晶パネルを製造する。 In the dropping injection method, for example, first, a liquid crystal material is dropped on one of both laminates, and both laminates are bonded to each other using a sealing material and a spacer material. Are stacked so that they face each other. Next, the two support plates with a resin layer are peeled from both laminates. Thereafter, both stacked device substrates are cut into a plurality of cells. Subsequently, a polarizing plate is attached to each cell, a backlight or the like is incorporated, and a liquid crystal panel is manufactured.
 液晶パネルの製造方法は、上記工程の他、デバイス基板であるガラス基板から樹脂層付き支持板を剥離した後に、ガラス基板をケミカルエッチング処理により薄板化する工程(ステップS75)を更に有してもよい。ガラス基板の第1主面は、支持板により保護されていたので、エッチング処理を行ったとしても、エッチピットが発生しにくい。 In addition to the above steps, the method for producing a liquid crystal panel may further include a step (Step S75) of thinning the glass substrate by chemical etching after peeling the support plate with a resin layer from the glass substrate which is a device substrate. Good. Since the 1st main surface of the glass substrate was protected by the support plate, even if it etched, an etch pit does not generate | occur | produce easily.
 なお、図10に示す例では、TFT付きデバイス基板、CF付きデバイス基板の製造にそれぞれ積層体を1つずつ用いるとしたが、本発明はこれに限定されない。例えば、TFT付きデバイス基板、CF付きデバイス基板のいずれか一方のみの基板の製造に積層体を用いてもよい。 In the example shown in FIG. 10, one laminated body is used for manufacturing each of the device substrate with TFT and the device substrate with CF. However, the present invention is not limited to this. For example, the laminate may be used for manufacturing only one of the device substrate with TFT and the device substrate with CF.
 図11は、本発明の第1実施形態における有機ELパネル(OLED)の製造方法の工程図である。 FIG. 11 is a process diagram of a method for manufacturing an organic EL panel (OLED) in the first embodiment of the present invention.
 有機ELパネルの製造方法は、パターン形成用のレジスト液を用いて、平面化後の積層体のデバイス基板の第2主面上に有機EL素子を形成する工程(ステップS81)と、有機EL素子上に対向基板を積層する工程(ステップS82)と、デバイス基板と樹脂層とを剥離する工程(ステップS83)とを有する。なお、剥離工程(ステップS83)は、積層工程(ステップS82)の前であってもよく、有機EL素子形成工程(ステップS81)の途中であってもよい。 The organic EL panel manufacturing method includes a step of forming an organic EL element on the second main surface of the planarized device substrate using a resist solution for pattern formation (step S81), and an organic EL element. It includes a step of stacking the counter substrate on top (step S82) and a step of peeling the device substrate and the resin layer (step S83). Note that the peeling step (step S83) may be before the stacking step (step S82), or may be in the middle of the organic EL element forming step (step S81).
 有機EL素子形成工程では、周知のフォトリソグラフィ技術や蒸着技術等を用いてデバイス基板の第2主面上に有機EL素子を形成する。この際、デバイス基板の第2主面上に、パターン形成用のコーティング液としてレジスト液が塗布される。有機EL素子は、例えば、透明電極層、正孔輸送層、発光層、電子輸送層等からなる。 In the organic EL element forming step, the organic EL element is formed on the second main surface of the device substrate using a known photolithography technique, vapor deposition technique, or the like. At this time, a resist solution is applied as a pattern forming coating solution onto the second main surface of the device substrate. An organic EL element consists of a transparent electrode layer, a positive hole transport layer, a light emitting layer, an electron carrying layer etc., for example.
 なお、有機EL素子を形成する前に、必要に応じて、デバイス基板の第2主面を洗浄してもよい。洗浄方法としては、例えばドライ洗浄やウェット洗浄を用いることができる。 In addition, you may wash | clean the 2nd main surface of a device board | substrate as needed before forming an organic EL element. As the cleaning method, for example, dry cleaning or wet cleaning can be used.
 積層工程では、例えば、最初に、有機EL素子付きデバイス基板から、樹脂層付き支持板を剥離する。その後、有機EL素子付きデバイス基板を、複数のセルに切断する。続いて、有機EL素子と対向基板とが接触するように、各セルと対向基板とを貼り合わせる。このようにして、有機ELディスプレイを製造する。 In the lamination step, for example, first, the support plate with the resin layer is peeled from the device substrate with the organic EL element. Thereafter, the device substrate with an organic EL element is cut into a plurality of cells. Subsequently, each cell and the counter substrate are bonded together so that the organic EL element and the counter substrate are in contact with each other. In this way, an organic EL display is manufactured.
 このようにして、製造されたLCDやOLED等の表示パネルは、その用途に特に制限はないが、例えば携帯電話、PDA、デジタルカメラ、ゲーム機等の携帯電子機器に好適に用いられる。 The display panel such as LCD and OLED manufactured in this way is not particularly limited in its application, but is suitably used for portable electronic devices such as mobile phones, PDAs, digital cameras, and game machines.
 (第2実施形態)
 第2実施形態は、平面化前の積層体ブロックに関するものである。
(Second Embodiment)
The second embodiment relates to a laminate block before planarization.
 図12は、本発明の第2実施形態における平面化前の積層体ブロックの部分側面図である。図12に示すように、平面化前の積層体ブロック20は、デバイス基板21と支持板22との間に樹脂層23が介装されたものである。樹脂層23は、デバイス基板21の第1主面211に剥離可能に密着されると共に、支持板22上に固定されている。 FIG. 12 is a partial side view of the laminate block before planarization in the second embodiment of the present invention. As shown in FIG. 12, the laminate block 20 before planarization has a resin layer 23 interposed between a device substrate 21 and a support plate 22. The resin layer 23 is detachably adhered to the first main surface 211 of the device substrate 21 and is fixed on the support plate 22.
 支持板22は、樹脂層23よりも大きく、樹脂層23は、デバイス基板21よりも大きくなっている。このような場合、図12に示すように、デバイス基板21が面取り加工されたものであると、デバイス基板21の外周面が丸みを帯びるので、積層体ブロック20の外周面24に凹溝25が形成されてしまう。 The support plate 22 is larger than the resin layer 23, and the resin layer 23 is larger than the device substrate 21. In such a case, as shown in FIG. 12, if the device substrate 21 is chamfered, the outer peripheral surface of the device substrate 21 is rounded, so that the concave groove 25 is formed on the outer peripheral surface 24 of the laminate block 20. Will be formed.
 この場合も、図12のA-A'線に沿って積層体ブロック20を切断することによって、積層体ブロック20の外周面24を平面化することができ、凹溝25を除去することができる。 Also in this case, by cutting the laminate block 20 along the line AA ′ in FIG. 12, the outer peripheral surface 24 of the laminate block 20 can be planarized, and the concave groove 25 can be removed. .
 ところで、図12のB-B'線やC-C'線に沿って積層体ブロック20を切断した場合、積層体ブロック20の外周面24を平面化することができないので、凹溝25が残存する。 By the way, when the laminated body block 20 is cut along the line BB ′ or CC ′ in FIG. 12, the outer peripheral surface 24 of the laminated body block 20 cannot be planarized, so that the groove 25 remains. To do.
 このような場合、凹溝25が残存することに起因して、デバイスの製造工程において、コーティング液の残渣が残りやすい。この残渣は、デバイス製造工程における加熱処理工程において発塵源となるので、発塵が加熱処理工程内を汚染し、製品であるデバイスの歩留まりを低下させる。 In such a case, the residue of the coating liquid tends to remain in the device manufacturing process due to the remaining concave grooves 25. Since this residue becomes a dust generation source in the heat treatment process in the device manufacturing process, the dust generation contaminates the inside of the heat treatment process and reduces the yield of devices that are products.
 本実施形態では、凹溝25を除去することができるので、デバイスの製造工程において、発塵を抑制することができ、製品であるデバイスの歩留まりの低下を抑制することができる。 In the present embodiment, since the concave groove 25 can be removed, dust generation can be suppressed in the device manufacturing process, and a decrease in the yield of devices that are products can be suppressed.
 (第3実施形態)
 図13は、本発明の第3実施形態における平面化前の積層体ブロックの部分側面図である。図13に示すように、平面化前の積層体ブロック30は、デバイス基板31と支持板32との間に樹脂層33が介装されたものである。樹脂層33は、デバイス基板31の第1主面311に剥離可能に密着されると共に、支持板32上に固定されている。
(Third embodiment)
FIG. 13: is a partial side view of the laminated body block before planarization in 3rd Embodiment of this invention. As shown in FIG. 13, the laminate block 30 before planarization has a resin layer 33 interposed between a device substrate 31 and a support plate 32. The resin layer 33 is detachably adhered to the first main surface 311 of the device substrate 31 and is fixed on the support plate 32.
 樹脂層33は、デバイス基板31や支持板32よりも小さくなっている。このため、図13に示すように、積層体ブロック30の外周面34に凹溝35が形成されてしまう。 The resin layer 33 is smaller than the device substrate 31 and the support plate 32. For this reason, as shown in FIG. 13, a concave groove 35 is formed on the outer peripheral surface 34 of the laminate block 30.
 この場合も、図13のA-A'線に沿って積層体ブロック30を切断することによって、積層体ブロック30の外周面34を平面化することができ、凹溝35を除去することができる。 Also in this case, by cutting the laminate block 30 along the line AA ′ in FIG. 13, the outer peripheral surface 34 of the laminate block 30 can be planarized, and the concave groove 35 can be removed. .
 ところで、図13のB-B'線やC-C'線に沿って積層体ブロック30を切断した場合、積層体ブロック30の外周面34を平面化することができないので、凹溝35の一部または全部が残存する。 By the way, when the laminated body block 30 is cut along the line BB ′ or CC ′ in FIG. 13, the outer peripheral surface 34 of the laminated body block 30 cannot be planarized. Part or all remains.
 このような場合、凹溝35の一部または全部が残存することに起因して、デバイスの製造工程において、コーティング液の残渣が残りやすい。この残渣は、デバイス製造工程における加熱処理工程において発塵源となるので、発塵が加熱処理工程内を汚染し、製品であるデバイスの歩留まりを低下させる。 In such a case, the residue of the coating liquid tends to remain in the device manufacturing process due to the remaining part or all of the concave groove 35. Since this residue becomes a dust generation source in the heat treatment process in the device manufacturing process, the dust generation contaminates the inside of the heat treatment process and reduces the yield of devices that are products.
 本実施形態では、凹溝35を除去することができるので、デバイスの製造工程において、発塵を抑制することができ、製品であるデバイスの歩留まりの低下を抑制することができる。 In this embodiment, since the concave groove 35 can be removed, dust generation can be suppressed in the device manufacturing process, and a decrease in the yield of the device as a product can be suppressed.
 以下に、実施例等により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and the like, but the present invention is not limited to these examples.
 (実施例1)
 支持板には、フロート法により得られた縦370mm×横320mm×厚さ0.6mmのガラス板(旭硝子社製、AN100、無アルカリガラス)を用いた。このガラス板の平均線膨張係数は、38×10-7/℃であった。
Example 1
A glass plate (manufactured by Asahi Glass Co., Ltd., AN100, alkali-free glass) having a length of 370 mm, a width of 320 mm, and a thickness of 0.6 mm obtained by a float process was used as the support plate. The average linear expansion coefficient of this glass plate was 38 × 10 −7 / ° C.
 このガラス板を純水洗浄、UV洗浄し、ガラス板の表面を清浄化した。その後、ガラス板の表面に、無溶剤付加反応型シリコーン(信越シリコーン社製、KNS-320A)100質量部と白金系触媒(信越シリコーン社製、CAT-PL-56)5質量部との混合物をスピンコータにより塗工した(塗工量20g/m)。 This glass plate was cleaned with pure water and UV to clean the surface of the glass plate. Thereafter, a mixture of 100 parts by mass of solvent-free addition-reactive silicone (Shin-Etsu Silicone Co., KNS-320A) and 5 parts by mass of a platinum catalyst (Shin-Etsu Silicone Co., Ltd., CAT-PL-56) is applied to the surface of the glass plate. Coating was performed by a spin coater (coating amount 20 g / m 2 ).
 上記無溶剤付加反応型シリコーンは、ケイ素原子に結合したビニル基とメチル基とを有する直鎖状オルガノアルケニルポリシロキサン(主剤)と、ケイ素原子に結合した水素原子とメチル基とを有する直鎖状オルガノハイドロジェンポリシロキサン(架橋剤)とを含むものである。 The above solvent-free addition reaction type silicone is a linear organoalkenylpolysiloxane (main agent) having a vinyl group and a methyl group bonded to a silicon atom, and a linear chain having a hydrogen atom and a methyl group bonded to a silicon atom. It contains an organohydrogenpolysiloxane (crosslinking agent).
 ガラス板上に塗工した混合物を大気中で180℃、10分間加熱硬化させ、ガラス板上に縦366mm×横316mmの樹脂層を形成し、固定した。 The mixture coated on the glass plate was heat-cured at 180 ° C. for 10 minutes in the air to form a resin layer of 366 mm length × 316 mm width on the glass plate and fixed.
 一方、デバイス基板には、ポリエーテルスルホンからなる、縦370mm×横320mm×厚さ0.1mmの樹脂基板(住友ベークライト社製、スミライトFS-5300)を用いた。この樹脂基板の平均線膨張係数は、540×10-7/℃であった。 On the other hand, a resin substrate made of polyethersulfone and having a length of 370 mm × width of 320 mm × thickness of 0.1 mm (Sumilite FS-5300, manufactured by Sumitomo Bakelite Co., Ltd.) was used as the device substrate. The average linear expansion coefficient of this resin substrate was 540 × 10 −7 / ° C.
 この樹脂基板を純水洗浄、UV洗浄し、樹脂基板の表面を清浄化した。その後、樹脂基板とガラス板とを位置合わせしたうえで、真空プレス装置を用いて、室温下で、樹脂基板の第1主面に、ガラス板上に固定された樹脂層を密着させた。 The resin substrate was cleaned with pure water and UV to clean the surface of the resin substrate. Then, after aligning a resin substrate and a glass plate, the resin layer fixed on the glass plate was stuck to the 1st main surface of the resin substrate using the vacuum press apparatus at room temperature.
 このようにして、図2に示す積層体ブロックと略同一の積層体ブロックを得た。得られた積層体ブロックを厚さ方向に切断して、積層体ブロックの外周部を周方向全周に亘って幅10mmで取り除いた。具体的には、カッターナイフを用いて樹脂基板および樹脂層を厚さ方向に切断すると共に、ガラスカッターを用いてガラス板の主面にスクライブ線を形成した後、積層体ブロックを撓み変形させてスクライブ線に沿って割断し、積層体ブロックの外周部を周方向全周に亘って取り除いた。 Thus, a laminate block substantially identical to the laminate block shown in FIG. 2 was obtained. The obtained laminated body block was cut | disconnected in the thickness direction, and the outer peripheral part of the laminated body block was removed by width 10mm over the circumferential direction perimeter. Specifically, while cutting the resin substrate and the resin layer in the thickness direction using a cutter knife, and forming a scribe line on the main surface of the glass plate using a glass cutter, the laminate block is bent and deformed. Cleaving along the scribe line, the outer peripheral portion of the laminate block was removed over the entire circumference.
 この状態では、樹脂基板、ガラス板、および樹脂層の外周面は周方向全周に亘って揃っており、積層体ブロックの外周面は周方向全周に亘って平面化されていた。また、積層体ブロックの外周面に凹溝は見られなかった。 In this state, the outer peripheral surfaces of the resin substrate, the glass plate, and the resin layer were aligned over the entire circumferential direction, and the outer peripheral surface of the laminate block was planarized over the entire circumferential direction. Moreover, the ditch | groove was not looked at by the outer peripheral surface of the laminated body block.
 次いで、平面化後の積層体ブロックを、CF用のブラックマトリクス用レジスト液(旭硝子社製、PMA-ST)中に漬けた後、プロピレングリコールモノメチルエーテルアセテート(レジスト液の主溶媒)で洗浄した。その後、熱風オーブンで120℃、30分間乾燥させ、顕微鏡で積層体の外周面を観察したところ、レジスト液の残渣は見られなかった。 Then, the planarized laminate block was dipped in a CF black matrix resist solution (manufactured by Asahi Glass Co., Ltd., PMA-ST), and then washed with propylene glycol monomethyl ether acetate (resist solution main solvent). Thereafter, the laminate was dried in a hot air oven at 120 ° C. for 30 minutes, and the outer peripheral surface of the laminate was observed with a microscope. As a result, no resist solution residue was found.
 (実施例2)
 実施例2では、支持板にフロート法により得られた縦370mm×横320mm×厚さ0.4mmのガラス板(旭硝子社製、AN100、無アルカリガラス)を用いた以外は、実施例1と同様にして、ガラス板上に樹脂層を形成し、固定した。
(Example 2)
In Example 2, the same as Example 1 except that a glass plate (Asahi Glass Co., Ltd., AN100, non-alkali glass) having a length of 370 mm × width of 320 mm × thickness of 0.4 mm obtained by the float method was used as the support plate. Then, a resin layer was formed on the glass plate and fixed.
 また、実施例2では、デバイス基板にフロート法により得られた縦370mm×横320mm×厚さ0.3mmのガラス基板(旭硝子社製、AN100、無アルカリガラス)を用いた以外は、実施例1と同様にして、ガラス基板の第1主面に、ガラス板上に固定された樹脂層を密着させた。 In Example 2, Example 1 was used except that a glass substrate (manufactured by Asahi Glass Co., Ltd., AN100, alkali-free glass) having a length of 370 mm × width of 320 mm × thickness of 0.3 mm obtained by the float process was used as the device substrate. In the same manner as described above, the resin layer fixed on the glass plate was adhered to the first main surface of the glass substrate.
 このようにして、図2に示す積層体ブロックと略同一の積層体ブロックを得た。得られた積層体ブロックを厚さ方向に切断して、積層体ブロックの外周部を周方向全周に亘って幅10mmで取り除いた。具体的には、ガラスカッターを用いてガラス基板の第2主面にスクライブ線を形成すると共に、ガラスカッターを用いてガラス板の主面にスクライブ線を形成した後、積層体ブロックを撓み変形させてスクライブ線に沿って割断し、積層体ブロックの外周部を周方向全周に亘って取り除いた。 Thus, a laminate block substantially identical to the laminate block shown in FIG. 2 was obtained. The obtained laminated body block was cut | disconnected in the thickness direction, and the outer peripheral part of the laminated body block was removed by width 10mm over the circumferential direction perimeter. Specifically, a scribe line is formed on the second main surface of the glass substrate using a glass cutter, and a scribe line is formed on the main surface of the glass plate using the glass cutter, and then the laminate block is bent and deformed. The laminate was cleaved along the scribe line, and the outer peripheral portion of the laminate block was removed over the entire circumference.
 この状態では、ガラス基板、ガラス板、および樹脂層の外周面は周方向全周に亘って揃っており、積層体ブロックの外周面は周方向全周に亘って平面化されていた。また、積層体ブロックの外周面に凹溝は見られなかった。 In this state, the outer peripheral surfaces of the glass substrate, the glass plate, and the resin layer were aligned over the entire circumferential direction, and the outer peripheral surface of the laminate block was flattened over the entire circumferential direction. Moreover, the ditch | groove was not looked at by the outer peripheral surface of the laminated body block.
 この積層体ブロックの外周面の角部を、砥石を用いて、周方向全周に亘って面取りした。面取り寸法は、曲率半径R=0.4(単位:mm)とした。 The corner of the outer peripheral surface of this laminate block was chamfered over the entire circumference in the circumferential direction using a grindstone. The chamfer dimension was a curvature radius R = 0.4 (unit: mm).
 次いで、実施例1と同様にして、面取り後の積層体ブロックをレジスト液中に漬け、洗浄し、乾燥した後、顕微鏡で積層体の外周面を観察した。その結果、レジスト液の残渣は見られなかった。 Next, in the same manner as in Example 1, the chamfered laminate block was dipped in a resist solution, washed and dried, and the outer peripheral surface of the laminate was observed with a microscope. As a result, no resist solution residue was observed.
 (比較例1)
 比較例1では、実施例2と同様にして得られた切断前の積層体ブロックを、実施例1と同様にして、レジスト液中に漬け、洗浄し、乾燥した後、顕微鏡で積層体の外周面を観察した。その結果、レジスト液の残渣が見られた。
(Comparative Example 1)
In Comparative Example 1, the laminate block before cutting obtained in the same manner as in Example 2 was immersed in a resist solution, washed and dried in the same manner as in Example 1, and then the outer periphery of the laminate was examined with a microscope. The surface was observed. As a result, a resist solution residue was observed.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2010年1月25日出願の日本特許出願2010-012785に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application 2010-012785 filed on January 25, 2010, the contents of which are incorporated herein by reference.
10  積層体ブロック
11  デバイス基板
111 第1主面
112 第2主面
12  支持板
13  樹脂層
14  外周面
15  凹溝
DESCRIPTION OF SYMBOLS 10 Laminated body block 11 Device board | substrate 111 1st main surface 112 2nd main surface 12 Support plate 13 Resin layer 14 Outer peripheral surface 15 Concave groove

Claims (8)

  1.  デバイス基板と支持板との間に樹脂層が介装され、該樹脂層が前記デバイス基板の第1主面に剥離可能に密着されると共に前記支持板上に固定された積層体ブロックを所定寸法に切断し、前記積層体ブロックの外周面の少なくとも周方向一部を平面化する工程を含む、積層体の製造方法。 A resin layer is interposed between the device substrate and the support plate, the resin layer is detachably adhered to the first main surface of the device substrate, and the laminate block fixed on the support plate has a predetermined size. The manufacturing method of a laminated body including the process of cut | disconnecting and flattening at least one circumferential direction part of the outer peripheral surface of the said laminated body block.
  2.  さらに、前記積層体ブロックの外周面の平面化された部分の角部を面取りする工程を含む、請求項1に記載の積層体の製造方法。 Furthermore, the manufacturing method of the laminated body of Claim 1 including the process of chamfering the corner | angular part of the planarized part of the outer peripheral surface of the said laminated body block.
  3.  前記樹脂層の外周面の平面化された部分が前記樹脂層の厚さ方向に略平行である、請求項1または2に記載の積層体の製造方法。 The method for producing a laminate according to claim 1 or 2, wherein the planarized portion of the outer peripheral surface of the resin layer is substantially parallel to the thickness direction of the resin layer.
  4.  前記デバイス基板がフロート法により製造されたガラス基板であって、
     前記角部を面取り後、前記デバイス基板の第2主面を研磨する工程を含む、請求項2または3に記載の積層体の製造方法。
    The device substrate is a glass substrate manufactured by a float process,
    The manufacturing method of the laminated body of Claim 2 or 3 including the process of grind | polishing the 2nd main surface of the said device substrate after chamfering the said corner | angular part.
  5.  前記デバイス基板は、厚さ0.03mm以上0.8mm未満のガラス基板である請求項1~4のいずれか一項に記載の積層体の製造方法。 The method for producing a laminated body according to any one of claims 1 to 4, wherein the device substrate is a glass substrate having a thickness of 0.03 mm or more and less than 0.8 mm.
  6.  前記樹脂層は、アクリル樹脂、ポリオレフィン樹脂、ポリウレタン樹脂、及びシリコーン樹脂からなる群から選ばれる少なくとも一種を含む、請求項1~5のいずれか一項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 5, wherein the resin layer includes at least one selected from the group consisting of an acrylic resin, a polyolefin resin, a polyurethane resin, and a silicone resin.
  7.  前記樹脂層の厚さが5~50μmである請求項1~6のいずれか一項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 6, wherein the resin layer has a thickness of 5 to 50 µm.
  8.  デバイス基板と支持板との間に樹脂層が介装され、該樹脂層が前記デバイス基板の第1主面に剥離可能に密着されると共に前記支持板上に固定された積層体ブロックを所定寸法に切断し、前記積層体ブロックの外周面の少なくとも周方向一部を平面化した積層体。 A resin layer is interposed between the device substrate and the support plate, the resin layer is detachably adhered to the first main surface of the device substrate, and the laminate block fixed on the support plate has a predetermined size. A laminate in which at least a part of the outer peripheral surface of the laminate block is planarized.
PCT/JP2011/050680 2010-01-25 2011-01-17 Method for manufacturing laminate, and laminate WO2011090004A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180007092.0A CN102725143B (en) 2010-01-25 2011-01-17 The manufacture method of duplexer and duplexer
JP2011550901A JP5716678B2 (en) 2010-01-25 2011-01-17 LAMINATE MANUFACTURING METHOD AND LAMINATE
KR1020127019623A KR101538835B1 (en) 2010-01-25 2011-01-17 Method for manufacturing laminate, and laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010012785 2010-01-25
JP2010-012785 2010-01-25

Publications (1)

Publication Number Publication Date
WO2011090004A1 true WO2011090004A1 (en) 2011-07-28

Family

ID=44306807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050680 WO2011090004A1 (en) 2010-01-25 2011-01-17 Method for manufacturing laminate, and laminate

Country Status (5)

Country Link
JP (1) JP5716678B2 (en)
KR (1) KR101538835B1 (en)
CN (1) CN102725143B (en)
TW (1) TWI508863B (en)
WO (1) WO2011090004A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090787A1 (en) * 2010-12-28 2012-07-05 旭硝子株式会社 Process for production of laminate
WO2012157610A1 (en) * 2011-05-13 2012-11-22 日本電気硝子株式会社 Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
JP2012254625A (en) * 2011-05-13 2012-12-27 Nippon Electric Glass Co Ltd Laminate
JP2013082182A (en) * 2011-10-12 2013-05-09 Asahi Glass Co Ltd Method for manufacturing electronic device
CN103213371A (en) * 2012-01-18 2013-07-24 旭硝子株式会社 Method for manufacturing electronic device and method for manufacturing glass laminate
WO2014092015A1 (en) * 2012-12-13 2014-06-19 旭硝子株式会社 Electronic device manufacturing method, and glass laminate manufacturing method
JP2014114183A (en) * 2012-12-10 2014-06-26 Asahi Glass Co Ltd Method for working laminated sheet, and worked laminated sheet
JP2015005644A (en) * 2013-06-21 2015-01-08 凸版印刷株式会社 Production method of coreless wiring board, jig and peeling device
KR20160086855A (en) * 2013-11-15 2016-07-20 니폰 덴키 가라스 가부시키가이샤 Glass film laminate and liquid crystal panel manufacturing method
JP2016151690A (en) * 2015-02-18 2016-08-22 コニカミノルタ株式会社 Manufacturing method for optical element and imaging element
JP2016160135A (en) * 2015-03-02 2016-09-05 日本電気硝子株式会社 Support glass substrate and laminate using the same
WO2016174956A1 (en) * 2015-04-30 2016-11-03 日本電気硝子株式会社 Method for producing flexible laminate
WO2017099167A1 (en) * 2015-12-09 2017-06-15 旭硝子株式会社 Laminated glass
WO2018092688A1 (en) * 2016-11-15 2018-05-24 旭硝子株式会社 Laminated substrate and method for manufacturing electronic device
WO2020095415A1 (en) * 2018-11-08 2020-05-14 日東電工株式会社 Thin glass laminated body
US11225052B2 (en) 2012-07-12 2022-01-18 Corning Incorporated Laminated structures and methods of manufacturing laminated structures
WO2022102470A1 (en) * 2020-11-13 2022-05-19 日東電工株式会社 Multilayer structure and method for producing same
JP2022122845A (en) * 2021-02-10 2022-08-23 彩碁科技股▲ふん▼有限公司 Substrate and its manufacturing method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2830152A4 (en) 2012-03-23 2016-03-09 Lg Innotek Co Ltd Antenna assembly and method for manufacturing same
TWI459418B (en) 2012-03-23 2014-11-01 Lg伊諾特股份有限公司 Wireless power receiver and portable terminal comprising the same
TWI689416B (en) * 2015-01-06 2020-04-01 美商康寧公司 A glass-carrier assembly and methods for processing a flexible glass sheet
EP3395777B1 (en) * 2015-12-21 2021-04-07 AGC Inc. Laminate
JP2018032661A (en) * 2016-08-22 2018-03-01 イビデン株式会社 Printed wiring board and method for manufacturing the same
CN106624628B (en) * 2016-11-22 2019-07-23 江西昌河航空工业有限公司 A kind of honeycomb core NC processing method of no chamfering defect
KR102200159B1 (en) * 2017-12-18 2021-01-08 주식회사 포스코 Method of manufacturing ultra thin and wide width steel sheet
CN111918489B (en) * 2020-08-26 2022-07-05 鸿安(福建)机械有限公司 Multilayer PCB board closing device
KR102443795B1 (en) * 2020-11-03 2022-09-16 주식회사 도우인시스 Manufacturing Method of Ultra-Thin Type Glass Plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10506367A (en) * 1994-10-03 1998-06-23 フォード モーター カンパニー Improvement of edge strength of sheet glass
JP2001097733A (en) * 1999-09-29 2001-04-10 Mitsubishi Plastics Ind Ltd Method for handling glass film and glass laminate
JP2001113631A (en) * 1999-10-20 2001-04-24 Mitsubishi Plastics Ind Ltd Plastic film glass film laminate
JP2002011826A (en) * 2000-06-29 2002-01-15 Mitsubishi Plastics Ind Ltd Metal laminated injection molding and its manufacturing method
JP2002542971A (en) * 1999-04-30 2002-12-17 ショット・ディスプレイ・グラース・ゲーエムベーハー Polymer coated glass thin film substrate
JP2009120439A (en) * 2007-11-14 2009-06-04 Agc Glass Kenzai Engineering Co Ltd Tempered laminated glass, glass screen structure and glass-made handrail

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4406752B2 (en) * 2005-05-27 2010-02-03 日本電気硝子株式会社 Glass substrate end face processing apparatus and end face processing method
EP1914066B1 (en) * 2005-08-09 2016-09-07 Asahi Glass Company, Limited Thin sheet glass laminate and method for manufacturing display using thin sheet glass laminate
JP2007281067A (en) * 2006-04-04 2007-10-25 Nitto Denko Corp Semiconductor device manufacturing method and semiconductor wafer processing adhesive sheet used for it
JP2009008973A (en) * 2007-06-29 2009-01-15 Hitachi Displays Ltd Liquid crystal display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10506367A (en) * 1994-10-03 1998-06-23 フォード モーター カンパニー Improvement of edge strength of sheet glass
JP2002542971A (en) * 1999-04-30 2002-12-17 ショット・ディスプレイ・グラース・ゲーエムベーハー Polymer coated glass thin film substrate
JP2001097733A (en) * 1999-09-29 2001-04-10 Mitsubishi Plastics Ind Ltd Method for handling glass film and glass laminate
JP2001113631A (en) * 1999-10-20 2001-04-24 Mitsubishi Plastics Ind Ltd Plastic film glass film laminate
JP2002011826A (en) * 2000-06-29 2002-01-15 Mitsubishi Plastics Ind Ltd Metal laminated injection molding and its manufacturing method
JP2009120439A (en) * 2007-11-14 2009-06-04 Agc Glass Kenzai Engineering Co Ltd Tempered laminated glass, glass screen structure and glass-made handrail

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090787A1 (en) * 2010-12-28 2012-07-05 旭硝子株式会社 Process for production of laminate
US9446566B2 (en) 2011-05-13 2016-09-20 Nippon Electric Glass Co., Ltd. Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
WO2012157610A1 (en) * 2011-05-13 2012-11-22 日本電気硝子株式会社 Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
JP2012254625A (en) * 2011-05-13 2012-12-27 Nippon Electric Glass Co Ltd Laminate
JP2012254624A (en) * 2011-05-13 2012-12-27 Nippon Electric Glass Co Ltd Laminate and manufacturing method of laminate
US10279568B2 (en) 2011-05-13 2019-05-07 Nippon Electric Glass Co., Ltd. Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
JP2013082182A (en) * 2011-10-12 2013-05-09 Asahi Glass Co Ltd Method for manufacturing electronic device
CN103213371A (en) * 2012-01-18 2013-07-24 旭硝子株式会社 Method for manufacturing electronic device and method for manufacturing glass laminate
JP2013149713A (en) * 2012-01-18 2013-08-01 Asahi Glass Co Ltd Electronic device manufacturing method and glass laminate manufacturing method
US11225052B2 (en) 2012-07-12 2022-01-18 Corning Incorporated Laminated structures and methods of manufacturing laminated structures
JP2014114183A (en) * 2012-12-10 2014-06-26 Asahi Glass Co Ltd Method for working laminated sheet, and worked laminated sheet
WO2014092015A1 (en) * 2012-12-13 2014-06-19 旭硝子株式会社 Electronic device manufacturing method, and glass laminate manufacturing method
JP2015005644A (en) * 2013-06-21 2015-01-08 凸版印刷株式会社 Production method of coreless wiring board, jig and peeling device
KR20160086855A (en) * 2013-11-15 2016-07-20 니폰 덴키 가라스 가부시키가이샤 Glass film laminate and liquid crystal panel manufacturing method
KR102267241B1 (en) * 2013-11-15 2021-06-21 니폰 덴키 가라스 가부시키가이샤 Glass film laminate and liquid crystal panel manufacturing method
JP2016151690A (en) * 2015-02-18 2016-08-22 コニカミノルタ株式会社 Manufacturing method for optical element and imaging element
JP2016160135A (en) * 2015-03-02 2016-09-05 日本電気硝子株式会社 Support glass substrate and laminate using the same
WO2016174956A1 (en) * 2015-04-30 2016-11-03 日本電気硝子株式会社 Method for producing flexible laminate
JPWO2017099167A1 (en) * 2015-12-09 2018-10-11 Agc株式会社 Laminated glass
US10870262B2 (en) 2015-12-09 2020-12-22 AGC Inc. Laminated glass
WO2017099167A1 (en) * 2015-12-09 2017-06-15 旭硝子株式会社 Laminated glass
JP7024408B2 (en) 2015-12-09 2022-02-24 Agc株式会社 Laminated glass and manufacturing method of laminated glass
JPWO2018092688A1 (en) * 2016-11-15 2019-10-17 Agc株式会社 Multilayer substrate and electronic device manufacturing method
WO2018092688A1 (en) * 2016-11-15 2018-05-24 旭硝子株式会社 Laminated substrate and method for manufacturing electronic device
JP7070425B2 (en) 2016-11-15 2022-05-18 Agc株式会社 Manufacturing method for laminated boards and electronic devices
WO2020095415A1 (en) * 2018-11-08 2020-05-14 日東電工株式会社 Thin glass laminated body
EP3878647A4 (en) * 2018-11-08 2022-06-15 Nitto Denko Corporation Thin glass laminated body
WO2022102470A1 (en) * 2020-11-13 2022-05-19 日東電工株式会社 Multilayer structure and method for producing same
JP2022122845A (en) * 2021-02-10 2022-08-23 彩碁科技股▲ふん▼有限公司 Substrate and its manufacturing method
JP7278440B2 (en) 2021-02-10 2023-05-19 彩碁科技股▲ふん▼有限公司 Substrate and its manufacturing method

Also Published As

Publication number Publication date
KR101538835B1 (en) 2015-07-22
KR20120123375A (en) 2012-11-08
JPWO2011090004A1 (en) 2013-05-23
JP5716678B2 (en) 2015-05-13
CN102725143B (en) 2015-09-30
TWI508863B (en) 2015-11-21
TW201132503A (en) 2011-10-01
CN102725143A (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5716678B2 (en) LAMINATE MANUFACTURING METHOD AND LAMINATE
JP5887946B2 (en) Method for manufacturing electronic device and method for manufacturing glass laminate
JP5790392B2 (en) Manufacturing method of electronic device
JP5796449B2 (en) Manufacturing method of electronic device, manufacturing method of carrier substrate with resin layer
WO2010079688A1 (en) Glass laminate and manufacturing method therefor
WO2010110087A1 (en) Manufacturing method for electronic device
JP5842821B2 (en) LAMINATE, DISPLAY DEVICE PANEL WITH SUPPORT PLATE, DISPLAY DEVICE PANEL, AND DISPLAY DEVICE
WO2014092015A1 (en) Electronic device manufacturing method, and glass laminate manufacturing method
KR20090120454A (en) Glass substrate provided with protection glass and method for manufacturing display device using glass substrate provided with protection glass
KR20120098640A (en) Glass laminate, glass laminate manufacturing method, display panel manufacturing method, and display panel obtained by means of display panel manufacturing method
JP2009186916A (en) Method of manufacturing display device panel
WO2014103678A1 (en) Glass laminate, method for producing same, and supporting base with silicone resin layer
KR20170102239A (en) Glass laminate, method for producing electronic device, method for producing glass laminate, and glass plate package
WO2014061565A1 (en) Glass laminate and manufacturing method therefor, and support base with silicone resin layer
JP5861647B2 (en) Manufacturing method of laminate
TWI526316B (en) A method for removing the resin film and a method for producing the layered product
JP5907168B2 (en) LAMINATE MANUFACTURING METHOD AND LAMINATE
JP6003604B2 (en) Laminate processing method, processed laminate
TWI656967B (en) Glass laminated body, manufacturing method thereof, and manufacturing method of electronic device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007092.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734610

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550901

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127019623

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734610

Country of ref document: EP

Kind code of ref document: A1