WO2010137402A1 - 光配向処理方法、光配向処理用マスク及び配向膜製造方法 - Google Patents
光配向処理方法、光配向処理用マスク及び配向膜製造方法 Download PDFInfo
- Publication number
- WO2010137402A1 WO2010137402A1 PCT/JP2010/055866 JP2010055866W WO2010137402A1 WO 2010137402 A1 WO2010137402 A1 WO 2010137402A1 JP 2010055866 W JP2010055866 W JP 2010055866W WO 2010137402 A1 WO2010137402 A1 WO 2010137402A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alignment
- linearly polarized
- alignment film
- polarized light
- mask
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/13378—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
- G02F1/133788—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133753—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
Definitions
- the present invention relates to a photo-alignment processing method for forming a divided liquid crystal alignment surface on the surface of an alignment film material by light irradiation, a photo-alignment processing mask used in the photo-alignment processing method, and an alignment film manufacturing method.
- an alignment-divided liquid crystal display device is known as a liquid crystal display device excellent in viewing angle characteristics.
- each pixel is divided into a plurality of regions (domains) in which the tilt directions of liquid crystal molecules are different.
- Alignment division is applied to liquid crystal display devices of various liquid crystal modes, and any liquid crystal display device having any divided liquid crystal alignment plane that regulates the alignment (tilt direction) of liquid crystal molecules.
- a membrane is used.
- This type of alignment film is produced by subjecting a photosensitive alignment film material that exhibits an alignment regulating force in accordance with the light irradiation direction to light alignment treatment when irradiated with light such as ultraviolet rays from a specific direction.
- the photo-alignment treatment is generally performed by placing a photomask above the alignment film material and irradiating (exposing) light such as ultraviolet rays to the alignment film material through the photomask.
- the photomask is made of, for example, a light shielding plate provided with an opening through which light can pass. This photomask blocks light at portions other than the opening and allows light to pass through only the opening. Therefore, the alignment film material is exposed only by the light that has passed through the opening, and the alignment regulating force is developed at the exposed portion.
- a liquid crystal alignment surface (area) having an alignment regulating force corresponding to the irradiated light and simulating the shape of the opening can be formed on the surface of the alignment film material.
- Patent Document 1 discloses a technique for manufacturing an alignment film that is divided by an alignment process using a photomask.
- Patent Document 1 discloses a photo-alignment process in which light is applied to the surface of an alignment film material from an oblique direction, and an alignment regulating force corresponding to the light irradiation direction is expressed in the alignment film material.
- Patent Document 1 discloses a photomask having a slit-like opening, and the alignment film material is exposed through the photomask.
- the liquid crystal alignment surface area that can be formed by one light irradiation is usually only one type. Therefore, two or more types of areas cannot be formed simultaneously by a single light irradiation (exposure), which is a problem.
- An object of the present invention is to provide a photo-alignment processing method that can reduce at least the number of necessary mask types or the number of exposures.
- the photo-alignment processing method is a photo-alignment process in which a region divided for each alignment control direction is formed on the surface of an alignment film material that expresses an alignment control force for aligning liquid crystal molecules according to the light irradiation direction.
- the surface of the alignment film material is irradiated with linearly polarized light having different vibration surfaces from a plurality of directions, and each has a transmission axis on the same plane as each vibration surface, and corresponds to each area.
- the linearly polarized light is irradiated so as to pass through each polarizing plate of a mask provided with a plurality of types of polarizing plates respectively arranged, and a light-shielding support frame that supports these polarizing plates. .
- the surface of the alignment film material is simultaneously irradiated with linearly polarized light having different vibration surfaces from a plurality of directions. If irradiation is performed simultaneously, different types of areas can be formed together, and the number of light irradiation processes can be reduced.
- vibration planes of the linearly polarized light are orthogonal to each other.
- the transmission axes of the polarizing plates are orthogonal to each other.
- the photo-alignment processing mask according to the present invention irradiates the surface of the alignment film material that expresses alignment regulating force for aligning liquid crystal molecules according to the light irradiation direction with linearly polarized light having different vibration surfaces from a plurality of directions.
- transmission axes of the polarizing plates are orthogonal to each other.
- the alignment film manufacturing method includes a step of forming a region divided for each alignment restriction direction on the surface of the alignment film material that expresses an alignment restriction force for aligning liquid crystal molecules according to the light irradiation direction.
- the surface of the alignment film material is irradiated with linearly polarized light having different vibration surfaces from a plurality of directions, and each has a transmission axis on the same plane.
- the linearly polarized light is passed through each polarizing plate of a mask provided with a plurality of types of polarizing plates respectively arranged so as to correspond to each area, and a light-shielding support frame that supports these polarizing plates. Irradiating.
- the surface of the alignment film material is simultaneously irradiated with linearly polarized light having different vibration surfaces from a plurality of directions.
- the planes of vibration of the linearly polarized light are preferably orthogonal to each other.
- the transmission axes of the polarizing plates are orthogonal to each other.
- the number of necessary mask types can be reduced at least.
- the photo-alignment processing mask of the present invention when used for the photo-alignment processing, a plurality of types of regions that are classified according to the alignment regulating force can be formed on the surface of the alignment film material.
- the number of necessary mask types can be reduced at least.
- the relationship between the irradiation direction of the light irradiated toward the surface of the alignment film material, the direction of the alignment control force (alignment control direction) expressed according to the light irradiation direction, and the tilt direction of the liquid crystal molecules is schematically represented.
- FIG. 6 is an explanatory diagram (perspective view) schematically showing a photo-alignment processing step in a mask region surrounded by a one-dot chain line shown in FIG. 5. It is explanatory drawing (plan view) which represented typically a part of alignment film formed in CF board
- FIG. 18 is an explanatory diagram (plan view) schematically showing an alignment film material subjected to a photo-alignment process using the mask shown in FIG. 16 and the mask shown in FIG. 17. It is explanatory drawing (sectional drawing) which represented typically the content of the other photo-alignment processing method.
- the photo-alignment processing method of this embodiment is a photo-alignment process in which a region divided for each alignment control direction is formed on the surface of an alignment film material that expresses an alignment control force for aligning liquid crystal molecules according to the light irradiation direction.
- the surface of the alignment film material is irradiated with linearly polarized light having different vibration surfaces from a plurality of directions, and each has a transmission axis on the same plane as each vibration surface, and corresponds to each area.
- the linearly polarized light is irradiated so as to pass through each of the polarizing plates of a mask provided with a plurality of types of polarizing plates arranged in this manner and a light-shielding support frame that supports these polarizing plates.
- an alignment film material used in the photo-alignment processing method will be described.
- the alignment film material When the alignment film material is irradiated with light such as ultraviolet rays, it undergoes a photoreaction such as a photoisomerization reaction or a photodimerization reaction depending on the light irradiation direction, and has an alignment regulating force that aligns liquid crystal molecules according to the photoreaction. It is a photosensitive material that develops.
- the alignment film material include known materials such as polyimide whose side chain is substituted with azobenzene, polyimide whose side chain is substituted with cinnamate, coumarin and the like.
- FIG. 1 shows the irradiation direction 1 of the light 9 irradiated toward the surface of the alignment film material 1, the direction of the alignment regulating force 11 (alignment regulating direction) expressed according to the light irradiation direction l, and the liquid crystal molecules 2.
- FIG. 1 shows the irradiation direction 1 of the light 9 irradiated toward the surface of the alignment film material 1, the direction of the alignment regulating force 11 (alignment regulating direction) expressed according to the light irradiation direction l, and the liquid crystal molecules 2.
- It is explanatory drawing (perspective view) which represented typically the relationship with the inclination direction m. As shown in FIG.
- the alignment film material irradiated with the light 9 is irradiated.
- a photoreaction occurs at one point, and an alignment regulating force 11 corresponding to the light irradiation direction 1 appears.
- the alignment regulating force 11 (orientation regulating direction) in FIG. 1 is expressed as a component along the surface of the alignment film material 1 (the same applies to other drawings in this specification).
- the alignment regulating force 11 expressed according to the light irradiation direction l acts on the liquid crystal molecules 2 so as to align the directions of the liquid crystal molecules 2.
- the liquid crystal molecules 2 are angled from the surface of the alignment film material 1 by the action of the alignment regulating force 11. Align so that it tilts at ⁇ (tilt alignment). That is, the inclination direction m (inclination angle ⁇ ) of the liquid crystal molecules 2 is determined according to the light irradiation direction 1 (light irradiation angle ⁇ ).
- the polarized light 9 is preferably linearly polarized light.
- the light irradiation angle ⁇ is appropriately set in the range of 0 ° ⁇ ⁇ 90 °.
- FIG. 2 is an explanatory view (perspective view) schematically showing the contents of the photo-alignment processing method of the first embodiment.
- FIG. 2 shows an alignment film material 1 and a mask 3 (a mask for photo-alignment processing) disposed above the alignment film material 1.
- the mask 3 includes two types of polarizing plates 4A and 4B having different transmission axis directions and a light-shielding frame member 5 that surrounds the polarizing plates 4A and 4B and blocks light.
- the shapes of the polarizing plates 4A and 4B of this embodiment are both rectangular (rectangular), and these polarizing plates 4A and 4B are arranged in parallel.
- the polarizing plate 4A has a transmission axis 6A in its plane and an absorption axis 7A perpendicular to the transmission axis 6A.
- the polarizing plate 4B has a transmission axis 6B and an absorption axis 7B perpendicular to the transmission axis 6B in the plane.
- the polarizing plate 4A and the polarizing plate 4B are arranged so that the transmission axes 6A and 6B are perpendicular to each other (perpendicular).
- the polarizing plate 4A and the polarizing plate 4B are disposed above the alignment film material 1 so as to correspond to the respective areas 8A and 8B that are to be formed on the surface of the alignment film material 1.
- linearly polarized light 9A is irradiated toward the polarizing plate 4A of the mask 3 disposed above the alignment film material 1, and toward the polarizing plate 4B.
- Linearly polarized light 9B is irradiated.
- the linearly polarized light 9 ⁇ / b> A is applied obliquely to the surface of the alignment film material 1 from a light source (not shown).
- the traveling direction (light irradiation direction) of the linearly polarized light 9 ⁇ / b> A is set according to the area 8 ⁇ / b> A to be formed on the surface of the alignment film material 1. That is, it is set according to the orientation regulating force (orientation regulating direction) 11A desired to be expressed in the section 8A.
- the vibration direction (polarization axis 10A) of the linearly polarized light 9A is set according to the transmission axis 6A of the polarizing plate 4A.
- the polarization axis 10A of the linearly polarized light 9A of the present embodiment is set so as to be arranged on the same plane as the transmission axis 6A of the polarizing plate 4A. That is, the linearly polarized light 9A is set so that the transmission axis 6A of the polarizing plate 4A is disposed on the same plane as the vibration plane (a plane including the polarization axis 10A).
- the polarization axis 10A of the linearly polarized light 9A and the transmission axis 6A of the polarizing plate 4A are arranged in parallel. Such linearly polarized light 9A can pass through the polarizing plate 4A and can expose the alignment film material 1.
- the alignment film material 1 is provided with an area 8A having an alignment regulating force 11A corresponding to the traveling direction (light irradiation direction) of the linearly polarized light 9A and simulating the shape of the polarizing plate 4A.
- the linearly polarized light 9 ⁇ / b> B is also irradiated obliquely onto the surface of the alignment film material 1 from a light source (not shown).
- the traveling direction (light irradiation direction) of the linearly polarized light 9 ⁇ / b> B is set according to the other area 8 ⁇ / b> B to be formed on the surface of the alignment film material 1. That is, it is set according to the orientation regulating force (orientation regulating direction) 11B desired to be expressed in the section 8B.
- the vibration direction (polarization axis 10B) of the linearly polarized light 9B is set according to the transmission axis 6B of the polarizing plate 4B.
- the polarization axis 10B of the linearly polarized light 9B of the present embodiment is set so as to be arranged on the same plane as the transmission axis 6B of the polarizing plate 4B. That is, the linearly polarized light 9B is set so that the transmission axis 6B of the polarizing plate 4B is disposed on the same plane as the vibration plane (a plane including the polarization axis 10B).
- Such linearly polarized light 9 ⁇ / b> B can pass through the polarizing plate 4 ⁇ / b> B and can expose the alignment film material 1.
- the alignment film material 1 is provided with an area 8B having an alignment regulating force 11B corresponding to the traveling direction (light irradiation direction) of the linearly polarized light 9B and in the shape of the polarizing plate 4B.
- the linearly polarized light 9A even if the linearly polarized light 9A is deviated and irradiated to the polarizing plate 4B, the linearly polarized light 9A does not pass through the polarizing plate 4B but is blocked by the polarizing plate 4B. This is because the vibration surface (the plane including the deflection axis 10A) of the linearly polarized light 9A is disposed on the same plane as the absorption axis 7B of the polarizing plate 4B. Even if the linearly polarized light 9B is deviated and irradiated to the polarizing plate 4A, the linearly polarized light 9B does not pass through the polarizing plate 4A and is blocked by the polarizing plate 4A.
- the vibration plane of the linearly polarized light 9B (a plane including the polarization axis 10B) is arranged on the same plane as the absorption axis 7A of the polarizing plate 4A.
- the vibration surface of the linearly polarized light 9A and the vibration surface of the linearly polarized light 9B have a vertical (or orthogonal) arrangement relationship.
- the linearly polarized light 9A and the linearly polarized light 9B are simultaneously irradiated toward the mask 3, and the areas 8A and 8B having different alignment regulating directions are applied to the alignment film material at once. Can be formed (at the same time). Therefore, according to the photo-alignment processing method of the present embodiment, the number of light irradiation steps (the number of exposure steps) can be reduced and the time of photo-alignment processing can be shortened compared with the case where the conventional photo-alignment processing method is used. .
- the photo-alignment processing method of this embodiment it is also possible to irradiate linearly polarized light 9A and linearly polarized light 9B separately.
- two types of areas can be formed with one type of mask. That is, unlike the conventional photo-alignment processing method, it is not necessary to prepare the same number of types of masks as the number of types of areas, and it is not necessary to replace the masks for each light irradiation. Therefore, the photo-alignment processing method of this embodiment does not require alignment of the mask with the alignment film material each time a different area is formed, and can improve exposure accuracy.
- the mask position is moved (slid) on the alignment film material for each light irradiation step (exposure step), thereby providing a plurality of types (for example, two types) of areas with one type of mask. It may be possible to form In this case, it is not easy to move the mask and perform alignment accurately. On the other hand, according to the photo-alignment processing method of the present embodiment, it is possible to form two types of areas with one type of mask without moving the mask.
- the linearly polarized light 9A and 9B are irradiated using different light sources. It is preferable to assign a light source that emits each linearly polarized light to each linearly polarized light having a different polarization axis (vibration plane).
- the photo-alignment processing mask of this embodiment is the mask 3 used in the above-described photo-alignment processing method, and is shown in FIG.
- the alignment film manufacturing method of this embodiment includes the above-described photo-alignment processing method (step).
- FIG. 3 is an explanatory view (cross-sectional view) schematically showing the configuration of a liquid crystal display device in which an alignment film subjected to the photo-alignment processing method of the present embodiment is used.
- the liquid crystal display device 100 includes a thin film transistor (TFT) substrate 21, a color filter (CF) substrate 22, and a liquid crystal layer 23.
- TFT thin film transistor
- CF color filter
- FIG. 3 other configurations of the liquid crystal display device 100 such as a light source are omitted for convenience of explanation.
- the TFT substrate 21 is a substrate in which TFTs as switching elements are formed on a transparent glass plate.
- the CF substrate 22 is a substrate in which a CF layer or the like is formed on a transparent glass plate.
- the TFT substrate 21 and the CF substrate 22 face each other with the liquid crystal layer 23 interposed therebetween.
- the liquid crystal layer 23 contains a nematic liquid crystal material (negative type nematic liquid crystal material) having negative dielectric anisotropy.
- the TFT substrate 21 includes an alignment film 24 on the surface on the liquid crystal layer 23 side, and the CF substrate 22 includes an alignment film 25 on the surface on the liquid crystal layer 23 side.
- the liquid crystal display device 100 has a 4-domain VATN (Vertical Alignment Twisted Nematic) mode.
- VATN Vertical Alignment Twisted Nematic
- liquid crystal molecules are vertically aligned by using an alignment film (vertical alignment film) in which the photo-alignment processing direction (alignment regulation direction) is orthogonal to each other (TFT substrate 21 and CF substrate 22), and This mode has a twist structure.
- FIG. 4 is an explanatory diagram (plan view) schematically showing a part of the alignment film 24 formed on the TFT substrate 21.
- the alignment film 24 is formed by forming two types of sections 8C and 8D for aligning liquid crystal molecules on the surface of the alignment film material 1a.
- the section 8C and the section 8D have different alignment regulating forces (orientation regulating directions) 11C and 11D, respectively.
- FIG. 4 shows two sections 8C and 8D.
- the sections 8C and 8D are arranged so as to be alternately arranged. In these sections 8C and 8D, the orientation regulating direction 11C and the orientation regulating direction 11D are indicated by arrows opposite to each other.
- FIG. 5 is an explanatory diagram (plan view) schematically showing a mask 3a used for forming the areas 8C and 8D for aligning liquid crystal molecules on the surface of the alignment film material 1a shown in FIG.
- the mask 3a includes two types of polarizing plates 4C and 4D having different transmission axis (absorption axis) directions, and a light-shielding frame member 5a.
- the polarizing plate 4C is for forming the area 8C shown in FIG. 4, and the polarizing plate 4D is for forming the area 8D shown in FIG.
- the polarizing plates 4C and 4D are both strip-shaped (rectangular) and are alternately arranged.
- the polarizing plates 4C and 4D are surrounded and supported by the light-shielding frame member 5a.
- FIG. 6 is an explanatory view (perspective view) schematically showing the contents of the photo-alignment processing step in the region S of the mask 3a surrounded by the alternate long and short dash line shown in FIG.
- the linearly polarized light 9C is directed to the surface of the alignment film material 1a through the polarizing plate 4C of the mask 3a disposed above the alignment film material 1a. Is irradiated diagonally. Further, as shown in FIG. 6, linearly polarized light 9D is irradiated obliquely toward the surface of the alignment film material 1a through the polarizing plate 4D.
- the linearly polarized light 9C and the linearly polarized light 9D are simultaneously irradiated from a light source (not shown).
- the transmission axis 6C of the polarizing plate 4C is disposed on the same plane as the vibration plane of the linearly polarized light 9C (plane including the polarization axis 10C), and the vibration plane of the linearly polarized light 9D (including the polarization axis 10D).
- the transmission axis 6D of the polarizing plate 4D is disposed on the same plane as the plane.
- the absorption axes 7C and 7D are orthogonal to the transmission axes 6C and 6D, respectively.
- the alignment film material 1a has the alignment regulating force 11C corresponding to the light irradiation direction of the linearly polarized light 9C, and the shape of the polarizing plate 4C is changed.
- An area 8D having the shape 8D and the orientation regulating force 11D corresponding to the light irradiation direction of the linearly polarized light 9D and the shape of the polarizing plate 4D is formed.
- the alignment film material 1a shown in FIG. 6 is used as the alignment film 24 of the liquid crystal display device 100 shown in FIG.
- FIG. 7 is an explanatory diagram (plan view) schematically showing a part of the alignment film 25 formed on the CF substrate 22.
- the alignment film 25 is obtained by forming two types of areas 8E and 8F for aligning liquid crystal molecules on the surface of the alignment film material 1b.
- the section 8E and the section 8F have different alignment regulating forces (orientation regulating directions) 11E and 11F, respectively.
- FIG. 7 shows two sections 8E and two sections 8F.
- the sections 8E and 8F are arranged so as to be alternately arranged. In these sections 8E and 8F, the orientation regulating direction 11E and the orientation regulating direction 11F are indicated by arrows opposite to each other.
- FIG. 8 is an explanatory diagram (plan view) schematically showing a mask 3b used for forming the areas 8E and 8F for aligning liquid crystal molecules on the surface of the alignment film material 1b of FIG.
- the mask 3b includes two types of polarizing plates 4E and 4F having different transmission axis (absorption axis) directions, and a light-shielding frame member 5b.
- the polarizing plate 4E is for forming the area 8E shown in FIG. 7, and the polarizing plate 4F is for forming the area 8F shown in FIG.
- the polarizing plates 4E and 4F are both strip-shaped (rectangular) and are alternately arranged.
- the basic configuration of the mask 3b shown in FIG. 8 is the same as that of the mask 3a for manufacturing the alignment film 24 on the TFT substrate side shown in FIG.
- the principle of forming the two types of areas 8E and 8F on the surface of the alignment film material 1b shown in FIG. 7 using the mask 3b shown in FIG. 8 is the same as the contents shown in FIG. Therefore, the description of the process of manufacturing the alignment film 25 on the CF substrate side by the photo-alignment process using the mask 3b is omitted.
- the alignment direction of the two types of rectangular areas formed on the surface of the alignment film material is different between the alignment film 24 on the TFT substrate side and the alignment film 25 on the CF substrate side.
- the alignment film 24 on the TFT substrate side and the alignment film 25 on the CF substrate side facing each other with the liquid crystal layer 23 interposed therebetween are arranged so that their areas intersect each other.
- FIG. 9 is an explanatory diagram schematically showing the inclination direction of the liquid crystal molecules 2 in one pixel when a voltage is applied between the TFT substrate 21 and the CF substrate 22 in the liquid crystal display device 100 shown in FIG. is there.
- one pixel of the liquid crystal display device 100 is divided into eight regions (domains).
- four regions (domains) are arranged in the vertical direction, and two regions (domains) are arranged in the horizontal direction.
- the number of liquid crystal molecules 2 in each region is one.
- FIG. 9 is an explanatory diagram schematically showing the inclination direction of the liquid crystal molecules 2 in one pixel when a voltage is applied between the TFT substrate 21 and the CF substrate 22 in the liquid crystal display device 100 shown in FIG. is there.
- one pixel of the liquid crystal display device 100 is divided into eight regions (domains).
- four regions (domains) are arranged in the vertical direction, and two regions (domains) are arranged in the horizontal direction.
- the number of liquid crystal molecules 2 in each region is one.
- a solid arrow pointing to the right represents the alignment regulating force (orientation regulating direction) 11E of the area 8E on the alignment film 25 on the CF substrate side
- a solid arrow pointing to the left represents the alignment film 25 on the CF substrate side.
- This represents the alignment regulating force (orientation regulating direction) 11F that the section 8F has.
- the downward broken arrow indicates the alignment regulating force (orientation regulating direction) 11 ⁇ / b> C of the area 8 ⁇ / b> C on the TFT substrate side alignment film 24, and the upward broken arrow indicates the alignment film 24 on the TFT substrate side.
- the alignment regulating direction of the alignment film 24 on the TFT substrate side is different from the alignment regulating direction of the alignment film 25 on the CF substrate side by 90 °. Is arranged. Therefore, as shown in FIG. 9, when viewed in plan with the TFT substrate 21 and the CF substrate 22 facing each other and overlapping, the liquid crystal molecules 2 in each region (domain) are separated from the alignment regulating direction (light irradiation direction). , Each direction is 45 ° shifted. The liquid crystal molecules 2 in each region (domain) are inclined in four different directions. Thus, by using the alignment films 24 and 25 subjected to the photo-alignment processing method of this embodiment, the liquid crystal molecules can be twisted by 90 °.
- FIG. 10 is an explanatory view (plan view) schematically showing a mask 3c used in the photo-alignment processing method of the third embodiment.
- FIG. 11 is an explanatory view (plan view) schematically showing an alignment film material subjected to a photo-alignment process using the mask 3c of FIG.
- the mask 3c includes two types of polarizing plates 4G and 4H. The solid line arrow shown in the polarizing plate 4G in FIG.
- the transmission axis 6G of the polarizing plate 4G represents the transmission axis 6G of the polarizing plate 4G
- the broken line arrow represents the absorption axis 7G of the polarizing plate 4G
- the solid line arrow shown in the polarizing plate 4H of FIG. 10 represents the transmission axis 6H of the polarizing plate 4H
- the broken line arrow represents the absorption axis 7H of the polarizing plate 4H.
- the transmission axis 6G and the absorption axis 7G of the polarizing plate 4G intersect perpendicularly
- the transmission axis 6H and the absorption axis 7H of the polarizing plate 4H intersect perpendicularly.
- the transmission axis 6G of the polarizing plate 4G and the transmission axis 6H of the polarizing plate 4H are arranged vertically (so as to be orthogonal).
- the linearly polarized light 9G is irradiated through the polarizing plate 4G of the mask 3c
- the linearly polarized light 9H is irradiated through the polarizing plate 4H.
- the alignment film material 1c shown in FIG. Note that the linearly polarized light 9G and 9H shown in FIG. 10 are irradiated obliquely to the surface of the alignment film material from different light sources (not shown).
- the linearly polarized light 9G and the linearly polarized light 9H are set so as to face each other when the mask 3c of FIG. 10 is viewed in plan.
- the transmission axis 6G of the polarizing plate 4G is set on the same plane as the vibration plane of the linearly polarized light 9G (plane including the polarization axis 10G), and the vibration plane of the linearly polarized light 9H (polarization axis)
- the transmission axis 6H of the polarizing plate 4H is set on the same plane as the plane including 10H.
- an area 8G having an alignment regulating force (alignment regulating direction) 11G and an area 8H having an alignment regulating force (alignment regulating direction) 11H are formed.
- the section 8G is formed by the linearly polarized light 9G that has passed through the polarizing plate 4G of the mask 3c in FIG. 10, and the section 8H is formed by the linearly polarized light 9H that has passed through the polarizing plate 4H.
- the linearly polarized light 9G and 9H may be irradiated simultaneously or separately.
- FIG. 12 is an explanatory diagram (plan view) schematically showing a mask 3d used in the photo-alignment processing method of the fourth embodiment.
- FIG. 13 is an explanatory view (plan view) schematically showing an alignment film material subjected to a photo-alignment process using the mask 3d of FIG.
- the mask 3d includes two types of polarizing plates 4I and 4J. The solid arrow shown in the polarizing plate 4I in FIG.
- the transmission axis 6I of the polarizing plate 4I represents the transmission axis 6I of the polarizing plate 4I
- the broken arrow represents the absorption axis 7I of the polarizing plate 4I
- the solid line arrow shown in the polarizing plate 4J of FIG. 10 represents the transmission axis 6J of the polarizing plate 4J
- the broken line arrow represents the absorption axis 7J of the polarizing plate 4J.
- the transmission axis 6I of the polarizing plate 4I and the transmission axis 6J of the polarizing plate 4J are arranged vertically (so as to be orthogonal). As shown in FIG. 12, the polarizing plates 4I and the polarizing plates 4J in the mask 3d are alternately arranged in both the vertical direction and the horizontal direction.
- the linearly polarized light 9I is irradiated through the polarizing plate 4I of the mask 3d, and the linearly polarized light 9J is irradiated through the polarizing plate 4J. 1d is obtained.
- the linearly polarized light 9I and 9J shown in FIG. 12 are irradiated obliquely onto the surface of the alignment film material from different light sources (not shown).
- the linearly polarized light 9I and the linearly polarized light 9J are set to face each other when the mask 3d of FIG.
- the transmission axis 6I of the polarizing plate 4I is set on the same plane as the vibration plane of the linearly polarized light 9I (plane including the polarization axis 10I), and the vibration plane (polarization axis) of the linearly polarized light 9J is set.
- the transmission axis 6J of the polarizing plate 4J is set on the same plane as the plane including 10J.
- an area 8I having an alignment regulating force (alignment regulating direction) 11I and an area 8J having an alignment regulating force (alignment regulating direction) 11J are formed on the surface of the alignment film material 1d shown in FIG. 13, an area 8I having an alignment regulating force (alignment regulating direction) 11I and an area 8J having an alignment regulating force (alignment regulating direction) 11J are formed.
- Area 8I is formed by linearly polarized light 9I that has passed through polarizing plate 4I of mask 3d in FIG. 12, and area 8J is formed by linearly polarized light 9J that has passed through polarizing plate 4J.
- the linearly polarized light 9I and 9J may be irradiated simultaneously or separately.
- FIG. 14 is an explanatory view (plan view) schematically showing a mask 3e used in the photo-alignment processing method of the fifth embodiment.
- FIG. 15 is an explanatory view (plan view) schematically showing an alignment film material that has been subjected to photo-alignment processing using the mask 3e of FIG.
- the mask 3e includes two types of polarizing plates 4K and 4L. The solid line arrow shown in the polarizing plate 4K in FIG.
- the transmission axis 6K of the polarizing plate 4K represents the transmission axis 6K of the polarizing plate 4K
- the broken line arrow represents the absorption axis 7K of the polarizing plate 4K
- the solid line arrow shown in the polarizing plate 4L of FIG. 14 represents the transmission axis 6L of the polarizing plate 4L
- the broken line arrow represents the absorption axis 7L of the polarizing plate 4L.
- the transmission axis 6K and the absorption axis 7K of the polarizing plate 4K intersect perpendicularly
- the transmission axis 6L and the absorption axis 7L of the polarizing plate 4L intersect perpendicularly.
- the transmission axis 6K of the polarizing plate 4K and the transmission axis 6L of the polarizing plate 4L are arranged vertically (so as to be orthogonal).
- the linearly polarized light 9K is irradiated through the polarizing plate 4K of the mask 3e, and the linearly polarized light 9L is irradiated through the polarizing plate 4L.
- the incident angle with respect to the surface is different.
- the linearly polarized light 9K and the linearly polarized light 9L are set to face in the same direction when the mask 3e in FIG.
- the transmission axis 6K of the polarizing plate 4K is set on the same plane as the vibration plane (plane including the polarization axis 10K) of the linearly polarized light 9K, and the vibration plane (polarization axis) of the linearly polarized light 9L is set.
- the transmission axis 6L of the polarizing plate 4L is set on the same plane as the plane including 10L.
- an area 8K having an alignment regulating force (alignment regulating direction) 11K and an area 8L having an alignment regulating force (alignment regulating direction) 11L are formed on the surface of the alignment film material 1e shown in FIG. 15, an area 8K having an alignment regulating force (alignment regulating direction) 11K and an area 8L having an alignment regulating force (alignment regulating direction) 11L are formed.
- Area 8K is formed by linearly polarized light 9K that has passed through polarizing plate 4K of mask 3e in FIG. 14, and area 8L is formed by linearly polarized light 9L that has passed through polarizing plate 4L.
- the linearly polarized light 9K and 9J may be irradiated simultaneously or separately.
- FIG. 16 is an explanatory view (plan view) schematically showing one mask 3f of the sixth embodiment.
- FIG. 17 is an explanatory view (plan view) schematically showing the other mask 3g of the sixth embodiment.
- FIG. 18 is an explanatory view (plan view) schematically showing an alignment film material subjected to a photo-alignment process using the mask 3f of FIG. 16 and the mask 3g of FIG.
- one mask 3f includes two types of polarizing plates 4M and 4N.
- the solid line arrow shown in the polarizing plate 4M in FIG. 16 represents the transmission axis 6M of the polarizing plate 4M, and the broken line arrow represents the absorption axis 7M of the polarizing plate 4M.
- the solid line arrow shown in the polarizing plate 4N of FIG. 16 represents the transmission axis 6N of the polarizing plate 4N, and the broken line arrow represents the absorption axis 7N of the polarizing plate 4N.
- the transmission axis 6M and the absorption axis 7M of the polarizing plate 4M intersect perpendicularly, and the transmission axis 6N and the absorption axis 7N of the polarizing plate 4N intersect perpendicularly.
- the transmission axis 6M of the polarizing plate 4M and the transmission axis 6N of the polarizing plate 4N are arranged vertically (so as to be orthogonal).
- the polarizing plates 4M and the polarizing plates 4N are alternately arranged in the horizontal direction.
- the respective polarizing plates 4M and 4N are arranged in the vertical direction so as to sandwich the light-shielding frame member 5f.
- the other mask 3g includes two types of polarizing plates 4O and 4P. A solid line arrow shown in the polarizing plate 4O in FIG.
- FIG. 17 represents the transmission axis 6O of the polarizing plate 4O, and a broken line arrow represents the absorption axis 7O of the polarizing plate 4O.
- the solid line arrow shown in the polarizing plate 4P of FIG. 17 represents the transmission axis 6P of the polarizing plate 4P, and the broken line arrow represents the absorption axis 7P of the polarizing plate 4P.
- the transmission axis 6O and the absorption axis 7O of the polarizing plate 4O intersect perpendicularly, and the transmission axis 6P and the absorption axis 7P of the polarizing plate 4P intersect perpendicularly.
- the transmission axis 6O of the polarizing plate 4O and the transmission axis 6P of the polarizing plate 4P are arranged vertically (so as to be orthogonal).
- the polarizing plates 4O and the polarizing plates 4P are alternately arranged in the horizontal direction.
- the respective polarizing plates 4O and 4P are arranged in the vertical direction so as to sandwich the light-shielding frame member 5g.
- one mask 3f of FIG. 16 is arranged above the alignment film material, and linearly polarized light 9M is irradiated through the polarizing plate 4M of the mask 3f, and the linearly polarized light 9N is applied through the polarizing plate 4N. Irradiate.
- the other mask 3g of FIG. 17 is arranged above the alignment film material, and the linearly polarized light 9O is irradiated through the polarizing plate 4O of the mask 3g, and through the polarizing plate 4P. Is irradiated with linearly polarized light 9P.
- the alignment film material 1f shown in FIG. 18 is obtained.
- the linearly polarized light 9M and 9N shown in FIG. 16 are irradiated obliquely onto the surface of the alignment film material from different light sources (not shown).
- the linearly polarized light 9M and the linearly polarized light 9N are set to be perpendicular to each other when the one mask 3f in FIG.
- the transmission axis 6M of the polarizing plate 4M is set on the same plane as the vibration plane of the linearly polarized light 9M (plane including the polarization axis 10M), and the vibration plane (polarization plane) of the linearly polarized light 9N is set.
- the transmission axis 6N of the polarizing plate 4N is set on the same plane as the plane including 10N.
- an area 8M having an alignment regulating force (alignment regulating direction) 11M and an area 8N having an orientation regulating force (alignment regulating direction) 11N are formed on the surface of the alignment film material 1f shown in FIG. 18.
- the area 8M is formed by the linearly polarized light 9M that has passed through the polarizing plate 4M of the mask 3f in FIG. 16, and the area 8N is formed by the linearly polarized light 9N that has passed through the polarizing plate 4N.
- the linearly polarized light 9O and 9P shown in FIG. 17 are irradiated obliquely onto the surface of the alignment film material from different light sources (not shown).
- the linearly polarized light 9O and the linearly polarized light 9P are set to be perpendicular to each other when the other mask 3g in FIG. 17 is viewed in plan.
- the transmission axis 6O of the polarizing plate 4O is set on the same plane as the vibration plane of the linearly polarized light 9O (plane including the polarization axis 10O), and the vibration plane (polarization plane) of the linearly polarized light 9P is set.
- the transmission axis 6P of the polarizing plate 4P is set on the same plane as the plane including 10P.
- an area 8O having an alignment regulating force (alignment regulating direction) 11O and an area 8P having an orientation regulating force (alignment regulating direction) 11P are formed on the surface of the alignment film material 1f shown in FIG. 18.
- Area 8O is formed by linearly polarized light 9O that has passed through polarizing plate 4O of mask 3g in FIG. 17, and area 8P is formed by linearly polarized light 9P that has passed through polarizing plate 4P.
- FIG. 19 is an explanatory view (sectional view) schematically showing the contents of another photo-alignment processing method.
- FIG. 19 shows an alignment film material 1 ′ and a mask 3 ′ arranged above the alignment film material 1 ′.
- the photo-alignment treatment method of this reference example irradiates the surface of the alignment film material 1 ′ with linearly polarized light 9 ′ from the vertical direction, and uses the linearly polarized light 9 ′ to exert alignment regulating force on the alignment film material 1 ′.
- the regions 8 ′ and 8 ′′ for aligning the liquid crystal molecules are formed. As shown in FIG.
- the mask 3 ′ has an opening (window) 4 ′ at a position corresponding to the area 8 ′, and a retardation plate 14 ′ at a position corresponding to the area 8 ′′. Is provided.
- the mask 3 ′ is made up of a light shielding frame member 5 ′ except for the opening 4 ′ and the phase difference plate 14 ′.
- the retardation plate 14 ′ is a ⁇ / 2 retardation plate
- the linearly polarized light 19 ′ having a polarization axis (vibration plane) inclined by 90 ° is aligned.
- the surface of the film material 1 ′ is reached.
- the linearly polarized light 9 ′ is blocked at the light shielding frame member 5 ′.
- another linearly polarized light having a different polarization axis (vibration plane) can be obtained from one type of linearly polarized light.
- areas 8′8 ′′ having different alignment regulating forces (orientation directions) can be formed simultaneously.
- the photo-alignment processing method shown in FIG. 19 is as follows.
- a photo-alignment processing method for forming a region divided for each orientation regulation direction on the surface of the orientation film material that expresses the orientation regulation force for orienting liquid crystal molecules Corresponding to each area, the linearly polarized light is irradiated from the vertical direction so that the transmission part that transmits the linearly polarized light and the phase difference plate that changes the phase difference of the linearly polarized light pass through the arranged mask.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
Abstract
配向分割に必要なマスクの種類数もしくは露光回数を少なくとも削減できる光配向処理方法の提供。 本発明の光配向処理方法は、光照射方向に応じて、液晶分子を配向させる配向規制力を発現する配向膜材料1の表面に、配向規制方向11A,11B毎に区分された領域8A,8Bを形成するものであり、前記配向膜材料1の表面に、複数の方向から振動面が互いに異なる直線偏光9A,9Bを照射し、かつ、各振動面と同一平面上にそれぞれ透過軸6A,6Bを有し、各区域8A,8Bに対応するようにそれぞれ配置される複数種の偏光板4A,4Bと、これらの偏光板4A,4Bを支持する遮光性支持枠5と、を備えるマスク3の各偏光板4A,4Bをそれぞれ介するように、前記直線偏光9A,9Bを照射する。
Description
本発明は、光照射により配向膜材料の表面に、分割された液晶配向面を形成する光配向処理方法、その光配向処理方法で用いられる光配向処理用マスク、及び配向膜製造方法に関する。
従来、視野角特性に優れた液晶表示装置として、配向分割された液晶表示装置が知られている。この種の液晶表示装置は、各画素が、液晶分子の傾斜方向を異ならせる複数の領域(ドメイン)に分割されている。
配向分割は、様々な液晶モードの液晶表示装置に適用されているが、何れの液晶モードの液晶表示装置についても、液晶分子の配向(傾斜方向)を規制する分割された液晶配向面を有する配向膜が使用されている。
この種の配向膜は、特定方向から紫外線等の光を照射すると、その光照射方向に応じた配向規制力を発現する感光性配向膜材料に、光配向処理を施すことによって製造される。前記光配向処理は、一般的に、前記配向膜材料の上方にフォトマスクを配置し、そのフォトマスクを介して前記配向膜材料に紫外線等の光を照射(露光)することによって行われる。前記フォトマスクは、例えば、光が通過できる開口部が設けられた遮光板からなる。このフォトマスクは、前記開口部以外の部分では光を遮り、開口部のみで光を通過させる。その為、前記配向膜材料は、開口部を通過した光のみによって露光され、その露光された個所に配向規制力が発現する。このような光配向処理によって、前記配向膜材料の表面に、照射された光に対応した配向規制力を有し、かつ前記開口部の形状を象った液晶配向面(区域)を形成できる。
なお、上記のようなフォトマスクを利用して光配向処理を行った場合、1回の光照射によって前記配向膜材料上に形成できる区域は、通常、1種類のみである。そのため、複数種の区域に分割された液晶配向面を形成するためには、少なくとも、区域の種類数と同じ種類数のフォトマスクを用意し、かつ各フォトマスクを用いて前記区域の種類数と同じ回数だけ光照射(露光)を行う必要がある。
特許文献1は、フォトマスクを利用した光配向処理により、配向分割された配向膜を製造する技術を開示する。この特許文献1には、配向膜材料の表面に対して斜め方向から光を照射し、その光照射方向に応じた配向規制力を配向膜材料に発現させる光配向処理が示されている。特許文献1には、スリット状の開口部を有するフォトマスクが示され、そのフォトマスクを介して配向膜材料を露光している。
上記のような、フォトマスクを利用して配向膜材料を配向分割する従来の光配向処理方法では、1回の光照射で形成できる液晶配向面の区域は、通常、1種類のみである。そのため、2種類以上の区域を、1回の光照射(露光)で同時に形成することができず、問題となっていた。
また、従来の方法では、液晶配向面の区域の種類数と同じ種類数のフォトマスクを少なくとも用意する必要があった。従来の方法では、通常、1種類のフォトマスクで、2種類以上の液晶配向面の区域を形成することが出来なかった。
本発明の目的は、少なくとも、必要なマスクの種類数もしくは露光回数を削減できる光配向処理方法等を提供することである。
本発明に係る光配向処理方法は、光照射方向に応じて、液晶分子を配向させる配向規制力を発現する配向膜材料の表面に、配向規制方向毎に区分された領域を形成する光配向処理方法であって、前記配向膜材料の表面に、複数の方向から振動面が互いに異なる直線偏光を照射し、かつ、各振動面と同一平面上にそれぞれ透過軸を有し、各区域に対応するようにそれぞれ配置される複数種の偏光板と、これらの偏光板を支持する遮光性支持枠と、を備えるマスクの各偏光板をそれぞれ介するように、前記直線偏光を照射することを特徴とする。
前記光配向処理方法において、配向膜材料の表面に、複数の方向から振動面が互いに異なる直線偏光を同時に照射することが好ましい。同時に照射すれば、異なる種類の区域をまとめて形成することができ、光照射工程数を削減できる。
前記光配向処理方法において、前記直線偏光の振動面が互いに直交することが好ましい。
前記光配向処理方法において、前記偏光板の透過軸が互いに直交することが好ましい。
本発明に係る光配向処理用マスクは、光照射方向に応じて、液晶分子を配向させる配向規制力を発現する配向膜材料の表面に、複数の方向から振動面が互いに異なる直線偏光を照射して、配向規制方向毎に区分された領域を形成するための光配向処理用マスクであって、各振動面と同一平面上にそれぞれ透過軸を有し、各区域に対応するようにそれぞれ配置される複数種の偏光板と、これらの偏光板を支持する遮光性支持枠と、を備えることを特徴とする。
前記光配向処理用マスクにおいて、前記偏光板の透過軸が互いに直交することが好ましい。
本発明に係る配向膜製造方法は、光照射方向に応じて、液晶分子を配向させる配向規制力を発現する配向膜材料の表面に、配向規制方向毎に区分された領域を形成する工程を含む配向膜製造方法であって、前記工程において、前記配向膜材料の表面に、複数の方向から振動面が互いに異なる直線偏光を照射し、かつ、各振動面と同一平面上にそれぞれ透過軸を有し、各区域に対応するようにそれぞれ配置される複数種の偏光板と、これらの偏光板を支持する遮光性支持枠と、を備えるマスクの各偏光板をそれぞれ介するように、前記直線偏光を照射することを特徴とする。
前記配向膜製造方法において、配向膜材料の表面に、複数の方向から振動面が互いに異なる直線偏光を同時に照射することが好ましい。
前記配向膜製造方法において、前記直線偏光の振動面が互いに直交することが好ましい。
前記配向膜製造方法において、前記偏光板の透過軸が互いに直交することが好ましい。
本発明の光配向処理方法によれば、必要なマスクの種類数を少なくとも削減できる。
また、本発明の光配向処理用マスクを光配向処理に用いれば、1種類で、配向規制力毎に区分された複数種の領域を、配向膜材料の表面に形成できる。
また、本発明の配向膜製造方法によれば、必要なマスクの種類数を少なくとも削減できる。
以下、図面を参照して、本発明に係る光配向処理方法の実施形態を説明する。なお、本発明は、本明細書に例示する実施形態に限定されるものではない。
〔第1実施形態〕
図1及び図2を参照して、第1実施形態の光配向処理方法を説明する。
<光配向処理方法>
本実施形態の光配向処理方法は、光照射方向に応じて、液晶分子を配向させる配向規制力を発現する配向膜材料の表面に、配向規制方向毎に区分された領域を形成する光配向処理方法であって、前記配向膜材料の表面に、複数の方向から振動面が互いに異なる直線偏光を照射し、かつ、各振動面と同一平面上にそれぞれ透過軸を有し、各区域に対応するようにそれぞれ配置される複数種の偏光板と、これらの偏光板を支持する遮光性支持枠と、を備えるマスクの各偏光板をそれぞれ介するように、前記直線偏光を照射するものである。
図1及び図2を参照して、第1実施形態の光配向処理方法を説明する。
<光配向処理方法>
本実施形態の光配向処理方法は、光照射方向に応じて、液晶分子を配向させる配向規制力を発現する配向膜材料の表面に、配向規制方向毎に区分された領域を形成する光配向処理方法であって、前記配向膜材料の表面に、複数の方向から振動面が互いに異なる直線偏光を照射し、かつ、各振動面と同一平面上にそれぞれ透過軸を有し、各区域に対応するようにそれぞれ配置される複数種の偏光板と、これらの偏光板を支持する遮光性支持枠と、を備えるマスクの各偏光板をそれぞれ介するように、前記直線偏光を照射するものである。
先ず、光配向処理方法で使用される配向膜材料について説明する。配向膜材料は、紫外線等の光を照射すると、その光照射方向に応じて光異性化反応、光二量化反応等の光反応を生じ、その光反応に応じて液晶分子を配向させる配向規制力を発現する感光性材料である。前記配向膜材料としては、例えば、アゾベンゼンで側鎖置換したポリイミド、シンナメート、クマリン等で側鎖置換したポリイミド等の公知材料が挙げられる。
次いで、光照射により発現する配向膜材料の配向規制力等について、図1を参照して説明する。図1は、配向膜材料1の表面に向けて照射された光9の照射方向lと、光照射方向lに応じて発現した配向規制力11の方向(配向規制方向)と、液晶分子2の傾斜方向mとの関係を模式的に表した説明図(斜視図)である。図1に示されるように、配向膜材料1の表面(X-Y平面)に対し、角度θの方向lから紫外線等の光9が照射されると、その光9が照射された配向膜材料1の個所に光反応が生じ、その光照射方向lに応じた配向規制力11が現れる。なお、説明の便宜上、図1の配向規制力11(配向規制方向)は、配向膜材料1の表面に沿った成分として表現した(本明細書の他の図面についても同様)。
上記のように光照射方向lに応じて発現した配向規制力11は、液晶分子2に対し、液晶分子2の向きを揃えるように作用する。図1に示されるように、液晶分子2が、配向規制力11を有する配向膜材料1の上方に存在すると、液晶分子2は、配向規制力11の作用により、配向膜材料1の表面から角度αで傾くように配向する(傾斜配向する)。
つまり、液晶分子2の傾斜方向m(傾斜角度α)は、光照射方向l(光照射角度θ)に応じて定まるものである。本実施形態において、照射される光9としては、直線偏光が好ましい。なお、光照射角度θは、0°<θ<90°の範囲で適宜、設定される。
つまり、液晶分子2の傾斜方向m(傾斜角度α)は、光照射方向l(光照射角度θ)に応じて定まるものである。本実施形態において、照射される光9としては、直線偏光が好ましい。なお、光照射角度θは、0°<θ<90°の範囲で適宜、設定される。
次いで、図2を参照して、本実施形態の光配向処理方法を説明する。図2は、第1実施形態の光配向処理方法の内容を模式的に表した説明図(斜視図)である。図2には、配向膜材料1と、配向膜材料1の上方に配置するマスク3(光配向処理用マスク)が示される。マスク3は、透過軸の向きが異なる2種類の偏光板4A,4Bと、これらの偏光板4A,4Bを囲み、光を遮る遮光性枠部材5からなる。
本実施形態の偏光板4A,4Bの形状は、共に矩形(長方形)であり、これらの偏光板4A,4Bは、並列するように配置している。偏光板4Aは、その面内に透過軸6Aと、その透過軸6Aと垂直に交わる吸収軸7Aとを有する。偏光板4Bは、その面内に透過軸6Bと、その透過軸6Bと垂直に交わる吸収軸7Bとを有する。本実施形態において、偏光板4A及び偏光板4Bは、互いの透過軸6A,6Bが垂直となるように(直交するように)、配置している。また、偏光板4A及び偏光板4Bは、配向膜材料1の表面に形成する予定の各区域8A,8Bに対応するように、配向膜材料1の上方に配置している。
本実施形態の光配向処理方法では、図2に示されるように、配向膜材料1の上方に配置するマスク3の偏光板4Aに向けて直線偏光9Aが照射され、かつ偏光板4Bに向けて直線偏光9Bが照射される。
直線偏光9Aは、図示されない光源から配向膜材料1の表面に対して斜めに照射される。直線偏光9Aの進行方向(光照射方向)は、配向膜材料1の表面に形成すべき区域8Aに応じて設定される。つまり、区域8Aにおいて発現させたい配向規制力(配向規制方向)11Aに応じて設定される。また、直線偏光9Aの振動方向(偏光軸10A)は、偏光板4Aの透過軸6Aに応じて設定される。本実施形態の直線偏光9Aの偏光軸10Aは、偏光板4Aの透過軸6Aと同一平面上に配置するように設定されている。つまり、直線偏光9Aは、その振動面(偏光軸10Aを含む平面)と同一平面上に、偏光板4Aの透過軸6Aが配置するように、設定されている。なお、本実施形態においては、特に、直線偏光9Aの偏光軸10Aと、偏光板4Aの透過軸6Aとは、平行に配置している。
このような直線偏光9Aは、偏光板4Aを通過でき、配向膜材料1を露光できる。直線偏光9Aのうち、遮光性枠部材5に照射されたものは、遮光性枠部材5で遮られる。したがって、配向膜材料1には、直線偏光9Aの進行方向(光照射方向)に応じた配向規制力11Aを有し、かつ偏光板4Aの形状を象った区域8Aが形成される。
このような直線偏光9Aは、偏光板4Aを通過でき、配向膜材料1を露光できる。直線偏光9Aのうち、遮光性枠部材5に照射されたものは、遮光性枠部材5で遮られる。したがって、配向膜材料1には、直線偏光9Aの進行方向(光照射方向)に応じた配向規制力11Aを有し、かつ偏光板4Aの形状を象った区域8Aが形成される。
他方、直線偏光9Bも、図示されない光源から配向膜材料1の表面に対して斜めに照射される。直線偏光9Bの進行方向(光照射方向)は、配向膜材料1の表面に形成すべき他の区域8Bに応じて設定される。つまり、区域8Bにおいて発現させたい配向規制力(配向規制方向)11Bに応じて設定される。また、直線偏光9Bの振動方向(偏光軸10B)は、偏光板4Bの透過軸6Bに応じて設定される。本実施形態の直線偏光9Bの偏光軸10Bは、偏光板4Bの透過軸6Bと同一平面上に配置するように設定されている。つまり、直線偏光9Bは、その振動面(偏光軸10Bを含む平面)と同一平面上に、偏光板4Bの透過軸6Bが配置するように、設定されている。
このような直線偏光9Bは、偏光板4Bを通過でき、配向膜材料1を露光できる。直線偏光9Bのうち、遮光性枠部材5に照射されたものは、遮光性枠部材5で遮られる。したがって、配向膜材料1には、直線偏光9Bの進行方向(光照射方向)に応じた配向規制力11Bを有し、かつ偏光板4Bの形状を象った区域8Bが形成される。
このような直線偏光9Bは、偏光板4Bを通過でき、配向膜材料1を露光できる。直線偏光9Bのうち、遮光性枠部材5に照射されたものは、遮光性枠部材5で遮られる。したがって、配向膜材料1には、直線偏光9Bの進行方向(光照射方向)に応じた配向規制力11Bを有し、かつ偏光板4Bの形状を象った区域8Bが形成される。
本実施形態において、直線偏光9Aが逸れて偏光板4Bに照射されても、直線偏光9Aは偏光板4Bを通過せず、偏光板4Bにより遮られる。何故ならば、直線偏光9Aの振動面(偏向軸10Aを含む平面)が、偏光板4Bの吸収軸7Bと同一平面上に配置しているからである。
また、直線偏光9Bが逸れて偏光板4Aに照射されても、直線偏光9Bは偏光板4Aを通過せず、偏光板4Aにより遮られる。何故ならば、直線偏光9Bの振動面(偏光軸10Bを含む平面)が、偏光板4Aの吸収軸7Aと同一平面上に配置しているからである。
なお、本実施形態では、直線偏光9Aの振動面と、直線偏光9Bの振動面とは、垂直な(直交するような)配置関係をとっていると言える。
また、直線偏光9Bが逸れて偏光板4Aに照射されても、直線偏光9Bは偏光板4Aを通過せず、偏光板4Aにより遮られる。何故ならば、直線偏光9Bの振動面(偏光軸10Bを含む平面)が、偏光板4Aの吸収軸7Aと同一平面上に配置しているからである。
なお、本実施形態では、直線偏光9Aの振動面と、直線偏光9Bの振動面とは、垂直な(直交するような)配置関係をとっていると言える。
以上のように、本実施形態においては、直線偏光9A及び直線偏光9Bをマスク3に向けて同時に照射して、互いに異なった配向規制方向を有する区域8A及び区域8Bを、配向膜材料に一度に(同時に)形成できる。そのため、本実施形態の光配向処理方法によれば、従来の光配向処理方法を用いた場合よりも、光照射工程数(露光工程数)を減らすことができ、光配向処理の時間を短縮できる。
なお、本実施形態の光配向処理方法においては、直線偏光9Aと、直線偏光9Bとを、別々に照射することも可能である。このように直線偏光9Aと直線偏光9Bとを別々に照射する場合、1種類のマスクで2種類の区域を形成できることになる。つまり、従来の光配向処理方法のように、区域の種類数と同じ種類数のマスクを用意する必要がなく、マスクを光照射毎に取り換える必要がない。そのため、本実施形態の光配向処理方法は、異なる区域を形成する度に、マスクの配向膜材料に対する位置合わせを行う必要がなく、露光精度を向上できる。
従来の光配向処理方法によっては、マスクの位置を光照射工程(露光工程)毎に配向膜材料上を移動(スライド)させることにより、1種類のマスクで複数種(例えば、2種類)の区域を形成することが可能な場合がある。この場合、マスクを移動させて、正確に位置合わせを行うことは容易ではない。これに対し、本実施形態の光配向処理方法によれば、マスクを移動させることなく、1種類のマスクで2種類の区域を形成することが可能となる。
従来の光配向処理方法によっては、マスクの位置を光照射工程(露光工程)毎に配向膜材料上を移動(スライド)させることにより、1種類のマスクで複数種(例えば、2種類)の区域を形成することが可能な場合がある。この場合、マスクを移動させて、正確に位置合わせを行うことは容易ではない。これに対し、本実施形態の光配向処理方法によれば、マスクを移動させることなく、1種類のマスクで2種類の区域を形成することが可能となる。
本実施形態において、直線偏光9A,Bは、それぞれ異なる光源を用いて照射されるものである。偏光軸(振動面)が異なる直線偏光毎に、それぞれの直線偏光を発する光源を割り当てることが好ましい。
<光配向処理用マスク>
本実施形態の光配向処理用マスクは、上記光配向処理方法で使用されるマスク3であり、図2に示されるものである。
本実施形態の光配向処理用マスクは、上記光配向処理方法で使用されるマスク3であり、図2に示されるものである。
<配向膜製造方法>
本実施形態の配向膜製造方法は、上記光配向処理方法(工程)を含むものである。
本実施形態の配向膜製造方法は、上記光配向処理方法(工程)を含むものである。
〔第2実施形態〕
図3~図9を参照して、第2実施形態の光配向処理方法を説明する。図3は、本実施形態の光配向処理方法を施した配向膜が使用される液晶表示装置の構成を模式的に表した説明図(断面図)である。図3に示されるように、液晶表示装置100は、薄膜トランジスタ(TFT)基板21と、カラーフィルタ(CF)基板22と、液晶層23とを備える。なお、図3において、光源等の液晶表示装置100のその他の構成は、説明の便宜上、省略した。
図3~図9を参照して、第2実施形態の光配向処理方法を説明する。図3は、本実施形態の光配向処理方法を施した配向膜が使用される液晶表示装置の構成を模式的に表した説明図(断面図)である。図3に示されるように、液晶表示装置100は、薄膜トランジスタ(TFT)基板21と、カラーフィルタ(CF)基板22と、液晶層23とを備える。なお、図3において、光源等の液晶表示装置100のその他の構成は、説明の便宜上、省略した。
前記TFT基板21は、透明なガラス板上に、スイッチング素子としてのTFT等が形成された基板である。CF基板22は、透明なガラス板上にCF層等が形成された基板である。TFT基板21及びCF基板22は、液晶層23を挟むように対向している。液晶層23は、負の誘電率異方性を有するネマチック液晶材料(ネガ型ネマチック液晶材料)を含有する。TFT基板21は、液晶層23側の表面に配向膜24を備え、CF基板22は、液晶層23側の表面に配向膜25を備える。
なお、液晶表示装置100は、4ドメインのVATN(Vertical Alignment Twisted Nematic)モードを有するものである。VATNモードとは、互いの基板(TFT基板21及びCF基板22)における光配向処理方向(配向規制方向)が直交する配向膜(垂直配向膜)を用いることにより、液晶分子が垂直配向され、かつツイスト構造を有するモードである。
図4は、TFT基板21に形成される配向膜24の一部を模式的に表した説明図(平面図)である。図4に示されるように、配向膜24は、配向膜材料1aの表面に、液晶分子を配向させるための2種類の区域8C,8Dが形成されたものである。区域8C及び区域8Dは、それぞれ異なる配向規制力(配向規制方向)11C,11Dを有する。図4には、区域8C及び8Dがそれぞれ2個ずつ示される。区域8C及び区域8Dは、交互に並ぶように配置し、これらの区域8C及び8Dにおいて、配向規制方向11Cと配向規制方向11Dが、互いに逆向きの矢印で示されている。
図5は、図4の配向膜材料1aの表面に、液晶分子を配向させるための区域8C,8Dを形成するために用いるマスク3aを模式的に表した説明図(平面図)である。図5に示されるように、マスク3aは、透過軸(吸収軸)の方向が異なる2種類の偏光板4C,4Dと、遮光性枠部材5aを備える。偏光板4Cは、図4に示される区域8Cを形成するためのものであり、偏光板4Dは、図4に示される区域8Dを形成するためのものである。偏光板4C及び4Dは、ともに短冊状(矩形状)であり、それぞれ交互に並べられている。偏光板4C及び4Dは、遮光性枠部材5aで囲まれ、支持される。
図6は、図5に示される一点鎖線で囲まれたマスク3aの領域Sにおける光配向処理工程の内容を模式的に表した説明図(斜視図)である。図6に示されるように、本実施形態の光配向処理工程は、配向膜材料1aの上方に配置させたマスク3aの偏光板4Cを介して、直線偏光9Cが配向膜材料1aの表面に向けて斜めに照射される。また、図6に示されるように偏光板4Dを介して、直線偏光9Dが配向膜材料1aの表面に向けて斜めに照射される。本実施形態においては、直線偏光9C及び直線偏光9Dは、それぞれ図示されない光源より同時に照射される。
図6に示されるように、直線偏光9Cの振動面(偏光軸10Cを含む平面)と同一平面上に偏光板4Cの透過軸6Cが配置し、直線偏光9Dの振動面(偏光軸10Dを含む平面)と同一平面上に偏光板4Dの透過軸6Dが配置している。なお、各透過軸6C及び6Dに対し、各吸収軸7C及び7Dは、それぞれ直交している。
図6に示されるように、直線偏光9Cの振動面(偏光軸10Cを含む平面)と同一平面上に偏光板4Cの透過軸6Cが配置し、直線偏光9Dの振動面(偏光軸10Dを含む平面)と同一平面上に偏光板4Dの透過軸6Dが配置している。なお、各透過軸6C及び6Dに対し、各吸収軸7C及び7Dは、それぞれ直交している。
図6に示されるように、このような条件で光配向処理を行うと、配向膜材料1aに、直線偏光9Cの光照射方向に応じた配向規制力11Cを有し、偏光板4Cの形状を象った区域8Cと、直線偏光9Dの光照射方向に応じた配向規制力11Dを有し、偏光板4Dの形状を象った区域8Dが形成される。図6に示される配向膜材料1aは、図3に示される液晶表示装置100の配向膜24として使用される。
図7は、CF基板22に形成される配向膜25の一部を模式的に表した説明図(平面図)である。図7に示されるように、配向膜25は、配向膜材料1bの表面に、液晶分子を配向させるための2種類の区域8E,8Fが形成されたものである。区域8E及び区域8Fは、それぞれ異なる配向規制力(配向規制方向)11E,11Fを有する。図7には、区域8E及び区域8Fがそれぞれ2個ずつ示される。区域8E及び区域8Fは、交互に並ぶように配置し、これらの区域8E及び8Fにおいて、配向規制方向11Eと配向規制方向11Fが、互いに逆向きの矢印で示されている。
図8は、図7の配向膜材料1bの表面に、液晶分子を配向させるための区域8E,8Fを形成するために用いるマスク3bを模式的に表した説明図(平面図)である。図8に示されるように、マスク3bは、透過軸(吸収軸)の方向が異なる2種類の偏光板4E,4Fと、遮光性枠部材5bを備える。偏光板4Eは、図7に示される区域8Eを形成するためのものであり、偏光板4Fは、図7に示される区域8Fを形成するためのものである。偏光板4E及び4Fは、ともに短冊状(矩形状)であり、それぞれ交互に並べられている。
図8に示されるマスク3bは、その基本的な構成は、図5に示されるTFT基板側の配向膜24を製造するためのマスク3aと同様である。図8に示されるマスク3bを用いて、図7に示される配向膜材料1bの表面に2種類の区域8E,8Fを形成する原理も、図6に示される内容と同様である。そのため、マスク3bを用いた光配向処理により、CF基板側の配向膜25を製造する工程の説明は省略する。
なお、TFT基板側の配向膜24と、CF基板側の配向膜25とでは、配向膜材料の表面に形成される2種類の矩形状の区域の配列方向が異なっている。図3に示される液晶表示装置100において、液晶層23を挟んで向かい合うTFT基板側の配向膜24と、CF基板側の配向膜25とは、互いの区域が交差するように配置している。
図9は、図3に示される液晶表示装置100において、TFT基板21とCF基板22との間に電圧を印可した際、1画素における液晶分子2の傾斜方向を模式的に表した説明図である。図9に示されるように、液晶表示装置100の1画素は、8個の領域(ドメイン)に分割されている。図9において、縦方向に4個の領域(ドメイン)が配列し、横方向に2個の領域(ドメイン)が配列している。なお、説明の便宜上、各領域内の液晶分子2の数は1個とした。図9において、右向きの実線矢印は、CF基板側の配向膜25上の区域8Eが有する配向規制力(配向規制方向)11Eを表し、左向きの実線矢印は、CF基板側の配向膜25上の区域8Fが有する配向規制力(配向規制方向)11Fを表す。また、図9において、下向きの破線矢印は、TFT基板側の配向膜24上の区域8Cが有する配向規制力(配向規制方向)11Cを表し、上向きの破線矢印は、TFT基板側の配向膜24上の区域8Dが有する配向規制力(配向規制方向)11Dを表す。
図9に示されるように、1画素の各領域(ドメイン)において、TFT基板側の配向膜24の配向規制方向と、CF基板側の配向膜25の配向規制方向とが、互いに90°異なるように配置している。そのため、図9に示されるように、TFT基板21及びCF基板22が向かい合い、重なった状態で、平面視した場合、各領域(ドメイン)における液晶分子2は、配向規制方向(光照射方向)から、それぞれ45°ずれた方向を向くことになる。各領域(ドメイン)における液晶分子2は、それぞれ異なる4つの方向に傾斜している。
このように、本実施形態の光配向処理法を施した配向膜24,25を用いることによって、液晶分子を90°ツイスト配向させることができる。
このように、本実施形態の光配向処理法を施した配向膜24,25を用いることによって、液晶分子を90°ツイスト配向させることができる。
〔第3実施形態〕
図10及び図11を参照して、第3実施形態の光配向処理方法を説明する。図10は、第3実施形態の光配向処理方法で用いるマスク3cを模式的に表した説明図(平面図)である。図11は、図10のマスク3cを用いて光配向処理を施した配向膜材料を模式的に表した説明図(平面図)である。
図10に示されるように、マスク3cは、2種類の偏光板4G,4Hを備える。図10の偏光板4Gに示される実線矢印は偏光板4Gの透過軸6Gを表し、破線矢印は偏光板4Gの吸収軸7Gを表す。また、図10の偏光板4Hに示される実線矢印は偏光板4Hの透過軸6Hを表し、破線矢印は偏光板4Hの吸収軸7Hを表す。偏光板4Gの透過軸6Gと吸収軸7Gとは垂直に交わり、偏光板4Hの透過軸6Hと吸収軸7Hとは垂直に交わっている。また、偏光板4Gの透過軸6Gと、偏光板4Hの透過軸6Hとは垂直に(直交するように)配置している。
図10及び図11を参照して、第3実施形態の光配向処理方法を説明する。図10は、第3実施形態の光配向処理方法で用いるマスク3cを模式的に表した説明図(平面図)である。図11は、図10のマスク3cを用いて光配向処理を施した配向膜材料を模式的に表した説明図(平面図)である。
図10に示されるように、マスク3cは、2種類の偏光板4G,4Hを備える。図10の偏光板4Gに示される実線矢印は偏光板4Gの透過軸6Gを表し、破線矢印は偏光板4Gの吸収軸7Gを表す。また、図10の偏光板4Hに示される実線矢印は偏光板4Hの透過軸6Hを表し、破線矢印は偏光板4Hの吸収軸7Hを表す。偏光板4Gの透過軸6Gと吸収軸7Gとは垂直に交わり、偏光板4Hの透過軸6Hと吸収軸7Hとは垂直に交わっている。また、偏光板4Gの透過軸6Gと、偏光板4Hの透過軸6Hとは垂直に(直交するように)配置している。
配向膜材料の上方に図10のマスク3cを配置し、そのマスク3cの偏光板4Gを介するように直線偏光9Gを照射し、かつ偏光板4Hを介するように直線偏光9Hを照射すると、図11に示される配向膜材料1cが得られる。なお、図10に示される直線偏光9G,9Hは、それぞれ異なる光源(不図示)より配向膜材料の表面に対し、斜めに照射されたものである。直線偏光9Gと、直線偏光9Hとは、図10のマスク3cを平面視した際、互いに向かい合うように設定されている。
本実施形態においては、直線偏光9Gの振動面(偏光軸10Gを含む平面)と同一平面上に、偏光板4Gの透過軸6Gが配置するように設定され、直線偏光9Hの振動面(偏光軸10Hを含む平面)と同一平面上に、偏光板4Hの透過軸6Hが配置するように設定されている。
図11に示される配向膜材料1cの表面には、配向規制力(配向規制方向)11Gを有する区域8Gと、配向規制力(配向規制方向)11Hを有する区域8Hとが形成されている。区域8Gは、図10のマスク3cの偏光板4Gを通過した直線偏光9Gによって形成されたものであり、区域8Hは、偏光板4Hを通過した直線偏光9Hによって形成されたものである。
本実施形態において、直線偏光9G,9Hは、同時に照射してもよいし、別々に照射してもよい。
本実施形態においては、直線偏光9Gの振動面(偏光軸10Gを含む平面)と同一平面上に、偏光板4Gの透過軸6Gが配置するように設定され、直線偏光9Hの振動面(偏光軸10Hを含む平面)と同一平面上に、偏光板4Hの透過軸6Hが配置するように設定されている。
図11に示される配向膜材料1cの表面には、配向規制力(配向規制方向)11Gを有する区域8Gと、配向規制力(配向規制方向)11Hを有する区域8Hとが形成されている。区域8Gは、図10のマスク3cの偏光板4Gを通過した直線偏光9Gによって形成されたものであり、区域8Hは、偏光板4Hを通過した直線偏光9Hによって形成されたものである。
本実施形態において、直線偏光9G,9Hは、同時に照射してもよいし、別々に照射してもよい。
〔第4実施形態〕
図12及び図13を参照して、第4実施形態の光配向処理方法を説明する。図12は、第4実施形態の光配向処理方法で用いるマスク3dを模式的に表した説明図(平面図)である。図13は、図12のマスク3dを用いて光配向処理を施した配向膜材料を模式的に表した説明図(平面図)である。
図12に示されるように、マスク3dは、2種類の偏光板4I,4Jを備える。図12の偏光板4Iに示される実線矢印は偏光板4Iの透過軸6Iを表し、破線矢印は偏光板4Iの吸収軸7Iを表す。また、図10の偏光板4Jに示される実線矢印は偏光板4Jの透過軸6Jを表し、破線矢印は偏光板4Jの吸収軸7Jを表す。偏光板4Iの透過軸6Iと吸収軸7Iとは垂直に交わり、偏光板4Jの透過軸6Jと吸収軸7Jとは垂直に交わっている。また、偏光板4Iの透過軸6Iと、偏光板4Jの透過軸6Jとは、垂直に(直交するように))配置している。
図12に示されるように、マスク3dにおける偏光板4I及び偏光板4Jは、縦方向及び横方向の何れにおいても、交互に並べられている。
図12及び図13を参照して、第4実施形態の光配向処理方法を説明する。図12は、第4実施形態の光配向処理方法で用いるマスク3dを模式的に表した説明図(平面図)である。図13は、図12のマスク3dを用いて光配向処理を施した配向膜材料を模式的に表した説明図(平面図)である。
図12に示されるように、マスク3dは、2種類の偏光板4I,4Jを備える。図12の偏光板4Iに示される実線矢印は偏光板4Iの透過軸6Iを表し、破線矢印は偏光板4Iの吸収軸7Iを表す。また、図10の偏光板4Jに示される実線矢印は偏光板4Jの透過軸6Jを表し、破線矢印は偏光板4Jの吸収軸7Jを表す。偏光板4Iの透過軸6Iと吸収軸7Iとは垂直に交わり、偏光板4Jの透過軸6Jと吸収軸7Jとは垂直に交わっている。また、偏光板4Iの透過軸6Iと、偏光板4Jの透過軸6Jとは、垂直に(直交するように))配置している。
図12に示されるように、マスク3dにおける偏光板4I及び偏光板4Jは、縦方向及び横方向の何れにおいても、交互に並べられている。
配向膜材料の上方に図12のマスク3dを配置し、そのマスク3dの偏光板4Iを介するように直線偏光9Iを照射し、かつ偏光板4Jを介するように直線偏光9Jを照射すると、図13に示される配向膜材料1dが得られる。
なお、図12に示される直線偏光9I,9Jは、それぞれ異なる光源(不図示)より配向膜材料の表面に対し、斜めに照射されたものである。直線偏光9Iと、直線偏光9Jとは、図12のマスク3dを平面視した際、互いに向かい合うように設定されている。
本実施形態においては、直線偏光9Iの振動面(偏光軸10Iを含む平面)と同一平面上に、偏光板4Iの透過軸6Iが配置するように設定され、直線偏光9Jの振動面(偏光軸10Jを含む平面)と同一平面上に、偏光板4Jの透過軸6Jが配置するように設定されている。
図13に示される配向膜材料1dの表面には、配向規制力(配向規制方向)11Iを有する区域8Iと、配向規制力(配向規制方向)11Jを有する区域8Jとが形成されている。区域8Iは、図12のマスク3dの偏光板4Iを通過した直線偏光9Iによって形成されたものであり、区域8Jは、偏光板4Jを通過した直線偏光9Jによって形成されたものである。
本実施形態において、直線偏光9I,9Jは、同時に照射してもよいし、別々に照射してもよい。
なお、図12に示される直線偏光9I,9Jは、それぞれ異なる光源(不図示)より配向膜材料の表面に対し、斜めに照射されたものである。直線偏光9Iと、直線偏光9Jとは、図12のマスク3dを平面視した際、互いに向かい合うように設定されている。
本実施形態においては、直線偏光9Iの振動面(偏光軸10Iを含む平面)と同一平面上に、偏光板4Iの透過軸6Iが配置するように設定され、直線偏光9Jの振動面(偏光軸10Jを含む平面)と同一平面上に、偏光板4Jの透過軸6Jが配置するように設定されている。
図13に示される配向膜材料1dの表面には、配向規制力(配向規制方向)11Iを有する区域8Iと、配向規制力(配向規制方向)11Jを有する区域8Jとが形成されている。区域8Iは、図12のマスク3dの偏光板4Iを通過した直線偏光9Iによって形成されたものであり、区域8Jは、偏光板4Jを通過した直線偏光9Jによって形成されたものである。
本実施形態において、直線偏光9I,9Jは、同時に照射してもよいし、別々に照射してもよい。
〔第5実施形態〕
図14及び図15を参照して、第5実施形態の光配向処理方法を説明する。図14は、第5実施形態の光配向処理方法に用いるマスク3eを模式的に表した説明図(平面図)である。図15は、図14のマスク3eを用いて光配向処理を行った配向膜材料を模式的に表した説明図(平面図)である。
図14に示されるように、マスク3eは、2種類の偏光板4K,4Lを備える。図14の偏光板4Kに示される実線矢印は偏光板4Kの透過軸6Kを表し、破線矢印は偏光板4Kの吸収軸7Kを表す。
また、図14の偏光板4Lに示される実線矢印は偏光板4Lの透過軸6Lを表し、破線矢印は偏光板4Lの吸収軸7Lを表す。偏光板4Kの透過軸6Kと吸収軸7Kとは垂直に交わり、偏光板4Lの透過軸6Lと吸収軸7Lとは垂直に交わっている。また、偏光板4Kの透過軸6Kと、偏光板4Lの透過軸6Lとは垂直に(直交するように)配置している。
図14及び図15を参照して、第5実施形態の光配向処理方法を説明する。図14は、第5実施形態の光配向処理方法に用いるマスク3eを模式的に表した説明図(平面図)である。図15は、図14のマスク3eを用いて光配向処理を行った配向膜材料を模式的に表した説明図(平面図)である。
図14に示されるように、マスク3eは、2種類の偏光板4K,4Lを備える。図14の偏光板4Kに示される実線矢印は偏光板4Kの透過軸6Kを表し、破線矢印は偏光板4Kの吸収軸7Kを表す。
また、図14の偏光板4Lに示される実線矢印は偏光板4Lの透過軸6Lを表し、破線矢印は偏光板4Lの吸収軸7Lを表す。偏光板4Kの透過軸6Kと吸収軸7Kとは垂直に交わり、偏光板4Lの透過軸6Lと吸収軸7Lとは垂直に交わっている。また、偏光板4Kの透過軸6Kと、偏光板4Lの透過軸6Lとは垂直に(直交するように)配置している。
配向膜材料の上方に図14のマスク3eを配置し、そのマスク3eの偏光板4Kを介するように直線偏光9Kを照射し、かつ偏光板4Lを介するように直線偏光9Lを照射すると、図15に示される配向膜材料1eが得られる。
本実施形態において、直線偏光9Kと、直線偏光9Lとは、それぞれ異なる光源(不図示)より配向膜材料の表面に対し、斜めに照射されたものであり、これらの光は、配向膜材料の表面に対する入射角度(図1におけるθ参照)が異なっている。直線偏光9Kの入射角度(照射角度:θ=20°)の方が、直線偏光9Lの入射角度(照射角度:θ=80°)よりも、小さく設定されている。なお、直線偏光9Kと、直線偏光9Lとは、図14のマスク3eを平面視した際、同じ方向を向くように設定されている。
本実施形態においては、直線偏光9Kの振動面(偏光軸10Kを含む平面)と同一平面上に、偏光板4Kの透過軸6Kが配置するように設定され、直線偏光9Lの振動面(偏光軸10Lを含む平面)と同一平面上に、偏光板4Lの透過軸6Lが配置するように設定されている。
図15に示される配向膜材料1eの表面には、配向規制力(配向規制方向)11Kを有する区域8Kと、配向規制力(配向規制方向)11Lを有する区域8Lとが形成されている。区域8Kは、図14のマスク3eの偏光板4Kを通過した直線偏光9Kによって形成されたものであり、区域8Lは、偏光板4Lを通過した直線偏光9Lによって形成されたものである。
本実施形態において、直線偏光9K,9Jは、同時に照射してもよいし、別々に照射してもよい。
本実施形態において、直線偏光9Kと、直線偏光9Lとは、それぞれ異なる光源(不図示)より配向膜材料の表面に対し、斜めに照射されたものであり、これらの光は、配向膜材料の表面に対する入射角度(図1におけるθ参照)が異なっている。直線偏光9Kの入射角度(照射角度:θ=20°)の方が、直線偏光9Lの入射角度(照射角度:θ=80°)よりも、小さく設定されている。なお、直線偏光9Kと、直線偏光9Lとは、図14のマスク3eを平面視した際、同じ方向を向くように設定されている。
本実施形態においては、直線偏光9Kの振動面(偏光軸10Kを含む平面)と同一平面上に、偏光板4Kの透過軸6Kが配置するように設定され、直線偏光9Lの振動面(偏光軸10Lを含む平面)と同一平面上に、偏光板4Lの透過軸6Lが配置するように設定されている。
図15に示される配向膜材料1eの表面には、配向規制力(配向規制方向)11Kを有する区域8Kと、配向規制力(配向規制方向)11Lを有する区域8Lとが形成されている。区域8Kは、図14のマスク3eの偏光板4Kを通過した直線偏光9Kによって形成されたものであり、区域8Lは、偏光板4Lを通過した直線偏光9Lによって形成されたものである。
本実施形態において、直線偏光9K,9Jは、同時に照射してもよいし、別々に照射してもよい。
〔第6実施形態〕
図16~図18を参照して、第6実施形態の光配向処理方法を説明する。第6実施形態の光配向処理方法では、2種類(一組)のマスクを利用する。図16は、第6実施形態の一方のマスク3fを模式的に表した説明図(平面図)である。図17は、第6実施形態の他方のマスク3gを模式的に表した説明図(平面図)である。図18は、図16のマスク3f及び図17のマスク3gを用いて光配向処理を行った配向膜材料を模式的に表した説明図(平面図)である。
図16に示されるように、一方のマスク3fは、2種類の偏光板4M,4Nを備える。図16の偏光板4Mに示される実線矢印は偏光板4Mの透過軸6Mを表し、破線矢印は偏光板4Mの吸収軸7Mを表す。
また、図16の偏光板4Nに示される実線矢印は偏光板4Nの透過軸6Nを表し、破線矢印は偏光板4Nの吸収軸7Nを表す。偏光板4Mの透過軸6Mと吸収軸7Mとは垂直に交わり、偏光板4Nの透過軸6Nと吸収軸7Nとは垂直に交わっている。また、偏光板4Mの透過軸6Mと、偏光板4Nの透過軸6Nとは垂直に(直交するように)配置している。図16において、偏光板4Mと偏光板4Nは、横方向に交互に並べられている。また、それぞれの偏光板4M及び偏光板4Nは、縦方向において、遮光性枠部材5fを介するように並べられている。
図17に示されるように、他方のマスク3gは、2種類の偏光板4O,4Pを備える。図17の偏光板4Oに示される実線矢印は偏光板4Oの透過軸6Oを表し、破線矢印は偏光板4Oの吸収軸7Oを表す。また、図17の偏光板4Pに示される実線矢印は偏光板4Pの透過軸6Pを表し、破線矢印は偏光板4Pの吸収軸7Pを表す。偏光板4Oの透過軸6Oと吸収軸7Oとは垂直に交わり、偏光板4Pの透過軸6Pと吸収軸7Pとは垂直に交わっている。
また、偏光板4Oの透過軸6Oと、偏光板4Pの透過軸6Pとは垂直に(直交するように)配置している。図17において、偏光板4Oと偏光板4Pは、横方向に交互に並べられている。また、それぞれの偏光板4O及び偏光板4Pは、縦方向において、遮光性枠部材5gを介するように並べられている。
図16~図18を参照して、第6実施形態の光配向処理方法を説明する。第6実施形態の光配向処理方法では、2種類(一組)のマスクを利用する。図16は、第6実施形態の一方のマスク3fを模式的に表した説明図(平面図)である。図17は、第6実施形態の他方のマスク3gを模式的に表した説明図(平面図)である。図18は、図16のマスク3f及び図17のマスク3gを用いて光配向処理を行った配向膜材料を模式的に表した説明図(平面図)である。
図16に示されるように、一方のマスク3fは、2種類の偏光板4M,4Nを備える。図16の偏光板4Mに示される実線矢印は偏光板4Mの透過軸6Mを表し、破線矢印は偏光板4Mの吸収軸7Mを表す。
また、図16の偏光板4Nに示される実線矢印は偏光板4Nの透過軸6Nを表し、破線矢印は偏光板4Nの吸収軸7Nを表す。偏光板4Mの透過軸6Mと吸収軸7Mとは垂直に交わり、偏光板4Nの透過軸6Nと吸収軸7Nとは垂直に交わっている。また、偏光板4Mの透過軸6Mと、偏光板4Nの透過軸6Nとは垂直に(直交するように)配置している。図16において、偏光板4Mと偏光板4Nは、横方向に交互に並べられている。また、それぞれの偏光板4M及び偏光板4Nは、縦方向において、遮光性枠部材5fを介するように並べられている。
図17に示されるように、他方のマスク3gは、2種類の偏光板4O,4Pを備える。図17の偏光板4Oに示される実線矢印は偏光板4Oの透過軸6Oを表し、破線矢印は偏光板4Oの吸収軸7Oを表す。また、図17の偏光板4Pに示される実線矢印は偏光板4Pの透過軸6Pを表し、破線矢印は偏光板4Pの吸収軸7Pを表す。偏光板4Oの透過軸6Oと吸収軸7Oとは垂直に交わり、偏光板4Pの透過軸6Pと吸収軸7Pとは垂直に交わっている。
また、偏光板4Oの透過軸6Oと、偏光板4Pの透過軸6Pとは垂直に(直交するように)配置している。図17において、偏光板4Oと偏光板4Pは、横方向に交互に並べられている。また、それぞれの偏光板4O及び偏光板4Pは、縦方向において、遮光性枠部材5gを介するように並べられている。
配向膜材料の上方に、先ず、図16の一方のマスク3fを配置し、そのマスク3fの偏光板4Mを介するように直線偏光9Mを照射し、かつ偏光板4Nを介するように直線偏光9Nを照射する。
次いで、マスク3fに代えて、図17の他方のマスク3gを配向膜材料の上方に配置し、そのマスク3gの偏光板4Oを介するように直線偏光9Oを照射し、かつ偏光板4Pを介するように直線偏光9Pを照射する。このように、2種類(1組)のマスク3f,3gを利用して、光配向処理を行うと、図18に示される配向膜材料1fが得られる。
次いで、マスク3fに代えて、図17の他方のマスク3gを配向膜材料の上方に配置し、そのマスク3gの偏光板4Oを介するように直線偏光9Oを照射し、かつ偏光板4Pを介するように直線偏光9Pを照射する。このように、2種類(1組)のマスク3f,3gを利用して、光配向処理を行うと、図18に示される配向膜材料1fが得られる。
なお、図16に示される直線偏光9M,9Nは、それぞれ異なる光源(不図示)より配向膜材料の表面に対し、斜めに照射されたものである。直線偏光9Mと、直線偏光9Nとは、図16の一方のマスク3fを平面視した際、互いに垂直となるように設定されている。
本実施形態においては、直線偏光9Mの振動面(偏光軸10Mを含む平面)と同一平面上に、偏光板4Mの透過軸6Mが配置するように設定され、直線偏光9Nの振動面(偏光面10Nを含む平面)と同一平面上に、偏光板4Nの透過軸6Nが配置するように設定されている。
図18に示される配向膜材料1fの表面には、配向規制力(配向規制方向)11Mを有する区域8Mと、配向規制力(配向規制方向)11Nを有する区域8Nとが形成されている。区域8Mは、図16のマスク3fの偏光板4Mを通過した直線偏光9Mによって形成されたものであり、区域8Nは、偏光板4Nを通過した直線偏光9Nによって形成されたものである。
本実施形態においては、直線偏光9Mの振動面(偏光軸10Mを含む平面)と同一平面上に、偏光板4Mの透過軸6Mが配置するように設定され、直線偏光9Nの振動面(偏光面10Nを含む平面)と同一平面上に、偏光板4Nの透過軸6Nが配置するように設定されている。
図18に示される配向膜材料1fの表面には、配向規制力(配向規制方向)11Mを有する区域8Mと、配向規制力(配向規制方向)11Nを有する区域8Nとが形成されている。区域8Mは、図16のマスク3fの偏光板4Mを通過した直線偏光9Mによって形成されたものであり、区域8Nは、偏光板4Nを通過した直線偏光9Nによって形成されたものである。
また、図17に示される直線偏光9O,9Pは、それぞれ異なる光源(不図示)より配向膜材料の表面に対し、斜めに照射されたものである。直線偏光9Oと、直線偏光9Pとは、図17の他方のマスク3gを平面視した際、互いに垂直となるように設定されている。
本実施形態においては、直線偏光9Oの振動面(偏光軸10Oを含む平面)と同一平面上に、偏光板4Oの透過軸6Oが配置するように設定され、直線偏光9Pの振動面(偏光面10Pを含む平面)と同一平面上に、偏光板4Pの透過軸6Pが配置するように設定されている。
図18に示される配向膜材料1fの表面には、配向規制力(配向規制方向)11Oを有する区域8Oと、配向規制力(配向規制方向)11Pを有する区域8Pとが形成されている。区域8Oは、図17のマスク3gの偏光板4Oを通過した直線偏光9Oによって形成されたものであり、区域8Pは、偏光板4Pを通過した直線偏光9Pによって形成されたものである。
本実施形態においては、直線偏光9Oの振動面(偏光軸10Oを含む平面)と同一平面上に、偏光板4Oの透過軸6Oが配置するように設定され、直線偏光9Pの振動面(偏光面10Pを含む平面)と同一平面上に、偏光板4Pの透過軸6Pが配置するように設定されている。
図18に示される配向膜材料1fの表面には、配向規制力(配向規制方向)11Oを有する区域8Oと、配向規制力(配向規制方向)11Pを有する区域8Pとが形成されている。区域8Oは、図17のマスク3gの偏光板4Oを通過した直線偏光9Oによって形成されたものであり、区域8Pは、偏光板4Pを通過した直線偏光9Pによって形成されたものである。
〔参考例〕
図19を参照して、参考例に係る光配向処理方法を説明する。図19は、他の光配向処理方法の内容を模式的に表した説明図(断面図)である。図19には、配向膜材料1’と、この配向膜材料1’の上方に配置するマスク3’が示される。
この参考例の光配向処理方法は、配向膜材料1’の表面に、直線偏光9’を鉛直方向から照射し、その直線偏光9’を利用して、配向膜材料1’に配向規制力を発現させて、液晶分子を配向させる区域8’、8’’を形成するものである。
図19に示されるように、マスク3’は、区域8’に対応させた位置に、開口部(窓)4’を有し、区域8’’に対応させた位置に、位相差板14’を備える。なお、マスク3’は、開口部4’及び位相差板14’以外の部分は、遮光性枠部材5’からなる。
図19を参照して、参考例に係る光配向処理方法を説明する。図19は、他の光配向処理方法の内容を模式的に表した説明図(断面図)である。図19には、配向膜材料1’と、この配向膜材料1’の上方に配置するマスク3’が示される。
この参考例の光配向処理方法は、配向膜材料1’の表面に、直線偏光9’を鉛直方向から照射し、その直線偏光9’を利用して、配向膜材料1’に配向規制力を発現させて、液晶分子を配向させる区域8’、8’’を形成するものである。
図19に示されるように、マスク3’は、区域8’に対応させた位置に、開口部(窓)4’を有し、区域8’’に対応させた位置に、位相差板14’を備える。なお、マスク3’は、開口部4’及び位相差板14’以外の部分は、遮光性枠部材5’からなる。
図19に示されるように、マスク3’の上方に配置された光源(不図示)から直線偏光9’が照射されると、直線偏光9’は、マスク3’の開口部4’は、そのまま通過し、配向膜材料1’まで到達する。これに対し、位相差板14’に向けて照射された直線偏光9’は、位相差板14’によって位相差が変更され、その位相差が変更された光が配向膜材料1’まで到達する。
例えば、位相差板14’が、λ/2位相差板からなる場合、直線偏光9’が位相差板14’を通過すると、偏光軸(振動面)が90°傾いた直線偏光19’が配向膜材料1’の表面に到達することになる。なお、直線偏光9’は、遮光性枠部材5’の部分では遮られる。
このような、開口部4’と共に位相差板14’を設けたマスク3’を利用すると、1種類の直線偏光から、偏光軸(振動面)が異なる他の直線偏光が得られ、配向膜材料1’に、配向規制力(配向方向)が異なった区域8’8’’を同時に形成できる。
例えば、位相差板14’が、λ/2位相差板からなる場合、直線偏光9’が位相差板14’を通過すると、偏光軸(振動面)が90°傾いた直線偏光19’が配向膜材料1’の表面に到達することになる。なお、直線偏光9’は、遮光性枠部材5’の部分では遮られる。
このような、開口部4’と共に位相差板14’を設けたマスク3’を利用すると、1種類の直線偏光から、偏光軸(振動面)が異なる他の直線偏光が得られ、配向膜材料1’に、配向規制力(配向方向)が異なった区域8’8’’を同時に形成できる。
図19に示される光配向処理方法は、要するに、以下の通りのものである。
鉛直方向から照射される直線偏光に応じて、液晶分子を配向させる配向規制力を発現する配向膜材料の表面に、配向規制方向毎に区分された領域を形成する光配向処理方法であって、
各区域に対応するように、直線偏光を通過させる透過部と、直線偏光の位相差を変更する位相差板とが、配置されたマスクを介するように、鉛直方向から直線偏光を照射することを特徴とする光配向処理方法。
鉛直方向から照射される直線偏光に応じて、液晶分子を配向させる配向規制力を発現する配向膜材料の表面に、配向規制方向毎に区分された領域を形成する光配向処理方法であって、
各区域に対応するように、直線偏光を通過させる透過部と、直線偏光の位相差を変更する位相差板とが、配置されたマスクを介するように、鉛直方向から直線偏光を照射することを特徴とする光配向処理方法。
Claims (10)
- 光照射方向に応じて、液晶分子を配向させる配向規制力を発現する配向膜材料の表面に、配向規制方向毎に区分された領域を形成する光配向処理方法であって、
前記配向膜材料の表面に、複数の方向から振動面が互いに異なる直線偏光を照射し、かつ、
各振動面と同一平面上にそれぞれ透過軸を有し、各区域に対応するようにそれぞれ配置される複数種の偏光板と、これらの偏光板を支持する遮光性支持枠と、を備えるマスクの各偏光板をそれぞれ介するように、前記直線偏光を照射することを特徴とする光配向処理方法。 - 配向膜材料の表面に、複数の方向から振動面が互いに異なる直線偏光を同時に照射する請求項1に記載の光配向処理方法。
- 前記直線偏光の振動面が互いに直交する請求項1又は2に記載の光配向処理方法。
- 前記偏光板の透過軸が互いに直交する請求項1~3の何れか1項に記載の光配向処理方法。
- 光照射方向に応じて、液晶分子を配向させる配向規制力を発現する配向膜材料の表面に、複数の方向から振動面が互いに異なる直線偏光を照射して、配向規制方向毎に区分された領域を形成するための光配向処理用マスクであって、
各振動面と同一平面上にそれぞれ透過軸を有し、各区域に対応するようにそれぞれ配置される複数種の偏光板と、
これらの偏光板を支持する遮光性支持枠と、を備えることを特徴とする光配向処理用マスク。 - 前記偏光板の透過軸が互いに直交する請求項5に記載の光配向処理用マスク。
- 光照射方向に応じて、液晶分子を配向させる配向規制力を発現する配向膜材料の表面に、配向規制方向毎に区分された領域を形成する工程を含む配向膜製造方法であって、
前記工程において、前記配向膜材料の表面に、複数の方向から振動面が互いに異なる直線偏光を照射し、かつ、各振動面と同一平面上にそれぞれ透過軸を有し、各区域に対応するようにそれぞれ配置される複数種の偏光板と、これらの偏光板を支持する遮光性支持枠と、を備えるマスクの各偏光板をそれぞれ介するように、前記直線偏光を照射することを特徴とする配向膜製造方法。 - 配向膜材料の表面に、複数の方向から振動面が互いに異なる直線偏光を同時に照射する請求項7に記載の配向膜製造方法。
- 前記直線偏光の振動面が互いに直交する請求項7又は8に記載の配向膜製造方法。
- 前記偏光板の透過軸が互いに直交する請求項7~9の何れか1項に記載の配向膜製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/320,608 US20120064441A1 (en) | 2009-05-29 | 2010-03-31 | Method for photo-alignment treatment, mask for photo-alignment treatment, and method for producing alignment film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009131523 | 2009-05-29 | ||
JP2009-131523 | 2009-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010137402A1 true WO2010137402A1 (ja) | 2010-12-02 |
Family
ID=43222524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/055866 WO2010137402A1 (ja) | 2009-05-29 | 2010-03-31 | 光配向処理方法、光配向処理用マスク及び配向膜製造方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20120064441A1 (ja) |
WO (1) | WO2010137402A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102221758A (zh) * | 2011-07-18 | 2011-10-19 | 南京中电熊猫液晶显示科技有限公司 | 一种混合垂直光配向液晶显示装置的配向方法 |
US20130100431A1 (en) * | 2010-04-23 | 2013-04-25 | V Technology Co., Ltd. | Method and apparatus for alignment processing |
CN103135284A (zh) * | 2011-11-23 | 2013-06-05 | 群康科技(深圳)有限公司 | 配向膜的形成方法 |
JPWO2012081098A1 (ja) * | 2010-12-15 | 2014-05-22 | 株式会社ブイ・テクノロジー | 配向処理装置及び配向処理方法 |
US20140212798A1 (en) * | 2013-01-25 | 2014-07-31 | Kent State University | Maskless process for pre-tilting liquid crystal molecules |
US8802358B2 (en) | 2011-11-23 | 2014-08-12 | Innocom Technology (Shenzhen) Co., Ltd. | Method of forming alignment film |
CN107728387A (zh) * | 2017-11-30 | 2018-02-23 | 赣州市秋田微电子有限公司 | 一种取向膜制造方法及其生产设备 |
CN108139631A (zh) * | 2015-10-02 | 2018-06-08 | 夏普株式会社 | 液晶显示面板、液晶显示面板的制造方法以及液晶显示面板的制造装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017151405A (ja) * | 2016-02-22 | 2017-08-31 | 株式会社ブイ・テクノロジー | 偏光光照射装置 |
CN105527759B (zh) * | 2016-03-09 | 2018-10-30 | 京东方科技集团股份有限公司 | 液晶配向方法、像素结构、显示面板及显示装置 |
CN105892156B (zh) * | 2016-06-07 | 2019-05-03 | 深圳市华星光电技术有限公司 | 对透明基板进行曝光的方法 |
CN105892157A (zh) * | 2016-06-07 | 2016-08-24 | 深圳市华星光电技术有限公司 | 对液晶面板进行光配向的方法及光罩 |
CN108803150B (zh) * | 2018-06-19 | 2021-01-26 | Tcl华星光电技术有限公司 | 光照装置及对mmg面板进行配向的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09297309A (ja) * | 1996-05-01 | 1997-11-18 | Stanley Electric Co Ltd | 液晶配向構造の製造方法 |
JP2008076825A (ja) * | 2006-09-22 | 2008-04-03 | Seiko Epson Corp | 配向膜製造用マスク及び液晶装置の製造方法 |
JP2008083215A (ja) * | 2006-09-26 | 2008-04-10 | Seiko Epson Corp | 配向膜製造用マスク及び液晶装置の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100247137B1 (ko) * | 1996-07-29 | 2000-03-15 | 구본준 | 멀티도메인 액정셀의 제조방법 |
US6924860B2 (en) * | 1997-11-05 | 2005-08-02 | Hitachi, Ltd. | Polarized UV light irradiation method for liquid crystal display device |
EP1353217A1 (en) * | 2002-03-29 | 2003-10-15 | JSR Corporation | Optical alignment method and liquid crystal display element |
WO2007063727A1 (en) * | 2005-12-02 | 2007-06-07 | Sharp Kabushiki Kaisha | Production method of liquid crystal display and exposure device for alignment treatment |
-
2010
- 2010-03-31 WO PCT/JP2010/055866 patent/WO2010137402A1/ja active Application Filing
- 2010-03-31 US US13/320,608 patent/US20120064441A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09297309A (ja) * | 1996-05-01 | 1997-11-18 | Stanley Electric Co Ltd | 液晶配向構造の製造方法 |
JP2008076825A (ja) * | 2006-09-22 | 2008-04-03 | Seiko Epson Corp | 配向膜製造用マスク及び液晶装置の製造方法 |
JP2008083215A (ja) * | 2006-09-26 | 2008-04-10 | Seiko Epson Corp | 配向膜製造用マスク及び液晶装置の製造方法 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8922752B2 (en) * | 2010-04-23 | 2014-12-30 | V Technology Co., Ltd. | Method and apparatus for alignment processing |
US20130100431A1 (en) * | 2010-04-23 | 2013-04-25 | V Technology Co., Ltd. | Method and apparatus for alignment processing |
JPWO2012081098A1 (ja) * | 2010-12-15 | 2014-05-22 | 株式会社ブイ・テクノロジー | 配向処理装置及び配向処理方法 |
JP5747921B2 (ja) * | 2010-12-15 | 2015-07-15 | 株式会社ブイ・テクノロジー | 配向処理装置及び配向処理方法 |
US9360777B2 (en) | 2010-12-15 | 2016-06-07 | V Technology Co., Ltd. | Apparatus and method for alignment processing |
KR101753450B1 (ko) * | 2010-12-15 | 2017-07-03 | 브이 테크놀로지 씨오. 엘티디 | 배향 처리 장치 및 배향 처리 방법 |
CN102221758A (zh) * | 2011-07-18 | 2011-10-19 | 南京中电熊猫液晶显示科技有限公司 | 一种混合垂直光配向液晶显示装置的配向方法 |
US8802358B2 (en) | 2011-11-23 | 2014-08-12 | Innocom Technology (Shenzhen) Co., Ltd. | Method of forming alignment film |
CN103135284A (zh) * | 2011-11-23 | 2013-06-05 | 群康科技(深圳)有限公司 | 配向膜的形成方法 |
TWI467324B (zh) * | 2011-11-23 | 2015-01-01 | Innolux Corp | 配向膜的形成方法 |
US20140212798A1 (en) * | 2013-01-25 | 2014-07-31 | Kent State University | Maskless process for pre-tilting liquid crystal molecules |
US9040229B2 (en) * | 2013-01-25 | 2015-05-26 | Kent State University | Maskless process for pre-tilting liquid crystal molecules |
CN108139631A (zh) * | 2015-10-02 | 2018-06-08 | 夏普株式会社 | 液晶显示面板、液晶显示面板的制造方法以及液晶显示面板的制造装置 |
CN108139631B (zh) * | 2015-10-02 | 2021-06-11 | 夏普株式会社 | 液晶显示面板以及其制造方法和制造装置 |
CN107728387A (zh) * | 2017-11-30 | 2018-02-23 | 赣州市秋田微电子有限公司 | 一种取向膜制造方法及其生产设备 |
Also Published As
Publication number | Publication date |
---|---|
US20120064441A1 (en) | 2012-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010137402A1 (ja) | 光配向処理方法、光配向処理用マスク及び配向膜製造方法 | |
JP4754037B2 (ja) | 液晶表示装置の製造方法及び配向処理用露光装置 | |
KR101612480B1 (ko) | 배향기판, 이를 포함하는 액정표시패널 및 배향기판의 제조방법 | |
JP3926874B2 (ja) | 液晶セルの製造方法及び液晶セル | |
JP3075917B2 (ja) | 液晶表示装置、その製造方法およびその製造装置 | |
KR101782013B1 (ko) | 노광 장치 및 액정 표시 장치의 제조 방법 | |
JP2010091906A (ja) | 電気光学装置の製造方法 | |
TWI448789B (zh) | 光配向製程與使用此光配向製程的液晶顯示裝置 | |
KR101829778B1 (ko) | 노광 장치 및 액정 표시 장치의 제조 방법 | |
KR101847325B1 (ko) | 액정 디스플레이 장치 및 그 제조방법 | |
JP2010039492A (ja) | 配向基板、これの製造方法、及びこれを有する液晶表示装置 | |
JP2008083215A (ja) | 配向膜製造用マスク及び液晶装置の製造方法 | |
JP2008076825A (ja) | 配向膜製造用マスク及び液晶装置の製造方法 | |
JP2013080215A (ja) | 光配向装置、および配向層の形成方法、および液晶ディスプレイの形成方法 | |
WO2012105393A1 (ja) | 露光装置、液晶表示装置及びその製造方法 | |
KR100323731B1 (ko) | 광조사장치 | |
CN107255891A (zh) | 一种显示装置的制作方法 | |
JP5404820B2 (ja) | 液晶表示パネルの製造方法 | |
JP2011053584A (ja) | 光照射装置 | |
JP2010096795A (ja) | 電気光学装置の製造方法、及び電気光学装置の製造装置 | |
KR101041090B1 (ko) | 배향 기판의 제조방법 및 이를 갖는 액정표시장치 | |
KR20130106219A (ko) | 표시 패널 및 이의 제조 방법 | |
JP3649824B2 (ja) | 液晶表示装置の製造方法およびその製造装置 | |
JP3639490B2 (ja) | 液晶表示装置 | |
TW201118477A (en) | Manufacturing method of photo-alignment layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10780359 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13320608 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10780359 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |