WO2010038356A1 - 有機elデバイスおよびその製造方法 - Google Patents
有機elデバイスおよびその製造方法 Download PDFInfo
- Publication number
- WO2010038356A1 WO2010038356A1 PCT/JP2009/004294 JP2009004294W WO2010038356A1 WO 2010038356 A1 WO2010038356 A1 WO 2010038356A1 JP 2009004294 W JP2009004294 W JP 2009004294W WO 2010038356 A1 WO2010038356 A1 WO 2010038356A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic
- pixel electrode
- film
- region
- layer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 43
- 239000000463 material Substances 0.000 claims abstract description 105
- 239000007788 liquid Substances 0.000 claims abstract description 87
- 239000005871 repellent Substances 0.000 claims abstract description 80
- 230000002940 repellent Effects 0.000 claims abstract description 76
- 239000000758 substrate Substances 0.000 claims abstract description 74
- 239000002346 layers by function Substances 0.000 claims abstract description 47
- 239000010410 layer Substances 0.000 claims description 217
- 229910052751 metal Inorganic materials 0.000 claims description 70
- 239000002184 metal Substances 0.000 claims description 70
- 238000002347 injection Methods 0.000 claims description 62
- 239000007924 injection Substances 0.000 claims description 62
- 230000002093 peripheral effect Effects 0.000 claims description 29
- 230000001678 irradiating effect Effects 0.000 claims description 15
- 229910052723 transition metal Inorganic materials 0.000 claims description 13
- 150000003624 transition metals Chemical class 0.000 claims description 13
- 229910015202 MoCr Inorganic materials 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 claims description 6
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 5
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 5
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims description 4
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 4
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 4
- 229910001935 vanadium oxide Inorganic materials 0.000 claims description 4
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 3
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 3
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 claims description 3
- 229910000457 iridium oxide Inorganic materials 0.000 claims description 3
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 3
- 229910001923 silver oxide Inorganic materials 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 abstract description 8
- 239000010408 film Substances 0.000 description 151
- 230000005525 hole transport Effects 0.000 description 27
- 239000002344 surface layer Substances 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 10
- 229910044991 metal oxide Inorganic materials 0.000 description 10
- 150000004706 metal oxides Chemical class 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 9
- 238000000059 patterning Methods 0.000 description 9
- 229910052709 silver Inorganic materials 0.000 description 9
- 239000004332 silver Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 8
- 238000007639 printing Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- -1 polyphenylene vinylene Polymers 0.000 description 7
- 150000002894 organic compounds Chemical class 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 229920000144 PEDOT:PSS Polymers 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000011368 organic material Substances 0.000 description 5
- 229910000314 transition metal oxide Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910000881 Cu alloy Inorganic materials 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 4
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 4
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 4
- 238000005401 electroluminescence Methods 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000001579 optical reflectometry Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910000583 Nd alloy Inorganic materials 0.000 description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- JOKQVDJZIKGHDA-UHFFFAOYSA-N [Ru].[Au].[Ag] Chemical compound [Ru].[Au].[Ag] JOKQVDJZIKGHDA-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- UBSJOWMHLJZVDJ-UHFFFAOYSA-N aluminum neodymium Chemical compound [Al].[Nd] UBSJOWMHLJZVDJ-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000003353 gold alloy Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 2
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229910001120 nichrome Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 2
- 229920002098 polyfluorene Polymers 0.000 description 2
- 230000001846 repelling effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 125000005259 triarylamine group Chemical group 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910017083 AlN Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229910004541 SiN Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 238000007644 letterpress printing Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/13—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
- H10K50/818—Reflective anodes, e.g. ITO combined with thick metallic layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
- H10K59/80518—Reflective anodes, e.g. ITO combined with thick metallic layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
- H10K50/828—Transparent cathodes, e.g. comprising thin metal layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/122—Pixel-defining structures or layers, e.g. banks
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/17—Passive-matrix OLED displays
- H10K59/173—Passive-matrix OLED displays comprising banks or shadow masks
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8052—Cathodes
- H10K59/80524—Transparent cathodes, e.g. comprising thin metal layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
Definitions
- the present invention relates to an organic EL device and a manufacturing method thereof.
- An organic EL device is a light emitting device using electroluminescence of an organic compound. That is, the organic EL device includes a pixel electrode and a counter electrode, and an organic light emitting layer that emits electroluminescence arranged between the two electrodes.
- the material of the organic light emitting layer that emits electroluminescence can be broadly classified into a combination of a low molecular organic compound (host material and dopant material) and a high molecular organic compound.
- Examples of the polymer organic compound that emits electroluminescence include polyphenylene vinylene called PPV and derivatives thereof.
- Organic light-emitting layers made of high-molecular organic compounds can be driven at a relatively low voltage, consume less power, and are easy to cope with the large screens of display panels using organic EL devices.
- An organic light emitting layer made of a high molecular organic compound can be produced by a coating method such as an ink jet method. Therefore, the productivity of the polymer organic EL device is significantly higher than that of the low molecular organic EL device using the vacuum process.
- the polymer organic EL display usually has a hole injection layer disposed between the pixel electrode and the organic light emitting layer in order to efficiently inject holes from the pixel electrode into the organic light emitting layer.
- a hole injection layer oxides of transition metals such as molybdenum oxide, tungsten oxide, and vanadium oxide are used (see, for example, Patent Documents 1 to 6).
- the material of the organic light emitting layer (polymer organic EL material) can be applied to each pixel according to the color of the emitted light (R, G or B). Arranged using printing technology. Therefore, when printing ink containing a polymer organic EL material, it is necessary to prevent the ink from entering a pixel that emits light of another adjacent color.
- a liquid-repellent partition wall that defines each pixel is provided so that each pixel is accurately high.
- a technique for preventing ink containing a polymer organic EL material from entering an adjacent pixel that emits light of another color by dropping ink containing a molecular organic EL material for example, Patent Documents 7 to 12). reference.
- a technique for making the bank liquid repellent by performing UV processing or plasma processing on the bank is known (see Patent Documents 9 to 12). ).
- a technique for forming a metal oxide layer containing a transparent electrode material such as ITO on the surface of the pixel electrode is known in order to improve the affinity between the pixel electrode and the material liquid of the organic functional layer to be applied. (For example, refer to Patent Document 14).
- the hole injection layer made of a transition metal oxide is dissolved by alkali or water, the hole injection layer may be dissolved in the process of forming a bank using a developer which is an alkaline solution, for example.
- a region where ink is applied by a self-assembled film instead of a resin such as polyimide.
- a hole injection layer made of a transition metal oxide is laminated on the pixel electrode by a sputtering method, and then the self-assembled film is formed by a wet process.
- the region where the ink is to be applied is patterned by irradiating only the region where the ink is to be applied with ultraviolet rays and making it lyophilic.
- the self-assembled film is formed by the wet process after the formation of the hole injection layer.
- the injection layer sometimes dissolved.
- the hole injection efficiency is lowered and the light emission efficiency is lowered.
- An object of the present invention is to provide an organic EL device that can prevent a hole injection layer made of an oxide of a transition metal from being dissolved in the manufacturing process of the device, and a manufacturing method thereof.
- the first of the present invention relates to the following organic EL device.
- An organic EL device comprising: an organic functional layer disposed on the pixel electrode; and a liquid repellent organic film disposed on an upper surface of the bank and defining a region of the organic functional layer,
- the surface of the pixel electrode thus formed has a hole injection function, and the end of the bank and the end of the oxidized region of the surface of the pixel electrode coincide with each other.
- the oxide of the transition metal may be selected from silver oxide, molybdenum oxide, chromium oxide, vanadium oxide, tungsten oxide, nickel oxide, iridium oxide, or an alloy thereof.
- a second aspect of the present invention relates to a method for manufacturing an organic EL device shown below. [10] preparing a substrate on which a pixel electrode is formed, forming a bank covering a part or all of the periphery of the pixel electrode on the substrate, repelling the surface of the bank and the surface of the pixel electrode.
- a method of manufacturing an organic EL device comprising: applying an ink containing an organic functional material to a region defined by a liquid repellent organic film, and forming the organic functional layer on the pixel electrode.
- the present invention since the hole injection layer does not dissolve in the device manufacturing process, an organic EL device having a hole injection layer having a good surface state can be obtained. Therefore, an organic EL device with high luminous efficiency and low power consumption can be provided. Further, in the production method of the present invention, the patterning of the region where the ink is applied and the formation of the hole injection layer can be performed simultaneously. Therefore, the present invention provides a method for producing an organic EL device with a simplified process.
- Sectional drawing of the organic EL device of Embodiment 1 Enlarged plan view of an organic EL display panel having the organic EL device of the first embodiment The figure which shows the manufacturing method of the organic EL device of Embodiment 1.
- Sectional drawing of the organic EL device of Embodiment 2 The figure which shows the manufacturing method of the organic EL device of Embodiment 2.
- Sectional drawing of the organic EL device of Embodiment 3 An enlarged plan view of an organic EL display panel having the organic EL device of the third embodiment The figure which shows the manufacturing method of the organic EL device of Embodiment 3.
- the manufacturing method of the organic EL device of the present invention includes 1) a first step of preparing a substrate on which a pixel electrode is formed, and 2) repelling on the surface of the pixel electrode and around the pixel electrode. Second step of forming a liquid organic film, 3) A third step of selectively irradiating light to a region including at least a part of the pixel electrode and on which the organic functional layer is formed, 4) by a liquid repellent organic film It has the 4th step which forms an organic functional layer in a defined field by wet printing.
- the organic EL device manufacturing method of the present invention is characterized in that the surface of the pixel electrode is oxidized in the third step after the formation of the liquid repellent organic film.
- the surface layer of the oxidized pixel electrode can function as a hole injection layer.
- the hole injection layer is formed after the liquid repellent organic film is formed, the hole injection layer is not dissolved. Therefore, a hole injection layer having a good surface state can be provided, and an organic EL device with good light emission efficiency can be manufactured.
- the hole injection layer is formed by selectively irradiating light to the substrate in the third step, and at the same time, the liquid repellent organic film in the region irradiated with light.
- the liquid repellent organic film in the region irradiated with light can be changed to a lyophilic organic film, or the lyophobic organic film in the region irradiated with light can be removed.
- the lyophobic organic film that defines the region where the ink containing the organic functional material is applied can be patterned in the fourth step. .
- an organic EL device can be formed more easily.
- a substrate on which pixel electrodes are formed is prepared.
- the pixel electrode is formed by, for example, forming a film of an electrode material on a substrate by sputtering or the like; masking the film of the electrode material with a resist; and patterning by etching.
- the film thickness of the pixel electrode is preferably about 100 to 200 nm. When the pixel electrode is too thin, the film thickness is likely to be non-uniform, and the hole injection efficiency decreases when the surface layer of the pixel electrode is changed to the hole injection layer in the third step described later.
- the pixel electrode may be composed of a single metal layer or a laminate of two or more metal layers.
- the material of the pixel electrode is preferably a material having a large work function of the oxide.
- Such materials include transition metals or alloys containing transition metals.
- transition metals include silver, molybdenum, chromium, vanadium, tungsten, nickel, iridium, and the like.
- alloys containing transition metals include silver-palladium-copper alloys (also referred to as APC) and molybdenum. -Chrome alloys (also referred to as MoCr) are included.
- the material of the metal layer formed on the surface layer may be a material having a large work function of the oxide, and the material of the lower metal layer Need only have high conductivity.
- the surface layer means a layer having the surface of the pixel electrode on the organic functional layer side described later
- the lower layer means a layer located on the substrate side with respect to the surface layer.
- the surface layer of the pixel electrode is oxidized to change into a hole injection layer. Therefore, when the pixel electrode is composed of a laminate of a plurality of metal layers, the hole injection layer is used as the material of the surface metal layer.
- a suitable metal may be selected, and the material of the lower metal layer may be arbitrary.
- the material of the lower metal layer is a metal having a high light reflectance (for example, a visible light reflectance of 60% or more).
- the material of the surface metal layer may be a transition metal.
- the material of the lower metal layer is silver, aluminum or an alloy containing them, specifically, a silver-palladium-copper alloy (also referred to as APC), a silver-ruthenium-gold alloy (also referred to as ARA).
- the pixel electrode is composed of two metal layers, the thickness of the surface metal layer is preferably 20 nm or less, and the lower metal layer is preferably 100 to 200 nm.
- a bank for defining a light emitting region may be formed on the substrate before the second step.
- the bank is preferably formed so as to cover part or all of the periphery of the pixel electrode (see FIG. 3).
- the bank material is inorganic
- the bank is formed, for example, by forming an inorganic film by sputtering and patterning by etching.
- the material of the bank is an organic material
- the bank is formed by, for example, forming a resin film by coating and patterning by a photolithography method.
- a liquid repellent organic film is formed on the surface of the pixel electrode and around the pixel electrode.
- the liquid repellent organic film is preferably a monomolecular film. This is because a monomolecular film has little influence on the organic functional layer formed on the pixel electrode.
- the liquid repellent organic film preferably has a photosensitivity that changes to a lyophilic organic film or is decomposed or removed when irradiated with light.
- the liquid repellent organic film satisfying such conditions may be a self-assembly-monolayer (SAM) having liquid repellency.
- SAM self-assembly-monolayer
- the self-assembled film is a film formed by orienting linear molecules having a binding functional group capable of reacting with constituent atoms on the surface of the coated body.
- the self-assembled film includes a monomolecular film, an LB film (monomolecular cumulative film), and the like. Since this self-assembled film is formed by orienting molecules, it has a very thin film thickness and becomes a uniform film at the molecular level. That is, the same molecule is arranged on the surface of the film, and uniform and excellent liquid repellency can be imparted to the surface of the film.
- the method for forming the self-assembled film is not particularly limited.
- a solution such as ethanol containing an organic molecule that becomes a liquid-repellent organic film is applied to the pixel electrode surface and the periphery of the pixel electrode by a known application method.
- the coated film may be heated and dried. Examples of known coating methods include dipping, spin coating, spraying, roller coating, Mayer bar, screen printing, and brush coating.
- light is selectively irradiated to a region including at least a part of the pixel electrode and in which the organic functional layer is formed.
- light may be irradiated through a mask.
- the irradiation area may be controlled by adjusting the opening area of the mask, or the irradiation area may be controlled by adjusting the gap (gap) between the mask and the substrate.
- the light irradiation is preferably performed in a chamber.
- the wavelength of the irradiated light is 150 to 400 nm.
- the amount of light irradiation (illuminance ⁇ irradiation time) is not particularly limited, and in order to denature the SAM film, an irradiation amount of about 1 to 30 J / cm 2 is often necessary. Further, the amount of light irradiation may be adjusted so that the surface of the pixel electrode is sufficiently oxidized. By selectively irradiating the region including the pixel electrode with light, the surface of the pixel electrode is oxidized, and the surface layer of the pixel electrode can be used as a hole injection layer.
- a part of the liquid repellent organic film can be selectively changed to a lyophilic organic film, or a part of the liquid repellent organic film can be selected. Or can be removed.
- the liquid repellent organic film that defines the region to which the ink containing the organic functional material described later is applied is patterned.
- the region to which the ink containing the organic functional material is applied may include the pixel electrode, but preferably includes the periphery of the pixel electrode (see FIGS. 3, 5, and 8).
- means for oxidizing the surface of the pixel electrode include ultraviolet light ozone treatment, plasma treatment in an oxidizing gas atmosphere, or solution treatment containing ozone.
- Specific processing conditions for ultraviolet light ozone processing and plasma processing in an oxidizing gas atmosphere are appropriately set with reference to Japanese Patent Application Laid-Open No. 2006-294261.
- an organic functional layer is formed in a region defined by the liquid repellent organic film by a wet printing method.
- the wet printing method include ink jet, dispenser, nozzle coating, spin coating, intaglio printing, letterpress printing, and the like.
- ink containing an organic functional material is applied in a region defined by the liquid repellent organic film.
- An organic functional layer is formed on the pixel electrode by drying the applied ink.
- An ink containing an organic functional material is prepared by dissolving the organic functional material in an organic solvent such as anisole or cyclohexylbenzene.
- the counter electrode is stacked and a sealing film is further formed, whereby an organic EL device is manufactured.
- the present invention provides a method for producing an organic EL device with a simplified process.
- the organic EL device of this invention is an organic EL device manufactured by the manufacturing method of the organic EL device of this invention mentioned above.
- the organic EL device of the present invention is disposed on a substrate, a pixel electrode disposed on the substrate, an organic functional layer disposed on the pixel electrode, a liquid repellent organic film defining an area of the organic functional layer, and an organic functional layer A counter electrode.
- the material of the substrate differs depending on whether the organic EL device is a bottom emission type or a top emission type.
- the substrate in the case of the bottom emission type, the substrate is required to be transparent. Therefore, in the case of the bottom emission type, examples of the material of the substrate include glass, quartz, and transparent plastic.
- the substrate in the case of the top emission type, the substrate does not need to be transparent. Therefore, in the case of the top emission type, the material of the substrate is arbitrary as long as it is an insulator, for example, opaque plastic or metal.
- a plastic such as polyethylene terephthalate or polyethersulfone is used as the substrate material, a flexible organic EL device can be manufactured. Further, a metal wiring or a transistor circuit for driving the organic EL device may be formed on the substrate.
- the pixel electrode is a conductive member disposed on the substrate.
- the pixel electrode normally functions as an anode, but may function as a cathode.
- the organic EL device of the present invention is characterized in that at least a part of the surface of the pixel electrode is oxidized. That is, the pixel electrode of the organic EL device of the present invention includes a metal layer and a metal oxide disposed on the metal layer.
- the surface of the oxidized pixel electrode preferably has a high work function. Examples of such metal oxides include transition metal oxides. Examples of such transition metal oxides include silver oxide, molybdenum oxide, chromium oxide, vanadium oxide, tungsten oxide, nickel oxide, iridium oxide, alloys thereof, and laminates thereof.
- the surface of the oxidized pixel electrode (surface metal oxide) has a hole injection function. Therefore, the metal oxide on the surface layer of the pixel electrode functions as a hole injection layer.
- the thickness of the hole injection layer is preferably 0.1 to 100 nm, and more preferably 1 to 10 nm. If the hole injection layer is too thin, the thickness of the hole injection layer tends to be nonuniform, and the hole injection property may be lowered. On the other hand, if the hole injection layer is too thick, the driving voltage of the organic EL device increases and the power consumption increases.
- the thickness of the metal oxide on the surface layer of the pixel electrode can be confirmed by examining the presence or absence of oxygen using a secondary ion mass spectrometer (Quadra-Pole SIMS measurement).
- the material of the metal layer under the pixel electrode differs depending on whether the organic EL device is a top emission type or a bottom emission type.
- the organic EL device is a top emission type
- the pixel electrode is a reflective electrode
- the material of the metal layer under the pixel electrode has high light reflectivity (for example, the reflectance of visible light is 60% or more), and A metal having high conductivity is preferable. Examples of such metals having high light reflectivity and high conductivity include silver, aluminum, and alloys containing these.
- the metal having high light reflectivity and conductivity include silver-palladium, silver-palladium-copper alloy (also referred to as APC), silver-ruthenium-gold alloy (also referred to as ARA), MoCr (molybdenum chromium). ), An aluminum-neodymium alloy or NiCr (nickel chromium).
- the film thickness of the pixel electrode is preferably 100 to 200 nm.
- the liquid repellent organic film defines the arrangement area of the organic functional layer.
- the liquid repellent organic film is preferably a monomolecular film or a self-assembled film such as an LB film.
- the liquid repellent organic film is more preferably a monomolecular film having a thickness of about 10 to 100 mm.
- the liquid repellent organic film includes, for example, heptadecafluoro-1,1,2,2 tetrahydrodecyltriethoxysilane, heptadecafluoro-1,1,2,2 tetrahydrodecyltrimethoxysilane, hepta Decafluoro-1,1,2,2 tetrahydrodecyltrichlorosilane, tridecafluoro-1,1,2,2 tetrahydrooctyltriethoxysilane, tridecafluoro-1,1,2,2 tetrahydrooctyltrimethoxysilane, tri A self-assembled film made of fluoroalkylsilane (hereinafter referred to as “FAS”) such as decafluoro-1,1,2,2 tetrahydrooctyltrichlorosilane, trifluoropropyltrimethoxysilane, or the like is preferable.
- FES
- FAS is generally represented by the structural formula R n SiX (4-n) .
- n represents an integer of 1 to 3
- X is a hydrolyzable group such as a methoxy group, an ethoxy group, or a halogen atom.
- R is a fluoroalkyl group, and has a structure of (CF 3 ) (CF 2 ) x (CH 2 ) y [wherein x represents an integer of 0 to 10 and y represents an integer of 0 to 4].
- each R or X may be the same or different.
- the hydrolyzable group represented by X forms silanol by hydrolysis and reacts with the hydroxyl group on the surface of the bank or substrate (SiO 2 or the like) to bond to the surface of the bank or substrate with a siloxane bond.
- R has a fluoro group such as (CF 3 ) on the surface, the surface on which the monomolecular film of FAS is formed has liquid repellency.
- the organic EL device of the present invention may have a bank.
- the bank is disposed on the substrate so that at least a part of the pixel electrode is exposed.
- the bank material is preferably an insulator (resistivity is 10 5 ⁇ ⁇ cm or more). If the bank material has a resistivity of 10 5 ⁇ ⁇ cm or less, a leak current is generated between the pixel electrode and the counter electrode, or a leak current is generated between adjacent pixels. When a leak current occurs, various problems such as an increase in power consumption occur.
- bank materials include organic substances such as polyimide and polyacryl, and inorganic substances such as silicon oxide.
- inorganic substances such as silicon oxide.
- fluorine may be introduced into the organic substance that is the material of the bank.
- the bank may be a two-layer bank composed of a lower inorganic material and an upper organic material.
- the preferred material for the bank is inorganic. This is because when the material of the bank is organic, the surface of the pixel electrode may be contaminated by the residue of the bank or the outgas generated from the bank. Further, when the bank material is an inorganic material, it is preferable because even if the bank is made thin (lower), dielectric breakdown hardly occurs. As the material of the inorganic bank, any material can be used as long as it does not easily cause pinholes when formed into a film and has excellent insulating properties.
- the thickness of the bank is preferably thin from the viewpoint of the light emission efficiency of the organic light emitting layer, which will be described later, but if it is too thin, pinholes are generated and insulation cannot be maintained.
- the thickness of the bank is 10 to 200 nm, more preferably 10 to 100 nm.
- the arrangement of the liquid repellent organic film differs depending on whether the organic EL device has a bank (Embodiments 1 and 2) or no bank (Embodiment 3).
- the organic functional layer is a layer including at least an organic light emitting layer.
- the organic functional layer is formed on the pixel electrode by wet printing as described above.
- the thickness of the organic functional layer is not particularly limited, but may be about 50 to 200 nm, for example.
- the organic EL material contained in the organic light emitting layer of the organic functional layer is appropriately selected for each sub-pixel according to the color (RGB) of light emitted from the sub-pixel (organic EL element).
- the organic EL material may be either a high-molecular organic EL material or a low-molecular organic EL material, but a high-molecular organic EL material is preferable from the viewpoint of forming by a coating method. This is because by using the polymer organic EL material, the organic light emitting layer can be easily formed without damaging other members.
- Examples of the polymer organic EL material include polyphenylene vinylene and its derivatives, polyacetylene and its derivatives, polyphenylene (PP) and its derivatives, polyparaphenyleneethylene and its derivatives, poly 3-hexyl Examples include thiophene (poly-3-hexylthiophene (P3HT)) and its derivatives, polyfluorene (PF) and its derivatives, and the like.
- Examples of the low molecular organic EL material include tris (8-quinolinolato) aluminum.
- the organic functional layer may have a hole transport layer (interlayer), an electron injection layer, an electron transport layer, and the like in addition to the organic light emitting layer.
- the hole transport layer has a function of efficiently transporting holes to the organic light emitting layer and a function of blocking the entry of electrons into the pixel electrode (or hole injection layer). Therefore, the hole transport layer is disposed between the pixel electrode and the organic light emitting layer.
- the material of the hole transport layer may be a high molecular material or a low molecular material as long as it is an organic material having a hole transport property. Examples of the hole transporting material include a copolymer containing a fluorene moiety and a triarylamine moiety, and a low molecular weight triarylamine derivative.
- the hole transport material in the hole transport layer may be cross-linked so that the hole transport layer is less likely to elute into the ink.
- a crosslinker may be included in the material liquid of the hole transport layer.
- the crosslinking agent include dipentaerythritol hexaacrylate.
- a material liquid of the hole transport layer for example, a solution in which the material of the hole transport layer is dissolved in an organic solvent such as anisole or cyclobenzene
- the thickness of the hole transport layer is not particularly limited, but may be about 10 to 40 nm, for example.
- the counter electrode is a conductive member disposed on the organic functional layer.
- the counter electrode normally functions as a cathode, but may function as an anode.
- the material of the counter electrode differs depending on whether the organic EL device is a bottom emission type or a top emission type.
- the counter electrode needs to be transparent. Therefore, the material of the counter electrode is preferably a conductive member having a transmittance of 80% or more. Thereby, a top emission organic EL device with high luminous efficiency can be obtained, and an organic EL device with low power consumption and long life can be obtained.
- Such a transparent cathode may be composed of a layer containing an alkaline earth metal, a layer made of an electron transporting organic material, and a metal oxide layer.
- alkaline earth metals include magnesium, calcium and barium.
- the electron transporting organic material is, for example, an electron transporting organic semiconductor material.
- the metal oxide is not particularly limited, and for example, indium tin oxide or indium zinc oxide.
- the transparent cathode may be composed of a layer containing an alkali metal, an alkaline earth metal or a halide thereof and a layer containing silver.
- the layer containing silver may be comprised only from silver, and may be comprised from a silver alloy.
- the material of the counter electrode is arbitrary as long as it is conductive.
- FIG. 1 shows a cross-sectional view of an organic EL device 100 of the present embodiment.
- the organic EL device 100 includes a substrate 101, a pixel electrode 103, a bank 102, a liquid repellent organic film 105, an organic light emitting layer 107, and a counter electrode 109.
- the material of the substrate 101 is glass or the like. Further, a metal wiring or a transistor circuit may be formed on the substrate 101.
- the pixel electrode 103 is disposed on the substrate 101 and has an oxidized surface layer 104.
- the surface layer 104 of the oxidized pixel electrode 103 functions as a hole injection layer.
- the pixel electrode is composed of one metal layer, and is an APC film or a MoCr film.
- a plurality of pixel electrodes 103 are arranged in a matrix on the substrate 101.
- the bank 102 is disposed on the substrate 101 and covers part or all of the periphery of the pixel electrode 103.
- the thickness of the bank 102 is preferably 10 to 100 nm.
- Examples of the material of the bank 102 include insulating inorganic materials such as SiO 2 , SiN, SiON, Al 2 O 3, and AlN.
- the bank 102 has an upper surface 102u and a wall surface 102w.
- the bank 102 may have a forward taper shape or a reverse taper shape. Further, the wall surface 102 w of the bank may be perpendicular to the substrate 101. If the bank 102 has a forward taper shape, it becomes easy to form a liquid repellent organic film on the bank 102 in the manufacturing process of the organic EL device.
- the bank 102 may be disposed on the pixel electrode 103.
- the bank 102 is disposed on the pixel electrode 103, only the surface of the pixel electrode 103 not covered with the bank 102 is oxidized. Therefore, the surface of the pixel electrode 103 disposed under the bank 102 is not oxidized. Therefore, the end portion 102e of the bank 102 and the end portion of the oxidized region (the end portion 104e of the oxidized surface layer 104) on the surface of the pixel electrode 103 coincide with each other.
- “the surface of the pixel electrode is not oxidized” means that the surface of the pixel electrode is not oxidized at all or even if it is oxidized, the thickness of the oxidized layer is 1 nm or less. To do.
- the density of a metal is higher than the density of its oxide.
- the density of tungsten is 19.25 g / cm 3 while the density of tungsten oxide is 7.16 g / cm 3 . Therefore, when the entire surface of the pixel electrode is oxidized, the density of the surface layer of the pixel electrode is reduced, and water or other foreign matters may enter the organic light emitting layer from the substrate side through the surface layer of the pixel electrode. .
- the surface of the pixel electrode (a region of the surface of the pixel electrode that is not covered by the bank) is oxidized, and therefore, the surface of the pixel electrode is entirely oxidized.
- the density of the surface layer of the pixel electrode is high, and entry of moisture and other foreign matters from the substrate side to the organic functional layer can be suppressed.
- the liquid repellent organic film 105 is disposed on the upper surface of the bank 102 and defines an arrangement region of the organic light emitting layer 107 described later. Further, the liquid repellent organic film 105 is not disposed in the peripheral area of the pixel electrode 103 on the upper surface of the bank 102.
- the peripheral region of the pixel electrode 103 hereinafter also simply referred to as“ peripheral region 102 ′ ”) in the upper surface of the bank 102” means a region of 1 to 10 ⁇ m from the edge of the upper surface of the bank 102. Therefore, the width W of the peripheral region 102 ′ is 1 to 10 ⁇ m.
- the organic light emitting layer 107 is disposed in a region defined by the liquid repellent organic film 105 described above. As described above, since the liquid repellent organic film 105 is not disposed in the peripheral area of the pixel electrode 103 on the upper surface of the bank 102, the organic light emitting layer 107 is not only on the pixel electrode 103 but also in the peripheral area. It is also arranged on 102 '.
- the thickness of the organic light emitting layer 107 is preferably 50 to 100 nm.
- FIGS. 2A to 2D are partially enlarged views of an organic EL display panel in which the organic EL device according to the first embodiment, in which the counter electrode and the organic light emitting layer are omitted, is arranged in a matrix on the substrate.
- the bank 102 may be arranged to separate the pixel electrodes 103.
- the bank 102 covers the entire periphery of the pixel electrode 103.
- the banks 102 may be arranged in a line so as to separate the columns of the pixel electrodes 103 (a plurality of pixel electrodes 103 arranged in a line).
- the banks 102 cover a part of the periphery of the pixel electrodes 103.
- the liquid repellent organic film 105 includes a line-shaped organic light-emitting layer (an organic light-emitting layer formed across a plurality of organic EL devices arranged in a line). It may be arranged in a line as defined. 2B and 2D, the liquid repellent organic film 105 may be disposed so as to define the organic light emitting layer of each organic EL device 100.
- the organic EL device manufacturing method includes 1) a first step of preparing the substrate 101 on which the pixel electrode 103 is formed (FIG. 3A), and 2) on the substrate 101. Second step of forming bank 102 covering part or all of the periphery of pixel electrode 103 (FIG. 3B), 3) Third step of forming liquid repellent organic film 105 on the surface of bank 102 and the surface of pixel electrode 103 ( 3C), 4) a fourth step (FIG.
- FIG. 3D in which at least part of the pixel electrode 103 is included and the region where the organic light emitting layer 107 is formed is selectively irradiated with light
- FIG. 3E A fifth step (FIG. 3E) of forming an organic light emitting layer on the pixel electrode 103 by applying an ink containing an organic light emitting material to the defined region;
- the substrate 101 on which the pixel electrode 103 is formed is prepared.
- the bank 102 is formed on the substrate (FIG. 3B).
- the bank 102 is formed so as to cover part or all of the periphery of the pixel electrode 103.
- a liquid repellent organic film 105 is formed on the bank 102 and the pixel electrode 103 (FIG. 3C).
- light is selectively irradiated to a region including at least a part of the pixel electrode 103 and where the organic light emitting layer is formed (FIG. 3D).
- light may be irradiated through the mask 111.
- the surface of the pixel electrode 103 is oxidized, and the surface layer 104 of the pixel electrode 103 can be used as a hole injection layer.
- the surface of the pixel electrode 103 ′ protected by the bank 102 (disposed below the bank 102) in the pixel electrode 103 is not oxidized. For this reason, the edge part of the bank 102 and the edge part of the oxidized surface among the surfaces of the pixel electrode 103 correspond.
- the liquid repellent organic film 105 which defines the area
- the region to which the organic light emitting material is applied may include the pixel electrode 103, but also includes a peripheral region (peripheral region 102 ′) of the pixel electrode 103 on the upper surface of the bank 102.
- ink containing an organic light emitting material is applied to the region defined by the liquid repellent organic film 105 (FIG. 3E).
- the organic light emitting layer 107 is formed on the pixel electrode 103 by drying the applied ink.
- the ink containing the organic light emitting material is applied not only on the pixel electrode 103 but also on the peripheral region 102 ′.
- the film thickness is not uniform on the peripheral region 102 ′ (non-light emitting region) as shown in FIG. 3E.
- An organic light emitting layer 107 having a uniform thickness is formed on the pixel electrode 103 (light emitting region).
- the organic EL device 100 is manufactured by laminating the counter electrode 109 and further forming a sealing film (FIG. 3F).
- the present embodiment since the density of the surface layer of the pixel electrode is high, it is possible to suppress intrusion of moisture and foreign matter from the substrate side to the organic functional layer.
- the hole injection layer is formed after the liquid repellent organic film is formed, there is no possibility that the surface of the hole injection layer is dissolved, and a hole injection layer having a good surface state is formed.
- the organic EL device which has is obtained. Therefore, an organic EL device with high luminous efficiency and low power consumption can be provided.
- patterning of a region to which ink containing an organic functional material is applied and formation of a hole injection layer can be performed at the same time. This provides a method for manufacturing an organic EL device with a simplified process.
- the organic EL device 200 of the present embodiment is a top emission type organic EL device.
- the organic EL device 200 is the same as the organic EL device 100 of Embodiment 1 except that the pixel electrode is composed of two metal layers and has a hole transport layer. Therefore, the same components as those of the organic EL device 100 are denoted by the same reference numerals, and description thereof is omitted.
- FIG. 4 shows a cross-sectional view of the organic EL device 200 of the second embodiment.
- the organic EL device 200 of the second embodiment includes a pixel electrode 210 and a hole transport layer 204.
- the pixel electrode 210 is a reflective pixel electrode, and includes a lower metal layer 211 and a surface metal layer 213. As described above, in the present embodiment, the pixel electrode 210 includes two metal layers.
- the material of the lower metal layer 211 is a metal having a visible light reflectance of 60% or more, and the material of the surface metal layer 213 is a metal whose oxide has a high work function. The light reflectance of the surface metal layer 213 is not necessarily high.
- the thickness of the surface metal layer 213 is preferably 20 nm or less, and the thickness of the lower metal layer 211 is preferably 100 to 200 nm. This is because when the thickness of the surface metal layer 213 is 20 nm or more, the reflectance of the pixel electrode 210 as a whole may decrease.
- the region surrounded by the bank 102 in the surface metal layer 213 is oxidized. Only the surface layer of the surface metal layer 213 may be oxidized or may be completely oxidized in the thickness direction as shown in FIG.
- FIG. 5 shows a method for manufacturing the organic EL device of the present embodiment.
- the manufacturing method of the organic EL device of the second embodiment is as follows: 1) First step of preparing the substrate 101 on which the pixel electrode 210 is formed (FIG. 5A), 2) On the substrate 101 Second step of forming bank 102 covering part or all of the periphery of pixel electrode 210 (FIG. 5B), 3) Third step of forming liquid repellent organic film 105 on the surface of bank 102 and on the surface of pixel electrode 210 (FIG. 5C), 4) Fourth step (FIG.
- a metal layer suitable for the hole injection layer is selected as the surface layer of the pixel electrode, and a metal layer suitable for the reflective electrode is selected as the lower layer of the pixel electrode. Since a pixel electrode with a high rate can be formed, a top emission type organic EL device with high luminous efficiency can be provided. Moreover, according to this Embodiment, it is also possible to adjust an optical distance with a surface metal layer. For this reason, an organic EL device with higher luminous efficiency can be provided.
- Embodiment 3 In the first embodiment and the second embodiment, the organic EL device having a bank has been described. On the other hand, in Embodiment 3, an organic EL device having no bank will be described.
- the organic EL device 300 of the present embodiment is the same as the organic EL device 100 of the first embodiment except that the bank 102 is not provided. Therefore, the same components as those of the organic EL device 100 are denoted by the same reference numerals, and description thereof is omitted.
- FIG. 6 is a cross-sectional view of the organic EL device 300 of the present embodiment.
- the organic EL device 300 includes a substrate 101, a pixel electrode 103, a liquid repellent organic film 305, an organic light emitting layer 107, and a counter electrode 109.
- the liquid repellent organic film 305 is disposed on the substrate 101. Further, the liquid repellent organic film 305 is not disposed in the peripheral region of the pixel electrode 103 on the surface of the substrate 101.
- the liquid repellent organic film 305 defines the region of the organic light emitting layer 107.
- the organic light emitting layer 107 is disposed so as to cover the pixel electrode 103. Therefore, the organic light emitting layer 107 is also disposed in the peripheral region of the pixel electrode 103 on the surface of the substrate 101. Specifically, the organic light emitting layer 107 is also disposed on the region of the substrate 101 having a thickness of 1 to 10 ⁇ m from the edge of the pixel electrode 103.
- the liquid repellent organic film 305 is a line that defines a line-shaped organic light-emitting layer (an organic light-emitting layer formed across a plurality of organic EL devices arranged in a line). It may be arranged in a shape. 7B, the liquid repellent organic film 305 may be disposed so as to define the organic light emitting layer 107 of each organic EL device 300.
- the organic EL device manufacturing method according to Embodiment 3 includes 1) a first step of preparing the substrate 101 on which the pixel electrode 103 is formed (FIG. 8A), and 2) the surface of the substrate 101. And a second step of forming the liquid repellent organic film 305 on the surface of the pixel electrode 103 (FIG. 8B), and 3) a step of selectively irradiating the region including the pixel electrode 103 where the organic light emitting layer 107 is formed. 3 steps (FIG.
- the substrate 101 on which the pixel electrode 103 is formed is prepared.
- a liquid repellent organic film 305 is formed on the surface of the substrate 101 and the surface of the pixel electrode 103.
- the third step light is selectively irradiated to a region including the pixel electrode 103 and where the organic light emitting layer is formed.
- light may be irradiated through the mask 111.
- the surface of the pixel electrode 103 is oxidized, and the surface layer 104 of the pixel electrode 103 can be used as a hole injection layer.
- the liquid-repellent organic film 305 is selectively irradiated with light, and the surface of the pixel electrode 103 is oxidized and simultaneously repelled.
- a part of the liquid organic film 305 can be selectively changed into the lyophilic organic film 305 ′, or a part of the liquid repellent organic film 305 can be selectively removed.
- the liquid repellent organic film 305 that defines the region to which the ink containing the organic light emitting material is applied is patterned.
- the region to which the ink containing the organic light emitting material is applied may include the pixel electrode 103, but preferably includes the peripheral portion of the pixel electrode 103.
- the peripheral portion of the pixel electrode 103 means a region 1 to 10 ⁇ m away from the pixel electrode 103. Therefore, in this step, it is preferable to irradiate the pixel electrode 103 and the peripheral portion of the pixel electrode 103 with light. As a result, not only the liquid repellent organic film 305 on the pixel electrode 103 but also the liquid repellent organic film 305 around the pixel electrode 103 is changed to a lyophilic organic film 305 ′ or removed.
- ink containing an organic light emitting material is applied in the region defined by the liquid repellent organic film 305.
- the ink containing the organic light emitting material is applied not only on the pixel electrode 103 but also on the substrate 101 at the peripheral edge of the pixel electrode 103.
- the organic light emitting material is applied to the peripheral edge of the pixel electrode 103, the thickness of the organic light emitting layer 107 is not uniform at the peripheral edge (non-light emitting area) of the pixel electrode 103, but on the pixel electrode 103 (light emitting area).
- the organic light emitting layer 107 having a uniform film thickness is formed.
- the organic EL device 200 is manufactured by laminating the counter electrode 109 and further forming a sealing film (FIG. 8E).
- the organic EL device can be manufactured with fewer steps.
- Example 1 A 100 nm thick metal layer (hereinafter also referred to as “MoCr (97: 3)”) composed of 97% molybdenum and 3% chromium was formed on the surface of a glass (Matsunami glass-free soda glass) substrate by sputtering. Then, the metal layer was wet etched by photolithography using the patterned photosensitive resist as a mask. As the etching solution, a mixed solution of phosphoric acid, nitric acid and acetic acid was used. Thereafter, the photosensitive resist was peeled off and a pixel electrode having a predetermined shape was patterned.
- MoCr 97% molybdenum and 3% chromium
- a photosensitive polyimide formed by spin coating was exposed on a substrate on which a pixel electrode was patterned using a photomask and developed to form a bank. Thereafter, the substrate was washed with a neutral detergent and pure water.
- the pixel electrode was subjected to UV-ozone treatment (ultraviolet light with a wavelength of 170 nm, 120 seconds). As a result, the surface of the pixel electrode was oxidized. The thickness of the metal oxide layer formed on the surface layer of the pixel electrode by the UV-ozone treatment was 5 nm.
- a fluorine plasma treatment was performed to make the bank liquid repellent.
- the conditions of the fluorine plasma treatment were chamber pressure: 20 Pa, CF4 flow rate: 80 sccm, RF output: 100 W, treatment time: 30 seconds.
- HT12 manufactured by Somemation Co., Ltd. was dissolved in a mixed solvent of xylene and mesitylene to prepare a material solution for the hole transport layer. Then, the prepared hole transport layer material solution was applied to the region defined by the bank by an inkjet method. The applied material liquid was then vacuum dried at 50 ° C. for 10 minutes to form a hole transport layer. The formed hole transport layer was further baked at 210 ° C. for 30 minutes in a nitrogen atmosphere to crosslink the hole transport material. The average film thickness of the formed hole transport layer was 20 nm.
- a green light emitting material (Lumation Green) manufactured by Summation Co., Ltd. was dissolved in a mixed solvent of xylene and mesitylene to prepare a material solution for the organic light emitting layer.
- the prepared material liquid of the organic light emitting layer was applied to the region defined by the bank by the ink jet method.
- the material solution of the applied organic light emitting layer was dried in a vacuum state at 50 ° C. for 10 minutes, and then baked at 130 ° C. for 30 minutes in a nitrogen atmosphere.
- the average film thickness of the formed organic light emitting layer was 70 nm.
- a 5 nm-thick barium film (manufactured by Aldrich, purity 99% or more) was formed on the organic light emitting layer by vacuum deposition.
- a film of a compound Alq (aluminum quinolinol complex) (manufactured by Nippon Steel Chemical Co., Ltd., purity 99% or more) mixed with 20% barium was formed by a co-evaporation method.
- the film thickness of the compound Alq was 20 nm.
- ITO having a film thickness of 100 nm was formed to form a transparent counter electrode.
- a glass sealing can of an organic EL device in a nitrogen dry box having a water and oxygen concentration of 5 ppm or less.
- Example 2 In Experimental Example 2, an organic EL device was used in the same manner as in Example 1 except that the oxygen plasma method (plasma time 120 seconds, power 2000 W) was used as the method for oxidizing the surface of the pixel electrode instead of the UV-ozone treatment. was made.
- the oxygen plasma method plasma time 120 seconds, power 2000 W
- Example 3 In Experimental Example 3, the material of the pixel electrode was silver: palladium: copper alloy (hereinafter also referred to as “APC”), and the material of the organic light emitting layer was Lumation Red (manufactured by Summation). An organic EL device was produced.
- APC silver: palladium: copper alloy
- Lumation Red manufactured by Summation
- Comparative Experimental Example 1 An organic EL device was produced in the same manner as in Experimental Example 1, except that the UV-ozone treatment was omitted.
- Comparative Experiment Example 2 In Comparative Experiment Example 2, the material of the pixel electrode is APC, UV-ozone treatment is omitted, and after cleaning the substrate, a PEDOT: PSS (manufactured by HC Stark) film is formed on the pixel electrode as a hole injection layer.
- An organic EL device was produced in the same manner as in Experimental Example 1 except that the material of the light emitting layer was Lumation Red (manufactured by Summation).
- an ink containing PEDOT: PSS is applied to the area defined by the bank by an inkjet method, and the applied ink is dried in a vacuum state at 50 ° C. for 10 minutes, and further vacuumed at 200 ° C. for 40 minutes. It was formed by baking.
- the average film thickness of the formed hole injection layer was 40 nm.
- the driving voltage, luminous efficiency, lifetime, and work function of the pixel electrode surface (or hole injection layer surface) of the organic EL devices produced in Experimental Examples 1 to 3 and Comparative Experimental Examples 1 and 2 were measured.
- the work function of the pixel electrode surface was measured using a photoelectron spectrometer AC-2 manufactured by Riken Keiki.
- the driving voltage and light emission efficiency of the organic EL device were determined by passing a current of 10 mA / cm 2 with the pixel electrode as the anode and the counter electrode as the cathode.
- the work function of the surface of the oxidized pixel electrode is 5.6 eV.
- the work function of the oxidized pixel electrode (APC) surface was 5.5 eV. These values do not pass through an oxidation treatment, but are formed directly by a sputtering method (hereinafter also referred to as “formed by a normal method”).
- the work function of the surface of a hole injection layer made of molybdenum trioxide (about 5 .6 eV).
- the oxidation function was not performed (Comparative Experimental Example 2).
- the work function of the surface of the pixel electrode was as low as 4.7 eV.
- the work function of the surface of the pixel electrode thus oxidized is approximately the same as the work function of the surface of the hole injection layer made of molybdenum trioxide formed by a normal method.
- the work function of the surface of the pixel electrode is low.
- the organic EL device of Experimental Example 1 exhibited a good driving voltage of 7.2 V, a high luminous efficiency of 5.0 cd / A, and a long lifetime of 560 hours.
- the organic EL device of Experimental Example 2 also showed almost the same performance as the organic EL device of Experimental Example 1.
- the organic EL device of Experimental Example 3 showed higher driving voltage and luminous efficiency than the organic EL devices of Experimental Example 1 and Experimental Example 2.
- the luminous efficiency was as low as 0.2 cd / A and the lifetime was extremely shortened to 5 hours or less. This is because the organic EL device of Comparative Experimental Example 1 in which the pixel electrode surface is not oxidized has a low work function on the pixel surface and holes are not sufficiently injected into the organic light emitting layer. This may be due to the loss of the balance of electrons.
- the drive voltage of the organic EL device of Comparative Experimental Example 2 using PEDOT: PSS was approximately the same as the drive voltage of the organic EL device of Experimental Example 3.
- the light emission efficiency of the organic EL device of Comparative Experimental Example 2 is 7.6 cd / A lower than the drive voltage (9.3 cd / A) of the organic EL device of Experimental Example 3. This is considered to be due to a decrease in luminous efficiency due to current leakage caused by the high conductivity of PEDOT: PSS.
- An organic EL device having a hole injection layer with a good surface state can be obtained by the method for producing an organic EL device of the present invention. Therefore, an organic EL device with high luminous efficiency and low power consumption can be provided. Further, in the production method of the present invention, the patterning of the region where the ink is applied and the formation of the hole injection layer can be performed simultaneously. Therefore, the present invention provides a method for producing an organic EL device with a simplified process.
- Organic EL device 100, 200, 300 Organic EL device 101 Substrate 102, 102 'Bank 103, 103', 210 Pixel electrode 104 Hole injection layer 105, 305 Liquid repellent organic film 105 'Lipophilic organic film 107 Organic light emitting layer 109 Counter electrode 111 Mask 204 Hole Transport Layer 211 Lower Metal Layer 213 Surface Metal Layer
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
[1]基板と、前記基板上に配置され、かつ少なくとも一部が酸化された表面を有する画素電極と、前記基板上に配置され、かつ前記画素電極の周縁の一部または全部を覆うバンクと、前記画素電極上に配置された有機機能層と、前記バンクの上面に配置され、かつ前記有機機能層の領域を規定する撥液性有機膜と、を有する有機ELデバイスであって、前記酸化された画素電極の表面は、正孔注入機能を有し、前記バンクの端部と、前記画素電極の表面のうち酸化された領域の端部と、は一致する、有機ELデバイス。
[2]前記撥液性有機膜は、前記バンクの上面のうち、前記画素電極の周縁の領域には、配置されない、[1]に記載の有機ELデバイス。
[3]前記バンクは、絶縁性の無機膜である、[1]または[2]に記載の有機ELデバイス。
[4]前記有機機能層は、前記バンクの上面のうち、前記画素電極の周縁の領域上にも配置される、[1]~[3]のいずれか一つに記載の有機ELデバイス。
[5]前記画素電極は、金属層と、前記金属層上に配置された遷移金属の酸化物とを含む、[1]~[4]のいずれか一つに記載の有機ELデバイス。
[6]前記金属層は、光反射金属層である、[5]に記載の有機ELデバイス。
[7]前記遷移金属の酸化物は、酸化銀、酸化モリブデン、酸化クロム、酸化バナジウム、酸化タングステン、酸化ニッケルもしくは酸化イリジウムまたはこれらの合金から選択される、請求項[5]または[6]に記載の有機ELデバイス。
[8]前記画素電極は、APC膜またはMoCr膜である、[1]~[7]のいずれか一つに記載の有機ELデバイス。
[9]前記撥液性有機膜は、自己組織化膜である、[1]~[8]のいずれか一つに記載の有機ELデバイス。
[10]画素電極が形成された基板を準備するステップ、前記基板上に、前記画素電極の周縁の一部または全部を覆うバンクを形成するステップ、前記バンクの表面および前記画素電極の表面に撥液性有機膜を形成するステップ、前記画素電極の少なくとも一部を含み、かつ有機機能層が形成される領域に選択的に光を照射し、前記画素電極の表面を酸化させ、かつ前記有機機能層が形成される領域内の前記撥液性有機膜を親液性有機膜に変化させるか、または前記有機発光層が形成される領域内の前記撥液性有機膜を除去するステップ、および前記撥液性有機膜によって規定された領域に有機機能材料を含むインクを塗布し、前記画素電極上に前記有機機能層を形成するステップ、を有する有機ELデバイスの製造方法。
[11]前記バンクは、絶縁性の無機膜である、[10]に記載の有機ELデバイスの製造方法。
[12]前記画素電極は、金属層と、前記金属層上に配置された遷移金属層とを含む、[10]または[11]に記載の有機ELデバイスの製造方法。
[13]前記金属層は光反射金属層である、[12]に記載の有機ELデバイスの製造方法。
[14]前記画素電極は、APC膜またはMoCr膜である、[10]~[13]のいずれか一つに記載の有機ELデバイスの製造方法。
[15]前記撥液性有機膜は、自己組織化膜である、[10]~[14]のいずれか一つに記載の有機ELデバイスの製造方法。
また、本発明の製造方法では、インクが塗布される領域のパターニングと、正孔注入層の形成とを同時に行うことができる。したがって本発明によってプロセスが簡略化された有機ELデバイスの製造方法が提供される。
本発明の有機ELデバイスの製造方法は、1)画素電極が形成された基板を準備する第1ステップ、2)画素電極表面上および画素電極の周囲に撥液性有機膜を形成する第2ステップ、3)画素電極の少なくとも一部を含み、有機機能層が形成される領域に選択的に光を照射する第3ステップ、4)撥液性有機膜によって規定された領域内に有機機能層を湿式印刷法で形成する第4ステップを有する。
また、本発明の製造方法では、有機機能材料を含むインクが塗布される領域のパターニングと、正孔注入層の形成とを同時に行うことができる。したがって本発明によってプロセスが簡略化された有機ELデバイスの製造方法が提供される。
本発明の有機ELデバイスは上述した本発明の有機ELデバイスの製造方法によって製造された有機ELデバイスである。
基板の材料は有機ELデバイスがボトムエミッション型か、トップエミッション型かによって異なる。例えば、ボトムエミッション型の場合、基板は、透明であることが求められる。したがってボトムエミッション型の場合、基板の材料の例にはガラスや石英、透明プラスチックなどが含まれる。一方、トップエミッション型の場合、基板が透明である必要はない。したがってトップエミッション型の場合、基板の材料は絶縁体であれば任意であり、例えば不透明プラスチックや金属などである。
画素電極は、基板上に配置された導電性部材である。画素電極は、通常陽極として機能するが、陰極として機能してもよい。
一方画素電極の下層の金属層の材料は、有機ELデバイスがトップエミッション型かボトムエミッション型かによって異なる。有機ELデバイスがトップエミッション型の場合、画素電極は反射電極であることから、画素電極の下層の金属層の材料は、光反射性が高く(例えば可視光の反射率が60%以上)、かつ導電性が高い金属であることが好ましい。このような光反射性および導電性が高い金属の例には、銀、アルミニウムおよびこれらを含む合金などが含まれる。光反射性および導電性が高い金属のより具体的な例には、銀-パラジウム、銀-パラジウム-銅合金(APCとも称する)、銀-ルテニウム-金合金(ARAとも称する)、MoCr(モリブデンクロム)、アルミニウム-ネオジム合金またはNiCr(ニッケルクロム)などが含まれる。画素電極の膜厚は、100~200nmであることが好ましい。
撥液性有機膜は、有機機能層の配置領域を規定する。撥液性有機膜は、単分子膜や、LB膜などの自己組織化膜であることが好ましい。撥液性有機膜は、厚さは約10Å~100Åの単分子膜であることがさらに好ましい。より具体的には、撥液性有機膜は、例えば、ヘプタデカフルオロ-1,1,2,2テトラヒドロデシルトリエトキシシラン、ヘプタデカフルオロ-1,1,2,2テトラヒドロデシルトリメトキシシラン、ヘプタデカフルオロ-1,1,2,2テトラヒドロデシルトリクロロシラン、トリデカフルオロ-1,1,2,2テトラヒドロオクチルトリエトキシシラン、トリデカフルオロ-1,1,2,2テトラヒドロオクチルトリメトキシシラン、トリデカフルオロ-1,1,2,2テトラヒドロオクチルトリクロロシラン、トリフルオロプロピルトリメトキシシランなどのフルオロアルキルシラン(以下「FAS」という)などからなる自己組織化膜であることが好ましい。
有機機能層は、少なくとも有機発光層を含む層である。有機機能層は、上述のように画素電極上に湿式印刷法で成膜される。有機機能層の厚さは、特に限定されないが、例えば50~200nm程度であればよい。
対向電極は、有機機能層上に配置される導電性部材である。対向電極は通常陰極として機能するが、陽極として機能してもよい。
本実施の形態では、バンクを有する有機ELデバイスについて説明する。
また、図2Cおよび図2Dに示されるように、バンク102は、各画素電極103の列(ライン状に配列された複数の画素電極103)を分離するようにライン状に配置されてもよい。バンク102が各画素電極103の列を分離するようにライン状に配置されている場合、バンク102は画素電極103の周縁の一部を覆う。
したがって、本ステップでは画素電極103および周縁領域102’に光を照射することが好ましい。これにより画素電極103上の撥液性有機膜105だけではなく、周縁領域102’上の撥液性有機膜105が、親液性有機膜105’に変化したり、除去されたりする。
また、本実施の形態によれば、撥液性有機膜の形成後に正孔注入層を形成することから、正孔注入層表面が溶解するおそれがなく、表面状態の良好な正孔注入層を有する有機ELデバイスが得られる。したがって、発光効率が高く、消費電力が低い有機ELデバイスを提供することができる。
また、本実施の形態では、有機機能材料を含むインクが塗布される領域のパターニングと、正孔注入層の形成とを同時に行うことができる。これにより、プロセスが簡略化された有機ELデバイスの製造方法が提供される。
実施の形態1では、画素電極が1層の金属層からなる態様について説明した。実施の形態2では、画素電極が2層の金属層からなる例について説明する。
図5は本実施の形態の有機ELデバイスの製造方法を示す。図5A~図5Fに示されるように実施の形態2の有機ELデバイスの製造方法は、1)画素電極210が形成された基板101を準備する第1ステップ(図5A)、2)基板101上に画素電極210の周縁の一部または全部を覆うバンク102を形成する第2ステップ(図5B)、3)バンク102表面および画素電極210表面上に撥液性有機膜105を形成する第3ステップ(図5C)、4)画素電極210を含み、有機発光層107および正孔輸送層204が形成される領域に選択的に光を照射する第4ステップ(図5D)、5)撥液性有機膜105によって規定された領域に、正孔輸送層の材料を含むインクおよび有機発光材料を含むインクを塗布して、画素電極210上に正孔輸送層204および有機発光層107を形成する第5ステップ(図5E)、を有する。
実施の形態1および実施の形態2では、バンクを有する有機ELデバイスについて説明した。一方、実施の形態3では、バンクを有さない有機ELデバイスについて説明する。
また、図7Bに示されるように、撥液性有機膜305は、各有機ELデバイス300の有機発光層107を規定するように配置されてもよい。
したがって、本ステップでは画素電極103および画素電極103の周縁部に光を照射することが好ましい。これにより画素電極103上の撥液性有機膜305だけではなく、画素電極103の周辺の撥液性有機膜305が、親液性有機膜305’に変化したり、除去されたりする。
ガラス(松浪ガラス製無ソーダガラス)基板表面上に、スパッタ法によりモリブデン97%、クロム3%からなる膜厚100nmの金属層(以下、「MoCr(97:3)」とも称する)を形成した。そして、フォトリソグラフィ法で、パターニングされた感光性レジストをマスクとし、金属層をウェットエッチングした。エッチング液としては、燐酸、硝酸および酢酸の混合溶液を用いた。その後、感光性レジストを剥離し、所定の形状の画素電極をパターニングした。
最後に、水および酸素濃度が5ppm以下の窒素ドライボックス中で有機ELデバイスのガラス封止缶で封止した。
実験例2では、画素電極の表面を酸化する方法として、UV-オゾン処理の代わりに、酸素プラズマ法(プラズマ時間120秒、パワー2000W)を用いた以外は、実施例1と同様に有機ELデバイスを作製した。
実験例3では、画素電極の材料を銀:パラジウム:銅合金(以下、「APC」とも称する)とし、有機発光層の材料をLumation Red(サメイション製)とした以外は、実験例1と同様に有機ELデバイスを作製した。
比較実験例1では、UV-オゾン処理を省略した以外は、実験例1と同様に有機ELデバイスを作製した。
比較実験例2では、画素電極の材料をAPCとし、UV-オゾン処理を省略し、基板洗浄後に、画素電極上に正孔注入層としてPEDOT:PSS(HC Stark社製)膜を形成し、有機発光層の材料をLumation Red(サメイション製)とした以外は、実験例1と同様に有機ELデバイスを作製した。
画素電極表面の仕事関数は、理研計器製の光電子分光装置AC-2を用いて測定した。
有機ELデバイスの駆動電圧および発光効率は、画素電極を陽極とし、対向電極を陰極として、10mA/cm2の電流を流すことで求めた。
また、デバイスを4000cd/m2の輝度で発光させ、一定電流で駆動し続けたときの輝度の減衰を測定し、輝度が半減(2000cd/m2)するまでの時間を有機ELデバイスの寿命とした。計測結果を表1に示す。
また、本発明の製造方法では、インクが塗布される領域のパターニングと、正孔注入層の形成とを同時に行うことができる。したがって本発明によってプロセスが簡略化された有機ELデバイスの製造方法が提供される。
101 基板
102、102’ バンク
103、103’、210 画素電極
104 正孔注入層
105、305 撥液性有機膜
105’ 親液性有機膜
107 有機発光層
109 対向電極
111 マスク
204 正孔輸送層
211 下層金属層
213 表層金属層
Claims (18)
- 基板と、
前記基板上に配置され、かつ少なくとも一部が酸化された表面を有する画素電極と、
前記基板上に配置され、かつ前記画素電極の周縁の一部または全部を覆うバンクと、
前記画素電極上に配置された有機機能層と、
前記バンクの上面に配置され、かつ前記有機機能層の配置領域を規定する撥液性有機膜と、を有する有機ELデバイスであって、
前記酸化された画素電極の表面は、正孔注入機能を有し、
前記バンクの端部と、前記画素電極の表面のうち酸化された領域の端部と、は一致する、有機ELデバイス。 - 前記撥液性有機膜は、前記バンクの上面のうち、前記画素電極の周縁の領域には、配置されない、請求項1に記載の有機ELデバイス。
- 前記バンクは、絶縁性の無機膜である、請求項1に記載の有機ELデバイス。
- 前記有機機能層は、前記バンクの上面のうち、前記画素電極の周縁の領域上にも配置される、請求項1に記載の有機ELデバイス。
- 基板と、
前記基板上に配置され、かつ少なくとも一部が酸化された表面を有する画素電極と、
前記画素電極上に配置された有機機能層と、
前記基板の表面に配置され、かつ前記有機機能層の配置領域を規定する撥液性有機膜と、を有する有機ELデバイスであって、
前記酸化された画素電極の表面は、正孔注入機能を有し、
前記撥液性有機膜は、前記基板の表面のうち、前記画素電極の周縁の領域には、配置されない、有機ELデバイス。 - 前記有機機能層は、前記基板の表面のうち、前記画素電極の周縁の領域上にも配置される、請求項5に記載の有機ELデバイス。
- 前記画素電極は、金属層と、前記金属層上に配置された遷移金属の酸化物とを含む、請求項1に記載の有機ELデバイス。
- 前記金属層は、光反射金属層である、請求項7に記載の有機ELデバイス。
- 前記遷移金属の酸化物は、酸化銀、酸化モリブデン、酸化クロム、酸化バナジウム、酸化タングステン、酸化ニッケルもしくは酸化イリジウムまたはこれらの合金から選択される、請求項7に記載の有機ELデバイス。
- 前記画素電極は、APC膜またはMoCr膜である、請求項1に記載の有機ELデバイス。
- 前記撥液性有機膜は、自己組織化膜である、請求項1に記載の有機ELデバイス。
- 画素電極が形成された基板を準備するステップ、
前記基板上に、前記画素電極の周縁の一部または全部を覆うバンクを形成するステップ、
前記バンクの表面および前記画素電極の表面に撥液性有機膜を形成するステップ、
前記画素電極の少なくとも一部を含み、かつ有機機能層が形成される領域に選択的に光を照射し、前記画素電極の表面を酸化させ、かつ前記有機機能層が形成される領域内の前記撥液性有機膜を親液性有機膜に変化させるか、または前記有機発光層が形成される領域内の前記撥液性有機膜を除去するステップ、および
前記撥液性有機膜によって規定された領域に有機機能材料を含むインクを塗布し、前記画素電極上に前記有機機能層を形成するステップ、を有する有機ELデバイスの製造方法。 - 前記バンクは、絶縁性の無機膜である、請求項12に記載の有機ELデバイスの製造方法。
- 画素電極が形成された基板を準備するステップ、
前記基板の表面および前記画素電極の表面に撥液性有機膜を形成するステップ、
前記画素電極の少なくとも一部を含み、かつ有機機能層が形成される領域に選択的に光を照射し、前記画素電極の表面を酸化させ、かつ前記有機機能層が形成される領域内の前記撥液性有機膜を親液性有機膜に変化させるか、または前記有機機能層が形成される領域内の前記撥液性有機膜を除去するステップ、および
前記撥液性有機膜によって規定された領域に有機機能材料を含むインクを塗布し、前記画素電極上に前記有機機能層を形成するステップ、を有する有機ELデバイスの製造方法。 - 前記画素電極は、金属層と、前記金属層上に配置された遷移金属層とを含む、請求項12に記載の有機ELデバイスの製造方法。
- 前記金属層は光反射金属層である、請求項15に記載の有機ELデバイスの製造方法。
- 前記画素電極は、APC膜またはMoCr膜である、請求項12に記載の有機ELデバイスの製造方法。
- 前記撥液性有機膜は、自己組織化膜である、請求項12に記載の有機ELデバイスの製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/059,442 US8362473B2 (en) | 2008-09-30 | 2009-09-01 | Organic EL device and method for manufacturing same |
JP2009554243A JP4647708B2 (ja) | 2008-09-30 | 2009-09-01 | 有機elデバイスおよびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-254524 | 2008-09-30 | ||
JP2008254524 | 2008-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010038356A1 true WO2010038356A1 (ja) | 2010-04-08 |
Family
ID=42073142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/004294 WO2010038356A1 (ja) | 2008-09-30 | 2009-09-01 | 有機elデバイスおよびその製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8362473B2 (ja) |
JP (1) | JP4647708B2 (ja) |
WO (1) | WO2010038356A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013069274A1 (ja) * | 2011-11-10 | 2013-05-16 | パナソニック株式会社 | 有機表示パネル、有機表示装置、有機発光装置、それらの製造方法、および薄膜形成方法 |
JP2013157278A (ja) * | 2012-01-31 | 2013-08-15 | Canon Inc | 発光装置、画像形成装置及び撮像装置 |
CN103620805A (zh) * | 2011-07-15 | 2014-03-05 | 松下电器产业株式会社 | 有机发光元件 |
US20140338728A1 (en) * | 2012-01-11 | 2014-11-20 | Imec Vzw | Patterned organic semiconductor layers |
CN107665916A (zh) * | 2016-07-29 | 2018-02-06 | 三星显示有限公司 | 有机发光显示装置及其制造方法 |
KR20190087693A (ko) * | 2018-01-15 | 2019-07-25 | 삼성디스플레이 주식회사 | 표시 장치 및 표시 장치의 제조 방법 |
WO2020262113A1 (ja) * | 2019-06-27 | 2020-12-30 | 住友化学株式会社 | 有機elデバイスの製造方法 |
WO2020262112A1 (ja) * | 2019-06-27 | 2020-12-30 | 住友化学株式会社 | 有機elデバイス及びその製造方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011073282A (ja) * | 2009-09-30 | 2011-04-14 | Fujifilm Corp | 有機膜の形成方法、ノズルプレート、インクジェットヘッド、および電子機器 |
WO2013011538A1 (ja) * | 2011-07-15 | 2013-01-24 | パナソニック株式会社 | 有機発光素子の製造方法 |
JP5793570B2 (ja) * | 2011-07-15 | 2015-10-14 | 株式会社Joled | 有機発光素子の製造方法 |
WO2013046265A1 (ja) | 2011-09-28 | 2013-04-04 | パナソニック株式会社 | 有機発光素子の製造方法、有機発光素子、有機表示装置、有機発光装置、機能層の形成方法、機能性部材、表示装置および発光装置 |
US9012927B2 (en) * | 2011-11-30 | 2015-04-21 | Canon Kabushiki Kaisha | Display device |
KR101927848B1 (ko) * | 2012-09-17 | 2018-12-12 | 삼성디스플레이 주식회사 | 유기전계발광 표시장치 및 이의 제조 방법 |
CN104979285A (zh) * | 2015-07-01 | 2015-10-14 | 深圳市华星光电技术有限公司 | 有机发光二极管显示器及其制造方法 |
KR102482456B1 (ko) | 2017-03-13 | 2022-12-29 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법 |
JP6983391B2 (ja) * | 2017-04-06 | 2021-12-17 | 株式会社Joled | 有機el素子、有機el表示パネル、および、有機el表示パネルの製造方法 |
CN110265451B (zh) * | 2019-06-25 | 2021-11-02 | 京东方科技集团股份有限公司 | 显示基板及制造方法、显示装置 |
KR20210113528A (ko) * | 2020-03-06 | 2021-09-16 | 삼성디스플레이 주식회사 | 표시 장치 및 그 제조 방법 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002237383A (ja) * | 2000-03-31 | 2002-08-23 | Seiko Epson Corp | 有機el素子の製造方法、有機el素子 |
JP2003332080A (ja) * | 2002-05-07 | 2003-11-21 | Dainippon Printing Co Ltd | エレクトロルミネッセント素子およびその製造方法 |
JP2004055177A (ja) * | 2002-07-16 | 2004-02-19 | Dainippon Printing Co Ltd | エレクトロルミネッセンス表示装置および製造方法 |
JP2005268099A (ja) * | 2004-03-19 | 2005-09-29 | Mitsubishi Electric Corp | 有機el表示パネル、有機el表示装置、および有機el表示パネルの製造方法 |
JP2005310473A (ja) * | 2004-04-20 | 2005-11-04 | Canon Inc | 有機el素子の製造方法 |
JP2006294261A (ja) * | 2005-04-05 | 2006-10-26 | Fuji Electric Holdings Co Ltd | 有機el発光素子およびその製造方法 |
JP2008078038A (ja) * | 2006-09-22 | 2008-04-03 | Fuji Electric Holdings Co Ltd | 有機elディスプレイパネルおよびその製造方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100530759C (zh) | 1998-03-17 | 2009-08-19 | 精工爱普生株式会社 | 薄膜构图的衬底及其表面处理 |
TW490997B (en) * | 2000-03-31 | 2002-06-11 | Seiko Epson Corp | Method of manufacturing organic EL element, and organic EL element |
JP3804858B2 (ja) * | 2001-08-31 | 2006-08-02 | ソニー株式会社 | 有機電界発光素子およびその製造方法 |
JP4248853B2 (ja) | 2002-11-20 | 2009-04-02 | 大日本印刷株式会社 | 有機半導体素子用陽極 |
KR100546662B1 (ko) * | 2003-08-05 | 2006-01-26 | 엘지전자 주식회사 | 유기 el 소자 |
JP2005158494A (ja) | 2003-11-26 | 2005-06-16 | Seiko Epson Corp | 薄膜の形成方法、電気光学装置の製造方法及び電気光学装置並びに電子機器 |
WO2005060017A1 (en) * | 2003-12-16 | 2005-06-30 | Matsushita Electric Industrial Co., Ltd. | Organic electroluminescent device and method for manufacturing the same |
JP2006013139A (ja) * | 2004-06-25 | 2006-01-12 | Seiko Epson Corp | 有機el装置とその製造方法並びに電子機器 |
JP4906305B2 (ja) | 2004-12-07 | 2012-03-28 | 日本曹達株式会社 | 光感応性新規化合物及び有機薄膜形成体 |
JP2006216297A (ja) * | 2005-02-02 | 2006-08-17 | Dainippon Screen Mfg Co Ltd | 有機el用基板およびその製造方法 |
JP4876415B2 (ja) * | 2005-03-29 | 2012-02-15 | セイコーエプソン株式会社 | 有機el装置の製造方法、デバイスの製造方法 |
JP5116992B2 (ja) * | 2005-05-27 | 2013-01-09 | 富士フイルム株式会社 | 有機el素子 |
JP2007080911A (ja) * | 2005-09-12 | 2007-03-29 | Matsushita Electric Ind Co Ltd | 有機エレクトロルミネッセント素子、露光装置および画像形成装置 |
JP2007288071A (ja) * | 2006-04-19 | 2007-11-01 | Matsushita Electric Ind Co Ltd | 有機エレクトロルミネッセント素子およびその製造方法、それを用いた表示装置、露光装置 |
JP4415971B2 (ja) * | 2006-05-10 | 2010-02-17 | カシオ計算機株式会社 | 表示装置及びその製造方法 |
JP4591837B2 (ja) | 2006-06-02 | 2010-12-01 | カシオ計算機株式会社 | 表示装置及びその製造方法 |
US20070290604A1 (en) * | 2006-06-16 | 2007-12-20 | Matsushita Electric Industrial Co., Ltd. | Organic electroluminescent device and method of producing the same |
JP5326289B2 (ja) | 2007-03-23 | 2013-10-30 | 凸版印刷株式会社 | 有機el素子およびそれを備えた表示装置 |
-
2009
- 2009-09-01 WO PCT/JP2009/004294 patent/WO2010038356A1/ja active Application Filing
- 2009-09-01 JP JP2009554243A patent/JP4647708B2/ja not_active Expired - Fee Related
- 2009-09-01 US US13/059,442 patent/US8362473B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002237383A (ja) * | 2000-03-31 | 2002-08-23 | Seiko Epson Corp | 有機el素子の製造方法、有機el素子 |
JP2003332080A (ja) * | 2002-05-07 | 2003-11-21 | Dainippon Printing Co Ltd | エレクトロルミネッセント素子およびその製造方法 |
JP2004055177A (ja) * | 2002-07-16 | 2004-02-19 | Dainippon Printing Co Ltd | エレクトロルミネッセンス表示装置および製造方法 |
JP2005268099A (ja) * | 2004-03-19 | 2005-09-29 | Mitsubishi Electric Corp | 有機el表示パネル、有機el表示装置、および有機el表示パネルの製造方法 |
JP2005310473A (ja) * | 2004-04-20 | 2005-11-04 | Canon Inc | 有機el素子の製造方法 |
JP2006294261A (ja) * | 2005-04-05 | 2006-10-26 | Fuji Electric Holdings Co Ltd | 有機el発光素子およびその製造方法 |
JP2008078038A (ja) * | 2006-09-22 | 2008-04-03 | Fuji Electric Holdings Co Ltd | 有機elディスプレイパネルおよびその製造方法 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103620805A (zh) * | 2011-07-15 | 2014-03-05 | 松下电器产业株式会社 | 有机发光元件 |
US9324964B2 (en) | 2011-07-15 | 2016-04-26 | Joled Inc. | Organic light-emitting element with hole injection layer having concave portion |
US9103017B2 (en) | 2011-11-10 | 2015-08-11 | Joled Inc. | Organic display panel, organic display device, organic light emitting device, method of manufacture of these, and thin film formation method |
WO2013069274A1 (ja) * | 2011-11-10 | 2013-05-16 | パナソニック株式会社 | 有機表示パネル、有機表示装置、有機発光装置、それらの製造方法、および薄膜形成方法 |
US20140338728A1 (en) * | 2012-01-11 | 2014-11-20 | Imec Vzw | Patterned organic semiconductor layers |
JP2015513209A (ja) * | 2012-01-11 | 2015-04-30 | アイメック・ヴェーゼットウェーImec Vzw | パターニングされた有機半導体層 |
US10468599B2 (en) * | 2012-01-11 | 2019-11-05 | Imec Vzw | Patterned organic semiconductor layers |
JP2013157278A (ja) * | 2012-01-31 | 2013-08-15 | Canon Inc | 発光装置、画像形成装置及び撮像装置 |
CN107665916B (zh) * | 2016-07-29 | 2023-08-11 | 三星显示有限公司 | 有机发光显示装置及其制造方法 |
CN107665916A (zh) * | 2016-07-29 | 2018-02-06 | 三星显示有限公司 | 有机发光显示装置及其制造方法 |
KR20190087693A (ko) * | 2018-01-15 | 2019-07-25 | 삼성디스플레이 주식회사 | 표시 장치 및 표시 장치의 제조 방법 |
KR102486552B1 (ko) | 2018-01-15 | 2023-01-10 | 삼성디스플레이 주식회사 | 표시 장치 및 표시 장치의 제조 방법 |
WO2020262112A1 (ja) * | 2019-06-27 | 2020-12-30 | 住友化学株式会社 | 有機elデバイス及びその製造方法 |
JP2021005540A (ja) * | 2019-06-27 | 2021-01-14 | 住友化学株式会社 | 有機elデバイス及びその製造方法 |
JP2021005541A (ja) * | 2019-06-27 | 2021-01-14 | 住友化学株式会社 | 有機elデバイスの製造方法 |
JP7250633B2 (ja) | 2019-06-27 | 2023-04-03 | 住友化学株式会社 | 有機elデバイスの製造方法 |
WO2020262113A1 (ja) * | 2019-06-27 | 2020-12-30 | 住友化学株式会社 | 有機elデバイスの製造方法 |
JP7330779B2 (ja) | 2019-06-27 | 2023-08-22 | 住友化学株式会社 | 有機elデバイス及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US8362473B2 (en) | 2013-01-29 |
US20110156079A1 (en) | 2011-06-30 |
JP4647708B2 (ja) | 2011-03-09 |
JPWO2010038356A1 (ja) | 2012-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4647708B2 (ja) | 有機elデバイスおよびその製造方法 | |
JP4280301B2 (ja) | 有機el素子、およびその製造方法 | |
JP4540747B2 (ja) | 有機elデバイスおよび有機elディスプレイパネル | |
JP5096648B1 (ja) | 有機elディスプレイパネル及びその製造方法 | |
US8310152B2 (en) | Organic EL device and EL display panel having a low driving voltage and high light emitting frequency, and method for manufacturing | |
JP4418525B2 (ja) | 有機elディスプレイパネル | |
JP5625448B2 (ja) | 有機el素子,有機el画像表示装置の製造方法 | |
JP5574456B2 (ja) | 発光素子とその製造方法、および発光装置 | |
CN101904220A (zh) | 有机电致发光元件及其制造方法 | |
KR100706853B1 (ko) | 유기 일렉트로루미네선스 장치 및 이의 제조 방법 | |
JP2007095595A (ja) | 機能層の形成方法、有機半導体素子、発光素子及び電子機器 | |
JP2011091093A (ja) | 有機el素子 | |
JP2010009753A (ja) | 有機el表示装置及びその製造方法 | |
JP2011210614A (ja) | 有機el素子及びその製造方法 | |
JP7511183B2 (ja) | 機能デバイス、および、機能デバイスの製造方法 | |
JP2008243534A (ja) | 有機elディスプレイパネルの製造方法 | |
JP2005166485A (ja) | 有機エレクトロルミネッセンス装置とその製造方法、電子機器 | |
JP2012074237A (ja) | 有機el素子及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2009554243 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09817400 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13059442 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09817400 Country of ref document: EP Kind code of ref document: A1 |