WO2010113784A1 - エポキシ樹脂、エポキシ樹脂組成物及び硬化物 - Google Patents
エポキシ樹脂、エポキシ樹脂組成物及び硬化物 Download PDFInfo
- Publication number
- WO2010113784A1 WO2010113784A1 PCT/JP2010/055330 JP2010055330W WO2010113784A1 WO 2010113784 A1 WO2010113784 A1 WO 2010113784A1 JP 2010055330 W JP2010055330 W JP 2010055330W WO 2010113784 A1 WO2010113784 A1 WO 2010113784A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy resin
- group
- compound
- formula
- resin composition
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/027—Polycondensates containing more than one epoxy group per molecule obtained by epoxidation of unsaturated precursor, e.g. polymer or monomer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/04—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
- C08G59/06—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/04—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
- C08G59/06—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
- C08G59/066—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with chain extension or advancing agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/621—Phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
Definitions
- the present invention relates to an epoxy resin, an epoxy resin composition, and a cured product useful for paints, laminates, adhesives, and the like.
- epoxy resins used for paints, laminates, adhesives, etc. have low epoxy equivalents and poor adhesion and toughness of cured products. Therefore, bisphenol A type epoxy resins or bisphenol F type epoxy resins are used as bisphenol A, A so-called polymeric epoxy resin that has been polymerized with bisphenol F or tetrabromobisphenol A is generally used.
- Patent Document 1 a bifunctional epoxy resin and a bifunctional phenol are used as a catalyst, an alkali metal compound and an imidazole are used in combination, and a solvent having a boiling point of 130 ° C. or higher is used as a synthesis solvent. Discloses a method of increasing the strength of a high molecular weight epoxy polymer with less branching by reducing the solid content concentration of the polymer to 50% by weight or less.
- the bifunctional epoxy resin used is not limited, but the exemplified epoxy resins are bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic General chain epoxy resins, diglycidyl etherified products of bifunctional phenols, diglycidyl etherified products of bifunctional alcohols, their halides, hydrogenated products, etc. Not paying attention.
- Patent Document 2 is obtained by reacting a bifunctional epoxy resin (X) and a dihydric phenol compound (Y) in the presence of a catalyst, and the following requirements (a) to (d): (A) A mass average molecular weight of 30,000 to 200,000 (B) Epoxy equivalent is 5,000 to 20,000 g / equivalent (c) Residual bifunctional epoxy resin (X) content is 1000 ppm or less (d) Residual dihydric phenol compound (Y) content is 100 ppm or less A high molecular weight epoxy resin composition comprising a molecular weight epoxy resin and a curing agent that reacts with an epoxy group has low elution, chemical resistance, solvent resistance, heat resistance, moldability, flexibility, impact resistance, It discloses that a cured product having excellent adhesion and adhesion can be obtained.
- the bifunctional epoxy resin used is not limited, but the illustrated epoxy resins are bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetrabromobisphenol A type epoxy resin.
- Bisphenol-type epoxy resins such as 4,4′-biphenol, 3,3 ′, 5,5′-tetramethyl-4,4′-biphenol and epihalohydrin, a biphenol-type epoxy resin, catechol, and resorcinol Diglycidyl ether of monocyclic dihydric phenol such as hydroquinone, diglycidyl ether of dihydroxynaphthalene, epoxy resin hydrogenated aromatic ring of the above aromatic epoxy resin, diglycidyl ether of dihydric alcohol, alicyclic epoxy resin, lid Acid, isophthalic acid, tetrahydrophthalic phthalic acid, are generic, such as divalent diglycidyl esters of carboxylic acids such as hexahydrophthalic acid, not focusing on the structure of the epoxy resin.
- the problem to be solved by the present invention is to provide an epoxy resin, an epoxy resin composition, and a cured product having a low chlorine content, excellent heat resistance and mechanical strength, and useful for paints, laminates, adhesives and the like. There is to do.
- the present inventors have intensively studied to obtain an epoxy resin having a low chlorine content, excellent heat resistance, and useful for paints, laminates, adhesives, etc.
- the present inventors have found that the above problems can be solved by using an epoxy resin obtained by reacting diepoxyethylbenzene with a compound having two phenolic hydroxyl groups, and have completed the present invention.
- the present invention relates to an epoxy resin represented by the following general formula (1).
- A represents a divalent aromatic group which may have a substituent
- n represents a number from 1 to 15.
- the present invention is an epoxy resin obtained by reacting diepoxyethylbenzene and a compound having two phenolic hydroxyl groups, and containing an epoxy resin represented by the general formula (1) as a main component.
- This epoxy resin can contain a subcomponent, and it is preferable that the subcomponent contains an epoxy resin represented by the following general formula (2).
- a and n are the same as those in the general formula (1).
- B 1 is a divalent group represented by the following formula (3) or the following formula (4)
- B 2 is a divalent group represented by the following formula (5) or the following formula (6).
- B 1 is a divalent group represented by the formula (3)
- B 2 is a divalent group represented by (5).
- the present invention relates to a method for producing an epoxy resin, characterized by reacting diepoxyethylbenzene with a compound having two phenolic hydroxyl groups.
- the epoxy resin obtained by this production method is an epoxy resin containing the epoxy resin represented by the general formula (1) as a main component, and contains the epoxy resin represented by the general formula (2) as a subcomponent. Is preferred.
- the compound having two phenolic hydroxyl groups is preferably a bisphenol compound or a biphenol compound.
- the present invention relates to an epoxy resin composition characterized by containing the above epoxy resin and a curing agent.
- the epoxy resin composition preferably further contains a curing accelerator.
- this invention relates to the epoxy resin hardened
- the epoxy resin of the present invention is represented by the above general formula (1).
- A is a divalent aromatic group which may have a substituent, and is a group generated from a compound having two phenolic hydroxyl groups (hereinafter also referred to as a divalent phenol compound). It is understood from the divalent phenol compound.
- divalent aromatic groups include phenylene group, naphthylene group, anthracene group, diphenylmethane group, 1,1-diphenylethane group, 1,1,1-methyldiphenylethane group, diphenyl ether group, diphenyl sulfide group, diphenyl Examples include a sulfoxide group, diphenylsulfone group, diphenylketone group, phenylbenzoate group, biphenyl group, stilbene group, diazobenzene group, aniline benzylidene group, and derivatives thereof.
- the anthracene group means a group formed by removing two hydrogens from anthracene, such as diphenylmethane group, 1,1-diphenylethane group, 1,1,1-methyldiphenylethane group, diphenyl ether group, diphenyl sulfide group, diphenyl
- the sulfoxide group, diphenylsulfone group, diphenylketone group, phenylbenzoate group, biphenyl group, stilbene group, diazobenzene group, and aniline benzylidene group are groups represented by -Ph-X-Ph-, and Ph is a benzene ring.
- X is CH 2 , C 2 H 4 , C 3 H 6 , O, S, SO, SO 2 , CO, COO, a single bond, C 2 H 2 , N 2 or CHN.
- the divalent aromatic group may have a substituent, and preferred substituents include hydrocarbon groups such as methyl group, ethyl group, allyl group, propargyl group, phenyl group, and benzyl group, methoxy group, and ethoxy group. Groups, alkoxy groups such as allyloxy group and phenoxy group, and halogen groups such as fluorine, chlorine and bromine. Preferred are an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aromatic hydrocarbon group having 6 to 8 carbon atoms, or a halogen such as chlorine or bromine.
- divalent aromatic group those having a structure with little steric hindrance and excellent symmetry are preferable from the viewpoint of high heat resistance, low thermal expansion, and low hygroscopicity.
- a group, 1,5-naphthylene group, 4,4′-diphenylmethane group, 4,4′-diphenyl ether group or 4,4′-biphenyl group is preferably selected.
- n represents a number from 1 to 15, and a preferable value of n varies depending on the application to be applied. This number is an average value (number average). For example, for a semiconductor encapsulant that requires a high filling rate of the filler, a material having a low viscosity is desirable, and the value of n is 1 to 5, preferably 1 to 3, and more preferably n. 1 is contained at 30 wt% or more.
- the epoxy resin of the present invention can be produced by reacting diepoxyethylbenzene with a divalent phenol compound having two phenolic hydroxyl groups.
- the epoxy group of diepoxyethylbenzene is ring-opened to form an ether bond with a divalent phenol compound and polymerize.
- This ring opening can occur from either the ⁇ -position or the ⁇ -position, but the epoxy resin of the formula (1) is the main component and the epoxy resin of the general formula (2) is the subcomponent.
- n increases, an epoxy resin containing both structural units opened at the ⁇ -position and ⁇ -position is also contained as a minor component.
- Structural units opened at the ⁇ -position or ⁇ -position are shown in Formulas (3) to (6).
- B 1 and B 2 in the general formula (2) have the structural units of the formula (3) and the formula (5) at the same time, they are the same as in the general formula (1), so that case is excluded.
- the epoxy resin of the present invention is an epoxy resin of the formula (1) or an epoxy resin mainly composed of this epoxy resin.
- the subcomponent includes the epoxy resin of the formula (2).
- an epoxy resin containing a structural unit that is ring-opened at the ⁇ -position and the ⁇ -position (hereinafter also referred to as epoxy resin (3)) is optionally included.
- the epoxy resin of the formula (1) is usually contained by 50% or more, preferably 60% or more.
- the epoxy resin of the formula (2) is contained less than 50%, preferably 10 to 40%.
- the quantity of an epoxy resin (3) changes with n number, since the probability of ring-opening in (alpha) position and (beta) position is the said range, it can be calculated from it roughly. However, at most less than 50%.
- the epoxy resin of Formula (1), the epoxy resin of Formula (2), and the epoxy resin (3) are all the same in the composition formula and have an epoxy group and hydroxy, they show similar properties.
- the epoxy resin of the present invention can be obtained by reacting diepoxyethylbenzene and a divalent phenol compound in the presence of a catalyst at 50 to 200 ° C. for 1 to 20 hours as necessary.
- the reaction rate of diepoxyethylbenzene and divalent phenol compound is such that the molar ratio of diepoxyethylbenzene and divalent phenol compound is 100/10 to 100/95, preferably 100/15 to 100/70. preferable.
- the n number can be controlled by adjusting the molar ratio.
- the terminal can be made into an epoxy group by using diepoxyethylbenzene in excess.
- Examples of the catalyst that can be used in this case include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, tertiary amines such as triethylamine and benzyldimethylamine, quaternary ammonium salts such as tetramethylammonium chloride, imidazole, and the like.
- Compounds, phosphines such as triphenylphosphine, and phosphonium salts such as tetra-n-butylphosphonium tetraphenylborate.
- the amount of catalyst used varies depending on the catalyst used, but is preferably 0.001 to 3%, more preferably 0.01% to 2%, based on the weight of diepoxyethylbenzene.
- an organic solvent may be used as necessary.
- the organic solvent include aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as MIBK and MEK, and the like.
- the amount of the solvent used is usually 10 to 1000 parts by weight, preferably 20 to 200 parts by weight, based on 100 parts by weight of the total weight of diepoxyethylbenzene and the divalent phenol compound.
- Diepoxyethylbenzene can be obtained by epoxidizing divinylbenzene with a peroxide. Since epichlorohydrin is not used, the resulting compound has a low chlorine content.
- a peracid, hydrogen peroxide, or an organic peroxide obtained by a usual method can be used.
- divinylbenzene is an isomer mixture, this epoxy compound also becomes an isomer mixture, but there is no problem.
- Any known divalent phenol compound used in the production method of the present invention can be used, and a divalent phenol compound represented by A (OH) 2 in which a phenolic hydroxyl group is bonded to A described above is used.
- a (OH) 2 divalent phenol compound represented by A (OH) 2 in which a phenolic hydroxyl group is bonded to A described above is used.
- the Bisphenol compounds or biphenol compounds are preferred.
- the epoxy resin obtained by the production method of the present invention is an epoxy resin of the formula (1) or an epoxy resin mainly composed of this epoxy resin and the epoxy resin of the formula (2). And it can contain as an epoxy resin (3) minor component.
- any known and commonly used compounds can be used, and among them, typical ones are potentials such as dicyandiamide, imidazole, BF 3 -amine complex, and guanidine derivatives.
- Curing agents various novolak resins derived from phenol, substituted phenols and bisphenols and their modified products, aromatic amines such as metaphenylenediamine, diaminodiphenylmethane and diaminodiphenylsulfone, polyamide resins and their modified products, anhydrous maleic And acid anhydride curing agents such as acid, phthalic anhydride, hexahydrophthalic anhydride, and pyromellitic anhydride. These curing agents may be used alone or in combination of two or more. It is preferable to use a curing agent for room temperature curing and for heat curing depending on the application.
- the amount of these curing agents used is not particularly limited, but is 2 to 70 parts by weight with respect to 100 parts by weight of the solid content of the epoxy resin. However, since this mixing ratio varies greatly depending on the type of curing agent used, it is necessary to appropriately determine the optimum conditions. *
- a curing accelerator can be used as appropriate. Any known and commonly used curing accelerators can be used, and examples include tertiary amines, imidazoles, organic acid metal salts, Lewis acids, amine complex salts, and the like. Combined use is also possible. *
- fillers such as fillers, fibers, coupling agents, flame retardants, mold release agents, and foaming agents can be added to the epoxy resin composition of the present invention as necessary.
- the filler include polyethylene powder, polypropylene powder, quartz, silica, silicate, calcium carbonate, magnesium carbonate, gypsum, bentonite, fluorite, titanium dioxide, carbon black, graphite, iron oxide, aluminum powder, iron Powder, talc, mica, kaolin clay, etc., as fibers, for example, cellulose fibers, glass fibers, carbon fibers, aramid fibers, etc., and as coupling agents, for example, silane coupling agents, titanium coupling agents, etc. are difficult.
- Examples of the flame retardant include brominated bisphenol A, antimony trioxide, and phosphorus compounds
- examples of the release agent include stearic acid salt, silicone, and wax
- examples of the foaming agent include chlorofluorocarbon, dichloroethane, butane, and pentane. , Dinitropentamethylenetetramine, paratoluene Expandable thermoplastic resin particles in which hydryl hydrazide or fluorocarbon, dichloroethane, butane, pentane, etc. are filled in the shell of vinyl chloride-vinylidene chloride copolymer or styrene- (meth) acrylate copolymer Etc.
- the epoxy resin composition of the present invention can be easily made into a cured product of an epoxy resin composition by a method similar to a conventionally known method.
- the epoxy resin composition of the present invention and a curing agent, and if necessary, a curing accelerator and other additives are thoroughly mixed as necessary using an extruder, kneader, roll, etc.
- the epoxy resin composition is melted and then molded using a casting or transfer molding machine, and further heated to 80 to 200 ° C. to obtain a cured product.
- a prepreg obtained by dissolving the epoxy resin composition of the present invention in a solvent, impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and drying by heating is subjected to hot press molding.
- a cured product For example, the epoxy resin of the present invention, a curing agent, a diluting solvent and the like are heated and stirred until they are uniform, impregnated into a glass cloth, heated and semi-dried to remove the solvent, and the necessary number of prepregs are stacked 80 to A glass cloth laminate can be produced by heating and pressing at 200 ° C. for 1 hour or longer.
- the dilution solvent that can be used in this case include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, methyl cellosolve, and the like.
- the amount used is 10 with respect to the total weight of the epoxy resin composition and the dilution solvent. It is ⁇ 70% by weight, preferably 15 to 65% by weight.
- the epoxy resin composition of the present invention can be used in a wide range of fields. Specifically, it can be used for a wide range of applications such as molding materials, casting materials, laminated materials, paints, adhesives, and resists.
- Example 1 In a separable flask equipped with a stirrer, a condenser, and a thermometer, 61 parts of diepoxyethylbenzene produced in Synthesis Example 1, 41 parts of bisphenol A (manufactured by Tokyo Chemical Industry Co., Ltd.), methyl isobutyl ketone (Tokyo Chemical Industry Co., Ltd.) (Company) 102 parts were charged and heated to 80 ° C. and completely dissolved under stirring. Then, 0.07 part of triphenylphosphine was added as a catalyst, the temperature was raised to 130 ° C., and the reaction was performed for 6 hours. After completion of the reaction, devolatilization was performed at 120 ° C.
- Example 2 A separable flask equipped with a stirrer, a condenser, and a thermometer was charged with 61 parts of diepoxyethylbenzene produced in Synthesis Example 1, 41 parts of bisphenol F (manufactured by Honshu Chemical Industry Co., Ltd.), and 101 parts of methyl isobutyl ketone. After heating to ° C. and completely dissolved under stirring, 0.07 part of triphenylphosphine was added as a catalyst, the temperature was raised to 130 ° C., and the reaction was carried out for 6 hours. After completion of the reaction, devolatilization was performed at 120 ° C. under a reduced pressure of 5 torr. An epoxy equivalent of 298 g / eq, 100 parts of an epoxy resin (B) which is a pale yellow transparent viscous liquid was obtained. The total chlorine content was less than 0.5 ppm.
- Example 3 In a separable flask equipped with a stirrer, condenser, and thermometer, 61 parts of diepoxyethylbenzene produced in Synthesis Example 1, 38 parts of 4,4′-dihydroxybiphenyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.), methyl After adding 75 parts of isobutyl ketone and heating it to 80 ° C. and completely dissolving it with stirring, 0.07 part of triphenylphosphine was added as a catalyst, and the temperature was raised to 130 ° C. to carry out the reaction for 6 hours. After completion of the reaction, devolatilization was performed at 120 ° C. under a reduced pressure of 5 torr. An epoxy equivalent (279 g / eq) and 82 parts of an epoxy resin (C) which is a pale yellow transparent viscous liquid was obtained. The total chlorine content was less than 0.5 ppm.
- Example 4 In a separable flask equipped with a stirrer, a condenser and a thermometer, 82 parts of diepoxyethylbenzene produced in Synthesis Example 1 and 9,9-bis (4-hydroxyphenyl) fluorene (manufactured by Tokyo Chemical Industry Co., Ltd.) After 88 parts and 80 parts of methyl isobutyl ketone were charged and heated to 80 ° C. and completely dissolved under stirring, 0.09 part of triphenylphosphine was added as a catalyst, and the temperature was raised to 130 ° C. and reacted for 6 hours. . After completion of the reaction, devolatilization was performed at 120 ° C. under a reduced pressure of 5 torr. Epoxy equivalent 342g / eq, 165 parts of epoxy resin (D) which is a pale yellow solid was obtained. The total chlorine content was less than 0.5 ppm.
- the epoxy resins (A) to (D) obtained in Examples 1 to 4 are all composed mainly of the epoxy resin represented by the general formula (1), and the ratio thereof is about 70 wt%. About 30 wt% of the epoxy resin represented by
- Examples 5-8 The epoxy resins A to D obtained in Examples 1 to 4 were mixed with Jamaicacid MH-700 (4-methylhexahydrophthalic anhydride / hexahydrophthalic anhydride mixture (70/30) manufactured by Shin Nippon Rika Co., Ltd.). It mixed so that it might become 1.0. To the mixture, 0.3% 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd.) was added and mixed uniformly. Obtained.
- Tg TMA bending elastic modulus, bending strength
- the epoxy resin of the present invention has a low chlorine content, excellent heat resistance and mechanical strength, and is useful for paints, laminates, adhesives, etc.
- a resin composition and a cured product can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Epoxy Resins (AREA)
Abstract
Description
(a)質量平均分子量が30,000~200,000
(b)エポキシ当量が5,000~20,000g/当量
(c)残存2官能エポキシ樹脂(X)含有量が1000ppm以下
(d)残存2価フェノール化合物(Y)含有量が100ppm以下
を満たす高分子量エポキシ樹脂と、エポキシ基と反応する硬化剤から成る高分子量エポキシ樹脂組成物が、低溶出性であり、耐薬品性、耐溶剤性、耐熱性、成形性、可撓性、耐衝撃性、密着性、接着性に優れた硬化物を与える事を開示している。
ここで、A及びnは一般式(1)と同意である。B1は下記式(3)又は下記式(4)で表される2価の基であり、B2は下記式(5)又は下記式(6)で表される2価の基であるが、B1が式(3)で表される2価の基であり、かつB2が(5)で表される2価の基である場合を除く。
3L反応器にジビニルベンゼン(新日鐵化学製DVB-960ジビニルベンゼン含有量97%、m-体/p-体=62:38)300部、酢酸エチル1200部を装入し撹拌した。次いで、過酢酸30%含有酢酸エチル溶液1640部を3時間かけて滴下した。滴下中は反応温度が30℃になるように制御を行った。滴下後、さらに30℃にて3時間撹拌を行った。反応液を室温まで冷却した後、20%NaOH水溶液1208部を加え、1時間撹拌後、水層を分離し、未反応の過酢酸及び、生成した酢酸の除去を行った。エバポレーターにて、酢酸エチルを減圧留去した後、精製蒸留(留出温度 10torr 150℃)を行い、ジエポキシエチルベンゼン151.6部を得た。得られたジエポキシエチルベンゼンのエポキシ当量は81g/eq、25℃における粘度は18mPa・s、純度は97.1%(ガスクロマトグラフィー面積%)、m-体/p-体=64:36(1H-NMR積分比)であった。
撹拌機、コンデンサー、温度計を取り付けたセパラブルフラスコに、合成例1で製造したジエポキシエチルベンゼンを61部、ビスフェノールA(東京化成工業株式会社製)を41部、メチルイソブチルケトン(東京化成工業株式会社製)102部を仕込み80℃に加熱し撹拌下で完全に溶解した後、触媒としてトリフェニルホスフィン0.07部を添加し、130℃まで昇温し6時間、反応を行った。反応終了後、5torrの減圧下、120℃で脱揮を行った。エポキシ当量259g/eq、淡黄色透明な粘張液体であるエポキシ樹脂(A)100部を得た。ボンベ燃焼法による全塩素含有量は、0.5ppm未満であった。エポキシ樹脂(A)の1H-NMRスペクトルを図1に示す。
撹拌機、コンデンサー、温度計を取り付けたセパラブルフラスコに、合成例1で製造したジエポキシエチルベンゼンを61部、ビスフェノールF(本州化学工業株式会社製)を41部、メチルイソブチルケトン101部を仕込み80℃に加熱し撹拌下で完全に溶解した後、触媒としてトリフェニルホスフィン0.07部を添加し、130℃まで昇温し6時間、反応を行った。反応終了後、5torrの減圧下、120℃で脱揮を行った。エポキシ当量298g/eq、淡黄色透明な粘張液体であるエポキシ樹脂(B)100部を得た。全塩素含有量は0.5ppm未満であった。
撹拌機、コンデンサー、温度計を取り付けたセパラブルフラスコに、合成例1で製造したジエポキシエチルベンゼンを61部、4,4’-ジヒドロキシビフェニルエーテル(東京化成化学工業株式会社製)を38部、メチルイソブチルケトン75部を仕込み80℃に加熱し撹拌下で完全に溶解した後、触媒としてトリフェニルホスフィン0.07部を添加し、130℃まで昇温し6時間、反応を行った。反応終了後、5torrの減圧下、120℃で脱揮を行った。エポキシ当量279g/eq、淡黄色透明な粘張液体であるエポキシ樹脂(C)82部を得た。全塩素含有量は0.5ppm未満であった。
撹拌機、コンデンサー、温度計を取り付けたセパラブルフラスコに、合成例1で製造したジエポキシエチルベンゼンを82部、9,9-ビス(4-ヒドロキシフェニル)フルオレン(東京化成化学工業株式会社製)を88部、メチルイソブチルケトン80部を仕込み80℃に加熱し撹拌下で完全に溶解した後、触媒としてトリフェニルホスフィン0.09部を添加し、130℃まで昇温し6時間、反応を行った。反応終了後、5torrの減圧下、120℃で脱揮を行った。エポキシ当量342g/eq、淡黄色固体であるエポキシ樹脂(D)165部を得た。全塩素含有量は0.5ppm未満であった。
実施例1~4で得たエポキシ樹脂A~Dに、リカシッドMH-700(4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸混合物(70/30)新日本理化株式会社製)を当量比が1.0となるように混合した。混合物に対し、0.3%の2-エチル-4-メチルイミダゾール(四国化成工業(株)製)を加えて均一に混合した後、120℃1時間+150℃3時間加熱硬化させ、硬化物を得た。
ビスフェノールA型エポキシ樹脂(YD-134 エポキシ当量246g/eq 全塩素含有量 1700ppm)とリカシッドMH-700を当量比が1.0となるように混合した。混合物に対し、0.3%の2-エチル-4-メチルイミダゾールを加えて均一に混合した後、120℃1時間+150℃3時間加熱硬化させ、硬化物を得た。
ビスフェノールF型エポキシ樹脂(YDF-170 エポキシ当量246g/eq 全塩素含有量 1600ppm)とリカシッドMH-700を等量比が1.0となるように混合した。混合物に対し、0.3%の2-エチル-4-メチルイミダゾールを加えて均一に混合した後、120℃1時間+150℃3時間加熱硬化させ、硬化物を得た。
Tg:TMA法
曲げ弾性率、曲げ強度;3点曲げ法
Claims (9)
- ジエポキシエチルベンゼンとフェノール性水酸基を2個有する化合物とを反応させることを特徴とするエポキシ樹脂の製造方法。
- フェノール性水酸基を2個有する化合物がビスフェノール系化合物である請求項4に記載のエポキシ樹脂の製造方法。
- フェノール性水酸基を2個有する化合物がビフェノール系化合物である請求項4に記載のエポキシ樹脂の製造方法。
- 請求項1~3記載のいずれかに記載のエポキシ樹脂と、硬化剤を含有することを特徴とするエポキシ樹脂組成物。
- 更に硬化促進剤を含有する請求項7に記載のエポキシ樹脂組成物。
- 請求項7に記載のエポキシ樹脂組成物を成形硬化させてなることを特徴とするエポキシ樹脂硬化物。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020117025323A KR101716634B1 (ko) | 2009-03-31 | 2010-03-26 | 에폭시수지, 에폭시수지 조성물 및 경화물 |
JP2011507145A JP5611192B2 (ja) | 2009-03-31 | 2010-03-26 | エポキシ樹脂、エポキシ樹脂組成物及び硬化物 |
CN201080007145.4A CN102317341B (zh) | 2009-03-31 | 2010-03-26 | 环氧树脂、环氧树脂组合物及固化物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-086552 | 2009-03-31 | ||
JP2009086552 | 2009-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010113784A1 true WO2010113784A1 (ja) | 2010-10-07 |
Family
ID=42828075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/055330 WO2010113784A1 (ja) | 2009-03-31 | 2010-03-26 | エポキシ樹脂、エポキシ樹脂組成物及び硬化物 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5611192B2 (ja) |
KR (1) | KR101716634B1 (ja) |
CN (1) | CN102317341B (ja) |
WO (1) | WO2010113784A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011103014A1 (en) * | 2010-02-19 | 2011-08-25 | Dow Global Technologies Llc | Divinylarene dioxide resin compositions |
WO2011115161A1 (ja) * | 2010-03-18 | 2011-09-22 | 新日鐵化学株式会社 | エポキシアクリレート、アクリル系組成物、硬化物及びその製造法 |
JPWO2010101144A1 (ja) * | 2009-03-05 | 2012-09-10 | 新日鐵化学株式会社 | エポキシ樹脂組成物 |
JP2014520172A (ja) * | 2011-05-13 | 2014-08-21 | ダウ グローバル テクノロジーズ エルエルシー | 絶縁配合物 |
JP2015212399A (ja) * | 2009-12-09 | 2015-11-26 | ダウ グローバル テクノロジーズ エルエルシー | エポキシ樹脂組成物 |
JP2020041048A (ja) * | 2018-09-10 | 2020-03-19 | 日立化成株式会社 | エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013161606A1 (ja) * | 2012-04-24 | 2015-12-24 | 新日鉄住金化学株式会社 | エポキシ樹脂組成物、樹脂シート、硬化物及びフェノキシ樹脂 |
JP6364187B2 (ja) * | 2013-12-19 | 2018-07-25 | 新日鉄住金化学株式会社 | 光学用エポキシ樹脂組成物およびその硬化物 |
KR102289998B1 (ko) * | 2014-02-27 | 2021-08-13 | 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 | 플루오렌 골격 함유 에폭시 수지의 제조 방법, 에폭시 수지 조성물, 및 경화물 |
KR102660466B1 (ko) | 2018-07-17 | 2024-04-23 | 혼슈우 카가쿠고교 가부시키가이샤 | 신규한 폴리아실옥시메틸-4,4'-아실옥시비페닐 화합물 |
US11453743B2 (en) * | 2020-06-05 | 2022-09-27 | Chanda Chemical Corp. | Thermoset epoxy resin, its preparing composition and making process thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2912389A (en) * | 1957-08-08 | 1959-11-10 | Union Carbide Corp | Polymers of divinylbenzene dioxide |
US2924580A (en) * | 1957-08-08 | 1960-02-09 | Union Carbide Corp | Divinyl benzene dioxide compositions |
JPS4936343A (ja) * | 1972-08-05 | 1974-04-04 | ||
JPH1171364A (ja) * | 1997-05-16 | 1999-03-16 | Natl Starch & Chem Investment Holding Corp | 活性放射線または熱開始カチオン硬化性エポキシドモノマー及びそれらのモノマーから製造された組成物 |
JP2006241222A (ja) * | 2005-03-01 | 2006-09-14 | Dainippon Ink & Chem Inc | 粉体塗料用樹脂組成物 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01171364A (ja) * | 1987-12-25 | 1989-07-06 | Nec Corp | ファクシミリ装置 |
JP4375823B2 (ja) | 1997-11-19 | 2009-12-02 | 日立化成工業株式会社 | 高分子量エポキシ重合体の製造方法 |
JP2006036801A (ja) | 2004-07-22 | 2006-02-09 | Japan Epoxy Resin Kk | 高分子量エポキシ樹脂組成物、その組成物を用いたフィルム、及びその硬化物 |
-
2010
- 2010-03-26 JP JP2011507145A patent/JP5611192B2/ja active Active
- 2010-03-26 CN CN201080007145.4A patent/CN102317341B/zh active Active
- 2010-03-26 WO PCT/JP2010/055330 patent/WO2010113784A1/ja active Application Filing
- 2010-03-26 KR KR1020117025323A patent/KR101716634B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2912389A (en) * | 1957-08-08 | 1959-11-10 | Union Carbide Corp | Polymers of divinylbenzene dioxide |
US2924580A (en) * | 1957-08-08 | 1960-02-09 | Union Carbide Corp | Divinyl benzene dioxide compositions |
JPS4936343A (ja) * | 1972-08-05 | 1974-04-04 | ||
JPH1171364A (ja) * | 1997-05-16 | 1999-03-16 | Natl Starch & Chem Investment Holding Corp | 活性放射線または熱開始カチオン硬化性エポキシドモノマー及びそれらのモノマーから製造された組成物 |
JP2006241222A (ja) * | 2005-03-01 | 2006-09-14 | Dainippon Ink & Chem Inc | 粉体塗料用樹脂組成物 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2010101144A1 (ja) * | 2009-03-05 | 2012-09-10 | 新日鐵化学株式会社 | エポキシ樹脂組成物 |
JP5478603B2 (ja) * | 2009-03-05 | 2014-04-23 | 新日鉄住金化学株式会社 | エポキシ樹脂組成物 |
JP2015212399A (ja) * | 2009-12-09 | 2015-11-26 | ダウ グローバル テクノロジーズ エルエルシー | エポキシ樹脂組成物 |
WO2011103014A1 (en) * | 2010-02-19 | 2011-08-25 | Dow Global Technologies Llc | Divinylarene dioxide resin compositions |
JP2013520528A (ja) * | 2010-02-19 | 2013-06-06 | ダウ グローバル テクノロジーズ エルエルシー | ジビニルアレーンジオキシド樹脂組成物 |
US9359468B2 (en) | 2010-02-19 | 2016-06-07 | Blue Cube Ip Llc | Divinylarene dioxide resin compositions |
WO2011115161A1 (ja) * | 2010-03-18 | 2011-09-22 | 新日鐵化学株式会社 | エポキシアクリレート、アクリル系組成物、硬化物及びその製造法 |
JP2014520172A (ja) * | 2011-05-13 | 2014-08-21 | ダウ グローバル テクノロジーズ エルエルシー | 絶縁配合物 |
JP2020041048A (ja) * | 2018-09-10 | 2020-03-19 | 日立化成株式会社 | エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料 |
JP7243092B2 (ja) | 2018-09-10 | 2023-03-22 | 株式会社レゾナック | エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010113784A1 (ja) | 2012-10-11 |
CN102317341A (zh) | 2012-01-11 |
KR20120000103A (ko) | 2012-01-03 |
CN102317341B (zh) | 2013-08-07 |
JP5611192B2 (ja) | 2014-10-22 |
KR101716634B1 (ko) | 2017-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5611192B2 (ja) | エポキシ樹脂、エポキシ樹脂組成物及び硬化物 | |
US4390664A (en) | Process for preparing a polyepoxide and composition therefrom | |
JPH0154347B2 (ja) | ||
JP5273762B2 (ja) | エポキシ樹脂、エポキシ樹脂組成物およびその硬化物 | |
JP5386352B2 (ja) | 液状エポキシ樹脂、エポキシ樹脂組成物、および硬化物 | |
JP5127164B2 (ja) | 変性エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物 | |
JP5142180B2 (ja) | エポキシ樹脂組成物、およびその硬化物 | |
KR100531072B1 (ko) | 다가 페놀류 화합물, 에폭시 수지, 에폭시 수지 조성물 및그의 경화물 | |
JP2010229422A (ja) | フェノールアラルキル樹脂、エポキシ樹脂組成物及びその硬化物 | |
JP5734603B2 (ja) | フェノール性樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及び硬化物 | |
JP5322143B2 (ja) | フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物 | |
JP5127160B2 (ja) | エポキシ樹脂、硬化性樹脂組成物、およびその硬化物 | |
JP3565831B2 (ja) | 熱硬化性樹脂組成物 | |
JP2019214736A (ja) | 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及びその硬化物 | |
JPH1045871A (ja) | エポキシ樹脂、エポキシ樹脂組成物及びその硬化物 | |
WO2021201046A1 (ja) | 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造方法、それらを用いたエポキシ樹脂組成物及び硬化物 | |
JP2010018759A (ja) | イミド骨格樹脂、硬化性樹脂組成物、およびその硬化物 | |
JP4743824B2 (ja) | 液状エポキシ樹脂、エポキシ樹脂組成物及びその硬化物 | |
JP7572226B2 (ja) | 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造方法、それらを用いたエポキシ樹脂組成物及び硬化物 | |
JP2001192432A (ja) | 難燃性エポキシ樹脂、エポキシ樹脂組成物及びその硬化物 | |
JP5579300B2 (ja) | エポキシ樹脂、エポキシ樹脂組成物及びその硬化物 | |
WO2023276851A1 (ja) | エポキシ樹脂、エポキシ樹脂組成物、及びその硬化物 | |
JP4390179B2 (ja) | 変性エポキシ樹脂の製造方法 | |
JP4969818B2 (ja) | 液状エポキシ樹脂、エポキシ樹脂組成物、および硬化物 | |
JPH0848747A (ja) | エポキシ樹脂、エポキシ樹脂組成物およびその硬化物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080007145.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10758556 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011507145 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20117025323 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10758556 Country of ref document: EP Kind code of ref document: A1 |