WO2010016206A1 - フレキシブル半導体装置の製造方法 - Google Patents
フレキシブル半導体装置の製造方法 Download PDFInfo
- Publication number
- WO2010016206A1 WO2010016206A1 PCT/JP2009/003615 JP2009003615W WO2010016206A1 WO 2010016206 A1 WO2010016206 A1 WO 2010016206A1 JP 2009003615 W JP2009003615 W JP 2009003615W WO 2010016206 A1 WO2010016206 A1 WO 2010016206A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor device
- manufacturing
- layer
- flexible semiconductor
- sealing resin
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 194
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 103
- 230000009975 flexible effect Effects 0.000 title claims abstract description 101
- 238000000034 method Methods 0.000 title claims abstract description 101
- 239000011347 resin Substances 0.000 claims abstract description 263
- 229920005989 resin Polymers 0.000 claims abstract description 263
- 238000007789 sealing Methods 0.000 claims abstract description 104
- 238000000605 extraction Methods 0.000 claims abstract description 75
- 238000007639 printing Methods 0.000 claims abstract description 36
- 229910052751 metal Inorganic materials 0.000 claims description 43
- 239000002184 metal Substances 0.000 claims description 43
- 239000011888 foil Substances 0.000 claims description 40
- 230000015572 biosynthetic process Effects 0.000 claims description 21
- 238000005530 etching Methods 0.000 claims description 8
- 238000005096 rolling process Methods 0.000 claims description 6
- 230000003746 surface roughness Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 abstract description 39
- 238000000206 photolithography Methods 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 187
- 239000010408 film Substances 0.000 description 184
- 239000000463 material Substances 0.000 description 34
- 229920001955 polyphenylene ether Polymers 0.000 description 18
- 239000000758 substrate Substances 0.000 description 16
- 229920001721 polyimide Polymers 0.000 description 12
- 239000004642 Polyimide Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 239000010949 copper Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- 239000012212 insulator Substances 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000007646 gravure printing Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920006380 polyphenylene oxide Polymers 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- YKIOKAURTKXMSB-UHFFFAOYSA-N adams's catalyst Chemical compound O=[Pt]=O YKIOKAURTKXMSB-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- WEUCVIBPSSMHJG-UHFFFAOYSA-N calcium titanate Chemical compound [O-2].[O-2].[O-2].[Ca+2].[Ti+4] WEUCVIBPSSMHJG-UHFFFAOYSA-N 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000012769 display material Substances 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical class [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N oxygen(2-);yttrium(3+) Chemical class [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/464—Lateral top-gate IGFETs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/80—Constructional details
- H10K10/88—Passivation; Containers; Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/13—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/60—Forming conductive regions or layers, e.g. electrodes
- H10K71/611—Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method of manufacturing a flexible semiconductor device. More particularly, the present invention relates to a method of manufacturing a flexible semiconductor device that can be used as a TFT.
- a display medium is formed using an element using liquid crystal, organic EL (organic electroluminescence), electrophoresis or the like.
- a technique using an active drive element (TFT element) as an image drive element has become mainstream in order to ensure uniformity of screen luminance, screen rewriting speed, and the like.
- TFT element active drive element
- these TFT elements are formed on a glass substrate, and a liquid crystal, an organic EL element and the like are sealed.
- a semiconductor such as a-Si (amorphous silicon) or p-Si (polysilicon) can be mainly used for the TFT element.
- a TFT element is manufactured by multilayering these Si semiconductors (and metal films as necessary) and sequentially forming source, drain, and gate electrodes on a substrate. The fabrication of such TFT devices typically requires sputtering and other vacuum based fabrication processes.
- the manufacturing process of the vacuum system including the vacuum chamber has to be repeated many times to form each layer, and the apparatus cost and the running cost are very large.
- the apparatus cost and the running cost are very large.
- a drastic design change of a manufacturing apparatus such as a vacuum chamber is required to meet the needs for enlargement of a display screen.
- the substrate material is restricted to be a material that can withstand the high process temperature.
- glass must be used as a substrate material. Therefore, when a thin display such as electronic paper or digital paper is configured using such a conventionally known TFT element, the display becomes heavy and lacks flexibility. Furthermore, because of the glass substrate, it may be broken by the impact of a drop.
- organic semiconductor materials have been vigorously promoted as an organic compound having high charge transportability. These compounds are expected to be applied to organic laser oscillation devices and organic thin film transistor devices (organic TFT devices) in addition to charge transport materials for organic EL devices.
- FIG. 17 schematically shows a cross-sectional configuration of a flexible semiconductor device 1000 including an organic semiconductor 140 using a printing method.
- the flexible semiconductor device 1000 shown in FIG. 17 has a structure in which each layer (120, 130, 140, 150) is stacked on a resin substrate (for example, PET, PI) 110 by printing.
- a resin substrate for example, PET, PI
- the wiring layer 120, the insulating layer 130, the organic semiconductor layer 140, and the wiring layer 150 are formed on the resin substrate 110 to construct an organic transistor.
- Print electronics technology using such a printing method has various advantages such as vacuum process relaxation (de-vacuum) and low temperature process implementation (de-high temperature).
- vacuum process relaxation de-vacuum
- low temperature process implementation de-high temperature
- photolitho process in which the photolithography process is not performed.
- the inventors of the present application have attempted to solve the above-discussed problems in a new direction and solve those problems, instead of pursuing the conventional extension.
- the present invention has been made in view of the above circumstances, and its main object is to provide a flexible semiconductor device excellent in productivity.
- a method for manufacturing a flexible semiconductor device comprising: (I) forming an insulating film on the upper surface of the resin film; (Ii) forming an extraction electrode pattern on the upper surface of the resin film; (Iii) forming a semiconductor layer on the insulating film to be in contact with the extraction electrode pattern, and (iv) forming a sealing resin layer on the top surface of the resin film so as to cover the semiconductor layer and the extraction electrode pattern Comprising the process,
- a method of manufacturing a flexible semiconductor device wherein at least one of the formation steps (i) to (iv) is performed by a printing method.
- all the forming steps (i) to (iv) are performed by a printing method.
- the present invention is characterized in that the formation steps of the above steps (i) to (iv) are sequentially performed, and at the time of the execution, at least one formation step or all the formation steps are performed by a printing process.
- the manufacturing method of the present invention is to devise various stacking relationships so that a simple process such as a printing method can be carried out or it is preferable to such a simple process.
- the steps (i) to (iv) themselves have the features of the present invention.
- the term “flexible” of "flexible semiconductor device” as used herein substantially means that the semiconductor device has bendable flexibility.
- the "flexible semiconductor device” in the present invention can be referred to as a “flexible semiconductor device” or a “flexible semiconductor element” in view of the configuration of the device.
- the term "printing method” means a process of forming a film by various printing techniques without using a vacuum process or photolithography. That is, the “printing method” in the present invention means, in a broad sense, a process of forming a film by applying, supplying, and drying the raw material, etc. Printing by a method, gravure printing, screen printing, flexographic printing, offset printing and the like can be mentioned.
- the lower surface of the extraction electrode pattern is exposed from the sealing resin layer by peeling the resin film.
- the resin film peeled off in the production of a certain flexible semiconductor device can be reused later for the production of other flexible semiconductor devices. Reuse of such a resin film may be performed by a roll-to-roll method.
- the source electrode and the drain electrode are formed on the lower surface of the extraction electrode pattern exposed from the sealing resin layer.
- the gate electrode is formed on the sealing resin layer. That is, the gate electrode is formed above the semiconductor layer through the sealing resin.
- the gate electrode is formed by attaching the lower surface of the metal foil to the upper surface of the sealing resin layer to provide the metal foil on the sealing resin layer, and etching the metal foil to form the metal foil
- the method may include the step of forming a gate electrode.
- the gate electrode is not limited to being formed on the sealing resin layer.
- the gate electrode may be formed on the lower surface of the insulating film.
- the insulating film may be used as the gate insulating film, and the gate electrode may be formed on the lower surface of the gate insulating film.
- the insulating film and the extraction electrode pattern are formed on the upper surface of the resin film. Then, a semiconductor layer is formed on the upper surface of the insulating film so as to be in contact with the extraction electrode pattern, and then a sealing resin is formed on the upper surface of the resin film so as to cover the semiconductor layer and the extraction electrode pattern. Therefore, each layer constituting the TFT can be formed on the resin film by a simple process using, for example, a printing method.
- the peeled resin film is recovered, and in the subsequent manufacturing processes. It can be reused.
- a resin film having high dimensional stability is expensive, the technical significance that the resin film can be recovered and reused is great.
- FIG. 1 A schematic diagram showing the manufacturing aspect of a flexible semiconductor device by roll-to-roll method Sectional drawing which illustrates the modification of the flexible semiconductor device obtained by the manufacturing method of this invention (A)-(c) are process sectional drawings which show typically the manufacturing process of the flexible semiconductor device of this invention (Embodiment 2)
- FIG. 2 A schematic diagram showing the manufacturing aspect of a flexible semiconductor device by roll-to-roll method Sectional drawing which illustrates the modification of the flexible semiconductor device obtained by the manufacturing method of this invention
- FIG. drawing A schematic diagram showing the manufacturing aspect of a flexible semiconductor device by roll-to-roll method Sectional drawing which illustrates the modification of the flexible semiconductor device obtained by the manufacturing method of this invention (A)-(c) are process sectional drawings which show typically the manufacturing process of the flexible semiconductor device of this invention (Embodiment 2)
- A) to (d) are process sectional views schematically showing the process for manufacturing the flexible semiconductor device of the present invention (Embodiment 2) Sectional drawing which illustrates the modification of the flexible semiconductor
- the “direction” described in the present specification is a direction based on the positional relationship between the resin film 60 and the semiconductor layer 20, and will be described in the vertical direction in the drawing for the sake of convenience. Specifically, the side corresponding to the vertical direction of each drawing, the side on which the semiconductor layer 20 is formed on the basis of the resin film 60 is referred to as “upward”, and the side on which the semiconductor layer 20 is not formed on the basis of the resin film 60 Is "downward”.
- FIGS. 1A and 1B schematically show cross sections of a flexible semiconductor device 100 obtained by the practice of the present invention.
- the flexible semiconductor device 100 includes the semiconductor layer 20 constituting the TFT, the insulating film (protective layer) 10, the source extraction electrode 30s, the drain extraction electrode 30d, and the gate electrode 50g. These various elements are laminated on a resin film 60, and an insulating film, a semiconductor layer, and extraction electrodes (10, 20, 30 s, 30 d) are sealed by a sealing resin layer 40.
- the insulating film 10 and the source / drain extraction electrodes 30s and 30d are formed on the upper surface 62 of the resin film 60, and the insulating film is also formed.
- a semiconductor layer 20 is formed on the top surface 10 so as to be in contact with each of the extraction electrodes 30s and 30d.
- a sealing resin layer 40 is provided to enclose the source / drain extraction electrodes 30s and 30d and the semiconductor layer 20, and the gate electrode 50g is provided above the semiconductor layer 20 via the sealing resin layer 40. It is provided.
- the resin film 60 functions as a support for supporting each layer (10, 20, 30s, 30d) constituting the TFT in the manufacturing process.
- the material of the resin film 60 is not particularly limited as long as the flexible properties and the like are not affected.
- a polyimide resin can be mentioned as an example.
- the insulating film 10 formed on the upper surface 62 of the resin film functions as a protective layer for protecting the semiconductor layer 20.
- a resin-based or inorganic insulator-based film having insulating properties is used as the insulating film 10.
- a polyphenylene ether resin film can be mentioned as an example of a resin system.
- the semiconductor layer 20 is provided on the insulating film 10, but as illustrated (see FIG. 1A), the semiconductor layer 20 is provided on a part of the upper surface of the insulating film 10 (near the center in the figure). And arranged so as to cover the extension portions 32s and 32d of the extraction electrodes 30s and 30d.
- the semiconductor layer 20 include, for example, an organic semiconductor layer made of pentacene or the like.
- the extraction electrodes 30s, 30d are formed on the upper surface 62 of the resin film 60 and are in contact with the semiconductor layer 20. That is, the part 32 s of the extraction electrode 30 s and the part 32 d of the extraction electrode 30 d extend on the top surface of the insulating film 10 and are in contact with the semiconductor layer 20.
- the flexible semiconductor device 100 can be operated without the extension portions 32s and 32d. However, by providing the extension portions 32s and 32d, the channel length (here, the distance between the extraction electrode 30s and the extraction electrode 30d) can be shortened, and as a result, the speed can be increased due to the shortening of the channel length. It is possible to
- the materials of the extraction electrodes 30s and 30d may be various metal materials, conductive oxides, and the like.
- the sealing resin layer 40 is provided so as to cover the semiconductor layer 20, the insulating film 10, and the extraction electrodes 30s and 30d, but has flexibility and can be used for "sealing" as the name implies. It is a thing.
- a resin material which comprises the sealing resin layer 40 the resin material which has flexibility after hardening is preferable,
- polyphenylene ether resin can be mentioned as an example.
- the gate electrode 50 g is formed above the semiconductor layer 20 with the sealing resin layer 40 interposed therebetween. That is, the gate electrode 50 g is disposed to face the semiconductor layer 20 with the sealing resin layer 40 interposed therebetween. In such an arrangement, a portion of the sealing resin layer 40 sandwiched between the semiconductor layer 20 and the gate electrode 50 g functions as the gate insulating film 42.
- the material of the gate electrode 50g may be a metal material or the like having good conductivity.
- a flexible semiconductor device 100 'as shown in FIG. 1 (b) is also obtained.
- the flexible semiconductor device 100 ′ shown in FIG. 1B corresponds to the flexible semiconductor device 100 shown in FIG. 1A from which the resin film 60 is removed.
- the resin film 60 is peeled off from the sealing resin layer 40 of the flexible semiconductor device 100 shown in FIG.
- a wiring layer may be formed on the lower surface 44 of the sealing resin layer 40.
- the source electrode 50s is provided to the lower surfaces 34s and 34d of the extraction electrodes 30s and 30d exposed from the sealing resin layer 40.
- the drain electrode 50d can be formed (see FIG. 5).
- step (i) is first carried out. That is, as shown in FIG. 2A, the insulating film 10 is formed on the upper surface 62 of the resin film 60. As described above, the resin film 60 to be used functions as a support for supporting the insulating film 10 and the semiconductor layer 20 in the manufacturing process.
- the thickness of the resin film 60 is preferably in the range of about 10 ⁇ m to about 100 ⁇ m, more preferably in the range of about 20 ⁇ m to about 50 ⁇ m, and for example, about 38 ⁇ m.
- polyimide (PI) resin As a material of the resin film 60, for example, polyimide (PI) resin, polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin, polyphenylene sulfide (PPS) resin, polyphenylene ether (PPE) resin, aramid resin, liquid crystal polymer Etc. can be mentioned.
- polyimide (PI) resin As a particularly preferable resin material, polyimide (PI) resin can be mentioned.
- the polyimide (PI) resin is excellent in the characteristics of heat resistance and dimensional stability, and is particularly preferable as a material constituting the support of the TFT.
- the insulating film 10 formed on the resin film 60 is a resin-based or inorganic insulator-based insulating film.
- the resin-based insulating film 10 include films made of epoxy resin, polyimide (PI) resin, polyphenylene ether (PPE) resin, polyphenylene oxide resin (PPO), polyvinyl pyrrolidone (PVP) resin, and the like.
- PI polyimide
- PPE polyphenylene ether
- PPO polyphenylene oxide resin
- PVP polyvinyl pyrrolidone
- an insulating film made of polyphenylene ether (PPE) resin can be mentioned.
- Polyphenylene ether (PPE) resin is high in strength and excellent in heat resistance and insulation, and is particularly preferable as a material for protecting the semiconductor layer 20.
- the insulating film 10 of the inorganic insulator type for example, tantalum oxide (Ta 2 O 5 etc.), aluminum oxide (Al 2 O 3 etc.), silicon oxide (SiO 2 etc.), zeolite oxide Metal oxides such as ZrO 2 etc., titanium oxides (TiO 2 etc), yttrium oxides (Y 2 O 3 etc), lanthanum oxides (La 2 O 3 etc), hafnium oxides (HfO 2 etc) And films made of nitrides of these metals. It may be a film made of a dielectric such as barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ), calcium titanate (CaTiO 3 ) or the like.
- a dielectric such as barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ), calcium titanate (CaTiO 3 ) or the like.
- the formation of the insulating film 10 on the resin film 60 can be performed by a printing method / printing process.
- a coating agent which may be a resist containing a photosensitive agent
- the insulating film 10 can be formed by drying, heat treatment and curing.
- the insulating film 10 made of polyphenylene ether (PPE) resin can be formed by applying (for example, gravure printing) and curing uncured polyphenylene ether (PPE) resin at a formation position.
- the insulating film 10 may be formed by a thin film formation method (sputtering method or the like) using a mask.
- the thickness of the resin-based or inorganic insulator-based insulating film 10 to be formed is preferably in the range of about 0.1 ⁇ m to about 2 ⁇ m, more preferably in the range of about 0.2 ⁇ m to about 1 ⁇ m, for example, 0.3 ⁇ m It is an extent.
- step (ii) is carried out. That is, as shown in FIG. 2B, the source extraction electrode pattern 30s and the drain extraction electrode pattern 30d are formed on the upper surface 62 of the resin film 60.
- the extraction electrodes 30s and 30d for example, gold (Au), silver (Ag), copper (Cu), nickel (Ni), chromium (Cr), cobalt (Co), magnesium (Mg), calcium (Ca) ), Platinum (Pt), molybdenum (Mo), iron (Fe), zinc (Zn), titanium (Ti), tungsten (W) and other metallic materials, tin oxide (SnO 2 ), indium tin oxide (ITO) And conductive oxides such as fluorine-containing tin oxide (FTO), ruthenium oxide (RuO 2 ), iridium oxide (IrO 2 ), platinum oxide (PtO 2 ), and the like.
- FTO fluorine-containing tin oxide
- RuO 2 ruthenium oxide
- IrO 2 iridium oxide
- platinum oxide PtO 2
- the method of forming the extraction electrode patterns 30s and 30d can also be performed by a printing method and a printing process.
- the source extraction electrode pattern 30s and the drain extraction electrode pattern 30d can be formed on the upper surface 62 of the resin film 60 by an inkjet printing method or the like.
- the formed extraction electrode patterns 30s and 30d are preferably laminated on the upper surface 62 of the resin film 60 so as to partially overlap the insulating film 10 as shown in FIG. 2 (b). That is, it is preferable to form the lead-out electrode patterns 30s, 30d on the resin film 60 so that a part thereof extends onto the resin film 60.
- extraction electrode patterns 30s and 30d it is also possible to use other methods (a vacuum evaporation method, a sputtering method, etc.) for formation of extraction electrode patterns 30s and 30d, for example, a RuO 2 layer etc. may be formed using a vacuum evaporation method. .
- the thickness of the extraction electrode patterns 30s, 30d formed on the upper surface 62 of the resin film 60 is preferably in the range of about 50 nm to about 150 nm, more preferably in the range of about 80 nm to about 120 nm, for example about 100 nm.
- step (iii) is carried out. That is, as shown in FIG. 2C, the semiconductor layer 20 is formed on the insulating film 10. The formation of the semiconductor layer 20 is performed such that the semiconductor layer 20 is in contact with the extraction electrode patterns 30s and 30d.
- the semiconductor layer 20 to be formed is, for example, an organic semiconductor.
- a material of the organic semiconductor a material having high mobility is preferable, and for example, pentacene can be mentioned.
- an organic semiconductor material which can be used for this invention nanocarbon materials other than a polymeric material (for example, polythiophene or its derivative), a low molecular material (for example, pentacene, solubilization pentacene) (For example, carbon nanotube, SiGe nanowire, fullerene, modified fullerene), inorganic-organic mixed material (for example, composite system of (C 6 H 5 C 2 H 4 NH 3 ) and SnI 4 ) and the like can be mentioned.
- the method for forming the semiconductor layer 20 is not particularly limited, and any method may be used as long as the semiconductor layer can be formed on the insulating film so as to be in contact with the extraction electrode pattern.
- the semiconductor layer 20 can be formed by a printing method and a printing process.
- a printing process can be suitably used.
- the semiconductor layer 20 can be formed, for example, by spraying a P3HT solution onto the insulating film by an inkjet method and then drying.
- the organic semiconductor layer 20 may be formed by a vapor deposition process.
- the semiconductor layer 20 is preferably formed without protruding from the top surface of the insulating film 10.
- the sealing resin layer 40 is used as a component of the TFT, the semiconductor layer 20 may be degraded due to the presence of water vapor or oxygen contained in the sealing resin layer 40. Therefore, by forming the semiconductor layer 20 without protruding from the upper surface of the insulating film 10, the insulating film 10 can be suitably functioned as a protective layer for protecting the semiconductor layer 20.
- the thickness of the semiconductor layer 20 to be formed is preferably in the range of about 50 nm to about 150 nm, more preferably in the range of about 80 nm to about 120 nm, and for example, about 100 nm.
- step (iv) is carried out. That is, as shown in FIG. 3A, the sealing resin layer 40 is formed on the upper surface of the resin film 60 so as to cover the semiconductor layer 20 and the extraction electrodes 30s and 30d.
- a resin material of the sealing resin layer 40 what has flexibility after hardening is preferable.
- a resin material for example, epoxy resin, polyimide (PI) resin, acrylic resin, polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin, polyphenylene sulfide (PPS) resin, polyphenylene ether (PPE) resin Or their composites and the like.
- PI polyimide
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- PPS polyphenylene sulfide
- PPE polyphenylene ether
- the method for forming the sealing resin layer 40 is not particularly limited, and any method may be used if the sealing resin layer can be formed on the upper surface of the resin film so as to cover the semiconductor layer and the extraction electrode pattern. You may use. Particularly in the present invention, the formation of the sealing resin layer can be performed by a printing method and a printing process.
- the sealing resin layer 40 can be formed by applying and drying an uncured liquid resin (for example, a coating agent in which a resin material is mixed in a liquid medium) on the upper surface of the resin film 60 by spin coating or the like.
- the semiconductor layer 20 is preferably sealed.
- a method may be employed in which an uncured resin formed in advance in a film shape is bonded to the upper surface 62 of the resin film 60 and cured.
- a method may be employed in which an adhesive material is applied to the surface of a resin formed in advance in a film shape, and the surface on which the adhesive material is applied is bonded to the upper surface of the resin film 60.
- a method of bonding the sealing resin layer 40 and the resin film 60 a method of applying pressure by roll laminating, vacuum laminating, pressing or the like may be appropriately adopted.
- the semiconductor layer 20 and the extraction electrodes 30s and 30d are embedded in the lower surface of the sealing resin layer 40, and the semiconductor layer 20 can be sealed by the sealing resin layer 40.
- an uncured polyphenylene ether (PPE) resin molded into a film may be bonded to the upper surface of the resin film 60.
- the thickness of the sealing resin layer 40 formed in step (iv) is preferably in the range of about 1 ⁇ m to about 7 ⁇ m, more preferably in the range of about 2 ⁇ m to about 5 ⁇ m, for example, about 4 ⁇ m. Since the sealing resin layer 40 functions as a gate insulating film, the thickness of the sealing resin layer 40 is preferably thin from the viewpoint of lowering the gate voltage, and in that respect 5 ⁇ m or less is preferable, but it is necessary It may be adjusted appropriately according to the TFT characteristics and the like.
- the insulating film 10 and the extraction electrode patterns 30s and 30d are formed on the upper surface 62 of the resin film 60 by passing through the above steps (i) to (iv).
- the semiconductor layer 20 is formed on the insulating film 10 so as to be in contact with the electrode patterns 30s and 30d, and then the sealing resin layer 40 is formed on the upper surface 62 of the resin film 60 so as to cover the semiconductor layer 20 and the extraction electrode patterns 30s and 30d. Is formed. Therefore, in the manufacturing method of the present invention, it can be said that each layer constituting the TFT can be formed on the resin film 60 by a simple process using, for example, a printing method or the like.
- the gate electrode 50g may be formed.
- the formation of the gate electrode 50g can use, for example, a printing process such as an inkjet method. Also, without being limited thereto, for example, the gate electrode 50 may be formed through etching a metal foil.
- the metal foil 50 is formed on the sealing resin layer 40. That is, the metal foil 50 is formed on the sealing resin layer 40 by bonding the lower surface of the metal foil 50 to the upper surface of the sealing resin layer 40.
- the material of the metal foil 50 is particularly preferably a metal material having good conductivity, and may be, for example, copper (Cu), nickel (Ni), aluminum (Al), stainless steel (SUS) or the like.
- the thickness of the metal foil 50 is preferably in the range of about 4 ⁇ m to about 25 ⁇ m, more preferably in the range of about 8 ⁇ m to about 16 ⁇ m, and for example, about 12 ⁇ m.
- the metal foil 50 to be bonded to the sealing resin layer it is preferable to use a metal foil having a surface roughness Ra of 300 nm or less on the lower surface.
- the roughness of the lower surface of the metal foil 50 is preferably 300 nm or less in arithmetic average roughness Ra, that is, 0 (excluding 0) to 300 nm, and more preferably 10 to 300 nm.
- arithmetic mean roughness (Ra) as referred to in the present specification means the mean value from the roughness curve as shown in FIG. 4 (in the present invention, "cross-sectional shape profile on the lower surface of metal foil 50").
- the sealing resin layer 40 (especially as a gate insulating film) is formed by the portion which became thick due to the thickness variation of the metal foil 50. It is possible to prevent the film thickness of the functional part from becoming uneven. That is, the distance between the metal foil and the semiconductor layer can be kept constant. In addition, it is possible to avoid the problem that (a part of) the metal foil penetrates the sealing resin layer 40 due to the thickened portion due to the thickness variation of the metal foil 50. That is, as a result, the flexible semiconductor device 100 can be stably manufactured.
- a rolled copper foil can be used preferably, for example.
- the gate electrode 50g can be formed by etching the metal foil 50 (see FIG. 3C).
- Such an etching method is not particularly limited, and a conventionally known method (typically, etching using a photolithographic process) may be used.
- the semiconductor layer 20, the insulating film 10, the source extraction electrode 30s, the drain extraction electrode 30d, the sealing resin layer 40, and the gate electrode 50g are formed on the resin film 60.
- the formed flexible semiconductor device 100 can be obtained.
- the resin film 60 may be peeled off from the sealing resin layer 40 as shown in FIG.
- each layer of the TFT formed on the resin film 60 can be transferred to the sealing resin layer 40, and the lower surfaces 34s and 34d of the extraction electrode patterns 30s and 30d are exposed from the sealing resin layer 40. be able to.
- the resin film 60 is composed of layers (10, 20, 30s, 30d) as shown in FIG. 2 (c).
- a plurality of TFTs can be formed.
- part of the plurality of TFTs can be partially transferred. That is, before performing the bonding process of the sealing resin layer 40, each of the plurality of TFTs is inspected and evaluated, and from among them, only those which have been evaluated as non-defective items are selected to form the sealing resin layer 40. It can be partially attached. As a result, the occurrence of defects in the final product can be prevented in the process of manufacture, and waste of materials and the like in the subsequent steps can be eliminated.
- the lower surfaces 34s and 34d of the electrode patterns 30s and 30d are the sealing resin layer 40 and It is in a "flat state" with the lower surface of the insulating film 10. Therefore, the source electrode 50s and the drain electrode 50d can be suitably formed on the lower surfaces 34s and 34d of the extraction electrode patterns 30s and 30d exposed from the sealing resin layer 40 (see FIG. 5).
- a metal having good conductivity is preferable. For example, copper (Cu), nickel (Ni), aluminum (Al), stainless steel (SUS) can be used. .
- a printing process such as an inkjet method can be used. Alternatively, other methods (vacuum deposition, sputtering, etc.) may be used.
- a mechanical peeling method involving stress may be used as a method of peeling the resin film 60.
- a physical / chemical peeling method for reducing the adhesion between the resin film 60 and the sealing resin layer 40 for example, a heat-peelable thermal foam film between the resin film 60 and the sealing resin layer 40 And the like.
- the resin film 60 thus peeled can be recovered and reused in the manufacturing process of the flexible semiconductor device from the next time onwards.
- it is preferable to use a resin film 60 having high dimensional stability In order to efficiently manufacture the flexible semiconductor device 100 with high yield, it is preferable to use a resin film 60 having high dimensional stability. However, since such a resin film 60 having high dimensional stability is expensive, it can be said that the technical significance of recovering and reusing the resin film is great.
- a roll-to-roll manufacturing method it is preferable to implement the aspect which collect
- RTR roll-to-roll manufacturing
- the respective layers (10, 20, 30s, 30d) constituting the TFT can be formed on the upper surface 62 of the resin film 60 by a simple process such as a printing method.
- a simple process such as a printing method.
- the respective layers (10, 20, 30s, 30d) of the TFT are formed on the upper surface 62 of the resin film 60.
- a process is performed in which the sealing resin layer 40 provided from the roll-like one is attached and then taken up again as a roll.
- FIG. 6 An example of a roll-to-roll manufacturing process is shown in FIG.
- the step of transferring each layer 300 of the TFT from the resin film 60 to the sealing resin layer 40 (which may correspond to each step shown in FIGS. It is done by two-roll method.
- a roll of the resin film 60 on which the respective layers 300 (the insulating film 10, the semiconductor layer 20, and the extraction electrodes 30s and 30d) of the TFTs are formed on the upper surface is wound into a roll 600.
- the resin film 60 is sent out from the roll 600 in the direction of the arrow "72" by the rotation of the conveyance rollers 500A and 500B, and conveyed to a position above the pressure roller 510B.
- the metal foil 50 is bonded to the upper surface of the sealing resin layer 40 formed into a film shape, and the one wound into a roll 400 is prepared.
- the sealing resin layer 40 and the metal foil 50 are fed from the roll 400 by the rotation of the conveyance roller, and conveyed to a position below the pressure roller 510A.
- the respective layers 300 of the TFT formed on the upper surface of the resin film 60 are aligned so as to face the lower surface of the sealing resin layer 40, and are pressed by the pressure rollers 510A and 510B.
- the lower surface of the sealing resin layer 40 is bonded.
- each layer 300 of the TFT on the resin film can be embedded in the lower surface of the sealing resin layer 40.
- the sealing resin layer 40 may be thermally cured by passing through a heating zone (for example, in a drying furnace) 530 having a predetermined temperature.
- the resin film 60 and the sealing resin layer 40 are conveyed to the positions of the rollers 520A and 520B in a bonded state. Then, when the resin film 60 is peeled from the lower surface of the sealing resin layer 40 with the rotation of the rollers 520A and 520B, the respective layers 300 of the TFT are transferred to the lower surface of the sealing resin layer 40. Thus, each layer 300 of the TFT can be transferred to the sealing resin layer 40.
- the sealing resin layer 40 after transfer is taken up on a roll 401 and delivered to the next step (for example, a cutting step). Also, the resin film 60 after transfer is taken up again by the roll 601 and can be reused in the next and subsequent manufacturing processes.
- the apparatuses for executing the respective steps are connected to one another, and the resin film 60 flows continuously between the apparatuses, so that the labor and the like involved in the transportation can be largely eliminated.
- automation of the production line becomes easy, and continuous production becomes possible.
- Embodiment 2 described below is a process of forming a semiconductor layer on the (ii) ′ insulating film in place of the step (ii) and the step (iii) of the above-mentioned Embodiment 1;
- the method corresponds to an embodiment in which the step of forming the extraction electrode pattern on the upper surface of the resin film so as to be in contact with the semiconductor layer is performed.
- the gate electrode 50g is formed on the lower surface 12 of the insulating film 10. It is located on the same surface (the lower surface 44 of the sealing resin) as the source electrode 50s and the drain electrode 50d.
- the insulating film 10 functions not only as a protective layer for protecting the semiconductor layer 20 but also as a gate insulating film.
- the lead-out electrodes 30s, 30d are formed on the semiconductor layer 20. That is, in the flexible semiconductor device 100 ′ ′, the gate insulating film 10, the semiconductor layer 20, and the extraction electrodes 30s and 30d are stacked in this order from the lower side.
- FIGS. 8A to 8C and FIGS. 9A to 9D An example of a manufacturing process of the flexible semiconductor device 100 ′ ′ will be described with reference to FIGS. 8A to 8C and FIGS. 9A to 9D.
- the manufacturing method of the flexible semiconductor device 100, 100 ′ described above Description of the same points will be omitted.
- the insulating film 10 is formed on the upper surface 62 of the resin film 60, and then, as shown in FIG. 8B, the semiconductor layer 20 is formed on the insulating film 10. .
- the method for forming the insulating film 10 and the semiconductor layer 20 is not particularly limited, and may be formed, for example, in the same manner as in Embodiment 1 described above.
- the extraction electrode patterns 30s and 30d are formed on the upper surface 62 of the resin film 60 so as to contact the semiconductor layer 20.
- the source extraction electrode pattern 30s and the drain extraction electrode pattern 30d are formed so as to cover a part of the peripheral portion of the semiconductor layer 20.
- the sealing resin layer 40 is formed on the upper surface 62 of the resin film 60 so as to cover the semiconductor layer 20 and the extraction electrode patterns 30s and 30d.
- the method for forming the sealing resin layer 40 is not particularly limited, and may be formed, for example, in the same manner as in Embodiment 1 described above.
- the sealing resin 40 is formed by bonding an uncured resin, which has been previously formed into a film shape, onto the upper surface 62 of the resin film 60 and curing the resin.
- each layer of the TFT formed on the resin film 60 can be transferred to the sealing resin layer 40.
- the lower surfaces of the extraction electrode patterns 30s, 30d can be exposed from the sealing resin layer 40.
- the source electrode 50s and the drain electrode 50d are formed on the lower surface of the extraction electrode patterns 30s and 30d exposed from the sealing resin layer 40.
- the gate electrode 50 g is formed below the semiconductor layer 20 (that is, on the lower surface 12 of the gate insulating film 10) via the gate insulating film 10.
- the method for forming each of the electrodes 50g, 50s, and 50d is not particularly limited, and may be formed, for example, in the same manner as in Embodiment 1 described above.
- a flexible semiconductor device 100 ′ ′ as shown in FIG. 7 can be constructed.
- First aspect A method for manufacturing a flexible semiconductor device, comprising: (I) forming an insulating film on the upper surface of the resin film; (Ii) forming an extraction electrode pattern on the upper surface of the resin film; (Iii) forming a semiconductor layer on the insulating film to be in contact with the extraction electrode pattern, and (iv) forming a sealing resin layer on the top surface of the resin film so as to cover the semiconductor layer and the extraction electrode pattern
- a method of manufacturing a flexible semiconductor device comprising the step of performing at least one of the formation steps (i) to (iv) by a printing method.
- Second aspect A method of manufacturing a flexible semiconductor device according to the first aspect, wherein all the steps (i) to (iv) are formed by a printing method.
- Third aspect A flexible semiconductor according to the first or second aspect, wherein the lower surface of the extraction electrode pattern is exposed from the sealing resin layer by peeling the resin film after the step (iv).
- Device manufacturing method Fourth aspect: In the third aspect, in manufacturing a plurality of flexible semiconductor devices, reusing a resin film peeled off in the manufacture of a certain flexible semiconductor device for the manufacture of another flexible semiconductor device at a later time A manufacturing method of a flexible semiconductor device characterized by the above.
- Fifth aspect A method of manufacturing a flexible semiconductor device according to the fourth aspect, wherein reuse of the resin film is performed by a roll-to-roll method.
- a source electrode and a drain electrode are formed on the lower surface of the extraction electrode pattern exposed from the sealing resin layer.
- a metal foil having a surface roughness (Ra) of the lower surface of 300 nm or less is used as the metal foil to be attached to the upper surface of the sealing resin layer.
- An eleventh aspect A method of manufacturing a flexible semiconductor device according to any one of the first to tenth aspects, wherein the gate electrode is formed on the lower surface of the insulating film.
- a double gate flexible semiconductor device may be obtained. That is, in addition to the gate electrode 50g on the upper surface of the sealing resin, a further gate electrode 54g may be formed below the semiconductor layer 20 via the insulating film 10.
- the additional gate electrode 54g can be formed in the same step as the source electrode 50s and the drain electrode 50d shown in FIG.
- the double gate structure by adopting the double gate structure, more current can be caused to flow between the source and the drain as compared with the case of one gate electrode. Further, even when the same amount of current flows as in the case of one gate electrode, the amount of current flowing per gate can be reduced, and as a result, the gate voltage can be lowered.
- the threshold voltage of the semiconductor element can be changed, so that the variation of the semiconductor element can be reduced. Furthermore, there is an advantage that different output sizes and frequency outputs can be obtained by using one gate electrode for modulation.
- the manufacturing method of the flexible semiconductor device of the present invention is excellent in the productivity of the flexible semiconductor device.
- the obtained flexible semiconductor device can also be used for various image display units, and can be used for electronic paper, digital paper, and the like.
- a television image display unit as shown in FIG. 11, an image display unit of a mobile phone as shown in FIG. 12, an image display unit of a mobile personal computer or a notebook personal computer as shown in FIG. It can be used as an image display unit of a digital still camera and a camcorder as shown, and an image display unit of electronic paper as shown in FIG.
- the flexible semiconductor device obtained by the manufacturing method of the present invention is also adapted to various applications (for example, RF-IDs, memories, MPUs, solar cells, sensors, etc.) currently being considered for application in printing electronics. be able to.
Landscapes
- Thin Film Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
フレキシブル半導体装置を製造するための方法であって、
(i)樹脂フィルムの上面に絶縁膜を形成する工程、
(ii)樹脂フィルムの上面に取出し電極パターンを形成する工程、
(iii)取出し電極パターンと接するように、絶縁膜の上に半導体層を形成する工程、ならびに
(iv)半導体層および取出し電極パターンを覆うように、樹脂フィルムの上面に封止樹脂層を形成する工程
を含んで成り、
上記(i)~(iv)の少なくとも1つの形成工程を印刷法により行うことを特徴とするフレキシブル半導体装置の製造方法が提供される。好ましくは、上記(i)~(iv)の全ての形成工程を印刷法により行う。
まず、図1(a)および図1(b)を参照して、本発明の製造方法で得られるフレキシブル半導体装置100について簡単に説明しておく。図1(a)および図1(b)は、本発明の実施によって得られるフレキシブル半導体装置100の断面を模式的に示している。
次に、図2(a)~(c)および図3(a)~(c)を参照しながら、本発明に係るフレキシブル半導体装置100の製造方法について説明する。
本発明の製造方法の実施に際しては、まず、工程(i)を実施する。つまり、図2(a)に示すように、樹脂フィルム60の上面62に絶縁膜10を形成する。用いられる樹脂フィルム60は、上述したように、製造過程において絶縁膜10や半導体層20を支持する支持体として機能する。樹脂フィルム60の厚さは、好ましくは約10μm~約100μmの範囲、より好ましくは約20μm~約50μmの範囲であり、例えば38μm程度である。樹脂フィルム60の材質としては、例えば、ポリイミド(PI)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリフェニレンエーテル(PPE)樹脂、アラミド樹脂、液晶ポリマ等を挙げることができる。特に好ましい樹脂材料としては、ポリイミド(PI)樹脂を挙げることができる。ポリイミド(PI)樹脂は、耐熱性および寸法安定性の特性に優れており、TFTの支持体を構成する材料として特に好ましいからである。
以下、本発明に係るフレキシブル半導体装置の製造方法の他の実施形態について説明する。なお、フレキシブル半導体装置100と同一の構成部材には同一の符号を付し、その重複した説明を省略する。
第1の態様:フレキシブル半導体装置を製造するための方法であって、
(i)樹脂フィルムの上面に絶縁膜を形成する工程、
(ii)樹脂フィルムの上面に取出し電極パターンを形成する工程、
(iii)取出し電極パターンと接するように、絶縁膜の上に半導体層を形成する工程、ならびに
(iv)半導体層および取出し電極パターンを覆うように、樹脂フィルムの上面に封止樹脂層を形成する工程
を含んで成り、前記(i)~(iv)の少なくとも1つの形成工程を印刷法により行うことを特徴とするフレキシブル半導体装置の製造方法。
第2の態様:上記第1の態様において、工程(i)~(iv)の全ての形成を印刷法で行うことを特徴とするフレキシブル半導体装置の製造方法。
第3の態様:上記第1または第2の態様において、工程(iv)の後、樹脂フィルムを剥離することによって、取出し電極パターンの下面を封止樹脂層から露出させることを特徴とするフレキシブル半導体装置の製造方法。
第4の態様:上記第3の態様において、複数のフレキシブル半導体装置を製造する際に、あるフレキシブル半導体装置の製造で剥離した樹脂フィルムを、後刻の他のフレキシブル半導体装置の製造に再利用することを特徴とするフレキシブル半導体装置の製造方法。
第5の態様:上記第4の態様において、樹脂フィルムの再利用をロール・ツー・ロール方式により行うことを特徴とするフレキシブル半導体装置の製造方法。
第6の態様:上記第3~5の態様のいずれかにおいて、封止樹脂層から露出した取出し電極パターンの下面に対して、ソース電極およびドレイン電極を形成することを特徴とするフレキシブル半導体装置の製造方法。
第7の態様:上記第1~6の態様のいずれかにおいて、封止樹脂層の上面にゲート電極を形成することを特徴とするフレキシブル半導体装置の製造方法。
第8の態様:上記第7の態様において、ゲート電極の形成が、
封止樹脂層の上面に対して金属箔の下面を貼り合せる工程、
金属箔をエッチングすることにより、金属箔からゲート電極を形成する工程
を含んで成ることを特徴とするフレキシブル半導体装置の製造方法。
第9の態様:上記第8の態様において、封止樹脂層の上面に貼り合わせる金属箔として、下面の表面粗さ(Ra)が300nm以下の金属箔を用いることを特徴とするフレキシブル半導体装置の製造方法。
第10の態様:上記第1~9の態様のいずれかにおいて、前記工程(ii)および前記工程(iii)に代えて、(ii)’ 絶縁膜の上に半導体層を形成する工程、および、(iii)’ 半導体層と接触するように、樹脂フィルムの上面に取出し電極パターンを形成する工程を実施することを特徴とするフレキシブル半導体装置の製造方法。
第11の態様:上記第1~10の態様のいずれかにおいて、絶縁膜の下面にゲート電極を形成することを特徴とするフレキシブル半導体装置の製造方法。
12 絶縁膜の下面
20 半導体層
30d ドレイン用取出し電極
30s ソース用取出し電極
32d ドレイン用取出し電極の延在部
32s ソース用取出し電極の延在部
34d ドレイン用取出し電極の下面
34d ソース用取出し電極の下面
40 封止樹脂
42 ゲート絶縁膜(封止樹脂)
44 封止樹脂の下面
50 金属箔
50d ドレイン電極
50g ゲート電極
50s ソース電極
54g ゲート電極
60 樹脂フィルム
62 樹脂フィルムの上面
100、100’、100” フレキシブル半導体装置
110 樹脂基板
120 配線層
120s ソース電極
120d ドレイン電極
130 絶縁層
140 有機半導体層
150 配線層
150g ゲート電極
300 TFTの各層
400 ロール(封止樹脂)
401 ロール(転写後の封止樹脂)
500A,500B 搬送ローラ
510A,510B 加圧ローラ
520A,520B ローラ
530 加熱ゾーン
600 ロール(樹脂フィルム)
601 ロール(転写後の剥離された樹脂フィルム)
Claims (11)
- フレキシブル半導体装置を製造するための方法であって、
(i)樹脂フィルムの上面に絶縁膜を形成する工程、
(ii)前記樹脂フィルムの上面に取出し電極パターンを形成する工程、
(iii)前記取出し電極パターンと接するように、前記絶縁膜の上に半導体層を形成する工程、ならびに
(iv)前記半導体層および前記取出し電極パターンを覆うように、前記樹脂フィルムの上面に封止樹脂層を形成する工程
を含んで成り、前記(i)~(iv)の少なくとも1つの形成工程を印刷法により行うことを特徴とする、フレキシブル半導体装置の製造方法。 - 前記(i)~(iv)の全ての形成工程を印刷法により行うことを特徴とする、請求項1に記載のフレキシブル半導体装置の製造方法。
- 前記工程(iv)の後、前記樹脂フィルムを剥離することによって、前記取出し電極パターンの下面を前記封止樹脂層から露出させることを特徴とする、請求項1に記載のフレキシブル半導体装置の製造方法。
- 複数のフレキシブル半導体装置を製造する際に、あるフレキシブル半導体装置の製造で前記剥離した樹脂フィルムを、他のフレキシブル半導体装置の製造に再利用することを特徴とする、請求項3に記載のフレキシブル半導体装置の製造方法。
- 前記樹脂フィルムの再利用をロール・ツー・ロール方式により行うことを特徴とする、請求項4に記載のフレキシブル半導体装置の製造方法。
- 前記封止樹脂層から露出した前記取出し電極パターンの下面に対して、ソース電極およびドレイン電極を形成することを特徴とする、請求項3に記載のフレキシブル半導体装置の製造方法。
- 前記封止樹脂層の上面にゲート電極を形成することを特徴とする、請求項1に記載のフレキシブル半導体装置の製造方法。
- 前記ゲート電極の形成が、
前記封止樹脂層の上面に対して金属箔の下面を貼り合せることによって前記封止樹脂層上に前記金属箔を設ける工程、および
前記金属箔をエッチングすることにより、前記金属箔から前記ゲート電極を形成する工程
を含んで成ることを特徴とする、請求項7に記載のフレキシブル半導体装置の製造方法。 - 前記封止樹脂層に貼り合わせる前記金属箔として、下面の表面粗さ(Ra)が300nm以下となった金属箔を用いることを特徴とする、請求項8に記載のフレキシブル半導体装置の製造方法。
- 前記工程(ii)および前記工程(iii)に代えて、
(ii)’ 前記絶縁膜の上に半導体層を形成する工程、および
(iii)’ 前記半導体層と接触するように、前記樹脂フィルムの上面に取出し電極パターンを形成する工程
を実施することを特徴とする、請求項1に記載のフレキシブル半導体装置の製造方法。 - 前記絶縁膜の下面にゲート電極を形成することを特徴とする、請求項1に記載のフレキシブル半導体装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980100562.0A CN102742013B (zh) | 2008-08-04 | 2009-07-30 | 柔性半导体装置的制造方法 |
US12/681,399 US8435842B2 (en) | 2008-08-04 | 2009-07-30 | Method for manufacturing flexible semiconductor device |
JP2010523735A JP5406189B2 (ja) | 2008-08-04 | 2009-07-30 | フレキシブル半導体装置の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008200768 | 2008-08-04 | ||
JP2008-200768 | 2008-08-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010016206A1 true WO2010016206A1 (ja) | 2010-02-11 |
Family
ID=41663435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/003615 WO2010016206A1 (ja) | 2008-08-04 | 2009-07-30 | フレキシブル半導体装置の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8435842B2 (ja) |
JP (1) | JP5406189B2 (ja) |
CN (1) | CN102742013B (ja) |
WO (1) | WO2010016206A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016158182A1 (ja) * | 2015-03-30 | 2016-10-06 | 日本写真印刷株式会社 | 薄膜トランジスタの製造方法、および薄膜トランジスタ |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2453766A (en) * | 2007-10-18 | 2009-04-22 | Novalia Ltd | Method of fabricating an electronic device |
WO2009069248A1 (ja) * | 2007-11-28 | 2009-06-04 | Panasonic Corporation | フレキシブル半導体装置の製造方法およびフレキシブル半導体装置 |
KR102113064B1 (ko) | 2009-09-16 | 2020-05-20 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 장치 및 이의 제조 방법 |
US8518736B2 (en) * | 2010-12-29 | 2013-08-27 | Georgia Tech Research Corporation | Growth and transfer of monolithic horizontal nanowire superstructures onto flexible substrates |
KR101922118B1 (ko) * | 2012-08-27 | 2018-11-26 | 삼성전자주식회사 | 플렉서블 반도체소자 및 그 제조방법 |
US9570694B2 (en) | 2013-01-28 | 2017-02-14 | Aneeve Llc | All printed and transparent CNT TFT |
DE102013008042A1 (de) * | 2013-05-13 | 2014-11-13 | Abb Ag | Elektrisches Installationsgerät mit Beschriftungselement sowie Programmiergerät zur Programmierung eines derartigen Beschriftungselements |
RU2016150513A (ru) * | 2014-06-11 | 2018-07-11 | Син-Эцу Кемикал Ко., Лтд. | Солнечный элемент и способ его изготовления |
JP6199839B2 (ja) * | 2014-09-30 | 2017-09-20 | 信越化学工業株式会社 | 太陽電池及びその製造方法 |
CN105810587B (zh) * | 2014-12-31 | 2019-07-12 | 清华大学 | N型薄膜晶体管的制备方法 |
CN106303809A (zh) * | 2015-06-09 | 2017-01-04 | 钰太芯微电子科技(上海)有限公司 | 一种pcb板及防水型麦克风及制作工艺 |
CN105810844B (zh) * | 2016-03-23 | 2018-05-29 | 武汉华星光电技术有限公司 | Oled器件及其制作方法、柔性显示单元 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003258264A (ja) * | 2002-03-05 | 2003-09-12 | Sangaku Renkei Kiko Kyushu:Kk | 電界効果トランジスター、その製造方法及び該電界効果トランジスターを製造するための積層体 |
JP2005123290A (ja) * | 2003-10-15 | 2005-05-12 | Toppan Printing Co Ltd | 薄膜トランジスタおよびその製造方法 |
JP2005166742A (ja) * | 2003-11-28 | 2005-06-23 | Tdk Corp | 積層体の製造方法及び有機電界効果トランジスタの製造方法 |
JP2006269475A (ja) * | 2005-03-22 | 2006-10-05 | Toppan Printing Co Ltd | 薄膜トランジスタの製造方法 |
JP2007073857A (ja) * | 2005-09-09 | 2007-03-22 | Sony Corp | 半導体装置の製造方法および半導体装置 |
WO2009063583A1 (ja) * | 2007-11-16 | 2009-05-22 | Panasonic Corporation | フレキシブル半導体装置の製造方法及びフレキシブル半導体装置 |
WO2009069248A1 (ja) * | 2007-11-28 | 2009-06-04 | Panasonic Corporation | フレキシブル半導体装置の製造方法およびフレキシブル半導体装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100485531B1 (ko) * | 2002-04-15 | 2005-04-27 | 엘지.필립스 엘시디 주식회사 | 다결정 실리콘 박막트랜지스터와 그 제조방법 |
US7244326B2 (en) * | 2003-05-16 | 2007-07-17 | Alien Technology Corporation | Transfer assembly for manufacturing electronic devices |
JP2005294300A (ja) | 2004-03-31 | 2005-10-20 | Univ Of Tokyo | 非単結晶トランジスタ集積回路及びその製造方法 |
US7719496B2 (en) * | 2004-11-23 | 2010-05-18 | Samsung Mobile Display Co., Ltd. | Organic thin film transistor, method of manufacturing the same, and flat panel display device with the organic thin film transistor |
KR100659103B1 (ko) * | 2005-10-24 | 2006-12-19 | 삼성에스디아이 주식회사 | 유기 박막 트랜지스터, 이를 구비한 평판 디스플레이 장치및 유기 박막 트랜지스터의 제조방법 |
JP2006186294A (ja) | 2004-12-03 | 2006-07-13 | Toppan Printing Co Ltd | 薄膜トランジスタ及びその製造方法 |
JP2006196851A (ja) * | 2004-12-16 | 2006-07-27 | Toppan Printing Co Ltd | 薄膜トランジスタ及びその製造方法 |
JP4682645B2 (ja) * | 2005-02-28 | 2011-05-11 | セイコーエプソン株式会社 | 半導体装置の製造方法及び電子機器 |
KR100634327B1 (ko) * | 2005-04-13 | 2006-10-13 | 한국기계연구원 | 롤-투-롤 윤전인쇄방식을 이용한 전자소자의 제조방법 및그 제조장치 |
DE102005055293A1 (de) | 2005-08-05 | 2007-02-15 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung von Halbleiterchips und Dünnfilm-Halbleiterchip |
JP2007067263A (ja) | 2005-09-01 | 2007-03-15 | Konica Minolta Holdings Inc | 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ |
JP5098153B2 (ja) * | 2005-11-01 | 2012-12-12 | 凸版印刷株式会社 | 有機トランジスタおよびその製造方法 |
JP5055844B2 (ja) * | 2006-06-05 | 2012-10-24 | コニカミノルタホールディングス株式会社 | 有機薄膜トランジスタ及び有機薄膜トランジスタの製造方法 |
KR100824881B1 (ko) * | 2006-11-10 | 2008-04-23 | 삼성에스디아이 주식회사 | 유기 전계 발광 표시 장치 및 그 제조 방법 |
-
2009
- 2009-07-30 US US12/681,399 patent/US8435842B2/en active Active
- 2009-07-30 JP JP2010523735A patent/JP5406189B2/ja active Active
- 2009-07-30 CN CN200980100562.0A patent/CN102742013B/zh active Active
- 2009-07-30 WO PCT/JP2009/003615 patent/WO2010016206A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003258264A (ja) * | 2002-03-05 | 2003-09-12 | Sangaku Renkei Kiko Kyushu:Kk | 電界効果トランジスター、その製造方法及び該電界効果トランジスターを製造するための積層体 |
JP2005123290A (ja) * | 2003-10-15 | 2005-05-12 | Toppan Printing Co Ltd | 薄膜トランジスタおよびその製造方法 |
JP2005166742A (ja) * | 2003-11-28 | 2005-06-23 | Tdk Corp | 積層体の製造方法及び有機電界効果トランジスタの製造方法 |
JP2006269475A (ja) * | 2005-03-22 | 2006-10-05 | Toppan Printing Co Ltd | 薄膜トランジスタの製造方法 |
JP2007073857A (ja) * | 2005-09-09 | 2007-03-22 | Sony Corp | 半導体装置の製造方法および半導体装置 |
WO2009063583A1 (ja) * | 2007-11-16 | 2009-05-22 | Panasonic Corporation | フレキシブル半導体装置の製造方法及びフレキシブル半導体装置 |
WO2009069248A1 (ja) * | 2007-11-28 | 2009-06-04 | Panasonic Corporation | フレキシブル半導体装置の製造方法およびフレキシブル半導体装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016158182A1 (ja) * | 2015-03-30 | 2016-10-06 | 日本写真印刷株式会社 | 薄膜トランジスタの製造方法、および薄膜トランジスタ |
JP6005204B1 (ja) * | 2015-03-30 | 2016-10-12 | 日本写真印刷株式会社 | 薄膜トランジスタの製造方法、および薄膜トランジスタ |
JP2016192438A (ja) * | 2015-03-30 | 2016-11-10 | 日本写真印刷株式会社 | 薄膜トランジスタの製造方法、および薄膜トランジスタ |
Also Published As
Publication number | Publication date |
---|---|
CN102742013B (zh) | 2014-12-17 |
JPWO2010016206A1 (ja) | 2012-01-12 |
CN102742013A (zh) | 2012-10-17 |
US8435842B2 (en) | 2013-05-07 |
JP5406189B2 (ja) | 2014-02-05 |
US20100261321A1 (en) | 2010-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5406189B2 (ja) | フレキシブル半導体装置の製造方法 | |
JP4550944B2 (ja) | フレキシブル半導体装置およびその製造方法 | |
JP5420529B2 (ja) | フレキシブル半導体装置およびその製造方法 | |
CN101867017B (zh) | 薄膜晶体管和用于制造薄膜晶体管的方法 | |
JP4370366B2 (ja) | フレキシブル半導体装置の製造方法およびフレキシブル半導体装置 | |
US8242501B2 (en) | Thin film transistor and electronic apparatus | |
JP5842180B2 (ja) | フレキシブル半導体装置及びその製造方法 | |
CN102576678B (zh) | 柔性半导体装置及其制造方法 | |
JP4679673B2 (ja) | フレキシブル半導体装置の製造方法及びそれに使用される積層膜 | |
JP2011023376A (ja) | フレキシブル半導体装置およびその製造方法 | |
JPWO2009004793A1 (ja) | 半導体装置とその製造方法および画像表示装置 | |
JP5447996B2 (ja) | 薄膜トランジスタ、薄膜トランジスタの製造方法、および電子機器 | |
JP5790075B2 (ja) | 電界効果トランジスタの製造方法及びそれに用いる製造装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980100562.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09804693 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010523735 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12681399 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09804693 Country of ref document: EP Kind code of ref document: A1 |