Nothing Special   »   [go: up one dir, main page]

WO2011065345A1 - 扁平形非水二次電池 - Google Patents

扁平形非水二次電池 Download PDF

Info

Publication number
WO2011065345A1
WO2011065345A1 PCT/JP2010/070856 JP2010070856W WO2011065345A1 WO 2011065345 A1 WO2011065345 A1 WO 2011065345A1 JP 2010070856 W JP2010070856 W JP 2010070856W WO 2011065345 A1 WO2011065345 A1 WO 2011065345A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
separator
secondary battery
electrode
separators
Prior art date
Application number
PCT/JP2010/070856
Other languages
English (en)
French (fr)
Inventor
優子 大西
俊和 吉葉
徳 高井
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009269702A external-priority patent/JP5377250B2/ja
Priority claimed from JP2009269701A external-priority patent/JP5377249B2/ja
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to CN2010800536108A priority Critical patent/CN102630356A/zh
Priority to US13/512,251 priority patent/US8802269B2/en
Priority to EP10833191.9A priority patent/EP2495798B8/en
Priority to KR1020127013426A priority patent/KR101363438B1/ko
Publication of WO2011065345A1 publication Critical patent/WO2011065345A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a flat non-aqueous secondary battery having high reliability.
  • a flat non-aqueous secondary battery generally called a coin-type battery or a button-type battery is composed of an electrode body in which a positive electrode and a negative electrode are stacked via a separator, and a non-aqueous electrolyte solution by an outer case and a sealing case. It has a structure accommodated in the formed space.
  • a positive electrode mixture layer or a negative electrode mixture layer is formed on one side or both sides of the current collector, and a part of the current collector is used as the positive electrode.
  • a configuration in which a mixture layer or a negative electrode mixture layer is exposed without being formed and used as a current collecting tab is known.
  • the current collecting tab is used for electrical connection with an outer case or a sealing case that also serves as an electrode and a terminal.
  • an electrode group is formed by laminating a positive electrode having the above-described configuration with a negative electrode in a state of being inserted into a bag-shaped separator (for example, JP-T-2004-509443). Gazette and JP-A-2008-91100).
  • a bag-shaped separator an insulating polymer film such as a polyester resin film having an adhesive component on the surface is disposed between two separators, and the film and the separator are bonded by the adhesive component (for example, (Japanese Patent Laid-Open No. 2004-509443)) Two separators are welded together (for example, Japanese Patent Laid-Open No. 2008-91100).
  • the inner surface of the separator is the positive end portion. It contacts the corner (corner at the end of the positive electrode mixture layer). If it does so, there exists a possibility that a defect may arise, such as a crack being produced in a separator or a corner part of a positive mix layer being missing. Such a defect may cause an internal short circuit or a capacity reduction of the battery, which may impair the reliability of the battery. Therefore, in the flat non-aqueous secondary battery having the bag-shaped separator as described above, it is required to suppress the occurrence of defects as described above.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a flat non-aqueous secondary battery having high reliability.
  • a flat non-aqueous secondary battery includes an electrode group disposed in a space formed by an outer case and a sealing case, and the electrode group includes a plurality of alternately stacked layers.
  • the separator disposed so as to sandwich the positive electrode has a joint portion formed by welding the separators to each other at least at a part of the peripheral portion with the positive electrode sandwiched therebetween.
  • a / B is 1 It is a top.
  • a flat battery having a diameter larger than the height is called a coin battery or a button battery.
  • coin-type batteries and button-type batteries
  • the flat non-aqueous secondary battery of the present invention includes both coin-type batteries and button-type batteries.
  • a flat non-aqueous secondary battery having high reliability can be provided.
  • FIG. 1 is a longitudinal sectional view schematically showing an example of a flat nonaqueous secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a partially enlarged cross-sectional view of FIG.
  • FIG. 3 is a plan view schematically showing an example of the positive electrode of the flat nonaqueous secondary battery according to the embodiment of the present invention.
  • FIG. 4 is a plan view schematically illustrating an example of a separator of a flat nonaqueous secondary battery according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing a part of the positive electrode of the flat nonaqueous secondary battery shown in FIGS. 1 and 2 and separators disposed on both surfaces thereof.
  • FIG. 1 is a longitudinal sectional view schematically showing an example of a flat nonaqueous secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a partially enlarged cross-sectional view of FIG.
  • FIG. 3 is a plan view schematically showing an example of the positive
  • FIG. 6 is a longitudinal sectional view schematically showing another example of the flat non-aqueous secondary battery.
  • FIG. 7 is a partially enlarged cross-sectional view of FIG.
  • FIG. 8 is a cross-sectional view schematically showing a part of the positive electrode of the flat nonaqueous secondary battery shown in FIGS. 6 and 7 and separators arranged on both surfaces thereof.
  • FIG. 9 shows a case where (a) positions a separator extending substantially parallel to the positive electrode on one side of the electrode group, and (b) shows a separator extending substantially parallel to the positive electrode on a different side of the electrode group. It is a partial expanded sectional view which shows the case where it positions, respectively.
  • FIG. 1 is a longitudinal sectional view showing a battery case (an outer case 2 and a sealing case 3) and an insulating gasket 4 of a flat non-aqueous secondary battery 1 (hereinafter also simply referred to as a battery).
  • FIG. 2 is an enlarged view of a part of FIG. 1 and a sectional view of the electrode group.
  • the flat non-aqueous secondary battery 1 includes a positive electrode 5 and a negative electrode 6 in a space (sealed space) formed by an outer case 2, a sealing case 3, and an insulating gasket 4.
  • a stacked electrode group and a nonaqueous electrolyte solution (not shown) that are stacked so that their planes are substantially parallel (including parallel) to the flat surface (upper and lower surfaces in FIG. 1) of the battery are accommodated. It is constituted by.
  • the sealing case 3 is fitted into the opening of the outer case 2 with the insulating gasket 4 sandwiched between the sealing case 3 and the outer case 2.
  • the opening end of the outer case 2 is bent so as to be deformed inward of the battery.
  • the insulating gasket 4 is sandwiched between the sealing case 3 and the outer case 2, so that the opening of the outer case 2 is sealed and a sealed space is formed inside the battery.
  • the outer case 2 and the sealing case 3 are made of a metal material such as stainless steel.
  • the insulating gasket 4 is made of an insulating resin such as nylon.
  • the positive electrode 5 includes a plate-like current collector 52 and a positive electrode mixture layer 51 formed on one or both surfaces of the current collector 52 as shown in FIGS. 1 and 2.
  • FIG. 3 schematically shows a plan view of the positive electrode 5.
  • the positive electrode 5 has a main body portion 5a (positive electrode main body portion) and a current collecting tab portion that protrudes from the main body portion 5a in plan view and has a narrower width (length in the vertical direction in FIG. 3) than the main body portion 5a. 5b (positive electrode current collecting tab part).
  • the main body 5 a of the positive electrode 5 is configured by forming a positive electrode mixture layer 51 on one or both surfaces of a current collector 52 as shown in FIG. On the other hand, in the current collecting tab portion 5b of the positive electrode 5, the positive electrode mixture layer 51 is not formed on the surface of the current collector 52, and the current collector 52 is exposed.
  • the negative electrode 6 includes a plate-like current collector 62 and a negative electrode agent layer 61 formed on one side or both sides of the current collector 62.
  • the negative electrode 6 also has a main body portion 6 a and a current collecting tab portion 6 b that protrudes from the main body portion 6 a in a plan view and is narrower than the main body portion 6 a.
  • the negative electrode in which the negative electrode layer 61 is formed on both sides of the current collector 62 is represented as a negative electrode 6A
  • the negative electrode in which the negative electrode layer 61 is formed on only one side of the current collector 62 is This is represented as a negative electrode 6B (see FIG. 1).
  • the main body 6 a of the negative electrode 6 is configured by forming a negative electrode agent layer 61 on one or both surfaces of the current collector 62.
  • the negative electrode agent layer 61 is not formed on the surface of the current collector 62, and the current collector 62 is exposed.
  • the upper and lower ends of the electrode group are negative electrodes 6B and 6B.
  • These negative electrodes 6B and 6B are arranged in the battery so that the negative electrode agent layer 61 is located on the surface of the current collector 62 on the inner side of the battery.
  • the exposed surface of the current collector 62 of the negative electrode 6B located on the upper side in FIG. 1 is welded to or in contact with the inner surface of the sealing case 3, so that the sealing case 3 and the negative electrode 6B are connected to each other. Electrically connected. That is, in the flat nonaqueous secondary battery 1 of the present embodiment, the sealing case 3 also serves as the negative electrode terminal.
  • the negative electrode 6 (the negative electrode 6A having the negative electrode layer 61 formed on both sides of the current collector 62 and the negative electrode 6B having the negative electrode layer 61 formed on one side of the current collector 62)
  • the tab portions 6b are electrically connected to each other.
  • the current collection tab part 6b of each negative electrode 6 is mutually connected by welding, for example.
  • the positive electrode 5 has the current collecting tab portions 5b electrically connected to each other.
  • the current collecting tab portions 5b connected to each other are welded to or in contact with the inner surface of the outer case 2 so that the outer case 2 and the positive electrode 5 are electrically connected. That is, in the flat nonaqueous secondary battery 1 of the present embodiment, the outer case 2 also serves as a positive electrode terminal.
  • An insulating seal 8 made of polyethylene terephthalate (PET), polyimide, or the like is provided between the negative electrode 6B located at the bottom of the electrode group and the outer case 2 that also serves as a positive electrode terminal for the purpose of insulating the two. Has been placed.
  • FIG. 4 schematically shows a plan view of the separator 7. 4 assumes a case of a stacked electrode group in which the positive electrode 5 and the negative electrode 6 covered with the separator 7 are stacked, and the positive electrode 5 covered with the separator 7 is indicated by a dotted line.
  • a current collecting tab portion 6b of the negative electrode 6 disposed on the lower side is indicated by a one-dot chain line.
  • the binding tape 9 for suppressing the positional shift of each component of an electrode group is shown with the dashed-two dotted line.
  • the negative electrode since the negative electrode is disposed so as to sandwich the positive electrode 5, in the state illustrated in FIG. 4, the negative electrode is also disposed above the separator 7 (frontward in the figure).
  • the separator 7 is welded to the other separator 7 disposed on the opposite side of the positive electrode 5 (indicated by a dotted line in the figure) at the peripheral edge.
  • a bag-like member that can accommodate the positive electrode 5 therein is formed by the two separators 7. That is, as shown in FIG. 4, the two separators 7 sandwiching the positive electrode 5 are welded to each other at the respective peripheral portions, thereby joining the joints 7 c (parts with lattice hatching in FIG. 4). ) Is formed.
  • Each separator 7 includes a main body portion 7a that covers the entire surface of the main body portion 5a of the positive electrode 5, and an overhang portion 7b that protrudes from the main body portion 7a so as to cover a boundary portion between the current collecting tab portion 5b of the positive electrode 5 and the main body portion 5a. have.
  • the main body part 7a has a larger area than the main body part 5a so as to cover the main body part 5a of the positive electrode 5 in plan view. At least a part of the peripheral portion of the main body portion 7a constitutes the above-described joint portion 7c.
  • the joint portion 7c that joins the two separators 7 arranged on both surfaces of the positive electrode 5 is provided on the peripheral portion of the main body portion 7a of the separator 7.
  • a joining portion may also be provided on the peripheral portion of the protruding portion 7b of the separator 7 (the portion of the peripheral portion of the protruding portion 7b of the separator 7 along the protruding direction from the main body portion 7a).
  • the joint portion 7c is formed by directly welding the peripheral portions of the main portion 7a in the two separators 7.
  • a joining portion may be formed by interposing a layer made of a thermoplastic resin between the two separators 7 and welding the two separators 7 using this layer.
  • the strength of the joint may be reduced depending on the type of the thermoplastic resin constituting the layer interposed between the separators 7 and the type of the thermoplastic resin constituting the separator 7. Therefore, it is preferable that the layer interposed between the separators 7 is made of the same kind of resin as the thermoplastic resin constituting the separators 7.
  • the strength of the joint is determined by the separator itself. It becomes almost equal to the strength of. Therefore, for example, it is possible to satisfactorily prevent peeling at the joint portion between the separators 7 due to vibration or the like when the battery is used, and a battery with higher reliability can be obtained.
  • the two separators 7 are directly welded together to form the joint 7c, for example, after the positive electrode 5 is stacked on one separator 7 and another separator 7 is stacked thereon.
  • a method of welding the peripheral portions of these separators 7 can be employed. Further, it is possible to employ a method in which the separators 7 are joined together by welding the peripheral portions in a state where the two separators 7 are overlapped, and then the positive electrode 5 is inserted between the separators 7.
  • the following method can be considered.
  • the positive electrode 5 is disposed on the main portion 7a of the separator 7, and the separator 7 is further stacked thereon.
  • a method of welding the peripheral portions of these separators 7 can be employed.
  • a film as the layer is disposed at a location to be the joint 7c on one separator 7, and the separator 7 and the film are welded in advance, and then the positive electrode 5 and another separator 7 are sequentially disposed.
  • the peripheral edge of the separator 7 can be welded by, for example, a hot press.
  • the heating temperature may be higher than the melting point of the thermoplastic resin constituting the separator 7.
  • the heating press is preferably performed at a temperature that is 10 ° C. to 50 ° C. higher than the melting point of the thermoplastic resin.
  • the heating press time is not particularly limited as long as a good joint can be formed, but is preferably about 1 to 10 seconds.
  • a joint 7c is provided on a part of the peripheral edge of the main body 7a of the separator 7.
  • all the peripheral edge portions of the main body portion 7a of the separator 7 may be joined portions 7c.
  • the joining portion 7c is provided only in a part of the peripheral part of the main body part 7a of the separator 7 as in the present embodiment, as shown in FIG. 4, a part of the peripheral part is not welded to each other.
  • the non-welded portions 7d and 7d may be left.
  • two separators 7 are welded to form a bag and the positive electrode 5 is accommodated therein, or the positive electrode 5 is disposed on one separator 7 and another separator 7 is disposed on the positive electrode 5.
  • the number of the non-welded portions 7d is preferably about 1 to 5 from the viewpoint of suppressing a decrease in the productivity of the battery 1.
  • the length of the outer edge of the non-welded portion 7d related to the main portion 7a of the separator 7 is the total length of the outer edge of the main portion 7a of the separator 7 (excluding the overhang portion).
  • the total length of the outer edge) is preferably about 15% to 60%.
  • 40% or more (preferably 70% or more) of the entire length of the outer edge is a joint portion. Thereby, the joint strength between the separators 7 can be ensured satisfactorily.
  • FIG. 5 schematically shows a partial cross-section of the positive electrode 5 (the main body portion 5a of the positive electrode 5) of the flat non-aqueous secondary battery 1 and the separators 7 (the main portion 7a of the separator 7) arranged on both surfaces thereof.
  • FIG. 5A is a partial cross-sectional view showing a part of the positive electrode 5 and the separator 7, and
  • FIG. 5B is an enlarged view of a part of FIG. FIG.
  • Each of the cross sections shown in FIG. 5 corresponds to, for example, a part of the cross section taken along the line II in FIG. In FIG.
  • the shortest distance is A ( ⁇ m), and the thickness of the positive electrode 5 is B ( ⁇ m).
  • the separator 7 is further stacked thereon, and the peripheral portions of both separators 7 are welded by a hot press or the like to form the joint 7 c,
  • the inner surface is in contact with the corner of the positive electrode mixture layer 51 of the positive electrode 5 (the portion surrounded by a circle in FIG. 5A).
  • the angle (inner angle) of the part in which the separator 7 positioned on the upper side of FIG. 5 is changed in the direction so as to extend to the lower left of FIG.
  • the reliability of the battery 1 is determined by the angle (inner angle) of the portion where the separator 7 located on the lower side of the electrode 5 is changed in the direction so as to extend to the upper left in FIG.
  • the inner surface of the separator 7 is scratched at the contact portion (the portion indicated by a circle in FIG. 5) between the corner portion of the positive electrode mixture layer 51 and the inner surface of the separator 7. Or the corners of the positive electrode mixture layer 51 may be lost. That is, when the thickness B of the positive electrode 5 becomes larger than the shortest distance A between the inner end of the joint portion 7 c of the separator 7 and the main body portion 5 a of the positive electrode 5, the contact point of the separator 7 is at the corner of the positive electrode 5. On the other hand, it will be bent to bite. If it does so, the stress concentration of the said contact location may become large, the separator 7 may be damaged, or the corner
  • the flat non-aqueous secondary battery 1 is configured so that the A / B value, which is the ratio of A and B, is 1 or more, preferably 1.7 or more.
  • the A / B value which is the ratio of A and B, is 1 or more, preferably 1.7 or more.
  • the positive electrode 5 and the separator 7 are configured so that the value of A / B is 5 or less, preferably 2.7 or less.
  • the ratio A / B between A and B is 1 or more, preferably 1.7 or more, and 5 or less, preferably 2.7 or less.
  • the positive electrode 5 and the separator 7 are provided.
  • the separator 7 is formed by both corners of the outer edge of the main body 5 a of the positive electrode 5 and the inner ends of the joints 7 c of the two separators 7.
  • a space having a triangular cross section is formed between the positive electrode 5 and the positive electrode 5. That is, the space having a triangular cross section is formed between the end portion on the positive electrode 5 side in the joint portion 7 c of the separator 7 and the outer peripheral surface of the main body portion 5 a of the positive electrode 5. More specifically, as shown in FIG.
  • the triangular cross-sectional space is composed of a side a connecting both corners of the outer edge of the main body 5a of the positive electrode 5 and a corner of the outer edge of the main body 5a.
  • the side b connecting the corner located on the upper side in FIG. 5B and the inner end of the joint 7c of the two separators 7 is shown in FIG. It is formed by the side c connecting the corner located on the side and the inner end of the joint 7c.
  • the side a is a side extending in the thickness direction of the positive electrode 5 along the outer peripheral surface of the main body 5 a of the positive electrode 5, and the side b is an end portion on one side in the thickness direction on the outer peripheral surface of the positive electrode 5.
  • the side c is a side connecting the end on the other side in the thickness direction on the outer peripheral surface of the positive electrode 5 and the end at the joint 7 c of the separator 7.
  • each side of the triangle is indicated by a dotted line, and the description of the surface of the separator 7 and the outer edge of the positive electrode 5 existing in the portion is omitted.
  • the inner angle C 1 formed by the side a and the side b and the inner angle C 2 formed by the side a and the side c are both preferably 45 ° or more, and 60 ° or more. More preferably. Further, the inner angles C 1 and C 2 are more preferably 90 ° or more, and more preferably 125 ° or less.
  • internal angle C 1 and inner angle C 2 is provided with a positive electrode 5 and the separator 7 so that such an angle, it is possible to better ensure the effect of suppressing the lowering effect and capacity enhancing reliability described above. Note that the inner angle C 1 and the interior angle C 2, angle may be the same or may be different.
  • the interior angle D formed by the side b and the side c is 55 ° or less. It is preferable that it is 45 degrees or less.
  • the inner angle D is more preferably 30 ° or less.
  • the inner angle D is preferably 10 ° or more, and more preferably 20 ° or more.
  • the A / B value, the inner angle C 1 , the inner angle C 2 and the inner angle D can be adjusted by changing the length of A and the thickness of the positive electrode (that is, the length of B).
  • the length A can be adjusted by adjusting the sizes of the separator 7 and the positive electrode 5.
  • FIGS. 6 to 8 schematically show other examples of the flat non-aqueous secondary battery.
  • 6 is a longitudinal sectional view showing a cross section of the battery case (the outer case 2 and the sealing case 3) and the insulating gasket 4 of the flat non-aqueous secondary battery 101
  • FIG. 7 is an enlarged view of a part of FIG.
  • 8A shows a part of the positive electrode 5 (the main body portion 5a of the positive electrode 5) of the battery 101 and the separators 7 (the main portion 7a of the separator 7) arranged on both sides thereof as shown in FIGS. It is sectional drawing shown.
  • FIG.8 (b) is a figure which expands and shows a part of Fig.8 (a) further.
  • the cross sections shown in FIGS. 8A and 8B correspond to, for example, a part of the cross section taken along the line II in FIG. 4 in the flat non-aqueous secondary battery 101 (a part including the joint 7c). Part.
  • the flat non-aqueous secondary battery 101 is one of the two separators 7 arranged on both surfaces of the positive electrode 5 (in the example of FIGS. 6 to 8, the lower side in the figure).
  • the lower separator 7 (the outer case 2 side) has a separator 7 in contact with the positive electrode mixture layer 51 (in FIG. ),
  • the inner angle of the separator 7 in contact with the corner of the positive electrode mixture layer 51 becomes very large. Therefore, damage to the inner surface of the separator 7 due to contact between the separator 7 and the positive electrode mixture layer 51 and missing corner portions of the positive electrode mixture layer 51 can be more effectively suppressed. Thereby, the reliability of a battery can be improved more.
  • the flat non-aqueous secondary battery 101 shown in FIGS. 6 to 8 is the same as the flat non-aqueous secondary battery 1 shown in FIG.
  • the inner angle D is preferably 45 ° or less, and more preferably 30 ° or less.
  • the inner angle D is preferably 10 ° or more, and more preferably 20 ° or more.
  • the separator 7 having the joint portion 7c in the electrode group (two separators welded at at least a part of the peripheral portion of the main portion 7a). 7), the separator 7 extending straight and substantially parallel to the positive electrode 5 is located on one side of the outer case 2 and the sealing case 3.
  • two separators 7 are arranged on both sides of all the positive electrodes 5 that are opposite to the negative electrode 6 on both sides (both sides) among the plurality of positive electrodes 5 constituting the electrode group.
  • one separator 7 (main part 7 a) is substantially parallel to the positive electrode 5.
  • the electrode group is configured such that all of the separators 7 substantially parallel to the positive electrode 5 are located on the outer case 2 side or the sealing case 3 side.
  • the non-aqueous electrolyte can penetrate well into the electrodes of the electrode group. Thereby, since the reaction at each electrode becomes uniform, a highly reliable battery can be obtained.
  • the separator 7 can be prevented from being bent. This will be described in detail below with reference to FIGS. 9A and 9B.
  • FIG. 9A shows a case where the electrode is configured such that the separator 7 substantially parallel to the positive electrode 5 is located on the same side.
  • FIG. 9B shows a case where the electrode group is configured such that the separator 7 substantially parallel to the positive electrode 5 is located on a different side.
  • the one side of the negative electrode 6 is substantially parallel to the positive electrode 5.
  • the separator 7 is arranged. Therefore, the gap in the vicinity of the peripheral edge of the negative electrode 6 can be made as small as possible to suppress the bending of the separator 7 in the peripheral edge of the negative electrode 6. Thereby, the reliability of a battery can be improved.
  • the electrodes (the outermost two Electrode) is the negative electrode 6.
  • one or both of the electrodes (the two outermost electrodes) positioned at the upper and lower ends of the electrode group may be the positive electrode 5.
  • the positive electrode 5 is formed on both surfaces of the current collector 52.
  • the battery case (for example, exterior case 2) which has the layer 51 and serves as a positive electrode terminal by the current collection tab part 5b may be contacted.
  • the positive electrode 5 has the positive electrode mixture layer 51 only on one surface (the surface on the battery inner side) of the current collector 52, and the exposed surface of the current collector 52 is a positive electrode terminal.
  • the positive electrode 5 and the outer case 2 may be electrically connected by being welded to or contacting the inner surface of a battery case (for example, the outer case 2) that also serves as a battery.
  • both the electrodes (the outermost two electrodes) positioned at the upper and lower ends of the electrode group are the positive electrodes 5, the current collecting tab portions 6b of the respective negative electrodes 6 are electrically connected to each other, and the current collecting tabs
  • the battery case and the negative electrode 6 can be electrically connected by welding or contacting the part 6b to the inner surface of a battery case (for example, the sealing case 3) that also serves as the negative electrode terminal.
  • separators 7 are arranged on both sides of the positive electrode 5 facing both sides of the negative electrode 6.
  • the separator does not have to be arranged on both surfaces, and the separator is provided only on the surface facing the negative electrode. May be arranged.
  • PET polyethylene terephthalate
  • An insulator such as an insulating seal constituted by the above is disposed.
  • the positive electrode mixture layer 51 of the positive electrode 5 is a layer containing a positive electrode active material, a conductive additive, a binder, and the like.
  • M is at least one metal element selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cu, Zn, Al and Cr, and 0 ⁇ x ⁇ 1.1, 0 ⁇ y ⁇ 1.0, and 2.0 ⁇ z ⁇ 2.2.
  • These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.
  • examples of the conductive assistant for the positive electrode 5 include carbon black, flaky graphite, ketjen black, acetylene black, and fibrous carbon.
  • examples of the binder of the positive electrode 5 include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), carboxymethyl cellulose, and styrene butadiene rubber.
  • the positive electrode 5 is prepared by dispersing a positive electrode mixture obtained by mixing a positive electrode active material, a conductive additive, and a binder in water or an organic solvent to prepare a positive electrode mixture-containing paste. It is manufactured by applying to one or both sides of a current collector 52 made of metal foil, expanded metal, plain weave wire mesh, etc., drying, and then pressure forming.
  • the binder may be dissolved or dispersed in water or a solvent in advance and mixed with a positive electrode active material or the like to prepare a positive electrode mixture-containing paste.
  • the manufacturing method of the positive electrode 5 is not limited to the above-described method, and other methods may be used.
  • the composition of the positive electrode 5 is, for example, 75% by mass to 90% by mass of the positive electrode active material, 5% by mass to 20% by mass of the conductive assistant, and 3% by mass of the binder in 100% by mass of the positive electrode mixture constituting the positive electrode 5. % To 15% by mass is preferable.
  • the thickness of the positive electrode mixture layer 51 is preferably 30 ⁇ m to 200 ⁇ m, for example.
  • the material of the current collector 52 of the positive electrode 5 of the positive electrode 5 aluminum or an aluminum alloy is preferable.
  • the opposing area between the positive electrode mixture layer 51 and the negative electrode agent layer 61 is increased and the load of the battery 1 is increased.
  • the thickness of the current collector 52 is preferably, for example, 8 ⁇ m to 20 ⁇ m.
  • the negative electrode 6 includes a configuration in which the active material includes lithium, a lithium alloy, a carbon material capable of occluding and releasing lithium ions, lithium titanate, and the like.
  • the lithium content is preferably 1 atomic% to 15 atomic%, for example.
  • the carbon material that can be used for the negative electrode active material include artificial graphite, natural graphite, low crystalline carbon, coke, and anthracite.
  • the lithium titanate represented by the general formula Li x Ti y O 4 can be obtained, for example, by heat treating titanium oxide and a lithium compound at 760 ° C. to 1100 ° C. As the titanium oxide, either anatase type or rutile type can be used, and examples of the lithium compound include lithium hydroxide, lithium carbonate, and lithium oxide.
  • the negative electrode active material is lithium or a lithium alloy
  • the negative electrode 6 is made by pressure bonding lithium or a lithium alloy to a current collector 62 such as a metal net, and the negative electrode made of lithium, a lithium alloy, or the like on the surface of the current collector 62 It is obtained by forming the agent layer 61.
  • a carbon material or lithium titanate is used as the negative electrode active material, for example, a negative electrode composite obtained by mixing a carbon material or lithium titanate with a binder as the negative electrode active material and, if necessary, a conductive additive.
  • a negative electrode mixture-containing paste is prepared by dispersing the agent in water or an organic solvent.
  • the negative mix layer 61 (a negative mix layer is included) by pressure molding.
  • the binder may be dissolved or dispersed in water or a solvent in advance and mixed with a negative electrode active material or the like to prepare a negative electrode mixture-containing paste.
  • the manufacturing method of the negative electrode 6 is not limited to the above-described method, and other methods may be used.
  • binder and the conductive auxiliary of the negative electrode 6 various binders and conductive auxiliary exemplified above as those that can be used for the positive electrode 5 can be used.
  • the composition of the negative electrode 6 when a carbon material is used as the negative electrode active material is, for example, 80% by mass to 95% by mass of the carbon material and 3% by mass to 15% of the binder in 100% by mass of the negative electrode mixture constituting the negative electrode 6. It is preferable that the amount of the conductive auxiliary agent is 5% by mass to 20% by mass.
  • the composition of the negative electrode 6 when lithium titanate is used as the negative electrode active material is, for example, 75% to 90% by mass of lithium titanate and 3% of binder in 100% by mass of the negative electrode mixture constituting the negative electrode 6. It is preferable to set the mass to 15% by mass.
  • the conductive auxiliary is preferably 5% by mass to 20% by mass.
  • the thickness of the negative electrode agent layer 61 in the negative electrode 6 is preferably 40 ⁇ m to 200 ⁇ m, for example.
  • the material of the current collector 62 of the negative electrode 6 of the negative electrode 6 copper or a copper alloy is preferable.
  • the opposing area of the positive electrode mixture layer 51 and the negative electrode agent layer 61 is increased by increasing the number of stacked positive electrodes 5 and negative electrodes 6 in the battery 1 while reducing the thickness of the entire negative electrode 6. From the viewpoint of improving load characteristics, it is preferable to use a metal foil for the current collector 62.
  • the thickness of the current collector 62 is preferably, for example, 5 ⁇ m to 30 ⁇ m.
  • thermoplastic resin constituting the separator 7 for example, polyolefins such as polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, and polymethylpentene are preferable. From the viewpoint of welding the separators 7 or arranging and welding the same kind of resin as that constituting the separators 7 between the separators 7, the melting point, that is, according to the provisions of JIS K 7121, A polyolefin having a melting temperature measured using a differential scanning calorimeter (DSC) of 100 ° C. to 180 ° C. is more preferable.
  • DSC differential scanning calorimeter
  • thermoplastic resin microporous film constituting the separator 7 may be any form as long as it has an ionic conductivity sufficient to obtain necessary battery characteristics.
  • an ion-permeable microporous film (a microporous film widely used as a battery separator) that is formed by a conventionally known solvent extraction method, dry method or wet stretching method and that has a large number of pores is preferable. .
  • the thickness of the separator 7 is preferably 5 ⁇ m to 25 ⁇ m, for example.
  • the porosity is preferably 30% to 70%, for example.
  • the positive electrode 5, the negative electrode 6, and the separator 7 are arranged such that the current collecting tab portion 5 b of each positive electrode 5 faces the same direction in a plan view of the electrode group, and the current collecting tab portion 6 b of each negative electrode 6 is
  • the electrode groups are preferably arranged so as to face the same direction in plan view.
  • the electric tab portion 5b and the current collecting tab portion 6b are more preferably arranged at positions facing each other in plan view.
  • the electrode group composed of the positive electrode 5, the negative electrode 6 and the separator 7 is preferably bound around the outer periphery with a binding tape 9 made of polypropylene having chemical resistance. Thereby, position shift of each component (the positive electrode 5 covered with the separator 7 and the negative electrode 6) can be suppressed.
  • the total number of layers of the electrode is at least 4, but it is also possible to have a larger number of layers (5 layers, 6 layers, 7 layers, 8 layers, etc.). However, if the number of stacked positive electrodes 5 and negative electrodes 6 is increased too much, the merit as a flat battery may be reduced. Therefore, it is usually preferable to use 40 layers or less.
  • non-aqueous electrolyte examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, butylene carbonate, and vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate (DEC), and methyl ethyl carbonate; Ethers such as 2-dimethoxyethane, diglyme (diethylene glycol methyl ether), triglyme (triethylene glycol dimethyl ether), tetraglyme (tetraethylene glycol dimethyl ether), 1,2-dimethoxyethane, 1,2-diethoxymethane, tetrahydrofuran; An electrolytic solution prepared by dissolving an electrolyte (lithium salt) in an organic solvent at a concentration of about 0.3 mol / L to 2.0 mol / L is used. Rukoto can.
  • the said organic solvent may be used individually by 1 type, respectively, and may use 2 or more types together.
  • electrolyte examples include LiBF 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) Lithium salts such as 2 are mentioned.
  • the planar shape of the flat non-aqueous secondary battery 1 is not particularly limited, and may be a polygonal shape such as a square (for example, a quadrangle) in addition to a circular shape that is the mainstream of conventionally known flat batteries.
  • the polygon such as a square as the planar shape of the battery 1 in this specification includes a shape in which the corner is cut off and a shape in which the corner is curved.
  • the planar shape of the main body portions 5 a and 6 a of the positive electrode 5 and the negative electrode 6 may be a shape corresponding to the planar shape of the battery 1.
  • the main body portions 5a and 6a may be polygons including rectangles such as rectangles and squares in addition to substantially circular shapes.
  • the portion where the current collecting tab portion of the counter electrode is disposed is shown in FIG. 3 in order to prevent contact with the current collecting tab portion of the counter electrode.
  • an example in which the exterior case 2 is a positive electrode case and the sealing case 3 is a negative electrode case is not limited thereto. It is also possible to use a negative electrode case and the sealing case 3 as a positive electrode case.
  • the two separators 7 are joined at the peripheral edge of the main body 7a, but one separator may be folded and joined.
  • A is 300 ⁇ m and B (positive electrode thickness) is 140 ⁇ m (that is, the A / B value is 2.14).
  • B positive electrode thickness
  • the flat non-aqueous secondary battery 1 can be applied to the same use as a conventionally known flat non-aqueous secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

高い信頼性を有する扁平形非水二次電池を提供する。扁平形非水二次電池(1)は、外装ケース(2)と封口ケース(3)とによって形成された空間内に配置される電極群を備える。電極群は、交互に積層される複数の正極(5)及び負極(6)と、セパレータ(7)とを有する。セパレータ(7)は、周縁部の少なくとも一部で互いに溶着された接合部(7c)を有している。セパレータ(7)及び正極(5)を厚み方向の断面で見て、該セパレータ(7)の接合部(7c)における正極(5)側の端部と該セパレータ(7)によって挟みこまれた該正極(5)の外周面との最短距離Aと、該正極(5)の厚みBとの比A/Bを1以上とする。

Description

扁平形非水二次電池
 本発明は、高い信頼性を有する扁平形非水二次電池に関する。
 一般にコイン形電池やボタン形電池と称される扁平形の非水二次電池は、正極及び負極がセパレータを介して積層された電極体と、非水電解液とが、外装ケース及び封口ケースによって形成された空間内に収容された構造を有している。
 前記のような扁平形非水二次電池としては、正極及び負極において、集電体の片面または両面に正極合剤層や負極合剤層を形成するとともに、集電体の一部を、正極合剤層や負極合剤層を形成することなく露出させて、集電タブとして利用する構成が知られている。このような扁平形非水二次電池では、前記集電タブを、電極と端子を兼ねる外装ケースや封口ケースとの電気的な接続に利用している。
 一方、前記のような構成を有する正極を、袋状に成形したセパレータ内に挿入した状態で負極と積層することによって電極群を形成した構成が知られている(例えば、特表2004-509443号公報や特開2008-91100号公報)。この袋状のセパレータは、2枚のセパレータの間に、表面に接着成分を有するポリエステル樹脂フィルムなどの絶縁性高分子フィルムを配置して、該接着成分によってフィルムとセパレータとを接着したり(例えば特表2004-509443号公報)、2枚のセパレータ同士を溶着したり(例えば特開2008-91100号公報)することにより形成される。
 ところで、正極を挟み込むように2枚のセパレータを重ねて、これらのセパレータの周縁部をプレスや加熱プレスによって接合することによって上述の袋状のセパレータを形成する場合、セパレータの内面が正極端部の角部(正極合剤層端部の角部)に当接する。そうすると、セパレータに傷が生じたり、正極合剤層の角部が欠落したりするなどの欠陥が生じる虞がある。このような欠陥は、電池の内部短絡や容量低下を引き起こし、電池の信頼性を損なう原因となる場合がある。そのため、前記のような袋状のセパレータを有する扁平形非水二次電池では、上述のような欠陥の発生を抑制することが求められる。
 本発明は、前記事情に鑑みてなされたものであり、その目的は、高い信頼性を有する扁平形非水二次電池を提供することにある。
 本発明の一実施形態に係る扁平形非水二次電池は、外装ケースと封口ケースとによって形成される空間内に配置される電極群を備え、該電極群は、交互に積層される複数の正極及び複数の負極と、該正極と該負極との間に位置し、且つ、該正極を挟み込んで覆うように配置された、熱可塑性樹脂製の微多孔膜からなるセパレータとを備えていて、前記正極を挟み込むように配置されたセパレータは、該正極を挟み込んだ状態で、セパレータ同士が周縁部の少なくとも一部で互いに溶着されることにより形成される接合部を有しており、前記セパレータ及び正極を厚み方向の断面で見て、該セパレータの接合部における該正極側の内端と該セパレータによって挟みこまれた該正極の外周面との最短距離Aと、該正極の厚みBとの比A/Bが1以上である。
 なお、電池業界では、高さよりも径の方が大きい扁平形電池を、コイン形電池またはボタン形電池と呼んでいる。しかしながら、コイン形電池とボタン形電池との間に明確な差異はなく、本発明の扁平形非水二次電池には、コイン形電池及びボタン形電池のいずれもが含まれる。
 本発明の一実施形態によれば、高い信頼性を有する扁平形非水二次電池を提供することができる。
図1は、本発明の一実施形態に係る扁平形非水二次電池の一例を模式的に表す縦断面図である。 図2は、図1の部分拡大断面図である。 図3は、本発明の一実施形態に係る扁平形非水二次電池の正極の一例を模式的に表す平面図である。 図4は、本発明の一実施形態に係る扁平形非水二次電池のセパレータの一例を模式的に表す平面図である。 図5は、図1及び図2に示す扁平形非水二次電池の正極及びその両面に配置されたセパレータの一部を模式的に示す断面図である。 図6は、扁平形非水二次電池の他の例を模式的に表す縦断面図である。 図7は、図6の部分拡大断面図である。 図8は、図6及び図7に示す扁平形非水二次電池の正極及びその両面に配置されたセパレータの一部を模式的に表す断面図である。 図9は、(a)が正極に対して略平行に延びるセパレータを電極群の一方側に位置付けた場合を、(b)が正極に対して略平行に延びるセパレータを電極群の異なる側にそれぞれ位置付けた場合を、それぞれ示す部分拡大断面図である。
 図1及び図2に、本発明の一実施形態に係る扁平形非水二次電池の一例を模式的に示す。図1は、扁平形非水二次電池1(以下、単に電池ともいう)の電池ケース(外装ケース2及び封口ケース3)及び絶縁ガスケット4を断面で示した縦断面図である。図2は、図1の一部を拡大するとともに、電極群を断面で示した図である。図1及び図2に示すように、扁平形非水二次電池1は、外装ケース2、封口ケース3及び絶縁ガスケット4によって形成される空間(密閉空間)内に、正極5及び負極6が、それらの平面が電池の扁平面(図1における上下の面)に略平行(平行を含む)になるように積層された積層型の電極群と、非水電解液(図示しない)とが収容されることにより構成される。
 封口ケース3は、外装ケース2の開口部に、該外装ケース2との間に絶縁ガスケット4を挟み込んだ状態で嵌合されている。外装ケース2の開口端部は、電池内方に変形するように曲げられている。これにより、絶縁ガスケット4は、封口ケース3と外装ケース2との間に挟みこまれた状態となるため、該外装ケース2の開口部が封口されて、電池内部に密閉空間が形成される。外装ケース2及び封口ケース3は、ステンレス鋼などの金属材料によって構成される。絶縁ガスケット4は、ナイロンなどの絶縁性を有する樹脂によって構成される。
 正極5は、図1及び図2に示すように、板状の集電体52と、該集電体52の片面上または両面上に形成された正極合剤層51とを備えている。図3に、正極5の平面図を模式的に示す。正極5は、本体部5a(正極本体部)と、平面視で、該本体部5aから突出していて、該本体部5aよりも幅(図3における上下方向の長さ)の狭い集電タブ部5b(正極集電タブ部)とを有している。
 正極5の本体部5aは、図2に示すように、集電体52の片面または両面に、正極合剤層51を形成することによって構成される。一方、正極5の集電タブ部5bでは、集電体52の表面に正極合剤層51が形成されておらず、該集電体52が露出している。
 負極6は、図1及び図2に示すように、板状の集電体62と、該集電体62の片面上または両面上に形成された負極剤層61とを備えている。負極6についても、正極5と同様、本体部6aと、平面視で、該本体部6aから突出していて、該本体部6aよりも幅の狭い集電タブ部6bとを有している。なお、以下の説明において、集電体62の両面に負極剤層61が形成された負極を、負極6Aと表すとともに、集電体62の片面のみに負極剤層61が形成された負極を、負極6Bと表す(図1参照)。
 負極6の本体部6aは、集電体62の片面または両面に、負極剤層61を形成することによって構成される。一方、負極6の集電タブ部6bでは、集電体62の表面に負極剤層61が形成されておらず、該集電体62が露出している。
 図1に示すように、本実施形態の扁平形非水二次電池1では、電極群の上下両端が負極6B、6Bとなっている。これらの負極6B、6Bは、集電体62の電池内方側の面に負極剤層61が位置するように、電池内に配置されている。そして、図1の上側に位置する負極6Bの集電体62の露出面は、封口ケース3の内面に溶接されているか、または接触していて、これにより、該封口ケース3と負極6Bとが電気的に接続されている。すなわち、本実施形態の扁平形非水二次電池1では、封口ケース3が負極端子を兼ねている。
 負極6(集電体62の両面に負極剤層61が形成された負極6Aおよび集電体62の片面に負極剤層61が形成された負極6B)は、図1に示すように、集電タブ部6bで互いに電気的に接続されている。なお、各負極6の集電タブ部6bは、例えば溶接によって互いに接続される。
 正極5は、図1及び図2に示すように、集電タブ部5bが互いに電気的に接続されている。そして、互いに接続された集電タブ部5bは、外装ケース2の内面に溶接されているか、または接触していて、これにより、該外装ケース2と正極5とが電気的に接続されている。すなわち、本実施形態の扁平形非水二次電池1では、外装ケース2が正極端子を兼ねている。なお、電極群の最下部に位置する負極6Bと、正極端子を兼ねる外装ケース2との間には、両者を絶縁する目的で、ポリエチレンテレフタレート(PET)やポリイミドなどによって構成された絶縁シール8が配置されている。
 図1及び図2に示すように、正極5は、本体部5aと集電タブ部5bの一部とが、熱可塑性樹脂製の微多孔膜からなるセパレータ7によって覆われている。図4に、セパレータ7の平面図を模式的に示す。なお、この図4では、セパレータ7によって覆われた正極5と負極6とが積層された積層型の電極群の場合を想定していて、セパレータ7によって覆われる正極5を点線で示し、それらの下側に配置される負極6の集電タブ部6bを一点鎖線で示している。また、図4において、電極群の各構成要素の位置ずれを抑えるための結束テープ9を二点鎖線で示している。特に図示しないが、本実施形態では、正極5を挟み込むように負極が配置されるため、図4に示す状態では、セパレータ7の上側(図中手前方向)にも負極が配置される。
 セパレータ7は、正極5(図中点線で表示)の反対側に配置される別のセパレータ7と周縁部で互いに溶着されている。これにより、2枚のセパレータ7によって、内部に正極5を収納可能な袋状の部材が形成される。すなわち、図4に示すように、正極5を間に挟み込む2枚のセパレータ7は、それぞれの周縁部に、互いに溶着されることによって接合部7c(図4で格子状のハッチングを付けている部分)が形成される。
 各セパレータ7は、正極5の本体部5aの全面を覆う主体部7aと、正極5の集電タブ部5bにおける本体部5aとの境界部分を覆うように主体部7aから突出する張り出し部7bとを有している。主体部7aは、平面視で正極5の本体部5aを覆うように該本体部5aよりも面積が大きい。この主体部7aの周縁部の少なくとも一部は、上述の接合部7cを構成する。
 本実施形態では、上述のように、正極5の両面に配置された2枚のセパレータ7を接合する接合部7cを、該セパレータ7の主体部7aの周縁部に設けている。しかしながら、セパレータ7の張り出し部7bの周縁部(セパレータ7の張り出し部7bの周縁部のうち、主体部7aからの突出方向に沿う部分)にも接合部を設けてもよい。
 また、本実施形態では、接合部7cを、2枚のセパレータ7における主体部7aの周縁部同士を直接溶着することによって形成している。しかしながら、2枚のセパレータ7の間に熱可塑性樹脂で構成された層を介在させ、この層を用いて2枚のセパレータ7を溶着することによって、接合部を形成してもよい。ただし、後者の場合には、セパレータ7間に介在させる層を構成する熱可塑性樹脂の種類、及び、セパレータ7を構成する熱可塑性樹脂の種類によっては、接合部の強度が小さくなる場合がある。そのため、セパレータ7間に介在させる層は、セパレータ7を構成する熱可塑性樹脂と同種の樹脂によって構成することが好ましい。
 このように、セパレータ7同士を直接溶着したり、セパレータ7を構成する熱可塑性樹脂と同種の樹脂によって構成される層を介してセパレータ7同士を溶着したりする場合、接合部の強度がセパレータ自身の強度とほぼ同等になる。そのため、例えば、電池の使用時に振動などによってセパレータ7同士の接合部で剥離が生じるのを良好に抑制することができ、更に信頼性の高い電池とすることができる。
 ここで、2枚のセパレータ7同士を直接溶着して接合部7cを形成する場合には、例えば、1枚のセパレータ7上に正極5を重ね、更にその上に別のセパレータ7を重ねた後、これらのセパレータ7の周縁部を溶着する方法を採用することができる。また、2枚のセパレータ7を重ねた状態で周縁部を溶着することによってセパレータ7同士を接合し、その後、これらのセパレータ7間に正極5を挿入する方法を採用することもできる。
 一方、2枚のセパレータ7同士の間にセパレータ7の構成樹脂と同種の樹脂で構成された層を介在させ、これらを溶着して接合部7cを形成する場合には、以下の方法が考えられる。例えば、1枚のセパレータ7上の接合部7cとなる箇所に前記層としてのフィルムを配置するとともに、セパレータ7の主体部7a上に正極5を配置し、更にその上にセパレータ7を重ねた後、これらのセパレータ7の周縁部を溶着する方法を採用することができる。また、1枚のセパレータ7上の接合部7cとなる箇所に前記層としてのフィルムを配置するとともに、セパレータ7とフィルムとを予め溶着しておき、その後、正極5及び別のセパレータ7を順に配置して周縁部を溶着する方法を採用することができる。さらに、2枚のセパレータ7間に前記層としてのフィルムを配置し、該セパレータ7同士を溶着して接合部7cを形成した後に、これらのセパレータ7間に正極5を挿入する方法を採用することもできる。
 セパレータ7の周縁部の溶着は、例えば、加熱プレスによって行うことができる。この場合、加熱温度は、セパレータ7を構成する熱可塑性樹脂の融点よりも高い温度であればよい。例えば、加熱プレスは、熱可塑性樹脂の融点よりも10℃~50℃高い温度で行うことが好ましい。また、加熱プレスの時間については、良好に接合部が形成できれば特に制限はないが、1秒~10秒程度が好ましい。
 本実施形態では、セパレータ7の主体部7aの周縁部の一部に接合部7cを設けている。しかしながら、セパレータ7の主体部7aの周縁部を、全て接合部7cとしてもよい。本実施形態のようにセパレータ7の主体部7aの周縁部の一部のみに接合部7cを設ける場合には、図4に示すように、周縁部の一部を、セパレータ同士を溶着することなく非溶着部7d、7dとして残してもよい。例えば、2枚のセパレータ7を溶着して袋状とした後に、その中に正極5を収容した場合や、1枚のセパレータ7上に正極5を配置し、該正極5上に別のセパレータ7を配置した状態でセパレータ7の周縁部を溶着して袋状とした場合には、セパレータ7によって形成される袋状の部材内に空気が残留することがある。しかし、このような場合でも、上述の非溶着部7dを設けることにより、外装ケース2と封口ケース3とをかしめる際に正極5と負極6との間でセパレータ7が圧迫されて、前記の残留空気が非溶着部7d、7dを通じてセパレータ7外へ良好に排出される。そのため、セパレータ内の残留空気による問題(例えば発電時の反応が不均一になって容量が低下するなどの問題)の発生を防止できる。
 上述のようにセパレータ7の周縁部に非溶着部7dを設ける場合には、電池1の生産性の低下を抑える観点から、非溶着部7dの個数は1個~5個程度とすることが好ましい。また、セパレータ7の周縁部に非溶着部7dを設ける場合、セパレータ7の主体部7aに係る非溶着部7dの外縁の長さが、セパレータ7の主体部7aの外縁の全長(張り出し部を除く外縁の全長さ)の15%~60%程度とすることが好ましい。さらに、セパレータ7の主体部7aにおいては、その外縁の全長のうちの40%以上(好ましくは70%以上)が接合部であることが好ましい。これにより、セパレータ7同士の接合強度を良好に確保することができる。
 図5に、扁平形非水二次電池1の正極5(正極5の本体部5a)及びその両面に配置されたセパレータ7(セパレータ7の主体部7a)の部分断面を模式的に示す。具体的には、図5の(a)は、正極5及びセパレータ7の一部を示す部分断面図であり、図5の(b)は、図5の(a)の一部を更に拡大して示す図である。なお、図5に示す各断面は、例えば図4におけるI-I線断面の一部(接合部7cを含む部分)に相当する。図5において、2枚のセパレータ7の接合部7cの内端(正極5側の端部)と、2枚のセパレータ7の間に存在する正極5の本体部5aにおける外縁(外周面)との最短距離をA(μm)とし、正極5の厚みをB(μm)とする。
 例えば、1枚のセパレータ7の上に正極5を置き、更にその上にセパレータ7を重ねて、両セパレータ7の周縁部を加熱プレスなどによって溶着して接合部7cを形成する場合、セパレータ7の内面が正極5の正極合剤層51の角部(図5(a)において、円で囲んだ部分)に当接する。この場合、図5の上側に位置するセパレータ7が正極5の外縁(本体部5aの外縁)の角部分によって図5の左下へ延びるように方向を変えた部分の角度(内角)、及び、図5の下側に位置するセパレータ7が正極5の外縁(本体部5aの外縁)の角部分によって図5の左上へ延びるように方向を変えた部分の角度(内角)が、電池1の信頼性に大きな影響を及ぼす。具体的には、これらの角度が小さくなると、正極合剤層51の角部とセパレータ7の内面との当接箇所(図5中に円で示す部分)において、セパレータ7の内面に傷が生じたり、正極合剤層51の角部が欠落したりする虞がある。すなわち、正極5の厚みBが、セパレータ7の接合部7cの内端と正極5の本体部5aとの最短距離Aよりも大きくなると、該セパレータ7は前記当接箇所が正極5の角部に対して食い込むように折れ曲がることになる。そうすると、前記当接箇所の応力集中が大きくなって、セパレータ7が損傷を受けたり、正極合剤層51の角部が欠落したりする可能性がある。
 そのため、本実施形態では、前記AとBとの比であるA/B値が、1以上、好ましくは1.7以上となるように、扁平形非水二次電池1を構成する。こうすることで、前記当接箇所において、正極合剤層51の角部に当接するセパレータ7の内面の内角を大きくすることができる。これにより、セパレータ7の内面が、正極合剤層51の角部に対して食い込むように強く押し付けられるのを防止できる。したがって、セパレータ7の内面における傷の発生や、正極合剤層51の角部の欠落を抑制することができる。よって、上述の構成により、セパレータ7の損傷による内部短絡の発生や正極合剤層51の欠落による容量低下を抑えることができ、扁平形非水二次電池1の信頼性の向上を図れる。
 ただし、前記A/Bの値が大きくなりすぎると、セパレータ7の主体部7aのうち、正極5の本体部5aと接しない領域(該本体部5aから突出した領域)が大きくなる。そうすると、電池1内でのセパレータ7の占有体積が増大して、電池1の容量低下の原因となる。よって、前記A/Bの値が5以下、好ましくは2.7以下となるように、正極5及びセパレータ7を構成する。
 したがって、本実施形態の扁平形非水二次電池1では、AとBとの比A/Bが1以上、好ましくは1.7以上であって、5以下、好ましくは2.7以下となるように、正極5及びセパレータ7が設けられている。
 なお、図5に示す断面では、図5(b)に示すように、正極5の本体部5aの外縁の両角部と2枚のセパレータ7の接合部7cの内端とによって、該セパレータ7と正極5との間に、断面三角形状の空間が形成される。すなわち、この断面三角形状の空間は、セパレータ7の接合部7cにおける正極5側の端部と、該正極5の本体部5aの外周面との間に形成される。より詳しくは、図5(b)に示すように、前記断面三角形状の空間は、正極5の本体部5aの外縁の両角部を結ぶ辺aと、該本体部5aの外縁の角部のうち図5(b)の上側に位置する角部と2枚のセパレータ7の接合部7cの内端とを結ぶ辺bと、該本体部5aの外縁の角部のうち図5(b)の下側に位置する角部と接合部7cの内端とを結ぶ辺cとによって形成される。ここで、前記辺aは、正極5の本体部5aの外周面に沿って該正極5の厚み方向に延びる辺であり、前記辺bは、正極5の外周面における厚み方向一側の端部とセパレータ7の接合部7cにおける正極5側の端部とを結ぶ辺である。また、前記辺cは、正極5の外周面における厚み方向他側の端部とセパレータ7の接合部7cにおける前記端部とを結ぶ辺である。なお、図5(b)では、前記三角形の各辺を点線で示し、当該部分に存在するセパレータ7の面及び正極5の外縁の記載を省略している。
 前記三角形において、辺aと辺bとによって形成される内角C、及び、辺aと辺cとによって形成される内角Cは、いずれも45°以上であることが好ましく、60°以上であることがより好ましい。また、内角C,Cは、90°以上であることが更に好ましく、125°以下であることがより好ましい。内角C及び内角Cがこのような角度になるように正極5及びセパレータ7を設けることで、上述の信頼性向上の効果と容量低下の抑制効果とをより良好に確保することができる。なお、内角Cと内角Cとは、角度が同じであってもよく、異なっていてもよい。
 また、上述の信頼性向上の効果と容量低下の抑制効果とをより良好に確保するという観点からは、前記三角形において、辺bと辺cとによって形成される内角Dは、55°以下であることが好ましく、45°以下であることがより好ましい。また、内角Dは、30°以下であることが更に好ましい。さらに、内角Dは、10°以上であることが好ましく、20°以上であることがより好ましい。
 前記のA/Bの値、内角C、内角C及び内角Dは、前記Aの長さ及び正極の厚み(すなわち前記Bの長さ)を変えることによって調整できる。なお、前記Aの長さは、セパレータ7及び正極5のサイズを調節することによって調整できる。
 図6~図8に、扁平形非水二次電池の他の例を模式的に示す。図6は、扁平形非水二次電池101の電池ケース(外装ケース2及び封口ケース3)及び絶縁ガスケット4部分の断面を表す縦断面図であり、図7は、図6の一部を拡大するとともに、電極群を断面で示した図である。更に、図8(a)は、図6及び図7に示す電池101の正極5(正極5の本体部5a)及びその両面に配置されたセパレータ7(セパレータ7の主体部7a)の一部を示す断面図である。また、図8(b)は、図8(a)の一部をさらに拡大して示す図である。なお、図8(a)、(b)に示す断面は、扁平形非水二次電池101において、例えば、図4におけるI-I線断面の一部(接合部7cを含む部分)に相当する部分である。以下の説明において、図1に示す扁平形非水二次電池1と同様の構成を有する部分には同一の符号を付して、その説明を省略する。
 扁平形非水二次電池101は、図6~図8に示すように、正極5の両面に配置された2枚のセパレータ7のうちの一方(図6~図8の例では図中下側のセパレータ7)の主体部7が、板状に形成された正極5の上面及び底面(正極5の平面)に略平行(平行を含む)となっている例である。すなわち、この例では、前記内角C及び前記内角Cのうちのいずれか一方が90°である。
 このような構成にすることで、図8に示すように、下側(外装ケース2側)のセパレータ7は、正極合剤層51に該セパレータ7が当接する箇所(図8(a)において円で囲んだ箇所)において、正極合剤層51の角部に当接する前記セパレータ7の内角が非常に大きくなる。そのため、セパレータ7と正極合剤層51との接触による該セパレータ7の内面の損傷や正極合剤層51の角部の欠落を、より良好に抑制できる。これにより、電池の信頼性をより高めることができる。
 図6~図8に示す扁平形非水二次電池101は、上述以外の部分の構成については、図1に示す扁平非水二次電池1と同様である。ただし、この扁平形非水二次電池101では、前記内角Dは、45°以下であることが好ましく、30°以下であることがより好ましい。さらに、前記内角Dは、10°以上であることが好ましく、20°以上であることがより好ましい。
 また、図6~図8に示す扁平形非水二次電池101では、電極群内において接合部7cを有するセパレータ7(主体部7aの周縁部の少なくとも一部で溶着されている2枚のセパレータ7)のうち正極5に対して略平行に真っ直ぐ延びるセパレータ7が、外装ケース2及び封口ケース3のいずれか一方の側に位置している。
 詳しくは、電極群を構成する複数の正極5のうち、両側(両面)が負極6と対向している全ての正極5に対して、両面に2枚のセパレータ7が配置されている。そして、これらのセパレータ7のうち、一方のセパレータ7(主体部7a)は、正極5に対して略平行である。電極群は、正極5に対して略平行なセパレータ7の全てが外装ケース2側または封口ケース3側に位置するように、構成されている。
 このような構成を採用することにより、電極群の電極に対して非水電解液が良好に浸透するようになる。これにより、各電極での反応が均一化するため、信頼性の高い電池を得ることができる。
 また、上述のような構成を採用することにより、セパレータ7の折れ曲がりも抑制することができる。これについては、図9(a)、(b)を用いて以下で具体的に説明する。
 図9(a)に、正極5に対して略平行なセパレータ7が同じ側に位置するように電極を構成した場合を示す。また、図9(b)に、正極5に対して略平行なセパレータ7が異なる側に位置するように電極群を構成した場合を示す。
 図9(b)に示す構成では、正極5に対して略平行でないセパレータ7が、負極6の両側に位置するため、該負極6の周縁部近傍での隙間が大きくなる。これにより、セパレータ7が、負極6の周縁部で折れ曲がりやすくなり、電池の信頼性を損なう虞がある。
 これに対して、図9(a)に示すように、正極5に対して略平行な全てのセパレータ7を同じ側に位置付けることによって、負極6の一方側に、正極5に対して略平行なセパレータ7が配置されることになる。そのため、負極6の周縁部近傍での隙間を可及的に小さくして、負極6の周縁部におけるセパレータ7の折れ曲がりを抑制することができる。これにより、電池の信頼性の向上を図れる。
 図1及び図2に示す扁平形非水二次電池1、及び、図6及び図7に示す扁平形非水二次電池101では、電極群の上下両端に位置する電極(最外部の2つの電極)がいずれも負極6である。しかしながら、電極群の上下両端に位置する電極(最外部の2つの電極)のうち、一方または両方を正極5としてもよい。また、電極群の最外部の電極のうち、正極端子を兼ねる電池ケース(例えば外装ケース2)に近い側の電極を正極5とした場合、正極5は、集電体52の両面に正極合剤層51を有していて、集電タブ部5bによって正極端子を兼ねる電池ケース(例えば外装ケース2)と接していてもよい。また、上述の場合において、正極5は、集電体52の片面(電池内方側となる面)のみに正極合剤層51を有していて、集電体52の露出面が、正極端子を兼ねる電池ケース(例えば外装ケース2)の内面と溶接されるか、または接触することにより、正極5と外装ケース2とが電気的に接続されていてもよい。
 なお、電極群の上下両端に位置する電極(最外部の2つの電極)の両方を正極5とした場合、各負極6の集電タブ部6bを互いに電気的に接続するとともに、該集電タブ部6bを、負極端子を兼ねる電池ケース(例えば封口ケース3)の内面に溶接するか、または接触させることにより、電池ケースと負極6とを電気的に接続することができる。
 また、本実施形態では、両側が負極6と対向している正極5の両面にはセパレータ7を配置している。しかしながら、電極群の最外部に配置される正極、すなわち片側(片面)のみが負極と対向している正極については、その両面にセパレータを配置しなくてもよく、負極と対向する面のみにセパレータを配置してもよい。更に、電極群における最外部の電極の両方を正極とし、これらの正極の両面にセパレータを配置しない場合には、負極端子を兼ねる電池ケースと正極との間には、ポリエチレンテレフタレート(PET)やポリイミドなどによって構成された絶縁シールなどの絶縁体を配置する。
 また、各正極5の集電タブ部5bと正極端子を兼ねる電池ケースとの電気的接続、及び、各負極6の集電タブ部6bと負極端子を兼ねる電池ケースとの電気的接続には、正極5や負極6とは別体のリード体(金属箔などで構成されたリード体)によって実現してもよい。
 ここで、本実施形態において、正極5の正極合剤層51は、正極活物質、導電助剤、バインダなどを含有する層である。
 正極活物質としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMnNiCo1-y-z、LiMn、LiMn2-yなどのリチウム遷移金属複合酸化物などが挙げられる。ただし、前記の各リチウム遷移金属複合酸化物において、Mは、Mg、Mn、Fe、Co、Ni、Cu、Zn、Al及びCrからなる群から選ばれる少なくとも1種の金属元素であり、0≦x≦1.1、0<y<1.0、2.0≦z≦2.2である。これらの正極活物質は、1種単独で使用してもよく、2種以上を併用しても構わない。
 また、正極5の導電助剤としては、例えば、カーボンブラック、鱗片状黒鉛、ケッチェンブラック、アセチレンブラック、繊維状炭素などが挙げられる。更に、正極5のバインダとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、カルボキシメチルセルロース、スチレンブタジエンラバーなどが挙げられる。
 正極5は、例えば、正極活物質と導電助剤とバインダとを混合して得られる正極合剤を水または有機溶剤に分散させて正極合剤含有ペーストを調製し、その正極合剤含有ペーストを金属箔、エキスパンドメタル、平織り金網などからなる集電体52の片面または両面に塗布して、乾燥させた後、加圧成形することによって作製される。この場合、バインダは予め水または溶剤に溶解または分散させておき、それを正極活物質などと混合して正極合剤含有ペーストを調製してもよい。ただし、正極5の作製方法は、前記例示の方法のみに限られることなく、他の方法であってもよい。
 正極5の組成としては、例えば、正極5を構成する正極合剤100質量%中、正極活物質を75質量%~90質量%、導電助剤を5質量%~20質量%、バインダを3質量%~15質量%とすることが好ましい。また、正極合剤層51の厚みは、例えば、30μm~200μmであることが好ましい。
 正極5の集電体52の素材としては、アルミニウムやアルミニウム合金などが好ましい。なお、正極5全体の厚みを小さくしつつ、電池1内における正極5及び負極6の積層数を増やすことにより正極合剤層51と負極剤層61との対向面積を大きくして電池1の負荷特性を高めるという観点からは、集電体52に金属箔を使用することが好ましい。また、集電体52の厚みは、例えば、8μm~20μmであることが好ましい。
 一方、負極6としては、活物質に、リチウム、リチウム合金、リチウムイオンを吸蔵放出可能な炭素材料、チタン酸リチウムなどを有する構成が挙げられる。
 負極活物質に用い得るリチウム合金としては、例えば、リチウム-アルミニウム、リチウム-ガリウムなどのリチウムと可逆的に合金化するリチウム合金が挙げられる。リチウム含有量は、例えば1原子%~15原子%であることが好ましい。また、負極活物質に用い得る炭素材料としては、例えば、人造黒鉛、天然黒鉛、低結晶性カーボン、コークス、無煙炭などが挙げられる。
 負極活物質に用い得るチタン酸リチウムとしては、一般式LiTiで表され、xとyがそれぞれ、0.8≦x≦1.4、1.6≦y≦2.2の化学量論数を持つチタン酸リチウムが好ましく、特にx=1.33、y=1.67の化学量論数を持つチタン酸リチウムが好ましい。前記一般式LiTiで表されるチタン酸リチウムは、例えば、酸化チタン及びリチウム化合物を760℃~1100℃で熱処理することによって得られる。前記酸化チタンとしては、アナターゼ型、ルチル型のいずれも使用可能であり、リチウム化合物としては、例えば、水酸化リチウム、炭酸リチウム、酸化リチウムなどが用いられる。
 負極6は、負極活物質がリチウムやリチウム合金の場合は、リチウムやリチウム合金を金属網などの集電体62に圧着して、該集電体62の表面にリチウムやリチウム合金などからなる負極剤層61を形成することによって得られる。他方、負極活物質として炭素材料やチタン酸リチウムを用いる場合は、例えば、負極活物質としての炭素材料やチタン酸リチウムとバインダ、更には必要に応じて導電助剤を混合して得られる負極合剤を水または有機溶剤に分散させて負極合剤含有ペーストを調製する。そして、その負極合剤含有ペーストを金属箔、エキスパンドメタル、平織り金網などからなる集電体62に塗布して、乾燥させた後、加圧成形によって負極剤層61(負極合剤層を含む。以下、同じ。)を形成する。この場合、バインダは予め水または溶剤に溶解または分散させておき、それを負極活物質などと混合して負極合剤含有ペーストを調製してもよい。ただし、負極6の作製方法は、前記例示の方法のみに限られることなく、他の方法であってもよい。
 なお、負極6のバインダ及び導電助剤としては、正極5に用い得るものとして先に例示した各種バインダ及び導電助剤を用いることができる。
 負極活物質に炭素材料を用いる場合の負極6の組成としては、例えば、負極6を構成する負極合剤100質量%中、炭素材料を80質量%~95質量%、バインダを3質量%~15質量%とすることが好ましく、また、導電助剤を併用する場合には、導電助剤を5質量%~20質量%とすることが好ましい。
 他方、負極活物質にチタン酸リチウムを用いる場合の負極6の組成としては、例えば、負極6を構成する負極合剤100質量%中、チタン酸リチウムを75質量%~90質量%、バインダを3質量%~15質量%とすることが好ましい。また、導電助剤を併用する場合には、導電助剤を5質量%~20質量%とすることが好ましい。
 負極6における負極剤層61の厚みは、例えば、40μm~200μmであることが好ましい。
 負極6の集電体62の素材としては、銅や銅合金が好ましい。なお、負極6全体の厚みを小さくしつつ、電池1内における正極5及び負極6の積層数を増やすことにより正極合剤層51と負極剤層61との対向面積を大きくして、電池1の負荷特性を高めるという観点からは、集電体62に金属箔を使用することが好ましい。また、集電体62の厚みは、例えば、5μm~30μmであることが好ましい。
 セパレータ7には、既述のとおり、熱可塑性樹脂製の微多孔膜によって構成された部材を使用する。セパレータ7を構成する熱可塑性樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン-プロピレン共重合体、ポリメチルペンテンなどのポリオレフィンが好ましい。セパレータ7同士を溶着したり、セパレータ7間に該セパレータ7を構成する樹脂と同種の樹脂を配置して溶着したりするという観点からは、その融点、すなわち、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度が、100℃~180℃であるポリオレフィンがより好ましい。
 セパレータ7を構成する熱可塑性樹脂製の微多孔膜の形態としては、必要な電池特性が得られるだけのイオン伝導度を有していればどのような形態でもよい。例えば、従来から知られている溶剤抽出法、乾式または湿式延伸法などにより形成されていて、孔を多数有するイオン透過性の微多孔膜(電池のセパレータとして汎用されている微多孔フィルム)が好ましい。
 セパレータ7の厚みは、例えば、5μm~25μmであることが好ましい。また、空孔率は、例えば、30%~70%であることが好ましい。
 前記の正極5、負極6およびセパレータ7は、各正極5の集電タブ部5bが、電極群の平面視で同一方向を向くように配置され、且つ各負極6の集電タブ部6bが、電極群の平面視で同一方向を向くように配置されていることが好ましい。これにより、正極5及び負極6の集電構造を簡単な構成により実現できる。
 更に、各正極5の集電タブ部5bと各負極6の集電タブ部6bとを互いに接触しないように配置するとともに電池の生産性を向上するという観点から、図4に示すように、集電タブ部5b及び集電タブ部6bは、平面視で互いに対向する位置に配置されていることがより好ましい。
 また、正極5、負極6及びセパレータ7によって構成される電極群は、図4に示すように、その外周を、耐薬品性を有するポリプロピレンなどによって構成された結束テープ9で結束することが好ましい。これにより、各構成要素(セパレータ7に覆われた正極5、及び負極6)の位置ずれを抑制することができる。
 電極群を構成する正極5及び負極6は、いずれも複数である。電極の合計層数は、少なくとも4層であるが、それ以上の層数(5層、6層、7層、8層など)とすることも可能である。ただし、正極5及び負極6の積層数をあまり多くすると、扁平状電池としてのメリットが小さくなる虞があることから、通常は、40層以下とすることが好ましい。
 非水電解液としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状炭酸エステル;ジメチルカーボネート、ジエチルカーボネート(DEC)、メチルエチルカーボネートなどの鎖状炭酸エステル;1,2-ジメトキシエタン、ジグライム(ジエチレングリコールメチルエーテル)、トリグライム(トリエチレングリコールジメチルエーテル)、テトラグライム(テトラエチレングリコールジメチルエーテル)、1,2-ジメトキシエタン、1,2-ジエトキシメタン、テトラヒドロフランなどのエーテル;などの有機溶媒に、0.3mol/L~2.0mol/L程度の濃度になるように電解質(リチウム塩)を溶解させることによって調製した電解液を用いることができる。なお、前記の有機溶媒は、それぞれ1種単独で用いてもよく、2種以上を併用しても構わない。
 前記電解質としては、例えば、LiBF、LiPF、LiAsF、LiSbF、LiClO、LiCFSO、LiCSO、LiN(CFSO、LiN(CSOなどのリチウム塩が挙げられる。
 扁平形非水二次電池1の平面形状には特に制限は無く、従来から知られている扁平形電池の主流である円形の他、角形(例えば四角形)などの多角形状でもよい。なお、本明細書でいう電池1の平面形状としての角形などの多角形には、その角が切り落とされた形状や、角を曲線にした形状も包含される。また、正極5及び負極6の本体部5a,6aの平面形状は、電池1の平面形状に応じた形状とすればよい。本体部5a,6aを略円形以外にも、長方形や正方形等の四角形を含む多角形とすることもできる。本体部5a,6aを、例えば、略円形とする場合には、対極の集電タブ部が配置される部分は、該対極の集電タブ部との接触を防止するために、図3に示すように切り欠いた形状にすることが好ましい。
 図1や図2、図6、図7では、外装ケース2を正極ケースとし、封口ケース3を負極ケースとした例を示したが、これに限定されず、必要に応じて、外装ケース2を負極ケースとし、封口ケース3を正極ケースとすることもできる。
 以上の説明では、2枚のセパレータ7を本体部7aの周縁部で接合しているが、1枚のセパレータを折り返して接合してもよい。
 なお、図3に示す形状の正極5と図4に示す形状のセパレータ7とを用いて、Aが300μmで、B(正極の厚み)が140μm(すなわち、A/B値は2.14)となり、且つ、正極5及びセパレータ7が図8に示すような構造を有する扁平形非水二次電池を製造した。より詳しくは、図6及び図7の構造を有し、且つ、前記内角Cが65°、前記内角Cが90°、前記内角Dが25°である扁平形非水二次電池を製造した。この扁平形非水二次電池を分解したところ、図8(a)において円で囲んだ部分では、セパレータ内面の損傷や正極合剤層の角部の欠落は認められなかった。したがって、信頼性に優れた扁平形非水二次電池を良好に生産することができた。
 扁平形非水二次電池1は、従来から知られている扁平形非水二次電池と同様の用途に適用することができる。

Claims (6)

  1.  外装ケースと封口ケースとによって形成される空間内に配置される電極群を備え、
     前記電極群は、
      交互に積層される複数の正極及び複数の負極と、
      前記正極と前記負極との間に位置し、且つ、該正極を挟み込んで覆うように配置された、熱可塑性樹脂製の微多孔膜からなるセパレータとを備えていて、
     前記正極を挟み込むように配置されたセパレータは、該正極を挟み込んだ状態で、セパレータ同士が周縁部の少なくとも一部で互いに溶着されることにより形成される接合部を有しており、
     前記セパレータ及び正極を厚み方向の断面で見て、該セパレータの接合部における該正極側の端部と該セパレータによって挟みこまれた該正極の外周面との最短距離Aと、該正極の厚みBとの比A/Bが1以上である、扁平形非水二次電池。
  2.  前記A/Bが5以下である、請求項1に記載の扁平形非水二次電池。
  3.  前記正極を挟み込むように配置されるセパレータは、該セパレータ及び正極を厚み方向の断面で見て、該セパレータの接合部における正極側の端部と、該セパレータによって挟み込まれた正極の外周面とによって、該セパレータと該正極との間に断面三角状の空間が形成されるように、該正極に対して配置されていて、
     前記セパレータ及び前記正極を厚み方向の断面で見て、前記正極の外周面に沿って該正極の厚み方向に延びる辺aと、該正極の外周面における厚み方向一側の端部と前記セパレータの接合部における前記端部とを結ぶ辺bとによって形成される内角、及び、前記辺aと、前記正極の外周面における厚み方向他側の端部と前記セパレータの接合部における前記端部とを結ぶ辺cとによって形成される内角は、それぞれ、45°以上である、請求項1または2に記載の扁平形非水二次電池。
  4.  前記正極を挟み込むように配置されるセパレータのうち一方は、該正極に対して略平行に延びている、請求項1から3のいずれか一つに記載の扁平形非水二次電池。
  5.  前記電極群は、複数の前記セパレータを有していて、
     前記正極に対して略平行に延びる全てのセパレータは、該正極に対して、前記外装ケース側または前記封口ケース側のいずれかの同じ側に配置されている、請求項4に記載の扁平形非水二次電池。
  6.  前記正極を挟み込むように配置されるセパレータは、該セパレータ及び正極を厚み方向の断面で見て、該セパレータの接合部における正極側の端部と、該セパレータによって挟み込まれた正極の外周面とによって、該セパレータと該正極との間に断面三角状の空間が形成されるように、該正極に対して配置されていて、
     前記セパレータ及び前記正極を厚み方向の断面で見て、前記正極の外周面に沿って該正極の厚み方向に延びる辺aと、該正極の外周面の一方側の端部と前記セパレータの接合部における前記端部とを結ぶ辺bとによって形成される内角、及び、前記辺aと、前記正極の外周面の他方側の端部と前記セパレータの接合部における前記端部とを結ぶ辺cとによって形成される内角のうち、いずれか一方が90°であり、他方が45°以上である、請求項5に記載の扁平形非水二次電池。
PCT/JP2010/070856 2009-11-27 2010-11-24 扁平形非水二次電池 WO2011065345A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800536108A CN102630356A (zh) 2009-11-27 2010-11-24 扁平形非水二次电池
US13/512,251 US8802269B2 (en) 2009-11-27 2010-11-24 Flat nonaqueous secondary battery
EP10833191.9A EP2495798B8 (en) 2009-11-27 2010-11-24 Flat nonaqueous secondary battery
KR1020127013426A KR101363438B1 (ko) 2009-11-27 2010-11-24 편평형 비수 이차 전지

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009269702A JP5377250B2 (ja) 2009-11-27 2009-11-27 扁平形非水二次電池
JP2009269701A JP5377249B2 (ja) 2009-11-27 2009-11-27 扁平形非水二次電池
JP2009-269702 2009-11-27
JP2009-269701 2009-11-27

Publications (1)

Publication Number Publication Date
WO2011065345A1 true WO2011065345A1 (ja) 2011-06-03

Family

ID=44066450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070856 WO2011065345A1 (ja) 2009-11-27 2010-11-24 扁平形非水二次電池

Country Status (5)

Country Link
US (1) US8802269B2 (ja)
EP (1) EP2495798B8 (ja)
KR (1) KR101363438B1 (ja)
CN (2) CN104916793B (ja)
WO (1) WO2011065345A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6089399B2 (ja) * 2011-04-07 2017-03-08 日産自動車株式会社 電池および電池製造方法
US20150221925A1 (en) * 2012-09-11 2015-08-06 Routejade Inc. Stacked type secondary battery
JP5850038B2 (ja) * 2013-12-25 2016-02-03 株式会社豊田自動織機 蓄電装置
JPWO2015115080A1 (ja) * 2014-01-30 2017-03-23 三洋電機株式会社 密閉型蓄電池
US10230088B1 (en) 2015-01-30 2019-03-12 Johnson Controls Technology Company Battery electrode assembly, separator and method of making same
US20170110255A1 (en) * 2015-10-14 2017-04-20 Pacesetter, Inc. Cathode subassembly with integrated separator
JP6897571B2 (ja) 2015-12-25 2021-06-30 株式会社豊田自動織機 蓄電装置、及び電極ユニットの製造方法
DE102016205160A1 (de) 2016-03-30 2017-10-05 Robert Bosch Gmbh Batteriezelle
WO2018021128A1 (ja) * 2016-07-26 2018-02-01 日本電気株式会社 電極アセンブリおよびその製造方法
CN106129479A (zh) * 2016-08-22 2016-11-16 深圳拓邦新能源技术有限公司 电芯结构及其制备方法、扣式二次锂离子电池
JP6640690B2 (ja) * 2016-09-21 2020-02-05 株式会社東芝 電極構造体、二次電池、電池パック及び車両
EP3657572B1 (en) * 2017-07-18 2024-03-20 Maxell, Ltd. Battery with external terminals
WO2021040044A1 (ja) * 2019-08-29 2021-03-04 マクセルホールディングス株式会社 全固体電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045494A (ja) * 2001-07-26 2003-02-14 Toshiba Battery Co Ltd 扁平形非水電解質二次電池
JP2003092100A (ja) * 2001-09-19 2003-03-28 Nec Corp 積層型電池
JP2004509443A (ja) 2000-09-25 2004-03-25 コリア パワー セル インコーポレイティッド ポケッティング電極体及びその製造方法とこれを用いたリチウムイオン二次電池
JP2007250319A (ja) * 2006-03-15 2007-09-27 Nec Tokin Corp 積層型電池
JP2008091100A (ja) 2006-09-29 2008-04-17 Sanyo Electric Co Ltd 角型リチウムイオン電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345494A (ja) 1989-07-11 1991-02-27 Uinsuru:Kk 隙間帆の展縮帆方法
JPH0392100A (ja) 1989-09-05 1991-04-17 Zuumu:Kk 音場処理装置
JP2001291647A (ja) * 2000-04-10 2001-10-19 Japan Gore Tex Inc 積層型電気二重層コンデンサ
JP2004296103A (ja) * 2003-03-25 2004-10-21 Sanyo Electric Co Ltd 二次電池用非水系電解液及び非水系電解液二次電池
JP4449447B2 (ja) * 2003-12-22 2010-04-14 日産自動車株式会社 固体電解質電池の製造方法
CN101174681B (zh) * 2006-10-30 2010-05-12 比亚迪股份有限公司 极片复合体、电芯和锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509443A (ja) 2000-09-25 2004-03-25 コリア パワー セル インコーポレイティッド ポケッティング電極体及びその製造方法とこれを用いたリチウムイオン二次電池
JP2003045494A (ja) * 2001-07-26 2003-02-14 Toshiba Battery Co Ltd 扁平形非水電解質二次電池
JP2003092100A (ja) * 2001-09-19 2003-03-28 Nec Corp 積層型電池
JP2007250319A (ja) * 2006-03-15 2007-09-27 Nec Tokin Corp 積層型電池
JP2008091100A (ja) 2006-09-29 2008-04-17 Sanyo Electric Co Ltd 角型リチウムイオン電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2495798A4

Also Published As

Publication number Publication date
US20120276437A1 (en) 2012-11-01
EP2495798B1 (en) 2014-10-08
CN102630356A (zh) 2012-08-08
CN104916793A (zh) 2015-09-16
EP2495798A1 (en) 2012-09-05
KR101363438B1 (ko) 2014-02-14
KR20120117757A (ko) 2012-10-24
EP2495798A4 (en) 2013-06-19
US8802269B2 (en) 2014-08-12
CN104916793B (zh) 2018-08-24
EP2495798B8 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2011065345A1 (ja) 扁平形非水二次電池
JP5735096B2 (ja) 非水二次電池用電極の製造方法、および非水二次電池の製造方法
JP6032628B2 (ja) 薄型電池
JP5483587B2 (ja) 電池およびその製造方法
JP2011159491A (ja) 扁平形非水二次電池
JP6081745B2 (ja) 扁平形非水二次電池
JP5348720B2 (ja) 扁平形非水二次電池
JP2014049371A (ja) 扁平形非水二次電池およびその製造方法
JP2012064366A (ja) 扁平形非水二次電池およびその製造方法
JP5562655B2 (ja) 扁平形非水二次電池
JP5495270B2 (ja) 電池
JP5377249B2 (ja) 扁平形非水二次電池
JP5528304B2 (ja) 扁平形非水二次電池
JP2011129330A (ja) 扁平形非水二次電池
JP5528305B2 (ja) 扁平形非水二次電池
JP6240265B2 (ja) 扁平形非水二次電池の製造方法
JP5562654B2 (ja) 扁平形非水二次電池
JP5681358B2 (ja) 扁平形非水二次電池
JP2011154784A (ja) 扁平形非水二次電池
JP5473063B2 (ja) 扁平形非水二次電池およびその製造方法
JP5566671B2 (ja) 扁平形非水二次電池
JP5377250B2 (ja) 扁平形非水二次電池
JP2011187266A (ja) 扁平形非水二次電池
JP2011187392A (ja) 扁平形非水二次電池
JP2009043424A (ja) 扁平形非水電解液二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053610.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833191

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010833191

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127013426

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13512251

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE