Nothing Special   »   [go: up one dir, main page]

WO2011089989A1 - エンジン排気エネルギー回収装置、これを備える船舶およびこれを備える発電プラント - Google Patents

エンジン排気エネルギー回収装置、これを備える船舶およびこれを備える発電プラント Download PDF

Info

Publication number
WO2011089989A1
WO2011089989A1 PCT/JP2011/050623 JP2011050623W WO2011089989A1 WO 2011089989 A1 WO2011089989 A1 WO 2011089989A1 JP 2011050623 W JP2011050623 W JP 2011050623W WO 2011089989 A1 WO2011089989 A1 WO 2011089989A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
exhaust gas
pressure
exhaust
target
Prior art date
Application number
PCT/JP2011/050623
Other languages
English (en)
French (fr)
Inventor
村田 聡
純 樋口
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/389,687 priority Critical patent/US20120137676A1/en
Priority to CN201180003074.5A priority patent/CN102472161B/zh
Priority to EP11734595.9A priority patent/EP2527615A4/en
Priority to KR1020127001426A priority patent/KR101383503B1/ko
Publication of WO2011089989A1 publication Critical patent/WO2011089989A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/04Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using kinetic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/024Fluid pressure of lubricating oil or working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/34Control of exhaust back pressure, e.g. for turbocharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine exhaust energy recovery device that recovers exhaust energy of exhaust gas discharged from an engine as power, a ship including the same, and a power plant including the same.
  • a turbocharger and a power turbine are known as an exhaust energy recovery device that recovers exhaust energy contained in exhaust gas discharged from an engine as power (for example, Patent Document 1).
  • the present invention has been made in view of the above circumstances, and it is possible to reduce the fuel consumption rate of the engine to a predetermined value or less with respect to various loads and rotational speeds of the engine.
  • An object of the present invention is to provide an engine exhaust energy recovery device that can be effectively used, a ship including the same, and a power plant including the same.
  • an engine exhaust energy recovery device a ship including the same, and a power plant including the same employ the following means. That is, according to the engine exhaust energy recovery apparatus according to the first aspect of the present invention, the turbine section driven by the exhaust gas discharged from the engine, and the turbine section is driven to pump outside air to the engine.
  • a hybrid turbocharger having a compressor unit and a generator / motor unit that drives the turbine unit with the supplied electric power while generating electric power by driving the turbine unit, and is supplied to the hybrid turbocharger
  • a bypass passage that bypasses the exhaust gas, an exhaust gas bypass control valve that is provided in the bypass passage and controls a flow rate of the exhaust gas that is guided to the hybrid turbocharger, and an engine that detects a load of the engine Load detection means; engine speed detection means for detecting the engine speed; and scavenging pressure of the engine
  • a database for calculating a target scavenging pressure at which the fuel consumption rate of the engine is not more than a predetermined value from the load and the rotational speed detected by the engine load detecting means and the engine speed detecting means.
  • the control device controls the exhaust gas bypass control valve so as to achieve the target scavenging pressure.
  • ⁇ An exhaust gas bypass control valve is provided in the bypass flow path that bypasses the exhaust gas guided to the hybrid supercharger.
  • the opening degree of the exhaust gas bypass control valve is reduced, the flow rate of the exhaust gas led to the hybrid supercharger increases. Therefore, the flow rate of the exhaust gas led to the turbine part of the hybrid supercharger increases. Since the flow rate of the exhaust gas guided to the turbine part increases, the rotational driving force of the turbine part increases. When the rotational driving force of the turbine section increases, the rotation speed of the compressor section increases and the pressure of the compressed air increases. In this way, the scavenging air that is compressed by the compressor unit is guided to the engine.
  • the scavenging pressure of the engine is determined by the scavenging pressure supplied to the engine from the compressor unit of the hybrid supercharger.
  • the fuel consumption rate of the engine is affected by the scavenging pressure, the exhaust valve closing timing, the cylinder pressure, the engine speed, the engine load, the fuel injection timing, and the like.
  • the exhaust gas bypass control valve is controlled by the control device.
  • the control device calculates the target scavenging pressure using a database from the load detected by the engine load detecting means and the rotational speed detected by the engine rotational speed detecting means.
  • the scavenging pressure introduced from the compressor unit of the hybrid turbocharger to the engine that is, the scavenging pressure can be controlled to the target scavenging pressure. Therefore, the exhaust gas bypass control valve can be controlled so that the fuel consumption rate of the engine can be suppressed to a predetermined value or less, and the operating cost of the engine can be reduced.
  • the fuel consumption rate of the engine is affected by the combustion state of the fuel.
  • the fuel combustion state varies depending on the engine speed, scavenging pressure, fuel properties, fuel ignition timing, fuel injection state, and the like.
  • the scavenging pressure is controlled by controlling the exhaust gas bypass control valve. Therefore, the combustion state of the fuel in the engine can be improved.
  • a hybrid supercharger that generates power using exhaust gas. Therefore, at the start of engine operation, the hybrid turbocharger can be driven by the electric power supplied to the generator / motor unit to supply air to the engine. Further, during engine operation, the flow rate of the exhaust gas guided to the hybrid supercharger can be changed by controlling the exhaust gas bypass control valve. Therefore, by controlling the exhaust gas bypass control valve, the power generation amount in the hybrid supercharger can be controlled according to the required power amount.
  • the exhaust gas whose flow rate is controlled by the exhaust gas bypass control valve is guided to the hybrid turbocharger. Further, the exhaust gas that has passed through the bypass flow path and the hybrid supercharger is guided to the heat exchanger. Therefore, when the exhaust gas bypass control valve is opened so as to reduce the power generation amount in the hybrid turbocharger, a large amount of exhaust gas having a high temperature led from the bypass flow path is supplied to the heat exchanger. It will be. Therefore, by controlling the exhaust gas bypass control valve, it is possible to effectively recover the heat energy of the exhaust gas while controlling the power generation amount in the hybrid supercharger.
  • the control device determines the fuel consumption rate of the engine from the load and the rotation speed detected by the engine load detection means and the engine rotation speed detection means.
  • a map or an arithmetic expression for calculating a target fuel injection timing that is equal to or less than the value is provided, and the fuel injection timing is controlled using the map or the arithmetic expression.
  • the control device calculates the target fuel injection timing from the load and the rotational speed using a map or an arithmetic expression, and controls the fuel injection timing. Therefore, the scavenging pressure can be controlled and the combustion state of the fuel in the cylinder can be improved to improve the thermal efficiency. Therefore, by controlling the exhaust gas bypass control valve and the fuel injection timing, the fuel consumption rate of the engine can be made closer to a predetermined value or less.
  • the control device determines the fuel consumption rate of the engine from the load and the rotation speed detected by the engine load detection means and the engine rotation speed detection means.
  • a map or an arithmetic expression for calculating a target exhaust valve closing timing that is less than or equal to a value is provided, and the exhaust valve closing timing is controlled using the map or the arithmetic expression.
  • the cylinder pressure is determined by the scavenging pressure and the exhaust valve closing timing. Therefore, the control device of the first aspect controls the exhaust valve closing timing by calculating the target exhaust valve closing timing using a map or an arithmetic expression from the load and the rotational speed. Therefore, the pressure in the cylinder can be controlled, the combustion state of the fuel in the cylinder can be improved, and the thermal efficiency can be improved. Therefore, by controlling the exhaust gas bypass control valve and the exhaust valve closing timing, the fuel consumption rate of the engine can be made closer to a predetermined value or less.
  • the engine is a fuel that stores the hydraulic oil that is stored in the hydraulic oil pressure accumulator or the common rail fuel injection valve that stores the hydraulic oil that drives the fuel pump.
  • a pressure accumulator, and the control device includes a target hydraulic oil pressure accumulation pressure at which a fuel consumption rate of the engine becomes a predetermined value or less from a load and a rotation speed detected by the engine load detection means and the engine rotation speed detection means, or A map or an arithmetic expression for calculating a target fuel accumulated pressure is provided, and the hydraulic oil accumulated pressure or the fuel accumulated pressure is controlled using the map or the arithmetic expression.
  • the hydraulic oil pressure that drives the fuel pump or the fuel pressure that is supplied to the common rail fuel injection valve affects the fuel injection timing and fuel injection pressure. Therefore, the control device according to the first aspect calculates the target hydraulic oil pressure or the target fuel pressure using a map or an arithmetic expression from the load and the rotational speed. Further, the control device controls the hydraulic oil pressure or the fuel pressure. Thereby, the fuel injection timing and the fuel injection pressure can be controlled by controlling the hydraulic oil pressure or the fuel pressure. Therefore, it is possible to improve the thermal efficiency by improving the combustion state of the fuel in the cylinder together with the control of the exhaust gas bypass control valve. Therefore, the fuel consumption rate of the engine can be made closer to a predetermined value or less.
  • the control device is based on a signal from an exhaust gas bypass control valve opening degree detecting unit that detects an opening degree of the exhaust gas bypass control valve.
  • a target opening degree of the exhaust gas bypass control valve at which the fuel consumption rate of the engine becomes a predetermined value or less is calculated, and feedback control is performed so that the exhaust gas bypass control valve becomes the target opening degree.
  • the exhaust gas bypass control valve opening degree detection means sequentially detects the opening degree of the exhaust gas bypass control valve and performs feedback control. Therefore, it is possible to correct a deviation that occurs between the actual opening and the target opening detected by the exhaust gas bypass control valve opening detecting means due to deterioration over time. Therefore, the fuel consumption rate of the engine can be maintained below a predetermined value.
  • the control device calculates the in-cylinder compression pressure Pcomp and the in-cylinder maximum pressure Pmax from the in-cylinder pressure detected by the in-cylinder pressure detecting means,
  • the target cylinder compression pressure PcompO and the target cylinder maximum pressure PmaxO at which the fuel consumption rate of the engine becomes a predetermined value or less with respect to the detected load and rotation speed are calculated from a map or an arithmetic expression, and the cylinder maximum pressure Pmax is calculated.
  • the fuel injection timing and the exhaust valve closing timing are controlled so that the target cylinder maximum pressure PmaxO becomes the target cylinder maximum pressure PmaxO and the cylinder compression pressure Pcomp becomes the target cylinder compression pressure PcompO.
  • One of the conditions for reducing the fuel consumption rate of the engine to a predetermined value or less is influenced by the state of fuel combustion.
  • the fuel combustion status varies depending on the engine speed, scavenging pressure, fuel properties (cetane number, viscosity, mixing of impurities, etc.), etc.
  • the combustion state of the fuel can be known from the in-cylinder compression pressure Pcomp and the maximum in-cylinder pressure Pmax obtained from the detected in-cylinder pressure. Therefore, the control device of the first aspect obtains the target cylinder compression pressure PcompO and the target cylinder maximum pressure PmaxO from a map or an arithmetic expression using the cylinder pressure detected by the cylinder pressure detection means. .
  • control device controls the exhaust gas bypass control valve, the fuel injection timing, and the exhaust valve closing timing. Therefore, by controlling the exhaust gas bypass control valve, the fuel injection timing and the exhaust valve closing timing, the in-cylinder compression pressure Pcomp and the in-cylinder maximum pressure Pmax can be set to the target in-cylinder compression pressure PcompO and the target in-cylinder maximum pressure PmaxO.
  • the combustion state of the fuel in the cylinder can be improved and the thermal efficiency can be improved. Therefore, the fuel consumption rate of the engine can be reduced to a predetermined value or less even if the fuel properties change.
  • the turbine section driven by the exhaust gas discharged from the engine, and the turbine section is driven to pump outside air to the engine.
  • a hybrid turbocharger having a compressor unit and a generator / motor that drives the turbine unit with the supplied electric power while generating electric power by driving the turbine unit, and is supplied to the hybrid turbocharger
  • Scavenging pressure detecting means cylinder pressure detecting means for detecting the cylinder pressure of the engine, fuel load of the engine from the load and speed detected from the engine load detecting means and the engine speed detecting means
  • a control device having a database for calculating a target cylinder compression pressure PcompO and a target cylinder maximum pressure PmaxO at which the rate is equal to or less than a predetermined value, and the control device adjusts the target cylinder compression pressure PcompO to the target cylinder compression pressure PcompO.
  • the exhaust valve closing timing control is controlled to control the fuel injection timing so that the target cylinder maximum pressure PmaxO is obtained.
  • the engine scavenging pressure may decrease due to a deviation between the target opening and the actual opening of the exhaust gas bypass control valve due to deterioration over time. Further, when the exhaust valve seat portion of the engine is worn, the in-cylinder compression pressure Pcomp is lowered, so that the engine performance is lowered. Therefore, in the second aspect, the target cylinder compression pressure PcompO and the target cylinder maximum pressure PmaxO are calculated from the load and the rotational speed. Further, the cylinder pressure is detected to control the exhaust valve closing timing control and the fuel injection timing. Therefore, by controlling the exhaust valve closing timing and the fuel injection timing, the in-cylinder compression pressure Pcomp and the maximum in-cylinder pressure Pmax can be set to the target in-cylinder compression pressure PcompO and the target in-cylinder maximum pressure PmaxO. It is possible to improve the thermal efficiency by improving the combustion state of the fuel. Therefore, the fuel consumption rate of the engine can be reduced to a predetermined value or less even if the fuel properties change.
  • the exhaust valve closing timing can be controlled to control the target cylinder compression pressure PcompO. Therefore, even if the exhaust gas bypass control valve becomes a control failure or the like, the fuel consumption rate of the engine can be made to be a predetermined value or less.
  • a ship according to the third aspect of the present invention includes the engine exhaust energy recovery device according to any one of the above.
  • An engine exhaust energy recovery device mounted on a ship can reduce the operating cost of the engine. Therefore, it is possible to reduce the operating cost of the ship. Moreover, it can be set as the ship which considered the environment.
  • the power plant according to the fourth aspect of the present invention includes the engine exhaust energy recovery device according to any one of the above.
  • the engine exhaust energy recovery device installed in the power plant can reduce the operating cost of the engine. Therefore, the operation cost of the power plant can be reduced. Moreover, it can be set as the power plant considered in the environment.
  • the exhaust gas bypass control valve is controlled by the control device.
  • the control device calculates the target scavenging pressure using a database from the load detected by the engine load detecting means and the rotational speed detected by the engine rotational speed detecting means.
  • the scavenging pressure introduced from the compressor unit of the hybrid turbocharger to the engine that is, the scavenging pressure can be controlled to the target scavenging pressure. Therefore, the exhaust gas bypass control valve can be controlled so that the fuel consumption rate of the engine can be suppressed to a predetermined value or less, and the operating cost of the engine can be reduced.
  • the fuel consumption rate of the engine is affected by the combustion state of the fuel.
  • the fuel combustion state varies depending on the rotational speed, scavenging pressure, fuel properties, fuel ignition timing, fuel injection state, and the like.
  • the scavenging pressure is controlled by controlling the exhaust gas bypass control valve. Therefore, the combustion state of the fuel in the engine can be improved. Therefore, the fuel consumption rate of the engine is improved by controlling the exhaust gas bypass control valve.
  • a hybrid supercharger that generates power using exhaust gas. Therefore, at the start of engine operation, the hybrid turbocharger can be driven by the electric power supplied to the generator / motor unit to supply air to the engine. Further, during engine operation, the flow rate of the exhaust gas guided to the hybrid supercharger can be changed by controlling the exhaust gas bypass control valve. Therefore, by controlling the exhaust gas bypass control valve, the power generation amount in the hybrid supercharger can be controlled according to the required power amount.
  • FIG. 1 shows a schematic configuration diagram of a ship equipped with an engine exhaust energy recovery device of the present invention.
  • An engine exhaust energy recovery device 1 and a propulsion diesel engine (engine) 2 are provided in an engine room (not shown) of a ship (not shown).
  • the engine exhaust energy recovery device 1 includes a hybrid supercharger 3, an exhaust gas economizer (heat exchanger) 9, and an air cooler 18.
  • a propulsion diesel engine (hereinafter referred to as “engine”) 2 includes a diesel engine main body (hereinafter referred to as “engine main body”) 4, an exhaust manifold 7 in which exhaust gas is accumulated, and an air supply manifold 8 in which scavenging gas is accumulated. And.
  • the propulsion diesel engine 2 is a low-speed large-sized marine two-cycle diesel engine.
  • the engine 2 includes a cylinder 6 provided in the engine body 4, a fuel injection device (not shown) for injecting fuel into the cylinder 6, and combustion gas generated by the combustion of fuel in the cylinder 6 ( And an exhaust valve (not shown) for exhausting the exhaust gas from the cylinder 6.
  • the engine 2 is described as a six-cylinder diesel engine in which the number of cylinders 6 is six.
  • the present invention is not limited to this.
  • it is good also as a diesel engine for electric power generation instead of a diesel engine for propulsion.
  • the hybrid supercharger 3 is coupled to the turbine unit 3a driven by the exhaust gas discharged from the exhaust manifold 7 provided in the engine body 4, and the turbine unit 3a and the turbine shaft 3c so as to be rotationally driven to remove outside air.
  • a compressor unit 3b that compresses and supplies scavenging gas to the engine body 4 and a generator / motor 3d that generates electric power when the turbine shaft 3c is rotationally driven are provided.
  • compressed air that is compressed by the compressor unit 3b and supplied to the engine body 4 is referred to as scavenging.
  • the generator / motor 3d generates electricity when the turbine shaft 3c is rotationally driven.
  • the electric power generated by the generator / motor 3d is converted into direct current through the converter 11 and then converted into alternating current by the inverter 12.
  • the electric power converted into an alternating current by the inverter 12 is electrically connected to the switchboard 14 installed in the engine room via the control resistor 13. By being electrically connected to the switchboard 14, the power generated by the generator / motor 3 d is used as an onboard power source.
  • the generator / motor 3d is driven as an electric motor when supplied with electric power.
  • the generator / motor 3d is driven as a motor to rotationally drive the turbine shaft 3c. Since the turbine shaft 3c is rotationally driven, the compressor unit 3b provided on the turbine shaft 3c is also rotationally driven. Thereby, the compressor part 3b can compress external air and supply scavenging to the engine main body 4.
  • the exhaust gas economizer 9 exchanges heat between the heat of exhaust gas guided from an exhaust pipe L3 described later and water supplied from a water supply pipe L5 described later.
  • the exhaust gas economizer 9 passes the supplied water through a water pipe (not shown) provided in the exhaust gas economizer 9 and converts it into steam by the heat of the exhaust gas.
  • the air cooler 18 is for cooling the scavenged air compressed by the compressor unit 3b of the hybrid supercharger 3 to increase the air density.
  • the scavenged air cooled by the air cooler 18 is supplied to the engine body 4 through an air supply pipe K2 described later.
  • the exhaust pipe L1 connects the exhaust manifold 7 of the engine 2 and the turbine portion 3a of the hybrid supercharger 3.
  • the bypass pipe (bypass flow path) L2 is connected to the middle of the exhaust pipe L1 or directly to the exhaust manifold 7, and connects the exhaust pipe L1 or the exhaust manifold 7 to an exhaust pipe L3 described later.
  • the bypass pipe L2 bypasses the exhaust gas discharged from the exhaust manifold 7 from the hybrid supercharger 3.
  • the exhaust pipe L3 connects the turbine section 3a of the hybrid supercharger 3 and the exhaust gas economizer 9.
  • the exhaust pipe L3 passes the exhaust gas discharged from the turbine part 3a to the exhaust gas economizer 9.
  • the exhaust pipe L4 connects between the exhaust gas economizer 9 and the chimney (not shown). The exhaust pipe L4 can discharge the exhaust gas after heat exchange in the exhaust gas economizer 9 to the outside of the ship.
  • the air supply pipe K1 connects the compressor section 3b of the hybrid supercharger 3 and the air cooler 18.
  • the air supply pipe K2 connects the air cooler 18 and the air supply manifold 8 of the engine 2.
  • the air supply pipe K ⁇ b> 2 sends the scavenged air cooled by the air cooler 18 to the air supply manifold 8 of the engine body 4.
  • the water supply pipe L5 supplies water to the exhaust gas economizer 9 from a main water supply pipe (not shown) in the ship.
  • the steam generated by heat exchange with the exhaust gas in the exhaust gas economizer 9 is guided to a miscellaneous steam pipe (not shown) provided in the ship.
  • the exhaust gas bypass control valve V1 is interposed in the middle of the bypass pipe L2.
  • the exhaust gas bypass control valve V ⁇ b> 1 controls the flow rate of the exhaust gas guided to the hybrid supercharger 3. That is, when the exhaust gas bypass control valve V1 is in a fully closed state, the total flow rate of the exhaust gas guided from the exhaust pipe L1 is supplied to the hybrid supercharger 3. As the opening degree of the exhaust gas bypass control valve V1 increases, the flow rate of the exhaust gas guided from the exhaust pipe L1 or the exhaust manifold 7 to the bypass pipe L2 increases. Therefore, the flow rate of the exhaust gas led to the hybrid supercharger 3 is controlled.
  • the opening degree of the exhaust gas bypass control valve V1 is controlled by a control device (not shown).
  • the orifice 19 is interposed on a bypass pipe L2 on the downstream side of the exhaust gas bypass control valve V1.
  • the orifice 19 prevents a large amount of exhaust gas from being led to the bypass pipe L2 when the engine body 4 is in a high load operation and the exhaust gas bypass control valve V1 is fully open, thereby preventing the hybrid overload.
  • the exhaust gas is supplied to the feeder 3.
  • the orifice 19 has been described. However, the orifice 19 may not be provided.
  • Exhaust gas is generated when the fuel supplied into the cylinder 6 provided in the engine body 4 burns.
  • the exhaust gas generated in the cylinder 6 is discharged from the engine body 4 when the exhaust valve is open.
  • the exhaust gas discharged from the engine body 4 is stored in the exhaust manifold 7.
  • the exhaust gas stored in the exhaust manifold 7 is led out to the exhaust pipe L1.
  • the exhaust gas led out to the exhaust pipe L1 is guided to the hybrid supercharger 3.
  • the turbine section 3a is rotationally driven by the exhaust gas guided to the hybrid supercharger 3. Since the turbine part 3a is rotationally driven, the turbine shaft 3c is rotationally driven. When the turbine shaft 3c is rotationally driven, the compressor unit 3b compresses the outside air, and the generator / motor 3d generates power. The exhaust gas that rotationally drives the turbine section 3a in the hybrid supercharger 3 is led out to the exhaust pipe L3.
  • the exhaust gas derived from the hybrid supercharger 3 and the exhaust gas guided from the bypass pipe L2 are guided to the exhaust gas economizer 9 via the exhaust pipe L3.
  • the exhaust gas guided to the exhaust gas economizer 9 is led into the exhaust gas economizer 9.
  • the exhaust gas supplied into the exhaust gas economizer 9 is heat-exchanged with the water passing through the water pipe provided in the exhaust gas economizer 9.
  • the exhaust gas heat-exchanged in the exhaust gas economizer 9 is discharged from the chimney to the outside through the exhaust pipe L4.
  • the scavenging air compressed by the compressor unit 3b of the hybrid supercharger 3 that is rotationally driven by the exhaust gas is led out to the air supply pipe K1.
  • the scavenged gas led to the supply pipe K1 is guided to the air cooler 18.
  • the scavenged gas guided to the air cooler 18 is cooled to increase the density and guided to the supply pipe K2.
  • the scavenged gas guided to the air supply pipe K ⁇ b> 2 is supplied to the air supply manifold 8.
  • the scavenging air in the supply manifold 8 is guided into the cylinder 6 in the engine body 4.
  • the map of FIG. 2 shows the relationship among the fuel consumption rate with respect to the rotation speed and load of a certain engine body 4, the fuel injection timing, the cylinder compression pressure Pcomp, and the cylinder maximum pressure Pmax.
  • the database in the control device has a plurality of maps having the same relationship with respect to the rotation speed and load of the engine body 4.
  • the horizontal axis in FIG. 2 indicates the in-cylinder compression pressure Pcomp, and the rightward direction in FIG.
  • the vertical axis indicates the fuel injection timing, with the upward direction being a retarded angle and the downward direction being an advanced angle.
  • the in-cylinder compression pressure Pcomp becomes large when the scavenging pressure is high. It is also known that the in-cylinder compression pressure Pcomp is increased by quickly closing the exhaust valve closing timing of the exhaust valve provided in the engine body 4. Therefore, the horizontal axis in FIG. 2 can obtain the same relationship even if the control factor is changed as the scavenging pressure or the exhaust valve closing timing instead of the in-cylinder compression pressure Pcomp.
  • a plurality of curves having intervals in the figure are contour lines indicating the fuel consumption rate of the engine body 4.
  • the fuel consumption rate differs in the position of the curve and the shape of the curve depending on the rotational speed and load of the engine body 4.
  • the contour lines in the figure indicate that the fuel consumption rate is good as it moves in the lower right direction (center direction of the curve) of the curve.
  • a thick straight line in the figure indicates an upper limit value in the cylinder maximum pressure Pmax.
  • the area on the right side of the cylinder maximum pressure Pmax upper limit is a range that cannot be used because it exceeds the allowable pressure of the engine body 4.
  • the predetermined value P of the fuel consumption rate is an area on the left side of the maximum cylinder pressure Pmax upper limit value indicated by a thick straight line in the figure, and the maximum cylinder pressure Pmax upper limit value on the contour line (curve in the figure) of the fuel consumption rate It becomes a part close to a thick straight line indicating.
  • the fuel consumption rate of the engine body 4 is controlled to be equal to or less than the predetermined value P by controlling the scavenging pressure, the exhaust valve closing timing, or the fuel injection timing.
  • the scavenging pressure decreases. Along with this, the in-cylinder compression pressure Pcomp decreases. Therefore, the fuel injection timing can be advanced. Therefore, as the load on the engine body 4 is lower, the predetermined value P of the fuel consumption rate moves in the lower left direction along the upper limit value of the cylinder maximum pressure Pmax which is a thick straight line in the map of FIG. At that time, the center of the curve of the fuel consumption rate contour line also moves in the lower left direction along the upper limit value of the maximum cylinder pressure Pmax.
  • the database is described as having a map, but an arithmetic expression may be used instead of the map.
  • FIG. 3 is a control configuration diagram according to the present embodiment
  • FIG. 4 is a control flowchart according to the present embodiment.
  • the load signal of the engine body 4 detected by the engine load detection means 20, the rotation speed signal of the engine body 4 detected by the engine rotation speed detection means 21, and the scavenging pressure detection means 22
  • the scavenging pressure signal detected by the above is input to the controller (control device) 23.
  • the controller 23 outputs an exhaust gas bypass control valve control command signal A to the exhaust gas bypass control valve V1 according to each input signal.
  • step S ⁇ b> 1 signals of the engine load L, the engine speed Ne, and the scavenging pressure Ps detected by the detection means 20, 21, 22 are input to the controller 23.
  • step S2 the detected engine load L and engine speed Ne are collated with a database prepared in the controller 23.
  • the controller 23 calculates an optimum scavenging pressure PsO (hereinafter referred to as “target optimum pressure”) based on a map in which the horizontal axis represents the scavenging pressure.
  • step S3 a difference ⁇ Ps between the scavenging pressure Ps detected by the scavenging pressure detection means 22 and the target scavenging pressure PsO calculated in step S2 is obtained.
  • the controller 23 determines an opening change amount ⁇ A of the exhaust gas bypass control valve V1 based on the difference ⁇ Ps.
  • step S4 a new exhaust gas of the exhaust gas bypass control valve V1 is determined from the opening degree change amount ⁇ A of the exhaust gas bypass control valve V1 determined in step S3 and the current opening command value A ′ of the exhaust gas bypass control valve V1.
  • a gas bypass control valve control command signal A is determined.
  • step S ⁇ b> 5 the controller 23 outputs a command to the exhaust gas bypass control valve V ⁇ b> 1 to be controlled by a new exhaust gas bypass control valve control command signal A.
  • step S1 the scavenging pressure Ps detected by the scavenging pressure detection means 22 deviates from the target scavenging pressure PsO, the scavenging pressure Ps is corrected. Thereby, the fuel consumption rate of the engine body 4 can be made equal to or less than the predetermined value P.
  • the exhaust gas bypass control valve V1 is controlled by the controller (control device) 23. Thereby, the flow volume of the exhaust gas led to the hybrid supercharger 3 can be controlled.
  • the controller 23 uses a map of a database provided in the controller 23 from the engine load L detected by the engine load detecting means 20 and the engine speed Ne detected by the engine speed detecting means 21. Thus, the target scavenging pressure PsO is calculated.
  • the scavenging pressure introduced from the compressor section 3b of the hybrid supercharger 3 to the engine body 4, that is, the scavenging pressure Ps can be controlled to the target scavenging pressure PsO. Therefore, the exhaust gas bypass control valve V1 can be controlled so that the fuel consumption rate of the engine body 4 can be suppressed to a predetermined value P or less, and the operating cost of the engine 2 can be reduced.
  • the scavenging pressure Ps is controlled by controlling the exhaust gas bypass control valve V1. Therefore, the fuel combustion state in the engine body 4 can be improved. Therefore, the fuel consumption rate of the engine body 4 is improved by controlling the exhaust gas bypass control valve V1.
  • a hybrid supercharger 3 that generates electric power using exhaust gas is provided. Therefore, at the start of engine 2 engine 2 operation, the hybrid supercharger 3 can be driven by the electric power supplied to the generator / motor unit 3 d to supply air to the engine body 4. Further, during the operation of the engine 2, the flow rate of the exhaust gas guided to the hybrid supercharger 3 can be changed by controlling the exhaust gas bypass control valve V1. Therefore, by controlling the exhaust gas bypass control valve V1, the power generation amount in the hybrid supercharger 3 can be controlled according to the required power amount.
  • the exhaust gas whose flow rate is controlled by the exhaust gas bypass control valve V1 is guided to the hybrid supercharger 3.
  • the exhaust gas that has passed through the bypass pipe (bypass flow path) L2 and the hybrid supercharger 3 is guided to the exhaust gas economizer (heat exchanger) 9. Therefore, when the exhaust gas bypass control valve V1 is opened so as to reduce the power generation amount in the hybrid turbocharger 3, a large amount of exhaust gas having a high temperature led from the bypass pipe L2 is supplied to the exhaust gas economizer 9. Will be. Therefore, by controlling the exhaust gas bypass control valve V1, it is possible to effectively recover the heat energy of the exhaust gas while controlling the power generation amount in the hybrid supercharger 3.
  • the engine exhaust energy recovery device 1 mounted on the ship can reduce the operating cost of the engine 2. Therefore, it is possible to reduce the operating cost of the ship.
  • FIG. 5 is a control configuration diagram according to the present embodiment
  • FIG. 6 is a control flowchart according to the present embodiment.
  • an exhaust gas bypass control valve opening degree signal (hereinafter referred to as “opening signal”) B is input from the exhaust gas bypass control valve opening degree detection means 26 to the controller 24.
  • the controller 24 outputs the fuel injection timing signal ⁇ inj, the exhaust valve closing timing signal ⁇ evc, the hydraulic oil pressure signal, or the fuel pressure pressure signal.
  • the hydraulic oil pressure signal is a fuel pump in an electronically controlled diesel engine (not shown) that controls a drive oil that operates a fuel pump (not shown) connected to the fuel injection device by an electric signal.
  • the accumulated pressure of the drive oil for operating refers to the pressure accumulated in the fuel oil accumulated in the common rail in an electronically controlled diesel engine using a common rail fuel injection valve (not shown) connected to the fuel injection device.
  • step S11 of the flowchart shown in FIG. 6 the controller (control device) 24 sends an opening degree signal B from the exhaust gas bypass control valve opening degree detection means 26 and the engine detected by the detection means 20, 21, 22 respectively.
  • the load L, engine speed Ne, and scavenging pressure Ps signals are input.
  • step S12 the engine load L, the scavenging pressure Ps with respect to the engine speed Ne, the fuel injection timing, the exhaust valve closing timing, the hydraulic oil pressure or the fuel oil pressure are collated with a map showing the relationship. .
  • the controller 24 calculates the target scavenging pressure PsO, the target fuel injection timing ⁇ inj, the target exhaust valve closing timing ⁇ evc, the target hydraulic oil accumulation pressure or the target fuel oil accumulation pressure (each parameter optimum value) from the collated map.
  • the map prepared in the controller 24 is a coordinate formed by the in-cylinder compression pressure Pcomp and the fuel injection timing for each of the engine load L and the engine speed Ne as shown in FIG.
  • the fuel consumption rate contour line and the cylinder maximum pressure Pmax upper limit value are shown, and the fuel consumption rate can be set to a predetermined value P or less.
  • the horizontal axis in FIG. 2 may be one of the scavenging pressure, the exhaust valve closing timing, the hydraulic oil pressure, and the fuel pressure pressure instead of the in-cylinder compression pressure Pcomp.
  • the target scavenging pressure PsO, the target fuel injection timing ⁇ inj, the target exhaust valve closing timing ⁇ evc, the target hydraulic oil pressure or the target fuel pressure can be calculated based on the map.
  • step S13 a difference ⁇ Ps between the scavenging pressure Ps detected by the scavenging pressure detection means 22 and the target scavenging pressure PsO calculated in step S12 is obtained.
  • the controller 24 determines the opening change amount ⁇ A of the exhaust gas bypass control valve V1 based on the difference ⁇ Ps.
  • step S14 a new exhaust gas of the exhaust gas bypass control valve V1 is determined from the opening degree change amount ⁇ A of the exhaust gas bypass control valve V1 determined in step S13 and the current opening command value A ′ of the exhaust gas bypass control valve V1.
  • a gas bypass control valve control command signal A is determined.
  • step S15 the controller 24 outputs a new exhaust gas bypass control valve control command signal A to the exhaust gas bypass control valve V1.
  • step S16 an error between the newly detected opening signal B of the exhaust gas bypass control valve V1 and the new exhaust gas bypass control valve control command signal A is calculated.
  • step S17 If there is an error between the opening degree signal B and the new exhaust gas bypass control valve control command signal A, a correction amount is calculated based on the error in step S17, and the process returns to step S14 to control exhaust gas bypass control. The correction of the opening degree of the valve V1 is repeated.
  • the process returns to step S11 and the control is repeated so that the scavenging pressure Ps maintains the target scavenging pressure PsO.
  • step S18 signals of the target fuel injection timing ⁇ inj, the target exhaust valve closing timing ⁇ evc, the target hydraulic oil accumulated pressure or the target fuel oil accumulated pressure obtained from the map are transmitted to the engine controller 25.
  • the engine controller 25 controls the engine body 4 (see FIG. 1).
  • the controller (control device) 24 calculates the target fuel injection timing ⁇ inj using the map from the engine load L and the engine speed Ne, and controls the fuel injection timing. Therefore, the scavenging pressure Ps can be controlled to the target scavenging pressure PsO, and the combustion state of the fuel in the cylinder 6 can be improved to improve the thermal efficiency. Therefore, by controlling the exhaust gas bypass control valve V1 and the fuel injection timing, the fuel consumption rate of the engine body 4 can be made closer to the predetermined value P or less.
  • the controller 24 controls the exhaust valve closing timing by calculating the target exhaust valve closing timing ⁇ evc using the map from the engine load L and the engine speed Ne. Therefore, the pressure in the cylinder can be controlled, the combustion state of the fuel in the cylinder 6 can be improved, and the thermal efficiency can be improved. Therefore, by controlling the exhaust gas bypass control valve V1 and the exhaust valve closing timing, the fuel consumption rate of the engine body 4 can be made closer to the predetermined value P or less.
  • the controller 24 calculates the target hydraulic oil pressure or the target fuel pressure using the map from the engine load L and the engine speed Ne. Further, the controller 24 controls the hydraulic oil pressure or the fuel pressure. Therefore, the fuel injection timing and the fuel injection pressure are controlled by controlling the hydraulic oil pressure or the fuel pressure, thereby improving the combustion state of the fuel in the cylinder 6 together with the control of the exhaust gas bypass control valve V1, thereby improving the thermal efficiency. Can be improved. Therefore, the fuel consumption rate of the engine body 4 can be made closer to the predetermined value P or less.
  • the exhaust gas bypass control valve opening degree detection means 26 sequentially detects the opening degree of the exhaust gas bypass control valve V1 and performs feedback control. For this reason, an error due to deterioration over time between the opening signal (actual opening) B detected by the exhaust gas bypass control valve opening detection means 26 and the exhaust gas bypass control valve control command signal (command opening) A ( Deviation) can be corrected. Therefore, the fuel consumption rate of the engine body 4 can be maintained at a predetermined value P or less.
  • FIG. 7 is a control configuration diagram according to the present embodiment
  • FIGS. 8A and 8B are control flowcharts according to the present embodiment.
  • FIG. 7, FIG. 8A and FIG. 8B the same configuration, exhaust gas flow, air flow, and control method as in the second embodiment are denoted by the same reference numerals.
  • a control method different from the second embodiment is that a cylinder pressure signal from the cylinder pressure detection means 27 is input to the controller 28.
  • the controller 28 includes an exhaust gas bypass control valve opening degree signal B detected by the exhaust gas bypass control valve opening degree detection means 26 and the respective detection means 20, 21.
  • the engine load L the engine speed Ne, and the scavenging pressure Ps detected by.
  • the in-cylinder compression pressure Pcomp and the maximum in-cylinder pressure Pmax which are pressures before the fuel is ignited, are calculated from the crank angle history with respect to the detected in-cylinder pressure Pcyl.
  • step S23 the controller 28 collates the detected engine load L and engine speed Ne with a database prepared in the controller 28.
  • the controller 28 calculates the target scavenging pressure PsO, the target cylinder compression pressure PcompO, and the target cylinder maximum pressure PmaxO based on the map.
  • step S24 a difference ⁇ Ps between the scavenging pressure Ps detected by the scavenging pressure detection means 22 and the target scavenging pressure PsO calculated in step S23 is obtained.
  • the controller 28 determines an opening change amount ⁇ A of the exhaust gas bypass control valve V1 based on the difference ⁇ Ps.
  • step S25 the controller 28 calculates a new exhaust gas of the exhaust gas bypass control valve V1 from the opening change amount ⁇ A of the exhaust gas bypass control valve V1 determined in step S24 and the current opening command value A ′.
  • Bypass control valve control command A is determined.
  • step S26 the controller 28 outputs a new exhaust gas bypass control valve control command A to the exhaust gas bypass control valve V1.
  • step S27 an error between the detected exhaust gas bypass control valve opening signal B of the exhaust gas bypass control valve V1 and a new exhaust gas bypass control valve control command A is calculated.
  • step S28 it is determined whether there is an error between the detected exhaust gas bypass control valve opening signal B of the exhaust gas bypass control valve V1 and a new exhaust gas bypass control valve control command A. If there is an error, a correction amount is calculated based on the error in step S30, and the process returns to step S25 to repeat the correction of the opening degree of the exhaust gas bypass control valve V1.
  • step S28 when the detected opening signal B of the exhaust gas bypass control valve V1 becomes the same as the new exhaust gas bypass control valve control command A, the process returns to step S21 via step S29, and the scavenging pressure Ps. The control is repeated so that becomes the target scavenging pressure PsO.
  • step S31 the controller 28 changes the exhaust valve closing timing change amount based on the difference ⁇ Pcomp between the in-cylinder compression pressure Pcomp calculated in step S22 and the target in-cylinder compression pressure PcompO calculated in step S23. ⁇ evc is determined.
  • step S32 in parallel with step S31, the fuel injection timing change amount ⁇ inj based on the difference ⁇ Pmax between the target maximum cylinder pressure PmaxO calculated in step S23 and the maximum cylinder pressure Pmax calculated in step S22. Decide.
  • step S33 the controller 28 determines the exhaust valve closing timing ⁇ evc based on the change amount ⁇ evc of the exhaust valve closing timing determined in step S31.
  • step S34 the controller 28 determines the fuel injection timing ⁇ inj based on the fuel injection timing change amount ⁇ inj determined in step S32.
  • step S35 the controller 28 issues a command for the exhaust valve closing timing ⁇ evc determined in step S33 and the fuel injection timing ⁇ inj determined in step S34 to the engine controller 25.
  • step S36 an error between the target cylinder maximum pressure PmaxO and the detected maximum cylinder pressure Pmax and an error between the target cylinder compression pressure PcompO and the detected cylinder compression pressure Pcomp are calculated.
  • step S37 if there is an error between the target cylinder maximum pressure PmaxO and the detected cylinder maximum pressure Pmax, or between the target cylinder compression pressure PcompO and the detected cylinder compression pressure Pcomp, the error is based on the error. To calculate the correction amount. The controller 28 repeats the control by feeding back the calculated correction amount to step S33 and step S34.
  • the controller (control device) 28 determines the target cylinder compression pressure PcompO and the target cylinder maximum pressure PmaxO from the map using the cylinder pressure Pcyl detected by the cylinder pressure detector 27. Further, the controller 28 controls the exhaust gas bypass control valve V1, the fuel injection timing, and the exhaust valve closing timing. Therefore, by controlling the exhaust gas bypass control valve, the exhaust valve closing timing, and the fuel injection timing, the cylinder compression pressure Pcomp and the cylinder maximum pressure Pmax are set to the target cylinder compression pressure PcompO and the target cylinder maximum pressure PmaxO. Thus, the combustion state of the fuel in the cylinder 6 can be improved and the thermal efficiency can be improved. Therefore, even if the fuel properties change, the fuel consumption rate of the engine body 4 can be reduced to a predetermined value P or less.
  • FIG. 7 is a control configuration diagram of the present embodiment, which is the same as that of the third embodiment.
  • 9A and 9B show control flowcharts of the present embodiment.
  • step S41 of the flowchart shown in FIG. 9A and FIG. 9B the controller 29 receives the exhaust gas bypass control valve opening degree signal B detected by the exhaust gas bypass control valve opening degree detection means 26 and the respective detection means 20, 21. , 22 and 27, the engine load L, the engine speed Ne, the scavenging pressure Ps, and the cylinder internal pressure Pcyl are input.
  • step S42 the controller 29 calculates the in-cylinder compression pressure Pcomp and the maximum in-cylinder pressure Pmax from the detected crank angle history of the in-cylinder pressure Pcyl.
  • step S43 the detected engine load L and engine speed Ne are collated with a database prepared in the controller 29.
  • the controller 29 calculates the target cylinder compression pressure PcompO and the target cylinder maximum pressure PmaxO based on the map in the database.
  • step S44 the controller 29 calculates a difference ⁇ Pcomp between the cylinder compression pressure Pcomp and the target cylinder compression pressure PcompO.
  • the controller 29 determines the opening change amount ⁇ A of the exhaust gas bypass control valve V1 based on the difference ⁇ Pcomp.
  • step S45 a new exhaust gas bypass control valve control command A for the exhaust gas bypass control valve V1 is determined from the opening change amount ⁇ A of the exhaust gas bypass control valve V1 determined in step S44 and the current opening command value A ′. To decide.
  • step S46 the new exhaust gas bypass control valve control command A determined in step S45 is output to the exhaust gas bypass control valve V1.
  • step S47 an error between the target cylinder compression pressure PcompO and the detected cylinder compression pressure Pcomp is calculated.
  • step S48 it is determined whether the opening degree of the exhaust gas bypass control valve V1 is zero. If the opening degree of the exhaust gas bypass control valve V1 is A ⁇ 0, that is, if it is open, the process proceeds to step S49.
  • step S49 the opening correction amount of the exhaust gas bypass control valve V1 is calculated based on the error between the target cylinder compression pressure PcompO and the detected cylinder compression pressure Pcomp. Thereafter, the opening degree control of the exhaust gas bypass control valve V1 is performed by reflecting the result in step S45.
  • step S50 the exhaust valve closing timing correction amount ⁇ evc is calculated based on the error between the target cylinder compression pressure PcompO calculated in step S47 and the detected cylinder compression pressure Pcomp. Then, it progresses to step S51 and the exhaust valve closing timing is determined.
  • step S52 a difference ⁇ Pmax between the maximum in-cylinder pressure Pmax calculated in step S42 and the target maximum in-cylinder pressure PmaxO calculated in step S43 is calculated. Further, in step S52, the change amount ⁇ inj of the fuel injection timing is determined based on the calculated difference ⁇ Pmax. In step S53, the controller 29 determines the fuel injection timing based on the fuel injection timing change amount ⁇ inj determined in step S52.
  • step S54 control commands for the exhaust valve closing timing ⁇ evc determined in step S51 and the fuel injection timing ⁇ inj determined in step S53 are issued to the engine controller 25.
  • step S55 an error between the target cylinder maximum pressure PmaxO and the cylinder maximum pressure Pmax and an error between the target cylinder compression pressure PcompO and the cylinder maximum pressure Pmax are calculated. If there is an error between the maximum cylinder pressure Pmax and the target maximum cylinder pressure PmaxO, the process proceeds to step S56.
  • step S56 a fuel injection timing correction amount is calculated based on the error between the target cylinder compression pressure PcompO calculated in step S55 and the cylinder maximum pressure Pmax. Thereafter, the process proceeds to step S53, where a new fuel injection timing ⁇ inj is determined based on the fuel injection timing correction amount calculated in step S56, and a control command for the new fuel injection timing ⁇ inj is output to the engine controller 25.
  • step S50 the exhaust valve closing timing correction amount ⁇ evc is calculated based on the error between the cylinder compression pressure Pcomp and the target cylinder compression pressure PcompO. Thereafter, the process proceeds to step S51, where a new exhaust valve closing timing ⁇ evc based on the exhaust valve closing timing correction amount ⁇ evc calculated in step S50 is determined, and a control command for the new exhaust valve closing timing ⁇ evc is output to the engine controller 25.
  • the target cylinder compression pressure PcompO and the target cylinder maximum pressure PmaxO are calculated from the engine load L and the engine speed Ne.
  • the cylinder pressure Pcyl is detected to control the exhaust valve closing timing and the fuel injection timing. Therefore, the exhaust gas bypass control valve V1, the exhaust valve closing timing, and the fuel injection timing are controlled so that the cylinder compression pressure Pcomp and the cylinder maximum pressure Pmax become the target cylinder compression pressure PcompO and the target cylinder maximum pressure PmaxO.
  • the combustion state of the fuel in the cylinder 6 can be improved and the thermal efficiency can be improved. Therefore, the fuel consumption rate of the engine body 4 can be made to be equal to or less than the predetermined value P even if the fuel properties change.
  • the exhaust valve closing timing is controlled by detecting the cylinder pressure Pcyl. Therefore, even when the exhaust gas bypass control valve V1 is in the fully closed state, the target valve compression pressure PcompO can be controlled by controlling the exhaust valve closing timing. Therefore, even when the exhaust gas bypass control valve V1 is in a control failure or the like, the fuel consumption rate of the engine body 4 can be made equal to or less than the predetermined value P.
  • the engine exhaust energy recovery apparatus 1 concerning this embodiment was demonstrated as what is equipped with a ship, this invention is not limited to this, For example, as what is provided in the power plant installed on land Also good. In this case, the following effects are obtained.
  • the engine exhaust energy recovery device 1 provided in the power plant can reduce the operating cost of the engine 2. Therefore, the operation cost of the power plant can be reduced. Moreover, it can be set as the power plant considered in the environment.
  • the operation of the hybrid supercharger 3 is adjusted steplessly to increase the adjustment range of the power generation amount of the generator / motor 3d. be able to. Therefore, even if the power consumption in the ship changes greatly, the capacity of the control resistor 13 can be made small and downsized, which is advantageous in terms of cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

エンジンの様々な負荷や回転数に対してエンジンの燃料消費率を所定値以下にすることができ、エンジンから排出される排気ガスの有効利用が可能とされるエンジン排気エネルギー回収装置を提供することを目的とする。エンジン(2)から排出される排気ガスが供給されるタービン部(3a)とエンジン(2)に掃気圧力を圧送するコンプレッサ部(3b)とタービン(3a)が駆動されることによって発電する発電・電動機部(3d)とを有するハイブリッド過給機(3)と、ハイブリッド過給機(3)に供給される排気ガスを迂回させるバイパス流路(L2)と、エンジン負荷検出手段と、エンジン回転数検出手段と、掃気圧力検出手段と、夫々の検出手段の検出値からエンジン(2)の燃料消費率が所定値以下になる掃気圧力を算出するデータベースを有する制御装置と、を有し、制御装置は、排気ガスバイパス制御弁(V1)を制御してエンジン(2)の掃気圧力を制御する。

Description

エンジン排気エネルギー回収装置、これを備える船舶およびこれを備える発電プラント
 本発明は、エンジンから排出される排気ガスの排気エネルギーを動力として回収するエンジン排気エネルギー回収装置、これを備える船舶およびこれを備える発電プラントに関する。
 エンジンから排出される排気ガスに含まれる排気エネルギーを動力として回収する排気エネルギー回収装置としては、過給機およびパワータービンが知られている(例えば特許文献1)。
特開昭63-186916号公報
 しかし、特許文献1に記載の発明は、エンジンの高負荷運転時にパワータービンの出力を減少させた場合には、パワータービンを駆動させるために利用されていた排気ガスが過給機の排気タービンに供給される。そのため、過給機の排気タービンの駆動力および回転数が上昇し、排気タービンによって駆動される圧縮機の回転数が上昇する。その結果、過給機からエンジンに供給される圧縮空気の圧力、すなわち掃気圧力が許容圧力を超えてしまう。一方、エンジンには、エンジンの運転を安全に行うために掃気圧力が許容圧力以上にならないように制限が課せられている。そのため、高圧の掃気をエンジンに供給しても熱効率の改善にはつながらないという問題があった。
 本発明は上記の事情に鑑みてなされたもので、エンジンの様々な負荷や回転数に対してエンジンの燃料消費率を所定値以下にすることが可能とされ、エンジンから排出される排気ガスの有効利用が可能とされるエンジン排気エネルギー回収装置、これを備える船舶およびこれを備える発電プラントを提供することを目的とする。
 上記課題を解決するために、本発明に係るエンジン排気エネルギー回収装置、これを備える船舶およびこれを備える発電プラントは、以下の手段を採用する。
 すなわち、本発明の第1の態様に係るエンジン排気エネルギー回収装置によれば、エンジンから排出される排気ガスによって駆動されるタービン部と、該タービン部が駆動されることによって外気をエンジンに圧送するコンプレッサ部と、前記タービン部が駆動されることによって発電する一方で供給された電力によって前記タービン部を駆動する発電・電動機部と、を有するハイブリッド過給機と、該ハイブリッド過給機に供給される排気ガスを迂回させるバイパス流路と、該バイパス流路に設けられて、前記ハイブリッド過給機へ導かれる排気ガスの流量を制御する排気ガスバイパス制御弁と、前記エンジンの負荷を検出するエンジン負荷検出手段と、前記エンジンの回転数を検出するエンジン回転数検出手段と、前記エンジンの掃気圧力を検出する掃気圧力検出手段と、前記エンジン負荷検出手段および前記エンジン回転数検出手段によって検出される負荷および回転数から前記エンジンの燃料消費率が所定値以下となる目標掃気圧力を算出するデータベースを有する制御装置と、を備え、前記制御装置は、前記目標掃気圧力になるように前記排気ガスバイパス制御弁を制御する。
 ハイブリッド過給機に導かれる排気ガスを迂回するバイパス流路には、排気ガスバイパス制御弁が設けられている。この排気ガスバイパス制御弁の開度を絞った場合には、ハイブリッド過給機に導かれる排気ガスの流量が増加する。そのため、ハイブリッド過給機のタービン部に導かれる排気ガスの流量が増加する。タービン部に導かれる排気ガスの流量が増加するので、タービン部の回転駆動力が増加する。タービン部の回転駆動力が増加すると、コンプレッサ部の回転数が上昇し、圧縮される空気の圧力が上昇する。このようにコンプレッサ部によって圧縮された空気である掃気は、エンジンに導かれる。エンジンの掃気圧力は、ハイブリッド過給機のコンプレッサ部からエンジンに供給される掃気の圧力によって決定される。また、エンジンの燃料消費率は、掃気圧力、排気弁閉タイミング、シリンダ内圧力、エンジン回転数、エンジン負荷、燃料噴射タイミング等に影響される。
 そこで、上記第1の態様では、制御装置によって排気ガスバイパス制御弁を制御することとした。これにより、ハイブリッド過給機に導かれる排気ガスの流量を制御することができる。また、制御装置は、エンジン負荷検出手段によって検出される負荷と、エンジン回転数検出手段によって検出される回転数とから、データベースを用いて目標掃気圧力を算出することとした。これらにより、ハイブリッド過給機のコンプレッサ部からエンジンに導かれる掃気の圧力、すなわち、掃気圧力を目標掃気圧力に制御することができる。したがって、排気ガスバイパス制御弁を制御してエンジンの燃料消費率を所定値以下に抑えることができ、エンジンの運転コストを低減することができる。
 また、エンジンの燃料消費率は、燃料の燃焼状態に影響される。燃料の燃焼状態は、エンジンの回転数、掃気圧力、燃料の性状、燃料の着火時期、燃料の噴射状態等によって変化する。上記第1の態様では、排気ガスバイパス制御弁を制御して掃気圧力を制御することとした。そのため、エンジンにおける燃料の燃焼状態を改善することができる。
 また、排気ガスによって発電するハイブリッド過給機を設けることとした。そのため、エンジン運転開始時には、発電・電動機部に供給される電力によってハイブリッド過給機を駆動して空気をエンジンに供給することができる。
 また、エンジン運転中には、排気ガスバイパス制御弁を制御することによってハイブリッド過給機に導かれる排気ガスの流量を変えることができる。したがって、排気ガスバイパス制御弁を制御することによって必要な電力量に応じてハイブリッド過給機における発電量を制御することができる。
 上記第1の態様に係るエンジン排気エネルギー回収装置によれば、前記ハイブリッド過給機から導出される排気ガスと、前記バイパス流路から導出される排気ガスとが導かれて熱交換する熱交換器を備える。
 ハイブリッド過給機には、排気ガスバイパス制御弁によって流量が制御された排気ガスが導かれる。また、バイパス流路およびハイブリッド過給機を通過した排気ガスを熱交換器へと導くこととした。そのため、ハイブリッド過給機における発電量を減少させるように排気ガスバイパス制御弁を開状態にした場合には、バイパス流路から導かれた温度の高い排気ガスが多量に熱交換器に供給されることになる。したがって、排気ガスバイパス制御弁を制御することによって、ハイブリッド過給機における発電量を制御しつつ、排気ガスの熱エネルギーを有効に回収することができる。
 上記第1の態様に係るエンジン排気エネルギー回収装置によれば、前記制御装置は、前記エンジン負荷検出手段および前記エンジン回転数検出手段によって検出される負荷および回転数から前記エンジンの燃料消費率が所定値以下となる目標燃料噴射タイミングを算出するマップまたは演算式を備え、前記マップまたは前記演算式を用いて前記燃料噴射タイミングを制御する。
 制御装置は、負荷および回転数からマップまたは演算式を用いて、目標燃料噴射タイミングを算出して、燃料噴射タイミングを制御することとした。そのため、掃気圧力を制御すると共に、シリンダ内の燃料の燃焼状態を改善して熱効率を向上させることができる。したがって、排気ガスバイパス制御弁および燃料噴射タイミングを制御することによって、エンジンの燃料消費率を更に所定値以下に近づけることができる。
 上記第1の態様に係るエンジン排気エネルギー回収装置によれば、前記制御装置は、前記エンジン負荷検出手段および前記エンジン回転数検出手段によって検出される負荷および回転数から前記エンジンの燃料消費率が所定値以下となる目標排気弁閉タイミングを算出するマップまたは演算式を備え、前記マップまたは前記演算式を用いて前記排気弁閉タイミングを制御する。
 シリンダ内圧力は、掃気圧力と排気弁閉タイミングとによって決まる。そこで、上記第1の態様の制御装置は、負荷および回転数からマップまたは演算式を用いて、目標排気弁閉タイミングを算出して排気弁閉タイミングを制御することとした。そのため、シリンダ内圧力を制御することができ、シリンダ内の燃料の燃焼状態を改善して熱効率を向上させることができる。したがって、排気ガスバイパス制御弁と排気弁閉タイミングとを制御することによって、エンジンの燃料消費率を更に所定値以下に近づけることができる。
 また、排気弁閉タイミングを遅らせた場合には、ピストン上昇時の圧縮仕事が低減される。そのため、圧縮上死点におけるシリンダ内の燃焼ガスの温度が低下する。したがって、排気弁閉タイミングを制御することによって、NOxの生成を抑制することができ、環境負荷の低減が可能となる。
 上記第1の態様に係るエンジン排気エネルギー回収装置によれば、前記エンジンは、燃料ポンプを駆動する作動油が蓄えられる作動油蓄圧器またはコモンレール式燃料噴射弁に供給される燃料油が蓄えられる燃料蓄圧器を備え、前記制御装置には、前記エンジン負荷検出手段および前記エンジン回転数検出手段によって検出される負荷および回転数から前記エンジンの燃料消費率が所定値以下となる目標作動油蓄圧圧力または目標燃料蓄圧圧力を算出するマップまたは演算式を備え、前記マップまたは前記演算式を用いて前記作動油蓄圧圧力または前記燃料蓄圧圧力を制御する。
 燃料ポンプを駆動する作動油蓄圧圧力またはコモンレール式燃料噴射弁内に供給される燃料蓄圧圧力は、燃料噴射タイミングや燃料噴射圧に影響する。そこで、上記第1の態様の制御装置は、負荷および回転数からマップまたは演算式を用いて目標作動油蓄圧圧力または目標燃料蓄圧圧力を算出することとした。また、制御装置は、作動油蓄圧圧力または燃料蓄圧圧力を制御することとした。これにより、作動油蓄圧圧力または燃料蓄圧圧力を制御することによって燃料噴射タイミングや燃料噴射圧を制御することができる。そのため、排気ガスバイパス制御弁の制御とともにシリンダ内の燃料の燃焼状態を改善して熱効率を向上させることができる。したがって、エンジンの燃料消費率を更に所定値以下に近づけることができる。
 上記第1の態様に係るエンジン排気エネルギー回収装置によれば、前記制御装置は、前記排気ガスバイパス制御弁の開度を検出する排気ガスバイパス制御弁開度検出手段からの信号に基づいて、前記エンジンの燃料消費率が所定値以下となる前記排気ガスバイパス制御弁の目標開度を算出し、前記排気ガスバイパス制御弁を前記目標開度になるようにフィードバック制御する。
 排気ガスバイパス制御弁開度検出手段によって排気ガスバイパス制御弁の開度を逐次検出して、フィードバック制御することとした。そのため、経年劣化などによって排気ガスバイパス制御弁開度検出手段が検出する実開度と目標開度との間に生じるずれを補正することができる。したがって、エンジンの燃料消費率を所定値以下に維持することが可能となる。
 上記第1の態様に係るエンジンの排気エネルギー回収装置によれば、前記制御装置は、シリンダ内圧力検出手段によって検出されるシリンダ内圧力からシリンダ内圧縮圧力Pcompおよびシリンダ内最高圧力Pmaxを算出し、検出される負荷および回転数に対して前記エンジンの燃料消費率が所定値以下となる目標シリンダ内圧縮圧力PcompOおよび目標シリンダ内最高圧力PmaxOをマップまたは演算式から算出し、前記シリンダ内最高圧力Pmaxが前記目標シリンダ内最高圧力PmaxOになるようにし、かつ、前記シリンダ内圧縮圧力Pcompが前記目標シリンダ内圧縮圧力PcompOになるように前記燃料噴射タイミングおよび前記排気弁閉タイミングを制御する。
 エンジンの燃料消費率を所定値以下にする条件の一つには、燃料の燃焼状況が影響する。燃料の燃焼状況は、エンジンの回転数、掃気圧力、燃料性状(セタン価、粘度、不純物の混合等)等により燃料の着火時期や燃料の微細化状況等が変わる。燃料の燃焼状況は、検知されるシリンダ内圧力から求められるシリンダ内圧縮圧力Pcompおよびシリンダ内最高圧力Pmaxから知ることができる。
 そこで、上記第1の態様の制御装置は、シリンダ内圧力検出手段によって検出されるシリンダ内圧力を用いて目標シリンダ内圧縮圧力PcompOおよび目標シリンダ内最高圧力PmaxOをマップまたは演算式から求めることとした。また、制御装置は、排気ガスバイパス制御弁、燃料噴射タイミングおよび排気弁閉タイミングを制御することとした。そのため、排気ガスバイパス制御弁、燃料噴射タイミングおよび排気弁閉タイミングを制御することによってシリンダ内圧縮圧力Pcompおよびシリンダ内最高圧力Pmaxを目標シリンダ内圧縮圧力PcompOおよび目標シリンダ内最高圧力PmaxOにすることができ、かつ、シリンダ内の燃料の燃焼状態を改善して熱効率を向上させることができる。したがって、燃料の性状が変化してもエンジンの燃料消費率を所定値以下にすることができる。
 本発明の第2の態様に係るエンジンの排気エネルギー回収装置によれば、エンジンから排出される排気ガスによって駆動されるタービン部と、該タービン部が駆動されることによって外気を前記エンジンに圧送するコンプレッサ部と、前記タービン部が駆動されることによって発電する一方で供給された電力によって前記タービン部を駆動する発電・電動機と、を有するハイブリッド過給機と、該ハイブリッド過給機に供給される排気ガスを迂回させるバイパス流路と、該バイパス流路に設けられて、該ハイブリッド過給機に導かれる排気ガスの流量を制御する排気ガスバイパス制御弁と、前記エンジンの負荷を検出するエンジン負荷検出手段と、前記エンジンの回転数を検出するエンジン回転数検出手段と、前記エンジンの掃気圧力を検出する掃気圧力検出手段と、前記エンジンのシリンダ内圧力を検出するシリンダ内圧力検出手段と、前記エンジン負荷検出手段および前記エンジン回転数検出手段から検出された負荷と回転数とから前記エンジンの燃料消費率が所定値以下となる目標シリンダ内圧縮圧力PcompOおよび目標シリンダ内最高圧力PmaxOを算出するデータベースを有する制御装置と、を備え、該制御装置は、前記目標シリンダ内圧縮圧力PcompOになるように前記排気弁閉タイミング制御を制御し、前記目標シリンダ内最高圧力PmaxOになるように前記燃料噴射タイミングを制御する。
 経年劣化などにより排気ガスバイパス制御弁の目標開度と実開度との間にずれが生じてエンジンの掃気圧力が低下することがある。また、エンジンの排気弁シート部が摩耗した場合には、シリンダ内圧縮圧力Pcompが低下するためエンジンの性能が低下する。そこで、上記第2の態様では、負荷および回転数から目標シリンダ内圧縮圧力PcompOと目標シリンダ内最高圧力PmaxOとを算出することとした。また、シリンダ内圧力を検出して排気弁閉タイミング制御と燃料噴射タイミングとを制御することとした。そのため、排気弁閉タイミングと燃料噴射タイミングを制御してシリンダ内圧縮圧力Pcompおよびシリンダ内最高圧力Pmaxを目標シリンダ内圧縮圧力PcompOおよび目標シリンダ内最高圧力PmaxOにすることができ、かつ、シリンダ内の燃料の燃焼状態を改善して熱効率を向上させることができる。したがって、燃料の性状が変化してもエンジンの燃料消費率を所定値以下にすることができる。
 また、シリンダ内圧力を検出して排気弁閉タイミングを制御することとした。そのため、排気ガスバイパス制御弁が全閉状態の場合であっても、排気弁閉タイミングを制御して目標シリンダ内圧縮圧力PcompOに制御することができる。したがって、排気ガスバイパス制御弁が制御不具合等になった場合であっても、エンジンの燃料消費率を所定値以下にすることができる。
 本発明の第3の態様に係る船舶によれば、上記のいずれかに記載のエンジン排気エネルギー回収装置を備える。
 船舶に搭載されるエンジン排気エネルギー回収装置は、エンジンの運転コストを抑えることができる。そのため、船舶の運航コストの削減を図ることができる。また、環境に考慮した船舶にすることができる。
 本発明の第4の態様に係る発電プラントによれば、上記のいずれかに記載のンジン排気エネルギー回収装置を備える。
 発電プラントに設けられるンジン排気エネルギー回収装置は、エンジンの運転コストを抑えることができる。そのため、発電プラントの運用コストの削減を図ることができる。また、環境に考慮した発電プラントにすることができる。
 本発明に係る排気エネルギー回収装置によれば、制御装置によって排気ガスバイパス制御弁を制御することとした。これにより、ハイブリッド過給機に導かれる排気ガスの流量を制御することができる。また、制御装置は、エンジン負荷検出手段によって検出される負荷と、エンジン回転数検出手段によって検出される回転数とから、データベースを用いて目標掃気圧力を算出することとした。これらにより、ハイブリッド過給機のコンプレッサ部からエンジンに導かれる掃気の圧力、すなわち、掃気圧力を目標掃気圧力に制御することができる。したがって、排気ガスバイパス制御弁を制御してエンジンの燃料消費率を所定値以下に抑えることができ、エンジンの運転コストを低減することができる。
 また、エンジンの燃料消費率は、燃料の燃焼状態に影響される。燃料の燃焼状態は、回転数、掃気圧力、燃料の性状、燃料の着火時期、燃料の噴射状態等によって変化する。本発明では、排気ガスバイパス制御弁を制御して掃気圧力を制御することとした。そのため、エンジンにおける燃料の燃焼状態を改善することができる。したがって、排気ガスバイパス制御弁を制御することによってエンジンの燃料消費率が改善される。
 また、排気ガスによって発電するハイブリッド過給機を設けることとした。そのため、エンジン運転開始時には、発電・電動機部に供給される電力によってハイブリッド過給機を駆動して空気をエンジンに供給することができる。
 また、エンジン運転中には、排気ガスバイパス制御弁を制御することによってハイブリッド過給機に導かれる排気ガスの流量を変えることができる。したがって、排気ガスバイパス制御弁を制御することによって必要な電力量に応じてハイブリッド過給機における発電量を制御することができる。
本発明の一実施形態に係るエンジン排気エネルギー回収装置を具備した船舶の概略構成図である。 本発明の一実施形態に係るエンジンの燃料消費率を所定値以下にするために用いられるデータベースである。 本発明の第1実施形態に係る制御構成図である。 本発明の第1実施形態に係る制御フローチャートである。 本発明の第2実施形態に係る制御構成図である。 本発明の第2実施形態に係る制御フローチャートである。 本発明の第3実施形態に係る制御構成図である。 本発明の第3実施形態に係る制御フローチャートである。 本発明の第3実施形態に係る制御フローチャートである。 本発明の第4実施形態に係る制御フローチャートである。 本発明の第4実施形態に係る制御フローチャートである。
 以下、本発明に係るエンジン排気エネルギー回収装置を備えた船舶の実施形態について説明する。
 但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
 図1には、本発明のエンジン排気エネルギー回収装置を具備した船舶の概略構成図が示されている。
 船舶(図示せず)の機関室(図示せず)内には、エンジン排気エネルギー回収装置1と、推進用ディーゼル機関(エンジン)2が設けられている。
 エンジン排気エネルギー回収装置1は、ハイブリッド過給機3と、排気ガスエコノマイザ(熱交換器)9と、空気冷却器18とを有している。
 推進用ディーゼル機関(以下「エンジン」という。)2は、ディーゼル機関本体(以下「エンジン本体」という。)4と、排気ガスが蓄積される排気マニホールド7と、掃気が蓄積される給気マニホールド8とを備えている。推進用ディーゼル機関2は、低速大型の舶用2サイクルディーゼル機関である。
 エンジン2は、エンジン本体4内に設けられているシリンダ6と、シリンダ6内に燃料を噴射する燃料噴射装置(図示せず)と、シリンダ6内で燃料が燃焼することによって発生する燃焼ガス(以下「排気ガス」という。)をシリンダ6内から排気する排気弁(図示せず)とを備えている。
 なお、本実施形態では、エンジン2は、シリンダ6の数が6本配置された6気筒ディーゼル機関として説明するが、これに限定されるものではない。また、推進用ディーゼル機関ではなく、発電用ディーゼル機関としても良い。
 ハイブリッド過給機3は、エンジン本体4に設けられている排気マニホールド7から排出された排気ガスによって駆動されるタービン部3aと、タービン部3aとタービン軸3c上に結合して回転駆動され外気を圧縮してエンジン本体4に掃気を供給するコンプレッサ部3bと、タービン軸3cが回転駆動することによって発電する発電・電動機3dとを備えている。
 なお、本実施形態では、コンプレッサ部3bによって圧縮されてエンジン本体4に供給される圧縮空気を掃気と称しているが、給気と称しても同じ意味である。
 発電・電動機3dは、タービン軸3cが回転駆動することによって発電する。発電・電動機3dによって発生した電力は、コンバータ11を介して直流に変換された後、インバータ12によって交流に変換される。インバータ12によって交流にされた電力は、制御用抵抗器13を介して機関室内に設置されている配電盤14に電気的に接続される。配電盤14に電気的に接続されることによって、発電・電動機3dが発電した電力は、船内電源として利用される。
 また、発電・電動機3dは、電力が供給されることによって電動機として駆動する。発電・電動機3dは、電動機として駆動することによってタービン軸3cを回転駆動する。タービン軸3cが回転駆動するため、タービン軸3c上に設けられているコンプレッサ部3bも回転駆動する。これにより、コンプレッサ部3bが外気を圧縮してエンジン本体4に掃気を供給することができる。
 排ガスエコノマイザ9は、後述する排気管L3から導かれた排気ガスの熱と、後述する給水管L5から供給された水とが熱交換するものである。排ガスエコノマイザ9は、供給された水を排ガスエコノマイザ9内に設けられている水管内(図示省略)に通水して排気ガスの熱によって蒸気に熱変換する。
 空気冷却器18は、ハイブリッド過給機3のコンプレッサ部3bによって圧縮された掃気を冷却して空気密度を上げるためのものである。空気冷却器18によって冷却された掃気は、後述する給気管K2によってエンジン本体4に供給される。
 排気管L1は、エンジン2の排気マニホールド7と、ハイブリッド過給機3のタービン部3aとを連結している。
 バイパス管(バイパス流路)L2は、排気管L1の途中もしくは排気マニホールド7に直接接続されており、排気管L1もしくは排気マニホールド7と後述する排気管L3とを連結している。バイパス管L2は、排気マニホールド7から排出された排気ガスをハイブリッド過給機3から迂回させる。
 排気管L3は、ハイブリッド過給機3のタービン部3aと、排ガスエコノマイザ9とを連結している。排気管L3は、タービン部3aから排出される排気ガスを排ガスエコノマイザ9に送通する。
 排気管L4は、排ガスエコノマイザ9と煙突(図示省略)との間を連結している。排気管L4により、排ガスエコノマイザ9において熱交換した後の排気ガスを船外に放出することができる。
 給気管K1は、ハイブリッド過給機3のコンプレッサ部3bと、空気冷却器18とを連結している。
 給気管K2は、空気冷却器18と、エンジン2の給気マニホールド8とを連結している。給気管K2は、空気冷却器18によって冷却された掃気をエンジン本体4の給気マニホールド8へ送通する。
 給水管L5は、船内の図示しない主給水管から水を排ガスエコノマイザ9へ供給する。
 尚、排ガスエコノマイザ9において排気ガスと熱交換されて発生した蒸気は、船内に設けられている図示しない雑用蒸気管へと導かれる。
 排気ガスバイパス制御弁V1は、バイパス管L2の途中に介装されている。排気ガスバイパス制御弁V1は、ハイブリッド過給機3へ導かれる排気ガスの流量を制御する。すなわち、排気ガスバイパス制御弁V1が全閉状態の場合には、排気管L1から導かれる排気ガスの全流量は、ハイブリッド過給機3へと供給される。排気ガスバイパス制御弁V1の開度が増加するにつれて、排気管L1もしくは排気マニホールド7からバイパス管L2へと導かれる排気ガスの流量が増加する。そのため、ハイブリッド過給機3へと導かれる排気ガスの流量が制御されることになる。その排気ガスバイパス制御弁V1の開度は、制御装置(図示省略)により制御される。
 オリフィス19は、排気ガスバイパス制御弁V1の下流側のバイパス管L2上に介装されている。オリフィス19は、エンジン本体4が高負荷運転時であって、かつ、排気ガスバイパス制御弁V1が全開状態の場合に、バイパス管L2に排気ガスが多量に導かれるのを防止して、ハイブリッド過給機3に排気ガスが供給されるようにする。
 なお、本実施形態では、オリフィス19を設けることとして説明したが、オリフィス19を設けなくても良い。
 次に、エンジン本体4から排出される排気ガスの流れについて説明する。
 エンジン本体4に設けられているシリンダ6内に供給された燃料が燃焼することによって、排気ガスが発生する。シリンダ内6に発生した排気ガスは、排気弁が開状態の際にエンジン本体4から排出される。エンジン本体4から排出された排気ガスは、排気マニホールド7に溜められる。排気マニホールド7に溜められた排気ガスは、排気管L1へと導出される。排気管L1に導出された排気ガスは、ハイブリッド過給機3へと導かれる。
 ハイブリッド過給機3に導かれた排気ガスによって、タービン部3aが回転駆動される。タービン部3aが回転駆動されるため、タービン軸3cが回転駆動される。タービン軸3cが回転駆動されることによって、コンプレッサ部3bは外気を圧縮し、発電・電動機3dが発電する。ハイブリッド過給機3においてタービン部3aを回転駆動させた排気ガスは、排気管L3へと導出される。
 また、排気ガスバイパス制御弁V1の開度が開状態の場合には、排気管L1に導かれた排気ガスの一部もしくは排気マニホールド7の中の排気ガスの一部がバイパス管L2へと導かれる。バイパス管L2に導かれた排気ガスは、ハイブリッド過給機3の下流側に接続されている排気管L3に合流される。
 ハイブリッド過給機3から導出された排気ガスと、バイパス管L2から導かれた排気ガスとは、排気管L3を経て排ガスエコノマイザ9へと導かれる。排ガスエコノマイザ9に導かれた排気ガスは、排ガスエコノマイザ9内部へと導出される。排ガスエコノマイザ9の内部に供給された排気ガスは、排ガスエコノマイザ9内に設けられている水管内を通過する水と熱交換される。排ガスエコノマイザ9において熱交換された排気ガスは、排気管L4を介して煙突から外部へと放出される。
 次に、エンジン本体4に供給される掃気の流れについて説明する。
 排気ガスによって回転駆動されたハイブリッド過給機3のコンプレッサ部3bが圧縮した掃気は、給気管K1へと導出される。給気管K1に導出された掃気は、空気冷却器18へと導かれる。空気冷却器18に導かれた掃気は、冷却されて密度が高められて給気管K2へと導かれる。給気管K2に導かれた掃気は、給気マニホールド8へと供給される。給気マニホールド8内の掃気は、エンジン本体4内のシリンダ6内へと導かれる。
 次に、エンジン本体4の燃料消費率を所定値以下に決めるためのマップについて、図2を参照して説明する。
 図2のマップは、あるエンジン本体4の回転数および負荷に対する燃料消費率と、燃料噴射タイミングと、シリンダ内圧縮圧力Pcompと、シリンダ内最高圧力Pmaxとの関係を示している。制御装置内のデータベースは、エンジン本体4の回転数、負荷のそれぞれに対して同様の関係のマップを複数持つこととなる。
 図2の横軸には、シリンダ内圧縮圧力Pcompを示し、図2の右方向が大となる。縦軸には、燃料噴射タイミングを示し、上方が遅角になる方向、下方が進角になる方向を示している。
 シリンダ内圧縮圧力Pcompは、掃気圧力が高い場合に大になる関係が知られている。また、シリンダ内圧縮圧力Pcompは、エンジン本体4に設けられている排気弁の排気弁閉タイミングを早閉じすることによって大になる関係であることも知られている。そのため、図2の横軸は、シリンダ内圧縮圧力Pcompに代えて掃気圧力や排気弁閉タイミングとして、制御因子を代えても同様の関係を得ることができる。
 図中の間隔を有した複数の曲線は、エンジン本体4の燃料消費率を示す等高線である。燃料消費率は、エンジン本体4の回転数、負荷によって曲線の位置および曲線の形状が異なっている。図中の等高線は、曲線の右下(曲線の中心方向)方向に移るに従い燃料消費率が良いことを示している。
 図中の太い直線は、シリンダ内最高圧力Pmax上限値を示している。シリンダ内最高圧力Pmax上限値の右側エリアは、エンジン本体4の許容圧力を超えるため使用できない範囲となっている。
 燃料消費率の所定値Pは、図中の太い直線で示したシリンダ内最高圧力Pmax上限値よりも左側エリアで且つ、燃料消費率の等高線(図中の曲線)のシリンダ内最高圧力Pmax上限値を示す太い直線に近接した部分となる。
 エンジン本体4の燃料消費率は、掃気圧力、または、排気弁閉タイミング、または、燃料噴射タイミングを制御してこの所定値P以下になるようにする。
 エンジン本体4の負荷が低くなるにつれて、掃気圧力が低下する。それに伴いシリンダ内圧縮圧力Pcompが低下する。そのため、燃料噴射タイミングを進角することができるようになる。このため、エンジン本体4の負荷が低いほど燃料消費率の所定値Pは、図2のマップにおいて太い直線のシリンダ内最高圧力Pmax上限値に沿って左下方向に移動する。
 その際、燃料消費率の等高線の曲線の中心も太い直線のシリンダ内最高圧力Pmax上限値に沿って左下方向に移動する。
 なお、本実施形態では、データベースにマップを備えるものとして説明したが、マップの代わりに演算式を用いても良い。
 [第1実施形態]
 本発明による燃料消費率を所定値以下にする制御方法の第1実施形態を図3および図4に基づいて説明する。図3は、本実施形態に係る制御構成図であり、図4は、本実施形態に係る制御フローチャートである。
 図3において、エンジン負荷検出手段20によって検知されたエンジン本体4(図1参照)の負荷信号と、エンジン回転数検出手段21によって検知されたエンジン本体4の回転数信号と、掃気圧力検出手段22によって検知された掃気圧力信号とが、コントローラ(制御装置)23に入力される。入力された各信号によって、コントローラ23は、排気ガスバイパス制御弁V1に排気ガスバイパス制御弁制御指令信号Aを出力する。
 図4のとおり、ステップS1において、コントローラ23には、夫々の検出手段20,21,22によって検出されたエンジン負荷L、エンジン回転数Neおよび掃気圧力Psの信号が入力される。
 ステップS2において、検出されたエンジン負荷Lおよびエンジン回転数Neをコントローラ23内に用意されているデータベースに照合する。図2において横軸に掃気圧力を示したマップに基づいて、コントローラ23は、最適掃気圧力PsO(以下「目標最適圧力」という。)を算出する。
 ステップS3において、掃気圧力検出手段22によって検出された掃気圧力Psと、ステップS2において算出された目標掃気圧力PsOとの差ΔPsを求める。コントローラ23は、この差ΔPsに基づいて排気ガスバイパス制御弁V1の開度変更量ΔAを決定する。
 ステップS4において、ステップS3において決定された排気ガスバイパス制御弁V1の開度変更量ΔAと、現状の排気ガスバイパス制御弁V1の開度指令値A’とから排気ガスバイパス制御弁V1の新しい排気ガスバイパス制御弁制御指令信号Aを決定する。
 ステップS5において、コントローラ23は、排気ガスバイパス制御弁V1へ新しい排気ガスバイパス制御弁制御指令信号Aによって制御するように指令を出力する。
 その後、ステップS5からステップS1に戻って繰返す。
 この動作を繰返すことにより掃気圧力検出手段22によって検出された掃気圧力Psが目標掃気圧力PsOからずれている場合には、掃気圧力Psを修正することとなる。これにより、エンジン本体4の燃料消費率が所定値P以下となるようにすることができる。
 以上説明したように、本実施形態にかかるエンジン排気エネルギー回収装置およびこれを備えた船舶によれば、以下の作用効果を奏する。
 コントローラ(制御装置)23によって排気ガスバイパス制御弁V1を制御することとした。これにより、ハイブリッド過給機3に導かれる排気ガスの流量を制御することができる。また、コントローラ23は、エンジン負荷検出手段20によって検出されたエンジン負荷Lと、エンジン回転数検出手段21によって検出されたエンジン回転数Neとから、コントローラ23内に設けられているデータベースのマップを用いて目標掃気圧力PsOを算出することとした。これらにより、ハイブリッド過給機3のコンプレッサ部3bからエンジン本体4に導かれる掃気の圧力、すなわち、掃気圧力Psを目標掃気圧力PsOに制御することができる。したがって、排気ガスバイパス制御弁V1を制御してエンジン本体4の燃料消費率を所定値P以下に抑えることができ、エンジン2の運転コストを低減することができる。
 また、排気ガスバイパス制御弁V1を制御して掃気圧力Psを制御することとした。そのため、エンジン本体4における燃料の燃焼状態を改善することができる。したがって、排気ガスバイパス制御弁V1を制御することによってエンジン本体4の燃料消費率が改善される。
 また、排気ガスによって発電するハイブリッド過給機3を設けることとした。そのため、エンジン2エンジン2運転開始時には、発電・電動機部3dに供給された電力によってハイブリッド過給機3を駆動して空気をエンジン本体4に供給することができる。
 また、エンジン2運転中には、排気ガスバイパス制御弁V1を制御することによってハイブリッド過給機3に導かれる排気ガスの流量を変えることができる。したがって、排気ガスバイパス制御弁V1を制御することによって必要な電力量に応じてハイブリッド過給機3における発電量を制御することができる。
 ハイブリッド過給機3には、排気ガスバイパス制御弁V1によって流量が制御された排気ガスが導かれる。また、バイパス管(バイパス流路)L2およびハイブリッド過給機3を通過した排気ガスを排ガスエコノマイザ(熱交換器)9へと導くこととした。そのため、ハイブリッド過給機3における発電量を減少させるように排気ガスバイパス制御弁V1を開状態にした場合には、バイパス管L2から導かれた温度の高い排気ガスが多量に排ガスエコノマイザ9に供給されることになる。したがって、排気ガスバイパス制御弁V1を制御することによって、ハイブリッド過給機3における発電量を制御しつつ、排気ガスの熱エネルギーを有効に回収することができる。
 船舶に搭載されているエンジン排気エネルギー回収装置1は、エンジン2の運転コストを抑えることができる。そのため、船舶の運航コストの削減を図ることができる。
 [第2実施形態]
 次に、本発明による燃料消費率を所定値以下にする制御方法の第2実施形態を図5および図6に基づいて説明する。なお、第1、第2実施形態は、シリンダ内圧力を計測せずに、掃気圧力検出手段により検出された掃気圧力に基づく制御をする場合である。また、後述する実施形態3、4は、シリンダ内圧力を測定して制御する場合である。
 図5は、本実施形態に係る制御構成図であり、図6は、本実施形態に係る制御フローチャートである。
 図5において、第1実施形態と同一構成、排気ガスの流れ、空気の流れ、制御方法については、同一符号を付す。第1実施形態と異なる制御方法は、排気ガスバイパス制御弁開度検出手段26から排気ガスバイパス制御弁開度信号(以下「開度信号」という。)Bがコントローラ24へと入力される点と、コントローラ24からエンジンコントローラ25へ燃料噴射タイミングの信号θinj、排気弁閉タイミングの信号θevc、作動油蓄圧圧力信号または燃料油蓄圧圧力信号が出力される点である。
 なお、作動油蓄圧圧力信号とは、燃料噴射装置に接続されている燃料ポンプ(図示せず)を作動させる駆動油の制御を電気信号によって行う電子制御ディーゼル機関(図示せず)において、燃料ポンプを作動させるための駆動油の蓄圧圧力を言う。
 また、燃料油蓄圧圧力信号とは、燃料噴射装置に接続されているコモンレール式燃料噴射弁(図示せず)を用いる電子制御ディーゼル機関において、コモンレール内に蓄圧される燃料油の蓄圧圧力を言う。
 図6に示すフローチャートのステップS11において、コントローラ(制御装置)24には、排気ガスバイパス制御弁開度検出手段26から開度信号Bと、夫々の検出手段20,21,22によって検出されたエンジン負荷L、エンジン回転数Neおよび掃気圧力Psの信号とが入力される。
 ステップS12において、検出されたエンジン負荷L、エンジン回転数Neに対する掃気圧力Ps、燃料噴射タイミング、排気弁閉タイミング、作動油蓄圧圧力または燃料油蓄圧圧力の各々との関係を示すマップへと照合する。コントローラ24は、照合したマップから、目標掃気圧力PsO、目標燃料噴射タイミングθinj、目標排気弁閉タイミングθevc、目標作動油蓄圧圧力または目標燃料油蓄圧圧力(各パラメータ最適値)を算出する。
 ここで、コントローラ24内に用意されているマップとは、図2に示したようにエンジン負荷L、エンジン回転数Neそれぞれに対して、シリンダ内圧縮圧力Pcompと燃料噴射タイミングとによって形成される座標内に燃料消費率の等高線およびシリンダ内最高圧力Pmax上限値を示して、燃料消費率を所定値P以下とすることができるものをいう。
 また、図2中の横軸は、シリンダ内圧縮圧力Pcompに代えて、掃気圧力、排気弁閉タイミング、作動油蓄圧圧力、燃料油蓄圧圧力のいずれかであってもよい。この場合であっても、同様にマップに基づいて、目標掃気圧力PsO、目標燃料噴射タイミングθinj、目標排気弁閉タイミングθevc、目標作動油蓄圧圧力または目標燃料油蓄圧圧力を算出することができる。
 ステップS13において、掃気圧力検出手段22によって検出された掃気圧力Psと、ステップS12において算出された目標掃気圧力PsOとの差ΔPsを求める。コントローラ24は、この差ΔPsに基づいて排気ガスバイパス制御弁V1の開度変更量ΔAを決定する。
 ステップS14において、ステップS13において決定された排気ガスバイパス制御弁V1の開度変更量ΔAと、現状の排気ガスバイパス制御弁V1の開度指令値A’とから排気ガスバイパス制御弁V1の新しい排気ガスバイパス制御弁制御指令信号Aを決定する。
 ステップS15において、コントローラ24は、排気ガスバイパス制御弁V1へ新しい排気ガスバイパス制御弁制御指令信号Aを出力する。
 ステップS16において、新しく検出された排気ガスバイパス制御弁V1の開度信号Bと、新しい排気ガスバイパス制御弁制御指令信号Aとの誤差を算出する。
 開度信号Bと、新しい排気ガスバイパス制御弁制御指令信号Aとの間に誤差がある場合には、ステップS17において、誤差に基づいて補正量を算出して、ステップS14に戻り排気ガスバイパス制御弁V1の開度の補正を繰返す。
 開度信号Bと、新しい排気ガスバイパス制御弁制御指令信号Aとが同じになった場合には、ステップS11に戻り、掃気圧力Psが目標掃気圧力PsOを維持するように制御が繰返される。
 一方、ステップS18において、マップより得られた目標燃料噴射タイミングθinj、目標排気弁閉タイミングθevc、目標作動油蓄圧圧力または目標燃料油蓄圧圧力の各信号をエンジンコントローラ25へと送信する。これにより、エンジンコントローラ25は、エンジン本体4(図1参照)の制御を実施する。
 以上説明したように、本実施形態にかかるエンジン排気エネルギー回収装置およびこれを備えた船舶によれば、以下の作用効果を奏する。
 コントローラ(制御装置)24は、エンジン負荷Lおよびエンジン回転数Neからマップを用いて、目標燃料噴射タイミングθinjを算出して、燃料噴射タイミングを制御することとした。そのため、掃気圧力Psを目標掃気圧力PsOに制御すると共に、シリンダ6内の燃料の燃焼状態を改善して熱効率を向上させることができる。したがって、排気ガスバイパス制御弁V1および燃料噴射タイミングを制御することによって、エンジン本体4の燃料消費率を更に所定値P以下に近づけることができる。
 また、コントローラ24は、エンジン負荷Lおよびエンジン回転数Neからマップを用いて、目標排気弁閉タイミングθevcを算出して排気弁閉タイミングを制御することとした。そのため、シリンダ内圧力を制御することができ、シリンダ6内の燃料の燃焼状態を改善して熱効率を向上させることができる。したがって、排気ガスバイパス制御弁V1と排気弁閉タイミングとを制御することによって、エンジン本体4の燃料消費率を更に所定値P以下に近づけることができる。
 また、排気弁閉タイミングを遅らせた場合には、ピストン上昇時の圧縮仕事が低減される。そのため、圧縮上死点におけるシリンダ6内の燃焼ガスの温度が低下する。したがって、排気弁閉タイミングを制御することによって、NOxの生成を抑制することができ、環境負荷の低減が可能となる。
 また、コントローラ24は、エンジン負荷Lおよびエンジン回転数Neからマップを用いて目標作動油蓄圧圧力または目標燃料蓄圧圧力を算出することとした。また、コントローラ24は、作動油蓄圧圧力または燃料蓄圧圧力を制御することとした。そのため、作動油蓄圧圧力または燃料蓄圧圧力を制御することによって燃料噴射タイミングや燃料噴射圧を制御して、排気ガスバイパス制御弁V1の制御とともにシリンダ6内の燃料の燃焼状態を改善して熱効率を向上させることができる。したがって、エンジン本体4の燃料消費率を更に所定値P以下に近づけることができる。
 また、図6のステップS14~S17に示すように、排気ガスバイパス制御弁開度検出手段26によって排気ガスバイパス制御弁V1の開度を逐次検出して、フィードバック制御することとした。そのため、排気ガスバイパス制御弁開度検出手段26が検出する開度信号(実開度)Bと排気ガスバイパス制御弁制御指令信号(指令開度)Aとの間に生じる経年劣化などによる誤差(ずれ)を補正することができる。したがって、エンジン本体4の燃料消費率を所定値P以下に維持することが可能となる。
 [第3実施形態]
 次に、本発明による燃料消費率を所定値以下にする制御方法の第3実施形態を図7、図8Aおよび図8Bに基づいて説明する。図7は、本実施形態に係る制御構成図であり、図8Aおよび図8Bは、本実施形態に係る制御フローチャートである。
 図7、図8Aおよび図8Bにおいて、第2実施形態と同一構成、排気ガスの流れ、空気の流れ、制御方法については、同一符号を付す。第2実施形態と異なる制御方法は、シリンダ内圧力検出手段27によるシリンダ内圧力信号がコントローラ28に入力される点である。
 図8Aおよび図8Bに示すフローチャートのステップS21において、コントローラ28には、排気ガスバイパス制御弁開度検出手段26によって検出された排気ガスバイパス制御弁開度信号Bと、夫々の検出手段20,21,22,27によって検出されたエンジン負荷L、エンジン回転数Ne、掃気圧力Psに加え、シリンダ内圧力Pcylの信号が入力される。
 ステップS22において、検出されたシリンダ内圧力Pcylに対するクランク角度履歴より、燃料が着火する前の圧力であるシリンダ内圧縮圧力Pcomp、シリンダ内最高圧力Pmaxが算出される。
 ステップS23において、コントローラ28は、検出されたエンジン負荷Lおよびエンジン回転数Neをコントローラ28内に用意されているデータベースに照合する。コントローラ28は、マップに基づいて目標掃気圧力PsO、目標シリンダ内圧縮圧力PcompO、目標シリンダ内最高圧力PmaxOを算出する。
 ステップS24において、掃気圧力検出手段22によって検出された掃気圧力Psと、ステップS23において算出された目標掃気圧力PsOとの差ΔPsを求める。コントローラ28は、この差ΔPsに基づいて排気ガスバイパス制御弁V1の開度変更量ΔAを決定する。
 ステップS25において、コントローラ28は、ステップS24おいて決定された排気ガスバイパス制御弁V1の開度変更量ΔAと、現状の開度指令値A’とから排気ガスバイパス制御弁V1の新たな排気ガスバイパス制御弁制御指令Aを決定する。
 ステップS26において、コントローラ28は、排気ガスバイパス制御弁V1へ新たな排気ガスバイパス制御弁制御指令Aを出力する。
 ステップS27において、検出された排気ガスバイパス制御弁V1の排気ガスバイパス制御弁開度信号Bと、新たな排気ガスバイパス制御弁制御指令Aとの誤差を算出する。
 ステップS28において、検出された排気ガスバイパス制御弁V1の排気ガスバイパス制御弁開度信号Bと、新たな排気ガスバイパス制御弁制御指令Aとの間の誤差の有無を判定する。誤差がある場合には、ステップS30において、誤差に基づいて補正量を算出し、ステップS25に戻り排気ガスバイパス制御弁V1の開度の補正を繰返す。
 ステップS28において、検出された排気ガスバイパス制御弁V1の開度信号Bが新たな排気ガスバイパス制御弁制御指令Aと同じになった場合には、ステップS29を経てステップS21に戻り、掃気圧力Psが目標掃気圧力PsOになるように制御を繰返す。
 一方、ステップS31においては、コントローラ28は、ステップS22において算出されたシリンダ内圧縮圧力Pcompと、ステップS23において算出された目標シリンダ内圧縮圧力PcompOとの差ΔPcompに基づいて排気弁閉タイミングの変更量Δθevcを決定する。
 ステップS32では、ステップS31と並行して、ステップS23において算出された目標シリンダ内最高圧力PmaxOと、ステップS22において算出されたシリンダ内最高圧力Pmaxとの差ΔPmaxに基づいて燃料噴射タイミングの変更量Δθinjを決める。
 ステップS33において、コントローラ28は、ステップS31において決定された排気弁閉タイミングの変更量Δθevcに基づいて排気弁閉タイミングθevcを決定する。
 ステップS34において、コントローラ28は、ステップS32において決定された燃料噴射タイミングの変更量Δθinjに基づいて燃料噴射タイミングθinjを決定する。
 ステップS35において、コントローラ28は、エンジンコントローラ25に対してステップS33において決定された排気弁閉タイミングθevcおよびステップS34において決定された燃料噴射タイミングθinjの指令を出す。
 ステップS36において、目標シリンダ内最高圧力PmaxOと検出されたシリンダ内最高圧力Pmaxとの誤差、および、目標シリンダ内圧縮圧力PcompOと検出されたシリンダ内圧縮圧力Pcompとの誤差を算出する。
 ステップS37において、目標シリンダ内最高圧力PmaxOと検出したシリンダ内最高圧力Pmaxとの間、目標シリンダ内圧縮圧力PcompOと検出したシリンダ内圧縮圧力Pcompとの間に誤差がある場合には、誤差に基づいて補正量を算出する。コントローラ28は、算出した補正量をステップS33と、ステップS34とにフィードバックして制御を繰返す。
 以上説明したように、本実施形態にかかるエンジン排気エネルギー回収装置およびこれを備えた船舶によれば、以下の作用効果を奏する。
 コントローラ(制御装置)28は、シリンダ内圧力検出手段27によって検出されたシリンダ内圧力Pcylを用いて目標シリンダ内圧縮圧力PcompOおよび目標シリンダ内最高圧力PmaxOをマップから求めることとした。また、コントローラ28は、排気ガスバイパス制御弁V1、燃料噴射タイミングおよび排気弁閉タイミングを制御することとした。そのため、排気ガスバイパス制御弁と排気弁閉タイミングと燃料噴射タイミングとを制御することによってシリンダ内圧縮圧力Pcompおよびシリンダ内最高圧力Pmaxを目標シリンダ内圧縮圧力PcompOおよび目標シリンダ内最高圧力PmaxOにすることができ、シリンダ6内の燃料の燃焼状態を改善して熱効率を向上させることができる。したがって、燃料の性状が変化してもエンジン本体4の燃料消費率を所定値P以下にすることができる
 [第4実施形態]
 次に、本発明による燃料消費率を所定値以下にする制御方法の第4実施形態を図7、図9Aおよび図9Bに基づいて説明する。図7は、本実施形態の制御構成図であり第3実施形態と同様である。図9Aおよび図9Bは、本実施形態の制御フローチャートを示す。
 図9Aおよび図9Bに示すフローチャートのステップS41において、コントローラ29には、排気ガスバイパス制御弁開度検出手段26によって検出された排気ガスバイパス制御弁開度信号Bと、夫々の検出手段20,21,22,27によって検出されたエンジン負荷L、エンジン回転数Ne、掃気圧力Ps、シリンダ内圧力Pcylが入力される。
 ステップS42において、コントローラ29は、検出されたシリンダ内圧力Pcylのクランク角度履歴より、シリンダ内圧縮圧力Pcomp、シリンダ内最高圧力Pmaxを算出する。
 ステップS43において、検出されたエンジン負荷Lおよびエンジン回転数Neをコントローラ29内に用意されているデータベースに照合する。コントローラ29は、データベース内のマップに基づいて目標シリンダ内圧縮圧力PcompOおよび目標シリンダ内最高圧力PmaxOを算出する。
 ステップS44において、コントローラ29は、シリンダ内圧縮圧力Pcompと目標シリンダ内圧縮圧力PcompOとの差ΔPcompを求める。コントローラ29は、この差ΔPcompに基づいて排気ガスバイパス制御弁V1の開度変更量ΔAを決定する。
 ステップS45において、ステップS44において決定された排気ガスバイパス制御弁V1の開度変更量ΔAと、現状の開度指令値A’とから排気ガスバイパス制御弁V1の新しい排気ガスバイパス制御弁制御指令Aを決定する。
 ステップS46において、ステップS45において決定された新しい排気ガスバイパス制御弁制御指令Aを排気ガスバイパス制御弁V1に出力する。
 ステップS47において、目標シリンダ内圧縮圧力PcompOと、検出されたシリンダ内圧縮圧力Pcompとの誤差を算出する。
 ステップS48では、排気ガスバイパス制御弁V1の開度が0であるかを判断する。排気ガスバイパス制御弁V1の開度がA≠0、即ち開いている場合には、ステップS49に進む。
 ステップS49では、目標シリンダ内圧縮圧力PcompOと、検出されたシリンダ内圧縮圧力Pcompとの誤差に基づいて排気ガスバイパス制御弁V1の開度補正量が算出される。その後、その結果をステップS45に反映させて排気ガスバイパス制御弁V1の開度制御を実施する。
 一方、ステップS48において、排気ガスバイパス制御弁V1の開度がA=0、即ち閉じている場合には、ステップS50に進む。
 ステップS50では、ステップS47において算出された目標シリンダ内圧縮圧力PcompOと、検出されたシリンダ内圧縮圧力Pcompとの誤差に基づいて排気弁閉タイミングの補正量Δθevcを算出する。その後、ステップS51に進み、排気弁閉タイミングを決定する。
 ステップS52においては、ステップS42において算出されたシリンダ内最高圧力Pmaxと、ステップS43において算出された目標シリンダ内最高圧力PmaxOとの差ΔPmaxが算出される。さらに、ステップS52では、算出された差ΔPmaxに基づいて燃料噴射タイミングの変更量Δθinjが決定される。
 ステップS53において、コントローラ29は、ステップS52において決定された燃料噴射タイミングの変更量Δθinjに基づいて燃料噴射タイミングを決定する。
 ステップS54において、エンジンコントローラ25へステップS51において決定された排気弁閉タイミングθevcと、ステップS53において決定された燃料噴射タイミングθinjとの各々の制御指令を出す。
 ステップS55において、目標シリンダ内最高圧力PmaxOとシリンダ内最高圧力Pmaxとの間の誤差と、目標シリンダ内圧縮圧力PcompOとシリンダ内最高圧力Pmaxとの間の誤差とを算出する。シリンダ内最高圧力Pmaxと目標シリンダ内最高圧力PmaxOとの間に誤差がある場合には、ステップS56に進む。
 ステップS56では、ステップS55において算出された目標シリンダ内圧縮圧力PcompOとシリンダ内最高圧力Pmaxとの間の誤差に基づいて、燃料噴射タイミングの補正量を算出する。
 その後、ステップS53に進みステップS56において算出された燃料噴射タイミングの補正量に基づいた新たな燃料噴射タイミングθinjを決定し、エンジンコントローラ25へ新たな燃料噴射タイミングθinjの制御指令を出力する。
 一方、ステップS55において、シリンダ内圧縮圧力Pcompと目標シリンダ内圧縮圧力PcompOと間に誤差がある場合には、ステップS50に進む。
 ステップS50では、シリンダ内圧縮圧力Pcompと目標シリンダ内圧縮圧力PcompOとの間の誤差に基づいて排気弁閉タイミングの補正量Δθevcが算出される。
 その後、ステップS51に進みステップS50において算出された排気弁閉タイミングの補正量Δθevcに基づく新たな排気弁閉タイミングθevcを決定し、エンジンコントローラ25へ新たな排気弁閉タイミングθevcの制御指令を出力する
 以上説明したように、本実施形態にかかるエンジン排気エネルギー回収装置およびこれを備えた船舶によれば、以下の作用効果を奏する。
 エンジン負荷Lおよびエンジン回転数Neから目標シリンダ内圧縮圧力PcompOと目標シリンダ内最高圧力PmaxOとを算出することとした。また、シリンダ内圧力Pcylを検出して排気弁閉タイミングと燃料噴射タイミングとを制御することとした。そのため、排気ガスバイパス制御弁V1と排気弁閉タイミングと燃料噴射タイミングとを制御してシリンダ内圧縮圧力Pcompおよびシリンダ内最高圧力Pmaxを目標シリンダ内圧縮圧力PcompOおよび目標シリンダ内最高圧力PmaxOにすることができ、シリンダ6内の燃料の燃焼状態を改善して熱効率を向上させることができる。したがって、燃料の性状が変化してもエンジン本体4の燃料消費率を所定値P以下にすることができる。
 また、シリンダ内圧力Pcylを検出して排気弁閉タイミングを制御することとした。そのため、排気ガスバイパス制御弁V1が全閉状態の場合であっても、排気弁閉タイミングを制御して目標シリンダ内圧縮圧力PcompOを制御することができる。したがって、排気ガスバイパス制御弁V1が制御不具合等になった場合であっても、エンジン本体4の燃料消費率を所定値P以下にすることができる。
 なお、本発明は上述した各実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲で、適宜必要に応じて変形実施および変更実施することができる。
 なお、本実施形態にかかるエンジン排気エネルギー回収装置1は、船舶に具備されるものとして説明したが、本発明はこれに限定されるものではなく例えば陸上に設置された発電プラントに設けられるものとしても良い。この場合には、以下の作用効果を奏する。
 発電プラントに設けられるエンジン排気エネルギー回収装置1は、エンジン2の運転コストを抑えることができる。そのため、発電プラントの運用コストの削減を図ることができる。また、環境に考慮した発電プラントにすることができる。
 また上述した各実施形態ではハイブリッド過給機3を1台備えた排気エネルギー回収装置1を一具体例として説明したが、本発明はこれに限定されるものではなく、例えばハイブリッド過給機3を2台等として適用することも可能である。
 また、本発明の実施形態によると、排気ガスバイパス制御弁V1をきめ細かく調整することにより、ハイブリッド過給機3の運転を無段階に調整して発電・電動機3dの発電量の調整幅を大きくすることができる。そのため、船内での電力消費量が大きく変化しても、制御用抵抗器13の容量を小さく、小型化したものを採用できるのでコスト的にも有利である。
1  エンジン排気エネルギー回収装置。
2  舶用ディーゼル機関(エンジン)
3  ハイブリッド過給機
3a タービン部
3b コンプレッサ部
3d 発電・電動機部
L2 バイパス管(バイパス流路)
V1 排気ガスバイパス制御弁

Claims (10)

  1.  エンジンから排出される排気ガスによって駆動されるタービン部と、該タービン部が駆動されることによって外気を前記エンジンに圧送するコンプレッサ部と、前記タービン部が駆動されることによって発電する一方で供給された電力によって前記タービン部を駆動する発電・電動機部と、を有するハイブリッド過給機と、
     該ハイブリッド過給機に供給される排気ガスを迂回させるバイパス流路と、
     該バイパス流路に設けられて、前記ハイブリッド過給機へ導かれる排気ガスの流量を制御する排気ガスバイパス制御弁と、
     前記エンジンの負荷を検出するエンジン負荷検出手段と、
     前記エンジンの回転数を検出するエンジン回転数検出手段と、
     前記エンジンの掃気圧力を検出する掃気圧力検出手段と、
     前記エンジン負荷検出手段および前記エンジン回転数検出手段によって検出される負荷および回転数から前記エンジンの燃料消費率が所定値以下となる目標掃気圧力を算出するデータベースを有する制御装置と、を備え、
     前記制御装置は、前記目標掃気圧力になるように前記排気ガスバイパス制御弁を制御するエンジン排気エネルギー回収装置。
  2.  前記ハイブリッド過給機から導出される排気ガスと、前記バイパス流路から導出される排気ガスとが導かれて熱交換する熱交換器を備える請求項1に記載のエンジン排気エネルギー回収装置。
  3.  前記制御装置は、前記エンジン負荷検出手段および前記エンジン回転数検出手段によって検出される負荷および回転数から前記エンジンの燃料消費率が所定値以下となる目標燃料噴射タイミングを算出するマップまたは演算式を備え、前記マップまたは前記演算式を用いて前記燃料噴射タイミングを制御する請求項1または請求項2に記載のエンジン排気エネルギー回収装置。
  4.  前記制御装置は、前記エンジン負荷検出手段および前記エンジン回転数検出手段によって検出される負荷および回転数から前記エンジンの燃料消費率が所定値以下となる目標排気弁閉タイミングを算出するマップまたは演算式を備え、前記マップまたは前記演算式を用いて前記排気弁閉タイミングを制御する請求項1から請求項3のいずれかに記載のエンジン排気エネルギー回収装置。
  5.  前記エンジンは、燃料ポンプを駆動する作動油が蓄えられる作動油蓄圧器またはコモンレール式燃料噴射弁に供給される燃料油が蓄えられる燃料蓄圧器を備え、
     前記制御装置には、前記エンジン負荷検出手段および前記エンジン回転数検出手段によって検出される負荷および回転数から前記エンジンの燃料消費率が所定値以下となる目標作動油蓄圧圧力または目標燃料蓄圧圧力を算出するマップまたは演算式を備え、前記マップまたは前記演算式を用いて前記作動油蓄圧圧力または前記燃料蓄圧圧力を制御する請求項1から請求項4のいずれかに記載のエンジン排気エネルギー回収装置。
  6.  前記制御装置は、前記排気ガスバイパス制御弁の開度を検出する排気ガスバイパス制御弁開度検出手段からの信号に基づいて、前記エンジンの燃料消費率が所定値以下となる前記排気ガスバイパス制御弁の目標開度を算出し、前記排気ガスバイパス制御弁を前記目標開度になるようにフィードバック制御する請求項1から請求項5のいずれかに記載のエンジン排気エネルギー回収装置。
  7.  前記制御装置は、シリンダ内圧力検出手段によって検出されるシリンダ内圧力からシリンダ内圧縮圧力Pcompおよびシリンダ内最高圧力Pmaxを算出し、検出される負荷および回転数に対して前記エンジンの燃料消費率が所定値以下となる目標シリンダ内圧縮圧力PcompOおよび目標シリンダ内最高圧力PmaxOをマップまたは演算式から算出し、前記シリンダ内最高圧力Pmaxが前記目標シリンダ内最高圧力PmaxOになるようにし、かつ、前記シリンダ内圧縮圧力Pcompが前記目標シリンダ内圧縮圧力PcompOになるように前記燃料噴射タイミングおよび前記排気弁閉タイミングを制御する請求項1から請求項5のいずれかに記載のエンジン排気エネルギー回収装置。
  8.  エンジンから排出される排気ガスによって駆動されるタービン部と、該タービン部が駆動されることによって外気を前記エンジンに圧送するコンプレッサ部と、前記タービン部が駆動されることによって発電する一方で供給された電力によって前記タービン部を駆動する発電・電動機と、を有するハイブリッド過給機と、
     該ハイブリッド過給機に供給される排気ガスを迂回させるバイパス流路と、
     該バイパス流路に設けられて、該ハイブリッド過給機に導かれる排気ガスの流量を制御する排気ガスバイパス制御弁と、
     前記エンジンの負荷を検出するエンジン負荷検出手段と、
     前記エンジンの回転数を検出するエンジン回転数検出手段と、
     前記エンジンの掃気圧力を検出する掃気圧力検出手段と、
     前記エンジンのシリンダ内圧力を検出するシリンダ内圧力検出手段と、
     前記エンジン負荷検出手段および前記エンジン回転数検出手段から検出された負荷と回転数とから前記エンジンの燃料消費率が所定値以下となる目標シリンダ内圧縮圧力PcompOおよび目標シリンダ内最高圧力PmaxOを算出するデータベースを有する制御装置と、を備え、
     該制御装置は、前記目標シリンダ内圧縮圧力PcompOになるように前記排気弁閉タイミングを制御し、前記目標シリンダ内最高圧力PmaxOになるように前記燃料噴射タイミングを制御するエンジン排気エネルギー回収装置。
  9.  請求項1から請求項8のいずれかに記載のエンジン排気エネルギー回収装置を備える船舶。
  10.  請求項1から請求項8のいずれかに記載のエンジン排気エネルギー回収装置を備える発電プラント。
PCT/JP2011/050623 2010-01-21 2011-01-17 エンジン排気エネルギー回収装置、これを備える船舶およびこれを備える発電プラント WO2011089989A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/389,687 US20120137676A1 (en) 2010-01-21 2011-01-17 Engine-exhaust-gas energy recovery apparatus, ship equipped with the same, and power plant equipped with the same
CN201180003074.5A CN102472161B (zh) 2010-01-21 2011-01-17 发动机排气能回收装置、具备该装置的船舶及具备该装置的发电设备
EP11734595.9A EP2527615A4 (en) 2010-01-21 2011-01-17 ENGINE EXHAUST GAS ENERGY RECOVERY DEVICE, SHIP EQUIPPED WITH SAME, AND POWER GENERATION PLANT EQUIPPED WITH SAID ENGINE EXHAUST GAS ENERGY RECOVERY DEVICE
KR1020127001426A KR101383503B1 (ko) 2010-01-21 2011-01-17 엔진 배기 에너지 회수 장치, 이것을 구비하는 선박 및 이것을 구비하는 발전 플랜트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010011158A JP5448873B2 (ja) 2010-01-21 2010-01-21 エンジン排気エネルギー回収装置、これを備える船舶、これを備える発電プラント、エンジン排気エネルギー回収装置の制御装置およびエンジン排気エネルギー回収装置の制御方法
JP2010-011158 2010-01-21

Publications (1)

Publication Number Publication Date
WO2011089989A1 true WO2011089989A1 (ja) 2011-07-28

Family

ID=44306791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050623 WO2011089989A1 (ja) 2010-01-21 2011-01-17 エンジン排気エネルギー回収装置、これを備える船舶およびこれを備える発電プラント

Country Status (6)

Country Link
US (1) US20120137676A1 (ja)
EP (1) EP2527615A4 (ja)
JP (1) JP5448873B2 (ja)
KR (1) KR101383503B1 (ja)
CN (1) CN102472161B (ja)
WO (1) WO2011089989A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016217346A (ja) * 2015-05-19 2016-12-22 ヴィンタートゥール ガス アンド ディーゼル アーゲー 大型ディーゼル機関を運転する方法、この方法の使用、及び大型ディーゼル機関
JP2017210871A (ja) * 2016-05-23 2017-11-30 日立オートモティブシステムズ株式会社 車載制御装置
US10985608B2 (en) 2016-12-13 2021-04-20 General Electric Company Back-up power system for a component and method of assembling same

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2943727A1 (fr) * 2009-03-30 2010-10-01 Renault Sas Procede, pour un turbocompresseur de suralimemntation, de determination d'une consigne de position d'un actionneur de by-pass.
JP5808128B2 (ja) 2011-03-31 2015-11-10 三菱重工業株式会社 ガス焚きエンジン
EP2639437A1 (en) * 2012-03-16 2013-09-18 Perkins Engines Company Limited Control system for an engine assembly
JP5949183B2 (ja) 2012-06-06 2016-07-06 株式会社Ihi 2ストロークユニフローエンジン
KR101298276B1 (ko) * 2012-07-17 2013-08-20 울산대학교 산학협력단 전기유압 액추에이터를 이용한 바이패스밸브 구동시스템 및 이의 제어방법
JP6090898B2 (ja) * 2012-08-31 2017-03-08 三菱重工業株式会社 内燃機関システムおよびこれを備えた船舶ならびに内燃機関システムの制御方法
JP5805044B2 (ja) * 2012-10-12 2015-11-04 三菱重工業株式会社 船体抵抗低減システムおよび船体の抵抗低減方法
GB2508866B (en) * 2012-12-13 2020-05-20 Bowman Power Group Ltd Turbogenerator system and method
US20160108801A1 (en) * 2013-05-29 2016-04-21 International Engine Intellectual Property Company, Llc Turbocharger control
DE102013215958B4 (de) * 2013-08-13 2015-05-13 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Kraftstoffhochdruckpumpe und System
JP6165564B2 (ja) * 2013-09-05 2017-07-19 三菱重工業株式会社 軸流タービン、ターボ過給機、内燃機関、及び船舶
DK178105B1 (en) * 2013-10-31 2015-05-26 Man Diesel & Turbo Deutschland A combustion engine system
JP6282487B2 (ja) * 2014-02-25 2018-02-21 三菱重工業株式会社 過給機及び船舶
US9624850B2 (en) * 2014-11-10 2017-04-18 Ford Global Technologies, Llc Systems and methods for control of turbine-generator via exhaust valve timing and duration modulation in a split exhaust engine system
CN104533660B (zh) * 2014-12-24 2016-12-28 深圳智慧能源技术有限公司 废气透平发电机组
DK3121428T3 (da) * 2015-05-19 2019-10-14 Winterthur Gas & Diesel Ag Fremgangsmåde til drift af en stor dieselmotor, anvendelse af denne fremgangsmåde samt stor dieselmotor
JP6322618B2 (ja) * 2015-12-07 2018-05-09 本田技研工業株式会社 内燃機関の制御装置
US10865687B2 (en) * 2016-11-07 2020-12-15 Ihi Corporation Exhaust gas energy recovery device
JP6919854B2 (ja) * 2017-03-31 2021-08-18 国立研究開発法人 海上・港湾・航空技術研究所 エンジンの排気制御システム及びそれを搭載した船舶
JP6950274B2 (ja) * 2017-05-17 2021-10-13 株式会社Ihi エンジン制御装置
CN107288730A (zh) * 2017-08-22 2017-10-24 芜湖恒耀汽车零部件有限公司 一种汽车尾气发电装置
DE102017220524B3 (de) * 2017-11-17 2019-01-10 Bayerische Motoren Werke Aktiengesellschaft Abgasführung mit aktuierbarer Abgasturbine
KR102605042B1 (ko) * 2018-12-13 2023-11-24 에이치디현대인프라코어 주식회사 터보 컴파운딩 시스템
KR20200072674A (ko) * 2018-12-13 2020-06-23 두산인프라코어 주식회사 터보 컴파운딩 시스템
JP7178159B2 (ja) * 2019-02-21 2022-11-25 ジャパンマリンユナイテッド株式会社 エネルギー回収装置の制御方法
US20230407470A1 (en) * 2022-06-20 2023-12-21 Rasirc, Inc. Gas recovery systems and methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186916A (ja) 1987-01-29 1988-08-02 Ishikawajima Harima Heavy Ind Co Ltd パワ−タ−ビンの運転制御方法
JP2002349286A (ja) * 2001-03-28 2002-12-04 General Electric Co <Ge> タービン用の加圧システム、タービンシステム及び方法
JP2006316798A (ja) * 2002-02-18 2006-11-24 Toyota Motor Corp 過給圧制御装置
JP2007270622A (ja) * 2006-03-30 2007-10-18 Tokyo Electric Power Co Inc:The 内燃エンジンシステム
JP2007332793A (ja) * 2006-06-12 2007-12-27 Yanmar Co Ltd 過給器を備えるエンジン
JP2008215355A (ja) * 2008-04-08 2008-09-18 Mitsubishi Heavy Ind Ltd 燃料噴射弁及び給、排気弁の弁作動状態制御方法及びその装置
JP2009024685A (ja) * 2007-07-24 2009-02-05 Toyota Motor Corp 内燃機関の制御装置
JP2009180112A (ja) * 2008-01-29 2009-08-13 Daihatsu Motor Co Ltd 過給圧制御システム

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2777301A (en) * 1952-06-30 1957-01-15 Garrett Corp All-purpose power and air conditioning system
JPH01152019U (ja) * 1988-04-11 1989-10-19
TW317588B (ja) * 1995-06-14 1997-10-11 Praxair Technology Inc
US6257209B1 (en) * 1998-03-18 2001-07-10 Toyota Jidosha Kabushiki Kaisha Evaporative fuel processing apparatus for lean-burn internal combustion engine
US6105555A (en) * 1999-04-01 2000-08-22 Cummins Engine Company, Inc. Turbocharged internal combustion engine with system and method for enhancing turbocharger power
US6176082B1 (en) * 1999-04-21 2001-01-23 Caterpillar Inc. Exhaust manifold cooling assembly for an internal combustion engine
JP2001132442A (ja) * 1999-11-04 2001-05-15 Hideo Kawamura エネルギ回収装置を備えたエンジン
JP4661016B2 (ja) * 2001-09-28 2011-03-30 トヨタ自動車株式会社 可変容量過給機付内燃機関の制御装置
US6675579B1 (en) * 2003-02-06 2004-01-13 Ford Global Technologies, Llc HCCI engine intake/exhaust systems for fast inlet temperature and pressure control with intake pressure boosting
JP4188158B2 (ja) * 2003-07-03 2008-11-26 本田技研工業株式会社 内燃機関の制御装置
EP1771647A1 (en) * 2004-07-23 2007-04-11 Honeywell International, Inc. Use of compressor to turbine bypass for electric boosting system
JP2006144583A (ja) * 2004-11-17 2006-06-08 Denso Corp 内燃機関の制御装置
DE102004061809A1 (de) * 2004-12-22 2006-07-06 Robert Bosch Gmbh Heiz- und/oder Kühlsystem für ein Kraftfahrzeug
EP1848882A1 (en) * 2005-02-16 2007-10-31 Honeywell International, Inc. Turbocharging device and control method for controlling the turbocharging device
US20070068712A1 (en) * 2005-09-23 2007-03-29 Carnahan Eric S Hybrid Electric Vehicle
JP4650321B2 (ja) * 2006-03-28 2011-03-16 トヨタ自動車株式会社 制御装置
JP2008075574A (ja) * 2006-09-21 2008-04-03 Toyota Motor Corp 過給制御装置
DE102007017777B4 (de) * 2007-04-16 2009-04-09 Siemens Ag Turboladeranordnung und turboaufladbare Brennkraftmaschine
JP4512617B2 (ja) * 2007-06-26 2010-07-28 日立オートモティブシステムズ株式会社 内燃機関の制御装置および方法
US8141357B2 (en) * 2007-10-12 2012-03-27 Mazda Motor Corporation Supercharger for an engine
US7921944B2 (en) * 2007-10-29 2011-04-12 Ford Global Technologies, Llc Compression system for internal combustion engine including a rotationally uncoupled exhaust gas turbine
KR101303985B1 (ko) * 2008-12-25 2013-09-04 미츠비시 쥬고교 가부시키가이샤 선박용 배열 회수 시스템의 제어 방법 및 제어 장치
WO2010074173A1 (ja) * 2008-12-26 2010-07-01 三菱重工業株式会社 排熱回収システムの制御装置
JP5249866B2 (ja) * 2009-06-25 2013-07-31 三菱重工業株式会社 エンジン排気エネルギー回収装置
US8245671B2 (en) * 2010-04-08 2012-08-21 Ford Global Technologies, Llc Operating an engine with reformate
JP5496006B2 (ja) * 2010-08-02 2014-05-21 三菱重工業株式会社 発電プラント設備およびその運転方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186916A (ja) 1987-01-29 1988-08-02 Ishikawajima Harima Heavy Ind Co Ltd パワ−タ−ビンの運転制御方法
JP2002349286A (ja) * 2001-03-28 2002-12-04 General Electric Co <Ge> タービン用の加圧システム、タービンシステム及び方法
JP2006316798A (ja) * 2002-02-18 2006-11-24 Toyota Motor Corp 過給圧制御装置
JP2007270622A (ja) * 2006-03-30 2007-10-18 Tokyo Electric Power Co Inc:The 内燃エンジンシステム
JP2007332793A (ja) * 2006-06-12 2007-12-27 Yanmar Co Ltd 過給器を備えるエンジン
JP2009024685A (ja) * 2007-07-24 2009-02-05 Toyota Motor Corp 内燃機関の制御装置
JP2009180112A (ja) * 2008-01-29 2009-08-13 Daihatsu Motor Co Ltd 過給圧制御システム
JP2008215355A (ja) * 2008-04-08 2008-09-18 Mitsubishi Heavy Ind Ltd 燃料噴射弁及び給、排気弁の弁作動状態制御方法及びその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2527615A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016217346A (ja) * 2015-05-19 2016-12-22 ヴィンタートゥール ガス アンド ディーゼル アーゲー 大型ディーゼル機関を運転する方法、この方法の使用、及び大型ディーゼル機関
JP2021102961A (ja) * 2015-05-19 2021-07-15 ヴィンタートゥール ガス アンド ディーゼル アーゲー 大型ディーゼル機関を運転する方法、この方法の使用、及び大型ディーゼル機関
JP7125245B2 (ja) 2015-05-19 2022-08-24 ヴィンタートゥール ガス アンド ディーゼル アーゲー 大型ディーゼル機関を運転する方法、この方法の使用、及び大型ディーゼル機関
JP2017210871A (ja) * 2016-05-23 2017-11-30 日立オートモティブシステムズ株式会社 車載制御装置
US10985608B2 (en) 2016-12-13 2021-04-20 General Electric Company Back-up power system for a component and method of assembling same

Also Published As

Publication number Publication date
EP2527615A1 (en) 2012-11-28
JP5448873B2 (ja) 2014-03-19
US20120137676A1 (en) 2012-06-07
KR101383503B1 (ko) 2014-04-08
CN102472161B (zh) 2014-11-19
JP2011149327A (ja) 2011-08-04
KR20120014944A (ko) 2012-02-20
CN102472161A (zh) 2012-05-23
EP2527615A4 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5448873B2 (ja) エンジン排気エネルギー回収装置、これを備える船舶、これを備える発電プラント、エンジン排気エネルギー回収装置の制御装置およびエンジン排気エネルギー回収装置の制御方法
DK3045688T3 (en) MOTORUDSTØDNINGSGASENERGI-recovery arrangement
JP5185910B2 (ja) ミラーサイクルエンジン
US7650223B2 (en) Method and device for integrative control of gas engine
US7650222B2 (en) Method and device for integrative control of gas engine
JP5575284B2 (ja) エンジン排気エネルギー回収方法
CN112664282B (zh) 用于可变涡轮增压器的控制方法
KR101638759B1 (ko) 피스톤 엔진의 과급기 속도 제어 방법 및 과급된 피스톤 엔진의 제어 시스템
JP7329488B2 (ja) クロスヘッド式大型低速ターボ過給2ストロークユニフロー掃気内燃機関及びこれを動作させる方法
DK180717B1 (en) A large low speed turbocharged two-stroke uniflow scavenge internal combustion engine with crossheads
CN113544374B (zh) 带涡轮增压器的燃气发动机及其燃烧方法
JP2018188998A (ja) 内燃機関
JP2007132217A (ja) 圧縮自着火エンジンの燃焼制御装置
DK180517B1 (en) A large low speed turbocharged two-stroke uniflow scavenge internal combustion engine with crossheads and method of operating of such engine
KR20240054250A (ko) Egr 시스템이 장착된 대형 터보차징 2행정 내연기관

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003074.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127001426

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13389687

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011734595

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE