WO2010116972A1 - ニオブ酸アルカリ金属塩粒子の製造方法、およびニオブ酸アルカリ金属塩粒子 - Google Patents
ニオブ酸アルカリ金属塩粒子の製造方法、およびニオブ酸アルカリ金属塩粒子 Download PDFInfo
- Publication number
- WO2010116972A1 WO2010116972A1 PCT/JP2010/056171 JP2010056171W WO2010116972A1 WO 2010116972 A1 WO2010116972 A1 WO 2010116972A1 JP 2010056171 W JP2010056171 W JP 2010056171W WO 2010116972 A1 WO2010116972 A1 WO 2010116972A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- alkali metal
- metal niobate
- rectangular parallelepiped
- niobium
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 165
- 229910052783 alkali metal Inorganic materials 0.000 title claims abstract description 73
- 150000001340 alkali metals Chemical class 0.000 title claims abstract description 72
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 36
- 239000012670 alkaline solution Substances 0.000 claims description 25
- 239000000725 suspension Substances 0.000 claims description 25
- 239000010955 niobium Substances 0.000 claims description 19
- 229910052758 niobium Inorganic materials 0.000 claims description 18
- 239000000243 solution Substances 0.000 claims description 18
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 15
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 14
- 238000004729 solvothermal method Methods 0.000 claims description 14
- 229910010293 ceramic material Inorganic materials 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 11
- 229910052700 potassium Inorganic materials 0.000 claims description 8
- 229910052708 sodium Inorganic materials 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 6
- -1 niobium halide Chemical class 0.000 claims description 6
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 6
- 239000002202 Polyethylene glycol Substances 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 5
- 229920001223 polyethylene glycol Polymers 0.000 claims description 5
- 239000007795 chemical reaction product Substances 0.000 claims description 4
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 4
- 239000007791 liquid phase Substances 0.000 abstract description 5
- 229910016631 MNbO3 Inorganic materials 0.000 abstract 1
- 238000000034 method Methods 0.000 description 31
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 14
- 238000002441 X-ray diffraction Methods 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 14
- 239000004809 Teflon Substances 0.000 description 12
- 229920006362 Teflon® Polymers 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 238000003786 synthesis reaction Methods 0.000 description 12
- 239000000919 ceramic Substances 0.000 description 11
- 239000011734 sodium Substances 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 239000003513 alkali Substances 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- UYLYBEXRJGPQSH-UHFFFAOYSA-N sodium;oxido(dioxo)niobium Chemical compound [Na+].[O-][Nb](=O)=O UYLYBEXRJGPQSH-UHFFFAOYSA-N 0.000 description 4
- 238000010532 solid phase synthesis reaction Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910000464 lead oxide Inorganic materials 0.000 description 2
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 2
- 150000002822 niobium compounds Chemical class 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- VVNXEADCOVSAER-UHFFFAOYSA-N lithium sodium Chemical compound [Li].[Na] VVNXEADCOVSAER-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000007040 multi-step synthesis reaction Methods 0.000 description 1
- DSYRJFDOOSKABR-UHFFFAOYSA-I niobium(v) bromide Chemical compound [Br-].[Br-].[Br-].[Br-].[Br-].[Nb+5] DSYRJFDOOSKABR-UHFFFAOYSA-I 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- AOLPZAHRYHXPLR-UHFFFAOYSA-I pentafluoroniobium Chemical compound F[Nb](F)(F)(F)F AOLPZAHRYHXPLR-UHFFFAOYSA-I 0.000 description 1
- FWIYBTVHGYLSAZ-UHFFFAOYSA-I pentaiodoniobium Chemical compound I[Nb](I)(I)(I)I FWIYBTVHGYLSAZ-UHFFFAOYSA-I 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D1/00—Oxides or hydroxides of sodium, potassium or alkali metals in general
- C01D1/02—Oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D13/00—Compounds of sodium or potassium not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G1/00—Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
- C01G1/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G33/00—Compounds of niobium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/09—Forming piezoelectric or electrostrictive materials
- H10N30/093—Forming inorganic materials
- H10N30/097—Forming inorganic materials by sintering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8542—Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/38—Particle morphology extending in three dimensions cube-like
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/39—Particle morphology extending in three dimensions parallelepiped-like
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
- C04B2235/3255—Niobates or tantalates, e.g. silver niobate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5292—Flakes, platelets or plates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Definitions
- the present invention relates to a method for producing alkali metal niobate particles and alkali metal niobate particles.
- piezoelectric ceramics In addition to conventional applications such as various sensors and ultrasonic vibrators, piezoelectric ceramics have recently been used for miniaturization of electronic devices such as transformers for liquid crystal backlights for personal computers and head parts for inkjet printers. And greatly contributes to high performance.
- lead-based materials such as PZT are currently mainstream.
- the lead-based material contains a large amount of harmful lead oxide, there is a concern about environmental pollution due to, for example, the outflow of lead oxide at the time of disposal. Therefore, there is a strong demand for the development of a practical lead-free piezoelectric ceramic material that can be substituted for a conventional lead-based material.
- Patent Document 1 proposes a piezoelectric ceramic in which aluminum oxide and iron oxide are added as subcomponents to a solid solution containing lithium sodium niobate as a basic composition.
- Patent Document 2 proposes a composition in which physical properties are improved by adding copper, lithium and tantalum to a piezoelectric ceramic mainly composed of potassium niobate and sodium niobate.
- Non-Patent Document 1 reports a method of synthesizing NaNbO 3 particles by causing NaOH or KOH solution to act on Nb 2 O 5 particles.
- Non-patent document 2 As synthesis of KNbO 3 particles, once synthesized K 4 Nb 6 O 17 particles layered, then method of synthesizing KNbO 3 particles by high temperature heating in a molten salt has also been reported recently (Non-patent document 2 ).
- the particles are aggregated, and it is generally difficult to control the obtained particle size and form to be uniform.
- the particles obtained by the method described in Patent Document 1 are aggregates, and are not suitable as a raw material for molding a piezoelectric element that is becoming finer in recent years. Thus, the problem is that the size and shape of the particles cannot be controlled.
- this is a method suitable for mass production, a method for producing alkali metal niobate particles capable of preventing particle aggregation and controlling grain boundaries and particle sizes, and niobic acid having high uniformity in particle size. Development of alkali metal salt fine particles has been desired.
- the first aspect of the present invention is: MNbO 3 (1)
- M represents one element selected from alkali metals
- a method for producing alkali metal niobate particles represented by (A) mixing a niobium-containing solution and an alkaline solution having a concentration of 0.1 to 30 mol / L to prepare a suspension; (B) allowing the obtained suspension to stand at 80 ° C. to 150 ° C. for 12 to 48 hours; (C) a step of allowing the suspension after standing to undergo a solvothermal reaction at 150 ° C. to 300 ° C. for 1 to 12 hours; (D) recovering alkali metal niobate particles from the reaction product after the solvothermal reaction;
- the present invention relates to a method for producing substantially rectangular parallelepiped alkali metal niobate particles.
- M in the above formula (1) is Na
- the alkaline solution is NaOH
- M in the above formula (1) is K
- the alkaline solution is KOH
- the niobium-containing solution contains niobium oxide and / or niobium halide, at least one solvent selected from water, ethylene glycol and polyethylene glycol, and an acid.
- the second aspect of the present invention is: Following formula (1): MNbO 3 (1)
- M represents one element selected from alkali metals
- An alkali metal niobate particle represented by The alkali metal niobate has a substantially rectangular parallelepiped shape, Of the substantially rectangular parallelepiped sides, the length L max of the longest side is 0.10 to 25 ⁇ m,
- the present invention relates to alkali metal niobate particles having a shortest side length L min of 0.050 to 15 ⁇ m.
- the ratio L max / L min between the length L max of the longest side and the length L min of the shortest side is in the range of 1 to 5.
- M in the above formula (1) is Na or K.
- the alkali metal niobate particles are prepared by the production method.
- the third aspect of the present invention relates to a piezoelectric ceramic material comprising the alkali metal niobate particles.
- alkali metal niobate particles preferably NaNbO 3 or KNbO 3 fine particles
- the obtained particles have a special shape of a substantially rectangular parallelepiped, preferably a substantially cubic shape, and the size and shape thereof are very controlled.
- the present invention is advantageous in that it can synthesize particles of submicron to several ⁇ m, which are suitable for practical use, by a method suitable for mass synthesis.
- the ceramic material obtained by pelletizing and firing the niobium-based particles thus obtained is more in comparison with the niobium-based piezoelectric ceramic material prepared by the conventional solid phase method. 1. 1. Low temperature firing is possible. 2. Excellent piezoelectric properties. 3. Densification of ceramic material is easy. There are advantages such as easy slurry preparation when laminating.
- FIG. 2 is a SEM photograph of NaNbO 3 particles synthesized in Example 1.
- FIG. 3 is a result of XRD (X-ray diffraction, X-ray diffraction) measurement of NaNbO 3 particles synthesized in Example 1.
- FIG. 4 is a SEM photograph of KNbO 3 particles synthesized in Example 2. It is a SEM photograph (a further enlarged photograph of FIG. 4) of KNbO 3 particles synthesized in Example 2. Is a SEM photograph of the synthesized fine KNbO 3 particles in Example 2 (secondary heating temperature 0.99 ° C.).
- Example 4 is an SEM photograph of the synthesized KNbO 3 particles (the starting material niobium oxide). It is a SEM photograph of NaNbO 3 particles prepared in Example 5 (with heating at 100 ° C.). It is a SEM photograph of NaNbO 3 particles prepared in Comparative Example 1 (without heating at 100 ° C.). It is a SEM photograph of the synthesized KNbO 3 particles in Example 6 (Synthesis scaled up). It is a SEM photograph (a further enlarged photograph of FIG. 10) of the KNbO 3 particles synthesized in Example 6. It is an XRD pattern of the KNbO 3 particle
- the first aspect of the present invention is MNbO 3 (1)
- M represents one element selected from alkali metals
- the present invention relates to a method for producing substantially rectangular parallelepiped alkali metal niobate particles.
- M in the above formula (1) is one element selected from alkali metals, specifically lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs). is there.
- Preferred is Li, Na or K, and more preferred is Na or K.
- M is preferably K in that the size of the obtained particles is smaller and particles with higher uniformity close to a cube can be obtained.
- Step (a) is a step of preparing a suspension by mixing a niobium-containing solution that is a niobium source and a high-concentration alkaline solution.
- the method for preparing the niobium-containing solution is not particularly limited, but as an example, it can be prepared by dissolving a niobium compound in an acidic liquid solvent.
- the niobium compound is not particularly limited, but is preferably at least one selected from niobium oxide and niobium halide.
- the niobium halide include niobium fluoride, niobium chloride, niobium bromide, and niobium iodide, and niobium chloride is preferred from the viewpoint of handleability and reactivity. These may be used alone or in combination of two or more.
- Water Although it does not specifically limit as a solvent contained in the said acidic liquid solvent, Water; Alcohols, such as methyl alcohol and ethyl alcohol; Polyols, such as ethylene glycol (EG), glycerol, and polyethyleneglycol (PEG). Among these, water, ethylene glycol and polyethylene glycol, and a mixture thereof are preferable, and water is particularly preferable because it has a relatively high boiling point and can be applied to a solvothermal method.
- Alcohols such as methyl alcohol and ethyl alcohol
- Polyols such as ethylene glycol (EG), glycerol, and polyethyleneglycol (PEG).
- EG ethylene glycol
- PEG polyethyleneglycol
- organic acids such as inorganic acids, such as hydrochloric acid, a sulfuric acid, and nitric acid, and trifluoroacetic acid, are mentioned.
- hydrochloric acid and nitric acid are preferable because hydrochloric acid is easily removed after the reaction, and hydrochloric acid is particularly preferable.
- the alkaline solution used in step (a) is not particularly limited as long as it can achieve a predetermined high concentration.
- the alkali metal usually contained in the alkali metal constitutes M of the alkali metal niobate particles represented by MNbO 3 , specifically, the following formula (2): MOH (2) (Wherein M is the same as defined in formula (1))
- the concentration of the alkaline solution is less than 0.1 mol / L, the particles do not grow sufficiently, and it is not preferable because particles having a desired size and form cannot be obtained.
- the concentration of the alkaline solution exceeds 30 mol / L, the alkaline solution usually reaches a saturated concentration. Therefore, the upper limit of the concentration of the alkaline solution is practically the alkali saturation concentration, and this upper limit can vary depending on the nature of the alkali. Further, the lower limit of the concentration of the alkaline solution is preferably 1 mol / L, more preferably 2 mol / L.
- concentration sufficient care is required for handling.
- the niobium-containing solution prepared separately in this way and the alkaline solution are mixed to prepare a suspension.
- the addition method is not particularly limited, and the niobium-containing solution may be added to the alkaline solution, or the alkaline solution may be added to the niobium-containing solution. It is preferable to slowly drop into the alkaline solution over a certain period of time.
- the temperature and pressure at the time of mixing are not particularly limited, and the mixing can usually be performed at normal temperature (15 ° C. to 30 ° C.) and normal pressure (about 1 atm).
- Step (b) is a step of heating the suspension for a long time at a relatively low temperature.
- it is a great feature to take two steps, a process of heating at a relatively low temperature for a long time and a solvothermal reaction process of heating at a high temperature for a short time.
- aggregates are usually generated, and the particle size cannot be sufficiently controlled.
- step (b) is not performed, generally rectangular parallelepiped particles, which is one of the characteristics of the present invention, cannot be obtained.
- step (b) the suspension is heated to a temperature of 80-150 ° C.
- a uniform precursor can be prepared, and the growth of particles into a substantially rectangular parallelepiped shape can be promoted.
- This temperature is preferably 80 to 120 ° C., more preferably 90 to 110 ° C., and still more preferably the boiling point of the solvent. That is, when water is used as the solvent, it is preferably heated to 100 ° C.
- the step (b) is characterized by being allowed to stand for 12 to 48 hours at the specific temperature.
- a uniform precursor solution or suspension for producing particles can be obtained, and the growth of the particles into a substantially rectangular parallelepiped shape can be promoted. If the standing time is too short, the formation of a uniform precursor does not proceed sufficiently. On the other hand, if it is too long, the effect is saturated and it is not economical. Therefore, it is appropriate to stand for 12 to 48 hours.
- This time is preferably 15 to 36 hours, more preferably 18 to 30 hours, still more preferably 20 to 26 hours.
- a process (b) is not specifically limited, Usually, it is performed under a normal pressure (about 1 atmosphere (about 0.10 MPa)).
- Step (c) is a step in which the suspension heated at a relatively low temperature in step (b) is subjected to a solvothermal reaction at a higher temperature.
- the solvothermal reaction is a reaction carried out under moderate to high pressure (usually 1 atm to 10,000 atm (0.10 to 1,000 MPa)) and temperature (usually 100 ° C to 1000 ° C), Is particularly used as a solvent, it is referred to as “hydrothermal reaction”. Through this step, the crystal structure and shape of the particles can be controlled.
- the temperature during the solvothermal reaction is 150 ° C. to 300 ° C. Although not particularly limited, it is preferably 150 ° C to 250 ° C.
- the time for performing the solvothermal reaction is usually 1 to 72 hours, preferably 1 to 8 hours, more preferably 2 to 5 hours.
- the pressure for carrying out the solvothermal reaction is not particularly limited, but is usually 0.10 to 4.0 MPa.
- Step (d) is a step of recovering the alkali metal niobate particles from the reaction product of the solvothermal reaction.
- the method for recovering the alkali metal niobate particles is not particularly limited, and desired alkali metal niobate particles can be obtained by ordinary filtration, washing, drying and the like.
- the number of times of washing and the solvent used are not particularly limited, and can be appropriately selected.
- the alkali metal niobate particles of the present invention have the following formula (1): MNbO 3 (1) (In the formula, M represents one element selected from alkali metals)
- M represents one element selected from alkali metals
- the alkali metal niobate particles represented by the alkali metal niobate salt have a substantially rectangular parallelepiped shape, Of the substantially rectangular parallelepiped sides, the length L max of the longest side is 0.10 to 25 ⁇ m, The shortest side length L min is 0.050 to 15 ⁇ m.
- M in the above formula (1) is one element selected from lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs).
- Li Li, Na or K
- M is preferably K because it is a more uniform particle in terms of size and shape.
- the alkali metal niobate particles of the present invention are characterized by taking a substantially rectangular parallelepiped shape with high uniformity in particle size and shape. Further, the shape can be controlled only by a chemical operation without passing through a physical pulverization process, and the obtained particles have a special shape of a substantially rectangular parallelepiped rather than a general spherical shape. . Such characteristics cannot be predicted from known knowledge.
- the alkali metal niobate particles of the present invention have a fine, substantially rectangular parallelepiped shape.
- Alkali metal niobate particles obtained by conventional methods are mostly aggregates, and it has been difficult to obtain particles having a particle size on the order of micrometers.
- the present invention by controlling the shape of the alkali metal niobate particles to a substantially rectangular parallelepiped, it is possible to prevent the formation of aggregates and obtain particles having a micrometer order suitable for handling and the like. .
- alkali metal niobate particles are advantageous in that they can be easily densified when the ceramic material of the present invention is used.
- the “substantially rectangular parallelepiped” substantially includes a rectangular parallelepiped shape and a cubic shape.
- the “substantially rectangular parallelepiped” includes those in which a part of the rectangular parallelepiped is missing and those having a recess or a convex on the surface of the rectangular parallelepiped.
- the substantially rectangular parallelepiped has a longest side length L max of 0.10 to 25 ⁇ m and a shortest side length L min of 0.050 to 15 ⁇ m.
- a substantially rectangular parallelepiped generally has a total of 12 sides expressed as length, width, and height, but the alkali metal niobate particles of the present invention have the longest side length of 0.10 to 25 ⁇ m and the shortest side length.
- FIG. 1 is a schematic diagram showing substantially rectangular parallelepiped particles of the present invention.
- the length of the side facing the x-axis direction is L1
- the length of the side facing the y-axis direction is L2
- the length of the side facing the z-axis direction is L3.
- L max L2
- L min L1. Therefore, referring to FIG. 1, the particles of the present invention mean that L2 is in the range of 0.10 to 25 ⁇ m and L1 is in the range of 0.050 to 15 ⁇ m.
- the L max is preferably 0.10 to 20 ⁇ m.
- the L min is preferably 0.050 to 10 ⁇ m, more preferably 0.050 to 4 ⁇ m, still more preferably 0.050 to 2 ⁇ m, and particularly preferably 0.050 to 1.5 ⁇ m.
- the alkali metal niobate is potassium niobate
- particles having a smaller size can be obtained.
- particles in which the length of each side of a substantially rectangular parallelepiped is controlled to about 0.050 to 1.5 ⁇ m can be obtained.
- the length of each side of the substantially rectangular parallelepiped particle and the values of L max and L min are not particularly limited.
- a scanning electron microscope (SEM) photograph of alkali metal niobate particles is taken, and the image of each particle is obtained from the image. It can be obtained by reading the length of one side.
- Another feature of the present invention is that there is little variation in particle size when the entire obtained alkali metal niobate powder (meaning alkali metal niobate particles) is viewed.
- the length of each side of the substantially rectangular parallelepiped is in the range of 0.050 to 25 ⁇ m in 80% or more of all substantially rectangular parallelepiped particles in the powder.
- the ratio is more preferably 90% or more, and still more preferably 95% or more.
- the ratio L max / L min between the length L max of the longest side of the substantially rectangular parallelepiped and the length L min of the shortest side is in the range of 1 to 5.
- the ratio L max / L min is preferably 1 to 3, more preferably 1 to 2, still more preferably 1 to 1.5, and particularly preferably 1.
- the case where the ratio L max / L min is 1 means that the particle shape is a cube.
- the method for preparing the alkali metal niobate particles of the present invention is not particularly limited, but the alkali metal niobate particles are preferably prepared by the above-described production method which is the first aspect of the present invention.
- the above method is an epoch-making method in which the particle size can be controlled only by chemical means regardless of physical means such as pulverization, and is preferable in that the process can be simplified as compared with conventional means.
- pulverization or the like it is generally difficult to suppress the variation in particle size.
- the size of each particle can be controlled. Aggregation can also be prevented. As a result, the particle size of the obtained particles can be controlled to a high degree, and therefore the production method of the first aspect is preferred as a method for preparing alkali metal niobate particles.
- the third aspect of the present invention relates to a piezoelectric ceramic material comprising the alkali metal niobate particles.
- the method for producing the piezoelectric ceramic material is not particularly limited. Usually, a composition obtained by kneading a dried material of alkali metal niobate particles and necessary additives such as an organic binder, a dispersant, a plasticizer, and a solvent is kneaded. It can be obtained by molding by a known molding method and sintering at a high temperature (about 1000 ° C.). Known molding methods include press molding and mold molding.
- a piezoelectric element such as a piezoelectric buzzer or a piezoelectric vibrator can be obtained.
- Solids were collected from the resulting suspension by centrifugation, and then ultrasonically dispersed, centrifuged and dried in water to obtain sodium niobate particles.
- the size and morphology of the obtained solid particles were observed with a scanning electron microscope (SEM, HITACHI, S-4800), and the crystal structure of the solid particles was measured by X-ray diffraction measurement (XRD, Rigaku, Ultimate-IV, 40 kV, 40 mA). Evaluated.
- SEM photograph and XRD pattern of the obtained NaNbO 3 particles are shown in FIGS. 2 and 3, respectively. Cubic-type particles having a side of about 2 ⁇ m were obtained and were found to be composed of a single phase of NaNbO 3 .
- the target particles can be obtained even when the second stage heating temperature is 200 ° C., and the longest side length is 0.10 to 25 ⁇ m and the shortest side is changed by changing the initial NaOH concentration to 2 to 18 mol / L.
- the length can be controlled in the range of 0.050 to 15 ⁇ m.
- Example 2 Synthesis 1 of substantially cubic KNbO 3 particles
- the synthesis of the substantially cubic KNbO 3 particles was performed in the same procedure as in Example 1 except that 18.0 M KOH was used instead of the 12.0 M NaOH aqueous solution.
- SEM photographs of the obtained KNbO 3 particles are shown in FIG. 4 and FIG.
- cubic particles having a side length of about 1 ⁇ m were obtained.
- XRD measurement of cubic particles was also performed. As a result, it was found to be composed of a single phase of KNbO 3 .
- the yield is reduced by setting the heating temperature in the second stage (step (c)) to 150 ° C., cubic type KNbO 3 particles having a narrow particle size distribution of about 0.2 ⁇ m as shown in FIG. was gotten.
- Example 3 Synthesis of substantially cubic NaNbO 3 particles 2
- Example 4 Synthesis of substantially cubic KNbO 3 particles 2 Synthesis of substantially cubic KNbO 3 particles using niobium pentoxide as a starting material was carried out in the same heating procedure and washing operation as in Example 3 except that an aqueous KOH solution or granular KOH was added instead of an aqueous NaOH solution to make the alkali concentration 18M. It went by.
- An SEM photograph of the obtained KNbO 3 particles is shown in FIG. It turns out that it is a cubic type particle
- Example 5 Synthesis of substantially cubic NaNbO 3 particles 3
- a white suspension was prepared by adding 6.0 mL of a 0.50 M NbCl 5 0.10 M aqueous HCl solution prepared in Example 1 to 6.0 mL of an 8.0 M aqueous NaOH solution with stirring. After the white suspension was left to stand in a Teflon (registered trademark) container for 24 hours at 100 ° C., the contents were transferred to a Teflon (registered trademark) inner cylinder autoclave and left to stand at 250 ° C. for 3 hours. Heated over time.
- Teflon registered trademark
- the resulting suspension was centrifuged to collect solids, and then ultrasonically dispersed in water, centrifuged, and dried to obtain sodium niobate particles.
- the size and form of the obtained solid particles were observed with a scanning electron microscope, and the crystal structure of the solid particles was evaluated by X-ray diffraction measurement.
- An SEM photograph of the obtained NaNbO 3 particles is shown in FIG.
- Example 1 Synthesis of substantially cubic NaNbO 3 particles excluding one-step heating
- Sodium niobate particles were obtained in the same manner as in Example 5 except that the step of heating and leaving at 100 ° C. for 24 hours was omitted.
- the size and form of the obtained solid particles were observed with a scanning electron microscope, and the crystal structure of the solid particles was evaluated by X-ray diffraction measurement. Moreover, the SEM photograph of the obtained particle
- Example 5 From a comparison between Example 5 and Comparative Example 1, it was found that approximately cubic NaNbO 3 particles having a uniform particle size while preventing aggregation were obtained by performing heat treatment at 100 ° C. in advance. Further, as a result of XRD measurement, all the particles shown in FIGS. 8 and 9 were NaNbO 3 single phase.
- Example 6 Synthesis of substantially cubic KNbO 3 particles 3
- Teflon (registered trademark) container 185 mL of a dispersion of Nb 2 O 5 (12.3 g) was added dropwise to 185 mL of an alkaline solution prepared to a KOH concentration of 36 M with stirring at a dropping rate of 15 mL / min. .
- the obtained mixed suspension was stirred for 10 minutes in a Teflon (registered trademark) container.
- the obtained suspension was transferred to an autoclave with a Teflon (registered trademark) inner cylinder, heated to 100 ° C. over 30 minutes while stirring, and then stirred at 100 ° C. for 24 hours.
- Example 7 Preparation of KNbO 3 ceramics by sintering and evaluation of piezoelectric properties
- the KNbO 3 particles synthesized in Example 2 were formed into pellets, fired at different temperatures, and the piezoelectric properties of the obtained ceramics were evaluated. Each characteristic value is shown in Table 1.
- Sintering Temp Means the firing temperature.
- ⁇ is the firing density, calculated from the size (volume) and weight of the particles.
- tan ⁇ is a dielectric loss, and was measured with an impedance analyzer.
- ⁇ 33 T / ⁇ 0 is a relative dielectric constant, and was measured with an impedance analyzer.
- Kp is an electromechanical coupling coefficient, and was calculated from the measured values of the resonance frequency and the antiresonance frequency with an impedance analyzer.
- Np is a frequency constant, and was calculated from the measured value of the resonance frequency and the diameter of the element with an impedance analyzer.
- d33 is a piezoelectric constant, and was measured with a d33 meter.
- the KNbO 3 ceramic obtained by the present invention exhibits high piezoelectric properties.
- the firing temperature was set to 1020 ° C.
- high characteristics of d33 133.4 were exhibited.
- the production method of the present invention is a method for directly obtaining fine alkali metal niobate particles by chemical means alone without passing through physical means such as pulverization.
- substantially rectangular parallelepiped particles can be obtained in the liquid phase production method, and aggregation can be suppressed by such a substantially rectangular parallelepiped shape, and fine particles with little variation in particle size can be obtained.
- the obtained particles have excellent handling on the order of micrometers, and can be suitably used as a piezoelectric material.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Structural Engineering (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
MNbO3 (1)
(式中、Mはアルカリ金属から選択される1種の元素を表す)
で表されるニオブ酸アルカリ金属塩粒子の製造方法であって、
(a)ニオブ含有溶液と、0.1~30mol/Lの濃度を有するアルカリ溶液とを混合し、懸濁液を調製する工程と、
(b)得られた懸濁液を80℃~150℃で12~48時間静置する工程と、
(c)静置後の懸濁液を150℃~300℃で1~12時間ソルボサーマル反応させる工程と、
(d)ソルボサーマル反応後の反応物からニオブ酸アルカリ金属塩粒子を回収する工程と、
を含む、略直方体状ニオブ酸アルカリ金属塩粒子の製造方法
に関する。
下記式(1):
MNbO3 (1)
(式中、Mはアルカリ金属から選択される1種の元素を表す)
で表されるニオブ酸アルカリ金属塩粒子であって、
ニオブ酸アルカリ金属塩は略直方体の形状を有し、
上記略直方体の辺のうち、最長辺の長さLmaxが0.10~25μm、
最短辺の長さLminが0.050~15μmである
ニオブ酸アルカリ金属塩粒子
に関する。
1.低温焼成が可能である
2.優れた圧電特性を示す
3.セラミック材料の緻密化が容易である
4.積層化する際のスラリー調製が容易である
などの利点を有する。
<ニオブ酸アルカリ金属塩粒子の製造方法>
上述の通り、本発明の第一の態様は、
MNbO3 (1)
(式中、Mはアルカリ金属から選択される1種の元素を表す)
で表されるニオブ酸アルカリ金属塩粒子の製造方法であって、
(a)ニオブ含有溶液と、0.1~30mol/Lの濃度を有するアルカリ溶液とを混合し、懸濁液を調製する工程と、
(b)得られた懸濁液を80℃~150℃で12~48時間静置する工程と、
(c)静置後の懸濁液を150℃~300℃で1~12時間ソルボサーマル反応させる工程と、
(d)ソルボサーマル反応の反応物からニオブ酸アルカリ金属塩粒子を回収する工程と、
を含む、略直方体状ニオブ酸アルカリ金属塩粒子の製造方法に関する。
工程(a)は、ニオブ源であるニオブ含有溶液と、高濃度アルカリ溶液とを混合し、懸濁液を調製する工程である。
本発明において、アルカリ溶液は、所定の高濃度を達成できるものである限り特に限定されない。但し、通常アルカリ金属に含まれるアルカリ金属は、MNbO3で表されるニオブ酸アルカリ金属塩粒子のMを構成するものであることから、具体的には、下記式(2):
MOH (2)
(式中、Mは式(1)における定義と同じ)
で表されるアルカリ金属の水酸化物等が好ましい。中でもNaOH又はKOHが特に好ましい。
[OH-]=1.0×10-1mol/L
[H+][OH-]=1.0×10-14であるから、
[H+]=1.0×10-13
pH=-log[H+]=13
に相当する。
工程(b)は、比較的低温で長時間懸濁液を加熱する工程である。本発明においては、比較的低温で長時間加熱する工程と、高温で短時間加熱するソルボサーマル反応工程の二段階を採ることが大きな特徴である。工程(b)を行わない場合には、通常、凝集体が生成し、粒径を充分に制御することができない。また工程(b)を行わない場合には、通常、本発明の一つの特徴でもある略直方体状の粒子は得られない。
工程(c)は、工程(b)で比較的低温で加温した懸濁液を、さらに高温にてソルボサーマル反応させる工程である。
工程(d)は、ソルボサーマル反応の反応物からニオブ酸アルカリ金属塩粒子を回収する工程である。
次に本発明の第二の態様である、ニオブ酸アルカリ金属塩粒子について説明する。本発明のニオブ酸アルカリ金属塩粒子は、下記式(1):
MNbO3 (1)
(式中、Mはアルカリ金属から選択される1種の元素を表す)
で表されるニオブ酸アルカリ金属塩粒子であって
ニオブ酸アルカリ金属塩は略直方体の形状を有し、
上記略直方体の辺のうち、最長辺の長さLmaxが0.10~25μm、
最短辺の長さLmin長さは0.050~15μmである。
本発明の第三の態様は、上記ニオブ酸アルカリ金属塩粒子からなる圧電セラミックス材料に関する。
(略立方体型NaNbO3粒子の合成1)
塩化ニオブ27.02g(=100mmol)を0.10M HCl水溶液150mLに加え完全に溶解した後、容積200mLのメスフラスコに加え、0.10M HCl水溶液を用いて全量を200mLとすることにより0.50M NbCl5の0.10M HCl水溶液を得た。ついで、12.0M NaOH水溶液6.0mLを加えた30mL容のテフロン(登録商標)製容器に上記0.50M NbCl5塩酸水溶液6.0mLを室温で攪拌しながらゆっくり加えた後、得られた白色懸濁液をテフロン(登録商標)容器中、100℃で24時間加熱静置した。ついで、内容物をテフロン(登録商標)内筒製オートクレーブに移し、250℃で3時間静置して加熱経時した。得られた懸濁液から固体を遠心分離で回収後、水に超音波分散・遠心沈降・乾燥してニオブ酸ナトリウム粒子を得た。得られた固体粒子のサイズ・形態を走査型電子顕微鏡(SEM、HITACHI、S-4800)で観察し、X線回折測定(XRD、Rigaku、Ultima-IV、40kV、40mA)により固体粒子の結晶構造を評価した。得られたNaNbO3粒子のSEM写真およびXRDパターンを図2および図3にそれぞれ示す。一辺が2μm程度の立方体型粒子が得られ、NaNbO3単相からなることがわかった。なお、2段階目の加熱温度を200℃としても目的粒子を得ることが可能であり、初期NaOH濃度を2~18mol/Lと変化させることで、最長辺長さ0.10~25μm、最短辺長さ0.050~15μmの範囲で制御可能である。
(略立方体型KNbO3粒子の合成1)
略立方体型KNbO3粒子の合成は、12.0M NaOH水溶液の代わりに18.0M KOHを用いる以外は実施例1と同様の手順にて行った。得られたKNbO3粒子のSEM写真を図4及び図5に示す。SEM写真に示すように、一辺の長さが約1μm程度の立方体型粒子が得られた。また立方体型粒子のXRD測定も行った。その結果、KNbO3単相からなることがわかった。また、二段階目(工程(c))の加熱温度を150℃とすることで、収量の低下は見られるものの、図6に示すように0.2μm程度の粒度分布の狭い立方体型KNbO3粒子が得られた。
(略立方体型NaNbO3粒子の合成2)
テフロン(登録商標)製容器(30mL容)中の五酸化ニオブ0.40g(=3.0mmol)に8.0M NaOH水溶液6.0mLを添加し、全体積が12mLとなるようにイオン交換水を攪拌しながら加えた。ついで、テフロン(登録商標)製容器を密封し、100℃で24時間加熱静置した。ついで、内容物をテフロン(登録商標)内筒製オートクレーブに移し、250℃で3時間静置して加熱経時した。得られた懸濁液から固体を遠心分離で回収後、水に超音波分散・遠心沈降・乾燥してNaNbO3粒子を得た。得られた粒子の評価は、実施例1に示した方法と同様の手法により行った。この際、初期NaOH濃度を5~18mol/Lと変化させることで、略直方体のサイズを、各辺の長さが0.50~25μmの範囲になるように制御できた。
(略立方体型KNbO3粒子の合成2)
出発原料を五酸化ニオブとした略立方体型KNbO3粒子の合成は、NaOH水溶液の代わりにKOH水溶液あるいは粒状KOHを加え、アルカリ濃度を18Mとした以外は実施例3と同様の加熱手順および洗浄操作により行った。得られたKNbO3粒子のSEM写真を図7に示す。一辺が0.5μm程度の立方体型粒子であることがわかる。また、得られた粒子のXRD測定の結果、斜方晶系の結晶構造からなるKNbO3粒子であった。
(略立方体型NaNbO3粒子の合成3)
実施例1において調製した0.50M NbCl5の0.10M HCl水溶液6.0mLを、8.0M NaOH水溶液6.0mLに攪拌しながら加えることにより、白色懸濁液を調製した。白色懸濁液をテフロン(登録商標)製容器中で、100℃で24時間加熱静置したのち、内容物をテフロン(登録商標)内筒製オートクレーブに移し、250℃で3時間静置して加熱経時した。得られた懸濁液を遠心分離で固体を回収後、水に超音波分散・遠心沈降・乾燥してニオブ酸ナトリウム粒子を得た。得られた固体粒子のサイズ・形態を走査型電子顕微鏡で観察し、X線回折測定により固体粒子の結晶構造を評価した。得られたNaNbO3粒子のSEM写真を図8に示す。
(一段階加熱を除いた略立方体型NaNbO3粒子の合成)
100℃で24時間加熱静置する工程を省いた以外は実施例5と同様の方法でニオブ酸ナトリウム粒子を得た。得られた固体粒子のサイズ・形態を走査型電子顕微鏡で観察し、X線回折測定により固体粒子の結晶構造を評価した。また得られた粒子のSEM写真を図9に示す。
(略立方体型KNbO3粒子の合成3)
テフロン(登録商標)製容器中、KOH濃度36Mとなるように調製したアルカリ溶液185mLに、Nb2O5(12.3g)の分散液185mLを15mL/分の滴下速度にて攪拌しながら滴下した。得られた混合懸濁液をテフロン(登録商標)容器中で10分間攪拌した。得られた懸濁液をテフロン(登録商標)製内筒のオートクレーブに移し、30分かけて100℃に攪拌しながら昇温し、昇温後、100℃で24時間攪拌を続けた。ついで、2時間30分かけて200℃に昇温し、200℃で3時間攪拌しながら加熱した。加熱後、懸濁液を自然冷却し、得られた懸濁液から固体を遠心分離で回収後、水に超音波分散・遠心沈降およびデカンテーションによる洗浄を6回行った。ついで、洗浄液をアセトンとし、さらに3回遠心洗浄後、デシケーター中で乾燥することでニオブ酸カリウム粒子を得た。得られた固体粒子のサイズ・形態を走査型電子顕微鏡で観察し、X線回折測定により固体粒子の結晶構造を評価した。合成した粒子のSEM写真を図10及び図11に、XRD測定結果を図12にそれぞれ示す。粒子は立方体型の形状を有しており、菱面体晶のKNbO3と帰属できる回折パターンであった。
(焼結によるKNbO3セラミックスの調製と圧電特性評価)
実施例2で合成したKNbO3粒子をペレット成型し、温度を変えて焼成し、得られたセラミックの圧電特性を評価した。各特性値を表1に示す。
L2 y軸方向の一辺の長さ
L3 z軸方向の一辺の長さ
Claims (9)
- MNbO3 (1)
(式中、Mはアルカリ金属から選択される1種の元素を表す)
で表されるニオブ酸アルカリ金属塩粒子の製造方法であって、
(a)ニオブ含有溶液と、0.1~30mol/Lの濃度を有するアルカリ溶液とを混合し、懸濁液を調製する工程と、
(b)得られた懸濁液を80℃~150℃で12~48時間静置する工程と、
(c)静置後の懸濁液を150℃~300℃で1~12時間ソルボサーマル反応させる工程と、
(d)ソルボサーマル反応後の反応物からニオブ酸アルカリ金属塩粒子を回収する工程と、
を含む、略直方体状ニオブ酸アルカリ金属塩粒子の製造方法。 - 前記式(1)中のMはNaであり、前記アルカリ溶液は、NaOHである
請求項1記載の製造方法。 - 前記式(1)中のMはKであり、前記アルカリ溶液はKOHである
請求項1記載の製造方法。 - 前記ニオブ含有溶液は、
酸化ニオブ及び/又はハロゲン化ニオブと、
水、エチレングリコール及びポリエチレングリコールから選択される少なくとも一つの溶媒と、
酸と、
を含む請求項1~3のいずれか一項記載の製造方法。 - 下記式(1):
MNbO3 (1)
(式中、Mはアルカリ金属から選択される1種の元素を表す)
で表されるニオブ酸アルカリ金属塩粒子であって、
ニオブ酸アルカリ金属塩は略直方体の形状を有し、
前記略直方体の辺のうち、最長辺の長さLmaxが0.10~25μm、
最短辺の長さLminが0.050~15μmである
ニオブ酸アルカリ金属塩粒子。 - 前記Lmaxと前記Lminの比Lmax/Lminが1~5の範囲である、
請求項5記載のニオブ酸アルカリ金属塩粒子。 - 前記式(1)中のMはNa又はKである
請求項5又は6記載のニオブ酸アルカリ金属塩粒子。 - 請求項1~4のいずれか一項の製造方法によって調製される
請求項5~7のいずれか一項記載のニオブ酸アルカリ金属塩粒子。 - 請求項5~8のいずれか一項記載のニオブ酸アルカリ金属塩粒子からなる圧電セラミックス材料。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10761671.6A EP2418174B1 (en) | 2009-04-09 | 2010-04-05 | Method for producing alkali metal niobate particles, and alkali metal niobate particles |
DK10761671.6T DK2418174T3 (en) | 2009-04-09 | 2010-04-05 | Process for the preparation of alkali metal niobate particles and alkali metal niobate particles |
US13/262,770 US8771618B2 (en) | 2009-04-09 | 2010-04-05 | Method for producing alkali metal niobate particles, and alkali metal niobate particles |
CN201080015387.8A CN102369162B (zh) | 2009-04-09 | 2010-04-05 | 碱金属铌酸盐颗粒的制造方法和碱金属铌酸盐颗粒 |
US14/192,399 US9272921B2 (en) | 2009-04-09 | 2014-02-27 | Method for producing alkali metal niobate particles, and alkali metal niobate particles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009095013A JP5582281B2 (ja) | 2009-04-09 | 2009-04-09 | ニオブ酸アルカリ金属塩粒子の製造方法、およびニオブ酸アルカリ金属塩粒子 |
JP2009-095013 | 2009-04-09 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/262,770 A-371-Of-International US8771618B2 (en) | 2009-04-09 | 2010-04-05 | Method for producing alkali metal niobate particles, and alkali metal niobate particles |
US14/192,399 Continuation US9272921B2 (en) | 2009-04-09 | 2014-02-27 | Method for producing alkali metal niobate particles, and alkali metal niobate particles |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010116972A1 true WO2010116972A1 (ja) | 2010-10-14 |
Family
ID=42936255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/056171 WO2010116972A1 (ja) | 2009-04-09 | 2010-04-05 | ニオブ酸アルカリ金属塩粒子の製造方法、およびニオブ酸アルカリ金属塩粒子 |
Country Status (7)
Country | Link |
---|---|
US (2) | US8771618B2 (ja) |
EP (1) | EP2418174B1 (ja) |
JP (1) | JP5582281B2 (ja) |
KR (1) | KR101642535B1 (ja) |
CN (1) | CN102369162B (ja) |
DK (1) | DK2418174T3 (ja) |
WO (1) | WO2010116972A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012165267A1 (en) * | 2011-05-27 | 2012-12-06 | Canon Kabushiki Kaisha | Sodium niobate powder, method of manufacturing a sodium niobate powder, plate-like particle, method of manufacturing a plate-like particle, and method of manufacturing an oriented ceramics |
US20150062257A1 (en) * | 2012-04-16 | 2015-03-05 | Canon Kabushiki Kaisha | Sodium niobate powder, method for producing the same, method for producing ceramic, and piezoelectric element |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5578504B2 (ja) * | 2009-04-09 | 2014-08-27 | 堺化学工業株式会社 | ニオブ酸アルカリ金属塩粒子の製造方法、およびニオブ酸アルカリ金属塩粒子 |
JP6016431B2 (ja) * | 2012-04-20 | 2016-10-26 | キヤノン株式会社 | ニオブ酸ナトリウム微粒子の製造方法 |
CN103303977B (zh) * | 2013-06-07 | 2015-02-04 | 中国矿业大学 | 一种分等级中空Nb3O7F纳米材料的制备方法 |
EP3249704B1 (en) * | 2015-01-21 | 2020-03-04 | Alps Alpine Co., Ltd. | Piezoelectric device |
US10461241B2 (en) * | 2015-03-17 | 2019-10-29 | Canon Kabushiki Kaisha | Method for manufacturing rectangular parallelepiped-shaped single crystal, rectangular parallelepiped-shaped single crystal, method for manufacturing ceramics, ceramics, piezoelectric element, piezoelectric device, and electronic device |
CN106955697B (zh) * | 2015-07-29 | 2019-06-21 | 河南大学 | 特定形貌的铌酸钠光催化材料及其制备方法与应用 |
US10516304B2 (en) | 2015-12-22 | 2019-12-24 | Intel Corporation | Wireless charging coil placement for reduced field exposure |
US10411492B2 (en) | 2015-12-23 | 2019-09-10 | Intel Corporation | Wireless power transmitter shield with capacitors |
CN109478592B (zh) | 2016-06-23 | 2023-06-06 | 日本化学工业株式会社 | 压电体材料用填料、复合压电体材料和复合压电体元件、复合压电体材料用填料和铌酸碱金属化合物的制造方法 |
CN107640788A (zh) * | 2017-09-25 | 2018-01-30 | 清华大学深圳研究生院 | 铌酸盐材料及其制备方法 |
CN108910947B (zh) * | 2018-07-17 | 2020-11-03 | 天津城建大学 | 一种薄片微纳米(K,Na)NbO3晶体及其制备方法 |
CN109233829B (zh) * | 2018-09-14 | 2021-09-24 | 广东工业大学 | 一种镁铒镱三掺铌酸钠及其制备方法和应用 |
CN109097043B (zh) * | 2018-09-14 | 2021-07-20 | 广东工业大学 | 一种铒和镱双掺杂铌酸钠上转换材料及其制备方法和应用 |
CN109553136B (zh) * | 2018-11-15 | 2021-03-16 | 北京工业大学 | 一种制备复合碱金属铌酸盐粉体的方法 |
JP7206847B2 (ja) * | 2018-11-22 | 2023-01-18 | 堺化学工業株式会社 | ニオブ酸アルカリ金属塩粒子の製造方法 |
JP7498547B2 (ja) * | 2019-06-24 | 2024-06-12 | 株式会社富士セラミックス | ニオブ系非鉛圧電セラミックス及びその製造方法 |
JP7468030B2 (ja) * | 2020-03-19 | 2024-04-16 | 堺化学工業株式会社 | ニオブ酸アルカリ金属塩粒子 |
CN111468133B (zh) * | 2020-05-29 | 2022-12-27 | 陕西科技大学 | 一种铌酸钾/α-氧化铁异质光催化剂的制备方法 |
CN115427355A (zh) | 2020-06-04 | 2022-12-02 | 三井金属矿业株式会社 | 铌酸化合物及含铌浆料 |
CN113428899B (zh) * | 2021-07-28 | 2022-07-29 | 宝鸡文理学院 | 二维板状KNbO3介观晶体的可控制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6052098B2 (ja) | 1980-12-03 | 1985-11-18 | 三菱電機株式会社 | 圧電磁器組成物 |
JPH07232923A (ja) * | 1993-09-03 | 1995-09-05 | Chon Internatl Co Ltd | ペロブスカイト化合物の結晶性セラミック粉体の合成方法 |
JP2000313664A (ja) | 1999-02-24 | 2000-11-14 | Toyota Central Res & Dev Lab Inc | アルカリ金属含有ニオブ酸化物系圧電材料組成物 |
JP2006306678A (ja) * | 2005-04-28 | 2006-11-09 | Toyota Central Res & Dev Lab Inc | 異方形状粉末及びその製造方法、並びに、結晶配向セラミックス及びその製造方法 |
WO2007080684A1 (ja) * | 2006-01-12 | 2007-07-19 | Murata Manufacturing Co., Ltd. | 異方形状セラミック粒子及びその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE649820A (ja) * | 1963-06-28 | |||
JPS6052098A (ja) | 1983-08-31 | 1985-03-23 | 松下電器産業株式会社 | フレ−ム・シ−ルド構体 |
US7585474B2 (en) * | 2005-10-13 | 2009-09-08 | The Research Foundation Of State University Of New York | Ternary oxide nanostructures and methods of making same |
CN101249985A (zh) | 2008-03-25 | 2008-08-27 | 大连理工大学 | 正交相和具有高居里点三方相铌酸钠的可控制备方法 |
JP5578504B2 (ja) * | 2009-04-09 | 2014-08-27 | 堺化学工業株式会社 | ニオブ酸アルカリ金属塩粒子の製造方法、およびニオブ酸アルカリ金属塩粒子 |
CN104334498B (zh) * | 2012-04-16 | 2016-12-21 | 佳能株式会社 | 铌酸钠粉末及其制备方法、陶瓷制备方法及压电元件 |
-
2009
- 2009-04-09 JP JP2009095013A patent/JP5582281B2/ja active Active
-
2010
- 2010-04-05 EP EP10761671.6A patent/EP2418174B1/en not_active Not-in-force
- 2010-04-05 DK DK10761671.6T patent/DK2418174T3/en active
- 2010-04-05 WO PCT/JP2010/056171 patent/WO2010116972A1/ja active Application Filing
- 2010-04-05 KR KR1020117023556A patent/KR101642535B1/ko active IP Right Grant
- 2010-04-05 CN CN201080015387.8A patent/CN102369162B/zh not_active Expired - Fee Related
- 2010-04-05 US US13/262,770 patent/US8771618B2/en not_active Expired - Fee Related
-
2014
- 2014-02-27 US US14/192,399 patent/US9272921B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6052098B2 (ja) | 1980-12-03 | 1985-11-18 | 三菱電機株式会社 | 圧電磁器組成物 |
JPH07232923A (ja) * | 1993-09-03 | 1995-09-05 | Chon Internatl Co Ltd | ペロブスカイト化合物の結晶性セラミック粉体の合成方法 |
JP2000313664A (ja) | 1999-02-24 | 2000-11-14 | Toyota Central Res & Dev Lab Inc | アルカリ金属含有ニオブ酸化物系圧電材料組成物 |
JP2006306678A (ja) * | 2005-04-28 | 2006-11-09 | Toyota Central Res & Dev Lab Inc | 異方形状粉末及びその製造方法、並びに、結晶配向セラミックス及びその製造方法 |
WO2007080684A1 (ja) * | 2006-01-12 | 2007-07-19 | Murata Manufacturing Co., Ltd. | 異方形状セラミック粒子及びその製造方法 |
Non-Patent Citations (4)
Title |
---|
C. SUN ET AL., EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2007, pages 1884 |
See also references of EP2418174A4 |
Y. SAITO ET AL., JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 27, 2007, pages 4085 |
YING WANG ET AL.: "Hydrothermal synthesis of potassium niobate powders", CERAMICS INTERNATIONAL, vol. 33, no. 7, 2007, pages 1611 - 1615, XP022268144 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012165267A1 (en) * | 2011-05-27 | 2012-12-06 | Canon Kabushiki Kaisha | Sodium niobate powder, method of manufacturing a sodium niobate powder, plate-like particle, method of manufacturing a plate-like particle, and method of manufacturing an oriented ceramics |
JP2012246178A (ja) * | 2011-05-27 | 2012-12-13 | Canon Inc | ニオブ酸ナトリウム粉末、ニオブ酸ナトリウム粉末の製造方法、板状粒子、板状粒子の製造方法、配向セラミックスの製造方法 |
US9318689B2 (en) | 2011-05-27 | 2016-04-19 | Canon Kabushiki Kaisha | Sodium niobate powder, method of manufacturing a sodium niobate powder, plate-like particle, method of manufacturing a plate-like particle, and method of manufacturing an oriented ceramics |
US20150062257A1 (en) * | 2012-04-16 | 2015-03-05 | Canon Kabushiki Kaisha | Sodium niobate powder, method for producing the same, method for producing ceramic, and piezoelectric element |
US9231189B2 (en) * | 2012-04-16 | 2016-01-05 | Canon Kabushiki Kaisha | Sodium niobate powder, method for producing the same, method for producing ceramic, and piezoelectric element |
Also Published As
Publication number | Publication date |
---|---|
CN102369162B (zh) | 2014-05-07 |
KR20110135400A (ko) | 2011-12-16 |
KR101642535B1 (ko) | 2016-07-25 |
US9272921B2 (en) | 2016-03-01 |
US8771618B2 (en) | 2014-07-08 |
JP5582281B2 (ja) | 2014-09-03 |
EP2418174B1 (en) | 2016-10-05 |
JP2010241658A (ja) | 2010-10-28 |
US20140315024A1 (en) | 2014-10-23 |
EP2418174A1 (en) | 2012-02-15 |
EP2418174A4 (en) | 2015-04-01 |
CN102369162A (zh) | 2012-03-07 |
US20120064344A1 (en) | 2012-03-15 |
DK2418174T3 (en) | 2017-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5582281B2 (ja) | ニオブ酸アルカリ金属塩粒子の製造方法、およびニオブ酸アルカリ金属塩粒子 | |
JP5578504B2 (ja) | ニオブ酸アルカリ金属塩粒子の製造方法、およびニオブ酸アルカリ金属塩粒子 | |
KR20140025521A (ko) | 니오브산나트륨 분말, 니오브산나트륨 분말의 제조 방법, 판형상 입자, 판형상 입자의 제조 방법, 및 배향성 세라믹의 제조 방법 | |
JP2011132118A (ja) | 異方形状粉末及びその製造方法 | |
JP4853477B2 (ja) | 異方形状セラミック粒子及びその製造方法 | |
KR101904579B1 (ko) | 옥살산바륨티타닐의 제조 방법 및 티탄산바륨의 제조 방법 | |
JP5746524B2 (ja) | 異方形状粉末及びその製造方法 | |
JP7206847B2 (ja) | ニオブ酸アルカリ金属塩粒子の製造方法 | |
KR20100100654A (ko) | 옥살산바륨티타닐의 제조 방법 및 티탄산바륨의 제조 방법 | |
JP7468030B2 (ja) | ニオブ酸アルカリ金属塩粒子 | |
JP2014088314A (ja) | ニオブ酸アルカリ金属塩粒子の製造方法、およびニオブ酸アルカリ金属塩粒子 | |
JP2012232862A (ja) | 異方形状粉末及びその製造方法 | |
JP2012077068A (ja) | シュウ酸バリウムチタニル粒子、その製造方法及びチタン酸バリウムの製造方法 | |
JP2020083694A (ja) | ニオブ酸アルカリ金属塩粒子の製造方法 | |
JP7102462B2 (ja) | シュウ酸バリウムチタニル、その製造方法及びチタン酸バリウムの製造方法 | |
JP4925007B2 (ja) | 圧電体球状微粒子の製造方法 | |
JP2010222193A (ja) | 結晶配向セラミックスの製造方法 | |
JP2009269794A (ja) | 結晶配向セラミックスの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080015387.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10761671 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20117023556 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010761671 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010761671 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13262770 Country of ref document: US |