Nothing Special   »   [go: up one dir, main page]

WO2010113784A1 - エポキシ樹脂、エポキシ樹脂組成物及び硬化物 - Google Patents

エポキシ樹脂、エポキシ樹脂組成物及び硬化物 Download PDF

Info

Publication number
WO2010113784A1
WO2010113784A1 PCT/JP2010/055330 JP2010055330W WO2010113784A1 WO 2010113784 A1 WO2010113784 A1 WO 2010113784A1 JP 2010055330 W JP2010055330 W JP 2010055330W WO 2010113784 A1 WO2010113784 A1 WO 2010113784A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
group
compound
formula
resin composition
Prior art date
Application number
PCT/JP2010/055330
Other languages
English (en)
French (fr)
Inventor
篤彦 片山
スレスタ・二ランジャン・クマール
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to KR1020117025323A priority Critical patent/KR101716634B1/ko
Priority to JP2011507145A priority patent/JP5611192B2/ja
Priority to CN201080007145.4A priority patent/CN102317341B/zh
Publication of WO2010113784A1 publication Critical patent/WO2010113784A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/027Polycondensates containing more than one epoxy group per molecule obtained by epoxidation of unsaturated precursor, e.g. polymer or monomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/066Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with chain extension or advancing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin, an epoxy resin composition, and a cured product useful for paints, laminates, adhesives, and the like.
  • epoxy resins used for paints, laminates, adhesives, etc. have low epoxy equivalents and poor adhesion and toughness of cured products. Therefore, bisphenol A type epoxy resins or bisphenol F type epoxy resins are used as bisphenol A, A so-called polymeric epoxy resin that has been polymerized with bisphenol F or tetrabromobisphenol A is generally used.
  • Patent Document 1 a bifunctional epoxy resin and a bifunctional phenol are used as a catalyst, an alkali metal compound and an imidazole are used in combination, and a solvent having a boiling point of 130 ° C. or higher is used as a synthesis solvent. Discloses a method of increasing the strength of a high molecular weight epoxy polymer with less branching by reducing the solid content concentration of the polymer to 50% by weight or less.
  • the bifunctional epoxy resin used is not limited, but the exemplified epoxy resins are bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic General chain epoxy resins, diglycidyl etherified products of bifunctional phenols, diglycidyl etherified products of bifunctional alcohols, their halides, hydrogenated products, etc. Not paying attention.
  • Patent Document 2 is obtained by reacting a bifunctional epoxy resin (X) and a dihydric phenol compound (Y) in the presence of a catalyst, and the following requirements (a) to (d): (A) A mass average molecular weight of 30,000 to 200,000 (B) Epoxy equivalent is 5,000 to 20,000 g / equivalent (c) Residual bifunctional epoxy resin (X) content is 1000 ppm or less (d) Residual dihydric phenol compound (Y) content is 100 ppm or less A high molecular weight epoxy resin composition comprising a molecular weight epoxy resin and a curing agent that reacts with an epoxy group has low elution, chemical resistance, solvent resistance, heat resistance, moldability, flexibility, impact resistance, It discloses that a cured product having excellent adhesion and adhesion can be obtained.
  • the bifunctional epoxy resin used is not limited, but the illustrated epoxy resins are bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetrabromobisphenol A type epoxy resin.
  • Bisphenol-type epoxy resins such as 4,4′-biphenol, 3,3 ′, 5,5′-tetramethyl-4,4′-biphenol and epihalohydrin, a biphenol-type epoxy resin, catechol, and resorcinol Diglycidyl ether of monocyclic dihydric phenol such as hydroquinone, diglycidyl ether of dihydroxynaphthalene, epoxy resin hydrogenated aromatic ring of the above aromatic epoxy resin, diglycidyl ether of dihydric alcohol, alicyclic epoxy resin, lid Acid, isophthalic acid, tetrahydrophthalic phthalic acid, are generic, such as divalent diglycidyl esters of carboxylic acids such as hexahydrophthalic acid, not focusing on the structure of the epoxy resin.
  • the problem to be solved by the present invention is to provide an epoxy resin, an epoxy resin composition, and a cured product having a low chlorine content, excellent heat resistance and mechanical strength, and useful for paints, laminates, adhesives and the like. There is to do.
  • the present inventors have intensively studied to obtain an epoxy resin having a low chlorine content, excellent heat resistance, and useful for paints, laminates, adhesives, etc.
  • the present inventors have found that the above problems can be solved by using an epoxy resin obtained by reacting diepoxyethylbenzene with a compound having two phenolic hydroxyl groups, and have completed the present invention.
  • the present invention relates to an epoxy resin represented by the following general formula (1).
  • A represents a divalent aromatic group which may have a substituent
  • n represents a number from 1 to 15.
  • the present invention is an epoxy resin obtained by reacting diepoxyethylbenzene and a compound having two phenolic hydroxyl groups, and containing an epoxy resin represented by the general formula (1) as a main component.
  • This epoxy resin can contain a subcomponent, and it is preferable that the subcomponent contains an epoxy resin represented by the following general formula (2).
  • a and n are the same as those in the general formula (1).
  • B 1 is a divalent group represented by the following formula (3) or the following formula (4)
  • B 2 is a divalent group represented by the following formula (5) or the following formula (6).
  • B 1 is a divalent group represented by the formula (3)
  • B 2 is a divalent group represented by (5).
  • the present invention relates to a method for producing an epoxy resin, characterized by reacting diepoxyethylbenzene with a compound having two phenolic hydroxyl groups.
  • the epoxy resin obtained by this production method is an epoxy resin containing the epoxy resin represented by the general formula (1) as a main component, and contains the epoxy resin represented by the general formula (2) as a subcomponent. Is preferred.
  • the compound having two phenolic hydroxyl groups is preferably a bisphenol compound or a biphenol compound.
  • the present invention relates to an epoxy resin composition characterized by containing the above epoxy resin and a curing agent.
  • the epoxy resin composition preferably further contains a curing accelerator.
  • this invention relates to the epoxy resin hardened
  • the epoxy resin of the present invention is represented by the above general formula (1).
  • A is a divalent aromatic group which may have a substituent, and is a group generated from a compound having two phenolic hydroxyl groups (hereinafter also referred to as a divalent phenol compound). It is understood from the divalent phenol compound.
  • divalent aromatic groups include phenylene group, naphthylene group, anthracene group, diphenylmethane group, 1,1-diphenylethane group, 1,1,1-methyldiphenylethane group, diphenyl ether group, diphenyl sulfide group, diphenyl Examples include a sulfoxide group, diphenylsulfone group, diphenylketone group, phenylbenzoate group, biphenyl group, stilbene group, diazobenzene group, aniline benzylidene group, and derivatives thereof.
  • the anthracene group means a group formed by removing two hydrogens from anthracene, such as diphenylmethane group, 1,1-diphenylethane group, 1,1,1-methyldiphenylethane group, diphenyl ether group, diphenyl sulfide group, diphenyl
  • the sulfoxide group, diphenylsulfone group, diphenylketone group, phenylbenzoate group, biphenyl group, stilbene group, diazobenzene group, and aniline benzylidene group are groups represented by -Ph-X-Ph-, and Ph is a benzene ring.
  • X is CH 2 , C 2 H 4 , C 3 H 6 , O, S, SO, SO 2 , CO, COO, a single bond, C 2 H 2 , N 2 or CHN.
  • the divalent aromatic group may have a substituent, and preferred substituents include hydrocarbon groups such as methyl group, ethyl group, allyl group, propargyl group, phenyl group, and benzyl group, methoxy group, and ethoxy group. Groups, alkoxy groups such as allyloxy group and phenoxy group, and halogen groups such as fluorine, chlorine and bromine. Preferred are an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aromatic hydrocarbon group having 6 to 8 carbon atoms, or a halogen such as chlorine or bromine.
  • divalent aromatic group those having a structure with little steric hindrance and excellent symmetry are preferable from the viewpoint of high heat resistance, low thermal expansion, and low hygroscopicity.
  • a group, 1,5-naphthylene group, 4,4′-diphenylmethane group, 4,4′-diphenyl ether group or 4,4′-biphenyl group is preferably selected.
  • n represents a number from 1 to 15, and a preferable value of n varies depending on the application to be applied. This number is an average value (number average). For example, for a semiconductor encapsulant that requires a high filling rate of the filler, a material having a low viscosity is desirable, and the value of n is 1 to 5, preferably 1 to 3, and more preferably n. 1 is contained at 30 wt% or more.
  • the epoxy resin of the present invention can be produced by reacting diepoxyethylbenzene with a divalent phenol compound having two phenolic hydroxyl groups.
  • the epoxy group of diepoxyethylbenzene is ring-opened to form an ether bond with a divalent phenol compound and polymerize.
  • This ring opening can occur from either the ⁇ -position or the ⁇ -position, but the epoxy resin of the formula (1) is the main component and the epoxy resin of the general formula (2) is the subcomponent.
  • n increases, an epoxy resin containing both structural units opened at the ⁇ -position and ⁇ -position is also contained as a minor component.
  • Structural units opened at the ⁇ -position or ⁇ -position are shown in Formulas (3) to (6).
  • B 1 and B 2 in the general formula (2) have the structural units of the formula (3) and the formula (5) at the same time, they are the same as in the general formula (1), so that case is excluded.
  • the epoxy resin of the present invention is an epoxy resin of the formula (1) or an epoxy resin mainly composed of this epoxy resin.
  • the subcomponent includes the epoxy resin of the formula (2).
  • an epoxy resin containing a structural unit that is ring-opened at the ⁇ -position and the ⁇ -position (hereinafter also referred to as epoxy resin (3)) is optionally included.
  • the epoxy resin of the formula (1) is usually contained by 50% or more, preferably 60% or more.
  • the epoxy resin of the formula (2) is contained less than 50%, preferably 10 to 40%.
  • the quantity of an epoxy resin (3) changes with n number, since the probability of ring-opening in (alpha) position and (beta) position is the said range, it can be calculated from it roughly. However, at most less than 50%.
  • the epoxy resin of Formula (1), the epoxy resin of Formula (2), and the epoxy resin (3) are all the same in the composition formula and have an epoxy group and hydroxy, they show similar properties.
  • the epoxy resin of the present invention can be obtained by reacting diepoxyethylbenzene and a divalent phenol compound in the presence of a catalyst at 50 to 200 ° C. for 1 to 20 hours as necessary.
  • the reaction rate of diepoxyethylbenzene and divalent phenol compound is such that the molar ratio of diepoxyethylbenzene and divalent phenol compound is 100/10 to 100/95, preferably 100/15 to 100/70. preferable.
  • the n number can be controlled by adjusting the molar ratio.
  • the terminal can be made into an epoxy group by using diepoxyethylbenzene in excess.
  • Examples of the catalyst that can be used in this case include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, tertiary amines such as triethylamine and benzyldimethylamine, quaternary ammonium salts such as tetramethylammonium chloride, imidazole, and the like.
  • Compounds, phosphines such as triphenylphosphine, and phosphonium salts such as tetra-n-butylphosphonium tetraphenylborate.
  • the amount of catalyst used varies depending on the catalyst used, but is preferably 0.001 to 3%, more preferably 0.01% to 2%, based on the weight of diepoxyethylbenzene.
  • an organic solvent may be used as necessary.
  • the organic solvent include aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as MIBK and MEK, and the like.
  • the amount of the solvent used is usually 10 to 1000 parts by weight, preferably 20 to 200 parts by weight, based on 100 parts by weight of the total weight of diepoxyethylbenzene and the divalent phenol compound.
  • Diepoxyethylbenzene can be obtained by epoxidizing divinylbenzene with a peroxide. Since epichlorohydrin is not used, the resulting compound has a low chlorine content.
  • a peracid, hydrogen peroxide, or an organic peroxide obtained by a usual method can be used.
  • divinylbenzene is an isomer mixture, this epoxy compound also becomes an isomer mixture, but there is no problem.
  • Any known divalent phenol compound used in the production method of the present invention can be used, and a divalent phenol compound represented by A (OH) 2 in which a phenolic hydroxyl group is bonded to A described above is used.
  • a (OH) 2 divalent phenol compound represented by A (OH) 2 in which a phenolic hydroxyl group is bonded to A described above is used.
  • the Bisphenol compounds or biphenol compounds are preferred.
  • the epoxy resin obtained by the production method of the present invention is an epoxy resin of the formula (1) or an epoxy resin mainly composed of this epoxy resin and the epoxy resin of the formula (2). And it can contain as an epoxy resin (3) minor component.
  • any known and commonly used compounds can be used, and among them, typical ones are potentials such as dicyandiamide, imidazole, BF 3 -amine complex, and guanidine derivatives.
  • Curing agents various novolak resins derived from phenol, substituted phenols and bisphenols and their modified products, aromatic amines such as metaphenylenediamine, diaminodiphenylmethane and diaminodiphenylsulfone, polyamide resins and their modified products, anhydrous maleic And acid anhydride curing agents such as acid, phthalic anhydride, hexahydrophthalic anhydride, and pyromellitic anhydride. These curing agents may be used alone or in combination of two or more. It is preferable to use a curing agent for room temperature curing and for heat curing depending on the application.
  • the amount of these curing agents used is not particularly limited, but is 2 to 70 parts by weight with respect to 100 parts by weight of the solid content of the epoxy resin. However, since this mixing ratio varies greatly depending on the type of curing agent used, it is necessary to appropriately determine the optimum conditions. *
  • a curing accelerator can be used as appropriate. Any known and commonly used curing accelerators can be used, and examples include tertiary amines, imidazoles, organic acid metal salts, Lewis acids, amine complex salts, and the like. Combined use is also possible. *
  • fillers such as fillers, fibers, coupling agents, flame retardants, mold release agents, and foaming agents can be added to the epoxy resin composition of the present invention as necessary.
  • the filler include polyethylene powder, polypropylene powder, quartz, silica, silicate, calcium carbonate, magnesium carbonate, gypsum, bentonite, fluorite, titanium dioxide, carbon black, graphite, iron oxide, aluminum powder, iron Powder, talc, mica, kaolin clay, etc., as fibers, for example, cellulose fibers, glass fibers, carbon fibers, aramid fibers, etc., and as coupling agents, for example, silane coupling agents, titanium coupling agents, etc. are difficult.
  • Examples of the flame retardant include brominated bisphenol A, antimony trioxide, and phosphorus compounds
  • examples of the release agent include stearic acid salt, silicone, and wax
  • examples of the foaming agent include chlorofluorocarbon, dichloroethane, butane, and pentane. , Dinitropentamethylenetetramine, paratoluene Expandable thermoplastic resin particles in which hydryl hydrazide or fluorocarbon, dichloroethane, butane, pentane, etc. are filled in the shell of vinyl chloride-vinylidene chloride copolymer or styrene- (meth) acrylate copolymer Etc.
  • the epoxy resin composition of the present invention can be easily made into a cured product of an epoxy resin composition by a method similar to a conventionally known method.
  • the epoxy resin composition of the present invention and a curing agent, and if necessary, a curing accelerator and other additives are thoroughly mixed as necessary using an extruder, kneader, roll, etc.
  • the epoxy resin composition is melted and then molded using a casting or transfer molding machine, and further heated to 80 to 200 ° C. to obtain a cured product.
  • a prepreg obtained by dissolving the epoxy resin composition of the present invention in a solvent, impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and drying by heating is subjected to hot press molding.
  • a cured product For example, the epoxy resin of the present invention, a curing agent, a diluting solvent and the like are heated and stirred until they are uniform, impregnated into a glass cloth, heated and semi-dried to remove the solvent, and the necessary number of prepregs are stacked 80 to A glass cloth laminate can be produced by heating and pressing at 200 ° C. for 1 hour or longer.
  • the dilution solvent that can be used in this case include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, methyl cellosolve, and the like.
  • the amount used is 10 with respect to the total weight of the epoxy resin composition and the dilution solvent. It is ⁇ 70% by weight, preferably 15 to 65% by weight.
  • the epoxy resin composition of the present invention can be used in a wide range of fields. Specifically, it can be used for a wide range of applications such as molding materials, casting materials, laminated materials, paints, adhesives, and resists.
  • Example 1 In a separable flask equipped with a stirrer, a condenser, and a thermometer, 61 parts of diepoxyethylbenzene produced in Synthesis Example 1, 41 parts of bisphenol A (manufactured by Tokyo Chemical Industry Co., Ltd.), methyl isobutyl ketone (Tokyo Chemical Industry Co., Ltd.) (Company) 102 parts were charged and heated to 80 ° C. and completely dissolved under stirring. Then, 0.07 part of triphenylphosphine was added as a catalyst, the temperature was raised to 130 ° C., and the reaction was performed for 6 hours. After completion of the reaction, devolatilization was performed at 120 ° C.
  • Example 2 A separable flask equipped with a stirrer, a condenser, and a thermometer was charged with 61 parts of diepoxyethylbenzene produced in Synthesis Example 1, 41 parts of bisphenol F (manufactured by Honshu Chemical Industry Co., Ltd.), and 101 parts of methyl isobutyl ketone. After heating to ° C. and completely dissolved under stirring, 0.07 part of triphenylphosphine was added as a catalyst, the temperature was raised to 130 ° C., and the reaction was carried out for 6 hours. After completion of the reaction, devolatilization was performed at 120 ° C. under a reduced pressure of 5 torr. An epoxy equivalent of 298 g / eq, 100 parts of an epoxy resin (B) which is a pale yellow transparent viscous liquid was obtained. The total chlorine content was less than 0.5 ppm.
  • Example 3 In a separable flask equipped with a stirrer, condenser, and thermometer, 61 parts of diepoxyethylbenzene produced in Synthesis Example 1, 38 parts of 4,4′-dihydroxybiphenyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.), methyl After adding 75 parts of isobutyl ketone and heating it to 80 ° C. and completely dissolving it with stirring, 0.07 part of triphenylphosphine was added as a catalyst, and the temperature was raised to 130 ° C. to carry out the reaction for 6 hours. After completion of the reaction, devolatilization was performed at 120 ° C. under a reduced pressure of 5 torr. An epoxy equivalent (279 g / eq) and 82 parts of an epoxy resin (C) which is a pale yellow transparent viscous liquid was obtained. The total chlorine content was less than 0.5 ppm.
  • Example 4 In a separable flask equipped with a stirrer, a condenser and a thermometer, 82 parts of diepoxyethylbenzene produced in Synthesis Example 1 and 9,9-bis (4-hydroxyphenyl) fluorene (manufactured by Tokyo Chemical Industry Co., Ltd.) After 88 parts and 80 parts of methyl isobutyl ketone were charged and heated to 80 ° C. and completely dissolved under stirring, 0.09 part of triphenylphosphine was added as a catalyst, and the temperature was raised to 130 ° C. and reacted for 6 hours. . After completion of the reaction, devolatilization was performed at 120 ° C. under a reduced pressure of 5 torr. Epoxy equivalent 342g / eq, 165 parts of epoxy resin (D) which is a pale yellow solid was obtained. The total chlorine content was less than 0.5 ppm.
  • the epoxy resins (A) to (D) obtained in Examples 1 to 4 are all composed mainly of the epoxy resin represented by the general formula (1), and the ratio thereof is about 70 wt%. About 30 wt% of the epoxy resin represented by
  • Examples 5-8 The epoxy resins A to D obtained in Examples 1 to 4 were mixed with Jamaicacid MH-700 (4-methylhexahydrophthalic anhydride / hexahydrophthalic anhydride mixture (70/30) manufactured by Shin Nippon Rika Co., Ltd.). It mixed so that it might become 1.0. To the mixture, 0.3% 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd.) was added and mixed uniformly. Obtained.
  • Tg TMA bending elastic modulus, bending strength
  • the epoxy resin of the present invention has a low chlorine content, excellent heat resistance and mechanical strength, and is useful for paints, laminates, adhesives, etc.
  • a resin composition and a cured product can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

 塩素含有量が低く、耐熱性、機械強度に優れ、塗料、積層板、接着剤等に有用なエポキシ樹脂、エポキシ樹脂組成物、及び硬化物を提供する。 ジエポキシエチルベンゼンとフェノール性水酸基を2個有する化合物とを反応させて得られるエポキシ樹脂であり、式(1)で表されるエポキシ樹脂又はこれを主成分とするエポキシ樹脂に係わる。式(1)において、Aはフェノール性水酸基を2個有する化合物に由来する残基である。また、このエポキシ樹脂と硬化剤を含むエポキシ樹脂組成物に係わる。

Description

エポキシ樹脂、エポキシ樹脂組成物及び硬化物
 本発明は、塗料、積層板、接着剤等に有用なエポキシ樹脂、エポキシ樹脂組成物、及び硬化物に関するものである。 
 従来より、塗料、積層板、接着剤等に用いられているエポキシ樹脂はエポキシ当量が低く、硬化物の密着性や靱性が悪いため、ビスフェノールA型エポキシ樹脂あるいはビスフェノールF型エポキシ樹脂をビスフェノールA、ビスフェノールFあるいはテトラブロムビスフェノールA等で、高分子化したいわゆる高分子エポキシ樹脂が一般に使用されている。
 しかし、この高分子エポキシ樹脂は液状樹脂に比べ密着性は優れるものの耐熱性、機械強度が劣るという欠点を有している。これらの改善策として、特許文献1には、二官能エポキシ樹脂と二官能フェノール類を、触媒として、アルカリ金属化合物とイミダゾール類を併用し、合成溶媒として沸点130℃以上の溶媒を用い、合成時の固形分濃度を50重量%以下することにより、枝分かれの少ない高分子量エポキシ重合体とし、強度を上げる方法を開示している。使用する二官能エポキシ樹脂には、制限がないとしているが、例示されているエポキシ樹脂は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、その他、二官能フェノール類のジグリシジルエーテル化物、二官能アルコール類のジグリシジルエーテル化物、及びそれらのハロゲン化物、水素添加物等の一般的なものであり、エポキシ樹脂の構造に着目していない。
 また、特許文献2には、2官能エポキシ樹脂(X)と2価フェノール化合物(Y)を触媒の存在下に反応させて得られ、下記(a)~(d)の要件:
(a)質量平均分子量が30,000~200,000
(b)エポキシ当量が5,000~20,000g/当量
(c)残存2官能エポキシ樹脂(X)含有量が1000ppm以下
(d)残存2価フェノール化合物(Y)含有量が100ppm以下
を満たす高分子量エポキシ樹脂と、エポキシ基と反応する硬化剤から成る高分子量エポキシ樹脂組成物が、低溶出性であり、耐薬品性、耐溶剤性、耐熱性、成形性、可撓性、耐衝撃性、密着性、接着性に優れた硬化物を与える事を開示している。
 しかし、残存原料を低減させることが、硬化物の物性を向上させることは周知の事実である。また、使用する二官能エポキシ樹脂には、制限がないとしているが、例示されているエポキシ樹脂はビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂等のビスフェノール型エポキシ樹脂、4,4’-ビフェノール、3,3’,5,5’-テトラメチル-4,4’-ビフェノールとエピハロヒドリンとの縮合反応によって得られるビフェノール型エポキシ樹脂、カテコール、レゾルシン、ヒドロキノンなどの単環2価フェノールのジグリシジルエーテル、ジヒドロキシナフタレンのジグリシジルエーテル、上記芳香族エポキシ樹脂の芳香環を水素添加したエポキシ樹脂、2価アルコールのジグリシジルエーテル、脂環式エポキシ樹脂、フタル酸、イソフタル酸、テトラハイドロフタル酸、ヘキサハイドロフタル酸などの2価カルボン酸のジグリシジルエステル等の一般的なものであり、エポキシ樹脂の構造に着目していない。
 また、特許文献1、2例示されているエポキシ樹脂は、エピクロロヒドリンを原料として使用するため、数十から数千ppmの塩素を含んでいる。電気・電子部品用途では塩素濃度の低いエポキシ樹脂が望まれており、塩素含有量が低く、かつ耐熱性を有する高分子エポキシ樹脂の出現が待ち望まれている。 
特開平11-147930号公報 特開2006-36801号公報
 したがって、本発明が解決しようとする課題は、塩素含有量が低く、耐熱性、機械強度に優れ、塗料、積層板、接着剤等に有用なエポキシ樹脂、エポキシ樹脂組成物、及び硬化物を提供することにある。
 本発明者等は、上述した従来技術における実状に鑑みて、塩素含有量が低く、耐熱性に優れ、塗料、積層板、接着剤等に有用なエポキシ樹脂を得るべく鋭意研究した結果、エポキシ樹脂として、ジエポキシエチルベンゼンとフェノール性水酸基を2個有する化合物とを反応させて得られるエポキシ樹脂を用いることにより、上記の課題が解決することを見出し、本発明を完成するに至った。
 本発明は、下記一般式(1)で表されるエポキシ樹脂に関する。
Figure JPOXMLDOC01-appb-I000005
 ここで、Aは置換基を有していてもよい2価の芳香族基を示し、nは1から15の数を示す。
 また、本発明は、ジエポキシエチルベンゼンとフェノール性水酸基を2個有する化合物とを反応させて得られ、上記一般式(1)で表されるエポキシ樹脂を主成分として含むエポキシ樹脂である。このエポキシ樹脂は副成分を含むことができ、副成分として、下記一般式(2)で表されるエポキシ樹脂を含むことが好ましい。
Figure JPOXMLDOC01-appb-I000006
 ここで、A及びnは一般式(1)と同意である。Bは下記式(3)又は下記式(4)で表される2価の基であり、Bは下記式(5)又は下記式(6)で表される2価の基であるが、Bが式(3)で表される2価の基であり、かつBが(5)で表される2価の基である場合を除く。
Figure JPOXMLDOC01-appb-I000007
 更に、本発明は、ジエポキシエチルベンゼンとフェノール性水酸基を2個有する化合物とを反応させることを特徴とするエポキシ樹脂の製造方法に関する。この製造方法で得られるエポキシ樹脂は上記一般式(1)で表されるエポキシ樹脂を主成分として含むエポキシ樹脂であり、副成分として、上記一般式(2)で表されるエポキシ樹脂を含むことが好ましい。
 上記エポキシ樹脂の製造方法において、フェノール性水酸基を2個有する化合物としては、ビスフェノール系化合物又はビフェノール系化合物が好ましく挙げられる。
 更にまた、本発明は上記のエポキシ樹脂と、硬化剤を含有することを特徴とするエポキシ樹脂組成物に関する。このエポキシ樹脂組成物は更に硬化促進剤を含有することがよい。また、本発明はこのエポキシ樹脂組成物を成形硬化させてなることを特徴とするエポキシ樹脂硬化物に関する。
本発明のエポキシ樹脂(A)の1H-NMRスペクトルを示す。
 まず、本発明のエポキシ樹脂について説明する。
 本発明のエポキシ樹脂は、上記一般式(1)で表される。ここで、Aは置換基を有していてもよい2価の芳香族基であり、フェノール性水酸基を2個有する化合物(以下、2価のフェノール化合物ともいう)から生じる基であるので、後記する2価のフェノール化合物からも理解される。
 これら好ましい2価の芳香族基としては、フェニレン基、ナフチレン基、アントラセン基、ジフェニルメタン基、1,1-ジフェニルエタン基、1,1,1-メチルジフェニルエタン基、ジフェニルエーテル基、ジフェニルスルフィド基、ジフェニルスルホキシド基、ジフェニルスルホン基、ジフェニルケトン基、フェニルベンゾエート基、ビフェニル基、スチルベン基、ジアゾベンゼン基、アニリンベンジリデン基及びこれらの誘導体等が例示される。ここで、アントラセン基はアントラセンから2つの水素が除かれて生ずる基をいい、ジフェニルメタン基、1,1-ジフェニルエタン基、1,1,1-メチルジフェニルエタン基、ジフェニルエーテル基、ジフェニルスルフィド基、ジフェニルスルホキシド基、ジフェニルスルホン基、ジフェニルケトン基、フェニルベンゾエート基、ビフェニル基、スチルベン基、ジアゾベンゼン基、アニリンベンジリデン基は、-Ph-X-Ph-で表される基をいい、Phはベンゼン環であり、XはCH2、C2H4、C3H6、O、S、SO、SO2、CO、COO、単結合、C2H2、N2又はCHNである。
 上記2価の芳香族基は置換基を有することができ、好ましい置換基はとしては、メチル基、エチル基、アリル基、プロパルギル基、フェニル基、ベンジル基等の炭化水素基、メトキシ基、エトキシ基、アリルオキシ基、フェノキシ基等のアルコキシ基、フッ素、塩素、臭素等のハロゲン基等が挙げられる。好ましくは、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数6~8の芳香族炭化水素基又は塩素、臭素等のハロゲンである。
 中でも、2価の芳香族基としては、高耐熱性、低熱膨張性、低吸湿性の観点から、立体障害が少なく、かつ対称性に優れた構造を有するものが好ましく、特に2,6-ナフチレン基、1,5-ナフチレン基、4,4’-ジフェニルメタン基、4,4’-ジフェニルエーテル基又は4,4’-ビフェニル基が好適に選択される。
 一般式(1)において、nは1から15の数を表し、好ましいnの値は、適用する用途に応じて異なる。この数は平均値(数平均)である。例えば、フィラーの高充填率化が要求される半導体封止材の用途には、低粘度であるものが望ましく、nの値は、1~5、好ましくは1~3、更に好ましくは、nが1のものが30wt%以上含まれるものである。
 本発明のエポキシ樹脂は、ジエポキシエチルベンゼンとフェノール性水酸基を2個有する2価のフェノール化合物とを反応させることで製造することができる。この反応では、ジエポキシエチルベンゼンのエポキシ基が開環して2価のフェノール化合物とエーテル結合を生じて結合して、重合する。この開環はα位とβ位のどちらからでも開環が起り得るが、式(1)のエポキシ樹脂が主成分となり、一般式(2)のエポキシ樹脂が副成分となる。また、nが増えるとα位とβ位で開環した構造単位の両方を含むエポキシ樹脂も少量副成分として含まれる。α位又はβ位で開環した構造単位は式(3)~式(6)に示される。ここで、一般式(2)のB及びBが同時に式(3)及び式(5)の構造単位を有する場合は一般式(1)と同じとなるので、その場合は除かれる。
 本発明のエポキシ樹脂は、式(1)のエポキシ樹脂又はこのエポキシ樹脂を主成分とするエポキシ樹脂である。式(1)のエポキシ樹脂を主成分とするエポキシ樹脂である場合、副成分としては式(2)のエポキシ樹脂が含まれる。更に、場合によりα位とβ位で開環した構造単位を含むエポキシ樹脂(以下、エポキシ樹脂(3)ともいう)が含まれる。式(1)のエポキシ樹脂を主成分とするエポキシ樹脂である場合、通常、式(1)のエポキシ樹脂は50%以上、好ましくは60%以上含まれる。式(2)のエポキシ樹脂は50%未満、好ましくは10~40%含まれる。また、エポキシ樹脂(3)の量はn数によって変化するが、α位とβ位で開環する確率が上記範囲であるので、おおむねそれから計算可能である。しかし、多くとも50%未満である。なお、式(1)のエポキシ樹脂、式(2)のエポキシ樹脂及びエポキシ樹脂(3)はいずれも組成式が同じで、エポキシ基及びヒドロキシを有するので、類似の性質を示す。
 ジエポキシエチルベンゼンと2価のフェノール化合物とを必要に応じて触媒の存在下、50~200℃で1~20時間反応することにより本発明のエポキシ樹脂が得られる。
 ジエポキシエチルベンゼンと2価のフェノール化合物の反応割合は、ジエポキシエチルベンゼンと2価のフェノール化合物のモル比で100/10~100/95、好ましくは、100/15~100/70となる反応割合が好ましい。このモル比を調整することによりn数を制御することができる。また、ジエポキシエチルベンゼンを過剰に使用することにより末端をエポキシ基とすることができる。
 この際に使用できる触媒としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、トリエチルアミン、ベンジルジメチルアミン等の第三級アミン、テトラメチルアンモニウムクロライド等の第4級アンモニウム塩、イミダゾール化合物、トリフェニルホスフィン等のホスフィン類、テトラ-n-ブチルホスホニウムテトラフェニルボレート等のホスホニウム塩等が挙げられる。触媒使用量としては、用いる触媒により異なるが、ジエポキシエチルベンゼンの重量に対して、0.001~3%であることが好ましく、さらに好ましくは0.01%~2%である。
 反応を行うに際しては、必要に応じて有機溶媒を用いてもよい。有機溶媒としては、例えばトルエン、キシレン等の芳香族炭化水素系溶媒、MIBK、MEK等のケトン系溶媒等が挙げられる。溶媒の使用量としては、ジエポキシエチルベンゼン及び2価のフェノール化合物の合計重量100重量部に対して通常10~1000重量部、好ましくは20~200重量部である。
 ジエポキシエチルベンゼンは、ジビニルベンゼンを過酸化物によりエポキシ化したものを使用できる。エピクロロヒドリンを用いないため、得られる化合物は、塩素含有量が少ない。過酸化物としては、通常の方法により得られる過酸、過酸化水素、又は有機過酸化物を使用することができる。ジビニルベンゼンが異性体混合物である場合、このエポキシ化合物も異性体混合物となるが、差し支えない。
 本発明の製造方法で用いられる2価のフェノール化合物は、公知のものがいずれも使用でき、前記したAにフェノール性水酸基が結合したA(OH)2で表わされる2価のフェノール化合物が使用される。好ましくはビスフェノール系化合物又はビフェノール系化合物である。
 本発明の製造方法で得られるエポキシ樹脂は、式(1)のエポキシ樹脂又はこのエポキシ樹脂と式(2)のエポキシ樹脂を主成分とするエポキシ樹脂である。そして、エポキシ樹脂(3)少量成分として含みうる。
 本発明のエポキシ樹脂組成物で用いる硬化剤としては、公知慣用の化合物がいずれも使用できるが、そのうちでも代表的なものとしては、ジシアンジアミド、イミダゾール、BF-アミン錯体、グアニジン誘導体等の潜在性硬化剤、フェノール、置換フェノール類およびビスフェノール類から誘導される各種ノボラック樹脂とその変性物、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホンなどの芳香族アミン類、ポリアミド樹脂およびこれらの変性物、無水マレイン酸、無水フタル酸、無水ヘキサヒドロフタル酸、無水ピロメリット酸などの酸無水物系硬化剤等が挙げられる。これらの硬化剤は単独でも2種以上の併用でもよい。硬化剤は、常温硬化用のものと加熱硬化用のものを用途に応じて使い分けることが好ましい。 
 これら硬化剤の使用量は、特に制限されるものではないが、エポキシ樹脂の固形分100重量部に対して2~70重量部である。但し、この混合比は使用する硬化剤の種類により大きく変化するので最適条件を適宜決定することが必要である。 
 上記の各化合物を硬化剤として用いる際は、硬化促進剤を適宜使用することができる。硬化促進剤としては公知慣用のものがいずれも使用できるが、例えば、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられ、これらは単独のみならず2種以上の併用も可能である。 
 本発明のエポキシ樹脂組成物には、必要に応じて充填剤、繊維、カップリング剤、難燃剤、離型剤、発泡剤等のその他の成分を添加することができる。この際の充填剤としては、例えばポリエチレン粉末、ポリプロピレン粉末、石英、シリカ、珪酸塩、炭酸カルシウム、炭酸マグネシウム、石膏、ベントナイト、蛍石、二酸化チタン、カーボンブラック、黒鉛、酸化鉄、アルミニウム粉末、鉄粉、タルク、マイカ、カオリンクレー等が、繊維としては、例えばセルロース繊維、ガラス繊維、炭素繊維、アラミド繊維等が、カップリング剤としては、例えばシランカップリング剤、チタンカップリング剤等が、難燃剤としては、例えば臭素化ビスフェノールA、三酸化アンチモン、燐系化合物等が、離型剤としては、例えばステアリン酸塩、シリコーン、ワックス等が、発泡剤としては、例えばフロン、ジクロロエタン、ブタン、ペンタン、ジニトロペンタメチレンテトラミン、パラトルエンスルホニルヒドラジッド、あるいは、フロン、ジクロロエタン、ブタン、ペンタン等が塩化ビニル-塩化ビニリデン共重合体やスチレン-(メタ)アクリル酸エステル共重合体の殻内に充填されている膨張性熱可塑性樹脂粒子等が挙げられる。
 本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にエポキシ樹脂組成物の硬化物とすることができる。例えば本発明のエポキシ樹脂と硬化剤,必要により硬化促進剤及びその他の添加剤とを必要に応じて押出機,ニーダ,ロール等を用いて均一になるまで充分に混合してエポキシ樹脂組成物を得、そのエポキシ樹脂組成物を溶融後注型あるいはトランスファー成形機などを用いて成形し、さらに80~200℃に加熱することにより硬化物を得ることができる。
 また、本発明のエポキシ樹脂組成物を溶剤に溶解させ、ガラス繊維,カーボン繊維,ポリエステル繊維,ポリアミド繊維,アルミナ繊維,紙などの基材に含浸させ加熱乾燥して得たプリプレグを熱プレス成形して硬化物を得ることなどもできる。例えば本発明のエポキシ樹脂と硬化剤、希釈用溶剤などを均一になるまで加熱、撹拌し、これをガラスクロスに含浸させ加熱半乾燥して溶剤分を飛ばしたプリプレグを、必要枚数重ねて80~200℃で1時間以上加熱プレスすることによりガラスクロス積層板を作製することができる。 
 この際用いうる希釈用溶剤の具体例としては、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、メチルセロソルブ等が好ましく、その使用量は、エポキシ樹脂組成物と該希釈用溶剤の合計重量に対し、10~70重量%、好ましくは、15~65重量%である。
 こうして得られる硬化物は塩素含有量が低く、高い耐熱性を有しているため、本発明のエポキシ樹脂組成物は、広範な分野で用いることができる。具体的には成形材料、注型材料、積層材料、塗料、接着剤、レジスト等広範囲の用途に使用できる。
 次に本発明の特徴を更に明確にするため実施例を挙げて具体的に説明する。なお、文中の「部」、「%」は全て重量基準を示すものである。 
合成例1
 3L反応器にジビニルベンゼン(新日鐵化学製DVB-960ジビニルベンゼン含有量97%、m-体/p-体=62:38)300部、酢酸エチル1200部を装入し撹拌した。次いで、過酢酸30%含有酢酸エチル溶液1640部を3時間かけて滴下した。滴下中は反応温度が30℃になるように制御を行った。滴下後、さらに30℃にて3時間撹拌を行った。反応液を室温まで冷却した後、20%NaOH水溶液1208部を加え、1時間撹拌後、水層を分離し、未反応の過酢酸及び、生成した酢酸の除去を行った。エバポレーターにて、酢酸エチルを減圧留去した後、精製蒸留(留出温度 10torr 150℃)を行い、ジエポキシエチルベンゼン151.6部を得た。得られたジエポキシエチルベンゼンのエポキシ当量は81g/eq、25℃における粘度は18mPa・s、純度は97.1%(ガスクロマトグラフィー面積%)、m-体/p-体=64:36(1H-NMR積分比)であった。
実施例1
 撹拌機、コンデンサー、温度計を取り付けたセパラブルフラスコに、合成例1で製造したジエポキシエチルベンゼンを61部、ビスフェノールA(東京化成工業株式会社製)を41部、メチルイソブチルケトン(東京化成工業株式会社製)102部を仕込み80℃に加熱し撹拌下で完全に溶解した後、触媒としてトリフェニルホスフィン0.07部を添加し、130℃まで昇温し6時間、反応を行った。反応終了後、5torrの減圧下、120℃で脱揮を行った。エポキシ当量259g/eq、淡黄色透明な粘張液体であるエポキシ樹脂(A)100部を得た。ボンベ燃焼法による全塩素含有量は、0.5ppm未満であった。エポキシ樹脂(A)の1H-NMRスペクトルを図1に示す。
実施例2
 撹拌機、コンデンサー、温度計を取り付けたセパラブルフラスコに、合成例1で製造したジエポキシエチルベンゼンを61部、ビスフェノールF(本州化学工業株式会社製)を41部、メチルイソブチルケトン101部を仕込み80℃に加熱し撹拌下で完全に溶解した後、触媒としてトリフェニルホスフィン0.07部を添加し、130℃まで昇温し6時間、反応を行った。反応終了後、5torrの減圧下、120℃で脱揮を行った。エポキシ当量298g/eq、淡黄色透明な粘張液体であるエポキシ樹脂(B)100部を得た。全塩素含有量は0.5ppm未満であった。
実施例3
 撹拌機、コンデンサー、温度計を取り付けたセパラブルフラスコに、合成例1で製造したジエポキシエチルベンゼンを61部、4,4’-ジヒドロキシビフェニルエーテル(東京化成化学工業株式会社製)を38部、メチルイソブチルケトン75部を仕込み80℃に加熱し撹拌下で完全に溶解した後、触媒としてトリフェニルホスフィン0.07部を添加し、130℃まで昇温し6時間、反応を行った。反応終了後、5torrの減圧下、120℃で脱揮を行った。エポキシ当量279g/eq、淡黄色透明な粘張液体であるエポキシ樹脂(C)82部を得た。全塩素含有量は0.5ppm未満であった。
実施例4
 撹拌機、コンデンサー、温度計を取り付けたセパラブルフラスコに、合成例1で製造したジエポキシエチルベンゼンを82部、9,9-ビス(4-ヒドロキシフェニル)フルオレン(東京化成化学工業株式会社製)を88部、メチルイソブチルケトン80部を仕込み80℃に加熱し撹拌下で完全に溶解した後、触媒としてトリフェニルホスフィン0.09部を添加し、130℃まで昇温し6時間、反応を行った。反応終了後、5torrの減圧下、120℃で脱揮を行った。エポキシ当量342g/eq、淡黄色固体であるエポキシ樹脂(D)165部を得た。全塩素含有量は0.5ppm未満であった。
 実施例1~4で得られたエポキシ樹脂(A)~(D)は、いずれも一般式(1)で表わされるエポキシ樹脂を主成分とし、その割合は約70wt%であり、一般式(2)で表わされるエポキシ樹脂を約30wt%含むものであった。
実施例5~8
 実施例1~4で得たエポキシ樹脂A~Dに、リカシッドMH-700(4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸混合物(70/30)新日本理化株式会社製)を当量比が1.0となるように混合した。混合物に対し、0.3%の2-エチル-4-メチルイミダゾール(四国化成工業(株)製)を加えて均一に混合した後、120℃1時間+150℃3時間加熱硬化させ、硬化物を得た。
比較例1 
 ビスフェノールA型エポキシ樹脂(YD-134 エポキシ当量246g/eq 全塩素含有量 1700ppm)とリカシッドMH-700を当量比が1.0となるように混合した。混合物に対し、0.3%の2-エチル-4-メチルイミダゾールを加えて均一に混合した後、120℃1時間+150℃3時間加熱硬化させ、硬化物を得た。
比較例2 
 ビスフェノールF型エポキシ樹脂(YDF-170 エポキシ当量246g/eq 全塩素含有量 1600ppm)とリカシッドMH-700を等量比が1.0となるように混合した。混合物に対し、0.3%の2-エチル-4-メチルイミダゾールを加えて均一に混合した後、120℃1時間+150℃3時間加熱硬化させ、硬化物を得た。
 実施例5~8及び比較例1~2で得た硬化物について、Tg(TMA法)、曲げ弾性率、曲げ強度を測定した。測定条件は次のとおりである。
Tg:TMA法
曲げ弾性率、曲げ強度;3点曲げ法
Figure JPOXMLDOC01-appb-T000008
産業上の利用の可能性
 本発明のエポキシ樹脂は従来一般的に用いられてきたエポキシ樹脂と比較して、塩素含有量が低く、耐熱性、機械強度に優れ、塗料、積層板、接着剤等に有用なエポキシ樹脂、エポキシ樹脂組成物、及び硬化物を与えることができる。

Claims (9)

  1.  下記一般式(1)で表されるエポキシ樹脂。
    Figure JPOXMLDOC01-appb-I000001
     ここで、Aは置換基を有していてもよい2価の芳香族基を示し、nは1から15の数を示す。
  2.  ジエポキシエチルベンゼンとフェノール性水酸基を2個有する化合物とを反応させて得られ、下記一般式(1)で表されるエポキシ樹脂を主成分として含むエポキシ樹脂。
    Figure JPOXMLDOC01-appb-I000002
     ここで、Aは置換基を有していてもよい2価の芳香族基を示し、nは1から15の数を示す。
  3.  副成分として、下記一般式(2)で表されるエポキシ樹脂を含む請求項2に記載のエポキシ樹脂。
    Figure JPOXMLDOC01-appb-I000003
     ここで、Aは置換基を有していてもよい2価の芳香族基を示し、nは1から15の数を示す。Bは下記式(3)又は下記式(4)で表される2価の基であり、Bは下記式(5)又は下記式(6)で表される2価の基であるが、Bが式(3)で表される2価の基であり、かつBが(5)で表される2価の基である場合を除く。
    Figure JPOXMLDOC01-appb-I000004
  4.  ジエポキシエチルベンゼンとフェノール性水酸基を2個有する化合物とを反応させることを特徴とするエポキシ樹脂の製造方法。
  5.  フェノール性水酸基を2個有する化合物がビスフェノール系化合物である請求項4に記載のエポキシ樹脂の製造方法。
  6.  フェノール性水酸基を2個有する化合物がビフェノール系化合物である請求項4に記載のエポキシ樹脂の製造方法。 
  7.  請求項1~3記載のいずれかに記載のエポキシ樹脂と、硬化剤を含有することを特徴とするエポキシ樹脂組成物。 
  8.  更に硬化促進剤を含有する請求項7に記載のエポキシ樹脂組成物。
  9.  請求項7に記載のエポキシ樹脂組成物を成形硬化させてなることを特徴とするエポキシ樹脂硬化物。
PCT/JP2010/055330 2009-03-31 2010-03-26 エポキシ樹脂、エポキシ樹脂組成物及び硬化物 WO2010113784A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117025323A KR101716634B1 (ko) 2009-03-31 2010-03-26 에폭시수지, 에폭시수지 조성물 및 경화물
JP2011507145A JP5611192B2 (ja) 2009-03-31 2010-03-26 エポキシ樹脂、エポキシ樹脂組成物及び硬化物
CN201080007145.4A CN102317341B (zh) 2009-03-31 2010-03-26 环氧树脂、环氧树脂组合物及固化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-086552 2009-03-31
JP2009086552 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010113784A1 true WO2010113784A1 (ja) 2010-10-07

Family

ID=42828075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055330 WO2010113784A1 (ja) 2009-03-31 2010-03-26 エポキシ樹脂、エポキシ樹脂組成物及び硬化物

Country Status (4)

Country Link
JP (1) JP5611192B2 (ja)
KR (1) KR101716634B1 (ja)
CN (1) CN102317341B (ja)
WO (1) WO2010113784A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011103014A1 (en) * 2010-02-19 2011-08-25 Dow Global Technologies Llc Divinylarene dioxide resin compositions
WO2011115161A1 (ja) * 2010-03-18 2011-09-22 新日鐵化学株式会社 エポキシアクリレート、アクリル系組成物、硬化物及びその製造法
JPWO2010101144A1 (ja) * 2009-03-05 2012-09-10 新日鐵化学株式会社 エポキシ樹脂組成物
JP2014520172A (ja) * 2011-05-13 2014-08-21 ダウ グローバル テクノロジーズ エルエルシー 絶縁配合物
JP2015212399A (ja) * 2009-12-09 2015-11-26 ダウ グローバル テクノロジーズ エルエルシー エポキシ樹脂組成物
JP2020041048A (ja) * 2018-09-10 2020-03-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013161606A1 (ja) * 2012-04-24 2015-12-24 新日鉄住金化学株式会社 エポキシ樹脂組成物、樹脂シート、硬化物及びフェノキシ樹脂
JP6364187B2 (ja) * 2013-12-19 2018-07-25 新日鉄住金化学株式会社 光学用エポキシ樹脂組成物およびその硬化物
KR102289998B1 (ko) * 2014-02-27 2021-08-13 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 플루오렌 골격 함유 에폭시 수지의 제조 방법, 에폭시 수지 조성물, 및 경화물
KR102660466B1 (ko) 2018-07-17 2024-04-23 혼슈우 카가쿠고교 가부시키가이샤 신규한 폴리아실옥시메틸-4,4'-아실옥시비페닐 화합물
US11453743B2 (en) * 2020-06-05 2022-09-27 Chanda Chemical Corp. Thermoset epoxy resin, its preparing composition and making process thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2912389A (en) * 1957-08-08 1959-11-10 Union Carbide Corp Polymers of divinylbenzene dioxide
US2924580A (en) * 1957-08-08 1960-02-09 Union Carbide Corp Divinyl benzene dioxide compositions
JPS4936343A (ja) * 1972-08-05 1974-04-04
JPH1171364A (ja) * 1997-05-16 1999-03-16 Natl Starch & Chem Investment Holding Corp 活性放射線または熱開始カチオン硬化性エポキシドモノマー及びそれらのモノマーから製造された組成物
JP2006241222A (ja) * 2005-03-01 2006-09-14 Dainippon Ink & Chem Inc 粉体塗料用樹脂組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171364A (ja) * 1987-12-25 1989-07-06 Nec Corp ファクシミリ装置
JP4375823B2 (ja) 1997-11-19 2009-12-02 日立化成工業株式会社 高分子量エポキシ重合体の製造方法
JP2006036801A (ja) 2004-07-22 2006-02-09 Japan Epoxy Resin Kk 高分子量エポキシ樹脂組成物、その組成物を用いたフィルム、及びその硬化物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2912389A (en) * 1957-08-08 1959-11-10 Union Carbide Corp Polymers of divinylbenzene dioxide
US2924580A (en) * 1957-08-08 1960-02-09 Union Carbide Corp Divinyl benzene dioxide compositions
JPS4936343A (ja) * 1972-08-05 1974-04-04
JPH1171364A (ja) * 1997-05-16 1999-03-16 Natl Starch & Chem Investment Holding Corp 活性放射線または熱開始カチオン硬化性エポキシドモノマー及びそれらのモノマーから製造された組成物
JP2006241222A (ja) * 2005-03-01 2006-09-14 Dainippon Ink & Chem Inc 粉体塗料用樹脂組成物

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010101144A1 (ja) * 2009-03-05 2012-09-10 新日鐵化学株式会社 エポキシ樹脂組成物
JP5478603B2 (ja) * 2009-03-05 2014-04-23 新日鉄住金化学株式会社 エポキシ樹脂組成物
JP2015212399A (ja) * 2009-12-09 2015-11-26 ダウ グローバル テクノロジーズ エルエルシー エポキシ樹脂組成物
WO2011103014A1 (en) * 2010-02-19 2011-08-25 Dow Global Technologies Llc Divinylarene dioxide resin compositions
JP2013520528A (ja) * 2010-02-19 2013-06-06 ダウ グローバル テクノロジーズ エルエルシー ジビニルアレーンジオキシド樹脂組成物
US9359468B2 (en) 2010-02-19 2016-06-07 Blue Cube Ip Llc Divinylarene dioxide resin compositions
WO2011115161A1 (ja) * 2010-03-18 2011-09-22 新日鐵化学株式会社 エポキシアクリレート、アクリル系組成物、硬化物及びその製造法
JP2014520172A (ja) * 2011-05-13 2014-08-21 ダウ グローバル テクノロジーズ エルエルシー 絶縁配合物
JP2020041048A (ja) * 2018-09-10 2020-03-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7243092B2 (ja) 2018-09-10 2023-03-22 株式会社レゾナック エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Also Published As

Publication number Publication date
JPWO2010113784A1 (ja) 2012-10-11
CN102317341A (zh) 2012-01-11
KR20120000103A (ko) 2012-01-03
CN102317341B (zh) 2013-08-07
JP5611192B2 (ja) 2014-10-22
KR101716634B1 (ko) 2017-03-14

Similar Documents

Publication Publication Date Title
JP5611192B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及び硬化物
US4390664A (en) Process for preparing a polyepoxide and composition therefrom
JPH0154347B2 (ja)
JP5273762B2 (ja) エポキシ樹脂、エポキシ樹脂組成物およびその硬化物
JP5386352B2 (ja) 液状エポキシ樹脂、エポキシ樹脂組成物、および硬化物
JP5127164B2 (ja) 変性エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP5142180B2 (ja) エポキシ樹脂組成物、およびその硬化物
KR100531072B1 (ko) 다가 페놀류 화합물, 에폭시 수지, 에폭시 수지 조성물 및그의 경화물
JP2010229422A (ja) フェノールアラルキル樹脂、エポキシ樹脂組成物及びその硬化物
JP5734603B2 (ja) フェノール性樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及び硬化物
JP5322143B2 (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP5127160B2 (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
JP3565831B2 (ja) 熱硬化性樹脂組成物
JP2019214736A (ja) 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及びその硬化物
JPH1045871A (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
WO2021201046A1 (ja) 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造方法、それらを用いたエポキシ樹脂組成物及び硬化物
JP2010018759A (ja) イミド骨格樹脂、硬化性樹脂組成物、およびその硬化物
JP4743824B2 (ja) 液状エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP7572226B2 (ja) 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造方法、それらを用いたエポキシ樹脂組成物及び硬化物
JP2001192432A (ja) 難燃性エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP5579300B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
WO2023276851A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、及びその硬化物
JP4390179B2 (ja) 変性エポキシ樹脂の製造方法
JP4969818B2 (ja) 液状エポキシ樹脂、エポキシ樹脂組成物、および硬化物
JPH0848747A (ja) エポキシ樹脂、エポキシ樹脂組成物およびその硬化物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007145.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758556

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011507145

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117025323

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10758556

Country of ref document: EP

Kind code of ref document: A1