Nothing Special   »   [go: up one dir, main page]

WO2010015307A1 - Elektronische vorrichtung enthaltend metallkomplexe mit isonitrilliganden - Google Patents

Elektronische vorrichtung enthaltend metallkomplexe mit isonitrilliganden Download PDF

Info

Publication number
WO2010015307A1
WO2010015307A1 PCT/EP2009/004955 EP2009004955W WO2010015307A1 WO 2010015307 A1 WO2010015307 A1 WO 2010015307A1 EP 2009004955 W EP2009004955 W EP 2009004955W WO 2010015307 A1 WO2010015307 A1 WO 2010015307A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
organic
group
atoms
ligands
Prior art date
Application number
PCT/EP2009/004955
Other languages
English (en)
French (fr)
Inventor
Philipp Stoessel
Holger Heil
Dominik Joosten
Christof Pflumm
Anja Gerhard
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to EP09777051A priority Critical patent/EP2311112B1/de
Priority to AT09777051T priority patent/ATE549752T1/de
Priority to KR1020107028298A priority patent/KR101658679B1/ko
Priority to US13/001,640 priority patent/US8691400B2/en
Priority to CN200980125432.2A priority patent/CN102077380B/zh
Priority to JP2011521449A priority patent/JP5746028B2/ja
Publication of WO2010015307A1 publication Critical patent/WO2010015307A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/348Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising osmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • OLEDs organic electroluminescent devices
  • OLEDs organic electroluminescent devices
  • US Pat. No. 4,539,507 US Pat. No. 5,151,629, EP 0676461 and WO 98/27136.
  • organometallic complexes that phosphorescence instead of fluorescence show (M.A. Baldo et al., Appl. Phys. Lett. 1999, 75, 4-6).
  • organometallic compounds for quantum mechanical reasons, up to four times energy and power efficiency is possible using organometallic compounds as phosphorescence emitters. In general, however, there is still room for improvement in OLEDs that show triplet emission.
  • iridium complexes or platinum complexes are usually used in phosphorescent OLEDs as triplet emitters.
  • An improvement of these OLEDs could be achieved by using metal complexes with polypodal ligands or cryptates, whereby the complexes have a higher thermal stability, which leads to a higher lifetime of the OLEDs (WO 04/081017, WO 05/113563, WO 06 / 008069).
  • still further improvements of the complexes are required to achieve, in particular, improvements in the efficiency and lifetime of electroluminescent devices containing these complexes.
  • the object of the present invention is therefore to provide novel electronic devices containing metal complexes as emitters, which phosphoresce red, orange, yellow, green or blue and which lead to improvements here.
  • organic electroluminescent devices containing the metal complexes described in more detail which contain isonitrile ligands, achieve this object and lead to significant improvements in the organic electroluminescent device, in particular with regard to operating life and high-brightness efficiency.
  • Organic electroluminescent devices containing these complexes are therefore the subject of the present invention.
  • the invention thus relates to electronic devices comprising at least one metal complex according to formula (1),
  • M is a penta- or hexacoordinated transition metal
  • the ligand L is the same or different at each occurrence, a mono-, bi- or tridentate ligand which binds to the metal M and which may be substituted by one or more radicals R 1 ;
  • the ligand L may also be bonded to the radical R of the isonitrile group;
  • R is the same or different at each instance and is an organic substituent having 1 to 60 carbon atoms, which may be substituted by one or more substituents R 1 ; in this case, several radicals R can also be linked to one another and thereby form a polydentate ligand;
  • the radical R can also be linked to the ligand L;
  • Radicals R 2 may be substituted, or an aryloxy or heteroaryl oxy distruable having 5 to 60 aromatic ring atoms which may be substituted by one or more radicals R 2 , or a Diarylaminooeuvre, Diheteroarylaminooeuvre or Arylheteroaryl- amino group having 10 to 40 aromatic ring atoms, which may be substituted by one or more radicals R 2 , or a combination of these systems; two or more substituents R 1 may also together form a mono- or polycyclic aliphatic, aromatic and / or benzoannellated ring system;
  • R 2 is identical or different at each occurrence H, D, F or an aliphatic, aromatic and / or heteroaromatic hydrocarbon radical having 1 to 20 C atoms, in which also one or more H atoms may be replaced by D or F; there can be two or more substituents R 2 also together form a mono- or polycyclic, aliphatic or aromatic ring system;
  • x is 3, 4, 5 or 6;
  • y is O 1 1, 2 or 3 with the proviso that a coordination number on
  • the indices x and y are chosen such that the coordination number on the metal M as a whole is 5 or 6, depending on the metal. It is generally known that metal coordination compounds have different coordination numbers depending on the metal atom chosen and on the oxidation state of the metal atom, ie bind a different number of ligands. Since the preferred coordination numbers of metals or metal ions in different oxidation states belong to the general expertise of those skilled in the field of organometallic chemistry or coordination chemistry, it is easy for the skilled person, depending on the metal and its oxidation state and the exact structure of the ligand L to use an appropriate number of ligands and thus to choose the indexes x and y suitable.
  • An electronic device is understood to mean a device which contains anode, cathode and at least one layer, this layer containing at least one organic or organometallic compound.
  • the electronic device according to the invention thus contains anode, cathode and at least one layer which contains at least one compound of the above-mentioned formula (1).
  • organic electroluminescent devices organic light-emitting diodes, OLEDs, PLEDs
  • organic integrated circuits O-ICs
  • organic field-effect transistors O-FETs
  • organic thin-film transistors O-TFTs
  • organic light-emitting transistors O-LETs
  • organic solar cells O-SCs
  • organic optical detectors organic photoreceptors
  • organic field quench devices O-FQDs
  • LECs organic field quench devices
  • O-lasers organic laser diodes
  • the ligand is either monodentate when R represents a monovalent group, or it is bidentate when R represents a divalent group linking either two isonitrile groups or an isonitrile group and the ligand L, or it is tridentate when R is a trivalent group representing the isonitrile groups and optionally the ligand L linked together.
  • Higher-rate ligands are also possible if L already represents, for example, a bidentate or tridentate ligand.
  • An aryl group for the purposes of this invention contains 6 to 40 carbon atoms;
  • a heteroaryl group contains 2 to 40 C atoms and at least one heteroatom, with the proviso that the sum of C atoms and heteroatoms gives at least 5.
  • the heteroatoms are preferably selected from N, O and / or S.
  • aryl group or heteroaryl either a simple aromatic cycle, ie benzene, or a simple heteroaromatic cycle, for example pyridine, pyrimidine, thiophene, etc., or a fused aryl or heteroaryl group, for example naphthalene, anthracene, phenanthrene, quinoline, isoquinoline, etc., understood.
  • a cyclic carbene in the sense of this invention is a cyclic group which binds to the metal via a neutral carbon atom. In this case, the cyclic
  • Arduido carbenes ie those carbenes in which two nitrogen atoms are bonded to the carbene C atom, are preferred here.
  • a five-membered arduengo carbene or another unsaturated five-membered carbene is also regarded as an aryl group in the context of this invention.
  • An aromatic ring system in the sense of this invention contains 6 to 60 carbon atoms in the ring system.
  • a heteroaromatic ring system in the sense of this invention contains 2 to 60 C atoms and at least one heteroatom in the ring system, with the proviso that the sum of C atoms and Heteroatoms at least 5 results.
  • the heteroatoms are preferably selected from N, O and / or S.
  • An aromatic or heteroaromatic ring system in the sense of this invention is to be understood as meaning a system which does not necessarily contain only aryl or heteroaryl groups but in which also several aryl or heteroaryl groups Heteroaryl groups by a non-aromatic unit (preferably less than 10% of the atoms other than H), such as. B.
  • an sp 3 - or sp 2 -hybridized C, N or O atom or a carbonyl group may be interrupted.
  • systems such as 9,9'-spirobifluorene, 9,9-diaryl fluorene, triarylamine, diaryl ethers, stilbene, etc. are to be understood as aromatic ring systems in the context of this invention, and also systems in which two or more aryl groups, for example are interrupted by a linear or cyclic alkyl, alkenyl or alkynyl group or by a silyl group.
  • Thioalkoxy for the purposes of this invention is meant a monocyclic, a bicyclic or a polycyclic group.
  • a d- to C 40 - alkyl group in which individual H atoms or CH 2 groups can be substituted by the above-mentioned groups, preferably the methyl, ethyl, n-propyl, / - Propyl, / 7-butyl, / -butyl, s -butyl, f -butyl, 2-methylbutyl, n -pentyl, s -pentyl, ferf -pentyl, 2-pentyl, cyclopentyl, n -hexyl, s -hexyl , fe / t-hexyl, 2-hexyl, 3-hexyl, cyclohexyl, 2-methylpentyl, n-heptyl, 2-heptyl, 3-heptyl, 4-heptyl, cycloheptyl, 1-methylcyclohexyl,
  • M is a pentacoordinated or hexacoordinated transition metal, more preferably selected from the group consisting of chromium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium,
  • the metals can be present in different oxidation states. Preference is given to the abovementioned metals in the oxidation states Cr (O), Cr (II), Cr (III), Cr (IV), Cr (VI), Mo (O), Mo (II), Mo (III), Mo (IV), W (O), W (II), W (III), W (IV), Re (I), Re (II) 1 Re (III), Re (IV), Ru (II) 1 Ru (III), Os (II), Os (III), Os (IV), Rh (I), Rh (III), Ir (I), Ir (III), Ir (IV), Ni (O), Ni (II), Ni (IV), Pt (IV), Cu (I), Cu (II), Cu (III), Ag (II), Au (III) and Au (V); most preferred are Mo (O),
  • M is a pentacoordinated metal and the subscript x is 3 or 5. In another preferred embodiment of the invention, M is a hexacoordinated metal and the subscript x is 3, 4 or 6.
  • one or more of the isonitrile ligands are monodentate ligands.
  • the substituent R at each occurrence is identical or different and is a monovalent aromatic or heteroaromatic ring system having 5 to 20 aromatic ring atoms, which may be substituted by one or more radicals R 1 .
  • Examples of monodentate isonitrile ligands are aliphatic isonitriles, such as. For example, methylisononitrile, trifluoromethylisonitrile, / so-propylisonitrile, terf-butylisonitrile, cyclohexylisonitrile or adamantyl isonitrile, or aromatic isonitriles, such as. Phenylisonitrile, mesitylisonitrile, 2,6-dimethylphenylisonitrile, 2,6-di-iso-propylphenylisonitrile or 2,6-di-tert-butylphenylisonitrile. Preference is given to aromatic isonitriles.
  • R is an aromatic or heteroaromatic ring system
  • this is preferably substituted at at least one position ortho to the isonitrile group, particularly preferably at both positions ortho to the isonitrile group by substituents R 1 other than H, in particular by alkyl groups.
  • the radicals R on the isonitrile groups can also be linked to one another and thus together with the metal M form a ring system.
  • two radicals R can be linked to one another, so that these are bidentate isonitrile ligands.
  • three radicals R can be linked to one another, so that these are tridentate isonitrile ligands.
  • the education is quite analogous tetradentate, pentadentate, and hexadentate ligands are possible.
  • the ligand L can bind to the radical R on the isonitrile ligand and form a ring system together with the metal M, so that bidentate ligands are obtained which coordinate via one isonitrile group and another group.
  • the formation of tri-, tetra-, pentadventic and hexadentate ligands from the radicals R 1 on the ligand L and the radicals R on the isonitrile is possible.
  • the substituents R form together and / or together with the ligand L a chain-like, branched or mono- or polycyclic, aliphatic, aromatic and / or benzoannellated structure and thus have a polydentate or polypodal ligand character.
  • Preferred multidentate isonitrile ligands such as may be used in complexes of formula (1) have a structure according to formula (2) or formula (3),
  • R 1 and L have the abovementioned meanings and for the other symbols and indices used:
  • V is B, B (R 1 ) -, CR 1 , CO " , CN (R 1 ) 2l SiR 1 , N, NO, N (R 1 ) + , P, P (R 1 ) + , PO, PS, As, As (R 1 ) + , AsO, S + , Se + , or a unit according to formula (4) to (7),
  • n 1, 2 or 3, preferably 2 or 3;
  • n 1 or 2, preferably 2.
  • the bridge length in the ligands of the formula (2) or (3) is preferably between 6 and 12 atoms.
  • the bridge length is understood to be the number of atoms in the two groups Y and in the groups V and Z, respectively, which represent the direct connection between the isonitrile groups or between the isonitrile group and the ligand group L.
  • the bridge length is between 7 and 10 atoms, very particularly preferably between 7 and 9 atoms.
  • Suitable ligands are those described in F.E. Hahn et al., J. Organomet. Chem. 1994, 467, 103-111, F.E. Hahn et al., J. Organomet. Chem., 1991, 410, C9-C12, F.E. Hahn et al., Angew. Chem. 1992, 104, 1218-1221, F.E. Hahn et al., Angew. Chem., 1991, 103, 213-215, F.E. Hahn et al., Organometallics 1994, 13, 3002-3008 and F.E. Hahn et al., Organometallics 1992, 11, 84-90, disclosed polypodal isonitrile ligands.
  • Examples of particularly preferred ligands of the formula (2) and (3) are the ligands of the formulas (18) to (28) depicted below, which may each be substituted by one or more radicals R 1 :
  • the metal M is pentacoordinated and the compound according to formula (1) contains a tridentate ligand of the formula (2) and a bidentate ligand of the formula (3).
  • the metal M is hexacoordinated and the compound according to formula (1) contains either two tridentate ligands of the formula (2) or three bidentate ligands of the formula (3).
  • Formula (1) occur.
  • the ligand groups L in the ligands of the formula (2) and (3) can also be selected, these then being bonded to the group Y.
  • the ligands L are preferably neutral, monoanionic, dianionic or trianionic ligands, particularly preferably neutral or monoanionic ligands. They may be monodentate, but are preferably bidentate or tridentate, so preferably have two or three coordination sites.
  • the ligands L can also be bonded to the radical R. Preferred embodiments are the ligands of the formula (2) and (3) listed above. In ligands of the formula (2) and (3), L is preferably a monodentate or bidentate ligand.
  • Preferred neutral, monodentate ligands L are selected from carbon monoxide, nitric oxide, amines, such as. Trimethylamine,
  • trimethyl phosphite triethyl phosphite
  • arsines such as.
  • Trifluorarsine trimethylarsine, tricyclohexylarsine, tri-tert-butylarsine, triphenylarsine, tris (pentafluorophenyl) arsine, stibines, such as. Trifluorostibine, trimethylstibin, tricyclohexylstibin, tri-tert-butylstibin, triphenylstibin, tris (pentafluorophenyl) stibin, nitrogen-containing heterocycles, such as. As pyridine, pyridazine, pyrazine, pyrimidine, triazine, and carbenes, in particular Arduengo carbenes.
  • Preferred monoanionic, monodentate ligands L are selected from hydride, deuteride, the halides F, Cl, Br and I, alkyl acetylides, such as. As methyl-C ⁇ C ⁇ , tert-butyl-C ⁇ C " , arylacetylidene, such as, for example, phenyl-C ⁇ C " , Cyanide, azide, cyanate, isocyanate, thiocyanate, isothiocyanate, aliphatic or aromatic alcoholates, such as.
  • thioalcoholates such as.
  • Carboxylates such as. For example, acetate, trifluoroacetate, propionate, benzoate, aryl groups, such as. Phenyl, naphthyl, and anionic nitrogen-containing heterocycles such as pyrrolidine, imidazolide, pyrazolide.
  • the alkyl groups in these groups are preferably C 1 -C 20 -alkyl groups, more preferably C 1 -C -alkyl groups, very particularly preferably C 1 -C 4 -alkyl groups.
  • An aryl group is also understood to mean heteroaryl groups. These groups are as defined above.
  • Preferred neutral or mono- or dianionic bidentate or higher-dentate ligands L are selected from diamines, such as. Example, ethylene diamine, N, N, N ⁇ N'-tetramethylethylenediamine, propylenediamine, N, N, N ' , N ' - tetramethylpropylenediamine, cis- or trans-diaminocyclohexane, cis- or trans-NNN'.N'-tetramethyldiaminocyclohexane , Imines, such as B.
  • B bis (diphenylphosphino) methane, bis (diphenylphosphino) ethane, bis (diphenylphosphino) propane, bis (diphenylphosphino) butane, bis (dimethylphosphino) methane, bis (dimethylphosphino) ethane, bis (dimethylphosphino) propane, bis (dimethylphosphino ) butane, bis (diethylphosphino) methane, bis (diethylphosphino) ethane, bis (diethylphosphino) propane, bis (diethylphosphino) butane, bis (di-tert-butylphosphino) methane, bis (di-t-butylphosphino ) ethane, bis (fe / t-butylphosphino) propane, bis (d-tert-butylphosphino) butane,
  • pyridine-2-carboxylic acid quinoline-2-carboxylic acid, glycine, N, N-dimethylglycine, alanine, N 1 N-dimethylaminoalanine, salicyliminates derived from salicylimines, such as.
  • dialcoholates derived from dialcohols, such as.
  • dialcohols such as.
  • Preferred tridentate ligands are borates of nitrogen-containing heterocycles, such as. As tetrakis (1-imidazolyl) borate and tetrakis (1-pyrazolyl) borate.
  • bidentate monoanionic ligands L which have a cyclometallated five-membered or six-membered ring with at least one metal-carbon bond with the metal, in particular a cyclometallated five-membered ring.
  • ligands such as are generally used in the field of phosphorescent metal complexes for organic electroluminescent devices, ie ligands of the type phenylpyridine, naphthylpyridine, phenylquinoline, phenylisoquinoline, etc., which may each be substituted by one or more radicals R 1 .
  • ligand L A number of such ligands are known to those skilled in the field of phosphorescent electroluminescent devices, and without further inventive step, they can select further such ligands as ligand L for compounds according to formula (1).
  • the combination is particularly suitable for this two groups as represented by the following formulas (29) to (56), wherein one group bonds via a neutral nitrogen atom or a carbene atom and binds the other group via a negatively charged carbon atom or a negatively charged nitrogen atom.
  • the ligand L can then be formed from the groups of formulas (29) to (56) by each of these groups bind to each other at the position indicated by #. The position at which the groups coordinate to the metal are indicated by *.
  • ligands of the formula (2) or (3) it is also possible for some of these groups to be bonded as ligand L to the group Y of the ligand.
  • X is the same or different every occurrence for CR 1 or N, provided that a maximum of three symbols X in each group stand for N.
  • a maximum of two symbols X in each group stand for N more preferably, at most one symbol X in each group stands for N, very particularly preferably all symbols X stand for CR 1 .
  • preferred ligands L are ⁇ 5 -cyclopentadienyl, ⁇ 5 -pentamethylcyclopentadienyl, ⁇ 6 -benzene or ⁇ 7 -cycloheptatrienyl, which in each case can be substituted by one or more radicals R 1 .
  • ligands L are 1,3,5-cis-cyclohexane derivatives, in particular of the formula (57), 1,1,1-tri (methylene) methane derivatives, in particular of the formula (58) and 1,1,1-trisubstituted methanes, in particular of the formulas (59) and (60),
  • R 1 has the abovementioned meaning and A, identical or different at each occurrence, represents O " , S ⁇ , COO ⁇ , P (R 1 ) 2 or N ( R 1 ) 2 stands.
  • the representation of the isonitrile complexes may, for. B. by substitution reaction. Metal complexes with the isonitrile ligands, if appropriate in the presence of a catalyst, are converted to the desired isonitrile complexes. In this way, z. B. starting from molybdenum or tungsten hexacarbonyl or molybdenum or tungsten olefin-carbonyl complex tri-, tetra-, penta- and Hexaisonitril-molybdenum or tungsten compounds accessible. This type of reaction is suitable both for the reaction of monodentate and polydentate isonitrile ligands. Palladium (II) oxide may be added as the catalyst (Albers et al., J.
  • metal salts with isonitrile ligands can be converted into isonitrile-metal halides and the halide ligands in these subsequently exchanged for other mono- or polydentate ligands.
  • IrCU + R-NC (R-NC) 3 IrCI 3
  • Both the isonitrile ligand and the ligand L may be monodentate or polydentate.
  • Examples of preferred compounds of the formula (1) are the structures (1) to (98) depicted below.
  • Active components are generally the organic or inorganic materials incorporated between the anode and cathode, for example, charge injection, charge transport or charge blocking materials, but especially emission materials and matrix materials.
  • the compounds according to the invention exhibit particularly good properties, in particular as emission material in organic electroluminescent devices.
  • a preferred embodiment of the invention are therefore organic electroluminescent devices.
  • the organic electroluminescent device includes cathode, anode and at least one emitting layer.
  • they may also contain further layers, for example one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers, electron injection layers, exciton blocking layers, charge generation layers and / or organic or inorganic p / n junctions.
  • interlayers may be introduced between two emitting layers, which have, for example, an exciton-blocking function and / or the
  • the organic electroluminescent device may contain an emitting layer, or it may contain a plurality of emitting layers. If several emission layers are present, they preferably have a total of a plurality of emission maxima between 380 nm and 750 nm, so that overall white emission results, ie in the emitting layers different emitting compounds are used, which can fluoresce or phosphoresce. Particular preference is given to three-layer systems, the three layers exhibiting blue, green and orange or red emission (for the basic structure see, for example, WO 05/011013) or systems having more than three emitting layers.
  • the organic electronic device contains the compound according to formula (1) or the above-mentioned preferred embodiments as an emitting compound in one or more emitting layers.
  • the compound of the formula (1) When the compound of the formula (1) is used as an emitting compound in an emitting layer, it is preferably used in combination with one or more matrix materials.
  • the mixture of the compound according to formula (1) and the matrix material contains between 1 and 99% by volume, preferably between 2 and 90% by volume, more preferably between 3 and 40% by volume, in particular between 5 and 15% by volume .-% of the compound according to formula (1) based on the total mixture of emitter and matrix material. Accordingly, the mixture contains between 99 and 1% by volume, preferably between 98 and 10% by volume, more preferably between 97 and 60% by volume, in particular between 95 and 85% by volume of the matrix material, based on the total mixture Emitter and matrix material.
  • Preferred matrix materials are CBP (N, N-biscarbazolylbiphenyl), carbazole derivatives (for example according to WO 05/039246, US 2005/0069729, JP 2004/288381, EP 1205527 or WO 08/086851, azacarbazoles (for example according to EP No.
  • an organic electroluminescent device characterized in that one or more layers with a Sublimation method to be coated.
  • the materials are vacuum deposited in vacuum sublimation at an initial pressure of less than 10 '5 mbar, preferably less than 10 ⁇ 6 mbar.
  • organic electroluminescent device characterized in that one or more layers with the
  • OVPD Organic Vapor Phase Deposition
  • carrier gas sublimation a carrier gas sublimation
  • the materials are applied at a pressure between 10 ⁇ 5 mbar and 1 bar.
  • OVJP Organic Vapor Jet Printing
  • the materials are applied directly through a nozzle and thus structured (for example, BMS Arnold et al., Appl. Phys. Lett., 2008, 92, 053301).
  • an organic electroluminescent device characterized in that one or more layers of solution, such. B. by spin coating, or with any printing process, such.
  • any printing process such.
  • screen printing flexographic printing or offset printing, but more preferably LITI (Light Induced Thermal Imaging, thermal transfer printing) or inkjet printing (ink jet printing) are produced.
  • LITI Light Induced Thermal Imaging, thermal transfer printing
  • inkjet printing ink jet printing
  • soluble compounds are necessary, which are obtained for example by suitable substitution.
  • the organic electroluminescent device may also be fabricated as a hybrid system by applying one or more layers of solution and depositing one or more other layers. Since the compounds of the formula (1) generally have a high solubility in organic solvents, these compounds can be well processed from solution. For example, it is possible to apply an emissive layer comprising a compound of the formula (1) and a matrix material from solution and then evaporate a hole blocking layer and / or an electron transport layer in vacuo.
  • Metal complexes containing the ligands of formula (27) and / or (28) listed above are novel and are therefore also an object of the present invention.
  • Another object of the invention are therefore metal complexes of the formula (1 '), Formula (1 1 )
  • solutions of compounds of formula (V) are required.
  • Another object of the invention are therefore solutions containing at least one compound of formula (V) and at least one organic solvent, preferably selected from the class of aromatic organic solvents, for. B. dimethylanisole.
  • Yet another object of the invention are ligands of the above-depicted formulas (27) and (28), which may each be substituted by one or more radicals R 1 .
  • the electronic devices according to the invention are distinguished by the following surprising advantages over the prior art:
  • Organic electroluminescent devices containing compounds according to formula (1) as emitting materials have an excellent lifetime.
  • Organic electroluminescent devices containing compounds according to formula (1) as emitting materials have excellent efficiency.
  • the luminescence lifetime of many compounds according to formula (1) at room temperature is in the range of less than 100 ns and is thus more than an order of magnitude lower than the luminescence lifetime of iridium complexes or platinum complexes, as in the prior art in organic electroluminescence - devices are used. Therefore, the compounds according to formula (1) are particularly suitable for use in organic electroluminescent devices with passive matrix control. These advantages mentioned above are not accompanied by a deterioration of the other electronic properties.
  • Hexakis (phenyl isonitrile) molybdenum (0) (Example 1), hexakis (phenyl isonitrile) tungsten (O) (Example 2) and hexakis (2,4,6-tri-tert-butylphenyl isonitrile) tungsten (O) (Example 3) may be prepared according to Albers et al., J. Chem. Edu. 1986, 63 (5), 444, Coville et al., Inorg. Chim. Ada 1982, 65, L7-L8, and Yamamoto et al., J. Organomet. Chem. 1985, 282, 191. The compounds are recrystallized several times from toluene / ethanol (1: 2 - 1: 1). The purities thus obtained are typically> 99.8% by 1 H NMR.
  • Example 4 Analogously to Example 4, the complexes listed in Table were prepared from the corresponding precursors.
  • 1,3,5-Tris (1-isocyano-phen-2-yl) benzene is prepared from 1, 3,5-tris (1-amino-2-phen-2-yl) benzene [923027-14-9] according to F.E. Hahn et al., J. Organomet. Chem. 467, 130, 1994.
  • the isonitrile complexes have the following luminescence lifetimes at room temperature (according to: K. Mann et al., J. Am. Chem. Soc. 1977, 99 (1), 306):
  • Hexakis (phenylisonitrile) molybdenum (0) 43 ns
  • LEDs are carried out according to the general method outlined below. Of course, this has to be adapted in individual cases to the respective circumstances (eg layer thickness variation in order to achieve optimum efficiency or color).
  • PLEDs polymeric light-emitting diodes
  • the compounds according to the invention are dissolved together with the listed matrix materials or Matrixmareialkombinationen in toluene or chlorobenzene.
  • the typical solids content of such solutions is between 10 and 25 g / L, if, as here, the typical for a device layer thickness of 80 nm is to be achieved by spin coating.
  • the matrix materials used are the following compounds:
  • OLEDs are produced with the following structure:
  • PEDOT 20 nm spun from water, PEDOT supplied by BAYER AG; poly- [3,4-ethylenedioxy-2,5-thiophene])
  • ITO substrates and the material for the so-called buffer layer are commercially available (ITO from Technoprint and others, PEDOT: PPS as aqueous dispersion Clevios Baytron P from HC Starck).
  • the emission layer is spin-coated in an inert gas atmosphere, in the present case argon, and baked at 120 ° C. for 10 minutes. Finally, a cathode of barium and aluminum is evaporated in vacuo.
  • the solution-processed devices are characterized by default, the OLED examples mentioned were not optimized.
  • the table shows the efficiency and the voltage at 500 cd / m 2 and the color.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Die vorliegende Erfindung betrifft elektronische Vorrichtungen, insbesondere organische Elektrolumineszenzvorrichtungen, enthaltend Metallkomplexe, welche Isonitrilliganden enthalten.

Description

ELEKTRONISCHE VORRICHTUNG ENTHALTEND METALLKOMPLEXE MIT ISONITRILLIGANDEN
Der Aufbau organischer Elektrolumineszenzvorrichtungen (OLEDs), in denen organische Halbleiter als funktionelle Materialien eingesetzt werden, ist beispielsweise in US 4539507, US 5151629, EP 0676461 und WO 98/27136 beschrieben. In den letzten Jahren werden als emittierende Materialien zunehmend metallorganische Komplexe eingesetzt, die Phosphoreszenz statt Fluoreszenz zeigen (M. A. Baldo et al., Appl. Phys. Lett. 1999, 75, 4-6). Aus quantenmechanischen Gründen ist unter Verwendung metallorganischer Verbindungen als Phosphoreszenzemitter eine bis zu vierfache Energie- und Leistungseffizienz möglich. Generell gibt es bei OLEDs, die Triplettemission zeigen, jedoch immer noch Verbesserungsbedarf. So sollten die physikalischen Eigenschaften von phosphoreszierenden OLEDs im Hinblick auf die Stabilität der Metallkomplexe, Effizienz, Betriebsspannung und Lebensdauer noch verbessert werden. Auch bei anderen in organischen Elektrolumineszenz- vorrichtungen verwendeten Verbindungen, wie beispielsweise Matrixmaterialien und Ladungstransportmaterialien, sind noch weitere Verbesserungen wünschenswert.
Gemäß dem Stand der Technik werden in phosphoreszierenden OLEDs als Triplettemitter meist Iridiumkomplexe bzw. Platinkomplexe eingesetzt. Eine Verbesserung dieser OLEDs konnte dadurch erzielt werden, dass Metallkomplexe mit polypodalem Liganden bzw. Kryptate eingesetzt wurden, wodurch die Komplexe eine höhere thermische Stabilität aufweisen, was zu einer höheren Lebensdauer der OLEDs führt (WO 04/081017, WO 05/113563, WO 06/008069). Jedoch sind noch weitere Verbesserungen der Komplexe erforderlich, um insbesondere Verbesserungen in Bezug auf die Effizienz und die Lebensdauer von Elektrolumineszenzvorrichtungen, welche diese Komplexe enthalten, zu erzielen.
Auch die Verwendung von Wolframkomplexen in OLEDs wurde bereits in der Literatur beschrieben (JP 2006/303315). Es werden darin jedoch nur Wolframkomplexe mit Pyridinliganden, wie z. B. Bipyridin oder Terpyridin, und mit Phosphinliganden explizit offenbart. Eine Eigenschaft von phosphoreszierenden Metallkomplexen, wie sie gemäß dem Stand der Technik eingesetzt werden, sind die im Vergleich zu fluoreszierenden Verbindungen sehr langen Lumineszenzlebensdauern. So liegen die Phosphoreszenzlebensdauern von Iridium- komplexen bei Raumtemperatur üblicherweise in der Größenordnung von
0.5 bis 5 μs und von Platinkomplexen in der Größenordnung von 3 bis 30 μs. Insbesondere bei Passiv-Matrix-Ansteuerung von organischen Elektrolumineszenzvorrichtungen kann dies zu Problemen führen, da durch die dabei benötigten hohen Helligkeiten eine Sättigung des ange- regten Zustande erzeugt wird, so dass bei hoher Helligkeit die Effizienz stark abfällt. In diesem Bereich sind somit weitere Verbesserungen erforderlich.
Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung neuer elektronischer Vorrichtungen enthaltend Metallkomplexe als Emitter, welche rot, orange, gelb, grün oder blau phosphoreszieren und welche hier zu Verbesserungen führen.
Überraschend wurde gefunden, dass organische Elektrolumineszenz- Vorrichtungen enthaltend die näher beschriebenen Metallkomplexe, welche Isonitrilliganden enthalten, diese Aufgabe lösen und zu deutlichen Verbesserungen der organischen Elektrolumineszenzvorrichtung führen, insbesondere hinsichtlich der operativen Lebensdauer und der Effizienz bei hoher Helligkeit. Organische Elektrolumineszenzvorrichtungen, welche diese Komplexe enthalten, sind daher der Gegenstand der vorliegenden Erfindung.
Stand der Technik sind organische Elektrolumineszenzvorrichtungen, die tetrakoodinierte Metallkomplexe mit Isonitrilliganden enthalten (WO 08/003464). Aus dieser Offenbarung geht jedoch nicht hervor, dass diese Komplexe besonders gute Effizienz und kurze Lumineszenzlebensdauern zeigen. Insbesondere wird mit diesen tetrakoordinierten, planaren Komplexen ein völlig anderer Emissionsmechanismus beobachtet, bei dem die Übergänge, die zur Emission führen, auf Metall-Metall-Wechsel- Wirkungen zwischen benachbarten Komplexen basieren. Daher sind hohe Konzentrationen des Metallkomplexes erforderlich, was insbesondere in Anbetracht der Seltenheit von Edelmetallen nicht wünschenswert ist.
Die Synthese eines Wolfram-Hexaisonitrilkomplexes mit monodentaten Isonitrilliganden ist in Y. Yamamoto et al, J. Organomet. Chem., 1985, 282, 191-200; M. O. Albers et al., J. Chem. Edu., 1986, 63(5), 444-447; und N. J. Coville, 1982, 65, L7-L8 beschrieben. Anwendungen dieses Komplexes, insbesondere Anwendungen in elektronischen Vorrichtungen sind nicht offenbart.
Auch hexakoordinierte Metallkomplexe mit polydentaten Isonitrilliganden sind in der Literatur bekannt (z. B. F. E. Hahn et al., J. Organomet. Chem. 1994, 467, 103-111 ; F. E. Hahn et al., J. Organomet. Chem. 1991, 410, C9-C12; F. E. Hahn et al., Angew. Chem. 1992, 104, 1218-1221 ; F. E. Hahn et al., Angew. Chem. 1991, 103, 213-215). Mit diesen Komplexen wurden jedoch nur allgemeine strukturchemische Untersuchungen durchgeführt. Die Anwendung derartiger Komplexe in organischen Elektro- lumineszenzvorrichtungen ist nicht offenbart.
Gegenstand der Erfindung sind somit elektronische Vorrichtungen, enthaltend mindestens einen Metallkomplex gemäß Formel (1 ),
Figure imgf000004_0001
Formel (1 )
wobei für die verwendeten Symbole und Indizes gilt:
M ist ein penta- oder hexakoordiniertes Übergangsmetall;
L ist bei jedem Auftreten gleich oder verschieden ein mono-, bi- oder tridentater Ligand, der an das Metall M bindet und der durch einen oder mehrere Reste R1 substituiert sein kann; dabei kann der Ligand L auch an den Rest R der Isonitrilgruppe gebunden sein; R ist bei jedem Auftreten gleich oder verschieden ein organischer Substituent mit 1 bis 60 C-Atomen, der durch einen oder mehrere Substituenten R1 substituiert sein kann; dabei können mehrere Reste R auch miteinander verknüpft sein und dadurch einen mehrzähnigen Liganden bilden; außerdem kann der Rest R auch mit dem Liganden L verknüpft sein;
R1 ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, N(R2)2, CN, NO2, Si(R2)3, B(OR2)2, C(=O)R2, P(=O)(R2)2, S(=O)R2, S(=O)2R2, OSO2R2, eine geradkettige Alkyl-, Alkoxy- oder Thio- alkoxygruppe mit 1 bis 40 C-Atomen oder eine geradkettige Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R2 substituiert sein kann, wobei eine oder mehrere bevorzugt nicht benachbarte CH2-Gruppen durch R2C=CR2, C≡C, Si(R2)2, Ge(R2)2,
Sn(R2)2, C=O, C=S, C=Se, C=NR2, P(O)(R2), SO1 SO2, NR2, O, S oder CONR2 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, Cl, Br, I, CN oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere
Reste R2 substituiert sein kann, oder eine Aryloxy- oder Heteroaryl- oxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroaryl- aminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Kombination dieser Systeme; dabei können zwei oder mehrere Substituenten R1 auch miteinander ein mono- oder polycyclisches aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden;
R2 ist bei jedem Auftreten gleich oder verschieden H, D, F oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, in dem auch ein oder mehrere H-Atome durch D oder F ersetzt sein können; dabei können zwei oder mehrere Substituenten R2 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden;
x ist 3, 4, 5 oder 6;
y ist O1 1 , 2 oder 3 mit der Maßgabe, dass eine Koordinationszahl am
Metall von 5 oder 6 erreicht wird.
Die Indizes x und y werden so gewählt, dass die Koordinationszahl am Metall M insgesamt, je nach Metall, 5 oder 6 beträgt. Es ist generell bekannt, dass Metallkoordinationsverbindungen abhängig vom gewählten Metallatom und von der Oxidationsstufe des Metallsatoms unterschiedliche Koordinationszahlen aufweisen, also eine unterschiedliche Anzahl von Liganden binden. Da die bevorzugten Koordinationszahlen von Metallen bzw. Metallionen in verschiedenen Oxidationsstufen zum allgemeinen Fachwissen des Fachmanns auf dem Gebiet der metallorganischen Chemie bzw. der Koordinationschemie gehören, ist es für den Fachmann ein Leichtes, je nach Metall und dessen Oxidationsstufe und je nach genauer Struktur des Liganden L eine geeignete Anzahl Liganden zu verwenden und somit die Indizes x und y geeignet zu wählen.
Unter einer elektronischen Vorrichtung wird eine Vorrichtung verstanden, welche Anode, Kathode und mindestens eine Schicht enthält, wobei diese Schicht mindestens eine organische bzw. metallorganische Verbindung enthält. Die erfindungsgemäße elektronische Vorrichtung enthält also Anode, Kathode und mindestens eine Schicht, welche mindestens eine Verbindung der oben aufgeführten Formel (1) enthält. Dabei sind bevorzugte elektronische Vorrichtungen ausgewählt aus der Gruppe bestehend aus organischen Elektrolumineszenzvorrichtungen (= organischen Leuchtdioden, OLEDs, PLEDs), organischen integrierten Schaltungen (O-ICs), organischen Feld-Effekt-Transistoren (O-FETs), organischen Dünnfilmtransistoren (O-TFTs), organischen lichtemittierenden Transistoren (O-LETs), organischen Solarzellen (O-SCs), organischen optischen Detektoren, organischen Photorezeptoren, organischen Feld-Quench-Devices (O-FQDs), lichtemittierenden elektro- chemischen Zellen (LECs) oder organischen Laserdioden (O-Laser), enthaltend in mindestens einer Schicht mindestens eine Verbindung gemäß der oben aufgeführten Formel (1). Besonders bevorzugt sind organische Elektrolumineszenzvorrichtungen.
Die Liganden vom Typ C=N-R sind Isonitrile (= Isocyanide), welche über ein Kohlenstoffatom an das Metall koordinieren. Dabei ist der Ligand entweder monodentat, wenn R eine monovalente Gruppe darstellt, oder er ist bidentat, wenn R eine bivalente Gruppe darstellt, die entweder zwei Isonitrilgruppen oder eine Isonitrilgruppe und den Liganden L miteinander verknüpft, oder er ist tridentat, wenn R eine trivalente Gruppe darstellt, die die Isonitrilgruppen und gegebenenfalls den Liganden L miteinander verknüpft. Höherdentate Liganden sind ebenfalls möglich, wenn L bereits beispielsweise einen bidentaten oder tridentaten Liganden darstellt.
Eine Arylgruppe im Sinne dieser Erfindung enthält 6 bis 40 C-Atome; eine Heteroarylgruppe im Sinne dieser Erfindung enthält 2 bis 40 C-Atome und mindestens ein Heteroatom, mit der Maßgabe, dass die Summe aus C-Atomen und Heteroatomen mindestens 5 ergibt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und/oder S. Dabei wird unter einer Arylgruppe bzw. Heteroarylgruppe entweder ein einfacher aromatischer Cyclus, also Benzol, bzw. ein einfacher heteroaromatischer Cyclus, beispielsweise Pyridin, Pyrimidin, Thiophen, etc., oder eine kondensierte Aryl- oder Heteroarylgruppe, beispielsweise Naphthalin, Anthracen, Phenanthren, Chinolin, Isochinolin, etc., verstanden. Ein cyclisches Carben im Sinne dieser Erfindung ist eine cyclische Gruppe, welche über ein neutrales C-Atom an das Metall bindet. Dabei kann die cyclische
Gruppe gesättigt oder ungesättigt sein. Bevorzugt sind hierbei Arduengo- Carbene, also solche Carbene, bei welchen an das Carben-C-Atom zwei Stickstoffatome gebunden sind. Dabei wird ein Fünfring-Arduengo-Carben bzw. ein anderes ungesättigtes Fünfring-Carben ebenfalls als eine Aryl- gruppe im Sinne dieser Erfindung angesehen.
Ein aromatisches Ringsystem im Sinne dieser Erfindung enthält 6 bis 60 C-Atome im Ringsystem. Ein heteroaromatisches Ringsystem im Sinne dieser Erfindung enthält 2 bis 60 C-Atome und mindestens ein Heteroatom im Ringsystem, mit der Maßgabe, dass die Summe aus C-Atomen und Heteroatomen mindestens 5 ergibt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und/oder S. Unter einem aromatischen oder heteroaromatischen Ringsystem im Sinne dieser Erfindung soll ein System verstanden werden, das nicht notwendigerweise nur Aryl- oder Heteroaryl- gruppen enthält, sondern in dem auch mehrere Aryl- oder Heteroaryl- gruppen durch eine nicht-aromatische Einheit (bevorzugt weniger als 10 % der von H verschiedenen Atome), wie z. B. ein sp3- oder sp2-hybridisiertes C-, N- oder O-Atom oder eine Carbonylgruppe, unterbrochen sein können. So sollen beispielsweise auch Systeme wie 9,9'-Spirobifluoren, 9,9-Diaryl- fluoren, Triarylamin, Diarylether, Stilben, etc. als aromatische Ringsysteme im Sinne dieser Erfindung verstanden werden, und ebenso Systeme, in denen zwei oder mehrere Arylgruppen beispielsweise durch eine lineare oder cyclische Alkyl-, Alkenyl oder Alkinylgruppe oder durch eine Silylgruppe unterbrochen sind.
Unter einer cyclischen Alkyl-, Alkenyl, Alkinyl, Alkoxy- oder
Thioalkoxygruppe im Sinne dieser Erfindung wird eine monocyclische, eine bicyclische oder eine polycyclische Gruppe verstanden.
Im Rahmen der vorliegenden Erfindung werden unter einer d- bis C40- Alkylgruppe, in der auch einzelne H-Atome oder CH2-Gruppen durch die oben genannten Gruppen substituiert sein können, bevorzugt die Reste Methyl, Ethyl, n-Propyl, /-Propyl, /7-Butyl, /-Butyl, s-Butyl, f-Butyl, 2-Methyl- butyl, n-Pentyl, s-Pentyl, ferf-Pentyl, 2-Pentyl, Cyclopentyl, n-Hexyl, s-Hexyl, fe/t-Hexyl, 2-Hexyl, 3-Hexyl, Cyclohexyl, 2-Methylpentyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 4-Heptyl, Cycloheptyl, 1 -Methylcyclohexyl, n-Octyl,
2-Ethylhexyl, Cyclooctyl, 1-Bicyclo[2,2,2]octyl, 2-Bicyclo[2,2,2]octyl, 2-(2,6- Dimethyl)octyl, 3-(3,7-Dimethyl)octyl, Trifluormethyl, Pentafluorethyl, 2,2,2- Trifluorethyl, Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl, Cyclohexenyl, Heptenyl, Cycloheptenyl, Octenyl, Cyclooctenyl, Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl, Heptinyl oder Octinyl verstanden. Unter einer d- bis C40-Alkoxygruppe werden bevorzugt Methoxy, Trifluor- methoxy, Ethoxy, π-Propoxy, /-Propoxy, /7-Butoxy, /-Butoxy, s-Butoxy, f-Butoxy oder 2-Methyl butoxy verstanden. Unter einem aromatischen oder heteroaromatischen Ringsystem mit 5 - 60 aromatischen Ringatomen, welches noch jeweils mit den oben genannten Resten R substituiert sein kann und welches über beliebige Positionen am Aromaten bzw. Hetero- aromaten verknüpft sein kann, werden insbesondere Gruppen verstanden, die abgeleitet sind von Benzol, Naphthalin, Anthracen, Phenanthren, Pyren, Chrysen, Perylen, Fluoranthen, Benzfluoranthen, Naphthacen, Pentacen, Benzpyren, Biphenyl, Biphenylen, Terphenyl, Terphenylen, Fluoren, Spirobifluoren, Dihydrophenanthren, Dihydropyren, Tetrahydro- pyren, eis- oder trans-lndenofluoren, eis- oder trans-Monobenzoindeno- fluoren, eis- oder trans-Dibenzoindenofluoren, Truxen, Isotruxen, Spiro- truxen, Spiroisotruxen, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen, Benzothiophen, Isobenzothiophen, Dibenzothiophen, Pyrrol, indol, Isoindol, Carbazol, Pyridin, Chinolin, Isochinolin, Acridin, Phenan- thridin, Benzo-5,6-chinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Pheno- thiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphth- imidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalin- imidazol, Oxazol, Benzoxazol, Naphthoxazol, Anthroxazol, Phenanthroxa- zol, Isoxazol, 1 ,2-Thiazol, 1 ,3-Thiazol, Benzothiazol, Pyridazin, Benzo- pyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, 1 ,5-Diazaanthracen, 2,7- Diazapyren, 2,3-Diazapyren, 1 ,6-Diazapyren, 1 ,8-Diazapyren, 4,5-Diaza- pyren, 4,5,9,10-Tetraazaperylen, Pyrazin, Phenazin, Phenoxazin, Pheno- thiazin, Fluorubin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenan- throlin, 1 ,2,3-Triazol, 1 ,2,4-Triazol, Benzotriazol, 1 ,2,3-Oxadiazol, 1 ,2,4- Oxadiazol, 1 ,2,5-Oxadiazol, 1 ,3,4-Oxadiazol, 1 ,2,3-Thiadiazol, 1 ,2,4-Thia- diazol, 1 ,2,5-Thiadiazol, 1 ,3,4-Thiadiazol, 1 ,3,5-Triazin, 1 ,2,4-Triazin, 1 ,2,3-Triazin, Tetrazol, 1 ,2,4,5-Tetrazin, 1 ,2,3,4-Tetrazin, 1 ,2,3,5-Tetrazin, Purin, Pteridin, Indolizin und Benzothiadiazol.
Im Folgenden werden die Ausführungsformen der Verbindung gemäß Formel (1 ) beschrieben, wie sie bevorzugt in der elektronischen Vorrichtung verwendet werden.
Bevorzugt sind Verbindungen gemäß Formel (1 ), dadurch gekennzeichnet, dass diese nicht geladen, d. h. elektrisch neutral, sind. Dies wird auf einfache Weise dadurch erreicht, dass die Ladung der Liganden L und des Restes R am Isonitrilliganden so gewählt wird, dass sie die Ladung des komplexierten Metallatoms M kompensiert. Bevorzugt sind weiterhin Verbindungen gemäß Formel (1 ), dadurch gekennzeichnet, dass die Summe der Valenzelektronen um das Metallatom in fünfach koordinierten Komplexen 16 und in sechsfach koordinierten Komplexen 18 beträgt. Diese Bevorzugung ist durch die besondere Stabilität dieser Metallkomplexe begründet (siehe z. B. Elschenbroich, Salzer, Organometallchemie, Teubner Studienbücher, Stuttgart 1993).
Bevorzugt sind Verbindungen gemäß Formel (1 ), in denen M für ein pentakoordiniertes oder für ein hexakoordiniertes Übergangsmetall steht, besonders bevorzugt ausgewählt aus der Gruppe bestehend aus Chrom, Molybdän, Wolfram, Rhenium, Ruthenium, Osmium, Rhodium, Iridium,
Nickel, Platin, Kupfer, Silber und Gold, insbesondere Molybdän, Wolfram, Rhenium, Ruthenium, Osmium, Iridium, Platin und Gold. Die Metalle können dabei in verschiedenen Oxidationsstufen vorliegen. Bevorzugt sind dabei die oben genannten Metalle in den Oxidationsstufen Cr(O), Cr(II), Cr(III), Cr(IV), Cr(VI), Mo(O), Mo(II), Mo(III), Mo(IV), W(O), W(II), W(III), W(IV), Re(I), Re(II)1 Re(III), Re(IV), Ru(II)1 Ru(III), Os(II), Os(III), Os(IV), Rh(I), Rh(III), Ir(I), Ir(III), Ir(IV), Ni(O), Ni(II), Ni(IV), Pt(IV), Cu(I), Cu(II), Cu(III), Ag(II), Au(III) und Au(V); ganz besonders bevorzugt sind Mo(O), W(O), Re(I), Ru(II), Os(II), Rh(III), Ir(III) und Pt(IV).
In einer bevorzugten Ausführungsform der Erfindung ist M ein pentakoordiniertes Metall und der Index x steht für 3 oder 5. In einer weiteren bevorzugten Ausführungsform der Erfindung ist M ein hexakoordiniertes Metall und der Index x steht für 3, 4 oder 6.
In einer Ausführungsform der Erfindung sind ein oder mehrere der Isonitril- liganden monodentate Liganden. In diesem Fall steht der Substituent R bevorzugt gleich oder verschieden bei jedem Auftreten für eine gerad- kettige Alkylgruppe mit 1 bis 20 C-Atomen oder eine verzweigte oder cyclische Alkylgruppe mit 3 bis 20 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R1C=CR1, C≡C, Si(R1)2, Ge(R1)2, Sn(R1)2, C=O, C=S, C=Se, C=NR1, P(=O)(R1), SO, SO2, NR1, O, S oder CONR1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, Cl, Br, I, CN oder NO2 ersetzt sein können, oder für ein monovalentes aromatisches oder heteroaromatisches Ringsystem mit 5 bis 40 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, oder für eine Kombination dieser Systeme. Besonders bevorzugt steht der Substituent R, wenn der Isonitrilligand ein monodentater Ligand ist, bei jedem Auftreten gleich oder verschieden für eine geradkettige Alkylgruppe mit 1 bis 10 C-Atomen oder eine verzweigte oder cyclische Alkylgruppe mit 3 bis 10 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R1C=CR1, C≡C, C=O, C=S oder O ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F oder CN ersetzt sein können, oder für ein monovalentes aromatisches oder heteroaromatisches Ringsystem mit 5 bis 20 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, oder für eine Kombination dieser Systeme. In einer ganz besonders bevorzugten Ausführungsform der Erfindung ist der Substituent R bei jedem Auftreten gleich oder verschieden ein monovalentes aromatisches oder heteroaromatisches Ringsystem mit 5 bis 20 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann.
Beispiele für monodentate Isonitrilliganden sind aliphatische Isonitrile, wie z. B. Methylisonitril, Trifluormethylisonitril, /so-Propylisonitril, terf-Butyliso- nitril, Cyclohexylisonitril oder Adamantylisonitril, oder aromatische Isonitrile, wie z. B. Phenylisonitril, Mesitylisonitril, 2,6-Dimethylphenylisonitril, 2,6-Di-iso-propylphenylisonitril oder 2,6-Di-tert-butylphenylisonitril. Bevorzugt sind aromatische Isonitrile. Wenn R für ein aromatisches oder hetero- aromatisches Ringsystem steht, dann ist dieses bevorzugt an mindestens einer Position orthoständig zur Isonitrilgruppe, besonders bevorzugt an beiden Positionen orthoständig zur Isonitrilgruppe durch Substituenten R1 ungleich H substituiert, insbesondere durch Alkylgruppen.
Die Reste R an den Isonitrilgruppen können auch miteinander verknüpft sein und so zusammen mit dem Metall M ein Ringsystem bilden. So können zwei Reste R miteinander verknüpft sein, so dass es sich hier um zweizähnige (bidentate) Isonitrilliganden handelt. Ebenso können drei Reste R miteinander verknüpft sein, so dass es sich hier um dreizähnige (tridentate) Isonitrilliganden handelt. Ebenso ist ganz analog die Bildung von vierzähnigen (tetradentaten), fünfzähnigen (pentadentaten) und sechszähnigen (hexadentaten) Liganden möglich. Ebenso kann der Ligand L an den Rest R am Isonitrilliganden binden und so zusammen mit dem Metall M ein Ringsystem bilden, so dass man zweizähnige Liganden erhält, welche über eine Isonitrilgruppe und eine weitere Gruppe koordinieren. Ganz analog ist die Bildung drei-, vier-, fünf- und sechszähniger Liganden aus den Resten R1 am Liganden L und den Resten R am Isonitril möglich.
In einer bevorzugten Ausführungsform der Erfindung bilden die Substi- tuenten R miteinander und/oder zusammen mit dem Liganden L eine kettenförmige, verzweigte oder mono- oder polycyclische, aliphatische, aromatische und/oder benzoannellierte Struktur und besitzen damit mehrzähnigen bzw. polypodalen Ligandencharakter.
Bevorzugte mehrzähnige Isonitrilliganden, wie sie in Komplexen der Formel (1) verwendet werden können, weisen eine Struktur gemäß Formel (2) oder Formel (3) auf,
Figure imgf000012_0001
Formel (2) Formel (3)
wobei R1 und L die oben genannten Bedeutungen haben und für die weiteren verwendeten Symbole und Indizes gilt:
Y ist bei jedem Auftreten gleich oder verschieden eine Einfachbindung, O, S, N(R1), C=O, eine geradkettige Alkylengruppe mit 1 bis 6 C-Atomen oder eine verzweigte oder cyclische Alkylengruppe mit 3 bis 6 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R1C=CR1, NR1, Si(R1 )2, O oder S ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, Cl, Br, I, CN oder NO2 ersetzt sein können, oder eine Arylen- oder Heteroarylengruppe mit 5 bis 20 aromatischen Ringatomen, welche mit einem oder mehreren Resten R1 substituiert sein kann, oder eine Kombination dieser Systeme;
V ist B, B(R1)-, CR1, CO", CN(R1)2l SiR1, N, NO, N(R1)+, P, P(R1)+, PO, PS, As, As(R1 )+, AsO, S+, Se+, oder eine Einheit gemäß Formel (4) bis (7),
Figure imgf000013_0001
Figure imgf000013_0002
Formel (6) Formel (7)
wobei die gestrichelten Bindungen jeweils die Bindung an Y andeuten;
ist BR1, B(RV, C(R1)2, C(=O), Si(R1)2, NR1, PR1, P(R1)2 +, PO(R1), PS(R1), AsR1, AsO(R1), AsS, O, S, Se, oder eine Einheit gemäß Formel (8) bis (17),
Figure imgf000013_0003
Formel (8) Formel (9) Formel (10)
Figure imgf000013_0004
Figure imgf000013_0005
Formel (15)
Formel (12)
Figure imgf000013_0006
Figure imgf000014_0001
Formel (16) Formel (17)
wobei die gestrichelten Bindungen jeweils die Bindung an Y andeuten;
n ist 1 , 2 oder 3, bevorzugt 2 oder 3;
m ist 1 oder 2, bevorzugt 2.
Dabei beträgt die Brückenlänge in den Liganden der Formel (2) bzw. (3) bevorzugt zwischen 6 und 12 Atomen. Unter der Brückenlänge wird die Anzahl der Atome in den beiden Gruppen Y und in der Gruppe V bzw. Z verstanden, die die direkte Verbindung zwischen den Isonitrilgruppen bzw. zwischen der Isonitrilgruppe und der Ligandengruppe L darstellen. Besonders bevorzugt beträgt die Brückenlänge zwischen 7 und 10 Atomen, ganz besonders bevorzugt zwischen 7 und 9 Atomen.
Beispiele für geeignete Liganden sind die in F. E. Hahn er al., J. Organo- met. Chem. 1994, 467, 103-111 , F. E. Hahn et al., J. Organomet. Chem. 1991, 410, C9-C12, F. E. Hahn et al., Angew. Chem. 1992, 104, 1218- 1221 , F. E. Hahn et al., Angew. Chem. 1991, 103, 213-215, F. E. Hahn et al., Organometallics 1994, 13, 3002-3008 und F. E. Hahn et al., Organo- metallics 1992, 11, 84-90 offenbarten polypodalen Isonitrilliganden.
Beispiele für besonders bevorzugte Liganden der Formel (2) und (3) sind die im Folgenden abgebildeten Liganden der Formeln (18) bis (28), welche jeweils durch einen oder mehrere Reste R1 substituiert sein können:
Figure imgf000015_0001
Formel (18) Formel (19) Formel (20)
Figure imgf000015_0002
Formel (21 ) Formel (22) Formel (23)
Figure imgf000015_0003
Formel (26)
Formel (25)
Figure imgf000015_0004
Formel (27) Formel (28)
In einer bevorzugten Ausführungsform der Erfindung ist das Metall M pentakoordiniert und die Verbindung gemäß Formel (1 ) enthält einen tridentaten Liganden der Formel (2) und einen bidentaten Liganden der Formel (3). In einer weiteren bevorzugten Ausführungsform der Erfindung ist das Metall M hexakoordiniert und die Verbindung gemäß Formel (1 ) enthält entweder zwei tridentate Liganden der Formel (2) oder drei bidentate Liganden der Formel (3).
Im Folgenden werden bevorzugte Liganden L beschrieben, wie sie in
Formel (1 ) vorkommen. Entsprechend können auch die Ligandengruppen L in den Liganden der Formel (2) und (3) gewählt sein, wobei diese dann an die Gruppe Y gebunden sind.
Die Liganden L sind bevorzugt neutrale, monoanionische, dianionische oder trianionische Liganden, besonders bevorzugt neutrale oder monoanionische Liganden. Sie können monodentat sein, sind aber bevorzugt bidentat oder tridentat, weisen also bevorzugt zwei oder drei Koordinationsstellen auf. Die Liganden L können auch an den Rest R gebunden sein. Bevorzugte Ausführungsformen sind dabei die oben aufgeführten Liganden der Formel (2) und (3). In Liganden der Formel (2) und (3) ist L bevorzugt ein monodentater oder bidentater Ligand.
Bevorzugte neutrale, monodentate Liganden L sind ausgewählt aus Kohlenmonoxid, Stickstoffmonoxid, Aminen, wie z. B. Trimethylamin,
Triethylamin, Morpholin, Phosphinen, insbesondere Halogenphosphinen, Trialkylphophinen, Triarylphosphinen oder Alkylarylphosphinen, wie z. B. Trifluorphosphin, Trimethylphosphin, Tricyclohexylphosphin, Tri-tert- butylphosphin, Triphenylphosphin, Tris(pentafluorphenyl)phosphin, Phosphiten, wie z. B. Trimethylphosphit, Triethylphosphit, Arsinen, wie z. B. Trifluorarsin, Trimethylarsin, Tricyclohexylarsin, Tri-tert-butylarsin, Triphenylarsin, Tris(pentafluorphenyl)arsin, Stibinen, wie z. B. Trifluor- stibin, Trimethylstibin, Tricyclohexylstibin, Tri-tert-butylstibin, Triphenyl- stibin, Tris(pentafluorphenyl)stibin, stickstoffhaltigen Heterocyclen, wie z. B. Pyridin, Pyridazin, Pyrazin, Pyrimidin, Triazin, und Carbenen, insbesondere Arduengo-Carbenen.
Bevorzugte monoanionische, monodentate Liganden L sind ausgewählt aus Hydrid, Deuterid, den Halogeniden F, Cl, Br und I, Alkylacetyliden, wie z. B. Methyl-C≡C~, tert-Butyl-C≡C", Arylacetyliden, wie z. B. Phenyl-C≡C", Cyanid, Azid, Cyanat, Isocyanat, Thiocyanat, Isothiocyanat, aliphatischen oder aromatischen Alkoholaten, wie z. B. Methanolat, Ethanolat, Propanolat, /so-Propanolat, tert-Butylat, Phenolat, aliphatischen oder aromatischen Thioalkoholaten, wie z. B. Methanthiolat, Ethanthiolat, Propanthiolat, /so-Propanthiolat, fe/t-Thiobutylat, Thiophenolat, Amiden, wie z. B. Dimethylamid, Diethylamid, Di-/so-propylamid, Morpholid,
Carboxylaten, wie z. B. Acetat, Trifluoracetat, Propionat, Benzoat, Arylgruppen, wie z. B. Phenyl, Naphthyl, und anionischen, stickstoffhaltigen Heterocyclen, wie Pyrrolid, Imidazolid, Pyrazolid. Dabei sind die Alkylgruppen in diesen Gruppen bevorzugt CrC-20-Alkylgruppen, besonders bevorzugt Crdo-Alkylgruppen, ganz besonders bevorzugt CrC-4-Alkylgruppen. Unter einer Arylgruppe werden auch Heteroaryl- gruppen verstanden. Diese Gruppen sind wie oben definiert.
Bevorzugte di- bzw. trianionische Liganden sind O ~, S ~, Carbide, welche zu einer Koordination der Form R-C≡M führen, und Nitrene, welche zu einer Koordination der Form R-N=M führen, wobei R allgemein für einen Substituenten steht, oder N3".
Bevorzugte neutrale oder mono- oder dianionische bidentate oder höher- dentate Liganden L sind ausgewählt aus Diaminen, wie z. B. Ethylen- diamin, N,N,N\N'-Tetramethylethylendiamin, Propylendiamin, N, N, N', N'- Tetramethylpropylendiamin, eis- oder trans-Diaminocyclohexan, eis- oder trans-N.N.N'.N'-Tetramethyldiaminocyclohexan, Iminen, wie z. B. 2-[(1- (Phenylimino)ethyl]pyridin, 2-[1-(2-Methylphenylimino)ethyl]pyridin, 2-[1- (2,6-Di-/so-propylphenylimino)ethyl]pyridin, 2-[1-(Methylimino)ethyl]pyridin, 2-[1 -(Ethylimino)ethyl]pyridin, 2-[1 -(/so-Propylimino)ethyl]pyridin, 2-[1 -(tert- Butylimino)ethyl]pyridin, Diiminen, wie z. B. 1 ,2-Bis(methylimino)ethan, 1 ,2-Bis(ethylimino)ethan, 1 ,2-Bis(/so-propylimino)ethan, 1 ,2-Bis(terf-butyl- imino)ethan, 2,3-Bis(methylimino)butan, 2,3-Bis(ethylimino)butan, 2,3-Bis- (/so-propylimino)butan, 2,3-Bis(terf-butylimino)butan, 1 ,2-Bis(phenylimino)- ethan, 1 ,2-Bis(2-methylphenylimino)ethan, 1 ,2-Bis(2,6-di-/so-propylphenyl- imino)ethan, 1 ,2-Bis(2,6-di-te/t-butylphenylimino)ethan, 2,3-Bis(phenyl- imino)butan, 2,3-Bis(2-methylphenylimino)butan, 2,3-Bis(2,6-di-/so-propyl- phenylimino)butan, 2,3-Bis(2,6-di-fert-butylphenylimino)butan, Hetero- cyclen enthaltend zwei Stickstoffatome, wie z. B. 2,2'-Bipyridin, o-Phenanthrolin, Diphosphinen, wie z. B. Bis-(diphenylphosphino)methan, Bis-(diphenylphosphino)ethan, Bis(diphenylphosphino)propan, Bis- (diphenylphosphino)butan, Bis(dimethylphosphino)methan, Bis(dimethylphosphino)ethan, Bis(dimethylphosphino)propan, Bis(dimethylphosphino)butan, Bis(diethylphosphino)methan, Bis(diethylphosphino)ethan, Bis(diethylphosphino)propan, Bis(diethyl- phosphino)butan, Bis(di-tert-butylphosphino)methan, Bis(di-te/t-butyl- phosphino)ethan, Bis(fe/t-butylphosphino)propan, B\s{d\-tert- butylphosphino)butan, 1 ,3-Diketonaten abgeleitet von 1 ,3-Diketonen, wie z. B. Acetylaceton, Benzoylaceton, 1 ,5-Diphenylacetylaceton, Dibenzoylmethan, Bis(1 ,1 ,1-trifluoracetyl)methan, 3-Ketonaten abgeleitet von 3-Ketoestem, wie z. B. Acetessigsäureethylester, Carboxylate, abgeleitet von Aminocarbonsäuren, wie z. B. Pyridin-2-carbonsäure, Chinolin-2-carbonsäure, Glycin, N,N-Dimethylglycin, Alanin, N1N- Dimethylaminoalanin, Salicyliminaten abgeleitet von Salicyliminen, wie z. B. Methylsalicylimin, Ethylsalicylimin, Phenylsalicylimin, Dialkoholaten abgeleitet von Dialkoholen, wie z. B. Ethylenglykol, 1 ,3-Propylenglykol und Dithiolaten abgeleitet von Dithiolen, wie z. B. 1 ,2-Ethylendithiol, 1 ,3- Propylendithiol.
Bevorzugte tridentate Liganden sind Borate stickstoffhaltiger Heterocyclen, wie z. B. Tetrakis(1-imidazolyl)borat und Tetrakis(1-pyrazolyl)borat.
Bevorzugt sind weiterhin bidentate monoanionische Liganden L, welche mit dem Metall einen cyclometallierten Fünfring oder Sechsring mit mindestens einer Metall-Kohlenstoff-Bindung aufweisen, insbesondere einen cyclometallierten Fünfring. Dies sind insbesondere Liganden, wie sie allgemein im Gebiet der phosphoreszierenden Metallkomplexe für organische Elektrolumineszenzvorrichtungen verwendet werden, also Liganden vom Typ Phenylpyridin, Naphthylpyridin, Phenylchinolin, Phenyl- isochinolin, etc., welche jeweils durch einen oder mehrere Reste R1 substituiert sein können. Dem Fachmann auf dem Gebiet der phosphoreszierenden Elektrolumineszenzvorrichtungen ist eine Vielzahl derartiger Liganden bekannt, und er kann ohne erfinderisches Zutun weitere derartige Liganden als Ligand L für Verbindungen gemäß Formel (1 ) auswählen. Generell eignet sich dafür besonders die Kombination aus zwei Gruppen, wie sie durch die folgenden Formeln (29) bis (56) dargestellt sind, wobei eine Gruppe über ein neutrales Stickstoffatom oder ein Carbenatom bindet und die andere Gruppe über ein negativ geladenes Kohlenstoffatom oder ein negativ geladenes Stickstoffatom bindet. Der Ligand L kann dann aus den Gruppen der Formeln (29) bis (56) gebildet werden, indem diese Gruppen jeweils an der durch # gekennzeichneten Position aneinander binden. Die Position, an der die Gruppen an das Metall koordinieren, sind durch * gekennzeichnet. In Liganden der Formel (2) oder (3) können auch einzelne dieser Gruppen als Ligand L an die Gruppe Y des Liganden gebunden sein.
Figure imgf000019_0001
Formel (29) Formel (30) Formel (31) Formel (32)
Figure imgf000019_0002
Formel (33) Formel (34)
Formel (35) Formel (36)
Figure imgf000019_0003
Formel (37) Formel (38) Formel (39) Formel (40)
#
Figure imgf000019_0004
Formel (41) Formel (42) Formel (43) Formel (44) )
Figure imgf000020_0001
Formel (49) Formel (50) Formel (51 ) Forme! (52)
Figure imgf000020_0002
Formel (53) armel (54) Formel (55) Formel (56)
Dabei haben die verwendeten Symbole dieselbe Bedeutung, wie oben beschrieben, und X steht gleich oder verschieden bei jedem Auftreten für CR1 oder N mit der Maßgabe, dass maximal drei Symbole X in jeder Gruppe für N stehen. Bevorzugt stehen maximal zwei Symbole X in jeder Gruppe für N, besonders bevorzugt steht maximal ein Symbol X in jeder Gruppe für N, ganz besonders bevorzugt stehen alle Symbole X für CR1.
Ebenfalls bevorzugte Liganden L sind η5-Cyclopentadienyl, η5-Penta- methylcyclopentadienyl, η6-Benzol oder η7-Cycloheptatrienyl, welche jeweils durch einen oder mehrere Reste R1 substituiert sein können.
Ebenfalls bevorzugte Liganden L sind 1 ,3,5-cis-Cyclohexanderivate, insbesondere der Formel (57), 1 ,1 ,1-Tri(methylen)methanderivate, insbesondere der Formel (58) und 1 ,1 ,1 -trisubstituierte Methane, insbesondere der Formel (59) und (60),
Figure imgf000021_0001
Formel (57) Formel (58)
Figure imgf000021_0002
wobei in den Formeln jeweils die Koordination an das Metall M dargestellt ist, R1 die oben genannte Bedeutung hat und A, gleich oder verschieden bei jedem Auftreten, für O", S~, COO~, P(R1)2 oder N(R1)2 steht.
Die Darstellung der Isonitrilkomplexe kann z. B. durch Substitutionsreaktion erfolgen. Dabei werden Metallkomplexe mit den Isonitrilliganden, gegebenenfalls in Gegenwart eines Katalysators, zu den gewünschten Isonitrilkomplexen umgesetzt. Auf diesem Wege sind z. B. ausgehend von Molybdän- bzw. Wolfram hexacarbonyl oder Molybdän- bzw. Wolfram- olefin-carbonylkomplexen Tri-, Tetra-, Penta- und Hexaisonitril-Molybdän bzw. Wolfram-Verbindungen zugänglich. Dieser Reaktionstyp eignet sich sowohl zur Umsetzung von einzähnigen als auch mehrzähnigen Isonitrilliganden. Als Katalysator kann Paliadium(ll)oxid zugesetzt werden (Albers et al., J. Chem. Edu. 1986, 63(5), 444; Coville et al. Inorg. CNm. Acta 1982, 65, L7-L8; Yamamoto et al., J. Organomet. Chem. 1985, 282, 191 , Hahn et al., Organometallics 1994, 13, 3002; F. Hahn et al., Organo- metallics 1992, 11, 84).
PdO
M(CO)6 + n R-NC • M(UU)6.n(UN-K)n
M = Mo, W n = 3, 4, 5, 6
Daneben können Metallsalze mit Isonitrilliganden zu Isonitril-Metall- halogeniden umgesetzt werden und die Halogenidliganden in diesen anschließend gegen andere ein- oder mehrzähnige Liganden ausgetauscht werden. IrCU + R-NC (R-NC)3IrCI3
(R-NC)3IrCI3 + 3 L- (R-NC)3IrL3 + 3 Cl-
Dabei können sowohl der Isonitrilligand als auch der Ligand L ein- oder mehrzähnig sein.
Beispiele für bevorzugte Verbindungen gemäß Formel (1 ) sind die im Folgenden abgebildeten Strukturen (1 ) bis (98).
Figure imgf000022_0001
Figure imgf000023_0001
9004955
-23-
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
04955
-26-
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
35 P2009/004955
-29-
Figure imgf000030_0001
Figure imgf000031_0001
09004955
-31 -
Figure imgf000032_0001
(91) (92)
Figure imgf000032_0002
(93) (94)
Figure imgf000032_0003
(95) (96)
Figure imgf000032_0004
(97) (98) Die oben beschriebenen Komplexe gemäß Formel (1 ) bzw. die oben aufgeführten bevorzugten Ausführungsformen werden in der elektronischen Vorrichtung als aktive Komponente verwendet. Aktive Komponenten sind generell die organischen oder anorganischen Materialien, welche zwischen Anode und Kathode eingebracht sind, beispielsweise Ladungsinjektions-, Ladungstransport- oder Ladungsblockiermaterialien, insbesondere aber Emissionsmaterialien und Matrixmaterialien. Für diese Funktionen zeigen die erfindungsgemäßen Verbindungen besonders gute Eigenschaften, insbesondere als Emissionsmaterial in organischen Elektrolumineszenzvorrichtungen. Eine bevorzugte Ausführungsform der Erfindung sind daher organische Elektrolumineszenzvorrichtungen.
Die organische Elektrolumineszenzvorrichtung enthält Kathode, Anode und mindestens eine emittierende Schicht. Außer diesen Schichten kann sie noch weitere Schichten enthalten, beispielsweise jeweils eine oder mehrere Lochinjektionsschichten, Lochtransportschichten, Lochblockierschichten, Elektronentransportschichten, Elektroneninjektionsschichten, Exzitonenblockierschichten, Ladungserzeugungsschichten und/oder organische oder anorganische p/n-Übergänge. Ebenso können zwischen zwei emittierende Schichten Interlayers eingebracht sein, welche beispiels- weise eine Exzitonen-blockierende Funktion aufweisen und/oder die
Ladungsbalance in der Elektrolumineszenzvorrichtung steuern. Es sei aber darauf hingewiesen, dass nicht notwendigerweise jede dieser Schichten vorhanden sein muss. Dabei kann die organische Elektrolumineszenzvorrichtung eine emittierende Schicht enthalten, oder sie kann mehrere emittierende Schichten enthalten. Wenn mehrere Emissionsschichten vorhanden sind, weisen diese bevorzugt insgesamt mehrere Emissionsmaxima zwischen 380 nm und 750 nm auf, so dass insgesamt weiße Emission resultiert, d. h. in den emittierenden Schichten werden verschiedene emittierende Verbindungen verwendet, die fluoreszieren oder phosphoreszieren können. Insbesondere bevorzugt sind Dreischichtsysteme, wobei die drei Schichten blaue, grüne und orange oder rote Emission zeigen (für den prinzipiellen Aufbau siehe z. B. WO 05/011013) bzw. Systeme, welche mehr als drei emittierende Schichten aufweisen. In einer bevorzugten Ausführungsform der Erfindung enthält die organische elektronische Vorrichtung die Verbindung gemäß Formel (1 ) bzw. die oben aufgeführten bevorzugten Ausführungsformen als emittierende Verbindung in einer oder mehreren emittierenden Schichten.
Wenn die Verbindung gemäß Formel (1 ) als emittierende Verbindung in einer emittierenden Schicht eingesetzt wird, wird sie bevorzugt in Kombination mit einem oder mehreren Matrixmaterialien eingesetzt. Die Mischung aus der Verbindung gemäß Formel (1 ) und dem Matrixmaterial enthält zwischen 1 und 99 Vol.-%, vorzugsweise zwischen 2 und 90 Vol.-%, besonders bevorzugt zwischen 3 und 40 Vol.-%, insbesondere zwischen 5 und 15 Vol.-% der Verbindung gemäß Formel (1 ) bezogen auf die Gesamtmischung aus Emitter und Matrixmaterial. Entsprechend enthält die Mischung zwischen 99 und 1 Vol.-%, vorzugsweise zwischen 98 und 10 Vol.-%, besonders bevorzugt zwischen 97 und 60 Vol.-%, insbesondere zwischen 95 und 85 Vol.-% des Matrixmaterials bezogen auf die Gesamtmischung aus Emitter und Matrixmaterial.
Bevorzugte Matrixmaterialien sind CBP (N,N-Biscarbazolylbiphenyl), Carbazolderivate (z. B. gemäß WO 05/039246, US 2005/0069729, jp 2004/288381 , EP 1205527 oder WO 08/086851 , Azacarbazole (z. B. gemäß EP 1617710, EP 1617711 , EP 1731584, JP 2005/347160), Ketone (z. B. gemäß WO 04/093207 oder der nicht offengelegten Anmeldung DE 102008033943.1 ), Phosphinoxide, Sulfoxide und Sulfone (z. B. gemäß WO 05/003253), Oligophenylene, aromatische Amine (z. B. gemäß US 2005/0069729), bipolare Matrixmaterialien (z. B. gemäß
WO 07/137725), Silane (z. B. gemäß WO 05/111172), 9,9-Diarylfluoren- derivate (z. B. gemäß der nicht offen gelegten Anmeldung
DE 102008017591.9), Azaborole, Boronester (z. B. gemäß
WO 06/117052), Indolocarbazole (WO 07/063754, WO 08/056746), Triazinderivate (WO 07/063754 oder nicht offengelegte Anmeldung
DE 102008036982.9), Zinkkomplexe (EP 652273 oder nicht offengelegte Anmeldung DE 102007053771.0).
Weiterhin bevorzugt ist eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit einem Sublimationsverfahren beschichtet werden. Dabei werden die Materialien in Vakuum-Sublimationsanlagen bei einem Anfangsdruck kleiner 10'5 mbar, bevorzugt kleiner 10~6 mbar aufgedampft.
Bevorzugt ist ebenfalls eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit dem
OVPD (Organic Vapour Phase Deposition) Verfahren oder mit Hilfe einer Trägergassublimation beschichtet werden. Dabei werden die Materialien bei einem Druck zwischen 10~5 mbar und 1 bar aufgebracht. Ein Spezialfall dieses Verfahrens ist das OVJP (Organic Vapour Jet Printing) Verfahren, bei dem die Materialien direkt durch eine Düse aufgebracht und so strukturiert werden (z. B. M. S. Arnold et al., Appl. Phys. Lett. 2008, 92, 053301 ).
Weiterhin bevorzugt ist eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten aus Lösung, wie z. B. durch Spincoating, oder mit einem beliebigen Druckverfahren, wie z. B. Siebdruck, Flexodruck oder Offsetdruck, besonders bevorzugt aber LITI (Light Induced Thermal Imaging, Thermotransferdruck) oder InkJet Druck (Tintenstrahldruck), hergestellt werden. Hierfür sind lösliche Verbindungen nötig, welche beispielsweise durch geeignete Substitution erhalten werden.
Die organische Elektrolumineszenzvorrichtung kann auch als Hybridsystem hergestellt werden, indem eine oder mehrere Schichten aus Lösung aufgebracht werden und eine oder mehrere andere Schichten aufgedampft werden. Da die Verbindungen gemäß Formel (1 ) im Allgemeinen eine hohe Löslichkeit in organischen Lösemitteln aufweisen, können diese Verbindungen gut aus Lösung verarbeitet werden. So ist es beispielsweise möglich, eine emittierende Schicht enthaltend eine Verbindung gemäß Formel (1 ) und ein Matrixmaterial aus Lösung aufzubringen und darauf eine Lochblockierschicht und/oder eine Elektronen- transportschicht im Vakuum aufzudampfen.
Diese Verfahren sind dem Fachmann generell bekannt und können von ihm ohne Probleme auf organische Elektrolumineszenzvorrichtungen enthaltend Verbindungen gemäß Formel (1 ) bzw. die oben aufgeführten bevorzugten Ausführungsformen angewandt werden.
Metallkomplexe, welche die oben aufgeführten Liganden der Formel (27) und/oder (28) enthalten, sind neu und sind daher ebenfalls ein Gegenstand der vorliegenden Erfindung.
Ein weiterer Gegenstand der Erfindung sind daher Metallkomplexe der Formel (1'),
Figure imgf000036_0001
Formel (11)
wobei die verwendeten Symbole und Indizes die oben genannten Bedeutungen haben und mindestens einer der Isonitrilliganden ausgewählt ist aus Liganden der Formel (27) oder (28), welcher jeweils auch durch einen oder mehrere Reste R1 substituiert sein kann:
Figure imgf000036_0002
Formel (27) Formel (28)
Dabei gelten in Komplexen der Formel (V) für die Auswahl der Metalle und gegebenenfalls vorhandener weiterer Liganden dieselben Bevorzugungen, wie oben beschrieben.
Für das Aufbringen aus Lösung sind Lösungen der Verbindungen gemäß Formel (V) erforderlich. Weiterer Gegenstand der Erfindung sind daher Lösungen enthaltend mindestens eine Verbindung gemäß Formel (V) und mindestens ein organisches Lösungsmittel, bevorzugt ausgewählt aus der Klasse der aromatischen organischen Lösungsmittel, z. B. Dimethylanisol. Nochmals ein weiterer Gegenstand der Erfindung sind Liganden der oben abgebildeten Formeln (27) und (28), welche jeweils durch einen oder mehrere Reste R1 substituiert sein können.
Die erfindungsgemäßen elektronischen Vorrichtungen, insbesondere organische Elektrolumineszenzvorrichtungen, zeichnen sich durch folgende überraschende Vorteile gegenüber dem Stand der Technik aus:
1. Organische Elektrolumineszenzvorrichtungen enthaltend Verbindungen gemäß Formel (1 ) als emittierende Materialien weisen eine exzellente Lebensdauer auf.
2. Organische Elektrolumineszenzvorrichtungen enthaltend Verbindungen gemäß Formel (1) als emittierende Materialien weisen eine hervorragende Effizienz auf.
3. Die Lumineszenzlebensdauer vieler Verbindungen gemäß Formel (1 ) bei Raumtemperatur liegt im Bereich von weniger als 100 ns und ist damit um mehr als eine Größenordnung geringer als die Lumineszenz- lebensdauer von Iridiumkomplexen oder Platinkomplexen, wie sie gemäß dem Stand der Technik in organischen Elektrolumineszenz- vorrichtungen eingesetzt werden. Daher eignen sich die Verbindungen gemäß Formel (1 ) insbesondere auch zum Einsatz in organischen Elektrolumineszenzvorrichtungen mit Passiv-Matrix-Ansteuerung. Diese oben genannten Vorteile gehen nicht mit einer Verschlechterung der weiteren elektronischen Eigenschaften einher.
Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert, ohne sie dadurch einschränken zu wollen. Der Fachmann kann aus den Schilderungen ohne erfinderisches Zutun weitere erfindungsgemäße elektronische Vorrichtungen herstellen. Beispiele:
Beispiele 1 bis 9: Synthese der Metallkomplexe
Die nachfolgenden Synthesen werden, sofern nicht anders angegeben, unter einer Schutzgasatmosphäre in getrockneten Lösungsmitteln durchgeführt. Die Lösungsmittel und Reagenzien können von ALDRICH bzw. ABCR bezogen werden.
Hexakis(phenylisonitril)molybdän(0) (Beispiel 1), Hexakis(phenylisonitril)- wolfram(O) (Beispiel 2) und Hexakis(2,4,6-tri-tert-butylphenylisonitril)- wolfram(O) (Beispiel 3) können nach Albers et al., J. Chem. Edu. 1986, 63(5), 444, Coville et al., Inorg. Chim. Ada 1982, 65, L7-L8, bzw. Yamamoto et al., J. Organomet. Chem. 1985, 282, 191 hergestellt werden. Die Verbindungen werden mehrfach aus Toluol / Ethanol (1 :2 - 1 :1 ) umkristallisiert. Die so erzielten Reinheiten betragen typischerweise > 99.8 % nach 1H-NMR.
Beispiel 4: Tris-phenylisonitril-[cis,cis-1 ,3,5-cyclohexan-triyltris[diphenyl- phosphin]-P,P',P"]-molybdän (0)
Figure imgf000038_0001
Eine Suspension von 8,2 g [10 mmol] Tricarbonyl[cis,cis-1 ,3,5- cyclohexan-triyltris[diphenylphosphin]-P,Pl,P"]-molybdän (0), [156999-20- 1] in 100 ml Toluol wird mit 3,6 g (35 mmol) Phenylisonitril und 50 mg Palladium(ll)oxid versetzt und anschließend 60 h unter Rückfluss gerührt. Nach Erkalten wird vom Palladium(ll)oxid über Kieselgel abfiltriert, die rote Lösung wird im Vakuum auf ca. 10 ml eingeengt und dann mit 50 ml Ethanol versetzt. Nach 12 h Rühren wird der FS abgesaugt, und zweimal aus Toluol / Ethanol umkristallisiert. Ausbeute: 4,3 g, (4,1 mmol), 41 ,3 %, Reinheit n. 1H-NMR ca. 99,7 %.
Analog zu Beispiel 4 wurden die in Tabelle aufgeführten Komplexe aus den entsprechenden Vorstufen dargestellt.
Figure imgf000039_0001
Figure imgf000040_0001
Beispiel 8:
Figure imgf000040_0002
1,3,5-Tris(1-isocyano-phen-2-yl)benzol wird aus 1 ,3,5-Tris(1-amino-phen- 2-yl)benzol [923027-14-9] nach F.E. Hahn et al., J. Organomet. Chem. 467, 130, 1994 dargestellt.
Eine Lösung von 2,6 g [10 mmol] Molybdänhexacarbonyl in 100 ml Toluol wird mit 8,0 g (21 mmol) 1 ,3,5-Tris(1-isocyanophen-2-yl)benzol und 50 mg Palladium(ll)oxid versetzt und anschließend 60 h unter Rückfluss gerührt. Nach Erkalten wird vom Palladium(ll)oxid über Kieselgel abfiltriert, die rote Lösung wird im Vakuum auf ca. 10 ml eingeengt und dann mit 50 ml Ethanol versetzt. Nach 12 h Rühren wird der FS abgesaugt, und dann an Aluminiumoxid, neutral, Aktivitätsstufe 4, mit Dichlormethan - Diethylether 1 :5 chromatographiert. Ausbeute: 6,1 g, (7.1 mmol), 71.0 %, Reinheit n. 1H-NMR ca. 99,9 %.
Beispiel 9:
Figure imgf000041_0001
Eine Lösung von 3,6 g [10 mmol] Cycloheptatrienyl-wolfram-tricarbonyl in 100 ml Toluol wird mit 4,2 g (11 mmol) 1 ,3,5-Tris(1-isocyanophen-2- yl)benzol versetzt und anschließend 5 h unter Rückfluss gerührt. Nach Erkalten wird im Vakuum auf ca. 10 ml eingeengt und dann mit 50 ml Heptan versetzt, der ausgefallene Feststoff wird abgesaugt, dreimal mit 50 ml Heptan gewaschen und zweimal aus Chlorbenzol umkristallisiert. Ausbeute: 4,8 g, (7,4 mmol), 73,9 %, Reinheit n. 1H-NMR ca. 99,9 %.
Beispiel 10: Lumineszenzlebensdauer der Komplexe
Die Isonitrilkomplexe weisen die folgenden Lumineszenzlebensdauern bei Raumtemperatur auf (nach: K. Mann et al., J. Am. Chem. Soc. 1977, 99(1 ), 306):
Hexakis(phenylisonitril)molybdän(0) (Beispiel 1 ) = 43 ns; Hexakis(phenylisonitril)wolfram(0) (Beispiel 2) = 83 ns.
Hieraus lässt sich deutlich erkennen, dass die Metallkomplexe der Formel (1 ) mit Isonitrilliganden eine deutlich geringere Lumineszenzlebensdauer aufweisen als Iridium- oder Platinkomplexe, wie sie gemäß dem Stand der Technik meist in OLEDs verwendet werden. Damit eignen sich diese Komplexe insbesondere auch zur Anwendung in Elektrolumineszenz- vorrichtungen mit Passiv-Matrix-Ansteuerung. Beispiel 11 : Herstellung und Charakterisierung von organischen Elektrolumineszenzvorrichtungen
Die Herstellung von LEDs erfolgt nach dem im Folgenden skizzierten allgemeinen Verfahren. Dieses muss natürlich im Einzelfall auf die jeweiligen Gegebenheiten (z. B. Schichtdickenvariation, um optimale Effizienz bzw. Farbe zu erreichen) angepasst werden.
Allgemeines Verfahren zur Herstellung der OLEDs:
Die Herstellung solcher Bauteile lehnt sich an die Herstellung polymerer Leuchtdioden (PLEDs) an, die in der Literatur bereits vielfach beschrieben ist (z.B. in der WO 2004/037887 A2). Im vorliegenden Fall werden die erfindungsgemäßen Verbindungen zusammen mit den auf geführten Matrixmaterialien oder Matrixmareialkombinationen in Toluol bzw. Chlorbenzol gelöst. Der typische Feststoffgehalt solcher Lösungen liegt zwischen 10 und 25 g/L, wenn, wie hier, die für eine Device typische Schichtdicke von 80 nm mittels Spincoating erzielt werden soll.
Als Matrixmaterialen werden folgende Verbindungen verwendet:
Figure imgf000042_0001
Verbindung 1 Verbindung 2 [959422-18-5] [1040882-55-0]
Figure imgf000043_0001
Verbindung 3
DE102008033943.1
Analog dem o. g. allgemeinen Verfahren werden OLEDs mit folgendem Aufbau erzeugt:
PEDOT 20 nm (aus Wasser aufgeschleudert; PEDOT bezogen von BAYER AG; Poly-[3,4-ethylendioxy-2,5-thiophen])
Matrix + Emitter 80 nm, 5 Gew.-% Emitterkonzentration (aus Toluol oder
Chlorbenzol aufgeschleudert), Ba / Ag 10 nm Ba / 150 nm Ag als Kathode.
Strukturierte ITO-Substrate und das Material für die sogenannte Pufferschicht (PEDOT, eigentlich PEDOT:PSS) sind käuflich erhältlich (ITO von Technoprint und anderen, PEDOT:PPS als wässrige Dispersion Clevios Baytron P von H. C. Starck). Die Emissionsschicht wird in einer Inertgasatmosphäre, im vorliegenden Fall Argon, aufgeschleudert und 10 min bei 1200C ausgeheizt. Zuletzt wird eine Kathode aus Barium und Aluminium im Vakuum aufgedampft. Die lösungsprozessierten Devices werden standardmäßig charakterisiert, die genannten OLED-Beispiele wurden nicht optimiert.
In Tabelle sind die Effizienz und die Spannung bei 500 cd / m2 sowie die Farbe aufgeführt.
Figure imgf000044_0001
TVK: Mw = 1,100,000 g / mol bezogen von Aldrich

Claims

Patentansprüche
1. Elektronische Vorrichtung, enthaltend mindestens einen Metallkomplex gemäß Formel (1 ),
(L)y M-^C=N-R]x
Formel (1)
wobei für die verwendeten Symbole und Indizes gilt:
M ist ein penta- oder hexakoordiniertes Übergangsmetall;
L ist bei jedem Auftreten gleich oder verschieden ein mono-, bi-, oder tridentater Ligand, der an das Metall M bindet und der durch einen oder mehrere Reste R1 substituiert sein kann; dabei kann der Ligand L auch an den Rest R der Isonitrilgruppe gebunden sein;
R ist bei jedem Auftreten gleich oder verschieden ein organischer
Substituent mit 1 bis 60 C-Atomen, der durch einen oder mehrere
Substituenten R1 substituiert sein kann; dabei können mehrere Reste R auch miteinander verknüpft sein und dadurch einen mehrzähnigen Liganden bilden; außerdem kann der Rest R auch mit dem Liganden L verknüpft sein;
R1 ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, N(R2)2, CN, NO2, Si(R2)3, B(OR2)2, C(=O)R2, P(=O)(R2)2) S(=O)R2, S(=O)2R2, OSO2R2, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine geradkettige Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R2 substituiert sein kann, wobei eine oder mehrere bevorzugt nicht benachbarte CH2-Gruppen durch R2C=CR2, C≡C, Si(R2)2, Ge(R2)2> Sn(R2)2, C=O, C=S, C=Se, C=NR2, P(O)(R2), SO, SO2, NR2, O, S oder CONR2 ersetzt sein können und wobei ein oder mehrere H-Atome durch D1 F, Cl, Br, I, CN oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Aryloxy- oder Hetero- aryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Kombination dieser Systeme; dabei können zwei oder mehrere Substituenten R1 auch miteinander ein mono- oder polycyclisches aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden;
R2 ist bei jedem Auftreten gleich oder verschieden H, D, F oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, in dem auch ein oder mehrere H-Atome durch D oder F ersetzt sein können; dabei können zwei oder mehrere Substituenten R2 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden;
x ist 3, 4, 5 oder 6;
y ist 0, 1 , 2 oder 3 mit der Maßgabe, dass eine Koordinationszahl am Metall von 5 oder 6 erreicht wird.
2. Elektronische Vorrichtung nach Anspruch 1 , enthaltend Anode, Kathode und mindestens eine Schicht, wobei diese Schicht mindestens eine organische bzw. metallorganische Verbindung enthält, wobei die organische elektronische Vorrichtung ausgewählt ist aus der Gruppe bestehend aus organischen Elektrolumineszenz- vorrichtungen (= organischen Leuchtdioden, OLEDs, PLEDs), organischen integrierten Schaltungen (O-ICs), organischen Feld- Effekt-Transistoren (O-FETs), organischen Dünnfilmtransistoren (O-TFTs), organischen lichtemittierenden Transistoren (O-LETs), organischen Solarzellen (O-SCs), organischen optischen Detektoren, organischen Photorezeptoren, organischen Feld-Quench-Devices (O-FQDs), lichtemittierenden elektrochemischen Zellen (LECs) oder 5 organischen Laserdioden (O-Laser), insbesondere organische
Elektrolumineszenzvorrichtungen.
3. Elektronische Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Verbindungen gemäß Formel (1) nicht
"10 geladen, d. h. elektrisch neutral, sind.
4. Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in Verbindungen gemäß Formel (1 ) M für ein pentakoordiniertes oder für ein hexakoordiniertes
15 Übergangsmetall steht, ausgewählt aus der Gruppe bestehend aus
Chrom, Molybdän, Wolfram, Rhenium, Ruthenium, Osmium, Rhodium, Iridium, Nickel, Platin, Kupfer, Silber und Gold, insbesondere Molybdän, Wolfram, Rhenium, Ruthenium, Osmium, Iridium, Platin und Gold.
20
5. Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein oder mehrere der Isonitril- liganden monodentate Liganden sind, wobei der Substituent R gleich oder verschieden bei jedem Auftreten für eine geradkettige Alkyl-
25 gruppe mit 1 bis 40 C-Atomen oder eine geradkettige Alkenyl- oder
Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl, Alkenyl- oder Alkinylgruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere bevorzugt nicht benachbarte CH2-Gruppen
30 durch R1C=CR1, C≡C, Si(R1)2, Ge(R1)2, Sn(R1)2, C=O, C=S, C=Se,
C=NR1, P(=O)(R1), SO, SO2, NR1, O, S oder CONR1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, Cl, Br, I, CN oder NO2 ersetzt sein können, oder für ein monovalentes aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60
35 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, oder für eine Kombination dieser Systeme steht.
Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Substituenten R miteinander und/oder zusammen mit dem Liganden L eine kettenförmige, verzweigte oder mono- oder polycyclische, aliphatische, aromatische und/oder benzoannellierte Struktur bilden und die Liganden damit mehrzähnigen bzw. polypodalen Ligandencharakter aufweisen.
Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Metallkomplex einen oder mehrere Isonitrilliganden mit einer Struktur gemäß Formel (2) oder Formel (3) enthält,
Figure imgf000048_0001
Formel (2) Formel (3)
wobei R1 und L die in Anspruch 1 genannten Bedeutungen haben und für die weiteren verwendeten Symbole und Indizes gilt:
Y ist bei jedem Auftreten gleich oder verschieden eine Einfachbindung, O, S, N(R1), C=O, eine geradkettige Alkylengruppe mit 1 bis 6 C-Atomen oder eine verzweigte oder cyclische Alkylengruppe mit 3 bis 6 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R1C=CR1, NR1, Si(R1 )2, O oder S ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, Cl, Br, I, CN oder NO2 ersetzt sein können, oder eine Arylen- oder Heteroarylengruppe mit 5 bis 20 aromatischen Ringatomen, welche mit einem oder mehreren Resten R1 substituiert sein kann, oder eine Kombination dieser Systeme;
V ist B, B(R1)-, CR1, CO", CN(R1)2, SiR1, N, NO, N(R1)+, P, P(R1)+, PO, PS, As, As(R1)+, AsO, S+, Se+, oder eine Einheit gemäß Formel (4), (5),
(6) oder (7),
Figure imgf000049_0001
Formel (4) Formel (5) Forme| (6) Formel
(7)
wobei die gestrichelten Bindungen jeweils die Bindung an Y andeuten;
Z ist BR1, B(RV, C(R1)2, C(=O), Si(R1)2, NR1, PR1, P(R1)2 +,
PO(R1), PS(R1), AsR1, AsO(R1), AsS, O, S, Se, oder eine Einheit gemäß Formel (8) bis (17),
Figure imgf000050_0001
Formel (8) Formel (9) Formel (10) Formel (11) 5)
Figure imgf000050_0002
Formel (16) Formel (17)
wobei die gestrichelten Bindungen jeweils die Bindung an Y andeuten;
n ist 1 , 2 oder 3, bevorzugt 2 oder 3;
m ist 1 oder 2, bevorzugt 2.
8. Elektronische Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Anzahl der Atome in den beiden Gruppen Y und in der Gruppe V bzw. Z, die die direkte Verbindung zwischen den Isonitrilgruppen bzw. zwischen der Isonitrilgruppe und der Liganden- gruppe L darstellt, zwischen 6 und 12 Atomen, bevorzugt zwischen 7 und 10 Atomen, besonders bevorzugt zwischen 7 und 9 Atomen beträgt.
9. Elektronische Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Liganden ausgewählt sind aus Liganden der Formeln (18) bis (28), welche jeweils durch einen oder mehrere Reste R1 substituiert sein können:
Figure imgf000051_0001
Formel (18) Formel (19) Formel (20)
Figure imgf000051_0002
Formel (21) Formel (22) Formel (23)
Figure imgf000051_0003
Formel (26)
Figure imgf000051_0004
Formel (27) Formel (28)
10. Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Liganden L ausgewählt sind aus Kohlenmonoxid, Stickstoffmonoxid, Aminen, Phosphenen, Phosphiten, Arsinen, Stibinen, stickstoffhaltigen Heterocyclen, Carbenen, Hydrid, Deuterid, den Halogeniden F, Cl, Br und I1 Alkylacetyliden, Arylacetyliden, Cyanid, Azid, Cyanat, Isocyanat, Thiocyanat, Isothiocyanat, aliphatischen oder aromatischen Alkoholaten, aliphatischen oder aromatischen Thioalkoholaten, Amiden, Carboxylaten, Arylgruppen, anionischen, stickstoffhaltigen Heterocyclen, O2", S2", Carbide, welche zu einer Koordination der
Form R-C≡M führen, und Nitrene, welche zu einer Koordination der Form R-N=M führen, wobei R allgemein für einen Substituenten steht, oder N3", Diaminen, Iminen, Diminen, Heterocyclen enthaltend zwei Stickstoffatome, Diphosphinen, 1 ,3-Diketonaten abgeleitet von 1 ,3-Diketonen, 3-Ketonaten abgeleitet von 3-Ketoestern,
Carboxylaten abgeleitet von Aminocarbonsäuren, Salicyliminaten abgeleitet von Salicyliminen, Dialkoholaten abgeleitet von Dialkoholen, Dithiolaten abgeleitet von Dithiolen, Borate stickstoffhaltiger Heterocyclen, η5-Cyclopentadienyl, η5-Pentamethyl- cyclopentadienyl, η6-Benzol oder ηr-Cycloheptatrienyl, welche jeweils durch einen oder mehrere Reste R1 substituiert sein können, oder dass der Ligand L ein bidentater monoanionischer Ligand ist, welcher mit dem Metall einen cyclometallierten Fünfring oder Sechsring mit mindestens einer Metall-Kohlenstoff-Bindung aufweist, insbesondere eine Kombination aus zwei Gruppen, wie sie durch die
Formeln (29) bis (56) dargestellt sind, wobei eine Gruppe über ein neutrales Stickstoffatom oder ein Carbenatom bindet und die andere Gruppe über ein negativ geladenes Kohlenstoffatom oder ein negativ geladenes Stickstoff atom bindet, wobei der Ligand L dann aus den Gruppen der Formeln (29) bis (56) gebildet wird, indem diese
Gruppen jeweils an der durch # gekennzeichneten Position aneinander binden, und die Position, an der die Gruppen an das Metall koordinieren, durch * gekennzeichnet ist:
Figure imgf000052_0001
Formel (29) Formel (30) Formel (31 ) Formel (32)
Figure imgf000053_0001
Formel (33) Formel (34) Formel (35) Formel (36)
Figure imgf000053_0002
Formel (37) Formel (38) Formel (39) Formel (40)
#
Figure imgf000053_0003
Forme! (41) Formel (42) Formel (43) Formel (44)
Figure imgf000053_0004
Formel (45) Formel (46) Formel (47) Formel (48)
#
Figure imgf000053_0005
Formel (49) Formel (50) Formel (51 ) Formel (52)
Figure imgf000054_0001
Formel (53) Formel (54) Formel (55) Formel (56)
dabei haben die verwendeten Symbole dieselbe Bedeutung, wie in Anspruch 1 beschrieben, und X steht gleich oder verschieden bei jedem Auftreten für CR1 oder N mit der Maßgabe, dass maximal drei Symbole X in jeder Gruppe für N stehen; oder dass der Ligand L ein 1.S.δ-cis-Cyclohexanderivat, insbesondere der Forme! (57), ein 1 ,1 ,1-Tri(methy!en)methanderivat, insbesondere der Formel (58) und ein 1 ,1 ,1-trisubstituiertes Methan, insbesondere der Formel (59) und (60) ist,
Figure imgf000054_0002
Formel (57) Formel (58) Formel (59)
Formel (60)
wobei in den Formeln jeweils die Koordination an das Metall M dargestellt ist, R1 die in Anspruch 1 genannte Bedeutung hat und A, gleich oder verschieden bei jedem Auftreten, für O", S~, COO", P(R1)2 oder N(R1)2 steht.
11. Organische Elektrolumineszenzvorrichtung nach einem oder mehreren der Ansprüche 1 bis 10, enthaltend Kathode, Anode und eine oder mehrere emittierende Schichten und außerdem optional jeweils eine oder mehrere Lochinjektionsschichten, Lochtransportschichten, Lochblockierschichten, Elektronentransportschichten, Elektroneninjektionsschichten, Exzitonenblockierschichten, Ladungs- erzeugungsschichten und/oder organische oder anorganische p/n- Übergänge, dadurch gekennzeichnet, dass die Verbindung gemäß Formel (1 ) als Emissionsmaterial in einer emittierenden Schicht eingesetzt wird.
12. Organische Elektrolumineszenzvorrichtung nach einem oder mehreren der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Verbindung gemäß Formel (1 ) in einer emittierenden Schicht in Kombination mit einem oder mehreren Matrixmaterialien eingesetzt wird, insbesondere ausgewählt aus CBP (N,N-Biscarbazolylbiphenyl),
Carbazolderivaten, Azacarbazolen, Ketonen, Phosphinoxiden, Sulfoxiden, Sulfonen, Oligophenylenen, aromatischen Aminen, bipolaren Matrixmaterialien, Silanen, 9,9-Diarylfluorenderivaten, Azaborolen oder Boronestem.
13. Verfahren zur Herstellung einer elektronischen Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit einem Sublimationsverfahren beschichtet werden und/oder dass eine oder mehrere Schichten mit dem OVPD (Organic Vapour Phase Deposition)
Verfahren oder mit Hilfe einer Trägergassublimation beschichtet werden oder mit dem OVJP (Organic Vapour Jet Printing) Verfahren beschichtet werden und/oder dass eine oder mehrere Schichten aus Lösung oder mit einem Druckverfahren hergestellt werden.
14. Verbindung der Formel ( 1 '),
Figure imgf000055_0001
Formel (V)
wobei die verwendeten Symbole und Indizes die in Anspruch 1 genannten Bedeutungen haben und mindestens einer der Isonitril- liganden ausgewählt ist aus Liganden der Formel (27) oder (28), welcher jeweils auch durch einen oder mehrere Reste R1 substituiert sein kann:
Figure imgf000056_0001
Formel (27) Formel (28)
15. Verbindung der Formel (27) und (28), welche jeweils durch einen oder mehrere Reste R1 substituiert sein können, wobei R1 die in Anspruch 1 genannte Bedeutung hat:
Figure imgf000056_0002
Formel (27) Formel (28)
16. Lösung oder Formulierung enthaltend mindestens eine Verbindung gemäß Formel (1 ') sowie mindestens ein organisches Lösungsmittel, bevorzugt ausgewählt aus der Klasse der aromatischen organischen Lösungsmittel.
PCT/EP2009/004955 2008-08-04 2009-07-08 Elektronische vorrichtung enthaltend metallkomplexe mit isonitrilliganden WO2010015307A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09777051A EP2311112B1 (de) 2008-08-04 2009-07-08 Elektronische vorrichtung enthaltend metallkomplexe mit isonitrilliganden
AT09777051T ATE549752T1 (de) 2008-08-04 2009-07-08 Elektronische vorrichtung enthaltend metallkomplexe mit isonitrilliganden
KR1020107028298A KR101658679B1 (ko) 2008-08-04 2009-07-08 이소니트릴 리간드를 갖는 금속 착물을 포함하는 전자 소자
US13/001,640 US8691400B2 (en) 2008-08-04 2009-07-08 Electronic devices comprising metal complexes having isonitrile ligands
CN200980125432.2A CN102077380B (zh) 2008-08-04 2009-07-08 包含异腈配体的金属络合物、包括该金属络合物的电子器件及其制造方法
JP2011521449A JP5746028B2 (ja) 2008-08-04 2009-07-08 金属錯体を備えた電子デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008036247A DE102008036247A1 (de) 2008-08-04 2008-08-04 Elektronische Vorrichtungen enthaltend Metallkomplexe
DE102008036247.6 2008-08-04

Publications (1)

Publication Number Publication Date
WO2010015307A1 true WO2010015307A1 (de) 2010-02-11

Family

ID=41050415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/004955 WO2010015307A1 (de) 2008-08-04 2009-07-08 Elektronische vorrichtung enthaltend metallkomplexe mit isonitrilliganden

Country Status (9)

Country Link
US (1) US8691400B2 (de)
EP (1) EP2311112B1 (de)
JP (1) JP5746028B2 (de)
KR (1) KR101658679B1 (de)
CN (1) CN102077380B (de)
AT (1) ATE549752T1 (de)
DE (1) DE102008036247A1 (de)
TW (1) TW201022400A (de)
WO (1) WO2010015307A1 (de)

Cited By (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011060867A1 (de) 2009-11-18 2011-05-26 Merck Patent Gmbh Stickstoffhaltige kondensierte heterozyklen für oleds
WO2011060859A1 (de) 2009-11-17 2011-05-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011085781A1 (de) 2010-01-16 2011-07-21 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011160758A1 (de) 2010-06-24 2011-12-29 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2012007088A1 (de) * 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
DE102010045405A1 (de) 2010-09-15 2012-03-15 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
WO2012069121A1 (de) 2010-11-24 2012-05-31 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2012143080A2 (de) 2011-04-18 2012-10-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2012163465A1 (de) 2011-06-03 2012-12-06 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2013041176A1 (de) 2011-09-21 2013-03-28 Merck Patent Gmbh Carbazolderivate für organische elektrolumineszenzvorrichtungen
WO2013056776A1 (de) 2011-10-20 2013-04-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US20130200357A1 (en) * 2010-10-14 2013-08-08 Merck Patent Gmbh Formulations for organic electroluminescent devices
WO2013120577A1 (en) 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
WO2014008967A2 (de) 2012-07-10 2014-01-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2014015931A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2014023388A1 (de) 2012-08-10 2014-02-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2014079532A1 (de) 2012-11-20 2014-05-30 Merck Patent Gmbh Formulierung in hochreinem l?sungsmittel zur herstellung elektronischer vorrichtungen
WO2015169412A1 (de) 2014-05-05 2015-11-12 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
JP2016119458A (ja) * 2010-03-11 2016-06-30 メルク パテント ゲーエムベーハー 発光ファイバー
WO2017012687A1 (en) 2015-07-22 2017-01-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017025166A1 (en) 2015-08-13 2017-02-16 Merck Patent Gmbh Hexamethylindanes
WO2017148564A1 (de) 2016-03-03 2017-09-08 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2017157983A1 (de) 2016-03-17 2017-09-21 Merck Patent Gmbh Verbindungen mit spirobifluoren-strukturen
WO2017178311A1 (de) 2016-04-11 2017-10-19 Merck Patent Gmbh Heterocyclische verbindungen mit dibenzofuran- und/oder dibenzothiophen-strukturen
WO2017186760A1 (en) 2016-04-29 2017-11-02 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017207596A1 (en) 2016-06-03 2017-12-07 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018050584A1 (de) 2016-09-14 2018-03-22 Merck Patent Gmbh Verbindungen mit spirobifluoren-strukturen
WO2018050583A1 (de) 2016-09-14 2018-03-22 Merck Patent Gmbh Verbindungen mit carbazol-strukturen
WO2018060307A1 (de) 2016-09-30 2018-04-05 Merck Patent Gmbh Verbindungen mit diazadibenzofuran- oder diazadibenzothiophen-strukturen
WO2018060218A1 (de) 2016-09-30 2018-04-05 Merck Patent Gmbh Carbazole mit diazadibenzofuran- oder diazadibenzothiophen-strukturen
WO2018087346A1 (de) 2016-11-14 2018-05-17 Merck Patent Gmbh Verbindungen mit einer akzeptor- und einer donorgruppe
WO2018087022A1 (de) 2016-11-09 2018-05-17 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018087020A1 (en) 2016-11-08 2018-05-17 Merck Patent Gmbh Compounds for electronic devices
WO2018091435A1 (en) 2016-11-17 2018-05-24 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018095381A1 (zh) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 印刷油墨组合物及其制备方法和用途
WO2018095395A1 (zh) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 高聚物、包含其的混合物、组合物和有机电子器件以及用于聚合的单体
WO2018095392A1 (zh) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 有机混合物、组合物以及有机电子器件
WO2018099846A1 (de) 2016-11-30 2018-06-07 Merck Patent Gmbh Verbindungen mit valerolaktam-strukturen
WO2018104194A1 (de) 2016-12-05 2018-06-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018104193A1 (de) 2016-12-05 2018-06-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018103744A1 (zh) 2016-12-08 2018-06-14 广州华睿光电材料有限公司 混合物、组合物及有机电子器件
WO2018104195A1 (de) 2016-12-05 2018-06-14 Merck Patent Gmbh Stickstoffhaltige heterocyclen zur verwendung in oleds
WO2018114883A1 (de) 2016-12-22 2018-06-28 Merck Patent Gmbh Mischungen umfassend mindestens zwei organisch funktionelle verbindungen
WO2018113785A1 (zh) 2016-12-22 2018-06-28 广州华睿光电材料有限公司 含呋喃交联基团的聚合物及其应用
WO2018127465A1 (de) 2017-01-04 2018-07-12 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018138039A1 (de) 2017-01-25 2018-08-02 Merck Patent Gmbh Carbazolderivate
WO2018138306A1 (de) 2017-01-30 2018-08-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018149769A1 (de) 2017-02-14 2018-08-23 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018166932A1 (de) 2017-03-13 2018-09-20 Merck Patent Gmbh Verbindungen mit arylamin-strukturen
WO2018166934A1 (de) 2017-03-15 2018-09-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018189134A1 (de) 2017-04-13 2018-10-18 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2018206537A1 (en) 2017-05-11 2018-11-15 Merck Patent Gmbh Carbazole-based bodipys for organic electroluminescent devices
WO2018206526A1 (en) 2017-05-11 2018-11-15 Merck Patent Gmbh Organoboron complexes for organic electroluminescent devices
WO2018215318A1 (de) 2017-05-22 2018-11-29 Merck Patent Gmbh Hexazyklische heteroaromatische verbindungen für elektronische vorrichtungen
WO2018234346A1 (en) 2017-06-23 2018-12-27 Merck Patent Gmbh MATERIALS FOR ORGANIC ELECTROLUMINESCENT DEVICES
WO2019007866A1 (de) 2017-07-05 2019-01-10 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2019007867A1 (de) 2017-07-05 2019-01-10 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2019052933A1 (de) 2017-09-12 2019-03-21 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2019068679A1 (en) 2017-10-06 2019-04-11 Merck Patent Gmbh MATERIALS FOR ORGANIC ELECTROLUMINESCENT DEVICES
WO2019081391A1 (de) 2017-10-24 2019-05-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2019096717A2 (de) 2017-11-14 2019-05-23 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
US10323180B2 (en) 2014-12-04 2019-06-18 Guangzhou Chinaray Optoelectronic Materials Ltd. Deuterated organic compound, mixture and composition containing said compound, and organic electronic device
WO2019121483A1 (en) 2017-12-20 2019-06-27 Merck Patent Gmbh Heteroaromatic compounds
WO2019121458A1 (de) 2017-12-19 2019-06-27 Merck Patent Gmbh Heterocyclische verbindung zur verwendung in electronischen vorrichtungen
US10364316B2 (en) 2015-01-13 2019-07-30 Guangzhou Chinaray Optoelectronics Materials Ltd. Conjugated polymer containing ethynyl crosslinking group, mixture, formulation, organic electronic device containing the same and application therof
WO2019145316A1 (de) 2018-01-25 2019-08-01 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2019175149A1 (en) 2018-03-16 2019-09-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019229011A1 (de) 2018-05-30 2019-12-05 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2019233904A1 (de) 2018-06-07 2019-12-12 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
US10510967B2 (en) 2014-12-11 2019-12-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic compound, and mixture, formulation and organic device comprising the same
WO2020011686A1 (de) 2018-07-09 2020-01-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020016264A1 (en) 2018-07-20 2020-01-23 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020053315A1 (de) 2018-09-12 2020-03-19 Merck Patent Gmbh Elektrolumineszierende vorrichtungen
WO2020053314A1 (de) 2018-09-12 2020-03-19 Merck Patent Gmbh Elektrolumineszierende vorrichtungen
WO2020053150A1 (en) 2018-09-12 2020-03-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020064666A1 (de) 2018-09-27 2020-04-02 Merck Patent Gmbh Verbindungen, die in einer organischen elektronischen vorrichtung als aktive verbindungen einsetzbar sind
WO2020064662A2 (de) 2018-09-27 2020-04-02 Merck Patent Gmbh Verfahren zur herstellung von sterisch gehinderten stickstoffhaltigen heteroaromatischen verbindungen
WO2020094539A1 (de) 2018-11-05 2020-05-14 Merck Patent Gmbh In einer organischen elektronischen vorrichtung einsetzbare verbindungen
WO2020094542A1 (de) 2018-11-06 2020-05-14 Merck Patent Gmbh 5,6-diphenyl-5,6-dihydro-dibenz[c,e][1,2]azaphosphorin- und 6-phenyl-6h-dibenzo[c,e][1,2]thiazin-5,5-dioxid-derivate und ähnliche verbindungen als organische elektrolumineszenzmaterialien für oleds
WO2020099307A1 (de) 2018-11-15 2020-05-22 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020099349A1 (de) 2018-11-14 2020-05-22 Merck Patent Gmbh Zur herstellung einer organischen elektronischen vorrichtung einsetzbare verbindungen
WO2020127165A1 (de) 2018-12-19 2020-06-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020148303A1 (de) 2019-01-17 2020-07-23 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020148243A1 (en) 2019-01-16 2020-07-23 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020169241A1 (de) 2019-02-18 2020-08-27 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2020178230A1 (en) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands for nano-sized materials
WO2020182779A1 (de) 2019-03-12 2020-09-17 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020187865A1 (de) 2019-03-20 2020-09-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020193447A1 (de) 2019-03-25 2020-10-01 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US10804470B2 (en) 2016-11-23 2020-10-13 Guangzhou Chinaray Optoelectronic Materials Ltd Organic compound
WO2020208051A1 (en) 2019-04-11 2020-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices
US10840450B2 (en) 2014-12-04 2020-11-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Polymer, and mixture or formulation, and organic electronic device containing same, and monomer thereof
WO2021013775A1 (de) 2019-07-22 2021-01-28 Merck Patent Gmbh Verfahren zur herstellung ortho-metallierter metallverbindungen
WO2021037401A1 (de) 2019-08-26 2021-03-04 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021043703A1 (de) 2019-09-02 2021-03-11 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021043755A1 (de) 2019-09-03 2021-03-11 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021052924A1 (en) 2019-09-16 2021-03-25 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021053046A1 (de) 2019-09-20 2021-03-25 Merck Patent Gmbh Peri-kondensierte heterozyklische verbindungen als materialien für elektronische vorrichtungen
WO2021052921A1 (de) 2019-09-19 2021-03-25 Merck Patent Gmbh Mischung von zwei hostmaterialien und organische elektrolumineszierende vorrichtung damit
US10968243B2 (en) 2015-12-04 2021-04-06 Guangzhou Chinaray Optoelectronic Materials Ltd. Organometallic complex and application thereof in electronic devices
WO2021078710A1 (en) 2019-10-22 2021-04-29 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021078831A1 (de) 2019-10-25 2021-04-29 Merck Patent Gmbh In einer organischen elektronischen vorrichtung einsetzbare verbindungen
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021089447A1 (de) 2019-11-04 2021-05-14 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021094269A1 (en) 2019-11-12 2021-05-20 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021110741A1 (en) 2019-12-04 2021-06-10 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021122535A1 (de) 2019-12-17 2021-06-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021122538A1 (de) 2019-12-18 2021-06-24 Merck Patent Gmbh Aromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021122740A1 (de) 2019-12-19 2021-06-24 Merck Patent Gmbh Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021151922A1 (de) 2020-01-29 2021-08-05 Merck Patent Gmbh Benzimidazol-derivate
WO2021170522A1 (de) 2020-02-25 2021-09-02 Merck Patent Gmbh Verwendung von heterocyclischen verbindungen in einer organischen elektronischen vorrichtung
WO2021175706A1 (de) 2020-03-02 2021-09-10 Merck Patent Gmbh Verwendung von sulfonverbindungen in einer organischen elektronischen vorrichtung
WO2021180625A1 (de) 2020-03-11 2021-09-16 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021180614A1 (de) 2020-03-11 2021-09-16 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021185712A1 (de) 2020-03-17 2021-09-23 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021185829A1 (de) 2020-03-17 2021-09-23 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021191183A1 (de) 2020-03-26 2021-09-30 Merck Patent Gmbh Cyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021191117A1 (de) 2020-03-24 2021-09-30 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2021191058A1 (en) 2020-03-23 2021-09-30 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021198213A1 (de) 2020-04-02 2021-10-07 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021204646A1 (de) 2020-04-06 2021-10-14 Merck Patent Gmbh Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen
US11161933B2 (en) 2016-12-13 2021-11-02 Guangzhou Chinaray Optoelectronic Materials Ltd. Conjugated polymer and use thereof in organic electronic device
WO2021239772A1 (de) 2020-05-29 2021-12-02 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2022002772A1 (de) 2020-06-29 2022-01-06 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022002771A1 (de) 2020-06-29 2022-01-06 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
US11239428B2 (en) 2016-11-23 2022-02-01 Guangzhou Chinaray Optoelectronic Materials Ltd. Boron-containing organic compound and applications thereof, organic mixture, and organic electronic device
WO2022029096A1 (de) 2020-08-06 2022-02-10 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022034046A1 (de) 2020-08-13 2022-02-17 Merck Patent Gmbh Metallkomplexe
WO2022038066A1 (de) 2020-08-19 2022-02-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022038065A1 (de) 2020-08-18 2022-02-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US11292875B2 (en) 2016-12-22 2022-04-05 Guangzhou Chinaray Optoelectronic Materials Ltd. Cross-linkable polymer based on Diels-Alder reaction and use thereof in organic electronic device
WO2022069422A1 (de) 2020-09-30 2022-04-07 Merck Patent Gmbh Verbindungen zur strukturierung von funktionalen schichten organischer elektrolumineszenzvorrichtungen
WO2022069421A1 (de) 2020-09-30 2022-04-07 Merck Patent Gmbh Zur strukturierung von funktionalen schichten organischer elektrolumineszenzvorrichtungen einsetzbare verbindungen
WO2022079068A1 (de) 2020-10-16 2022-04-21 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022079067A1 (de) 2020-10-16 2022-04-21 Merck Patent Gmbh Verbindungen mit heteroatomen für organische elektrolumineszenzvorrichtungen
WO2022101171A1 (de) 2020-11-10 2022-05-19 Merck Patent Gmbh Schwefelhaltige verbindungen für organische elektrolumineszenzvorrichtungen
WO2022117473A1 (de) 2020-12-02 2022-06-09 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022122682A2 (de) 2020-12-10 2022-06-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022129116A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Indolo[3.2.1-jk]carbazole-6-carbonitril-derivate als blau fluoreszierende emitter zur verwendung in oleds
WO2022129113A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Stickstoffhaltige heteroaromaten für organische elektrolumineszenzvorrichtungen
WO2022129114A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen
WO2022148717A1 (de) 2021-01-05 2022-07-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022157343A1 (de) 2021-01-25 2022-07-28 Merck Patent Gmbh Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen
US11404651B2 (en) 2017-12-14 2022-08-02 Guangzhou Chinaray Optoelectronic Materials Ltd. Transition metal complex material and application thereof in electronic devices
WO2022184601A1 (de) 2021-03-02 2022-09-09 Merck Patent Gmbh Verbindungen für organische elektrolumineszenzvorrichtungen
US11447496B2 (en) 2016-11-23 2022-09-20 Guangzhou Chinaray Optoelectronic Materials Ltd. Nitrogen-containing fused heterocyclic ring compound and application thereof
WO2022194799A1 (de) 2021-03-18 2022-09-22 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022200638A1 (de) 2021-07-06 2022-09-29 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022229126A1 (de) 2021-04-29 2022-11-03 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022229234A1 (de) 2021-04-30 2022-11-03 Merck Patent Gmbh Stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022229298A1 (de) 2021-04-29 2022-11-03 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022243403A1 (de) 2021-05-21 2022-11-24 Merck Patent Gmbh Verfahren zur kontinuierlichen aufreinigung von mindestens einem funktionalen material und vorrichtung zur kontinuierlichen aufreinigung von mindestens einem funktionalen material
US11555128B2 (en) 2015-11-12 2023-01-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Printing composition, electronic device comprising same and preparation method for functional material thin film
US11594690B2 (en) 2017-12-14 2023-02-28 Guangzhou Chinaray Optoelectronic Materials Ltd. Organometallic complex, and polymer, mixture and formulation comprising same, and use thereof in electronic device
WO2023036976A1 (en) 2021-09-13 2023-03-16 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2023041454A1 (de) 2021-09-14 2023-03-23 Merck Patent Gmbh Borhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023052272A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052313A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052275A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052314A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
US11634444B2 (en) 2016-11-23 2023-04-25 Guangzhou Chinaray Optoelectronic Materials Ltd. Metal organic complex, high polymer, composition, and organic electronic component
WO2023072799A1 (de) 2021-10-27 2023-05-04 Merck Patent Gmbh Bor- und stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023094412A1 (de) 2021-11-25 2023-06-01 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023099543A1 (en) 2021-11-30 2023-06-08 Merck Patent Gmbh Compounds having fluorene structures
US11674080B2 (en) 2017-12-14 2023-06-13 Guangzhou Chinaray Optoelectronic Materials Ltd. Transition metal complex, polymer, mixture, formulation and use thereof
US11680059B2 (en) 2017-12-21 2023-06-20 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic mixture and application thereof in organic electronic devices
WO2023110742A1 (de) 2021-12-13 2023-06-22 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2023117837A1 (de) 2021-12-21 2023-06-29 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
WO2023117835A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023117836A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023152063A1 (de) 2022-02-09 2023-08-17 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2023152346A1 (de) 2022-02-14 2023-08-17 Merck Patent Gmbh Materialien für elektronische vorrichtungen
EP4236652A2 (de) 2015-07-29 2023-08-30 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
WO2023161168A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Aromatische heterocyclen für organische elektrolumineszenzvorrichtungen
WO2023161167A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen
WO2023213837A1 (de) 2022-05-06 2023-11-09 Merck Patent Gmbh Cyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023222559A1 (de) 2022-05-18 2023-11-23 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
WO2023247663A1 (de) 2022-06-24 2023-12-28 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2023247662A1 (de) 2022-06-24 2023-12-28 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2024013004A1 (de) 2022-07-11 2024-01-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2024033282A1 (en) 2022-08-09 2024-02-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2024061942A1 (de) 2022-09-22 2024-03-28 Merck Patent Gmbh Stickstoffenthaltende verbindungen für organische elektrolumineszenzvorrichtungen
WO2024061948A1 (de) 2022-09-22 2024-03-28 Merck Patent Gmbh Stickstoffenthaltende heterocyclen für organische elektrolumineszenzvorrichtungen
WO2024094592A2 (de) 2022-11-01 2024-05-10 Merck Patent Gmbh Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen
WO2024105066A1 (en) 2022-11-17 2024-05-23 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2024132892A1 (en) 2022-12-19 2024-06-27 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2024132993A1 (de) 2022-12-19 2024-06-27 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2024133048A1 (en) 2022-12-20 2024-06-27 Merck Patent Gmbh Method for preparing deuterated aromatic compounds
WO2024149694A1 (de) 2023-01-10 2024-07-18 Merck Patent Gmbh Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen
WO2024153568A1 (de) 2023-01-17 2024-07-25 Merck Patent Gmbh Heterocyclen für organische elektrolumineszenzvorrichtungen
WO2024184050A1 (de) 2023-03-07 2024-09-12 Merck Patent Gmbh Cyclische stickstoffverbindungen für organische elektrolumineszenzvorrichtungen
WO2024194264A1 (de) 2023-03-20 2024-09-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2024218109A1 (de) 2023-04-20 2024-10-24 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336775B (zh) * 2011-07-15 2013-11-06 华中师范大学 双异氰桥链双金化合物的制造方法与应用
US8530685B1 (en) 2012-07-30 2013-09-10 General Electric Company Monodentate gold ethynyl complexes
CN106460170B (zh) 2014-03-13 2019-12-06 默克专利股份有限公司 甲硅烷基环戊二烯基钼和甲硅烷基烯丙基配合物及其在薄膜沉积中的应用
KR102235612B1 (ko) 2015-01-29 2021-04-02 삼성전자주식회사 일-함수 금속을 갖는 반도체 소자 및 그 형성 방법
US10672998B2 (en) * 2017-03-23 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
TWI776926B (zh) * 2017-07-25 2022-09-11 德商麥克專利有限公司 金屬錯合物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086251A2 (de) 2004-03-03 2005-09-15 Novaled Gmbh Verwendung von metallkomplexen als n-dotanden für organische halbleiter und die darstellung derselbigen inkl. ihrer liganden
WO2008003464A1 (de) * 2006-07-04 2008-01-10 Novaled Ag Oligomere von isonitril-metallkomplexen als triplett-emitter für oled-anwendungen

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
CA1293729C (en) * 1985-08-05 1991-12-31 Alan Purdom Carpenter Jr Metal-isonitrile adducts for preparing radionuclide complexes
US5151629A (en) 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
JPH07133483A (ja) 1993-11-09 1995-05-23 Shinko Electric Ind Co Ltd El素子用有機発光材料及びel素子
EP0676461B1 (de) 1994-04-07 2002-08-14 Covion Organic Semiconductors GmbH Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
DE19652261A1 (de) 1996-12-16 1998-06-18 Hoechst Ag Arylsubstituierte Poly(p-arylenvinylene), Verfahren zur Herstellung und deren Verwendung in Elektroluminszenzbauelementen
JP4352512B2 (ja) * 1998-12-10 2009-10-28 東ソー株式会社 エチレンの三量化触媒及びそれを用いたエチレンの三量化方法
US6660410B2 (en) 2000-03-27 2003-12-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
US6893743B2 (en) * 2000-10-04 2005-05-17 Mitsubishi Chemical Corporation Organic electroluminescent device
JP3812730B2 (ja) * 2001-02-01 2006-08-23 富士写真フイルム株式会社 遷移金属錯体及び発光素子
JP3988915B2 (ja) 2001-02-09 2007-10-10 富士フイルム株式会社 遷移金属錯体及びそれからなる発光素子用材料、並びに発光素子
JP4215145B2 (ja) * 2001-02-21 2009-01-28 富士フイルム株式会社 発光素子用材料及び発光素子
US7166368B2 (en) * 2001-11-07 2007-01-23 E. I. Du Pont De Nemours And Company Electroluminescent platinum compounds and devices made with such compounds
DE10249723A1 (de) 2002-10-25 2004-05-06 Covion Organic Semiconductors Gmbh Arylamin-Einheiten enthaltende konjugierte Polymere, deren Darstellung und Verwendung
DE10310887A1 (de) 2003-03-11 2004-09-30 Covion Organic Semiconductors Gmbh Matallkomplexe
JP4411851B2 (ja) 2003-03-19 2010-02-10 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
EP2281861A3 (de) 2003-04-15 2012-03-28 Merck Patent GmbH Mischungen von organischen zur Emission befähigten Halbleitern und Matrixmaterialien, deren Verwendung und Elektronikbauteile enthaltend diese Mischungen
US7740955B2 (en) 2003-04-23 2010-06-22 Konica Minolta Holdings, Inc. Organic electroluminescent device and display
EP1644459B1 (de) 2003-07-07 2017-08-23 Merck Patent GmbH Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialien,sowie elektronikbauteile diese enthaltend
DE10333232A1 (de) 2003-07-21 2007-10-11 Merck Patent Gmbh Organisches Elektrolumineszenzelement
US7795801B2 (en) 2003-09-30 2010-09-14 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
US7790890B2 (en) 2004-03-31 2010-09-07 Konica Minolta Holdings, Inc. Organic electroluminescence element material, organic electroluminescence element, display device and illumination device
DE102004023277A1 (de) 2004-05-11 2005-12-01 Covion Organic Semiconductors Gmbh Neue Materialmischungen für die Elektrolumineszenz
WO2005113704A2 (en) * 2004-05-18 2005-12-01 The University Of Southern California Luminescent compounds with carbene ligands
WO2005113563A1 (de) 2004-05-19 2005-12-01 Merck Patent Gmbh Metallkomplexe
JP4862248B2 (ja) 2004-06-04 2012-01-25 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
DE102004034517A1 (de) 2004-07-16 2006-02-16 Covion Organic Semiconductors Gmbh Metallkomplexe
KR101030011B1 (ko) * 2004-08-28 2011-04-20 삼성모바일디스플레이주식회사 시클로메탈화 전이금속 착물 및 이를 이용한 유기 전계발광 소자
JP5124942B2 (ja) * 2005-01-14 2013-01-23 住友化学株式会社 金属錯体および素子
JP2006303315A (ja) 2005-04-22 2006-11-02 Fuji Photo Film Co Ltd 有機電界発光素子
KR101289923B1 (ko) 2005-05-03 2013-07-25 메르크 파텐트 게엠베하 유기 전계발광 장치 및 그에 사용되는 붕산 및 보린산유도체
KR20080037006A (ko) 2005-08-05 2008-04-29 이데미쓰 고산 가부시키가이샤 전이금속 착체화합물 및 그것을 이용한 유기 전기발광 소자
CN101321755B (zh) 2005-12-01 2012-04-18 新日铁化学株式会社 有机电致发光元件用化合物及有机电致发光元件
WO2007069542A1 (ja) 2005-12-15 2007-06-21 Idemitsu Kosan Co., Ltd. 遷移金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
DE102006025777A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
DE102007002714A1 (de) 2007-01-18 2008-07-31 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102007053771A1 (de) 2007-11-12 2009-05-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
DE102008017591A1 (de) 2008-04-07 2009-10-08 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102008033943A1 (de) 2008-07-18 2010-01-21 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102008036982A1 (de) 2008-08-08 2010-02-11 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086251A2 (de) 2004-03-03 2005-09-15 Novaled Gmbh Verwendung von metallkomplexen als n-dotanden für organische halbleiter und die darstellung derselbigen inkl. ihrer liganden
WO2008003464A1 (de) * 2006-07-04 2008-01-10 Novaled Ag Oligomere von isonitril-metallkomplexen als triplett-emitter für oled-anwendungen

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
D. T. PLUMMER ET AL., INORGANIC CHEMISTRY, vol. 22, 1983, pages 3492 - 3497
E. HAHN ET AL., ANGEW. CHEM., vol. 104, 1992, pages 1218 - 1221
F. E. HAHN ET AL., ANGEW. CHEM., vol. 103, 1991, pages 213 - 215
F. E. HAHN ET AL., J. ORGANOMET. CHEM., vol. 410, 1991, pages C9 - C12
F. E. HAHN ET AL., J. ORGANOMET. CHEM., vol. 467, 1994, pages 103 - 111
M. O. ALBERS ET AL., J. CHEM. EDU., vol. 63, no. 5, 1986, pages 444 - 447
Y. YAMAMOTO ET AL., J. ORGANOMET. CHEM., vol. 282, 1985, pages 191 - 200
Y. YAMAMOTO, H. YAMAZAKI: "Studies on the Interaction of Isocyanides with Transition Metal Complexes. XXVII: Preparation of Zerovalent Isocyanide Complexes of Chromium, Molybdenum and Tungsten. The Crystal Structure of Hexakis(2,6-Xylyl Isocyanide)Molybdenum Containing Benzene as a Solvated Molecule", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 282, 1985, pages 191 - 200, XP002545134 *
YOSHIHITO KUNUGI ET AL: "A Vapochromic LED", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC. US, vol. 120, no. 3, 1 March 1998 (1998-03-01), pages 589 - 590, XP007909751, ISSN: 0002-7863, [retrieved on 19980107] *

Cited By (214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011060859A1 (de) 2009-11-17 2011-05-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
DE102009053644B4 (de) 2009-11-17 2019-07-04 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
WO2011060867A1 (de) 2009-11-18 2011-05-26 Merck Patent Gmbh Stickstoffhaltige kondensierte heterozyklen für oleds
WO2011085781A1 (de) 2010-01-16 2011-07-21 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
JP2016119458A (ja) * 2010-03-11 2016-06-30 メルク パテント ゲーエムベーハー 発光ファイバー
JP2018029067A (ja) * 2010-03-11 2018-02-22 メルク パテント ゲーエムベーハー 発光ファイバー
WO2011160758A1 (de) 2010-06-24 2011-12-29 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
DE102010024897A1 (de) 2010-06-24 2011-12-29 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
WO2012007088A1 (de) * 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
US9096791B2 (en) 2010-07-16 2015-08-04 Merck Patent Gmbh Metal complexes
WO2012034627A1 (de) 2010-09-15 2012-03-22 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
DE102010045405A1 (de) 2010-09-15 2012-03-15 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
JP2017011275A (ja) * 2010-10-14 2017-01-12 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセントデバイス用配合物
US20130200357A1 (en) * 2010-10-14 2013-08-08 Merck Patent Gmbh Formulations for organic electroluminescent devices
WO2012069121A1 (de) 2010-11-24 2012-05-31 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2012143080A2 (de) 2011-04-18 2012-10-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2012163465A1 (de) 2011-06-03 2012-12-06 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2013041176A1 (de) 2011-09-21 2013-03-28 Merck Patent Gmbh Carbazolderivate für organische elektrolumineszenzvorrichtungen
WO2013056776A1 (de) 2011-10-20 2013-04-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2013120577A1 (en) 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
EP3101088A1 (de) 2012-02-14 2016-12-07 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
EP3235892A1 (de) 2012-02-14 2017-10-25 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
WO2014008967A2 (de) 2012-07-10 2014-01-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2014015931A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2014023388A1 (de) 2012-08-10 2014-02-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2014079532A1 (de) 2012-11-20 2014-05-30 Merck Patent Gmbh Formulierung in hochreinem l?sungsmittel zur herstellung elektronischer vorrichtungen
WO2015169412A1 (de) 2014-05-05 2015-11-12 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US10323180B2 (en) 2014-12-04 2019-06-18 Guangzhou Chinaray Optoelectronic Materials Ltd. Deuterated organic compound, mixture and composition containing said compound, and organic electronic device
US10840450B2 (en) 2014-12-04 2020-11-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Polymer, and mixture or formulation, and organic electronic device containing same, and monomer thereof
US10510967B2 (en) 2014-12-11 2019-12-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic compound, and mixture, formulation and organic device comprising the same
US10364316B2 (en) 2015-01-13 2019-07-30 Guangzhou Chinaray Optoelectronics Materials Ltd. Conjugated polymer containing ethynyl crosslinking group, mixture, formulation, organic electronic device containing the same and application therof
WO2017012687A1 (en) 2015-07-22 2017-01-26 Merck Patent Gmbh Materials for organic electroluminescent devices
EP4236652A2 (de) 2015-07-29 2023-08-30 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
WO2017025166A1 (en) 2015-08-13 2017-02-16 Merck Patent Gmbh Hexamethylindanes
US11555128B2 (en) 2015-11-12 2023-01-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Printing composition, electronic device comprising same and preparation method for functional material thin film
US10968243B2 (en) 2015-12-04 2021-04-06 Guangzhou Chinaray Optoelectronic Materials Ltd. Organometallic complex and application thereof in electronic devices
WO2017148564A1 (de) 2016-03-03 2017-09-08 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2017148565A1 (de) 2016-03-03 2017-09-08 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2017157983A1 (de) 2016-03-17 2017-09-21 Merck Patent Gmbh Verbindungen mit spirobifluoren-strukturen
WO2017178311A1 (de) 2016-04-11 2017-10-19 Merck Patent Gmbh Heterocyclische verbindungen mit dibenzofuran- und/oder dibenzothiophen-strukturen
WO2017186760A1 (en) 2016-04-29 2017-11-02 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017207596A1 (en) 2016-06-03 2017-12-07 Merck Patent Gmbh Materials for organic electroluminescent devices
EP3978477A2 (de) 2016-06-03 2022-04-06 Merck Patent GmbH Materialien für organische elektrolumineszente vorrichtungen
WO2018050583A1 (de) 2016-09-14 2018-03-22 Merck Patent Gmbh Verbindungen mit carbazol-strukturen
WO2018050584A1 (de) 2016-09-14 2018-03-22 Merck Patent Gmbh Verbindungen mit spirobifluoren-strukturen
WO2018060218A1 (de) 2016-09-30 2018-04-05 Merck Patent Gmbh Carbazole mit diazadibenzofuran- oder diazadibenzothiophen-strukturen
WO2018060307A1 (de) 2016-09-30 2018-04-05 Merck Patent Gmbh Verbindungen mit diazadibenzofuran- oder diazadibenzothiophen-strukturen
WO2018087020A1 (en) 2016-11-08 2018-05-17 Merck Patent Gmbh Compounds for electronic devices
WO2018087022A1 (de) 2016-11-09 2018-05-17 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
EP4271163A2 (de) 2016-11-14 2023-11-01 Merck Patent GmbH Verbindungen mit einer akzeptor- und einer donorgruppe
WO2018087346A1 (de) 2016-11-14 2018-05-17 Merck Patent Gmbh Verbindungen mit einer akzeptor- und einer donorgruppe
WO2018091435A1 (en) 2016-11-17 2018-05-24 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018095381A1 (zh) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 印刷油墨组合物及其制备方法和用途
US11248138B2 (en) 2016-11-23 2022-02-15 Guangzhou Chinaray Optoelectronic Materials Ltd. Printing ink formulations, preparation methods and uses thereof
US10804470B2 (en) 2016-11-23 2020-10-13 Guangzhou Chinaray Optoelectronic Materials Ltd Organic compound
WO2018095395A1 (zh) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 高聚物、包含其的混合物、组合物和有机电子器件以及用于聚合的单体
WO2018095392A1 (zh) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 有机混合物、组合物以及有机电子器件
US11447496B2 (en) 2016-11-23 2022-09-20 Guangzhou Chinaray Optoelectronic Materials Ltd. Nitrogen-containing fused heterocyclic ring compound and application thereof
US11453745B2 (en) 2016-11-23 2022-09-27 Guangzhou Chinaray Optoelectronic Materials Ltd. High polymer, mixture containing same, composition, organic electronic component, and monomer for polymerization
US11239428B2 (en) 2016-11-23 2022-02-01 Guangzhou Chinaray Optoelectronic Materials Ltd. Boron-containing organic compound and applications thereof, organic mixture, and organic electronic device
US11634444B2 (en) 2016-11-23 2023-04-25 Guangzhou Chinaray Optoelectronic Materials Ltd. Metal organic complex, high polymer, composition, and organic electronic component
WO2018099846A1 (de) 2016-11-30 2018-06-07 Merck Patent Gmbh Verbindungen mit valerolaktam-strukturen
WO2018104193A1 (de) 2016-12-05 2018-06-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018104194A1 (de) 2016-12-05 2018-06-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
EP3978491A1 (de) 2016-12-05 2022-04-06 Merck Patent GmbH Stickstoffhaltige heterocyclen zur verwendung in oleds
WO2018104195A1 (de) 2016-12-05 2018-06-14 Merck Patent Gmbh Stickstoffhaltige heterocyclen zur verwendung in oleds
WO2018103744A1 (zh) 2016-12-08 2018-06-14 广州华睿光电材料有限公司 混合物、组合物及有机电子器件
US10978642B2 (en) 2016-12-08 2021-04-13 Guangzhou Chinaray Optoelectronic Materials Ltd. Mixture, composition and organic electronic device
US11161933B2 (en) 2016-12-13 2021-11-02 Guangzhou Chinaray Optoelectronic Materials Ltd. Conjugated polymer and use thereof in organic electronic device
US11292875B2 (en) 2016-12-22 2022-04-05 Guangzhou Chinaray Optoelectronic Materials Ltd. Cross-linkable polymer based on Diels-Alder reaction and use thereof in organic electronic device
WO2018113785A1 (zh) 2016-12-22 2018-06-28 广州华睿光电材料有限公司 含呋喃交联基团的聚合物及其应用
WO2018114883A1 (de) 2016-12-22 2018-06-28 Merck Patent Gmbh Mischungen umfassend mindestens zwei organisch funktionelle verbindungen
US11289654B2 (en) 2016-12-22 2022-03-29 Guangzhou Chinaray Optoelectronic Materials Ltd. Polymers containing furanyl crosslinkable groups and uses thereof
WO2018127465A1 (de) 2017-01-04 2018-07-12 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018138039A1 (de) 2017-01-25 2018-08-02 Merck Patent Gmbh Carbazolderivate
WO2018138306A1 (de) 2017-01-30 2018-08-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018149769A1 (de) 2017-02-14 2018-08-23 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018166932A1 (de) 2017-03-13 2018-09-20 Merck Patent Gmbh Verbindungen mit arylamin-strukturen
WO2018166934A1 (de) 2017-03-15 2018-09-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018189134A1 (de) 2017-04-13 2018-10-18 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2018206537A1 (en) 2017-05-11 2018-11-15 Merck Patent Gmbh Carbazole-based bodipys for organic electroluminescent devices
WO2018206526A1 (en) 2017-05-11 2018-11-15 Merck Patent Gmbh Organoboron complexes for organic electroluminescent devices
WO2018215318A1 (de) 2017-05-22 2018-11-29 Merck Patent Gmbh Hexazyklische heteroaromatische verbindungen für elektronische vorrichtungen
WO2018234346A1 (en) 2017-06-23 2018-12-27 Merck Patent Gmbh MATERIALS FOR ORGANIC ELECTROLUMINESCENT DEVICES
WO2019007867A1 (de) 2017-07-05 2019-01-10 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2019007866A1 (de) 2017-07-05 2019-01-10 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
EP4186898A1 (de) 2017-07-05 2023-05-31 Merck Patent GmbH Zusammensetzung für organische elektronische verbindungen
WO2019052933A1 (de) 2017-09-12 2019-03-21 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2019068679A1 (en) 2017-10-06 2019-04-11 Merck Patent Gmbh MATERIALS FOR ORGANIC ELECTROLUMINESCENT DEVICES
WO2019081391A1 (de) 2017-10-24 2019-05-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2019096717A2 (de) 2017-11-14 2019-05-23 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
US11594690B2 (en) 2017-12-14 2023-02-28 Guangzhou Chinaray Optoelectronic Materials Ltd. Organometallic complex, and polymer, mixture and formulation comprising same, and use thereof in electronic device
US11674080B2 (en) 2017-12-14 2023-06-13 Guangzhou Chinaray Optoelectronic Materials Ltd. Transition metal complex, polymer, mixture, formulation and use thereof
US11404651B2 (en) 2017-12-14 2022-08-02 Guangzhou Chinaray Optoelectronic Materials Ltd. Transition metal complex material and application thereof in electronic devices
WO2019121458A1 (de) 2017-12-19 2019-06-27 Merck Patent Gmbh Heterocyclische verbindung zur verwendung in electronischen vorrichtungen
EP4451832A2 (de) 2017-12-20 2024-10-23 Merck Patent GmbH Heteroaromatische verbindungen
WO2019121483A1 (en) 2017-12-20 2019-06-27 Merck Patent Gmbh Heteroaromatic compounds
US11680059B2 (en) 2017-12-21 2023-06-20 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic mixture and application thereof in organic electronic devices
WO2019145316A1 (de) 2018-01-25 2019-08-01 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2019175149A1 (en) 2018-03-16 2019-09-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019229011A1 (de) 2018-05-30 2019-12-05 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2019233904A1 (de) 2018-06-07 2019-12-12 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
WO2020011686A1 (de) 2018-07-09 2020-01-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020016264A1 (en) 2018-07-20 2020-01-23 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020053314A1 (de) 2018-09-12 2020-03-19 Merck Patent Gmbh Elektrolumineszierende vorrichtungen
DE202019005924U1 (de) 2018-09-12 2023-05-10 MERCK Patent Gesellschaft mit beschränkter Haftung Elektrolumineszierende Vorrichtungen
WO2020053315A1 (de) 2018-09-12 2020-03-19 Merck Patent Gmbh Elektrolumineszierende vorrichtungen
DE202019005923U1 (de) 2018-09-12 2023-06-27 MERCK Patent Gesellschaft mit beschränkter Haftung Elektrolumineszierende Vorrichtungen
WO2020053150A1 (en) 2018-09-12 2020-03-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020064662A2 (de) 2018-09-27 2020-04-02 Merck Patent Gmbh Verfahren zur herstellung von sterisch gehinderten stickstoffhaltigen heteroaromatischen verbindungen
EP4190880A1 (de) 2018-09-27 2023-06-07 Merck Patent GmbH Verbindungen, die in einer organischen elektronischen vorrichtung als aktive verbindungen einsetzbar sind
WO2020064666A1 (de) 2018-09-27 2020-04-02 Merck Patent Gmbh Verbindungen, die in einer organischen elektronischen vorrichtung als aktive verbindungen einsetzbar sind
WO2020094539A1 (de) 2018-11-05 2020-05-14 Merck Patent Gmbh In einer organischen elektronischen vorrichtung einsetzbare verbindungen
WO2020094542A1 (de) 2018-11-06 2020-05-14 Merck Patent Gmbh 5,6-diphenyl-5,6-dihydro-dibenz[c,e][1,2]azaphosphorin- und 6-phenyl-6h-dibenzo[c,e][1,2]thiazin-5,5-dioxid-derivate und ähnliche verbindungen als organische elektrolumineszenzmaterialien für oleds
WO2020099349A1 (de) 2018-11-14 2020-05-22 Merck Patent Gmbh Zur herstellung einer organischen elektronischen vorrichtung einsetzbare verbindungen
WO2020099307A1 (de) 2018-11-15 2020-05-22 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020127165A1 (de) 2018-12-19 2020-06-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020148243A1 (en) 2019-01-16 2020-07-23 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020148303A1 (de) 2019-01-17 2020-07-23 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020169241A1 (de) 2019-02-18 2020-08-27 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2020178230A1 (en) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands for nano-sized materials
WO2020182779A1 (de) 2019-03-12 2020-09-17 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020187865A1 (de) 2019-03-20 2020-09-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020193447A1 (de) 2019-03-25 2020-10-01 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020208051A1 (en) 2019-04-11 2020-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021013775A1 (de) 2019-07-22 2021-01-28 Merck Patent Gmbh Verfahren zur herstellung ortho-metallierter metallverbindungen
WO2021037401A1 (de) 2019-08-26 2021-03-04 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021043703A1 (de) 2019-09-02 2021-03-11 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021043755A1 (de) 2019-09-03 2021-03-11 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021052924A1 (en) 2019-09-16 2021-03-25 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021052921A1 (de) 2019-09-19 2021-03-25 Merck Patent Gmbh Mischung von zwei hostmaterialien und organische elektrolumineszierende vorrichtung damit
WO2021053046A1 (de) 2019-09-20 2021-03-25 Merck Patent Gmbh Peri-kondensierte heterozyklische verbindungen als materialien für elektronische vorrichtungen
WO2021078710A1 (en) 2019-10-22 2021-04-29 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021078831A1 (de) 2019-10-25 2021-04-29 Merck Patent Gmbh In einer organischen elektronischen vorrichtung einsetzbare verbindungen
WO2021089447A1 (de) 2019-11-04 2021-05-14 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021094269A1 (en) 2019-11-12 2021-05-20 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021110741A1 (en) 2019-12-04 2021-06-10 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021122535A1 (de) 2019-12-17 2021-06-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021122538A1 (de) 2019-12-18 2021-06-24 Merck Patent Gmbh Aromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021122740A1 (de) 2019-12-19 2021-06-24 Merck Patent Gmbh Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021151922A1 (de) 2020-01-29 2021-08-05 Merck Patent Gmbh Benzimidazol-derivate
WO2021170522A1 (de) 2020-02-25 2021-09-02 Merck Patent Gmbh Verwendung von heterocyclischen verbindungen in einer organischen elektronischen vorrichtung
WO2021175706A1 (de) 2020-03-02 2021-09-10 Merck Patent Gmbh Verwendung von sulfonverbindungen in einer organischen elektronischen vorrichtung
WO2021180614A1 (de) 2020-03-11 2021-09-16 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021180625A1 (de) 2020-03-11 2021-09-16 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021185712A1 (de) 2020-03-17 2021-09-23 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021185829A1 (de) 2020-03-17 2021-09-23 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021191058A1 (en) 2020-03-23 2021-09-30 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021191117A1 (de) 2020-03-24 2021-09-30 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2021191183A1 (de) 2020-03-26 2021-09-30 Merck Patent Gmbh Cyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021198213A1 (de) 2020-04-02 2021-10-07 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021204646A1 (de) 2020-04-06 2021-10-14 Merck Patent Gmbh Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021239772A1 (de) 2020-05-29 2021-12-02 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2022002771A1 (de) 2020-06-29 2022-01-06 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022002772A1 (de) 2020-06-29 2022-01-06 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022029096A1 (de) 2020-08-06 2022-02-10 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022034046A1 (de) 2020-08-13 2022-02-17 Merck Patent Gmbh Metallkomplexe
WO2022038065A1 (de) 2020-08-18 2022-02-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022038066A1 (de) 2020-08-19 2022-02-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022069421A1 (de) 2020-09-30 2022-04-07 Merck Patent Gmbh Zur strukturierung von funktionalen schichten organischer elektrolumineszenzvorrichtungen einsetzbare verbindungen
WO2022069422A1 (de) 2020-09-30 2022-04-07 Merck Patent Gmbh Verbindungen zur strukturierung von funktionalen schichten organischer elektrolumineszenzvorrichtungen
WO2022079068A1 (de) 2020-10-16 2022-04-21 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022079067A1 (de) 2020-10-16 2022-04-21 Merck Patent Gmbh Verbindungen mit heteroatomen für organische elektrolumineszenzvorrichtungen
WO2022101171A1 (de) 2020-11-10 2022-05-19 Merck Patent Gmbh Schwefelhaltige verbindungen für organische elektrolumineszenzvorrichtungen
WO2022117473A1 (de) 2020-12-02 2022-06-09 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022122682A2 (de) 2020-12-10 2022-06-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022129114A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen
WO2022129113A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Stickstoffhaltige heteroaromaten für organische elektrolumineszenzvorrichtungen
WO2022129116A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Indolo[3.2.1-jk]carbazole-6-carbonitril-derivate als blau fluoreszierende emitter zur verwendung in oleds
WO2022148717A1 (de) 2021-01-05 2022-07-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022157343A1 (de) 2021-01-25 2022-07-28 Merck Patent Gmbh Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen
WO2022184601A1 (de) 2021-03-02 2022-09-09 Merck Patent Gmbh Verbindungen für organische elektrolumineszenzvorrichtungen
WO2022194799A1 (de) 2021-03-18 2022-09-22 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022229298A1 (de) 2021-04-29 2022-11-03 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022229126A1 (de) 2021-04-29 2022-11-03 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022229234A1 (de) 2021-04-30 2022-11-03 Merck Patent Gmbh Stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022243403A1 (de) 2021-05-21 2022-11-24 Merck Patent Gmbh Verfahren zur kontinuierlichen aufreinigung von mindestens einem funktionalen material und vorrichtung zur kontinuierlichen aufreinigung von mindestens einem funktionalen material
WO2022200638A1 (de) 2021-07-06 2022-09-29 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2023036976A1 (en) 2021-09-13 2023-03-16 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2023041454A1 (de) 2021-09-14 2023-03-23 Merck Patent Gmbh Borhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023052272A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052314A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052313A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052275A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023072799A1 (de) 2021-10-27 2023-05-04 Merck Patent Gmbh Bor- und stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023094412A1 (de) 2021-11-25 2023-06-01 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023099543A1 (en) 2021-11-30 2023-06-08 Merck Patent Gmbh Compounds having fluorene structures
WO2023110742A1 (de) 2021-12-13 2023-06-22 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2023117837A1 (de) 2021-12-21 2023-06-29 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
WO2023117836A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023117835A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023152063A1 (de) 2022-02-09 2023-08-17 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2023152346A1 (de) 2022-02-14 2023-08-17 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023161168A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Aromatische heterocyclen für organische elektrolumineszenzvorrichtungen
WO2023161167A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen
WO2023213837A1 (de) 2022-05-06 2023-11-09 Merck Patent Gmbh Cyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023222559A1 (de) 2022-05-18 2023-11-23 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
WO2023247662A1 (de) 2022-06-24 2023-12-28 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2023247663A1 (de) 2022-06-24 2023-12-28 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2024013004A1 (de) 2022-07-11 2024-01-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2024033282A1 (en) 2022-08-09 2024-02-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2024061942A1 (de) 2022-09-22 2024-03-28 Merck Patent Gmbh Stickstoffenthaltende verbindungen für organische elektrolumineszenzvorrichtungen
WO2024061948A1 (de) 2022-09-22 2024-03-28 Merck Patent Gmbh Stickstoffenthaltende heterocyclen für organische elektrolumineszenzvorrichtungen
WO2024094592A2 (de) 2022-11-01 2024-05-10 Merck Patent Gmbh Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen
WO2024105066A1 (en) 2022-11-17 2024-05-23 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2024132892A1 (en) 2022-12-19 2024-06-27 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2024132993A1 (de) 2022-12-19 2024-06-27 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2024133048A1 (en) 2022-12-20 2024-06-27 Merck Patent Gmbh Method for preparing deuterated aromatic compounds
WO2024149694A1 (de) 2023-01-10 2024-07-18 Merck Patent Gmbh Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen
WO2024153568A1 (de) 2023-01-17 2024-07-25 Merck Patent Gmbh Heterocyclen für organische elektrolumineszenzvorrichtungen
WO2024184050A1 (de) 2023-03-07 2024-09-12 Merck Patent Gmbh Cyclische stickstoffverbindungen für organische elektrolumineszenzvorrichtungen
WO2024194264A1 (de) 2023-03-20 2024-09-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2024218109A1 (de) 2023-04-20 2024-10-24 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Also Published As

Publication number Publication date
DE102008036247A1 (de) 2010-02-11
US20110101327A1 (en) 2011-05-05
CN102077380B (zh) 2012-12-12
KR20110053924A (ko) 2011-05-24
KR101658679B1 (ko) 2016-09-21
ATE549752T1 (de) 2012-03-15
CN102077380A (zh) 2011-05-25
TW201022400A (en) 2010-06-16
JP2011530180A (ja) 2011-12-15
US8691400B2 (en) 2014-04-08
EP2311112A1 (de) 2011-04-20
EP2311112B1 (de) 2012-03-14
JP5746028B2 (ja) 2015-07-08

Similar Documents

Publication Publication Date Title
EP2311112B1 (de) Elektronische vorrichtung enthaltend metallkomplexe mit isonitrilliganden
EP2297275B1 (de) Organische elektrolumineszenzvorrichtung
EP2294160B1 (de) Elektronische vorrichtung enthaltend metallkomplexe
DE112011102366B4 (de) Metallkomplexe
EP2906575B1 (de) Metallkomplexe
DE112010004049B4 (de) Metallkomplexe
EP3046927B1 (de) Polycyclische phenyl-pyridin iridiumkomplexe und derivate davon für oled
DE112010003663B4 (de) Metallkomplexe
EP2173757B1 (de) Lumineszierende metallkomplexe für organische elektronische vorrichtungen
DE102009007038A1 (de) Metallkomplexe
WO2012007088A1 (de) Metallkomplexe
WO2010099852A1 (de) Metallkomplexe mit azaborol-liganden und elektronische vorrichtung damit
DE102010027316A1 (de) Metallkomplexe
EP3328872B1 (de) Elektrolumineszierende überbrückte metallkomplexe zur verwendung in elektronischen vorrichtungen
EP2984093B1 (de) Metallkomplexe und ihre verwendung in elektronischen vorrichtungen
WO2014044347A1 (de) Metallkomplexe
WO2020212296A1 (de) Metallkomplexe
DE102012021650A1 (de) Metallkomplexe
DE102015006708A1 (de) Metallkomplexe
DE102012007810A1 (de) Organische Elektrolumineszenzvorrichtung
DE102015013381A1 (de) Metallkomplexe
DE102014012818A1 (de) Metallkomplexe
WO2017097397A1 (de) Metallkomplexe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980125432.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09777051

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009777051

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011521449

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20107028298

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13001640

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE