WO2011077999A1 - 化学機械研磨パッドおよびそれを用いた化学機械研磨方法 - Google Patents
化学機械研磨パッドおよびそれを用いた化学機械研磨方法 Download PDFInfo
- Publication number
- WO2011077999A1 WO2011077999A1 PCT/JP2010/072430 JP2010072430W WO2011077999A1 WO 2011077999 A1 WO2011077999 A1 WO 2011077999A1 JP 2010072430 W JP2010072430 W JP 2010072430W WO 2011077999 A1 WO2011077999 A1 WO 2011077999A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polishing layer
- polishing
- chemical mechanical
- mechanical polishing
- hardness
- Prior art date
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 362
- 239000000126 substance Substances 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims description 25
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims abstract description 52
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims abstract description 51
- 239000000203 mixture Substances 0.000 claims abstract description 47
- 230000005484 gravity Effects 0.000 claims abstract description 40
- -1 alicyclic isocyanate Chemical class 0.000 claims description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 37
- 239000002245 particle Substances 0.000 claims description 35
- 230000008859 change Effects 0.000 claims description 25
- 239000012948 isocyanate Substances 0.000 claims description 21
- 239000010410 layer Substances 0.000 description 207
- 230000007547 defect Effects 0.000 description 21
- 229920002635 polyurethane Polymers 0.000 description 20
- 239000004814 polyurethane Substances 0.000 description 20
- 238000012360 testing method Methods 0.000 description 20
- 229920000642 polymer Polymers 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 17
- 238000010521 absorption reaction Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000007654 immersion Methods 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 9
- 125000002723 alicyclic group Chemical group 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- 239000002002 slurry Substances 0.000 description 9
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 8
- 229910003460 diamond Inorganic materials 0.000 description 8
- 239000010432 diamond Substances 0.000 description 8
- 235000014113 dietary fatty acids Nutrition 0.000 description 8
- 239000000194 fatty acid Substances 0.000 description 8
- 229930195729 fatty acid Natural products 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 230000008961 swelling Effects 0.000 description 7
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical class C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229920000858 Cyclodextrin Polymers 0.000 description 5
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 5
- 230000003750 conditioning effect Effects 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 230000005489 elastic deformation Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000006260 foam Substances 0.000 description 5
- 238000005187 foaming Methods 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 229920005862 polyol Polymers 0.000 description 5
- 150000003077 polyols Chemical class 0.000 description 5
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 4
- 239000001116 FEMA 4028 Substances 0.000 description 4
- 239000005062 Polybutadiene Substances 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 4
- 229960004853 betadex Drugs 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 4
- 229920002857 polybutadiene Polymers 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 2
- 229940058015 1,3-butylene glycol Drugs 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004970 Chain extender Substances 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 235000019437 butane-1,3-diol Nutrition 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 238000007542 hardness measurement Methods 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 229920002589 poly(vinylethylene) polymer Polymers 0.000 description 2
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000006748 scratching Methods 0.000 description 2
- 230000002393 scratching effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- ZTNJGMFHJYGMDR-UHFFFAOYSA-N 1,2-diisocyanatoethane Chemical compound O=C=NCCN=C=O ZTNJGMFHJYGMDR-UHFFFAOYSA-N 0.000 description 1
- VGHSXKTVMPXHNG-UHFFFAOYSA-N 1,3-diisocyanatobenzene Chemical compound O=C=NC1=CC=CC(N=C=O)=C1 VGHSXKTVMPXHNG-UHFFFAOYSA-N 0.000 description 1
- OHLKMGYGBHFODF-UHFFFAOYSA-N 1,4-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=C(CN=C=O)C=C1 OHLKMGYGBHFODF-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 1
- ATOUXIOKEJWULN-UHFFFAOYSA-N 1,6-diisocyanato-2,2,4-trimethylhexane Chemical compound O=C=NCCC(C)CC(C)(C)CN=C=O ATOUXIOKEJWULN-UHFFFAOYSA-N 0.000 description 1
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 1
- LFSYUSUFCBOHGU-UHFFFAOYSA-N 1-isocyanato-2-[(4-isocyanatophenyl)methyl]benzene Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=CC=C1N=C=O LFSYUSUFCBOHGU-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- WTPYFJNYAMXZJG-UHFFFAOYSA-N 2-[4-(2-hydroxyethoxy)phenoxy]ethanol Chemical compound OCCOC1=CC=C(OCCO)C=C1 WTPYFJNYAMXZJG-UHFFFAOYSA-N 0.000 description 1
- MUHFRORXWCGZGE-KTKRTIGZSA-N 2-hydroxyethyl (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCCO MUHFRORXWCGZGE-KTKRTIGZSA-N 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- BYPFICORERPGJY-UHFFFAOYSA-N 3,4-diisocyanatobicyclo[2.2.1]hept-2-ene Chemical compound C1CC2(N=C=O)C(N=C=O)=CC1C2 BYPFICORERPGJY-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- FPVVYTCTZKCSOJ-UHFFFAOYSA-N Ethylene glycol distearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCCCCCCCC FPVVYTCTZKCSOJ-UHFFFAOYSA-N 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000012789 electroconductive film Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229940100608 glycol distearate Drugs 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- SVTBMSDMJJWYQN-UHFFFAOYSA-N hexylene glycol Natural products CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920006146 polyetheresteramide block copolymer Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/24—Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/042—Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4804—Two or more polyethers of different physical or chemical nature
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4833—Polyethers containing oxyethylene units
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4854—Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
Definitions
- the present invention relates to a chemical mechanical polishing pad and a chemical mechanical polishing method using the chemical mechanical polishing pad.
- polishing pad for polishing glass and semiconductor elements
- porous nonwoven fabrics and polyurethane moldings obtained by impregnating a nonwoven fabric with a polyurethane solution have been used.
- CMP Chemical Mechanical Polishing
- a polishing pad made of polyurethane as exemplified below has been studied. .
- JP-A-8-550262 discloses a polishing pad in which a filler-like component is dispersed in polyurethane
- JP-A Nos. 2000-17252 and 3956364 disclose a polishing pad using foamed polyurethane
- JP-A No. No. 2007-284625 discloses a polishing pad in which physical property values are controlled by adjusting the amount of polyol or isocyanate used to adjust the degree of crosslinking of the urethane resin
- Japanese Patent Application Laid-Open No. 2003-332277 discloses the surface of the polishing layer. A polishing pad with controlled characteristics is described.
- the polishing pad described in Japanese Patent No. 3956364 has a high elastic modulus by making the polishing layer have a porous structure.
- the polishing pad has a high hardness of the material constituting the polishing layer itself, but the specific gravity of the polishing layer is low due to its porous structure, and the surface to be polished is uneven due to the cushioning effect due to the porous structure. Therefore, the flatness of the surface to be polished in CMP tends to be insufficient.
- the polishing layer becomes hard and polished by polishing debris and pad scraps that enter between the surface to be polished and the polishing layer. Defects (scratches) are likely to increase.
- some aspects according to the present invention provide a chemical mechanical polishing pad capable of achieving both improvement in flatness of a surface to be polished in CMP and reduction in polishing defects (scratches) by solving the above-described problems, And a chemical mechanical polishing method using the chemical mechanical polishing pad.
- the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
- One aspect of the chemical mechanical polishing pad according to the present invention is: Having a polishing layer formed from a composition containing thermoplastic polyurethane;
- the polishing layer has a specific gravity of 1.15 or more and 1.30 or less, and a duro D hardness of the polishing layer is 50D or more and 80D or less.
- Residual strain at the time of tension of the polishing layer may be 2% or more and 10% or less.
- the volume change rate when the polishing layer is immersed in water at 23 ° C. for 24 hours may be 0.8% or more and 5.0% or less.
- the surface hardness when the polishing layer is immersed in water at 23 ° C. for 4 hours may be 2 N / mm 2 or more and 10 N / mm 2 or less.
- thermoplastic polyurethane may include a repeating unit derived from at least one selected from alicyclic isocyanate and aromatic isocyanate.
- the composition may further include water-soluble particles.
- One aspect of the chemical mechanical polishing method according to the present invention is: Chemical mechanical polishing is performed using the chemical mechanical polishing pad described in any one of Application Examples 1 to 6.
- the chemical mechanical polishing pad according to the present invention is formed of a composition containing a thermoplastic polyurethane, and has a polishing layer having a specific gravity and hardness within a specific range, so that the flatness of the surface to be polished in CMP can be improved. Both improvement and reduction of polishing defects (scratches) can be achieved.
- FIG. 1A is a schematic diagram for explaining the concept of duro D hardness in a polishing layer.
- FIG. 1B is a schematic diagram for explaining the concept of duro D hardness in the polishing layer.
- FIG. 2 is a schematic diagram for explaining the concept of residual strain during tension of the polishing layer.
- FIG. 3A is an enlarged view of region I in FIG. 2 for explaining the concept of residual strain during polishing of the polishing layer.
- FIG. 3B is an enlarged view of region I in FIG. 2 for explaining the concept of residual strain during tension of the polishing layer.
- FIG. 3C is an enlarged view of region I in FIG. 2 for explaining the concept of residual strain when the polishing layer is pulled.
- FIG. 3D is an enlarged view of region I in FIG.
- FIG. 4A is a schematic diagram for explaining the concept of the volume change rate in the polishing layer.
- FIG. 4B is a schematic diagram for explaining the concept of the volume change rate in the polishing layer.
- FIG. 5A is a schematic diagram for explaining the concept of surface hardness in the polishing layer.
- FIG. 5B is a schematic diagram for explaining the concept of surface hardness in the polishing layer.
- the “wet state” refers to a state when the polishing layer is immersed in water at 23 ° C. for 4 hours or more.
- the term “hardness” simply refers to Duro D hardness
- the term “surface hardness” refers to universal hardness (HU: N / mm 2 ).
- the surface hardness in the wet state of the polishing layer is represented by universal hardness (HU: N / mm 2 ) when a constant pressure is applied, as will be described later in Examples.
- the structure of the chemical mechanical polishing pad according to the present embodiment is not particularly limited as long as it has a polishing layer on at least one surface.
- the “polishing layer” refers to a single layer having a surface (hereinafter referred to as “polishing surface”) in contact with an object to be polished when chemical mechanical polishing is performed. That is, in the present invention, another layer that does not have a polishing surface may be included between the polishing layer and the support layer, but the other layer does not have a polishing surface and thus is not a “polishing layer”.
- the polishing layer is formed from a composition containing thermoplastic polyurethane by a production method described later.
- the specific gravity of the polishing layer is 1.15 or more and 1.30 or less, and the duro D hardness is 50D or more and 80D or less.
- the chemical mechanical polishing pad according to the present embodiment will be described in detail.
- the polishing layer constituting the chemical mechanical polishing pad according to the present embodiment is formed from a composition containing thermoplastic polyurethane (hereinafter also simply referred to as “composition”) by a manufacturing method described later.
- polishing layers containing polyurethane are classified into a foam type and a non-foam type.
- a non-foaming type polishing layer the specific gravity and hardness are larger than the foaming type due to its structure, and accordingly, the elastic deformation of the polishing layer with respect to the unevenness of the surface to be polished (the surface of the wafer or the like) is reduced. As a result, the flatness of the surface to be polished tends to be good.
- the hardness of the polishing layer is larger than that of the foam type, there is a tendency that the generation of polishing defects (scratches, etc.) increases due to polishing scraps and pad scraps entering between the surface to be polished and the polishing layer.
- the present inventors have prepared a polishing layer using a composition containing a thermoplastic polyurethane, and controlled the specific gravity and hardness of the polishing layer, so that the surface to be polished, which has been considered difficult by conventional techniques, has been obtained. It has been found that it is possible to achieve both improvement in flatness (surface of a wafer or the like) and reduction in polishing defects (scratch etc.).
- composition 1.1.1.1. Thermoplastic polyurethane According to the composition containing thermoplastic polyurethane, a polishing layer having excellent flexibility can be produced. By capturing polishing scraps and pad scraps that enter between the polished surface on the surface of the flexible polishing layer, it is possible to prevent them from contacting the polished surface with a strong pressing pressure. It is considered that the generation of polishing defects can be suppressed. On the other hand, when a polishing layer containing polyurethane cross-linked using a heat-crosslinkable polyurethane (thermosetting polyurethane) is produced, it is difficult to impart sufficient flexibility to the polishing layer, resulting in a polishing defect. It is difficult to suppress the occurrence of.
- thermoplastic polyurethane thermoplastic polyurethane
- the polishing layer containing the polyurethane in which the heat-crosslinkable polyurethane is crosslinked and the molecular chain is firmly bonded is less likely to swell even when it comes into contact with water, compared to the polishing layer prepared using the thermoplastic polyurethane. It has properties, and the surface hardness in the wet state cannot be reduced. For this reason, when the polishing layer contains a crosslinked polyurethane, polishing scraps and pad scraps that have entered between the polished surface and the polishing surface will be captured on the surface of the polishing layer having a high surface hardness, Since they come into contact with the surface to be polished with a strong pressing pressure, generation of polishing defects cannot be suppressed.
- thermoplastic polyurethane contained in the composition preferably includes a repeating unit derived from at least one selected from alicyclic isocyanate and aromatic isocyanate. Since the polishing layer produced from the composition containing the thermoplastic polyurethane having such a chemical structure can easily control the crystallinity, the specific gravity, hardness and the like of the polishing layer can be easily controlled.
- alicyclic isocyanate examples include isophorone diisocyanate (IPDI), norbornene diisocyanate, hydrogenated 4,4′-diphenylmethane diisocyanate (hydrogenated MDI), and the like. These alicyclic isocyanates may be used alone or in combination of two or more.
- aromatic isocyanate examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 2,2′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, and naphthalene.
- aromatic diisocyanates such as diisocyanate, 1,5-naphthalene diisocyanate, p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylene diisocyanate.
- 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, and 4,4'-diphenylmethane diisocyanate are preferable because the reaction control with a hydroxyl group is easy.
- aromatic isocyanates may be used alone or in combination of two or more.
- thermoplastic polyurethane contained in the composition may be used in combination with alicyclic isocyanate and aromatic isocyanate, or in combination with other isocyanates.
- examples of other isocyanates include aliphatic diisocyanates such as ethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 1,6-hexamethylene diisocyanate.
- thermoplastic polyurethane contained in the composition contains a repeating unit derived from alicyclic isocyanate.
- the thermoplastic polyurethane exhibits appropriate hardness, and the surface hardness in the wet state can be more appropriately controlled, and the flexibility becomes larger. Therefore, it is suitable for the implementation of the present invention.
- thermoplastic polyurethane contained in the composition preferably further includes a repeating unit derived from at least one selected from polyether polyol, polyester polyol, polycarbonate polyol and polyolefin polyol.
- a repeating unit derived from the exemplified polyols the water resistance of the thermoplastic polyurethane tends to be further improved.
- thermoplastic polyurethane contained in the composition may include a repeating unit derived from a chain extender.
- chain extender include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, Low molecular weight dihydric alcohols such as neopentyl glycol, 1,4-cyclohexanedimethanol, 3-methyl-1,5-pentanediol, diethylene glycol, triethylene glycol, 1,4-bis (2-hydroxyethoxy) benzene It is done.
- ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butylene glycol, 1,4-butanediol, 1,5-pentanediol because of easy control of reaction with isocyanate groups, 1,6-hexanediol is preferred, and 1,4-butanediol is more preferred.
- the thermoplastic polyurethane contained in the composition contains 2 to 60 parts by mass of a repeating unit derived from at least one selected from alicyclic isocyanate and aromatic isocyanate with respect to 100 parts by mass of the thermoplastic polyurethane.
- the content is preferably 3 to 55 parts by mass.
- the method for producing the thermoplastic polyurethane contained in the composition is not particularly limited, and can be produced according to a general polyurethane production method (for example, a conventionally known batch method or prepolymer method).
- the composition may further contain a polymer compound other than thermoplastic polyurethane.
- the other polymer compound that can be added to the composition is preferably a polymer compound having a water absorption rate of 3 to 3,000% (hereinafter also simply referred to as “water-absorbing polymer compound”).
- water-absorbing polymer compound By adding the water-absorbing polymer compound, it is possible to impart appropriate water absorption to the polishing layer, and to easily control the volume change of the polishing layer that may occur due to swelling due to water absorption.
- a water-absorbing polymer compound containing at least one bond selected from an ether bond, an ester bond and an amide bond is more preferable.
- water-absorbing polymer compound containing an ether bond examples include polyoxyethylene, polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyether ester amide, polyether amide imide, polypropylene glycol, polyoxypropylene butyl ether, polyoxy Propylene glyceryl ether, polyoxypropylene sorbit, oxyethylene-epichlorohydrin copolymer, methoxypolyethylene glycol (meth) acrylate copolymer, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, poly Oxyethylene oleyl cetyl ether, polyoxyethylene polyoxypropylene glycol, polyoxyethylene poly Oxypropylene butyl ether, polyoxyethylene polyoxypropylene hexylene glycol ether, polyoxyethylene polyoxypropylene trimethylolpropane, polyoxyethylene polyoxypropylene glyceryl ether, copolymer of monomer and
- Examples of the water-absorbing polymer compound containing an ester bond include polyoxyethylene fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, glycerin fatty acid ester, acrylic acid ester copolymer (acrylic rubber) Etc.
- Examples of the polyoxyethylene fatty acid ester include polyethylene glycol monostearate, polyethylene glycol laurate, polyethylene glycol monooleate, and polyethylene glycol distearate.
- water-absorbing polymer compound containing an amide bond examples include fatty acid alkanolamides and modified polyamide resins.
- the molecular weight of the water-absorbing polymer compound is preferably from 500 to 1,000,000, more preferably from 5,000 to 500,000, as a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography.
- the content thereof is preferably 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the total amount of the thermoplastic polyurethane and the water-absorbing polymer compound. More preferably, it is 3 to 15 parts by mass, and particularly preferably 5 to 10 parts by mass.
- the volume change rate in the wet state is easily adjusted to a range of 0.8% to 5.0%.
- the volume change rate of the polishing layer is in the above range, the polishing layer surface is softened moderately by water absorption, so that the flatness of the surface to be polished is improved and polishing defects (scratches) can be reduced. .
- the composition may further comprise water-soluble particles.
- Such water-soluble particles are preferably present in a state of being uniformly dispersed in the composition.
- a polishing layer in which water-soluble particles are uniformly dispersed can be obtained.
- the water-soluble particles are held in contact with a polishing aqueous dispersion (hereinafter also referred to as “slurry”) composed of abrasive grains and a chemical solution, so that the water-soluble particles are released from the surface of the polishing layer to hold the slurry.
- slurry polishing aqueous dispersion
- It is used for the purpose of forming pores. For this reason, by using water-soluble particles without using a polyurethane foam having a cellular structure, pores are formed on the surface of the polishing layer, and the retention of the slurry becomes better. Moreover, since the pores are formed on the surface of the polishing layer, the surface hardness in the wet state can be controlled. Furthermore, it is possible to increase the specific gravity of the polishing layer by using particles having a large specific gravity.
- the composition containing the thermoplastic polyurethane contains water-soluble particles, (1) since the water-soluble particles act as a reinforcing agent such as a filler, the elastic deformation of the polishing layer can be reduced. The flatness can be improved, (2) it is a non-foaming type polishing layer, so it has excellent mechanical strength, and (3) it is not necessary to use a precise technique to uniformly control the foamed cell structure. From the viewpoint of excellent productivity.
- the water-soluble particles are not particularly limited, and examples thereof include organic water-soluble particles and inorganic water-soluble particles. Specifically, in addition to a substance that dissolves in water such as a water-soluble polymer, a substance that can swell or gel by contact with water and be released from the surface of the polishing layer, such as a water-absorbent resin.
- Examples of the material constituting the organic water-soluble particles include saccharides (polysaccharides such as starch, dextrin and cyclodextrin, lactose, mannitol, etc.), celluloses (hydroxypropylcellulose, methylcellulose, etc.), proteins, polyvinyl alcohol, Examples include polyvinyl pyrrolidone, polyacrylic acid, polyethylene oxide, sulfonated polyisoprene, and sulfonated isoprene copolymers.
- saccharides polysaccharides such as starch, dextrin and cyclodextrin, lactose, mannitol, etc.
- celluloses hydroxypropylcellulose, methylcellulose, etc.
- proteins polyvinyl alcohol
- Examples include polyvinyl pyrrolidone, polyacrylic acid, polyethylene oxide, sulfonated polyisoprene, and sulfonated isoprene copolymers.
- Examples of the material constituting the inorganic water-soluble particles include potassium acetate, potassium nitrate, potassium carbonate, potassium hydrogen carbonate, potassium bromide, potassium phosphate, potassium sulfate, magnesium sulfate, and calcium nitrate.
- the material constituting the water-soluble particles the material constituting the organic water-soluble particles or the inorganic water-soluble particles may be used alone or in combination of two or more.
- the water-soluble particles are preferably solid from the viewpoint that the hardness and other mechanical strength of the polishing layer can be set to appropriate values.
- the content of water-soluble particles in the composition is preferably 3 to 150 parts by mass with respect to 100 parts by mass of the thermoplastic polyurethane.
- a polishing layer having a high polishing rate in chemical mechanical polishing and having an appropriate hardness and other mechanical strength can be produced.
- the average particle diameter of the water-soluble particles is preferably 0.5 to 200 ⁇ m.
- the size of the pores formed when the water-soluble particles are released from the surface of the polishing layer of the chemical mechanical polishing pad is preferably 0.1 to 500 ⁇ m, more preferably 0.5 to 200 ⁇ m.
- a chemical mechanical polishing pad having a polishing layer exhibiting a high polishing rate and excellent mechanical strength can be produced.
- the specific gravity of the polishing layer provided in the chemical mechanical polishing pad according to the present embodiment is 1.15 or more and 1.30 or less, and preferably 1.18 or more and 1.27 or less.
- the specific gravity of the polishing layer becomes appropriate, so that the flatness of the surface to be polished becomes good, and the elastic deformation (following property) of the polishing layer with respect to the unevenness of the surface to be polished is moderate Therefore, polishing defects (scratches) can be reduced.
- the specific gravity of the polishing layer is less than the above range, it is not preferable because the hardness of the polishing layer becomes too low and the flatness of the surface to be polished is deteriorated.
- the specific gravity of the polishing layer exceeds the above range, the hardness of the polishing layer becomes too high, and polishing defects (scratches) increase, which is not preferable.
- the upper limit of the specific gravity of the polishing layer is 1.30 or less in view of the balance between the specific gravity of polyurethane currently known and the appropriate hardness of the polishing layer.
- a material having a large specific gravity in addition to urethane into the polishing layer.
- a polishing layer having a specific gravity exceeding 1.30 can be produced by mixing a material having a large specific gravity such as silica or alumina with urethane as a filler.
- the hardness of the polishing layer is increased by the mixed filler, and scratches on the surface to be polished are greatly deteriorated, so that the function and effect of the polishing layer of the present invention cannot be achieved.
- the specific gravity of the polishing layer can be measured by a method in accordance with “JIS Z8807”. Specifically, a sample with a known mass is placed in a Le Chatelier specific gravity bottle containing water, the volume of the sample is known from the rise of the liquid level due to the sample, and the specific gravity is obtained from the mass and volume of the sample.
- the polishing layer with which the chemical mechanical polishing pad which concerns on this Embodiment is equipped is a non-foaming type from a viewpoint made into the specific gravity of the said range.
- the non-foaming type refers to a polishing layer that does not substantially contain bubbles.
- the specific gravity of a commercially available polishing pad such as “IC1000” manufactured by ROHM & HAAS is currently about 0.40 to 0.90.
- Duro D hardness of the polishing layer provided in the chemical mechanical polishing pad according to the present embodiment is 50D or more and 80D or less, preferably 55D or more and 80D or less, more preferably 55D or more and 75D or less. 60D or more and 70D or less is particularly preferable.
- FIG. 1A and 1B are schematic diagrams for explaining the concept of duro D hardness in a polishing layer.
- the durro D hardness is an index indicating the degree of macro deflection of the polishing layer 10 when a weight is applied in the polishing step. This can also be understood from the measurement method described later.
- the polishing layer has an appropriate duro D hardness, so that the flatness of the surface to be polished is improved and the elastic deformation of the polishing layer with respect to the irregularities of the surface to be polished ( (Followability) becomes appropriate, so that polishing defects (scratches) can be reduced.
- the durometer D hardness of the polishing layer is less than the above range, the flatness of the surface to be polished is deteriorated. Further, if the duro D hardness of the polishing layer exceeds the above range, polishing defects (scratches) increase, which is not preferable.
- the duro D hardness of the polishing layer can be measured by a method according to “JIS K6253”. Specifically, the test piece is placed on a flat and solid surface, the pressure plate of the type D durometer is maintained parallel to the surface of the test piece, and the push needle is perpendicular to the surface of the test piece. Holding the type D durometer, the pressure plate is brought into contact with the test piece so as not to give an impact. The tip of the needle is measured at a position 12 mm or more away from the end of the test piece. After the pressure plate is brought into contact with the test piece, reading is performed 15 seconds later. The number of measurement points is measured 5 times at a position separated by 6 mm or more, and the median value is defined as Duro D hardness.
- the residual strain at the time of tension of the polishing layer included in the chemical mechanical polishing pad according to the present embodiment is preferably 2% or more and 10% or less, more preferably 2% or more and 9% or less. preferable.
- polishing waste and pad waste are gradually accumulated therein, resulting in clogging and deterioration of polishing characteristics. Therefore, by dressing with a diamond grindstone (hereinafter also referred to as “diamond conditioning”), the clogged polishing layer surface is scraped off, and the same surface as the initial state below is exposed from the surface and used. During this diamond conditioning, fuzz and pad debris are generated on the surface of the polishing layer.
- diamond conditioning a diamond grindstone
- FIG. 2 is a schematic diagram for explaining the concept of residual strain during tension of the polishing layer.
- 3A to 3E are enlarged views of region I in FIG. 2 for explaining the concept of residual strain during polishing of the polishing layer.
- the dresser 20 rotates in the direction of the arrow in FIG. 2 to scrape the surface of the polishing layer 10.
- FIGS. 3A to 3B when the polishing layer 10 is dressed, a part of the surface of the polishing layer 10 is pulled by the dresser 20 and extends. Then, as shown in FIG. 3C, a part of the surface of the polishing layer 10 is cut to generate pad scraps 10a.
- FIG. 3C a part of the surface of the polishing layer 10 is cut to generate pad scraps 10a.
- the portion 10b that extends without being cut shrinks to return to the original state due to the elasticity of the polishing layer, but as shown in FIG. 3E, fluffing according to the residual strain of the polishing layer occurs. Part 10b 'is generated.
- pulling of a polishing layer becomes an parameter
- the residual strain at the time of tension of the polishing layer is in the above range, generation of pad scraps due to diamond conditioning and fluffing on the surface of the polishing layer are reduced. Further, the deformation of the polishing layer with respect to the unevenness of the surface to be polished (the surface of the wafer or the like) can be reduced. Thereby, the flatness of the surface to be polished can be improved, and the generation of polishing defects can be reduced. If the residual strain at the time of tension of the polishing layer is less than 2%, pad scraps generated when the surface of the polishing layer is conditioned in diamond increase, and this may be mixed into the polishing process to increase polishing defects. Therefore, it is not preferable.
- the surface of the polishing layer becomes fuzzy when the surface of the polishing layer is conditioned, and the deformation of the polishing layer with respect to the unevenness of the surface to be polished increases. Therefore, the flatness of the surface to be polished may be deteriorated, which is not preferable.
- the residual strain at the time of tension of the polishing layer can be measured by a method based on “JIS K6270”.
- the test apparatus includes a fixed-side grip that holds one end of the test piece, a grip that holds the other end of the test piece and reciprocates, a drive device that reciprocates the grip at a constant frequency, and a fixed amplitude.
- the counter is configured to display the number of reciprocating motions. Specifically, two dumbbell-shaped test pieces are attached to the gripper, the test apparatus is moved, and stopped after 1 ⁇ 10 3 repetitions. Stop at a position where no stress is applied to one test piece, and measure the distance between the marked lines of the test piece after 1 minute. Furthermore, after repeating 100 times, it measures similarly about another test piece.
- the test frequency is usually in the range of 1 to 5 Hz.
- Test before gauge length I 0, the gauge length I n by non distorts after tensile repeatedly calculates the residual strain (%) at a tensile by the following equation (2). Residual strain during tension (%) ((I n ⁇ I 0 ) / I 0 ) ⁇ 100 (2)
- the temperature and humidity at the time of measurement are in accordance with “6.1 Standard temperature of laboratory” and “6.2 Standard humidity of laboratory” of “JIS K6250”. That is, the standard temperature of the test room is 23 ° C., and the tolerance is ⁇ 2 ° C. The standard humidity in the test room is 50% relative humidity, and the tolerance is ⁇ 10%.
- the polishing layer provided in the chemical mechanical polishing pad according to the present embodiment preferably has a volume change rate of 0.8% or more and 5% or less when the polishing layer is immersed in water at 23 ° C. for 24 hours. It is more preferably 1% or more and 3% or less.
- FIG. 4A and 4B are schematic diagrams for explaining the concept of the volume change rate in the polishing layer.
- Chemical mechanical polishing pads are constantly exposed to the slurry during the polishing operation. Then, the concave portion 30 of the polishing layer 10 that has been produced with a predetermined size and shape before water absorption as shown in FIG. 4A is caused by swelling due to water absorption as shown in FIG. The degree of fluffing may change.
- the volume change rate when immersed in water is in the above range, the surface of the polishing layer is appropriately softened due to swelling due to water absorption, so that the generation of scratches can be reduced.
- the volume change rate is less than the above range, since the swelling due to water absorption is small and the polishing layer surface is not sufficiently softened, the effect of reducing the generation of scratches cannot be sufficiently exhibited.
- the volume change rate exceeds the above range, swelling due to water absorption becomes too large, and although the generation of scratches can be reduced, the flatness of the object to be polished is deteriorated.
- a concave pattern is formed on the polished surface, if the swelling due to water absorption becomes too large, the shape and dimensions of the concave pattern change depending on the polishing time, and stable polishing characteristics may not be obtained. For this reason, it is preferable to swell in order to soften the surface of the polishing layer, but excessive swelling is not preferable because it causes deformation of the polishing surface.
- Surface hardness in wet condition of the polishing layer comprising the chemical mechanical polishing pad according to surface hardness present embodiment in the wet state is preferably 2N / mm 2 or more 10 N / mm 2 or less, 3N / mm 2 or more 9N / more preferably mm 2 less, and particularly preferably 4N / mm 2 or more 8N / mm 2 or less.
- the surface hardness of the polishing layer in the wet state is an index representing the surface hardness of the polishing layer during actual use of CMP.
- 5A and 5B are schematic views for explaining the concept of surface hardness in the polishing layer. As shown in FIG. 5A, a very small probe 40 is pushed into the surface of the polishing layer 10. Then, as shown in FIG.
- the polishing layer 10 immediately below the probe 40 is deformed so as to be pushed out around the probe 40.
- the surface hardness is an index representing the degree of deformation or deflection of the extreme surface of the polishing layer. That is, in the Duro D hardness measurement, which is a hardness measurement method in millimeters as shown in FIGS. 1A and 1B, data representing the macro hardness of the entire polishing layer is obtained, whereas as shown in FIGS. 5A and 5B. In the measurement of the surface hardness of the polishing layer in the wet state, data representing the micro hardness of the extreme surface of the polishing layer can be obtained.
- the indentation depth of the polishing layer in actual use of CMP is 5 micrometers to 50 micrometers.
- the surface hardness of the polishing layer in the wet state it is preferable to determine the surface hardness of the polishing layer in the wet state.
- the surface hardness of the polishing layer in the wet state is in the above range, the flexibility of the extreme surface of the polishing layer becomes appropriate, so that polishing defects (scratches) can be reduced.
- the surface hardness of the polishing layer in the wet state is less than the above range, the flatness of the surface to be polished may be deteriorated, which is not preferable. Further, if the surface hardness in the wet state of the polishing layer exceeds the above range, polishing defects (scratches) may increase, which is not preferable.
- the surface hardness in the wet state of the polishing layer is determined by using a nano indenter (product name: HM2000) manufactured by FISCHER in a polishing layer immersed in water at 23 ° C. for 4 hours, and pressing 300 mN.
- HM2000 nano indenter manufactured by FISCHER
- the shape of the polishing layer and the concave portion The planar shape of the polishing layer is not particularly limited, but may be, for example, a circular shape.
- the size is preferably 150 mm to 1200 mm in diameter, more preferably 500 mm to 1000 mm in diameter.
- the thickness of the polishing layer is preferably 0.5 mm to 5.0 mm, more preferably 1.0 mm to 4.0 mm, and particularly preferably 1.5 mm to 3.5 mm.
- a plurality of recesses may be formed on the polished surface.
- the concave portion holds the slurry supplied at the time of CMP, distributes it uniformly to the polishing surface, and temporarily retains wastes such as polishing scraps, pad scraps and used slurry to the outside. It has a function as a route for discharging.
- the depth of the concave portion is preferably 0.1 mm or more, more preferably 0.1 mm to 2.5 mm, and particularly preferably 0.2 mm to 2.0 mm.
- the width of the concave portion is preferably 0.1 mm or more, more preferably 0.1 mm to 5.0 mm, and particularly preferably 0.2 mm to 3.0 mm.
- the interval between adjacent recesses is preferably 0.05 mm or more, more preferably 0.05 mm to 100 mm, and particularly preferably 0.1 mm to 10 mm.
- the pitch which is the sum of the width of the recess and the distance between adjacent recesses, is preferably 0.15 mm or more, more preferably 0.15 mm to 105 mm, and particularly preferably 0.6 mm to 13 mm. .
- the recesses can be formed with a certain interval in the above range. By forming the recess having the shape in the above range, a chemical mechanical polishing pad having an excellent effect of reducing scratches on the surface to be polished and having a long life can be easily manufactured.
- the depth is preferably 0.1 mm or more, the width is 0.1 mm or more, and the interval is 0.05 mm or more, the depth is 0.1 mm to 2.5 mm, and the width is 0.1 mm to 5. More preferably, the distance is 0 mm and the distance is 0.05 mm to 100 mm, the depth is 0.2 mm to 2.0 mm, the width is 0.2 mm to 3.0 mm, and the distance is particularly preferably 0.1 mm to 10 mm. .
- a multi-blade tool having a shape described in JP-A-2006-167811, JP-A-2001-18164, JP-A-2008-183657, or the like can be used.
- the cutting blade of the tool used is selected from diamond, at least one metal element selected from metals of Group 4, 5, and 6 of the periodic table such as Ti, Cr, Zr, and V, and nitrogen, carbon, and oxygen.
- a coating layer composed of at least one nonmetallic element.
- the number of coating layers is not limited to one, and a plurality of layers may be provided with different materials.
- the thickness of such a coating layer is preferably from 0.1 to 5 ⁇ m, more preferably from 1.5 to 4 ⁇ m.
- a known technique such as an arc ion plating apparatus can be selected and used as appropriate according to the tool material, coating material, and the like.
- the polishing layer used in the present embodiment is obtained by molding a composition containing the thermoplastic polyurethane described above.
- the composition can be kneaded with a known kneader or the like.
- the kneader include a roll, a kneader, a Banbury mixer, and an extruder (single screw, multi screw).
- the composition plasticized at 120 ° C. to 230 ° C. may be molded by press molding, extrusion molding, injection molding, plasticizing and sheeting. The specific gravity and hardness can be controlled by appropriately adjusting the molding conditions.
- a recess may be formed on the polished surface by cutting.
- a concave part can be formed simultaneously with the rough shape of the polishing layer by molding the above-described composition using a mold in which a pattern to be a concave part is formed.
- the chemical mechanical polishing pad according to the present embodiment may be composed of only the polishing layer described above, a support layer may be provided on the surface opposite to the polishing surface of the polishing layer.
- the support layer is used to support the polishing layer on the polishing apparatus surface plate in the chemical mechanical polishing pad.
- the support layer may be an adhesive layer or a cushion layer having the adhesive layer on both sides.
- the adhesive layer can be made of, for example, an adhesive sheet.
- the thickness of the pressure-sensitive adhesive sheet is preferably 50 ⁇ m to 250 ⁇ m. By having a thickness of 50 ⁇ m or more, the pressure from the polishing surface side of the polishing layer can be sufficiently relaxed, and by having a thickness of 250 ⁇ m or less, it is uniform to the extent that the influence of unevenness is not exerted on the polishing performance. A chemical mechanical polishing pad having a sufficient thickness can be obtained.
- the material of the pressure-sensitive adhesive sheet is not particularly limited as long as the polishing layer can be fixed to the surface plate for the polishing apparatus, but is preferably an acrylic or rubber material having a lower elastic modulus than the polishing layer.
- the adhesive strength of the pressure-sensitive adhesive sheet is not particularly limited as long as the chemical mechanical polishing pad can be fixed to the surface plate for a polishing apparatus, but when the adhesive strength of the pressure-sensitive adhesive sheet is measured according to the standard of “JIS Z0237”, the adhesive strength is preferable. Is 3 N / 25 mm or more, more preferably 4 N / 25 mm or more, and particularly preferably 10 N / 25 mm or more.
- the cushion layer is made of a material having a lower hardness than the polishing layer, the material is not particularly limited, and may be a porous body (foam) or a non-porous body.
- a cushion layer the layer which shape
- the thickness of the cushion layer is preferably 0.1 mm to 5.0 mm, more preferably 0.5 mm to 2.0 mm.
- the chemical mechanical polishing method according to the present embodiment is characterized in that chemical mechanical polishing is performed using the above-described chemical mechanical polishing pad.
- the chemical mechanical polishing pad described above is formed from a composition containing a thermoplastic polyurethane, and has a polishing layer having a specific gravity and hardness within a specific range. Therefore, according to the chemical mechanical polishing method according to the present embodiment, it is possible to achieve both improvement of the flatness of the surface to be polished and reduction of polishing defects (scratches) particularly in the CMP process.
- a commercially available chemical mechanical polishing apparatus can be used.
- Examples of commercially available chemical mechanical polishing apparatuses include model “EPO-112”, model “EPO-222” (above, manufactured by Ebara Corporation); model “LGP-510”, model “LGP-552” (above, Wrap Master SFT); model “Mirra”, model “Reflexion LK” (applied by Applied Materials) and the like.
- an optimal one can be selected as appropriate according to the object to be polished (copper film, insulating film, low dielectric constant insulating film, etc.).
- thermoplastic polyurethane composition 50 parts by mass of non-alicyclic thermoplastic polyurethane (BASF, trade name “Elastolan 1174D”, hardness 70D), alicyclic thermoplastic polyurethane (BASF, trade name “Elastolan NY1197A”, hardness 61D) 50 parts by mass, and 29 parts by mass of ⁇ -cyclodextrin (manufactured by Shimizu Minato Sugar Co., Ltd., trade name “Dexipal ⁇ -100”, average particle size 20 ⁇ m) as water-soluble particles are kneaded with a rudder adjusted to 200 ° C.
- ⁇ -cyclodextrin manufactured by Shimizu Minato Sugar Co., Ltd., trade name “Dexipal ⁇ -100”, average particle size 20 ⁇ m
- thermoplastic polyurethane composition was compression molded at 180 ° C. in a press mold to prepare a cylindrical molded body having a diameter of 845 mm and a thickness of 3.2 mm.
- the surface of the molded body is polished with sandpaper, the thickness is adjusted, and a concentric circle having a width of 0.5 mm, a depth of 1.0 mm, and a pitch of 1.5 mm is obtained by a cutting machine (manufactured by Kato Machine Co., Ltd.).
- a polishing layer having a diameter of 600 mm and a thickness of 2.8 mm was obtained by forming a concave portion and cutting the outer periphery.
- a double-sided tape # 422JA manufactured by 3M was laminated to the surface of the polishing layer thus prepared where no recess was formed, to prepare a chemical mechanical polishing pad.
- thermoplastic polyurethane A 31 parts by mass of 4,4′-diphenylmethane diisocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name “MILLIONATE MT”) dissolved in an oil bath at 80 ° C. was added to the flask, and stirred and mixed for 15 minutes. Next, the obtained mixture was spread on a surface-treated SUS vat, allowed to react at 110 ° C. for 1 hour, and further annealed at 80 ° C. for 16 hours to obtain thermoplastic polyurethane A.
- a chemical mechanical polishing pad was prepared in the same manner as in Example 1 except that polyurethane A was used as the thermoplastic polyurethane and the other components and content of the composition were changed to those described in Table 1.
- Example 10 67 parts by mass of thermoplastic polyurethane (manufactured by BASF, trade name “Elastolan 1174D”), 30 parts by weight of thermoplastic polyurethane (made by BASF, trade name “Elastolan NY1197A”), polyolefin-polyether copolymer ( 3 parts by mass of Sanyo Chemical Industries, Ltd., trade name “Perestat 300”, 38% water absorption polymer, ⁇ -cyclodextrin (manufactured by Shimizu Minato Sugar Co., Ltd., trade name “Dexipearl” as water-soluble particles
- a thermoplastic polyurethane composition was prepared by kneading 20 parts by mass of ⁇ -100 ”) with a rudder adjusted to 180 ° C.
- a chemical mechanical polishing pad was produced in the same manner as in Example 1 except that the composition thus produced was used.
- Examples 11-14 Chemical mechanical polishing pads of Examples 11 to 14 were produced in the same manner as in Example 1 except that the types and contents of the components of the composition were changed to those shown in Table 2.
- Comparative Example 4 In a 2 L four-necked separable flask equipped with a stirrer in an air atmosphere, 25 parts by mass of polybutadiene having a hydroxyl group at the end (trade name “NISSO PB G-1000” manufactured by Nippon Soda Co., Ltd.) 35.8 parts by mass of tetramethylene glycol (trade name “PTMG-1000SN” manufactured by Hodogaya Chemical Co., Ltd.) was added, and the temperature was adjusted to 40 ° C. and stirred.
- polybutadiene having a hydroxyl group at the end (trade name “NISSO PB G-1000” manufactured by Nippon Soda Co., Ltd.) 35.8 parts by mass of tetramethylene glycol (trade name “PTMG-1000SN” manufactured by Hodogaya Chemical Co., Ltd.) was added, and the temperature was adjusted to 40 ° C. and stirred.
- thermoplastic polyurethane B 30.5 parts by mass of 4,4′-diphenylmethane diisocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name “MILLIONATE MT”) dissolved in an oil bath at 80 ° C. was added to the flask and stirred and mixed for 10 minutes. After that, 8.4 parts by mass of 3-methyl-1,5-pentanediol (manufactured by Kuraray Co., Ltd., trade name “MPD”) was added, and the mixture was stirred and mixed. Next, the obtained mixture was spread on a surface-treated SUS vat, left to react at 110 ° C. for 1 hour, and further annealed at 80 ° C. for 16 hours to obtain thermoplastic polyurethane B.
- a chemical mechanical polishing pad was prepared in the same manner as in Example 1 except that polyurethane B was used as the thermoplastic polyurethane and other components and contents were changed to those described in Table 3.
- Comparative Example 5 A commercially available chemical mechanical polishing pad (manufactured by ROHM & HAAS, trade name “IC1000”, a polishing layer made of thermally crosslinked polyurethane resin) was used. When the physical properties of the polishing layer were evaluated by the method described later, the specific gravity was 0.81, the Duro D hardness was 63 D, and the surface hardness was 14.5 N / mm 2 .
- Comparative Example 6 1,2-polybutadiene (manufactured by JSR Corporation, trade name “RB830”, hardness 47D), 100 parts by weight of ⁇ -cyclodextrin (manufactured by Shimizu Minato Sugar Co., Ltd., trade name “Dexipal ⁇ -100”), A composition in which 38 parts by mass of an average particle size of 20 ⁇ m was mixed was obtained. After adding 1 part by mass of an organic peroxide (trade name “Park Mill D-40”, manufactured by NOF Corporation) to 100 parts by mass of the obtained composition, a kneaded composition was obtained. In the same manner as above, a chemical mechanical polishing pad made of a water-soluble particle-containing thermally crosslinked polybutadiene resin was produced.
- volume change rate was measured for the polishing layer produced in “3.1. Production of Chemical Mechanical Polishing Pad” and the polishing layer of IC1000.
- the volume change rate of the polishing layer was measured by the following method based on “JIS K6258”. First, a polishing layer molded to a thickness of 2.8 mm was cut into a 2 cm ⁇ 2 cm square and used as a measurement sample. This measurement sample was immersed in water at 23 ° C. for 24 hours.
- the object to be polished is subjected to chemical mechanical polishing for 1 minute, and the film thickness before and after the processing is measured by an electroconductive film thickness measuring instrument (manufactured by KLA-Tencor Corporation). , Format “Omnimap RS75”), and the polishing rate was calculated from the film thickness before and after the treatment and the polishing treatment time. Then, the end point time at which the Cu is cleared is calculated as the time from the start of polishing to the end point detected by the change of the table torque current, and 1.2 times the end point detection time for the patterned wafer.
- a precision step gauge (manufactured by KLA-Tencor Corporation) is used for a portion in which a pattern in which copper wiring portions having a width of 100 ⁇ m and insulating portions having a width of 100 ⁇ m are alternately continued in a direction perpendicular to the length direction is 3.0 mm.
- the type “HRP-240”) was used to evaluate the dishing by measuring the amount of depression of the copper wiring having a wiring width of 100 ⁇ m (hereinafter also referred to as “dishing amount”), and used as an index of flatness.
- the results are also shown in Tables 1 to 3.
- the dishing amount is preferably less than 300 mm, more preferably less than 250 mm, and particularly preferably less than 200 mm.
- the number of scratches on the entire surface of the wafer was measured using a wafer defect inspection apparatus (model “KLA2351” manufactured by KLA-Tencor Corporation). The results are also shown in Tables 1 to 3.
- the number of scratches is preferably less than 40, more preferably less than 20, and particularly preferably less than 15.
- the chemical mechanical polishing pads of Comparative Examples 1 to 6 had a result that one or more of the above-mentioned two polishing characteristics were defective.
- Comparative Example 1 although it was a chemical mechanical polishing pad containing an alicyclic thermoplastic polyurethane, the flatness was poor because the specific gravity requirement was not satisfied.
- Comparative Example 2 although it was a chemical mechanical polishing pad containing non-alicyclic thermoplastic polyurethane, the scratch performance was poor because it did not satisfy the requirements for Duro D hardness.
- Comparative Example 3 although it was a chemical mechanical polishing pad containing a non-alicyclic thermoplastic polyurethane, the flatness was remarkably inferior because it did not satisfy the requirements of specific gravity and Duro D hardness.
- Comparative Example 4 although it was a chemical mechanical polishing pad containing thermoplastic polyurethane B, the flatness was remarkably inferior because it did not satisfy the requirements for Duro D hardness.
- Comparative Example 6 was a chemical mechanical polishing pad containing polybutadiene and water-soluble particles, did not satisfy the requirements for specific gravity, and was inferior in both polishing properties of flatness and scratch.
- the chemical mechanical polishing pad according to the present invention provides flatness and scratches by defining the balance between the specific gravity and hardness of the polishing layer containing thermoplastic polyurethane.
- a chemical mechanical polishing pad with excellent performance could be manufactured.
- the present invention includes substantially the same configuration (for example, a configuration having the same function, method, and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment.
- the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
- the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object.
- the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
本発明に係る化学機械研磨パッドの一態様は、
熱可塑性ポリウレタンを含有する組成物から形成された研磨層を有し、
前記研磨層の比重が1.15以上1.30以下であり、且つ、前記研磨層のデュロD硬度が50D以上80D以下であることを特徴とする。
適用例1の化学機械研磨パッドにおいて、
前記研磨層の引張時における残留歪が2%以上10%以下であることができる。
適用例1または適用例2の化学機械研磨パッドにおいて、
前記研磨層を23℃の水に24時間浸漬したときの体積変化率が0.8%以上5.0%以下であることができる。
適用例1ないし適用例3のいずれか一例に記載の化学機械研磨パッドにおいて、
前記研磨層を23℃の水に4時間浸漬したときの表面硬度が2N/mm2以上10N/mm2以下であることができる。
適用例1ないし適用例4のいずれか一例に記載の化学機械研磨パッドにおいて、
前記熱可塑性ポリウレタンは、脂環式イソシアネートおよび芳香族イソシアネートから選択される少なくとも1種に由来する繰り返し単位を含むことができる。
適用例1ないし適用例5のいずれか一例に記載の化学機械研磨パッドにおいて、
前記組成物は、水溶性粒子をさらに含むことができる。
本発明に係る化学機械研磨方法の一態様は、
適用例1ないし適用例6のいずれか一例に記載の化学機械研磨パッドを用いて化学機械研磨することを特徴とする。
本実施の形態に係る化学機械研磨パッドの構成としては、少なくとも一方の面に研磨層を備えていれば特に限定されない。なお、本発明において、「研磨層」とは、化学機械研磨を行う際に被研磨物と接触する面(以下、「研磨面」という)を有する単層のことをいう。すなわち、本発明では、研磨層と支持層との間に研磨面を有しない他の層を含んでいてもよいが、該他の層は研磨面を有しないので「研磨層」ではない。前記研磨層は、熱可塑性ポリウレタンを含有する組成物から後述する製造方法により形成される。また、前記研磨層の比重は1.15以上1.30以下であり、且つ、デュロD硬度は50D以上80D以下である。以下、本実施の形態に係る化学機械研磨パッドについて、詳細に説明する。
本実施の形態に係る化学機械研磨パッドを構成する研磨層は、熱可塑性ポリウレタンを含有する組成物(以下、単に「組成物」ともいう)から後述する製造方法により形成される。
1.1.1.1.熱可塑性ポリウレタン
熱可塑性ポリウレタンを含有する組成物によれば、柔軟性に優れた研磨層を作製することができる。柔軟な研磨層の表面で被研磨面と研磨面との間に入り込んだ研磨屑やパッド屑を捕捉することにより、それらが強い押し付け圧で被研磨面に接触することを回避させることができるので、研磨欠陥の発生を抑制できると考えられる。これに対して、熱架橋性ポリウレタン(熱硬化性ポリウレタン)を用いて架橋されたポリウレタンを含有する研磨層を作製した場合、研磨層に充分な柔軟性を付与することは困難であり、研磨欠陥の発生を抑制することは困難である。
前記組成物は、熱可塑性ポリウレタン以外の高分子化合物をさらに含んでもよい。前記組成物中に添加し得る他の高分子化合物としては、吸水率が3~3,000%となる高分子化合物(以下、単に「吸水性高分子化合物」ともいう)であることが好ましい。吸水性高分子化合物を添加することにより、研磨層に適度な吸水性を付与することができ、吸水による膨潤によって生じ得る研磨層の体積変化をコントロールしやすくすることができる。
吸水率(%)=((M3-M1)/M1)×100 …(1)
前記組成物は、水溶性粒子をさらに含んでもよい。かかる水溶性粒子は、組成物中に均一に分散された状態で存在していることが好ましい。このような組成物を用いることで、水溶性粒子が均一に分散された状態の研磨層が得られる。
本実施の形態に係る化学機械研磨パッドが備える研磨層の比重は、1.15以上1.30以下であり、1.18以上1.27以下であることが好ましい。研磨層の比重が前記範囲にあると、研磨層の硬度が適度となるため被研磨面の平坦性が良好になると共に、被研磨面の凹凸に対する研磨層の弾性変形(追随性)が適度となるため研磨欠陥(スクラッチ)を低減させることができる。研磨層の比重が前記範囲未満である場合、研磨層の硬度が低くなりすぎて、被研磨面の平坦性が悪化するため好ましくない。また、研磨層の比重が前記範囲を超える場合、研磨層の硬度が高くなりすぎて、研磨欠陥(スクラッチ)が増大するため好ましくない。
本実施の形態に係る化学機械研磨パッドが備える研磨層のデュロD硬度は、50D以上80D以下であり、55D以上80D以下であることが好ましく、55D以上75D以下であることがより好ましく、60D以上70D以下であることが特に好ましい。
本実施の形態に係る化学機械研磨パッドが備える研磨層の引張時における残留歪は、2%以上10%以下であることが好ましく、2%以上9%以下であることがより好ましい。
引張時における残留歪(%)=((In-I0)/I0)×100 …(2)
本実施の形態に係る化学機械研磨パッドが備える研磨層は、研磨層を23℃の水に24時間浸漬したときの体積変化率が0.8%以上5%以下であることが好ましく、1%以上3%以下であることがより好ましい。
体積変化率(%)=(((M3-M4)-(M1-M2))/(M1-M2))×100 …(3)
本実施の形態に係る化学機械研磨パッドが備える研磨層のウエット状態における表面硬度は、2N/mm2以上10N/mm2以下であることが好ましく、3N/mm2以上9N/mm2以下であることがより好ましく、4N/mm2以上8N/mm2以下であることが特に好ましい。研磨層のウエット状態における表面硬度は、CMP実使用時における研磨層の表面硬度を表す指標となる。図5Aおよび図5Bは、研磨層における表面硬度の概念を説明するための模式図である。図5Aに示すように、微小なサイズの探針40を研磨層10の表面へ押し込む。そうすると、図5Bに示すように、探針40直下の研磨層10は、探針40の周囲へ押し出されるように変形する。このように、表面硬度とは、研磨層の極表面の変形や撓みの程度を表す指標となる。すなわち、図1Aおよび図1Bに示すようなミリメートル単位の硬度測定法である前記デュロD硬度測定では研磨層全体のマクロな硬度を表すデータが得られるのに対し、図5Aおよび図5Bに示すような研磨層のウエット状態における表面硬度測定では研磨層の極表面のミクロな硬度を表すデータが得られる。CMP実使用時における研磨層の押し込み深さは、5マイクロメートルから50マイクロメートルである。したがって、このような研磨層の極表面の柔軟性を判断するためには、研磨層のウエット状態における表面硬度により判断することが好ましい。研磨層のウエット状態における表面硬度が前記範囲にあると、研磨層の極表面の柔軟性が適度となるため研磨欠陥(スクラッチ)を低減させることができる。研磨層のウエット状態における表面硬度が前記範囲未満であると、被研磨面の平坦性が悪化することがあるため好ましくない。また、研磨層のウエット状態における表面硬度が前記範囲を超えると、研磨欠陥(スクラッチ)が増大することがあるため好ましくない。なお、本発明において、研磨層のウエット状態における表面硬度は、23℃の水に4時間浸漬させた研磨層において、FISCHER社製のナノインデンター(製品名:HM2000)を使用し、300mN押し込み時のユニバーサル硬さ(HU)で示される。
研磨層の平面形状は、特に限定されないが、例えば円形状であることができる。研磨層の平面形状が円形状である場合、その大きさは、好ましくは直径150mm~1200mm、より好ましくは直径500mm~1000mmである。研磨層の厚さは、好ましくは0.5mm~5.0mm、より好ましくは1.0mm~4.0mm、特に好ましくは1.5mm~3.5mmである。
本実施の形態で用いられる研磨層は、前述した熱可塑性ポリウレタンを含有する組成物を成型することにより得られる。組成物の混練は、公知の混練機等により行うことができる。混練機としては、例えば、ロール、ニーダー、バンバリーミキサー、押出機(単軸、多軸)等が挙げられる。組成物から研磨層を成型する方法としては、120℃~230℃で可塑化した前記組成物をプレス成形、押出成形または射出成形し、可塑化・シート化する方法により成型すればよい。かかる成型条件を適宜調整することで比重や硬度をコントロールすることもできる。
本実施の形態に係る化学機械研磨パッドは、前述した研磨層のみで構成される場合もあるが、前記研磨層の研磨面とは反対側の面に支持層を設けてもよい。
本実施の形態に係る化学機械研磨方法は、前述の化学機械研磨パッドを用いて化学機械研磨することを特徴とする。前述の化学機械研磨パッドは、熱可塑性ポリウレタンを含有する組成物から形成され、特定の範囲の比重および硬度を兼ね備えた研磨層を有している。そのため、本実施の形態に係る化学機械研磨方法によれば、特にCMP工程における被研磨面の平坦性の向上と研磨欠陥(スクラッチ)の低減とを両立させることができる。
以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
3.1.1.実施例1
非脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストラン1174D」、硬度70D)を50質量部、脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストランNY1197A」、硬度61D)を50質量部、水溶性粒子としてβ-サイクロデキストリン(塩水港精糖株式会社製、商品名「デキシパールβ-100」、平均粒径20μm)29質量部を、200℃に調温されたルーダーにより混練して熱可塑性ポリウレタン組成物を作製した。作製した熱可塑性ポリウレタン組成物を、プレス金型内で180℃で圧縮成型し、直径845mm、厚さ3.2mmの円柱状の成型体を作製した。次に、作製した成型体の表面をサンドペーパーで研磨し、厚みを調整し、さらに切削加工機(加藤機械株式会社製)により幅0.5mm、深さ1.0mm、ピッチ1.5mmの同心円状の凹部を形成し外周部を切り離すことで、直径600mm、厚さ2.8mmの研磨層を得た。このようにして作製した研磨層のうち凹部を形成していない面へ両面テープ#422JA(3M社製)をラミネートし、化学機械研磨パッドを作製した。
組成物の各成分の種類および含有量を表1または表3に記載のものに変更したこと以外は、実施例1と同様にして実施例2~7、比較例1~3の化学機械研磨パッドを作製した。
空気雰囲気下で、撹拌機を備えた2Lの4つ口セパラブルフラスコに、ポリオキシエチレンビスフェノールAエーテル(日油株式会社製、商品名「ユニオールDA400」)を38質量部およびポリテトラメチレングリコール(保土谷化学工業株式会社製、商品名「PTG-1000SN」、Mn=1012)を31質量部投入し、40℃に調温して撹拌した。次いで、前記フラスコに、80℃の油浴で溶解させた4,4’-ジフェニルメタンジイソシアネート(日本ポリウレタン工業株式会社製、商品名「MILLIONATE MT」)を31質量部加え、15分撹拌・混合した。次いで、得られた混合物を表面加工されたSUS製のバットに拡げ、110℃で1時間静置して反応させ、さらに80℃で16時間アニールし、熱可塑性のポリウレタンAを得た。熱可塑性ポリウレタンとしてポリウレタンAを用い、組成物の他の成分および含有量を表1に記載したものに変更したこと以外は、実施例1と同様にして化学機械研磨パッドを作製した。
熱可塑性ポリウレタン(BASF社製、商品名「エラストラン1174D」)を67質量部、熱可塑性ポリウレタン(BASF社製、商品名「エラストランNY1197A」)を30質量部、ポリオレフィン-ポリエーテル共重合体(三洋化成工業株式会社製、商品名「ペレスタット300」、吸水率38%の吸水性高分子化合物)を3質量部、水溶性粒子としてβ-サイクロデキストリン(塩水港精糖株式会社製、商品名「デキシパールβ-100」)20質量部を180℃に調温されたルーダーにより混練して熱可塑性ポリウレタン組成物を作製した。このようにして作製した組成物を用いたこと以外は、実施例1と同様にして化学機械研磨パッドを作製した。
組成物の各成分の種類および含有量を表2に記載のものに変更したこと以外は、実施例1と同様にして実施例11~14の化学機械研磨パッドを作製した。
空気雰囲気下で、撹拌機を備えた2Lの4つ口セパラブルフラスコに、末端が水酸基化されたポリブタジエン(日本曹達株式会社製、商品名「NISSO PB G-1000」)を25質量部およびポリテトラメチレングリコール(保土谷化学工業株式会社製、商品名「PTMG-1000SN」)を35.8質量部投入し、40℃に調温して撹拌した。次いで、前記フラスコに、80℃の油浴で溶解させた4,4’-ジフェニルメタンジイソシアネート(日本ポリウレタン工業株式会社製、商品名「MILLIONATE MT」)を30.5質量部加え、10分撹拌・混合した後、3-メチル-1,5-ペンタンジオール(株式会社クラレ製、商品名「MPD」)を8.4質量部加え、撹拌・混合した。次いで、得られた混合物を表面加工されたSUS製のバットに拡げ、110℃で1時間静置して反応させ、さらに80℃で16時間アニールし、熱可塑性のポリウレタンBを得た。熱可塑性ポリウレタンとしてポリウレタンBを用い、他の成分および含有量を表3に記載したものに変更したこと以外は、実施例1と同様にして化学機械研磨パッドを作製した。
市販の化学機械研磨パッド(ROHM&HAAS社製、商品名「IC1000」、熱架橋ポリウレタン樹脂により研磨層が作製されている)を使用した。後述する方法により研磨層の物性を評価したところ、比重は0.81であり、デュロD硬度は63D、表面硬度は14.5N/mm2であった。
1,2-ポリブタジエン(JSR株式会社製、商品名「RB830」、硬度47D)100質量部に、水溶性粒子としてβ-サイクロデキストリン(塩水港精糖株式会社製、商品名「デキシパールβ-100」、平均粒径20μm)38質量部を混合した組成物を得た。得られた組成物100質量部に対して、さらに有機過酸化物(日油株式会社製、商品名「パークミルD-40」)を1質量部加え混練した組成物を得た後、実施例1と同様にして、水溶性粒子含有熱架橋ポリブタジエン樹脂からなる化学機械研磨パッドを作製した。
・「PU1-1」:非脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストラン1174D」、硬度70D)
・「PU1-2」:非脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストラン1164D」、硬度64D)
・「PU1-3」:非脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストラン1180A」、硬度41D)
・「PU2-1」:脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストランNY1197A」、硬度61D)
・「PU2-2」:脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストランNY1164D」、硬度64D)
・「β-CD」:β-サイクロデキストリン(平均粒径20μm、塩水港精糖株式会社製、商品名「デキシパールβ-100」)
・「熱架橋ポリブタジエン樹脂」:1,2-ポリブタジエン(硬度47D、JSR株式会社製、商品名「RB830」)
・「有機過酸化物」:ジクミルパーオキサイド(日油株式会社製、商品名「パークミルD-40」、架橋剤)
・「PM1」:ポリオレフィン-ポリエーテル共重合体(三洋化成工業株式会社製、商品名「ペレスタット300」、吸水率38%)
・「PM2」:ポリアルキレンオキサイド(住友精化株式会社製、商品名「アクアコークTWB」、吸水率2050%)
3.2.1.比重
前記「3.1.化学機械研磨パッドの製造」で作製した研磨層およびIC1000の研磨層について、比重を測定した。研磨層の比重は、「JIS Z8807」に準拠して測定した。その結果を表1~表3に併せて示す。
前記「3.1.化学機械研磨パッドの製造」で作製した研磨層およびIC1000の研磨層について、デュロD硬度を測定した。研磨層のデュロD硬度は、「JIS K6253」に準拠して測定した。その結果を表1~表3に併せて示す。
前記「3.1.化学機械研磨パッドの製造」で作製した研磨層およびIC1000の各研磨層の凹部が形成されていない部分から試験片を作製し、引張時における残留歪を測定した。引張時における残留歪は、「JIS K6270」に準拠して測定した。なお、測定時の温度は23℃であり、湿度は相対湿度で50%であった。その結果を表1~表3に併せて示す。
前記「3.1.化学機械研磨パッドの製造」で作製した研磨層およびIC1000の研磨層について、体積変化率を測定した。研磨層の体積変化率は、「JIS K6258」に準拠した以下の方法により測定した。まず、厚さ2.8mmに成形した研磨層を2cm×2cmの角形に切り出して、これを測定用試料とした。この測定用試料を23℃の水に24時間浸漬させた。浸漬前の空気中の質量(M1)と浸漬前の水中の質量(M2)、浸漬後の空気中の質量(M3)と浸漬後の水中の質量(M4)を電子天秤(チョウバランス株式会社製、型式「JP-300」)を用いて測定し、下記式(3)により、体積変化率を算出した。その結果を表1~表3に併せて示す。
体積変化率(%)=(((M3-M4)-(M1-M2))/(M1-M2))×100 …(3)
前記「3.1.化学機械研磨パッドの製造」で作製した研磨層およびIC1000の研磨層について、研磨層のウエット状態の表面硬度を測定した。研磨層のウエット状態における表面硬度は、23℃の水に4時間浸漬させた研磨層について、ナノインデンター(FISCHER社製、型式「HM2000」)を使用し、300mN押し込み時のユニバーサル硬さ(HU)を表面硬度として測定した。その結果を表1~表3に併せて示す。
前記「3.1.化学機械研磨用パッドの製造」で製造した化学機械研磨パッドを化学機械研磨装置(荏原製作所社製、形式「EPO-112」)に装着し、ドレッサー(アライド社製、商品名「#325-63R」)を用いてテーブル回転数20rpm、ドレッシング回転数19rpm、ドレッシング荷重5.1kgfの条件でドレッシングを30分行った。その後、ドレッシングした化学機械研磨パッドを用いて以下の条件にて化学機械研磨を行い、研磨特性を評価した。
・ヘッド回転数:61rpm
・ヘッド荷重:3psi(20.6kPa)
・テーブル回転数:60rpm
・スラリー供給速度:300cm3/分
・スラリー:CMS8401/CMS8452(JSR株式会社製)
被研磨物として、シリコン基板上にPETEOS膜を5,000オングストローム順次積層させた後、「SEMATECH 854」マスクパターン加工し、その上に250オングストロームのタンタルナイトライド膜、1,000オングストロームの銅シード膜および10,000オングストロームの銅膜を順次積層させたテスト用の基板を用いた。
研磨処理後の前記パターン付きウエハの被研磨面において、ウエハ欠陥検査装置(ケーエルエー・テンコール社製、型式「KLA2351」)を使用して、ウエハ全面におけるスクラッチの個数を測定した。その結果を表1~表3に併せて示す。なお、スクラッチは、好ましくは40個未満、より好ましくは20個未満、特に好ましくは15個未満である。
表1および表2によれば、実施例1~14の化学機械研磨パッドは、平坦性、スクラッチの2項目の研磨特性においていずれも好ましい結果が得られた。
Claims (7)
- 熱可塑性ポリウレタンを含有する組成物から形成された研磨層を有し、
前記研磨層の比重が1.15以上1.30以下であり、且つ、前記研磨層のデュロD硬度が50D以上80D以下であることを特徴とする、化学機械研磨パッド。 - 前記研磨層の引張時における残留歪が2%以上10%以下である、請求項1に記載の化学機械研磨パッド。
- 前記研磨層を23℃の水に24時間浸漬したときの体積変化率が0.8%以上5.0%以下である、請求項1または請求項2に記載の化学機械研磨パッド。
- 前記研磨層を23℃の水に4時間浸漬したときの表面硬度が2N/mm2以上10N/mm2以下である、請求項1ないし請求項3のいずれか一項に記載の化学機械研磨パッド。
- 前記熱可塑性ポリウレタンは、脂環式イソシアネートおよび芳香族イソシアネートから選択される少なくとも1種に由来する繰り返し単位を含む、請求項1ないし請求項4のいずれか一項に記載の化学機械研磨パッド。
- 前記組成物は、水溶性粒子をさらに含む、請求項1ないし請求項5のいずれか一項に記載の化学機械研磨パッド。
- 請求項1ないし請求項6のいずれか一項に記載の化学機械研磨パッドを用いて化学機械研磨する、化学機械研磨方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10839232A EP2517828A1 (en) | 2009-12-22 | 2010-12-14 | Pad for chemical mechanical polishing and method of chemical mechanical polishing using same |
US13/518,230 US20120322348A1 (en) | 2009-12-22 | 2010-12-14 | Pad for chemical mechanical polishing and method of chemical mechanical polishing using same |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009290213 | 2009-12-22 | ||
JP2009-290213 | 2009-12-22 | ||
JP2009-291613 | 2009-12-24 | ||
JP2009291613 | 2009-12-24 | ||
JP2010-169319 | 2010-07-28 | ||
JP2010169318 | 2010-07-28 | ||
JP2010169319 | 2010-07-28 | ||
JP2010-169318 | 2010-07-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011077999A1 true WO2011077999A1 (ja) | 2011-06-30 |
Family
ID=44195529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/072430 WO2011077999A1 (ja) | 2009-12-22 | 2010-12-14 | 化学機械研磨パッドおよびそれを用いた化学機械研磨方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120322348A1 (ja) |
EP (1) | EP2517828A1 (ja) |
KR (1) | KR20120112476A (ja) |
TW (1) | TWI507435B (ja) |
WO (1) | WO2011077999A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240087742A (ko) | 2021-09-30 | 2024-06-19 | 주식회사 쿠라레 | 연마층용 열가소성 폴리우레탄, 연마층, 및 연마 패드 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5528169B2 (ja) | 2010-03-26 | 2014-06-25 | 東洋ゴム工業株式会社 | 研磨パッドおよびその製造方法、ならびに半導体デバイスの製造方法 |
US9079289B2 (en) * | 2011-09-22 | 2015-07-14 | Toyo Tire & Rubber Co., Ltd. | Polishing pad |
JP5759888B2 (ja) * | 2011-12-28 | 2015-08-05 | 東洋ゴム工業株式会社 | 研磨パッド |
JP5893413B2 (ja) | 2012-01-17 | 2016-03-23 | 東洋ゴム工業株式会社 | 積層研磨パッドの製造方法 |
US10995298B2 (en) | 2014-07-23 | 2021-05-04 | Becton, Dickinson And Company | Self-lubricating polymer composition |
US10995175B2 (en) | 2015-10-14 | 2021-05-04 | Becton, Dickinson And Company | Thermoplastic polyurethane materials for forming medical devices |
EP3911705A4 (en) * | 2019-01-15 | 2022-09-14 | Avient Corporation | SLUBABLE THERMOPLASTIC COMPOUNDS AND THERMOPLASTIC ARTICLES MADE THEREOF |
CN110003426B (zh) * | 2019-03-08 | 2021-05-25 | 合肥宏光研磨科技有限公司 | 一种聚氨酯海绵复合抛光盘 |
KR102298114B1 (ko) * | 2019-11-05 | 2021-09-03 | 에스케이씨솔믹스 주식회사 | 연마패드, 이의 제조방법 및 이를 이용한 반도체 소자의 제조방법 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08500622A (ja) | 1992-08-19 | 1996-01-23 | ロデール インコーポレーテッド | 高分子微小エレメントを含む高分子基材 |
JP2000017252A (ja) | 1998-06-29 | 2000-01-18 | Dainippon Ink & Chem Inc | 研磨材組成物及びその研磨材 |
JP2001018164A (ja) | 1999-07-08 | 2001-01-23 | Toho Engineering Kk | 半導体デバイス加工用硬質発泡樹脂溝付パッド及びそのパッド旋削溝加工用工具 |
JP2001047355A (ja) * | 1999-08-06 | 2001-02-20 | Jsr Corp | 研磨パッド用重合体組成物及びそれを用いた研磨パッド |
JP2003332277A (ja) | 2002-05-15 | 2003-11-21 | Toray Ind Inc | 樹脂含浸体および研磨パッドおよびその研磨パッドを用いた研磨装置と研磨方法 |
JP2005532176A (ja) * | 2002-05-23 | 2005-10-27 | キャボット マイクロエレクトロニクス コーポレイション | 微小孔性研磨パッド |
JP2006167811A (ja) | 2004-12-10 | 2006-06-29 | Toho Engineering Kk | パッド溝加工用バイトおよびそれを用いた研磨用パッドの製造方法 |
JP3956364B2 (ja) | 2001-04-09 | 2007-08-08 | 東洋ゴム工業株式会社 | ポリウレタン組成物および研磨パッド |
JP2007284625A (ja) | 2006-04-19 | 2007-11-01 | Nippon Polyurethane Ind Co Ltd | 発泡ポリウレタンエラストマーおよびその製造方法並びに鉄道用パッド |
JP2008183657A (ja) | 2007-01-30 | 2008-08-14 | National Institute Of Advanced Industrial & Technology | 単結晶ダイヤモンド多刃工具及びその製造方法 |
JP2009024213A (ja) * | 2007-07-19 | 2009-02-05 | Sumitomo Metal Ind Ltd | 破断分離性に優れる高炭素鋼およびその製造方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6454634B1 (en) * | 2000-05-27 | 2002-09-24 | Rodel Holdings Inc. | Polishing pads for chemical mechanical planarization |
TW567114B (en) * | 2000-12-01 | 2003-12-21 | Toyo Boseki | Polishing pad and manufacture method thereof and buffer layer for polishing pad |
JP4177100B2 (ja) * | 2000-12-01 | 2008-11-05 | 東洋ゴム工業株式会社 | 研磨パッド及びその製造方法並びに研磨パッド用クッション層 |
US20050107007A1 (en) * | 2001-12-28 | 2005-05-19 | Shoichi Furukawa | Polishing pad process for producing the same and method of polishing |
JP4475404B2 (ja) * | 2004-10-14 | 2010-06-09 | Jsr株式会社 | 研磨パッド |
US20080318505A1 (en) * | 2004-11-29 | 2008-12-25 | Rajeev Bajaj | Chemical mechanical planarization pad and method of use thereof |
US20090061744A1 (en) * | 2007-08-28 | 2009-03-05 | Rajeev Bajaj | Polishing pad and method of use |
JP4237201B2 (ja) * | 2006-06-02 | 2009-03-11 | エルピーダメモリ株式会社 | 半導体装置の製造方法及び半導体装置の製造装置 |
JP2008027971A (ja) * | 2006-07-18 | 2008-02-07 | Jsr Corp | 化学機械研磨パッドおよび化学機械研磨方法 |
CN102152233B (zh) * | 2006-08-28 | 2013-10-30 | 东洋橡胶工业株式会社 | 抛光垫 |
JP5078000B2 (ja) * | 2007-03-28 | 2012-11-21 | 東洋ゴム工業株式会社 | 研磨パッド |
JP4971028B2 (ja) * | 2007-05-16 | 2012-07-11 | 東洋ゴム工業株式会社 | 研磨パッドの製造方法 |
US20090061743A1 (en) * | 2007-08-29 | 2009-03-05 | Stephen Jew | Method of soft pad preparation to reduce removal rate ramp-up effect and to stabilize defect rate |
JP5347524B2 (ja) * | 2008-01-24 | 2013-11-20 | Jsr株式会社 | 化学機械研磨パッドの研磨層形成用組成物、化学機械研磨パッドおよび化学機械研磨方法 |
-
2010
- 2010-12-14 WO PCT/JP2010/072430 patent/WO2011077999A1/ja active Application Filing
- 2010-12-14 US US13/518,230 patent/US20120322348A1/en not_active Abandoned
- 2010-12-14 KR KR1020127016065A patent/KR20120112476A/ko not_active Application Discontinuation
- 2010-12-14 EP EP10839232A patent/EP2517828A1/en not_active Withdrawn
- 2010-12-21 TW TW099144979A patent/TWI507435B/zh not_active IP Right Cessation
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08500622A (ja) | 1992-08-19 | 1996-01-23 | ロデール インコーポレーテッド | 高分子微小エレメントを含む高分子基材 |
JP2000017252A (ja) | 1998-06-29 | 2000-01-18 | Dainippon Ink & Chem Inc | 研磨材組成物及びその研磨材 |
JP2001018164A (ja) | 1999-07-08 | 2001-01-23 | Toho Engineering Kk | 半導体デバイス加工用硬質発泡樹脂溝付パッド及びそのパッド旋削溝加工用工具 |
JP2001047355A (ja) * | 1999-08-06 | 2001-02-20 | Jsr Corp | 研磨パッド用重合体組成物及びそれを用いた研磨パッド |
JP3956364B2 (ja) | 2001-04-09 | 2007-08-08 | 東洋ゴム工業株式会社 | ポリウレタン組成物および研磨パッド |
JP2003332277A (ja) | 2002-05-15 | 2003-11-21 | Toray Ind Inc | 樹脂含浸体および研磨パッドおよびその研磨パッドを用いた研磨装置と研磨方法 |
JP2005532176A (ja) * | 2002-05-23 | 2005-10-27 | キャボット マイクロエレクトロニクス コーポレイション | 微小孔性研磨パッド |
JP2006167811A (ja) | 2004-12-10 | 2006-06-29 | Toho Engineering Kk | パッド溝加工用バイトおよびそれを用いた研磨用パッドの製造方法 |
JP2007284625A (ja) | 2006-04-19 | 2007-11-01 | Nippon Polyurethane Ind Co Ltd | 発泡ポリウレタンエラストマーおよびその製造方法並びに鉄道用パッド |
JP2008183657A (ja) | 2007-01-30 | 2008-08-14 | National Institute Of Advanced Industrial & Technology | 単結晶ダイヤモンド多刃工具及びその製造方法 |
JP2009024213A (ja) * | 2007-07-19 | 2009-02-05 | Sumitomo Metal Ind Ltd | 破断分離性に優れる高炭素鋼およびその製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240087742A (ko) | 2021-09-30 | 2024-06-19 | 주식회사 쿠라레 | 연마층용 열가소성 폴리우레탄, 연마층, 및 연마 패드 |
Also Published As
Publication number | Publication date |
---|---|
EP2517828A1 (en) | 2012-10-31 |
KR20120112476A (ko) | 2012-10-11 |
US20120322348A1 (en) | 2012-12-20 |
TWI507435B (zh) | 2015-11-11 |
TW201130871A (en) | 2011-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011077999A1 (ja) | 化学機械研磨パッドおよびそれを用いた化学機械研磨方法 | |
JP5725300B2 (ja) | 研磨層形成用組成物、ならびに化学機械研磨用パッドおよびそれを用いた化学機械研磨方法 | |
JP5347524B2 (ja) | 化学機械研磨パッドの研磨層形成用組成物、化学機械研磨パッドおよび化学機械研磨方法 | |
JPWO2012077592A1 (ja) | 化学機械研磨パッドおよびそれを用いた化学機械研磨方法 | |
JP5708913B2 (ja) | 化学機械研磨パッドおよびそれを用いた化学機械研磨方法 | |
WO2006123559A1 (ja) | 研磨パッド | |
WO2016067588A1 (ja) | 研磨層用非多孔性成形体,研磨パッド及び研磨方法 | |
JP2005236200A (ja) | 研磨パッドおよびそれを使用する半導体デバイスの製造方法 | |
JP4338150B2 (ja) | 発泡ポリウレタンおよびその製造方法 | |
KR20170089845A (ko) | 연마층용 성형체 및 연마 패드 | |
KR20060048061A (ko) | 화학 기계 연마용 패드 | |
JP2007521980A (ja) | 研磨パッドのベースパッド及びそれを含む多層パッド | |
JP5630610B2 (ja) | 化学機械研磨パッドおよびそれを用いた化学機械研磨方法 | |
JP5630609B2 (ja) | 化学機械研磨パッドおよびそれを用いた化学機械研磨方法 | |
JP5549111B2 (ja) | 化学機械研磨パッドの研磨層形成用組成物、化学機械研磨パッドおよび化学機械研磨方法 | |
JP2012056021A (ja) | 化学機械研磨パッドおよびそれを用いた化学機械研磨方法 | |
JP2010005746A (ja) | 研磨パッドおよびその製造方法 | |
WO2022210676A1 (ja) | 研磨パッド及び研磨パッドの製造方法 | |
JP2012182314A (ja) | 組成物および化学機械研磨パッド、ならびに化学機械研磨方法 | |
JP2023146016A (ja) | 研磨パッド及び研磨パッドの製造方法 | |
JP2004022632A (ja) | 研磨パッドおよびその製造方法ならびに研磨装置ならびに半導体基板の研磨方法 | |
JP2022155896A (ja) | 研磨パッド | |
JP2022153967A (ja) | 研磨パッド及び研磨パッドの製造方法 | |
CN118893874A (zh) | 多层材料及其使用的研磨材料和应用 | |
WO2014189086A1 (ja) | 化学機械研磨パッドおよびそれを用いた化学機械研磨方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10839232 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127016065 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010839232 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13518230 Country of ref document: US |