Nothing Special   »   [go: up one dir, main page]

WO2010018679A1 - Method of manufacturing printed wiring board with surface-mount component mounted thereon - Google Patents

Method of manufacturing printed wiring board with surface-mount component mounted thereon Download PDF

Info

Publication number
WO2010018679A1
WO2010018679A1 PCT/JP2009/003821 JP2009003821W WO2010018679A1 WO 2010018679 A1 WO2010018679 A1 WO 2010018679A1 JP 2009003821 W JP2009003821 W JP 2009003821W WO 2010018679 A1 WO2010018679 A1 WO 2010018679A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solder
wiring board
printed wiring
land
Prior art date
Application number
PCT/JP2009/003821
Other languages
French (fr)
Japanese (ja)
Inventor
近藤裕
藤田宏昭
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2010524291A priority Critical patent/JP4575526B2/en
Priority to CN200980131288.3A priority patent/CN102119587B/en
Priority to KR1020107024625A priority patent/KR101163003B1/en
Publication of WO2010018679A1 publication Critical patent/WO2010018679A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3442Leadless components having edge contacts, e.g. leadless chip capacitors, chip carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • B23K1/0056Soldering by means of radiant energy soldering by means of beams, e.g. lasers, E.B.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/163Monitoring a manufacturing process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3485Applying solder paste, slurry or powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing a printed wiring board on which surface-mounted components are mounted, and more specifically, a printed wiring board is obtained by soldering a surface-mounted component onto a printed wiring board coated with solder using a light beam. It relates to a method of manufacturing.
  • Factors affecting quality in surface mounting include (1) board and design, (2) metal mask, (3) solder printing, (4) solder paste, (5) electronic components, (6) component mounting, (7 ) There is quality such as reflow.
  • one electrode that is detached from the land due to the standing of the part is referred to as a “dominant electrode”, and the other electrode is referred to as a “dominant electrode”.
  • the component shift is a phenomenon in which the position of the surface mount component is shifted with respect to the land position. Both standing of parts and displacement of parts cause connection failure in which the electrodes come off the land, leading to a decrease in manufacturing yield.
  • component standing and component displacement are collectively referred to as “component standing etc.”.
  • Japanese Patent Laid-Open No. 2003-69203 discloses a method for calculating an allowable amount of a mounting position of a surface mounting component. In this method, an accurate mounting position tolerance is calculated based on a moment that suppresses the occurrence of the Manhattan phenomenon and a moment that promotes the occurrence of the Manhattan phenomenon. However, this publication does not disclose any specific reflow method for preventing the Manhattan phenomenon.
  • the present invention provides a method for manufacturing a printed wiring board on which a surface-mounted component that prevents an electrode from being detached from a land is mounted.
  • the manufacturing method according to the present invention is a method for manufacturing a printed wiring board on which surface-mounted components are mounted.
  • the surface mount component includes a plurality of electrodes.
  • the printed wiring board includes a plurality of lands.
  • the plurality of lands are provided corresponding to the plurality of electrodes. Each land is soldered to a corresponding electrode.
  • the manufacturing method includes the steps of applying solder on the printed wiring board, applying the solder and then mounting the surface mount component on the printed wiring board, and the adhesion between the electrode and the land due to the surface tension of the molten solder.
  • the adhesion force of the inferior electrode is quickly increased.
  • the inferior electrode can be prevented from coming off the land.
  • solder in the present invention is, for example, lead-containing solder containing lead and tin as main components, solder containing silver, gold-based solder, and lead-free containing tin, silver and copper, tin and bismuth or the like as main components. Includes solder.
  • solder may include, for example, an additive such as flux to prevent oxidation and facilitate connection.
  • solder may include, for example, solder paste and solder cream.
  • FIG. 3 is a schematic diagram showing a configuration of the laser head in FIG. 2 and its periphery. It is a schematic diagram which shows the other example of the laser head shown in FIG. It is a flowchart which shows operation
  • FIG. 4 is a side view for explaining the cause of component standing in the surface-mounted component shown in FIG. 3.
  • FIG. 3 is a schematic diagram showing a configuration of the laser head in FIG. 2 and its periphery.
  • FIG. 4 is a side view for explaining the cause of component standing in the surface-mounted component shown in FIG. 3.
  • FIG. 4 is a side view of a surface-mounted component and a printed wiring board that do not easily stand up because the positions of electrodes of the surface-mounted component placed on the printed wiring board are not shifted.
  • FIG. 4 is a side view of a surface-mounted component and a printed wiring board that are liable to stand up because the positions of the electrodes of the surface-mounted component placed on the printed wiring board are shifted.
  • It is a perspective view which shows the method of irradiating a single laser beam to the electrode of surface mounting components in order using the soldering apparatus shown in FIG.
  • FIG. 5 is a perspective view showing a method of irradiating two laser beams with different intensities or timings on the electrodes of the surface-mounted component using the soldering apparatus shown in FIG. 4.
  • FIG. 4 is a side view of a surface-mounted component and a printed wiring board that do not easily stand up because the positions of electrodes of the surface-mounted component placed on the printed wiring board are not shifted.
  • FIG. 4
  • FIG. 5 is a side view of a surface-mounted component and a printed wiring board that do not easily stand up because the position of solder printed on a land is not shifted.
  • FIG. 4 is a side view of a surface-mounted component and a printed wiring board that are liable to stand up because the position of solder printed on a land is shifted.
  • Surface-mounted components and printed wiring that are prone to component standing because the position of the electrodes of the surface-mounted components placed on the printed wiring board is shifted to the right and the position of the solder printed on the land is shifted to the right. It is a side view of a board.
  • FIG. 13A It is a top view of the printed wiring board which has a land for grounding. It is the top view which formed the solder resist on the printed wiring board shown to FIG. 13A. It is the top view which printed the solder paste on the printed wiring board shown to FIG. 13B.
  • FIG. 13C It is the top view which mounted surface mount components on the printed wiring board shown to FIG. 13C. It is a top view which shows the spreading
  • FIG. 1 is a functional block diagram showing the overall configuration of a printed wiring board manufacturing apparatus on which surface-mounted components according to a preferred embodiment of the present invention are mounted.
  • the manufacturing apparatus 1 includes a host computer 10, a solder printer 20, a solder inspection machine 30, surface mounters (chip mounters) 40 ⁇ / b> A and 40 ⁇ / b> B, and a soldering apparatus 50.
  • the manufacturing apparatus 1 is an apparatus that manufactures a printed wiring board on which surface-mounted components are mounted by mounting surface-mounted components on the printed wiring board.
  • a host computer 10 that controls each device connected by a HUB includes a controller 10a, a memory 10b, a display 10c, and an input device 10d.
  • a control command is sent from the application on the host computer 10 to each device.
  • the printed wiring board on which the surface mount component is mounted is sent in the board conveyance direction indicated by the arrow in the figure.
  • the solder printer 20 prints cream solder on the printed wiring board.
  • the solder inspection machine 30 inspects the position of the printed solder. The inspection result is sent to the surface mounters 40A and 40B and the soldering apparatus 50 via the host computer 10.
  • the surface mounters 40A and 40B mount surface mount components on a printed wiring board.
  • a plurality of surface mounters 40A and 40B are used side by side to improve work efficiency. Not only two surface mounters but also three or more surface mounters may be provided.
  • the soldering apparatus 50 locally irradiates the solder on the printed wiring board with a laser beam, thereby heating and melting the solder and soldering the surface-mounted component to the printed wiring board.
  • Surface mounters 40A and 40 mount minute surface mount components represented by 0402 components. Even if the printing position is shifted in the solder printing process or the surface mounting component is shifted in the component mounting process, if the deviation is within a predetermined range, the soldering apparatus 50 can detect the deviation by an appropriate laser irradiation method. Irradiate with a laser beam so that becomes small.
  • FIG. 2 is a plan view showing an external configuration of the soldering apparatus 50.
  • the soldering device 50 includes a printed wiring board transport device 251, a laser head 200, and an XYZ robot 271.
  • the soldering apparatus 50 solders the surface-mounted component 100 to the printed wiring board 107 with a laser beam.
  • the printed wiring board transport device 251 transports the input printed wiring board 107 to a predetermined position.
  • a surface mount component 100 is mounted on the printed wiring board 107.
  • the laser head 200 irradiates a laser beam to the electrode of the surface mount component 100 and the land of the printed wiring board 107.
  • the XYZ robot 271 conveys the laser head 200 in the X and Y directions and the Z direction (perpendicular to the X and Y directions) in the drawing.
  • FIG. 3 shows the configuration of the laser head 200 and its surroundings.
  • the soldering apparatus 50 further includes a semiconductor laser 303, an optical fiber cable 305, an image processing apparatus 325, and a controller 327.
  • the laser head 200 includes a collimator lens 307, a half mirror 309, a condenser lens 321, a coaxial camera 323, galvano mirrors 311 and 313, a telecentric lens 315, lens driving devices 317a and 317b, a positioning camera 301, including. Therefore, when the laser head 200 is moved by the XYZ robot 271, all the components included in the laser head 200 are also moved together.
  • the semiconductor laser 303 is a light source that generates a laser beam.
  • the generated laser beam is guided to the collimator lens 307 through the optical fiber cable 305.
  • the collimator lens 307 collimates the laser beam.
  • the half mirror 309 transmits the laser beam from the collimator lens 307 straight, and reflects the laser beam reflected and returned from the surface mount component 100 and the printed wiring board 107 almost at right angles.
  • Galvano mirrors 311 and 313 scan the electrodes 100a and 100b of the surface mount component 100 and the lands 103 of the printed wiring board 107 with the laser beam by swinging the laser beam transmitted through the half mirror 309 at high speed.
  • the telecentric lens 315 directs the laser beam from the galvanometer mirrors 311 and 313 almost directly below.
  • the lens driving devices 317a and 317b focus the telecentric lens 315 by driving the telecentric lens 315 in the optical axis direction.
  • the positioning camera 301 images the fiducial mark (recognition mark) of the printed wiring board 107 and detects the position and direction of the surface mount component 100.
  • FIG. 4 is a schematic diagram showing a configuration of a laser head 202 used in place of the laser head 200.
  • the laser irradiation device 467a corresponds to the galvanometer mirrors 311 and 313 and the telecentric lens 315 shown in FIG. 3, and outputs the laser beam reflected by the half mirror 309.
  • the laser head 202 further includes an exhaust device 357 for exhausting molten solder paste and flux mist.
  • the soldering device 50 further includes another laser irradiation device 467b.
  • the laser irradiation device 467b has the same configuration as the laser irradiation device 467a. Thereby, both the electrodes 100a and 100b of the surface mount component 100 can be soldered simultaneously by two laser beams. Three or more laser irradiation apparatuses may be provided.
  • Solder printer 20 prints solder paste (including flux) on printed wiring board 107 (S101).
  • the solder inspection machine 30 measures the position of the printed solder, the displacement of the printing position, and the amount of solder (solder height) (S103).
  • the solder inspection machine 30 sends the inspection result to the soldering apparatus 50 (S105).
  • the controller 327 controls the printed wiring board transport device 251 so as to transport the loaded printed wiring board 107 to a predetermined position (S201).
  • the positioning camera 301 reads the fiducial mark of the printed wiring board 107 (S203), and recognizes the positions of the printed wiring board 107 and the surface mount component 100 (S205).
  • the positioning camera 301 images the surface-mounted component 100 on the printed wiring board (S207).
  • the controller 327 recognizes the mounting state of the surface mounting component 100 and the positional deviation from the land 103 based on the image photographed by the positioning camera 301 and processed by the image processing device 325 (S209). Based on the inspection result of the solder inspection machine 30 and the recognized positional deviation, the controller 327 specifies a component that is likely to stand up, and determines a laser irradiation method suitable for the component (S211).
  • the controller 327 accepts information for identifying an inferior electrode having an adhesion force between the electrodes of the surface-mounted component 100 and the land of the printed wiring board 107 that is weaker than the adhesion force between other electrodes and lands due to the surface tension of the molten solder. .
  • the controller 327 also determines the laser irradiation method so that the solder on the inferior electrode side specified by the received information is melted earlier than the solder on the other dominant electrode side.
  • the controller 327 selects the surface mount component 100 in the order programmed in advance, and controls the XYZ robot 271 so as to move the laser head 200 above the selected surface mount component 100 (S213).
  • the controller 327 irradiates the selected surface mount component 100 with the laser beam according to the laser irradiation method determined in step S211 (S215).
  • the controller 327 determines whether or not the mounting of all the surface mounted components 100 is completed (S219). If not completed (NO in S219), the controller 327 selects the surface-mounted components 100 in the order programmed in advance, and repeatedly executes the processes in steps S213 to S215.
  • the controller 327 controls the XYZ robot 271 to return the laser head 200 to the original position (S221). Finally, the controller 327 controls the printed wiring board transport device 251 so as to discharge the printed wiring board 107 on which all the surface mount components 100 are mounted (S223). Thereby, the printed wiring board 107 on which the surface mounting component 100 is mounted is manufactured.
  • Such laser soldering may be performed after soldering in a reflow furnace. More specifically, after a surface mount component having a high heat resistance temperature is soldered in a reflow furnace, the surface mount component having a low heat resistance temperature may be soldered by a laser.
  • FIG. 6 is a side view for explaining the cause of the occurrence of parts standing up.
  • lands 103 a and 103 b are provided on the printed wiring board 107.
  • Solders 104a and 104b are printed on the lands 103a and 103b. Only the solder 104b on the right side of the figure is melted by the laser beam.
  • the electrodes 100a and 100b of the surface mount component 100 are soldered to the lands 103a and 103b, respectively.
  • the weight of the surface-mounted component 100 is m, the length is L, the height is H, the width is W, the weight acceleration is g, and the surface tension of the molten solder is ⁇ .
  • a fulcrum for rotating the surface-mounted component 100 when the solder is melted is indicated by P in the figure.
  • the distance from the right end of the land 103b to the fulcrum P is a, and the distance from the left end of the land 103b to the fulcrum P is b.
  • the angle formed between the straight line connecting the right end of the land 103b and the uppermost side surface of the electrode 100b of the surface mount component 100 and the side surface of the electrode 100b of the surface mount component 100 is ⁇ .
  • is substantially equal to the angle formed by the molten solder 104b and the side surface of the electrode 100b.
  • Let ⁇ be the angle formed by the bottom surface of the electrode 100b of the surface-mounted component 100 and the top surface of the land 103b.
  • moment T1 due to surface tension ⁇ (force to rotate surface-mounted component 100 clockwise about fulcrum P and stand surface-mounted component 100) is expressed by the following equation (1).
  • the electrode (electrode 100a in FIG. 6) that floats up from the printed wiring board 107 due to the standing of components during soldering is referred to as “inferior electrode”, and the electrode on the opposite side (electrode 100b in FIG. 6). Called the “dominant electrode”.
  • the inferior electrode is easily detached from the land, but the dominant electrode is not easily detached from the land.
  • the adhesion force that acts between the inferior electrode 100a and the land 103a due to the surface tension ⁇ of the molten solder 104a (the force that the inferior electrode 100a tends to adhere to the land 103a) is between the dominant electrode 100b and the land 103b due to the surface tension ⁇ of the molten solder 104b. This is because it is weaker than the adhesion force acting on (the force that the dominant electrode 100b tries to adhere to the land 103b).
  • the surface-mounted component 100 is placed on the printed wiring board 107 without being displaced from the lands 103a and 103b.
  • the solders 104a and 104b are also printed without shifting from the lands 103a and 103b. In this case, it is determined that no part standing or the like will occur.
  • the surface-mounted component 100 is placed on the printed wiring board 107 while being shifted to the left in the figure.
  • the solders 104a and 104b are printed without shifting from the lands 103a and 103b.
  • the distance a becomes longer than the predetermined distance and the distance b becomes shorter than the predetermined distance on the right in the figure. Therefore, moment T1 is increased, but moment T2 is decreased. Thereby, the condition of T1> T2 + T3 is established. In this case, it is determined that component standing or the like will occur.
  • the electrode 100b is determined as the dominant electrode, and the opposite electrode 100a is determined as the inferior electrode.
  • the single laser beam LB is moved as shown in FIG. More specifically, the laser irradiation device 467a first irradiates the inferior electrode 100a and the land 103a with the laser beam LB. Next, the laser irradiation device 467a moves the laser beam LB from the inferior electrode 100a to the dominant electrode 100b. The laser irradiation device 467a irradiates the dominant electrode 100b and the land 103b with the laser beam LB.
  • the solder 104a on the inferior electrode 100a side melts faster than the solder 104b on the dominant electrode 100b side. For this reason, the adhesion force between the inferior electrode 100a and the land 103a increases, and the inferior electrode 100a does not float from the land 103a. As a result, no parts stand up.
  • two laser beams LBa and LBb are simultaneously irradiated as shown in FIG. 9, and the intensity of the laser beam LBa is stronger than the intensity of the laser beam LBb.
  • one laser irradiation device 467a irradiates the inferior electrode 100a and the land 103a with a laser beam LBa having an intensity Wa.
  • another laser irradiation device 467b irradiates the dominant electrode 100b and the land 103b with a laser beam LBb having an intensity Wb (Wa> Wb).
  • the solder 104a on the inferior electrode 100a side melts faster than the solder 104b on the dominant electrode 100b side. As a result, there is no part standing or the like as described above.
  • the irradiation of the laser beams LBa and LBb may be started in order using the two laser irradiation devices 467a and 467b. More specifically, one laser irradiation device 467a starts irradiation of the inferior electrode 100a and the land 103a with the laser beam LBa at time t1. Another laser irradiation device 467b starts irradiation of the dominant electrode 100b and the land 103b with the laser beam LBb at a time t2 later than the time t1.
  • the solder 104a on the inferior electrode 100a side melts faster than the solder 104b on the dominant electrode 100b side. As a result, there is no part standing or the like as described above.
  • the surface-mounted component 100 is placed on the printed wiring board 107 without shifting.
  • the solders 104a and 104b are also printed on the lands 103a and 103b without shifting. In this case, it is determined that no part standing or the like will occur.
  • solders 104a and 104b are printed shifted from the lands 103a and 103b to the right side in the figure.
  • the surface-mounted component 100 is placed on the printed wiring board 107 without shifting from the lands 103a and 103b.
  • the distance ratios a / b and a ′ / b ′ in FIG. 10B are the same as those in FIG. 10A.
  • the solder 104b starts to melt, the surface-mounted component 100 tries to rotate clockwise around the fulcrum P in the figure. Therefore, when the solder deviation is larger than the predetermined value, the soldering apparatus 50 determines that the component standing or the like will occur. If it is observed that the solder deviation is larger than a predetermined value, the electrode 100b is determined as the dominant electrode, and the opposite electrode 100a is determined as the inferior electrode.
  • the electrode on the opposite side to the shifted direction becomes an inferior electrode.
  • the soldering apparatus 50 determines the laser beam irradiation method.
  • the surface-mounted component 100 is placed on the printed wiring board 107 while being shifted to the right in the figure.
  • the solders 104a and 104b are also printed on the right side of the figure from the lands 103a and 103b.
  • the distance a ′ is sufficient, so that the surface-mounted component 100 tries to get up by rotating counterclockwise on the fulcrum P as an axis. Therefore, the electrode 100a is determined as the dominant electrode, and the electrode 100b is determined as the inferior electrode.
  • the surface-mounted component 100 is placed on the printed wiring board 107 while being shifted to the left in the figure.
  • the solders 104a and 104b are printed shifted from the lands 103a and 103b to the right side in the figure. In this case, there is no distance a ′, but the distance a is sufficient. Therefore, the surface-mounted component 100 tries to get up by rotating clockwise around the fulcrum P in the figure. Therefore, the electrode 100b is determined as the dominant electrode, and the electrode 100a is determined as the inferior electrode.
  • the surface-mounted component 100 is placed on the printed wiring board 107 without shifting.
  • the solders 104a and 104b are also printed on the land without shifting. In this case, it is determined that no component shift will occur.
  • the solders 104a and 104b are printed without shifting from the land.
  • the surface-mounted component 100 is placed on the surface of the printed wiring board 107 so as to be shifted from the land (below the solders 104a and 104b) by an angle ⁇ counterclockwise in the figure.
  • the surface-mounted component 100 tries to rotate clockwise in the figure within the surface of the printed wiring board 107. Therefore, the electrode 100b is determined as the dominant electrode, and the electrode 100a is determined as the inferior electrode.
  • the solders 104a and 104b are printed offset from the lands 103a and 103b by an angle ⁇ counterclockwise in the figure.
  • the surface-mounted component 100 is also placed with the same angle ⁇ shifted in the same direction as the solders 104a and 104b. In this case, the surface-mounted component 100 tries to rotate clockwise in the figure within the surface of the printed wiring board 107. Therefore, the electrode 100b is determined as the dominant electrode, and the electrode 100a is determined as the inferior electrode.
  • the solders 104a and 104b are printed by being shifted from the lands 103a and 103b by an angle ⁇ clockwise in the figure.
  • the surface-mounted component 100 is mounted with a shift of an angle ⁇ in the opposite direction to the solders 104a and 104b. In this case, the surface-mounted component 100 tries to rotate clockwise in the figure within the surface of the printed wiring board 107. Therefore, the electrode 100b is determined as the dominant electrode, and the electrode 100a is determined as the inferior electrode.
  • the grounding land 103g is larger than the normal land 103a.
  • the solder resist 105 is applied on the printed wiring board so that the normal land 103a is exposed as it is and a part of the grounding land 103g is exposed as the land 103b.
  • the solder printer 20 shown in FIG. 1 prints the solder pastes 104a and 104b on the exposed lands 103a and 103b, as shown in FIG. 13C.
  • the surface mounters 40A and 40B place the surface mount component 100 on the lands 103a and 103b (not shown directly under the solder pastes 104a and 104b).
  • FIG. 15A shows the relationship between the laser output and the temperature change of the normal land 103a.
  • FIG. 15B shows the output of the laser and the temperature change of the land 103b which is a part of the grounding land 103g.
  • the horizontal axis indicates time.
  • the vertical axis represents the laser output and the land temperature.
  • the temperature of the land rises while the laser beam is irradiated. After the irradiation of the laser beam is completed, the land temperature decreases.
  • the electrode of the surface-mounted component placed on the grounding land 103g is an inferior electrode.
  • the surface-mounted component that is likely to stand up in the reflow process and the inferior electrode are specified based on the positional displacement of the surface-mounted component and the solder.
  • the information is fed forward to the reflow process, and a laser beam is irradiated by an appropriate method so that no parts stand up in the reflow process. Since the solder on the inferior electrode side is melted quickly, and the adhesion force of the inferior electrode becomes fast and strong, it is possible to prevent the inferior electrode from coming off the land. As a result, a printed wiring board on which surface-mounted components are mounted can be manufactured with a high yield.
  • the laser beam scanning speed (moving speed) or power may be controlled based on the melting point or amount of solder, the size of the land, and the like.
  • a semiconductor laser for example, a xenon lamp, an infrared lamp, a carbon dioxide laser, or a solid laser may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

A method of manufacturing a printed wiring board (107) on which a surface-mount component (100) is mounted.  The surface-mount component includes a plurality of electrodes (100a, 100b).  The printed wiring board includes a plurality of lands (103, 103a, 103b).  The lands are provided correspondingly to the electrodes.  Each of the lands is soldered to the corresponding electrode.  The manufacturing method includes a step of applying solder (104a, 104b) to the printed wiring board, a step of mounting the surface-mount component on the printed wiring board after the application of the solders, a step of detecting an inferior electrode such that the adhesion with the land by the surface tension of the molten solder is weaker than that between the other electrodes and the corresponding lands, and a step of shining a light beam so that the solder on the side for the detected inferior electrode can melt faster than the solder for the other superior electrodes.  By the method, it is possible to prevent the inferior electrode from separating from the land.

Description

表面実装部品が実装されたプリント配線板の製造方法Method for manufacturing printed wiring board on which surface mount components are mounted
 本発明は、表面実装部品が実装されたプリント配線板の製造方法に関し、詳しくは、はんだが塗布されたプリント配線板上に表面実装部品を光ビームを用いてはんだ付けすることによりプリント配線板を製造する方法に関する。 The present invention relates to a method of manufacturing a printed wiring board on which surface-mounted components are mounted, and more specifically, a printed wiring board is obtained by soldering a surface-mounted component onto a printed wiring board coated with solder using a light beam. It relates to a method of manufacturing.
 携帯電話、ゲーム機、音楽デバイス、カメラなどの高機能化に伴い、表面実装技術の超高密度化が必要になっている。より具体的には、薄型基板実装、フレキシブルプリント配線板(FPC;Flexible Printed Circuits)実装、0402(0.4mm×0.2mm)部品実装、POP(Package On Package)実装の採用が検討され始めている。 With the increasing functionality of mobile phones, game machines, music devices, cameras, etc., ultra-high density surface mounting technology is required. More specifically, the adoption of thin substrate mounting, flexible printed wiring board (FPC) mounting, flexible 402 printed circuit (FPC) mounting, 0402 (0.4 mm x 0.2 mm) component mounting, and POP (Package On Package) mounting has begun to be considered. .
 表面実装における品質に影響する因子としては、(1)基板と設計、(2)メタルマスク、(3)はんだ印刷、(4)はんだペースト、(5)電子部品、(6)部品装着、(7)リフローなどの品質などがある。 Factors affecting quality in surface mounting include (1) board and design, (2) metal mask, (3) solder printing, (4) solder paste, (5) electronic components, (6) component mounting, (7 ) There is quality such as reflow.
 通常のプロセス設計は、部品のばらつき、はんだの印刷精度、部品の装着精度を考慮し、部品の位置ずれ不良などが発生しないようにしている。しかし、表面実装部品は非常に小さいため、リフロー工程において、「部品立ち」、「部品ずれ」と呼ばれるはんだ付け不良が発生しやすい。部品立ちは、表面実装部品の両電極間に溶融はんだの表面張力差が生じたとき、一方の電極が一方のランドから浮き上がり、他方の電極のみが他方のランドにはんだ付けされることにより、表面実装部品が立ってしまう現象であり、一般に、マンハッタン現象、ツームストン現象などと呼ばれる。以下、部品立ちによりランドから外れてしまう一方の電極を「劣勢電極」と呼び、他方の電極を「優勢電極」と呼ぶ。部品ずれは、表面実装部品の位置がランドの位置に対してずれている現象である。部品立ちも部品ずれも電極がランドから外れるという接続不良を引き起こし、製造歩留まりの低下を招く。以下、部品立ち及び部品ずれを総称し、「部品立ち等」と略す。 In normal process design, in consideration of component variations, solder printing accuracy, and component mounting accuracy, misalignment of components is prevented from occurring. However, since the surface-mounted components are very small, soldering defects called “component standing” and “component displacement” are likely to occur in the reflow process. When a difference in surface tension of molten solder occurs between both electrodes of a surface-mounted component, the surface of the component stands by lifting one electrode from one land and soldering only the other electrode to the other land. This is a phenomenon in which a mounted component stands, and is generally called a Manhattan phenomenon or a Tombstone phenomenon. In the following, one electrode that is detached from the land due to the standing of the part is referred to as a “dominant electrode”, and the other electrode is referred to as a “dominant electrode”. The component shift is a phenomenon in which the position of the surface mount component is shifted with respect to the land position. Both standing of parts and displacement of parts cause connection failure in which the electrodes come off the land, leading to a decrease in manufacturing yield. Hereinafter, component standing and component displacement are collectively referred to as “component standing etc.”.
 特開2003-69203号公報は、表面実装部品の実装位置の許容量算出方法を開示する。この方法は、マンハッタン現象の発生を抑止するモーメントと、マンハッタン現象の発生を促進するモーメントとに基づいて、正確な実装位置の許容量を算出する。しかし、同公報は、マンハッタン現象を防止する具体的なリフロー方法を全く開示していない。 Japanese Patent Laid-Open No. 2003-69203 discloses a method for calculating an allowable amount of a mounting position of a surface mounting component. In this method, an accurate mounting position tolerance is calculated based on a moment that suppresses the occurrence of the Manhattan phenomenon and a moment that promotes the occurrence of the Manhattan phenomenon. However, this publication does not disclose any specific reflow method for preventing the Manhattan phenomenon.
 本発明は、上記のような問題点に鑑み、電極がランドから外れるのを防止した表面実装部品が実装されたプリント配線板の製造方法を提供する。 In view of the above problems, the present invention provides a method for manufacturing a printed wiring board on which a surface-mounted component that prevents an electrode from being detached from a land is mounted.
 本発明による製造方法は、表面実装部品が実装されたプリント配線板を製造する方法である。表面実装部品は、複数の電極を含む。プリント配線板は、複数のランドを含む。複数のランドは、複数の電極に対応して設けられる。各ランドは、対応する電極にはんだ付けされる。製造方法は、プリント配線板上にはんだを塗布するステップと、はんだを塗布した後、表面実装部品をプリント配線板上に載せるステップと、溶融はんだの表面張力による電極及びランド間の付着力が他の電極及びランド間の付着力よりも弱い電極(劣勢電極)を特定するステップと、特定された劣勢電極側のはんだを当該他の電極(優勢電極)のはんだよりも早く溶融させるように光ビームを照射するステップとを含む。 The manufacturing method according to the present invention is a method for manufacturing a printed wiring board on which surface-mounted components are mounted. The surface mount component includes a plurality of electrodes. The printed wiring board includes a plurality of lands. The plurality of lands are provided corresponding to the plurality of electrodes. Each land is soldered to a corresponding electrode. The manufacturing method includes the steps of applying solder on the printed wiring board, applying the solder and then mounting the surface mount component on the printed wiring board, and the adhesion between the electrode and the land due to the surface tension of the molten solder. A step of identifying an electrode (inferior electrode) weaker than the adhesion force between the electrode and the land, and a light beam so as to melt the solder on the identified inferior electrode side faster than the solder of the other electrode (dominant electrode) Irradiating.
 本発明によれば、劣勢電極側のはんだが早く溶融されるので、劣勢電極の付着力が早く強くなる。その結果、劣勢電極がランドから外れるのを防止できる。 According to the present invention, since the solder on the inferior electrode side is quickly melted, the adhesion force of the inferior electrode is quickly increased. As a result, the inferior electrode can be prevented from coming off the land.
 本発明における「はんだ」は、たとえば、鉛及びスズを主成分とする含鉛はんだ、銀入りはんだ、金系はんだ、並びに、スズ、銀及び銅、又はスズ及びビスマス等を主成分とする鉛フリーはんだを含む。「はんだ」は、たとえば、酸化を防ぎかつ接続を容易にするためのフラックス等の添加剤を含んでもよい。「はんだ」は、たとえば、はんだペースト、はんだクリームを含んでもよい。 The “solder” in the present invention is, for example, lead-containing solder containing lead and tin as main components, solder containing silver, gold-based solder, and lead-free containing tin, silver and copper, tin and bismuth or the like as main components. Includes solder. “Solder” may include, for example, an additive such as flux to prevent oxidation and facilitate connection. “Solder” may include, for example, solder paste and solder cream.
 本発明の他の特徴、要素、ステップ、特色、及び利点は、本発明の好ましい実施の形態についての添付図面を参照した以下の詳細な説明から、より明らかになるであろう。 Other features, elements, steps, features, and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments of the present invention with reference to the accompanying drawings.
本発明の好ましい実施の形態による表面実装部品が実装されたプリント配線板の製造装置の全体構成を示す機能ブロック図である。It is a functional block diagram which shows the whole structure of the manufacturing apparatus of the printed wiring board by which the surface mounting components by preferable embodiment of this invention were mounted. 図1中のはんだ付け装置の構成を示す平面図である。It is a top view which shows the structure of the soldering apparatus in FIG. 図2中のレーザヘッド及びその周辺の構成を示す模式図である。FIG. 3 is a schematic diagram showing a configuration of the laser head in FIG. 2 and its periphery. 図3に示したレーザヘッドの他の例を示す模式図である。It is a schematic diagram which shows the other example of the laser head shown in FIG. 図1に示した製造装置の動作を示すフロー図である。It is a flowchart which shows operation | movement of the manufacturing apparatus shown in FIG. 図3に示した表面実装部品に部品立ちが起きる原因を説明するための側面図である。FIG. 4 is a side view for explaining the cause of component standing in the surface-mounted component shown in FIG. 3. プリント配線板上に載せられた表面実装部品の電極の位置がずれていないため、部品立ちが起きにくい表面実装部品及びプリント配線板の側面図である。FIG. 4 is a side view of a surface-mounted component and a printed wiring board that do not easily stand up because the positions of electrodes of the surface-mounted component placed on the printed wiring board are not shifted. プリント配線板上に載せられた表面実装部品の電極の位置がずれているため、部品立ちが起きやすい表面実装部品及びプリント配線板の側面図である。FIG. 4 is a side view of a surface-mounted component and a printed wiring board that are liable to stand up because the positions of the electrodes of the surface-mounted component placed on the printed wiring board are shifted. 図3に示したはんだ付け装置を用い、表面実装部品の電極に単一のレーザビームを順に照射する方法を示す斜視図である。It is a perspective view which shows the method of irradiating a single laser beam to the electrode of surface mounting components in order using the soldering apparatus shown in FIG. 図4に示したはんだ付け装置を用い、表面実装部品の電極に2つのレーザビームを互いに異なる強度又はタイミングで照射する方法を示す斜視図である。FIG. 5 is a perspective view showing a method of irradiating two laser beams with different intensities or timings on the electrodes of the surface-mounted component using the soldering apparatus shown in FIG. 4. ランド上に印刷されたはんだの位置がずれていないため、部品立ちが起きにくい表面実装部品及びプリント配線板の側面図である。FIG. 5 is a side view of a surface-mounted component and a printed wiring board that do not easily stand up because the position of solder printed on a land is not shifted. ランド上に印刷されたはんだの位置がずれているため、部品立ちが起きやすい表面実装部品及びプリント配線板の側面図である。FIG. 4 is a side view of a surface-mounted component and a printed wiring board that are liable to stand up because the position of solder printed on a land is shifted. プリント配線板上に載せられた表面実装部品の電極の位置が右側にずれ、かつ、ランド上に印刷されたはんだの位置が右側にずれているため、部品立ちが起きやすい表面実装部品及びプリント配線板の側面図である。Surface-mounted components and printed wiring that are prone to component standing because the position of the electrodes of the surface-mounted components placed on the printed wiring board is shifted to the right and the position of the solder printed on the land is shifted to the right. It is a side view of a board. プリント配線板上に載せられた表面実装部品の電極の位置が左側にずれ、かつ、ランド上に印刷されたはんだの位置が右側にずれているため、部品立ちが起きやすい表面実装部品及びプリント配線板の側面図である。Surface-mounted components and printed wiring that are prone to stand-up because the position of the electrodes on the surface-mounted components placed on the printed wiring board is shifted to the left and the position of the solder printed on the land is shifted to the right It is a side view of a board. プリント配線板上に載せられた表面実装部品の電極の位置、及びランド上に印刷されたはんだの位置の両方がずれていないため、部品ずれが起きにくい表面実装部品及びプリント配線板の平面図である。Since both the position of the electrode of the surface mounting component placed on the printed wiring board and the position of the solder printed on the land are not shifted, it is a plan view of the surface mounting component and the printed wiring board in which the component does not easily shift. is there. ランド上に印刷されたはんだの位置はずれていないけれども、プリント配線板上に載せられた表面実装部品の電極の位置はずれているため、部品ずれが起きやすい表面実装部品及びプリント配線板の平面図である。Although the position of the solder printed on the land is not deviated, the position of the electrode of the surface mount component placed on the printed wiring board is deviated. is there. プリント配線板上に載せられた表面実装部品の電極の位置、及びランド上に印刷されたはんだの位置の両方が同じ方向にずれているため、部品ずれが起きやすい表面実装部品及びプリント配線板の平面図である。Since both the position of the electrode of the surface mount component mounted on the printed wiring board and the position of the solder printed on the land are shifted in the same direction, the surface mount component and the printed wiring board that are liable to be displaced. It is a top view. プリント配線板上に載せられた表面実装部品の電極の位置、及びランド上に印刷されたはんだの位置の両方が互いに異なる方向にずれているため、部品ずれが起きやすい表面実装部品及びプリント配線板の平面図である。Since both the position of the electrode of the surface mounting component mounted on the printed wiring board and the position of the solder printed on the land are shifted in different directions, the surface mounting component and the printed wiring board that are liable to cause the component shifting. FIG. 接地用ランドを有するプリント配線板の平面図である。It is a top view of the printed wiring board which has a land for grounding. 図13Aに示したプリント配線板上にはんだレジストを形成した平面図である。It is the top view which formed the solder resist on the printed wiring board shown to FIG. 13A. 図13Bに示したプリント配線板上にはんだペーストを印刷した平面図である。It is the top view which printed the solder paste on the printed wiring board shown to FIG. 13B. 図13Cに示したプリント配線板上に表面実装部品を載せた平面図である。It is the top view which mounted surface mount components on the printed wiring board shown to FIG. 13C. 図13Dに示した表面実装部品をレーザビームではんだ付けする場合における熱の拡散を示す平面図である。It is a top view which shows the spreading | diffusion of a heat | fever when soldering the surface mount component shown to FIG. 13D with a laser beam. 図14中の通常ランドの温度の時間変化及びレーザ出力の時間変化を示すグラフである。It is a graph which shows the time change of the temperature of the normal land in FIG. 14, and the time change of a laser output. 図14中の接地用ランドの温度の時間変化及びレーザ出力の時間変化を示すグラフである。It is a graph which shows the time change of the temperature of the land for grounding in FIG. 14, and the time change of a laser output.
 以下、図面を参照し、本発明の好ましい実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 [製造装置の全体構成] [Overall configuration of manufacturing equipment]
 図1は、本発明の好ましい実施の形態による表面実装部品が実装されたプリント配線板の製造装置の全体構成を示す機能ブロック図である。図1を参照して、製造装置1は、ホストコンピュータ10と、はんだ印刷機20と、はんだ検査機30と、表面実装機(チップマウンタ)40A,40Bと、はんだ付け装置50とを備える。製造装置1は、表面実装部品をプリント配線板上に実装することにより、表面実装部品が実装されたプリント配線板を製造する装置である。 FIG. 1 is a functional block diagram showing the overall configuration of a printed wiring board manufacturing apparatus on which surface-mounted components according to a preferred embodiment of the present invention are mounted. With reference to FIG. 1, the manufacturing apparatus 1 includes a host computer 10, a solder printer 20, a solder inspection machine 30, surface mounters (chip mounters) 40 </ b> A and 40 </ b> B, and a soldering apparatus 50. The manufacturing apparatus 1 is an apparatus that manufactures a printed wiring board on which surface-mounted components are mounted by mounting surface-mounted components on the printed wiring board.
 HUB(ハブ)で繋がれた各装置を制御するホストコンピュータ10は、コントローラ10aと、メモリ10bと、ディスプレイ10cと、入力装置10dとを備える。ホストコンピュータ10上のアプリケーションから、各装置に制御命令が送られる。表面実装部品が実装されるプリント配線板は、図中矢印で示される基板搬送方向へ送られる。 A host computer 10 that controls each device connected by a HUB (hub) includes a controller 10a, a memory 10b, a display 10c, and an input device 10d. A control command is sent from the application on the host computer 10 to each device. The printed wiring board on which the surface mount component is mounted is sent in the board conveyance direction indicated by the arrow in the figure.
 まず、はんだ印刷機20は、クリームはんだをプリント配線板上に印刷する。はんだ検査機30は、印刷されたはんだの位置を検査する。検査結果は、ホストコンピュータ10を介して表面実装機40A,40B、及びはんだ付け装置50に送られる。表面実装機40A,40Bは、表面実装部品をプリント配線板上に実装する。表面実装機40A,40Bは、作業の効率化のため複数台並べて使用される。表面実装機は2台だけでなく、3台以上設けられてもよい。 First, the solder printer 20 prints cream solder on the printed wiring board. The solder inspection machine 30 inspects the position of the printed solder. The inspection result is sent to the surface mounters 40A and 40B and the soldering apparatus 50 via the host computer 10. The surface mounters 40A and 40B mount surface mount components on a printed wiring board. A plurality of surface mounters 40A and 40B are used side by side to improve work efficiency. Not only two surface mounters but also three or more surface mounters may be provided.
 その後、プリント配線板ははんだ付け装置50に搬送される。はんだ付け装置50は、レーザビームをプリント配線板上のはんだに局所的に照射することにより、はんだを加熱して溶融させ、表面実装部品をプリント配線板にはんだ付けする。 Thereafter, the printed wiring board is conveyed to the soldering device 50. The soldering apparatus 50 locally irradiates the solder on the printed wiring board with a laser beam, thereby heating and melting the solder and soldering the surface-mounted component to the printed wiring board.
 表面実装機40A,40は、0402部品に代表される微小な表面実装部品を実装する。はんだ印刷工程で印刷の位置がずれたり、部品実装工程で表面実装部品の位置がずれたりしても、ずれが所定の範囲内であれば、はんだ付け装置50は適切なレーザ照射方法によりそのずれが小さくなるようにレーザビームを照射する。 Surface mounters 40A and 40 mount minute surface mount components represented by 0402 components. Even if the printing position is shifted in the solder printing process or the surface mounting component is shifted in the component mounting process, if the deviation is within a predetermined range, the soldering apparatus 50 can detect the deviation by an appropriate laser irradiation method. Irradiate with a laser beam so that becomes small.
 [はんだ付け装置] [Soldering equipment]
 図2は、はんだ付け装置50の外観構成を示す平面図である。図2を参照して、はんだ付け装置50は、プリント配線板搬送装置251と、レーザヘッド200と、XYZロボット271とを備える。はんだ付け装置50は、表面実装部品100をプリント配線板107にレーザビームではんだ付けする。 FIG. 2 is a plan view showing an external configuration of the soldering apparatus 50. Referring to FIG. 2, the soldering device 50 includes a printed wiring board transport device 251, a laser head 200, and an XYZ robot 271. The soldering apparatus 50 solders the surface-mounted component 100 to the printed wiring board 107 with a laser beam.
 プリント配線板搬送装置251は、投入されたプリント配線板107を所定の位置まで搬送する。プリント配線板107上には、表面実装部品100が実装されている。 The printed wiring board transport device 251 transports the input printed wiring board 107 to a predetermined position. A surface mount component 100 is mounted on the printed wiring board 107.
 レーザヘッド200は、レーザビームを表面実装部品100の電極及びプリント配線板107のランドに照射する。XYZロボット271は、レーザヘッド200を図上X及びY方向並びにZ方向(X及びY方向に対して垂直方向)へ搬送する。 The laser head 200 irradiates a laser beam to the electrode of the surface mount component 100 and the land of the printed wiring board 107. The XYZ robot 271 conveys the laser head 200 in the X and Y directions and the Z direction (perpendicular to the X and Y directions) in the drawing.
 [レーザヘッド] [Laser head]
 図3は、レーザヘッド200及びその周辺の構成を示す。図3を参照して、はんだ付け装置50はさらに、半導体レーザ303と、光ファイバケーブル305と、画像処理装置325と、コントローラ327とを備える。 FIG. 3 shows the configuration of the laser head 200 and its surroundings. With reference to FIG. 3, the soldering apparatus 50 further includes a semiconductor laser 303, an optical fiber cable 305, an image processing apparatus 325, and a controller 327.
 レーザヘッド200は、コリメータレンズ307と、ハーフミラー309と、集光レンズ321と、同軸カメラ323と、ガルバノミラー311,313と、テレセントリックレンズ315と、レンズ駆動装置317a,317bと、位置決めカメラ301とを含む。したがって、レーザヘッド200がXYZロボット271により移動されると、レーザヘッド200に含まれる上記全ての部品も一緒に移動される。 The laser head 200 includes a collimator lens 307, a half mirror 309, a condenser lens 321, a coaxial camera 323, galvano mirrors 311 and 313, a telecentric lens 315, lens driving devices 317a and 317b, a positioning camera 301, including. Therefore, when the laser head 200 is moved by the XYZ robot 271, all the components included in the laser head 200 are also moved together.
 半導体レーザ303は、レーザビームを発生する光源である。発生したレーザビームは、光ファイバケーブル305でコリメータレンズ307に導かれる。コリメータレンズ307は、レーザビームを平行にする。ハーフミラー309は、コリメータレンズ307からのレーザビームをまっすぐに透過させ、かつ、表面実装部品100及びプリント配線板107から反射して戻ってきたレーザビームをほぼ直角に反射させる。 The semiconductor laser 303 is a light source that generates a laser beam. The generated laser beam is guided to the collimator lens 307 through the optical fiber cable 305. The collimator lens 307 collimates the laser beam. The half mirror 309 transmits the laser beam from the collimator lens 307 straight, and reflects the laser beam reflected and returned from the surface mount component 100 and the printed wiring board 107 almost at right angles.
 ガルバノミラー311,313は、ハーフミラー309を透過して来たレーザビームを高速で振り動かすことにより、表面実装部品100の電極100a,100b及びプリント配線板107のランド103をレーザビームでスキャンする。テレセントリックレンズ315は、ガルバノミラー311,313からのレーザビームをほぼ真下に向ける。レンズ駆動装置317a,317bは、テレセントリックレンズ315を光軸方向に駆動することにより、テレセントリックレンズ315の焦点を合わせる。位置決めカメラ301は、プリント配線板107のフィデューシャルマーク(認識マーク)を撮像し、表面実装部品100の位置及び方向を検出する。 Galvano mirrors 311 and 313 scan the electrodes 100a and 100b of the surface mount component 100 and the lands 103 of the printed wiring board 107 with the laser beam by swinging the laser beam transmitted through the half mirror 309 at high speed. The telecentric lens 315 directs the laser beam from the galvanometer mirrors 311 and 313 almost directly below. The lens driving devices 317a and 317b focus the telecentric lens 315 by driving the telecentric lens 315 in the optical axis direction. The positioning camera 301 images the fiducial mark (recognition mark) of the printed wiring board 107 and detects the position and direction of the surface mount component 100.
 [レーザヘッドの他の例] [Other examples of laser heads]
 図4は、レーザヘッド200の代わりに用いられるレーザヘッド202の構成を示す模式図である。レーザ照射装置467aは、図3に示したガルバノミラー311,313及びテレセントリックレンズ315に相当し、ハーフミラー309で反射されたレーザビームを出力する。レーザヘッド202はさらに、溶融したはんだペースト及びフラックスのミストを排気する排気装置357を備える。 FIG. 4 is a schematic diagram showing a configuration of a laser head 202 used in place of the laser head 200. The laser irradiation device 467a corresponds to the galvanometer mirrors 311 and 313 and the telecentric lens 315 shown in FIG. 3, and outputs the laser beam reflected by the half mirror 309. The laser head 202 further includes an exhaust device 357 for exhausting molten solder paste and flux mist.
 はんだ付け装置50はさらに、もう1つのレーザ照射装置467bを備える。このレーザ照射装置467bも上記レーザ照射装置467aと同じ構成を有する。これにより、表面実装部品100の両電極100a,100bを2本のレーザビームで同時にはんだ付けすることができる。3つ以上のレーザ照射装置が設けられてもよい。 The soldering device 50 further includes another laser irradiation device 467b. The laser irradiation device 467b has the same configuration as the laser irradiation device 467a. Thereby, both the electrodes 100a and 100b of the surface mount component 100 can be soldered simultaneously by two laser beams. Three or more laser irradiation apparatuses may be provided.
 [はんだ印刷機及びはんだ付け装置の動作] [Operation of solder printer and soldering device]
 以下、図5のフロー図を参照し、はんだ印刷機20及びはんだ付け装置50の動作を説明する。 Hereinafter, the operations of the solder printer 20 and the soldering apparatus 50 will be described with reference to the flowchart of FIG.
 はんだ印刷機20は、はんだペースト(フラックスを含む)をプリント配線板107上に印刷する(S101)。はんだ検査機30は、印刷されたはんだの位置、印刷位置のずれ、はんだ量(はんだ高さ)を測定する(S103)。はんだ検査機30は、その検査結果をはんだ付け装置50に送る(S105)。 Solder printer 20 prints solder paste (including flux) on printed wiring board 107 (S101). The solder inspection machine 30 measures the position of the printed solder, the displacement of the printing position, and the amount of solder (solder height) (S103). The solder inspection machine 30 sends the inspection result to the soldering apparatus 50 (S105).
 一方、はんだ付け装置50において、コントローラ327は、投入されたプリント配線板107を所定の位置に搬送するよう、プリント配線板搬送装置251を制御する(S201)。 On the other hand, in the soldering apparatus 50, the controller 327 controls the printed wiring board transport device 251 so as to transport the loaded printed wiring board 107 to a predetermined position (S201).
 位置決めカメラ301は、プリント配線板107のフィデューシャルマークを読み取り(S203)、プリント配線板107及び表面実装部品100の位置を認識する(S205)。 The positioning camera 301 reads the fiducial mark of the printed wiring board 107 (S203), and recognizes the positions of the printed wiring board 107 and the surface mount component 100 (S205).
 位置決めカメラ301は、プリント配線板上の表面実装部品100を撮影する(S207)。コントローラ327は、位置決めカメラ301により撮影され、画像処理装置325により処理された画像に基づいて、表面実装部品100の実装状態及びランド103からの位置ずれを認識する(S209)。コントローラ327は、はんだ検査機30の検査結果及び認識された位置ずれに基づいて、部品立ち等が起きやすい部品を特定し、さらに、その部品に適したレーザ照射方法を決定する(S211)。すなわち、コントローラ327は、溶融はんだの表面張力による表面実装部品100の電極及びプリント配線板107のランド間の付着力が他の電極及びランド間の付着力よりも弱い劣勢電極を特定する情報を受け付ける。コントローラ327はまた、受け付けられた情報により特定された劣勢電極側のはんだを当該他の優勢電極側のはんだよりも早く溶融させるように、レーザ照射方法を決定する。 The positioning camera 301 images the surface-mounted component 100 on the printed wiring board (S207). The controller 327 recognizes the mounting state of the surface mounting component 100 and the positional deviation from the land 103 based on the image photographed by the positioning camera 301 and processed by the image processing device 325 (S209). Based on the inspection result of the solder inspection machine 30 and the recognized positional deviation, the controller 327 specifies a component that is likely to stand up, and determines a laser irradiation method suitable for the component (S211). That is, the controller 327 accepts information for identifying an inferior electrode having an adhesion force between the electrodes of the surface-mounted component 100 and the land of the printed wiring board 107 that is weaker than the adhesion force between other electrodes and lands due to the surface tension of the molten solder. . The controller 327 also determines the laser irradiation method so that the solder on the inferior electrode side specified by the received information is melted earlier than the solder on the other dominant electrode side.
 コントローラ327は、あらかじめプログラムされた順番に表面実装部品100を選択し、レーザヘッド200をその選択された表面実装部品100の上方へ移動するよう、XYZロボット271を制御する(S213)。コントローラ327は、ステップS211で決定されたレーザ照射方法に従って、レーザビームを選択された表面実装部品100に照射する(S215)。 The controller 327 selects the surface mount component 100 in the order programmed in advance, and controls the XYZ robot 271 so as to move the laser head 200 above the selected surface mount component 100 (S213). The controller 327 irradiates the selected surface mount component 100 with the laser beam according to the laser irradiation method determined in step S211 (S215).
 コントローラ327は、全ての表面実装部品100の実装が完了したか否かを判断する(S219)。未完了の場合(S219でNO)、コントローラ327は、あらかじめプログラムされた順番に表面実装部品100を選択し、上記ステップS213~S215の処理を繰り返し実行する。 The controller 327 determines whether or not the mounting of all the surface mounted components 100 is completed (S219). If not completed (NO in S219), the controller 327 selects the surface-mounted components 100 in the order programmed in advance, and repeatedly executes the processes in steps S213 to S215.
 完了の場合(S219でYES)、コントローラ327は、レーザヘッド200を元の位置に戻すよう、XYZロボット271を制御する(S221)。最後に、コントローラ327は、全ての表面実装部品100が実装されたプリント配線板107を排出するよう、プリント配線板搬送装置251を制御する(S223)。これにより、表面実装部品100が実装されたプリント配線板107が製造される。 If completed (YES in S219), the controller 327 controls the XYZ robot 271 to return the laser head 200 to the original position (S221). Finally, the controller 327 controls the printed wiring board transport device 251 so as to discharge the printed wiring board 107 on which all the surface mount components 100 are mounted (S223). Thereby, the printed wiring board 107 on which the surface mounting component 100 is mounted is manufactured.
 このようなレーザによるはんだ付けは、リフロー炉でのはんだ付けの後に実行されてもよい。より具体的には、耐熱温度の高い表面実装部品をリフロー炉ではんだ付けした後、耐熱温度の低い表面実装部品をレーザではんだ付けしてもよい。 Such laser soldering may be performed after soldering in a reflow furnace. More specifically, after a surface mount component having a high heat resistance temperature is soldered in a reflow furnace, the surface mount component having a low heat resistance temperature may be soldered by a laser.
 [部品立ち等の発生原因及びレーザ照射方法の決定] [Determining the cause of component standing up and laser irradiation method]
 次に、上述したレーザ照射方法を決定するステップ(S211)の詳細を説明する。 Next, details of the step (S211) of determining the laser irradiation method described above will be described.
 図6は、部品立ち等の発生原因を説明するための側面図である。図6に示されるように、プリント配線板107上にランド103a,103bが設けられる。ランド103a,103b上にはんだ104a,104bが印刷される。図上右側のはんだ104bのみがレーザビームにより溶融されている。ランド103a及び103bには、表面実装部品100の電極100a及び100bがそれぞれはんだ付けされる。 FIG. 6 is a side view for explaining the cause of the occurrence of parts standing up. As shown in FIG. 6, lands 103 a and 103 b are provided on the printed wiring board 107. Solders 104a and 104b are printed on the lands 103a and 103b. Only the solder 104b on the right side of the figure is melted by the laser beam. The electrodes 100a and 100b of the surface mount component 100 are soldered to the lands 103a and 103b, respectively.
 表面実装部品100の重量をm、長さをL、高さをH、幅をW、重量加速度をg、溶融はんだの表面張力をγとする。はんだが溶融したときに表面実装部品100が回転する支点を図中Pで示す。 The weight of the surface-mounted component 100 is m, the length is L, the height is H, the width is W, the weight acceleration is g, and the surface tension of the molten solder is γ. A fulcrum for rotating the surface-mounted component 100 when the solder is melted is indicated by P in the figure.
 ランド103bの右端から支点Pまでの距離をaとし、ランド103bの左端から支点Pまでの距離をbとする。 The distance from the right end of the land 103b to the fulcrum P is a, and the distance from the left end of the land 103b to the fulcrum P is b.
 ランド103bの右端及び表面実装部品100の電極100bの側面最上部を結ぶ直線と、表面実装部品100の電極100bの側面とがなす角度をαとする。αは、溶融したはんだ104bが電極100bの側面となす角度にほぼ等しい。表面実装部品100の電極100bの底面と、ランド103bの上面とがなす角度をβとする。 The angle formed between the straight line connecting the right end of the land 103b and the uppermost side surface of the electrode 100b of the surface mount component 100 and the side surface of the electrode 100b of the surface mount component 100 is α. α is substantially equal to the angle formed by the molten solder 104b and the side surface of the electrode 100b. Let β be the angle formed by the bottom surface of the electrode 100b of the surface-mounted component 100 and the top surface of the land 103b.
 このとき、表面張力γによるモーメントT1(支点Pを軸に、表面実装部品100を時計回りに回転させ、表面実装部品100を立てようとする力)は、次の式(1)で表わされる。
Figure JPOXMLDOC01-appb-M000001
At this time, moment T1 due to surface tension γ (force to rotate surface-mounted component 100 clockwise about fulcrum P and stand surface-mounted component 100) is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
 表面実装部品100の下面においては、表面張力γによるモーメントT2(部品を立てようとする力と反対向きに作用する力)は、次の式(2)で表わされる。 On the lower surface of the surface-mounted component 100, the moment T2 due to the surface tension γ (force acting in the opposite direction to the force to stand the component) is expressed by the following equation (2).
 T2=γcosβ・Wb …(2) T2 = γcosβ · Wb (2)
 β=0のとき、cosβ=1であるから、モーメントT2は次の式(3)で表される。 When β = 0, cos β = 1, so moment T2 is expressed by the following equation (3).
 T2=γWb …(3) T2 = γWb (3)
 表面実装部品100の自重によるモーメントT3(部品を立てようとする力と反対向きに作用する力)は、次の式(4)で表わされる。 The moment T3 due to the weight of the surface-mounted component 100 (force acting in the opposite direction to the force to stand the component) is expressed by the following equation (4).
 T3=mgLcosβ/2 …(4) T3 = mgLcosβ / 2 (4)
 β=0のとき、cosβ=1であるから、モーメントT3は次の式(5)で表される。 Since cos β = 1 when β = 0, moment T3 is expressed by the following equation (5).
 T3=mgL/2 …(5) T3 = mgL / 2 (5)
 T1>T2+T3の条件が成立するとき、部品立ち等が発生する可能性が高くなる。すなわち、αが所定のしきい値よりも大きいとき(表面実装部品100が図上左側にずれ、a≪bのとき)、表面実装部品100の電極100bをはんだ付けすると、支点Pを軸にして表面実装部品100が時計回りに回転し、部品立ち等が起きやすい。 When the condition of T1> T2 + T3 is satisfied, there is a high possibility that component standing will occur. That is, when α is larger than a predetermined threshold value (when the surface-mounted component 100 is shifted to the left side in the drawing and a << b), when the electrode 100b of the surface-mounted component 100 is soldered, the fulcrum P is used as an axis. The surface-mounted component 100 rotates clockwise, and component standing or the like easily occurs.
 このように、はんだ付けにおいて部品立ち等によりプリント配線板107から浮き上がってしまう側の電極(図6では電極100a)を「劣勢電極」と呼び、その反対側の電極(図6では電極100b)を「優勢電極」と呼ぶ。劣勢電極はランドから外れやすいが、優勢電極はランドから外れにくい。溶融はんだ104aの表面張力γにより劣勢電極100a及びランド103a間に働く付着力(劣勢電極100aがランド103aに付着しようとする力)は、溶融はんだ104bの表面張力γにより優勢電極100b及びランド103b間に働く付着力(優勢電極100bがランド103bに付着しようとする力)よりも弱いからである。 As described above, the electrode (electrode 100a in FIG. 6) that floats up from the printed wiring board 107 due to the standing of components during soldering is referred to as “inferior electrode”, and the electrode on the opposite side (electrode 100b in FIG. 6). Called the “dominant electrode”. The inferior electrode is easily detached from the land, but the dominant electrode is not easily detached from the land. The adhesion force that acts between the inferior electrode 100a and the land 103a due to the surface tension γ of the molten solder 104a (the force that the inferior electrode 100a tends to adhere to the land 103a) is between the dominant electrode 100b and the land 103b due to the surface tension γ of the molten solder 104b. This is because it is weaker than the adhesion force acting on (the force that the dominant electrode 100b tries to adhere to the land 103b).
 はんだ量が多い場合も上記と同様に、モーメントT1が大きくなるので、部品立ち等が起きやすい。 Even when the amount of solder is large, the moment T1 is increased in the same manner as described above, so that standing of components is likely to occur.
 [表面実装部品の縦ずれ] [Vertical displacement of surface mount components]
 図7Aでは、表面実装部品100はランド103a,103bからずれることなくプリント配線板107上に載せられている。はんだ104a,104bもランド103a,103bからずれることなく印刷されている。この場合、部品立ち等は起きないであろうと判断する。 7A, the surface-mounted component 100 is placed on the printed wiring board 107 without being displaced from the lands 103a and 103b. The solders 104a and 104b are also printed without shifting from the lands 103a and 103b. In this case, it is determined that no part standing or the like will occur.
 図7Bでは、表面実装部品100が図上左側にずれてプリント配線板107上に載せられている。ただし、はんだ104a,104bはランド103a,103bからずれることなく印刷されている。表面実装部品100が図上左側にずれると、図上右側において、距離aが所定距離よりも長くなり、距離bが所定距離よりも短くなる。そのため、モーメントT1は大きくなるが、モーメントT2は小さくなる。これにより、T1>T2+T3の条件が成立する。この場合、部品立ち等が起きるであろうと判断する。電極100b側の距離aが所定距離以上であることを観察すると、その電極100bを優勢電極と判断し、その反対側の電極100aを劣勢電極と判断する。 In FIG. 7B, the surface-mounted component 100 is placed on the printed wiring board 107 while being shifted to the left in the figure. However, the solders 104a and 104b are printed without shifting from the lands 103a and 103b. When the surface mount component 100 is shifted to the left in the figure, the distance a becomes longer than the predetermined distance and the distance b becomes shorter than the predetermined distance on the right in the figure. Therefore, moment T1 is increased, but moment T2 is decreased. Thereby, the condition of T1> T2 + T3 is established. In this case, it is determined that component standing or the like will occur. When observing that the distance a on the electrode 100b side is equal to or greater than a predetermined distance, the electrode 100b is determined as the dominant electrode, and the opposite electrode 100a is determined as the inferior electrode.
 (1)ビーム移動 (1) Beam movement
 図4に示した単一のレーザ照射装置467aを用い、図8に示されるように、単一のレーザビームLBを移動させる。より具体的には、レーザ照射装置467aは、まず、レーザビームLBを劣勢電極100a及びランド103aに照射する。次に、レーザ照射装置467aは、レーザビームLBを劣勢電極100aから優勢電極100bまで移動させる。そして、レーザ照射装置467aは、レーザビームLBを優勢電極100b及びランド103bに照射する。 Using the single laser irradiation device 467a shown in FIG. 4, the single laser beam LB is moved as shown in FIG. More specifically, the laser irradiation device 467a first irradiates the inferior electrode 100a and the land 103a with the laser beam LB. Next, the laser irradiation device 467a moves the laser beam LB from the inferior electrode 100a to the dominant electrode 100b. The laser irradiation device 467a irradiates the dominant electrode 100b and the land 103b with the laser beam LB.
 レーザビームLBは優勢電極100b側よりも先に劣勢電極100a側に照射されるので、劣勢電極100a側のはんだ104aが優勢電極100b側のはんだ104bよりも早く溶融する。そのため、劣勢電極100aとランド103aと間の付着力が増加し、劣勢電極100aはランド103aから浮き上がらない。その結果、部品立ち等は起きない。 Since the laser beam LB is irradiated to the inferior electrode 100a side before the dominant electrode 100b side, the solder 104a on the inferior electrode 100a side melts faster than the solder 104b on the dominant electrode 100b side. For this reason, the adhesion force between the inferior electrode 100a and the land 103a increases, and the inferior electrode 100a does not float from the land 103a. As a result, no parts stand up.
 (2)ビーム強度 (2) Beam intensity
 図4に示した2つのレーザ照射装置467a,467bを用い、図9に示されるように、2つのレーザビームLBa,LBbを同時に照射し、レーザビームLBaの強度をレーザビームLBbの強度よりも強くしてもよい。より具体的には、1つのレーザ照射装置467aは、強度Waを有するレーザビームLBaを劣勢電極100a及びランド103aに照射する。これと同時に、もう1つのレーザ照射装置467bは、強度Wb(Wa>Wb)を有するレーザビームLBbを優勢電極100b及びランド103bに照射する。 Using two laser irradiation apparatuses 467a and 467b shown in FIG. 4, two laser beams LBa and LBb are simultaneously irradiated as shown in FIG. 9, and the intensity of the laser beam LBa is stronger than the intensity of the laser beam LBb. May be. More specifically, one laser irradiation device 467a irradiates the inferior electrode 100a and the land 103a with a laser beam LBa having an intensity Wa. At the same time, another laser irradiation device 467b irradiates the dominant electrode 100b and the land 103b with a laser beam LBb having an intensity Wb (Wa> Wb).
 レーザビームLBaの強度WaはレーザビームLBbの強度Wbよりも強いので、劣勢電極100a側のはんだ104aが優勢電極100b側のはんだ104bよりも早く溶融する。その結果、上記と同様に、部品立ち等は起きない。 Since the intensity Wa of the laser beam LBa is stronger than the intensity Wb of the laser beam LBb, the solder 104a on the inferior electrode 100a side melts faster than the solder 104b on the dominant electrode 100b side. As a result, there is no part standing or the like as described above.
 (3)照射順 (3) Irradiation order
 同様に、2つのレーザ照射装置467a,467bを用い、レーザビームLBa,LBbの照射を順番に開始してもよい。より具体的には、1つのレーザ照射装置467aは、劣勢電極100a及びランド103aに対するレーザビームLBaの照射を時刻t1に開始する。もう1つのレーザ照射装置467bは、優勢電極100b及びランド103bに対するレーザビームLBbの照射を時刻t1よりも遅い時刻t2に開始する。 Similarly, the irradiation of the laser beams LBa and LBb may be started in order using the two laser irradiation devices 467a and 467b. More specifically, one laser irradiation device 467a starts irradiation of the inferior electrode 100a and the land 103a with the laser beam LBa at time t1. Another laser irradiation device 467b starts irradiation of the dominant electrode 100b and the land 103b with the laser beam LBb at a time t2 later than the time t1.
 レーザビームLBaはレーザビームLBbよりも先に照射されるので、劣勢電極100a側のはんだ104aが優勢電極100b側のはんだ104bよりも早く溶融する。その結果、上記と同様に、部品立ち等は起きない。 Since the laser beam LBa is irradiated before the laser beam LBb, the solder 104a on the inferior electrode 100a side melts faster than the solder 104b on the dominant electrode 100b side. As a result, there is no part standing or the like as described above.
 [はんだの縦ずれ] [Solder vertical shift]
 図10Aでは、表面実装部品100がずれることなくプリント配線板107上に載せられている。はんだ104a,104bもランド103a,103b上にずれることなく印刷されている。この場合、部品立ち等は起きないであろうと判断する。 In FIG. 10A, the surface-mounted component 100 is placed on the printed wiring board 107 without shifting. The solders 104a and 104b are also printed on the lands 103a and 103b without shifting. In this case, it is determined that no part standing or the like will occur.
 図10Bでは、はんだ104a,104bがランド103a,103bから図上右側へずれて印刷されている。ただし、表面実装部品100はランド103a,103bからずれることなくプリント配線板107上に載せられている。 In FIG. 10B, the solders 104a and 104b are printed shifted from the lands 103a and 103b to the right side in the figure. However, the surface-mounted component 100 is placed on the printed wiring board 107 without shifting from the lands 103a and 103b.
 図10B中の距離の比a/b及びa'/b'は、図10Aのそれと同じである。しかし、はんだ104bが溶融し始めると、表面実装部品100は支点Pを軸にして図上時計回りに回転しようとする。したがって、はんだのずれが所定値よりも大きいとき、はんだ付け装置50は、部品立ち等が起きるであろうと判断する。はんだのずれが所定値よりも大きいことを観察すると、電極100bを優勢電極と判断し、その反対側の電極100aを劣勢電極と判断する。 The distance ratios a / b and a ′ / b ′ in FIG. 10B are the same as those in FIG. 10A. However, when the solder 104b starts to melt, the surface-mounted component 100 tries to rotate clockwise around the fulcrum P in the figure. Therefore, when the solder deviation is larger than the predetermined value, the soldering apparatus 50 determines that the component standing or the like will occur. If it is observed that the solder deviation is larger than a predetermined value, the electrode 100b is determined as the dominant electrode, and the opposite electrode 100a is determined as the inferior electrode.
 以上より、次の2つの規則が導かれる。 From the above, the following two rules are derived.
 (1)表面実装部品がある方向に所定距離以上ずれて載せられると、そのずれた方向側の電極が劣勢電極となる。 (1) When a surface-mounted component is placed with a certain distance or more in a certain direction, the electrode in the direction of the deviation becomes an inferior electrode.
 (2)はんだがある方向に所定距離以上ずれて印刷されると、そのずれた方向と反対方向側の電極が劣勢電極となる。 (2) If the solder is printed with a predetermined distance shifted in a certain direction, the electrode on the opposite side to the shifted direction becomes an inferior electrode.
 上記(1)及び(2)の少なくとも1つを考慮して、はんだ付け装置50はレーザビームの照射方法を決定する。 Considering at least one of the above (1) and (2), the soldering apparatus 50 determines the laser beam irradiation method.
 図11Aでは、表面実装部品100は図上右側にずれてプリント配線板107上に載せられている。はんだ104a,104bもランド103a,103bから図上右側にずれて印刷されている。この場合、距離aは全くないのに対し、距離a'は十分にあるので、表面実装部品100は支点Pを軸にして図上反時計回りに回転して起き上がろうとする。したがって、電極100aを優勢電極と判断し、電極100bを劣勢電極と判断する。 In FIG. 11A, the surface-mounted component 100 is placed on the printed wiring board 107 while being shifted to the right in the figure. The solders 104a and 104b are also printed on the right side of the figure from the lands 103a and 103b. In this case, since there is no distance a at all, the distance a ′ is sufficient, so that the surface-mounted component 100 tries to get up by rotating counterclockwise on the fulcrum P as an axis. Therefore, the electrode 100a is determined as the dominant electrode, and the electrode 100b is determined as the inferior electrode.
 図11Bでは、表面実装部品100は図上左側にずれてプリント配線板107上に載せられている。はんだ104a,104bはランド103a,103bから図上右側にずれて印刷されている。この場合、距離a'は全くないのに対し、距離aは十分にあるので、表面実装部品100は支点Pを軸にして図上時計回りに回転して起き上がろうとする。したがって、電極100bを優勢電極と判断し、電極100aを劣勢電極と判断する。 In FIG. 11B, the surface-mounted component 100 is placed on the printed wiring board 107 while being shifted to the left in the figure. The solders 104a and 104b are printed shifted from the lands 103a and 103b to the right side in the figure. In this case, there is no distance a ′, but the distance a is sufficient. Therefore, the surface-mounted component 100 tries to get up by rotating clockwise around the fulcrum P in the figure. Therefore, the electrode 100b is determined as the dominant electrode, and the electrode 100a is determined as the inferior electrode.
 [表面実装部品及びはんだの回転ずれ] [Surface misalignment of surface mount components and solder]
 図12Aでは、表面実装部品100がずれることなくプリント配線板107上に載せられている。はんだ104a,104bもランド上にずれることなく印刷されている。この場合、部品ずれは起きないであろうと判断する。 In FIG. 12A, the surface-mounted component 100 is placed on the printed wiring board 107 without shifting. The solders 104a and 104b are also printed on the land without shifting. In this case, it is determined that no component shift will occur.
 図12Bでは、はんだ104a,104bはランドからずれることなく印刷されている。ただし、表面実装部品100はプリント配線板107の表面内でランド(はんだ104a,104bの真下にある)から図上反時計回りに角θだけずれて載せられている。この場合、表面実装部品100はプリント配線板107の表面内で図上時計回りに回転しようとする。したがって、電極100bを優勢電極と判断し、電極100aを劣勢電極と判断する。 In FIG. 12B, the solders 104a and 104b are printed without shifting from the land. However, the surface-mounted component 100 is placed on the surface of the printed wiring board 107 so as to be shifted from the land (below the solders 104a and 104b) by an angle θ counterclockwise in the figure. In this case, the surface-mounted component 100 tries to rotate clockwise in the figure within the surface of the printed wiring board 107. Therefore, the electrode 100b is determined as the dominant electrode, and the electrode 100a is determined as the inferior electrode.
 図12Cでは、はんだ104a,104bはランド103a,103bから図上反時計回りに角θだけずれて印刷されている。表面実装部品100もはんだ104a,104bと同じ方向に同じ角θだけずれて載せられている。この場合、表面実装部品100はプリント配線板107の表面内で図上時計回りに回転しようとする。したがって、電極100bを優勢電極と判断し、電極100aを劣勢電極と判断する。 In FIG. 12C, the solders 104a and 104b are printed offset from the lands 103a and 103b by an angle θ counterclockwise in the figure. The surface-mounted component 100 is also placed with the same angle θ shifted in the same direction as the solders 104a and 104b. In this case, the surface-mounted component 100 tries to rotate clockwise in the figure within the surface of the printed wiring board 107. Therefore, the electrode 100b is determined as the dominant electrode, and the electrode 100a is determined as the inferior electrode.
 図12Dでは、はんだ104a,104bはランド103a,103bから図上時計回りに角θだけずれて印刷されている。表面実装部品100ははんだ104a,104bと反対方向に角θだけずれて載せられている。この場合、表面実装部品100はプリント配線板107の表面内で図上時計回りに回転しようとする。したがって、電極100bを優勢電極と判断し、電極100aを劣勢電極と判断する。 In FIG. 12D, the solders 104a and 104b are printed by being shifted from the lands 103a and 103b by an angle θ clockwise in the figure. The surface-mounted component 100 is mounted with a shift of an angle θ in the opposite direction to the solders 104a and 104b. In this case, the surface-mounted component 100 tries to rotate clockwise in the figure within the surface of the printed wiring board 107. Therefore, the electrode 100b is determined as the dominant electrode, and the electrode 100a is determined as the inferior electrode.
 [接地用ランド] [Grounding land]
 上述したランド103a,103bのサイズはほぼ同じである。しかし、図13Aに示されるように、接地用ランド103gは通常のランド103aよりも大きい。図13Bに示されるように、通常のランド103aがそのまま露出し、かつ、接地用ランド103gの一部がランド103bとして露出するように、はんだレジスト105がプリント配線板上に塗布される。図1に示したはんだ印刷機20は、図13Cに示されるように、はんだペースト104a,104bを露出しているランド103a,103b上に印刷する。最後に、図13Dに示されるように、表面実装機40A,40Bは表面実装部品100をランド103a,103b(はんだペースト104a,104bの真下で図示されていない)上に載せる。 The sizes of the lands 103a and 103b described above are almost the same. However, as shown in FIG. 13A, the grounding land 103g is larger than the normal land 103a. As shown in FIG. 13B, the solder resist 105 is applied on the printed wiring board so that the normal land 103a is exposed as it is and a part of the grounding land 103g is exposed as the land 103b. The solder printer 20 shown in FIG. 1 prints the solder pastes 104a and 104b on the exposed lands 103a and 103b, as shown in FIG. 13C. Finally, as shown in FIG. 13D, the surface mounters 40A and 40B place the surface mount component 100 on the lands 103a and 103b (not shown directly under the solder pastes 104a and 104b).
 ランド103a,103bのはんだを溶融させるために、それらにレーザビームを照射すると、図14中に矢印で示されるように熱が伝導する。ランド103bを含む接地用ランド103gの面積は通常のランド103aの面積よりも大きいので、ランド103bの熱はその周囲にすぐに発散する。これに対し、ランド103aの熱は発散しにくい。 In order to melt the solder of the lands 103a and 103b, when they are irradiated with a laser beam, heat is conducted as indicated by arrows in FIG. Since the area of the grounding land 103g including the land 103b is larger than the area of the normal land 103a, the heat of the land 103b is immediately dissipated around the area. On the other hand, the heat of the land 103a is not easily dissipated.
 図15Aは、レーザの出力と通常のランド103aの温度変化との関係を示す。図15Bは、レーザの出力と接地用ランド103gの一部であるランド103bの温度変化とを示す。横軸は時間を示す。縦軸はレーザの出力及びランドの温度を示す。 FIG. 15A shows the relationship between the laser output and the temperature change of the normal land 103a. FIG. 15B shows the output of the laser and the temperature change of the land 103b which is a part of the grounding land 103g. The horizontal axis indicates time. The vertical axis represents the laser output and the land temperature.
 図15A及び図15Bのいずれにおいても、レーザビームが照射されている間、ランドの温度は上昇する。レーザビームの照射が終了した後、ランドの温度は下降する。しかし、接地用ランド103gの面積は通常のランド103aの面積よりも大きいので、接地用ランド103gは通常のランド103bよりも熱しにくくかつ冷めやすい。したがって、接地用ランド103g上に載せられる表面実装部品の電極は劣勢電極となる。 15A and 15B, the temperature of the land rises while the laser beam is irradiated. After the irradiation of the laser beam is completed, the land temperature decreases. However, since the area of the grounding land 103g is larger than the area of the normal land 103a, the grounding land 103g is less likely to be heated and cooled than the normal land 103b. Therefore, the electrode of the surface-mounted component placed on the grounding land 103g is an inferior electrode.
 [実施の形態の効果] [Effects of the embodiment]
 以上、本発明の好ましい実施の形態によれば、表面実装部品及びはんだの位置ずれに基づいて、リフロー工程で部品立ち等が起きやすい表面実装部品を特定し、かつ、その劣勢電極を特定する。その情報をリフロー工程にフィードフォアードし、リフロー工程で部品立ち等が起きないように適切な方法でレーザビームを照射する。劣勢電極側のはんだが早く溶融され、劣勢電極の付着力が早く強くなるので、劣勢電極がランドから外れるのを防止できる。その結果、高い歩留まりで表面実装部品が実装されたプリント配線板を製造することができる。 As described above, according to the preferred embodiment of the present invention, the surface-mounted component that is likely to stand up in the reflow process and the inferior electrode are specified based on the positional displacement of the surface-mounted component and the solder. The information is fed forward to the reflow process, and a laser beam is irradiated by an appropriate method so that no parts stand up in the reflow process. Since the solder on the inferior electrode side is melted quickly, and the adhesion force of the inferior electrode becomes fast and strong, it is possible to prevent the inferior electrode from coming off the land. As a result, a printed wiring board on which surface-mounted components are mounted can be manufactured with a high yield.
 [他の実施の形態] [Other embodiments]
 はんだの融点又は量、ランドのサイズなどに基づいて、レーザビームの走査速度(移動速度)又はパワーを制御してもよい。半導体レーザの代わりに、たとえば、キセノンランプ、赤外線ランプ、炭酸ガスレーザ、固体レーザを用いてもよい。 The laser beam scanning speed (moving speed) or power may be controlled based on the melting point or amount of solder, the size of the land, and the like. Instead of the semiconductor laser, for example, a xenon lamp, an infrared lamp, a carbon dioxide laser, or a solid laser may be used.
 以上、本発明の実施の形態を説明した。しかし、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。 The embodiment of the present invention has been described above. However, the above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.

Claims (8)

  1.  表面実装部品が実装されたプリント配線板の製造方法であって、
     前記表面実装部品は、複数の電極を含み、
     前記プリント配線板は、前記複数の電極に対応して設けられ、各々が対応する電極にはんだ付けされるべき複数のランドを含み、
     前記製造方法は、
     前記プリント配線板上にはんだを塗布するステップと、
     前記はんだを塗布した後、前記表面実装部品を前記プリント配線板上に載せるステップと、
     溶融はんだの表面張力による電極及びランド間の付着力が他の電極及びランド間の付着力よりも弱い電極を特定するステップと、
     前記特定された電極側のはんだを当該他の電極側のはんだよりも早く溶融させるように光ビームを照射するステップとを含む、製造方法。
    A method of manufacturing a printed wiring board on which surface-mounted components are mounted,
    The surface mount component includes a plurality of electrodes,
    The printed wiring board is provided corresponding to the plurality of electrodes, each including a plurality of lands to be soldered to the corresponding electrodes,
    The manufacturing method includes:
    Applying solder on the printed wiring board;
    After applying the solder, placing the surface-mounted component on the printed wiring board;
    Identifying an electrode whose adhesion between the electrode and the land due to the surface tension of the molten solder is weaker than the adhesion between the other electrode and the land;
    Irradiating a light beam so that the solder on the specified electrode side is melted faster than the solder on the other electrode side.
  2.  請求項1に記載の製造方法であってさらに、
     前記塗布されたはんだの前記ランドに対する位置ずれ及び/又は前記載せられた表面実装部品の電極の前記ランドに対する位置ずれを観察するステップを含み、
     前記特定するステップは、前記観察された位置ずれに基づいて、前記付着力が弱い電極を特定する、製造方法。
    The manufacturing method according to claim 1, further comprising:
    Observing misalignment of the applied solder with respect to the land and / or misalignment of the electrode of the mounted surface mount component with respect to the land,
    The specifying step is a manufacturing method in which an electrode having a weak adhesion is specified based on the observed displacement.
  3.  請求項1に記載の製造方法であって、
     前記複数のランドは、
     第1のランドと、
     前記第1のランドよりも広い第2のランドとを含み、
     前記特定するステップは、前記第2のランドに対応する電極を前記付着力が弱い電極として特定する、製造方法。
    The manufacturing method according to claim 1,
    The plurality of lands are:
    The first land,
    A second land wider than the first land,
    The specifying step is a manufacturing method in which an electrode corresponding to the second land is specified as an electrode having weak adhesion.
  4.  請求項1又は2に記載の製造方法であって、
     前記光ビームを照射するステップは、
     前記特定された電極に対する光ビームの照射を第1の時刻に開始するステップと、
     当該他の電極に対する光ビームの照射を前記第1の時刻よりも遅い第2の時刻に開始するステップとを含む、製造方法。
    The manufacturing method according to claim 1 or 2,
    Irradiating the light beam comprises:
    Starting irradiation of the light beam on the identified electrode at a first time;
    Starting to irradiate the other electrode with the light beam at a second time later than the first time.
  5.  請求項3に記載の製造方法であって、
     前記特定された電極及び当該他の電極に照射される光ビームは単一の照射装置により生成され、
     前記光ビームが前記特定された電極から当該他の電極まで移動するように前記単一の照射装置を制御するステップを含む、製造方法。
    It is a manufacturing method of Claim 3, Comprising:
    The light beam applied to the identified electrode and the other electrode is generated by a single irradiation device,
    A manufacturing method comprising the step of controlling the single irradiation device so that the light beam moves from the specified electrode to the other electrode.
  6.  請求項3に記載の製造方法であって、
     前記特定された電極に照射される光ビームは第1の照射装置により生成され、
     当該他の電極に照射される光ビームは前記第1の照射装置と異なる第2の照射装置により生成される、製造方法。
    It is a manufacturing method of Claim 3, Comprising:
    A light beam applied to the identified electrode is generated by a first irradiation device;
    The manufacturing method in which the light beam irradiated to the said other electrode is produced | generated by the 2nd irradiation apparatus different from the said 1st irradiation apparatus.
  7.  請求項1又は2に記載の製造方法であって、
     前記光ビームを照射するステップは、
     前記特定された電極に光ビームを第1の強度で照射するステップと、
     当該他の電極に光ビームを前記第1の強度よりも弱い第2の強度で照射するステップとを含む、製造方法。
    The manufacturing method according to claim 1 or 2,
    Irradiating the light beam comprises:
    Irradiating the identified electrode with a light beam at a first intensity;
    Irradiating the other electrode with a light beam at a second intensity lower than the first intensity.
  8.  表面実装部品をプリント配線板にはんだ付けするはんだ付け装置であって、
     前記表面実装部品は、複数の電極を含み、
     前記プリント配線板は、前記複数の電極に対応して設けられ、各々が対応する電極にはんだ付けされるべき複数のランドを含み、前記プリント配線板上にはんだが塗布され、前記表面実装部品は前記プリント配線板上に載せられ、
     前記はんだ付け装置は、
     溶融はんだの表面張力による電極及びランド間の付着力が他の電極及びランド間の付着力よりも弱い電極を特定する情報を受け付ける受付手段と、
     前記受付手段により受け付けられた情報により特定された電極側のはんだを当該他の電極側のはんだよりも早く溶融させるように光ビームを照射する照射手段とを含む、はんだ付け装置。
    A soldering device for soldering surface-mounted components to a printed wiring board,
    The surface mount component includes a plurality of electrodes,
    The printed wiring board is provided corresponding to the plurality of electrodes, each including a plurality of lands to be soldered to the corresponding electrodes, solder is applied on the printed wiring board, and the surface mount component is Placed on the printed wiring board,
    The soldering apparatus is
    Receiving means for receiving information for identifying an electrode whose adhesion between the electrode and the land due to the surface tension of the molten solder is weaker than the adhesion between the other electrode and the land;
    And an irradiating means for irradiating a light beam so as to melt the solder on the electrode side specified by the information received by the receiving means faster than the solder on the other electrode side.
PCT/JP2009/003821 2008-08-11 2009-08-07 Method of manufacturing printed wiring board with surface-mount component mounted thereon WO2010018679A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010524291A JP4575526B2 (en) 2008-08-11 2009-08-07 Method for manufacturing printed wiring board on which surface mount components are mounted
CN200980131288.3A CN102119587B (en) 2008-08-11 2009-08-07 Method of manufacturing printed wiring board with surface-mount component mounted thereon
KR1020107024625A KR101163003B1 (en) 2008-08-11 2009-08-07 Method of manufacturing printed wiring board with surface-mount component mounted thereon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008206896 2008-08-11
JP2008-206896 2008-08-11

Publications (1)

Publication Number Publication Date
WO2010018679A1 true WO2010018679A1 (en) 2010-02-18

Family

ID=41668826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003821 WO2010018679A1 (en) 2008-08-11 2009-08-07 Method of manufacturing printed wiring board with surface-mount component mounted thereon

Country Status (4)

Country Link
JP (1) JP4575526B2 (en)
KR (1) KR101163003B1 (en)
CN (1) CN102119587B (en)
WO (1) WO2010018679A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015477A (en) * 2010-05-31 2012-01-19 Tosei Electro Beam Kk Laser soldering device
JP2012227465A (en) * 2011-04-22 2012-11-15 Casio Comput Co Ltd Component installing method, and component installing structure
JP2017069297A (en) * 2015-09-29 2017-04-06 日本電気株式会社 Component mounting device, component mounting method and program
JP2018107400A (en) * 2016-12-28 2018-07-05 アズビル株式会社 Component mounting device and component mounting method
WO2022091290A1 (en) * 2020-10-29 2022-05-05 株式会社ニコン Soldering apparatus, soldering system, and processing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9768509B2 (en) * 2013-08-09 2017-09-19 Sumida Corporation Antenna coil component, antenna unit, and method of manufacturing the antenna coil component
JP7198583B2 (en) * 2018-02-02 2023-01-04 株式会社アマダウエルドテック LASER SOLDERING METHOD AND LASER SOLDERING APPARATUS
EP4346341A1 (en) * 2022-09-29 2024-04-03 Infineon Technologies AG Method for forming a power semiconductor module arrangement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324424A (en) * 2005-05-18 2006-11-30 Omron Corp Main cause of failure analyzing system
JP2008166489A (en) * 2006-12-28 2008-07-17 I-Pulse Co Ltd Laser reflow apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324424A (en) * 2005-05-18 2006-11-30 Omron Corp Main cause of failure analyzing system
JP2008166489A (en) * 2006-12-28 2008-07-17 I-Pulse Co Ltd Laser reflow apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015477A (en) * 2010-05-31 2012-01-19 Tosei Electro Beam Kk Laser soldering device
JP2012227465A (en) * 2011-04-22 2012-11-15 Casio Comput Co Ltd Component installing method, and component installing structure
JP2017069297A (en) * 2015-09-29 2017-04-06 日本電気株式会社 Component mounting device, component mounting method and program
JP2018107400A (en) * 2016-12-28 2018-07-05 アズビル株式会社 Component mounting device and component mounting method
WO2022091290A1 (en) * 2020-10-29 2022-05-05 株式会社ニコン Soldering apparatus, soldering system, and processing device

Also Published As

Publication number Publication date
CN102119587A (en) 2011-07-06
KR101163003B1 (en) 2012-07-09
KR20100126596A (en) 2010-12-01
JPWO2010018679A1 (en) 2012-01-26
JP4575526B2 (en) 2010-11-04
CN102119587B (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP4575526B2 (en) Method for manufacturing printed wiring board on which surface mount components are mounted
JP4346827B2 (en) Electronic component mounting method
JP4793187B2 (en) Electronic component mounting system and electronic component mounting method
JP6853186B2 (en) Equipment and methods for non-contact transfer and soldering of chips using flash lamps
JP2011216503A (en) Soldering method, method for manufacturing mounting substrate and soldering apparatus
CN110268220B (en) Substrate inspection apparatus, substrate inspection method, and substrate manufacturing method
JP3983274B2 (en) Electronic component mounting method and apparatus
JP2011171343A (en) Device and method for mounting of component
JP3622714B2 (en) Processing method
JP2002084097A (en) Electronic parts mounter and mounting method
KR20150047817A (en) Laser soldering apparatus for Semiconductor chip and PCB components
JP5823174B2 (en) Electronic component mounting position correction method and electronic component mounting position correction device
JP4014476B2 (en) Component mounting apparatus and component mounting method
JP3128891B2 (en) Component mounting method and component mounting device
JP3065750B2 (en) Soldering inspection correction device
JP2007134406A (en) Printing solder inspection apparatus
JPH10335806A (en) Method and equipment for manufacture circuit module
JP5946998B2 (en) Image processing apparatus and electronic component mounting machine
KR101359605B1 (en) Surface mount technology system
JP4962459B2 (en) Component mounting method
US20220416118A1 (en) Component mounting method, and component mounting system
JPH0964521A (en) Solder feeder and feeding method
JP2008066625A (en) Electronic component mounting device and electronic component packaging method
JP3983275B2 (en) Electronic component mounting method and apparatus
JP2007110171A (en) Method of mounting electronic components and apparatus thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131288.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806575

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010524291

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107024625

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09806575

Country of ref document: EP

Kind code of ref document: A1