Nothing Special   »   [go: up one dir, main page]

WO2010001969A1 - 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬 - Google Patents

標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬 Download PDF

Info

Publication number
WO2010001969A1
WO2010001969A1 PCT/JP2009/062143 JP2009062143W WO2010001969A1 WO 2010001969 A1 WO2010001969 A1 WO 2010001969A1 JP 2009062143 W JP2009062143 W JP 2009062143W WO 2010001969 A1 WO2010001969 A1 WO 2010001969A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
nucleic acid
base
complementary
template nucleic
Prior art date
Application number
PCT/JP2009/062143
Other languages
English (en)
French (fr)
Inventor
光春 平井
敏也 細見
亜希 井口
Original Assignee
アークレイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アークレイ株式会社 filed Critical アークレイ株式会社
Priority to US13/002,194 priority Critical patent/US9115391B2/en
Priority to EP20090773547 priority patent/EP2314680B1/en
Priority to CN200980125546.7A priority patent/CN102076850B/zh
Priority to JP2010519111A priority patent/JP5637850B2/ja
Publication of WO2010001969A1 publication Critical patent/WO2010001969A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/107Temperature of melting, i.e. Tm

Definitions

  • the present invention relates to a method for amplifying a target nucleic acid sequence containing a base site where a mutation targeted for detection occurs, a method for detecting a mutation using the same, and a reagent used therefor.
  • Detecting gene mutations including single nucleotide polymorphisms is widely used in the prevention and treatment of all diseases. For example, many mutations are found in genes of cancer cells, and these are known to be involved in cell carcinogenesis. For this reason, it is possible to confirm the possibility of canceration and the degree of progression by detecting gene mutations in cells, which is considered to be very useful information in treatment. In addition, mutations that show drug resistance in cancer cell genes during medication have been reported. By detecting this mutation, the effectiveness of the drug for each patient can be determined, so that more appropriate treatment is possible.
  • SNPs single nucleotide polymorphisms
  • CML chronic myelogenous leukemia
  • imatinib imatinib
  • a mutation on the bcr-abl gene eg, T315I
  • detection of a mutation in a gene is useful in early detection and treatment in the clinical field, and thus high reliability is required.
  • Non-Patent Document 1 As a method for detecting a mutation in a gene, generally, a direct sequencing method, an ASP (Allele Specific Primer) -PCR (Polymerase Chain Reaction) method (Patent Document 1), a Tm (Melting temperature) analysis method (Non-Patent Document 1), It has been known.
  • the direct sequencing method is a method of amplifying a region including a base site to be detected and analyzing the base sequence of the obtained amplification product.
  • ASP-PCR method PCR is performed using a primer that is complementary to the region including the base site for detection and has a base complementary to the base of the base site for detection in the 3 ′ end region, This is a method for judging mutations based on the presence or absence of amplification.
  • mutant sequence when a primer complementary to a sequence in which the base site for detection is set to a mutant base (hereinafter also referred to as “mutant sequence”) is used, mutation can be confirmed by detection of amplification.
  • a primer complementary to a sequence in which the base site to be detected is set to a normal base (hereinafter also referred to as “normal sequence”) is used, non-mutation (ie, normal) can be confirmed by detection of amplification.
  • normal sequence a primer complementary to a sequence in which the base site to be detected is set to a normal base
  • non-mutation ie, normal
  • Tm analysis first, a region including the base site to be detected is amplified, and a hybrid (double-stranded DNA) of the obtained amplification product and a probe complementary to the mutant sequence is formed.
  • the hybrid formed body is subjected to a heat treatment, and the dissociation (melting) of the hybrid accompanying a temperature rise is detected by signal measurement such as absorbance to determine the Tm value.
  • the Tm value is higher as each strand constituting the hybrid is matched, and lower as it is mismatched. Therefore, a Tm value (evaluation reference value) is obtained in advance for the hybridized product of the mutant sequence and a probe complementary thereto, and this evaluation reference value and the previously determined Tm value (measurement value) Can be determined as follows. If the measured value is the same as the evaluation reference value, it can be determined that there is a perfect match, that is, there is a mutation in the base site for detection. On the other hand, if the measured value is lower than the evaluation reference value, it can be determined that there is a mismatch, that is, the detection-target base site is normal (no mutation is present).
  • the direct sequencing method has low sensitivity and takes a lot of time and effort to operate.
  • the ASP-PCR method has a problem that it lacks specificity although it is excellent in sensitivity. That is, when a primer complementary to the mutated sequence is used, amplification is confirmed even though there is no mutation, and it may be judged as a false positive.
  • the ASP-PCR method only one of a primer complementary to the mutant sequence and a primer complementary to the normal sequence can be used in one reaction system. For this reason, in order to confirm whether the base site for detection is normal or mutation, there are a total of two types, a reaction system using a primer complementary to the mutant sequence and a reaction system using a primer complementary to the normal sequence. It is necessary to perform PCR.
  • a sample collected from a patient contains a mixture of cells in which the target gene is mutated and normal cells. For this reason, for example, it is required that a biological sample containing a large amount of normal genes and a small amount of mutant genes can accurately detect the presence or absence of mutation.
  • the present invention provides a target nucleic acid sequence amplification method, a mutation detection method, and a reagent used therefor that enable detection of a mutation with excellent sensitivity and reliability in a single reaction system. Objective.
  • the method for amplifying a target nucleic acid sequence of the present invention is a method for amplifying a target nucleic acid sequence in a template nucleic acid,
  • the target nucleic acid sequence is a sequence containing a base site where a mutation for detection in the template nucleic acid occurs,
  • an amplification step of preferentially amplifying a target nucleic acid sequence whose base site is a mutated base over a target nucleic acid sequence whose base site is a normal base is characterized.
  • the mutation detection method of the present invention is a method for detecting the presence or absence of a mutation at a base site to be detected in a template nucleic acid, and comprises the following steps (a) to (c). (A) a step of amplifying a target nucleic acid sequence containing the base site in the template nucleic acid in a reaction system by the method for amplifying a target nucleic acid sequence of the present invention; and (b) hybridizing to a sequence containing the base site in the template nucleic acid.
  • the present invention provides, for example, the case where a template nucleic acid in which the base site is a mutant type and a template nucleic acid in which the base site is a normal type coexist as a template nucleic acid in a sample.
  • the target nucleic acid sequence is amplified preferentially over the normal target nucleic acid sequence.
  • the mutant target nucleic acid sequence for example, even when the ratio of the mutant template nucleic acid is lower than that of the normal template nucleic acid.
  • Tm analysis By performing Tm analysis using a probe, the presence or absence of mutation can be detected with excellent sensitivity and reliability. For this reason, as described above, it is particularly useful for a sample containing both a normal gene and a mutant gene. From the above points, the present invention can be said to be extremely useful in the recent clinical field in which treatment and diagnosis are performed by detecting gene mutation, for example.
  • FIG. 1 is a graph showing the results of Tm analysis in Example 1 of the present invention.
  • FIG. 2 is a graph showing the results of Tm analysis in Comparative Example 1.
  • FIG. 3 is a graph showing the results of Tm analysis in Example 2 of the present invention.
  • FIG. 4 is a graph showing the results of Tm analysis in Example 3 of the present invention.
  • FIG. 5 is a graph showing the results of Tm analysis in Comparative Example 3.
  • FIG. 6 is a schematic diagram showing the relationship between a primer and a template nucleic acid in one embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the relationship between a primer and a template nucleic acid in another embodiment of the present invention.
  • the method for amplifying a target nucleic acid sequence of the present invention is a method for amplifying a target nucleic acid sequence in a template nucleic acid, wherein the target nucleic acid sequence includes a base site where a mutation for detection in the template nucleic acid occurs.
  • a template nucleic acid in which the base at the base site is mutated is referred to as “mutant template nucleic acid”
  • a target nucleic acid sequence in which the base at the base site is mutated is referred to as “mutant target nucleic acid sequence”
  • a template nucleic acid having a normal base at the base site is also referred to as a “normal template nucleic acid”
  • a target nucleic acid sequence having a normal base at the base site is also referred to as a “normal target nucleic acid sequence”.
  • a normal template nucleic acid is used.
  • a mutant template nucleic acid is used.
  • both of the template nucleic acid and the mutant template nucleic acid can be amplified.
  • preferential amplification may mean, for example, the promotion of amplification of a mutant target nucleic acid sequence, or the meaning of suppressing or inhibiting the amplification of a normal target nucleic acid sequence. Good.
  • amplification may be performed using a single-stranded nucleic acid as a template nucleic acid, or amplification of a complementary double-stranded nucleic acid using each of the two single strands constituting the template as a template. You may go.
  • two single strands constituting a double-stranded nucleic acid are each used as a template, for convenience, one is also referred to as a (+) strand and the other as a ( ⁇ ) strand.
  • either the (+) strand or the ( ⁇ ) strand may be a sense strand or an antisense strand.
  • the base site to be detected may be, for example, a base site in the (+) chain, or a base site in the ( ⁇ ) chain corresponding to the base site. Also good.
  • the probe used in the mutation detection method of the present invention described later may be designed to be hybridizable to the (+) strand, or may be designed to be hybridizable to the ( ⁇ ) strand, for example. .
  • the amplification method of the present invention can also be referred to as, for example, a method for amplifying a mutant target nucleic acid sequence.
  • the amplification method of the present invention is not particularly limited as long as it can preferentially amplify a target nucleic acid sequence which is a mutant type over a normal target nucleic acid sequence. Specific examples of the present invention are given below, but the present invention is not limited thereto.
  • Examples of the first amplification method of the present invention include a form in which the first amplification reagent including the primer (Xmt) and the primer (Xwt) is used.
  • the amplification step is a step of amplifying the target nucleic acid sequence using the primer (Xmt) and the primer (Xwt) in the same reaction system.
  • Primer (Xmt) Primer primer (Xwt) that is complementary to the region containing the mutant base site in the template nucleic acid and has a base complementary to the base of the base site in the 3 ′ region
  • a region in the template nucleic acid where various primers are annealed is also referred to as an “annealing region”.
  • the various primers may be, for example, a sequence that is capable of specifically binding to the annealing region in the template nucleic acid, and may be a sequence that is completely complementary to the annealing region, or a partial sequence. It may be a sequence complementary to the sequence, or a sequence having partially mismatched bases.
  • the primer (Xmt) is a primer that can be annealed to a region where the base site is mutated, and is hereinafter also referred to as “mutant primer”.
  • the primer (Xwt) is a primer that can be annealed to a region where the base site is a normal type, and is hereinafter also referred to as a “normal primer”.
  • the template nucleic acid may be single-stranded or double-stranded as described above. When the template nucleic acid is double-stranded, for example, a mutant primer (Xmt) and a normal primer (Xwt) are designed to be complementary to one of the single strands constituting the double strand. Is preferred.
  • a primer (Y2) described later is preferably designed to be complementary.
  • An example of the relationship between the template nucleic acid and the primer is shown in the schematic diagram of FIG. In FIG. 6, (+) and ( ⁇ ) are each a single strand that constitutes a double-stranded template nucleic acid, and the hatched portion indicates the base site for detection.
  • both the mutant primer (Xmt) and the normal primer (Xwt) are designed as primers complementary to the (+) strand.
  • the primer (Y2) is preferably designed as a primer complementary to the ( ⁇ ) strand.
  • FIG. 6 is a schematic diagram showing an example to the last.
  • each primer, the annealing region in the template nucleic acid, and the like are not limited, and the primer (Y2) is also arbitrary.
  • the mutant primer (Xmt) and the normal primer (Xwt) are both designed as primers complementary to the ( ⁇ ) strand, and the primer (Y2) is designed as a primer complementary to the (+) strand. May be.
  • the primer (Xmt) and the primer (Xwt) have amplification efficiency by the primer (Xmt) with respect to the template nucleic acid whose base site is a mutant type, and a template nucleic acid whose base site is a normal type. It is preferable to satisfy the relationship that the amplification efficiency is higher than that of the primer (Xwt). As a result, for example, the following becomes possible. That is, even if the template nucleic acid includes a normal template nucleic acid and a mutant template nucleic acid, and the content of the mutant template nucleic acid is low, the mutant template is more effective than the amplification efficiency of the primer (Xwt) for the normal template nucleic acid.
  • the amplification efficiency with the primer (Xmt) for the nucleic acid is high, a low content of the mutant template nucleic acid can be efficiently amplified. For this reason, even if it is a low content mutant type
  • the template nucleic acid when the template nucleic acid is only a mutant template nucleic acid or only a normal template nucleic acid, it can be amplified by a mutant primer (Xmt) or a normal primer (Xwt), respectively. Therefore, as described above, not only the case where both the mutant template nucleic acid and the normal template nucleic acid are included, but either one of the template nucleic acids can be detected by Tm analysis described later.
  • the template nucleic acid is only a normal template nucleic acid, for example, not only a normal primer but also a mutant primer may anneal to the template nucleic acid and be extended.
  • the mutant primer (Xmt) is set such that the amplification efficiency for the “mutant” template nucleic acid is higher than the amplification efficiency for the “normal” template nucleic acid of the normal primer (Xwt). Therefore, the amplification efficiency of the mutant primer (Xmt) for the “normal” template nucleic acid is lower than the amplification efficiency of the normal primer (Xwt) for the “normal” template nucleic acid, for example, and the normal template nucleic acid On the other hand, the normal primer shows better amplification efficiency at each stage.
  • the mutant primer (Xmt) and the normal primer (Xwt) are not particularly limited, and those satisfying the above relationship can be preferably used.
  • Such a relationship makes the affinity of the mutant primer (Xmt) to the mutant template nucleic acid, that is, the ease of annealing higher than the affinity of the normal primer (Xwt) to the normal template nucleic acid. This can be achieved.
  • the extension reaction of the mutant primer (Xmt) annealed to the mutant template nucleic acid can be realized more easily than the extension reaction of the normal primer (Xmt) annealed to the normal template nucleic acid.
  • the method for adjusting the affinity of the primer is not particularly limited, and can be performed, for example, by setting a Tm value.
  • the Tm value of the mutant primer (Xmt) for the complementary sequence is relatively higher than the Tm value of the normal primer (Xwt) for the complementary sequence. In this way, by setting the Tm value of the mutant primer (Xmt) higher than that of the normal primer (Xwt), the binding property of the mutant primer (Xmt) to the template nucleic acid is changed to the normal primer (Xwt). Therefore, the amplification efficiency with the mutant primer (Xmt) can be improved.
  • the difference between the Tm value of the mutant primer (Xmt) and the Tm value of the normal primer (Xwt) is not particularly limited. For example, it is more than 0 and preferably 20 ° C or less, more preferably more than 0 and 10 ° C or less. Yes, particularly preferably more than 0 and 5 ° C. or less.
  • the Tm value in the primer design here refers to, for example, the Tm value for a hybrid formed of a normal primer and a 100% complementary base sequence, and a hybrid of a mutant primer and a 100% complementary base sequence. Means the Tm value for the formed body.
  • the method of setting the Tm value of the mutant primer (Xmt) and the Tm value of the normal primer (Xwt) is not particularly limited, but can be adjusted by, for example, the length of each primer and the GC content.
  • length generally, the longer the primer, the higher the Tm value can be set.
  • the length of the mutant primer (Xmt) is preferably set longer than that of the normal primer (Xwt).
  • the Tm value of the mutant primer (Xmt) can be set to a relatively higher value than the Tm value of the normal primer (Xwt).
  • Tm value can be set relatively high, so that GC content is relatively high.
  • the GC content of the mutant primer (Xmt) is preferably set higher than that of the normal primer (Xwt).
  • Tm value can also be set with both the length of a primer, and GC content.
  • the difference in length between the two is not particularly limited, but is, for example, more than 0 and 20 bases or less, preferably more than 0 and 10 It is less than the base, more preferably more than 0 and less than 5 bases.
  • the reactivity of the extension reaction from the primer can be adjusted, for example, and the method is not particularly limited and can be performed by a conventionally known method. Specific examples include a method of adding a substance such as a fluorescent substance and biotin, or an additional sequence to the 5 'region of the mutant primer (Xmt). These methods can be performed, for example, based on the description in JP-A-2004-337124.
  • the mutant primer (Xmt) may have a base complementary to the base of the base site to be detected (mutant base) in the 3 ′ region.
  • the mutant primer (Xmt) Can be designed into the sequence “5′-... Aa C- 3 ′” in which the first base at the 3 ′ end is a complementary base ( C ) of the mutant base (G).
  • the mutant primer (Xmt) is, for example, a sequence “5′-...
  • Aa C g-3 ′ in which the second base at the 3 ′ end is a complementary base ( C ) of the mutant base (G). May be designed.
  • the first base at the 3 ′ end is the base at the 3 ′ end
  • the second base at the 3 ′ end is the second base toward the 5 ′ direction with the base at the 3 ′ end as the first. (Hereinafter the same).
  • the first base at the 3 ′ end is a base complementary to the mutant base, and at least one base from the second to the 5 ′ end at the 3 ′ end is added to the template nucleic acid.
  • the base it is preferable to set the base to be a mismatch (mismatch base).
  • mismatch base it is preferable to set at least one of the second and third bases at the 3 ′ end as the mismatch base, and it is more preferable to set the second base at the 3 ′ end as a mismatch base.
  • the sequence in the template nucleic acid is “5′-... Ac Gt t...
  • the mutant primer (Xmt) has a first base at the 3 ′ end as a complementary base ( C ) of the mutant base (G) and a second base as a base complementary to the base ( t ) of the template nucleic acid ( t ).
  • it may be designed as a sequence “5′ -... a tC- 3 ′” as a mismatch base ( t ).
  • the second base at the 3 ′ end is a base complementary to the mutant base, and the first at the 3 ′ end and / or at least one from the third to the 5 ′ end.
  • the base is preferably set to a base (mismatch base) that is mismatched with the template nucleic acid.
  • a base mismatch base
  • at least one of the first and third bases at the 3 ′ end is preferably set as the mismatch base
  • the third base at the 3 ′ end is more preferably set as a mismatch base.
  • the sequence in the template nucleic acid is “5′-... Ac G tt...
  • the mutant primer (Xmt) has a second base at the 3 ′ end as a complementary base ( C ) of the mutant base (G) and a third base as a base complementary to the base (t) of the template nucleic acid (T).
  • the sequence may be designed as a mismatch base ( t ) “5′ -... a tC g-3 ′”.
  • the specificity of the mutant primer (Xmt) for the mutant template nucleic acid can be further improved by adding a mismatch base to the mutant primer.
  • the normal primer (Xwt) may have a base complementary to the base of the base site for detection (normal base) in the 3 ′ region. It is preferable that the second base is a base complementary to the normal base.
  • the normal primer (Xwt) Can be designed into the sequence “5′-... Aa T- 3 ′” in which the first base at the 3 ′ end is a complementary base ( T ) of the normal base (A).
  • the normal primer (Xwt) has a sequence “5′-... Aa T g-3 ′” in which the second base from the 3 ′ end is a complementary base ( T ) of the normal base (A). You may design.
  • the first base at the 3 ′ end is a base complementary to a normal base, and at least one base from the second to the 5 ′ end at the 3 ′ end is added to the template nucleic acid.
  • the base it is preferable to set the base to be a mismatch (mismatch base).
  • mismatch base it is preferable to set at least one of the second and third bases at the 3 ′ end as the mismatch base, and it is more preferable to set the second base at the 3 ′ end as a mismatch base.
  • the sequence in the template nucleic acid is “5′-... Ac At t...
  • the normal primer (Xwt) is a base complementary to the base ( T ) of the normal base ( A ) as the first base at the 3 'end and a base complementary to the base ( t ) of the template nucleic acid ( t ) ( Instead of a), it may be designed as a sequence “5′ -... a tA ⁇ 3 ′” as a mismatch base ( t ).
  • the second base at the 3 ′ end is a base complementary to a normal base, and at least one from the first at the 3 ′ end and / or from the third to the 5 ′ end.
  • the base is preferably set to a base (mismatch base) that is mismatched with the template nucleic acid.
  • a base mismatch base
  • the sequence in the template nucleic acid is “5′-... Ac A tt...
  • the normal primer (Xwt) is a base complementary to the base ( T ) of the normal base (A) as the second base at the 3 ′ end and a base complementary to the base (t) of the template nucleic acid ( T ).
  • the sequence may be designed as a mismatch base ( t ) “5′ -... a tA g-3 ′”.
  • the lengths of the mutant primer (Xmt) and the normal primer (Xwt) are not particularly limited, and the general length is, for example, 10 to 50 bases, preferably 15 to 40 bases, more preferably Includes 16 to 35 bases.
  • primer (Y2) As described above, together with the mutant primer (Xmt) and the normal primer (Xwt).
  • Primer (Y2) Primer complementary to the complementary sequence to the region 5 'from the base site in the template nucleic acid
  • the primer (Y2) is, for example, a primer complementary to a complementary strand of a template nucleic acid that can be annealed by a mutant primer (Xmt) and a normal primer (Xwt) (see FIG. 6). Therefore, for example, the mutant primer (Xmt) and primer (Y2), the normal primer (Xwt) and primer (Y2) can each amplify the template nucleic acid and its complementary strand as a pair of primers. Since this primer (Y2) is a primer that anneals to a region different from the base site to be detected, the target nucleic acid sequence is amplified regardless of whether the base site is a mutant type or a normal type. it can.
  • the mutant primer (Xmt) anneals to the normal base
  • amplification occurs when the normal primer (Xwt) anneals to the mutant base
  • the resulting amplification product has a sequence that depends on each primer.
  • coexistence of the primer (Y2) makes it possible to obtain an amplification product that maintains the original sequence of the template nucleic acid. Thereby, the reliability of mutation detection can be further improved.
  • the length of the primer (Y2) is not particularly limited, but is usually preferably 10 to 50 bases, more preferably 15 to 40 bases, and particularly preferably 16 to 35 bases.
  • the primer (Y2) is not particularly limited as long as it can anneal to a complementary sequence to the region 5 'from the base site in the template nucleic acid.
  • the sequence is not particularly limited, and is designed according to a conventionally known general primer design method. it can.
  • the template nucleic acid may be single-stranded or double-stranded as described above.
  • Examples of the template nucleic acid include DNA and RNA such as total RNA and mRNA.
  • Examples of the template nucleic acid include nucleic acids contained in a sample such as a biological sample.
  • the nucleic acid in the sample may be, for example, a nucleic acid originally contained in the biological sample.
  • the nucleic acid in the biological sample is amplified by a nucleic acid amplification method as a template. Amplification products.
  • a reverse transcription-PCR reaction from an amplification product amplified by a nucleic acid amplification method using DNA originally contained in the biological sample as a template, or RNA originally contained in the biological sample.
  • examples include amplification products amplified by a nucleic acid amplification method using cDNA generated by (RT-PCR: Reverse Transcription PCR) as a template. These amplification products may be used as the template nucleic acid in the present invention.
  • the length of the amplification product is not particularly limited, but is, for example, 50 to 1000 bases, preferably 80 to 200 bases.
  • amplification in the same reaction system includes, for example, amplifying a target nucleic acid sequence in one reaction solution.
  • the sample is not particularly limited as long as it includes a nucleic acid serving as a template, and examples thereof include a sample containing a nucleic acid derived from a biological sample.
  • the biological sample include whole blood, oral cells such as oral mucosa, somatic cells such as nails and hair, germ cells, sputum, amniotic fluid, paraffin-embedded tissue, urine, gastric juice, gastric lavage fluid, and the like.
  • a reaction solution obtained by performing a nucleic acid amplification method using a nucleic acid derived from a biological sample as a template may be used as a nucleic acid sample in the present invention, and an amplification product contained in the reaction solution may be used as a template nucleic acid.
  • the sample is not particularly limited.
  • the target base site shows either a mutant type or a normal type. It is very useful for a sample containing a nucleic acid that is unknown, a sample containing a nucleic acid having a mutant type and a nucleic acid having a normal type, a sample that may contain these, and the like.
  • the origin of the nucleic acid such as DNA or RNA is not limited, and examples thereof include cells such as various cancer cells, viruses, mitochondria and the like.
  • the cells such as blood cells that have become cancerous as described above are likely to have the above-mentioned problems because they include cells having nucleic acids in which mutant types have been generated and cells having nucleic acids exhibiting normal types. Therefore, the mutation detection method of the present invention is particularly preferably applied to a sample having a nucleic acid showing a mutant type and a nucleic acid showing a normal type.
  • biological samples such as various cancer cells such as leukemia, It is preferable to apply to blood samples and white blood cells.
  • the sample collection method, nucleic acid preparation method, and the like are not limited, and conventionally known methods can be employed.
  • the nucleic acid derived from a biological sample as described above can be isolated from the biological sample by, for example, a conventionally known method.
  • a commercially available genomic DNA isolation kit (trade name GFX Genomic Blood DNA Purification kit; manufactured by GE Healthcare Biosciences) can be used for isolation of genomic DNA from whole blood.
  • the method for amplifying a target nucleic acid sequence of the present invention is characterized in that the aforementioned primer is used in the amplification step, and other steps and conditions are not limited at all.
  • the nucleic acid amplification method in the amplification step is not particularly limited.
  • PCR Polymerase Chain Reaction
  • NASBA Nucleic acid sequence based amplification
  • TMA Transcription-mediated amplification
  • SDA String Displacement Amplification
  • the PCR method is preferable.
  • the conditions for the nucleic acid amplification method are not particularly limited, and can be performed by a conventionally known method.
  • the addition ratio of the nucleic acid sample in the reaction system (for example, reaction solution) of the amplification reaction is not particularly limited.
  • the lower limit of the addition ratio in the reaction system is preferably, for example, 0.01% by volume or more, more preferably 0.05. Volume% or more, more preferably 0.1 volume% or more.
  • the upper limit of the addition ratio is not particularly limited, but is preferably 2% by volume or less, more preferably 1% by volume or less, and still more preferably 0.5% by volume or less.
  • the addition ratio of a biological sample such as a whole blood sample in the reaction system is, for example, 0.1 to 0.5 volume. % Is preferably set.
  • heat treatment is usually performed for DNA denaturation (dissociation into single-stranded DNA), but this heat treatment denatures sugars, proteins, etc. contained in the sample, resulting in insoluble precipitates or turbidity. Etc. may occur. For this reason, when the presence or absence of a mutation is confirmed by an optical method, the occurrence of such a precipitate or turbidity may affect the measurement accuracy.
  • the addition ratio of the whole blood sample in the reaction system is set within the above-mentioned range, the mechanism is unknown. However, for example, it is possible to sufficiently prevent the influence of the generation of precipitates and the like due to denaturation. Accuracy can be improved. In addition, since PCR inhibition due to contaminants in the whole blood sample is sufficiently suppressed, the amplification efficiency can be further improved. Therefore, by setting the addition ratio of a biological sample such as a whole blood sample within the above range, for example, it is possible to eliminate the necessity of pretreatment of the sample in order to prevent or remove the occurrence of precipitates or turbidity. .
  • the ratio of the whole blood sample in the reaction system is expressed not by the volume ratio as described above (for example, 0.1 to 0.5% by volume) but by the weight ratio of hemoglobin (hereinafter referred to as “Hb”).
  • Hb weight ratio of hemoglobin
  • the ratio of the whole blood sample in the reaction system is preferably in the range of 0.565 to 113 g / L, more preferably in the range of 2.825 to 56.5 g / L, in terms of Hb amount, More preferably, it is in the range of 5.65 to 28.25 ⁇ g / L.
  • the addition ratio of the whole blood sample in the reaction system may satisfy both the volume ratio and the Hb weight ratio, or may satisfy either one.
  • the whole blood may be any of hemolyzed whole blood, unhemolyzed whole blood, anticoagulated whole blood, whole blood containing a coagulated fraction, and the like.
  • albumin Prior to the start of the amplification reaction in the amplification step, it is preferable to further add albumin to the reaction system.
  • albumin for example, the influence due to the occurrence of precipitates or turbidity as described above can be further reduced, and the amplification efficiency can be further improved.
  • the addition ratio of albumin in the reaction system is, for example, in the range of 0.01 to 2% by weight, preferably 0.1 to 1% by weight, more preferably 0.2 to 0.8% by weight.
  • the albumin is not particularly limited, and examples thereof include bovine serum albumin (BSA), human serum albumin, rat serum albumin, horse serum albumin and the like. Any one of these may be used, or two or more may be used in combination. May be.
  • the present invention will be described taking the PCR method as an example of the amplification method in the amplification step. Note that the present invention is not limited to this.
  • the PCR conditions are not particularly limited, and can be performed by a conventionally known method.
  • a PCR reaction solution containing a template nucleic acid and the various primers described above is prepared.
  • the addition ratio of various primers in the PCR reaction solution is not particularly limited, but the mutant primer (Xmt) is preferably added so as to be, for example, 0.01 to 10 ⁇ mol / L, more preferably 0.05. ⁇ 5 ⁇ mol / L, particularly preferably 0.1 to 1 ⁇ mol / L.
  • the normal primer (Xwt) is preferably added, for example, at 0.01 to 10 ⁇ mol / L, more preferably 0.05 to 5 ⁇ mol / L, and particularly preferably 0.1 to 0.5 ⁇ mol. / L.
  • the molar ratio (Xmt: Xwt) between the mutant primer (Xmt) and the normal primer (Xwt) is, for example, preferably 1: 0.001 to 1:10, more preferably 1: 0.01. To 1: 2 and particularly preferably from 1: 0.1 to 1: 1.
  • the primer (Y2) when used in combination with the mutant primer (Xmt) and the normal primer (Xwt), the primer (Y2) should be added at, for example, 0.01 to 10 ⁇ mol / L. Is more preferably 0.05 to 5 ⁇ mol / L, and particularly preferably 0.1 to 1 ⁇ mol / L.
  • the molar ratio (Xmt: Y2) between the mutant primer (Xmt) and the primer (Y2) is, for example, preferably 1: 0.001 to 1:10, more preferably 1: 0.01 to 1 : 2 and particularly preferably 1: 0.1 to 1: 1.
  • composition components in the reaction solution are not particularly limited, and examples thereof include conventionally known components, and their ratios are not particularly limited.
  • examples of the composition component include nucleotides such as DNA polymerase and nucleoside triphosphate (dNTP), solvents, and the like.
  • the order of adding each composition component is not limited.
  • the DNA polymerase is not particularly limited, and for example, a conventionally known heat-resistant bacterium-derived polymerase can be used. Specific examples include DNA polymerase derived from Thermus aquaticus (US Pat. Nos. 4,889,818 and 5079,352) (trade name Taq polymerase), DNA derived from Thermus thermophilus. Polymerase (WO 91/09950) (rTth DNA polymerase), DNA polymerase derived from Pyrococcus furiosus (WO 92/9689) (Pfu DNA polymerase: manufactured by Stratagene), DNA polymerase derived from Thermococcus litoralis (EP 0455430) (Trademark Vent: New England Biolabs) and the like are commercially available. Among them, thermostable DNA polymerase derived from Thermus aquaticus is preferable.
  • the addition rate of DNA polymerase in the reaction solution is not particularly limited, but is, for example, 1 to 100 U / mL, preferably 5 to 50 U / mL, and more preferably 20 to 30 U / mL.
  • the activity unit (U) of DNA polymerase is generally an activity that incorporates 10 nmol of all nucleotides into an acid-insoluble precipitate in an activity measurement reaction solution at 74 ° C. for 30 minutes using activated salmon sperm DNA as a template primer. Is 1U.
  • the composition of the reaction liquid for activity measurement is, for example, 25 mmol / L TAPS buffer (pH 9.3, 25 ° C.), 50 mmol / L KCl, 2 mmol / L MgCl 2 , 1 mmol / L mercaptoethanol, 200 ⁇ mol / L dATP, 200 ⁇ mol / L dGTP, 200 ⁇ mol / L dTTP, 100 ⁇ mol / L [ ⁇ - 32 P] dCTP, 0.25 mg / mL activated salmon sperm DNA.
  • nucleoside triphosphate usually include dNTP (for example, dATP, dGTP, dCTP, dTTP, dUTP, etc.).
  • dNTP for example, dATP, dGTP, dCTP, dTTP, dUTP, etc.
  • the addition rate of dNTP in the reaction solution is not particularly limited, but is, for example, 0.01 to 1 mmol / L, preferably 0.05 to 0.5 mmol / L, more preferably 0.1 to 0. .3 mmol / L.
  • solvent examples include buffer solutions such as Tris-HCl, Tricine, MES, MOPS, HEPES, and CAPS, and commercially available buffer solutions for PCR and commercially available PCR kits can be used.
  • the PCR reaction solution may further contain glycerol, heparin, betaine, KCl, MgCl 2 , MgSO 4 , glycerol, etc., and the addition ratio thereof may be set within a range that does not inhibit the PCR reaction, for example. That's fine.
  • the total volume of the reaction solution is not particularly limited, and can be appropriately determined depending on, for example, the equipment (thermal cycler) used, but is usually 1 to 500 ⁇ L, preferably 10 to 100 ⁇ L.
  • PCR includes, for example, three steps: (1) dissociation of double-stranded nucleic acid into single-stranded nucleic acid, (2) primer annealing, and (3) primer extension (polymerase reaction).
  • the conditions for each step are not particularly limited, but the step (1) is preferably, for example, 90 to 99 ° C. and 1 to 120 seconds, more preferably 92 to 95 ° C. and 1 to 60 seconds.
  • the step 2) is preferably, for example, 40 to 70 ° C. and 1 to 300 seconds, more preferably 50 to 70 ° C. and 5 to 60 seconds
  • the step (3) is, for example, 50 to 80 ° C., 1 It is preferably ⁇ 300 seconds, more preferably 50 to 75 ° C.
  • the number of cycles is not particularly limited, and the above three steps (1) to (3) are defined as one cycle, for example, preferably 30 cycles or more.
  • the upper limit is not particularly limited, but is, for example, a total of 100 cycles or less, preferably 70 cycles or less, and more preferably 50 cycles or less. What is necessary is just to control the temperature change of each step automatically using a thermal cycler etc., for example.
  • a target nucleic acid sequence containing a base site for detection can be produced.
  • two or more types of target nucleic acid sequences can be amplified simultaneously in one reaction solution.
  • Xmt mutant primer
  • Xwt normal primer
  • Y2 optionally primer
  • the method for amplifying a target nucleic acid sequence of the present invention may further include a step of detecting an amplification product obtained by the amplification reaction described above.
  • a step of detecting an amplification product obtained by the amplification reaction described above thereby, for example, it is possible to detect the presence or absence of a mutation in the target base site in the target nucleic acid sequence.
  • the detection of the mutation can be confirmed by, for example, Tm analysis as described later.
  • a probe capable of hybridizing to a sequence containing the base site for detection (hereinafter also referred to as “detection target sequence”) is added to the reaction system of the amplification reaction in the amplification step. .
  • the timing of adding the probe is not particularly limited.
  • the probe may be added to the reaction system at any stage before the amplification reaction, in the middle of the amplification reaction, or after the amplification reaction. It is preferable.
  • the detection of mutation will be specifically described in the mutation detection method of the present invention described later.
  • the probe and the like are as described later.
  • Examples of the second amplification method of the present invention include a form in which the second amplification reagent including the primer (Xmt) and the primer (Y1) is used.
  • the amplification step may be a step of amplifying the target nucleic acid sequence using the primer (Xmt) and the primer (Y1) in the same reaction system.
  • Primer (Y1) Primer complementary to the region 3 ′ of the template nucleic acid from the base site
  • the primer (Xmt) in this embodiment is the same as that in the first embodiment.
  • this embodiment can be performed in the same manner as the first embodiment unless otherwise specified.
  • the template nucleic acid may be single-stranded or double-stranded as described above.
  • the mutant primer (Xmt) and the primer (Y1) it is preferable to design the mutant primer (Xmt) and the primer (Y1) to be complementary to any one of the single strands constituting the double stranded.
  • the above-described primer (Y2) in a complementary manner An example of the relationship between the template nucleic acid and the primer is shown in the schematic diagram of FIG. In FIG.
  • (+) and ( ⁇ ) are each a single strand constituting a double-stranded template nucleic acid, and the shaded portion indicates the base site for detection.
  • both the mutant primer (Xmt) and the primer (Y1) are designed as primers complementary to the (+) strand.
  • the primer (Y2) is preferably designed as a primer complementary to the ( ⁇ ) strand.
  • FIG. 7 is a schematic diagram illustrating an example to the last.
  • the length of each primer, the annealing region in the template nucleic acid, and the like are not limited, and the primer (Y2) is also arbitrary.
  • the mutant primer (Xmt) and the primer (Y1) are both designed as primers complementary to the ( ⁇ ) strand
  • the primer (Y2) is designed as a primer complementary to the (+) strand. Also good.
  • the following can be performed by using the mutant primer (Xmt) and the primer (Y1). That is, even if the template nucleic acid includes a normal template nucleic acid and a mutant template nucleic acid, and the content of the mutant template nucleic acid is low, the mutant primer (Xmt) is more mutated than the normal template nucleic acid. Since the affinity for is high, it is possible to efficiently amplify a low content of the mutant template nucleic acid. On the other hand, since the primer (Y1) is a primer that anneals to a region different from the base site to be detected, the target nucleic acid sequence can be amplified regardless of whether the base site is a mutant type or a normal type. .
  • the mutant template nucleic acid is further amplified by the primer (Y1). For this reason, even if it is a low content mutant type
  • the normal template nucleic acid is also amplified by the primer (Y1), and the normal type can be detected by Tm analysis.
  • the primer (Y1) can amplify a target nucleic acid sequence in which the base site for detection is a normal base. Normal type analysis is possible by Tm analysis.
  • the primer (Y1) is used, an amplification product maintaining the original sequence of the template nucleic acid can be obtained. That is, for example, when amplification occurs when the mutant primer (Xmt) anneals to the normal template nucleic acid, the resulting amplification product has a sequence that depends on the mutant primer (Xmt).
  • coexistence of the primer (Y1) makes it possible to obtain an amplification product that maintains the original sequence of the template nucleic acid. As a result, it is possible to prevent only an amplification product obtained by mistake from increasing, and to improve the reliability of mutation detection.
  • the length of the primer (Y1) is not particularly limited, but is usually preferably 10 to 50 bases, more preferably 15 to 40 bases, and particularly preferably 16 to 35 bases.
  • the primer (Y1) may be annealed to a region 3 'from the base site in the template nucleic acid, and its sequence is not particularly limited, and can be designed according to a conventionally known general primer design method.
  • the addition ratio of various primers in the reaction solution of the amplification reaction is not particularly limited, but the mutant primer (Xmt) is preferably added so as to be, for example, 0.01 to 10 ⁇ mol / L, and more preferably 0.8. 05 to 5 ⁇ mol / L, particularly preferably 0.1 to 1 ⁇ mol / L.
  • the primer (Y1) is preferably added so as to be 0.01 to 10 ⁇ mol / L, more preferably 0.05 to 5 ⁇ mol / L, and particularly preferably 0.1 to 1 ⁇ mol / L. .
  • the molar ratio (Xmt: Y1) between the mutant primer (Xmt) and the primer (Y1) is preferably, for example, 1: 0.001-1: 10, and more preferably 1: 0.01-1 : 2 and particularly preferably 1: 0.1 to 1: 1. Further, as in the first embodiment, it is preferable to further use a primer (Y2) as a pair.
  • the amplification step is a step of amplifying the target nucleic acid sequence using the following primer (Xmt) and 3 ′ ⁇ 5 ′ exonuclease in the reaction system. Is given.
  • the primer (Xmt) in the present embodiment is the same as that in the first embodiment, and this embodiment can be performed in the same manner as the above-described embodiments unless otherwise specified.
  • the mutant primer (Xmt) by performing an amplification reaction using a mutant primer (Xmt) in the presence of 3 ′ ⁇ 5 ′ exonuclease, for example, the following can be performed. That is, when the template nucleic acid includes a normal template nucleic acid and a mutant template nucleic acid, the mutant primer (Xmt) is annealed not only to the mutant template nucleic acid but also to the normal template nucleic acid, and the extended strand is synthesized. Can be considered. However, since the mutant primer (Xmt) is not a normal template nucleic acid but a primer complementary to the mutant template nucleic acid, even if annealed to the normal template nucleic acid, at least at the base site for detection.
  • the mutant primer (Xmt) annealed to the normal template nucleic acid has a mismatch in the 3 ′ region (that is, the region containing the corresponding base of the mutant base) with respect to the normal template nucleic acid. Is in a single-stranded state without annealing. This single-stranded region is cleaved by 3 ' ⁇ 5' exonuclease, whereby a sequence complementary to the normal template sequence is amplified. Since the amplification product thus obtained is a normal target nucleic acid sequence, when the template nucleic acid contains a normal type, the normal product can also be detected by the amplification product from the mutant primer (Xmt). It becomes possible.
  • the addition ratio of the mutant primer (Xmt) in the reaction solution of the amplification reaction is not particularly limited, but for example, it is preferably added so as to be 0.001 to 10 ⁇ mol / L, more preferably 0.01 to 5 ⁇ mol / L. L, particularly preferably 0.1 to 1 ⁇ mol / L.
  • the 3 ' ⁇ 5' exonuclease is not particularly limited, but for example, it is preferable that a polymerase used for the amplification reaction has this catalytic reaction. Examples of the polymerase having 3 ' ⁇ 5' exonuclease activity include Pfu polymerase, Tli polymerase, KOD polymerase, Vent polymerase, Tgo polymerase and the like.
  • any one or more of the above-described primer (Y1), primer (Y2) and primer (Xwt) may be used in combination. Good.
  • the amplification reagent of the present invention is an amplification reagent used in the method for amplifying a target nucleic acid sequence of the present invention.
  • the first amplification reagent of the present invention is characterized by including a primer (Xmt) and a primer (Xwt), and the second amplification reagent is characterized by including a primer (Xmt) and a primer (Y1).
  • the first amplification reagent of the present invention can be used, for example, in the first embodiment of the target nucleic acid sequence amplification method of the present invention
  • the second amplification reagent of the present invention can be used, for example, of the target nucleic acid sequence of the present invention. It can be used in the second embodiment of the amplification method.
  • the 1st and 2nd amplification reagent of this invention contains a primer (Y2) further.
  • each primer is as described above.
  • the third amplification reagent of the present invention is characterized by including a primer (Xmt) and 3 ' ⁇ 5' exonuclease.
  • the third amplification reagent of the present invention can be used, for example, in the third embodiment of the target nucleic acid sequence amplification method of the present invention.
  • the third amplification reagent of the present invention may further include any one or two or less of the primer (Y1), the primer (Y2), and the primer (Xwt).
  • the primers are the same as described above.
  • the amplification reagent of the present invention may further contain, for example, various components used in the amplification reaction described in the method for amplifying a target nucleic acid sequence of the present invention.
  • the amplification reagent of the present invention is preferably used in one reaction system.
  • the amplification reagent of the present invention may be an amplification kit used in the method for amplifying a target nucleic acid sequence of the present invention, and each component may be contained in a separate container, or may be appropriately combined to be the same. It may be contained in a container.
  • the amplification kit preferably includes, for example, instructions for use.
  • the method for detecting a mutation of the present invention is a method for detecting the presence or absence of a mutation at a base site to be detected in a template nucleic acid, comprising the following steps (a) to (c): .
  • the present invention is characterized in that the target nucleic acid sequence is amplified by the above-described method and so-called Tm analysis is performed, and other processes and conditions are not limited at all.
  • “mutation” includes, for example, SNP.
  • the present invention is preferably applied to a sample containing nucleic acid, and the sample is not particularly limited, and examples thereof include the same samples as described above.
  • the type of template nucleic acid is not particularly limited, and examples thereof include the same nucleic acids as described above.
  • the probe for detecting mutation (hereinafter also referred to as “detection probe”) is not particularly limited, and can be set by a conventionally known method.
  • the template nucleic acid when it is double-stranded, it may be designed to hybridize to the sense strand detection target sequence (sense strand detection probe) or to hybridize to the antisense strand detection target sequence. (Antisense strand detection probe).
  • the base site for detection in the detection target sequence may be set to a normal base or a mutant base. That is, when the detection probe is annealed to the detection target sequence, the base corresponding to the detection target base site in the detection target sequence may be, for example, complementary to a normal base, or a mutant base.
  • the base corresponding to the base site to be detected is complementary to the mutant base and non-complementary to the normal base.
  • the base corresponding to the base site to be detected is complementary to the mutant base and non-complementary to the normal base.
  • the mutant base for example, in the probe, the
  • the detection probe may be any sequence that can hybridize to the detection target sequence including the target base site, as described above.
  • the sequence of the probe is not particularly limited, but, for example, 90% to 100% except for a site (base) that forms a pair with a base site to be detected (site where the target mutation occurs) during hybridization.
  • the same sequence is preferable, and 100% is particularly preferable.
  • the addition ratio of the probe in the reaction system is not particularly limited, but for example, the probe is preferably added in a range of 10 to 400 nmol / L, and more preferably 20 to 200 nmol / L.
  • the probe is a labeled probe labeled with a labeling substance such as a fluorescent dye, for example, in order to adjust signal intensity such as fluorescence intensity to be detected
  • the probe has the same sequence as the labeled probe.
  • An unlabeled probe may be used in combination.
  • phosphoric acid may be added to the 3 'end of the unlabeled probe.
  • the molar ratio of the labeled probe to the non-labeled probe is preferably, for example, 1:10 to 10: 1.
  • the length of the probe is not particularly limited, and is, for example, 5 to 50 mer, preferably 10 to 30 mer.
  • the probe can be added to the reaction system of the amplification reaction after the step (a), that is, after carrying out the amplification reaction of the target nucleic acid sequence. It is preferable to add to the reaction system in advance prior to the amplification reaction in step a).
  • the addition ratio of various primers in the reaction system is as described above.
  • a phosphate group may be further added to the 3 ′ end thereof, The 3 ′ end may be labeled with a fluorescent dye as described above.
  • the Tm value will be described.
  • the absorbance at 260 nm increases. This is because hydrogen bonds between both strands in double-stranded DNA are unwound by heating and dissociated into single-stranded DNA (DNA melting).
  • DNA melting single-stranded DNA
  • the absorbance is about 1.5 times the absorbance at the start of heating (absorbance of only double-stranded DNA), thereby melting. It can be judged that it has been completed. Based on this phenomenon, the melting temperature Tm is generally defined as the temperature at which the absorbance reaches 50% of the total increase in absorbance.
  • the measurement of the signal value indicating the melting state of the hybrid formed product of the amplification product and the probe may be 260 nm absorbance measurement as described above. Also good.
  • a labeled probe labeled with a labeling substance as the probe and measure the signal of the labeling substance.
  • the labeled probe include a labeled probe that shows a signal alone and does not show a signal by hybridization, or a labeled probe that does not show a signal alone and shows a signal by hybridization. In the case of the former probe, no signal is shown when a hybrid (for example, double-stranded DNA) is formed with the detection target sequence, and a signal is shown when the probe is released by heating.
  • a signal is shown by forming a hybrid (for example, double-stranded DNA) with the target sequence, and when the probe is released by heating, the signal decreases (disappears). Therefore, by detecting the signal by this label under signal-specific conditions (absorption wavelength, etc.), the progress of melting of the hybrid and determination of the Tm value can be performed as in the absorbance measurement at 260 nm.
  • a hybrid for example, double-stranded DNA
  • two or more types of target nucleic acid sequences can be amplified simultaneously in the same reaction system. Then, the target mutation can be confirmed for each amplification product.
  • a probe that hybridizes may be prepared for each detection target sequence including a base site where the target mutation occurs.
  • each probe it is preferable to use labeled probes labeled with different labeling substances detected under different conditions. If such a probe is used, each mutation can be detected by changing detection conditions even in the same reaction system.
  • the labeling substance in the labeling probe include a fluorescent dye and a fluorophore.
  • a probe that is labeled with a fluorescent dye exhibits fluorescence alone, and fluorescence decreases (for example, quenches) by hybridization is preferable.
  • a probe using such a fluorescence quenching phenomenon is generally called a fluorescence quenching probe.
  • the probe is preferably labeled with a fluorescent dye at the base of the 3 ′ region (for example, 3 ′ end) or 5 ′ region (for example, 5 ′ end) of the oligonucleotide.
  • the base is preferably cytosine (C).
  • the base paired with the terminal base C of the labeled probe or the base separated by 1 to 3 bases from the paired base is guanine (G).
  • G guanine
  • the base sequence of the labeled probe is generally called a guanine quenching probe and is known as a so-called QProbe (registered trademark).
  • QProbe registered trademark
  • the terminal C labeled with the fluorescent dye approaches G in the detection target sequence, so that the emission of the fluorescent dye becomes weak (fluorescence intensity decreases). Decrease).
  • the labeling substance can be usually bound to a phosphate group of a nucleotide, for example.
  • the fluorescent dye is not particularly limited, and examples thereof include fluorescein, phosphor, rhodamine, polymethine dye derivatives, and the like, and examples of commercially available fluorescent dyes include BODIPY FL (trademark, manufactured by Molecular Probe), FluorePrime (trade name, manufactured by Amersham Pharmacia), Fluoredite (trade name, manufactured by Millipore), FAM (manufactured by ABI), Cy3 and Cy5 (manufactured by Amersham Pharmacia), TAMRA (manufactured by Molecular Probes), and the like.
  • the combination of fluorescent dyes used for a plurality of probes is not particularly limited as long as it can be detected under different conditions. For example, Pacific Blue (detection wavelength 450 to 480 nm), TAMRA (detection wavelength 585 to 700 nm) and BODIPY FL ( A combination of detection wavelengths of 515 to 555 nm).
  • the mutation detection method of the present invention will be described with an example in which a nucleic acid is amplified by PCR and a labeled probe is used as a detection probe. Note that the present invention is not limited to this.
  • PCR is performed as described above using a sample solution containing a template nucleic acid, the above-described various primers in the present invention, and a reaction solution to which a labeled probe that hybridizes to the detection target sequence is added.
  • the reaction solution may contain, for example, DNA polymerase, dNTP, and other various additives that can be used for nucleic acid amplification.
  • the timing of adding the labeled probe is not particularly limited, and may be any of, for example, before the amplification reaction, in the middle of the amplification reaction, and after the amplification reaction. ) Step can be carried out continuously, so that it is preferably added before the amplification reaction.
  • the amplification product obtained is dissociated, and the single-stranded DNA obtained by the dissociation and the labeled probe are hybridized. This can be performed, for example, by changing the temperature of the reaction solution.
  • the heating temperature in the dissociation step is not particularly limited as long as the amplification product can be dissociated, and is, for example, 85 to 95 ° C.
  • the heating time is not particularly limited, but is usually 1 second to 10 minutes, preferably 1 second to 5 minutes.
  • Hybridization of the dissociated single-stranded DNA and the labeled probe can be performed, for example, by lowering the heating temperature in the dissociation step after the dissociation step.
  • the temperature condition is, for example, 40 to 50 ° C.
  • the temperature of the reaction solution is changed, and a signal value indicating the melting state of the hybridized product of the amplification product and the labeled probe is measured.
  • the reaction solution is heated, that is, the hybrid formed of the single-stranded DNA and the labeled probe is heated, and the fluctuation of the signal value accompanying the temperature rise is measured.
  • fluorescence is decreased (or quenched) and dissociated in a state where it is hybridized with single-stranded DNA. Then, it emits fluorescence.
  • the hybrid formed body in which the fluorescence is decreased (or quenched) may be gradually heated, and the increase in the fluorescence intensity accompanying the temperature increase may be measured.
  • the said signal value can be measured on the conditions according to the labeling substance of the said labeled probe, for example.
  • the temperature range for measuring the fluctuation of the fluorescence intensity is not particularly limited.
  • the start temperature is room temperature to 85 ° C., preferably 25 to 70 ° C.
  • the end temperature is 40 to 105 ° C., for example. is there.
  • the rate of temperature increase is not particularly limited, but is, for example, 0.1 to 20 ° C./second, preferably 0.3 to 5 ° C./second.
  • the Tm value is determined by analyzing the fluctuation of the signal. Specifically, for example, the amount of change in fluorescence intensity per unit time at each temperature is calculated from the obtained fluorescence intensity.
  • the amount of change is ( ⁇ d fluorescence intensity increase / dt)
  • the temperature showing the lowest value can be determined as the Tm value.
  • the amount of change is (d fluorescence intensity increase / t)
  • the highest point can be determined as the Tm value.
  • the decrease in fluorescence intensity may be measured.
  • the Tm value can be calculated by, for example, conventionally known MELTCALC software (http://www.meltcalc.com/) or the like, and can also be determined by a neighbor method (Nearest Neighbor Method).
  • the type of base at the target base site that is, the genotype such as a mutant type or normal type is determined.
  • a hybrid (match) that is completely complementary has a higher Tm value indicating dissociation than a hybrid (mismatch) that differs in one base. Therefore, the genotype at the target base site can be determined by determining in advance the Tm value of a hybrid that is completely complementary to the probe and the Tm value of a hybrid that differs in one base. For example, when the base at the target base site is assumed to be a mutant type and a probe complementary to the detection target sequence containing the mutant base is used, the Tm value of the hybrid formed is the Tm value of the completely complementary hybrid.
  • the target base can be determined as a mutant type. Further, if the Tm value of the formed hybrid is the same as the Tm value of a hybrid different by one base (a value lower than the Tm value of a completely complementary hybrid), the target base can be determined to be a normal type. Further, when both Tm values are detected, for example, it can be determined that a nucleic acid showing a mutant type and a nucleic acid showing a normal type coexist.
  • the method of measuring the signal fluctuation accompanying the temperature increase by increasing the temperature of the reaction solution containing the probe, that is, heating the hybrid former
  • signal fluctuations during hybridization may be measured. That is, when the hybrid is formed by lowering the temperature of the reaction solution containing the probe, the signal fluctuation accompanying the temperature drop may be measured.
  • a labeled probe for example, a guanine quenching probe
  • a labeled probe that shows a signal alone and does not show a signal due to hybridization
  • it emits fluorescence when the single-stranded DNA and the probe are dissociated.
  • the fluorescence is reduced (or quenched). Therefore, for example, the temperature of the reaction solution may be gradually decreased to measure the decrease in fluorescence intensity accompanying the temperature decrease.
  • a labeled probe that does not show a signal alone and shows a signal by hybridization, it does not emit fluorescence when the single-stranded DNA and the probe are dissociated, but the hybrid is not released due to a decrease in temperature. Once formed, it will fluoresce. Therefore, for example, the temperature of the reaction solution may be gradually lowered and the increase in fluorescence intensity accompanying the temperature drop may be measured.
  • the nucleic acid in the sample may be single-stranded or double-stranded.
  • the nucleic acid is double-stranded, it is preferable to include a step of dissociating the double-stranded nucleic acid in the sample by heating, for example, prior to the hybridization in the step (b).
  • the mutation detection reagent of the present invention is a detection reagent used in the mutation detection method of the present invention, and includes the amplification reagent of the present invention and a probe capable of hybridizing to a sequence containing a base site to be detected in a template nucleic acid. It is characterized by.
  • the amplification reagent of the present invention is preferably used in one reaction system.
  • the mutation detection reagent of the present invention may further contain various components used in the amplification reaction described in the mutation detection method of the present invention, for example. Further, the mutation detection reagent of the present invention may be, for example, the mutation detection kit of the present invention, and preferably includes, for example, an instruction manual.
  • Example 1 Based on the first embodiment, a point mutation (C ⁇ T) at the 944th base of the bcr-abl gene was detected by Tm analysis.
  • a normal plasmid in which a normal bcr-abl gene sequence having no mutation at the 944th base C is inserted (hereinafter referred to as “wt”), and a mutant bcr ⁇ in which the 944th base C is mutated to T
  • An abnormal plasmid into which the abl gene was inserted (hereinafter referred to as “mt”) was prepared. Both were mixed at a predetermined ratio to prepare a plurality of nucleic acid samples.
  • the mt content ratios in the plurality of nucleic acid samples were 100%, 10%, 5%, 3%, 1%, 0.5%, 0.3%, and 0%, respectively.
  • PCR is carried out using a thermal cycler (trade name Mastercycler gradient G, manufactured by Eppendorf). went. PCR was carried out at 95 ° C. for 60 seconds, and then repeated 50 cycles, with 99 ° C. for 4 seconds and 66 ° C. for 30 seconds as one cycle. Further, the tube containing the PCR reaction solution was transferred to iCycler (trade name, manufactured by Bio-Rad Laboratories), treated at 95 ° C. for 5 seconds and at 40 ° C. for 60 seconds, and then the temperature was raised by 1 ° C.
  • iCycler trade name, manufactured by Bio-Rad Laboratories
  • the step of incubating for 2 seconds was repeated 55 cycles, and the PCR reaction solution was heated from 40 ° C to 95 ° C. During the 55 cycles, the change in fluorescence intensity (detection wavelength 515 to 545 nm) at each temperature from 40 ° C. to 75 ° C. was measured, and Tm analysis was performed.
  • the primer (Y2) is a sense primer in PCR
  • the normal primer (Xwt) and the mutant primer (Xmt) are antisense primers in PCR.
  • the sequences of these primers are shown below.
  • the normal primer (Xwt) is a complementary sequence that is 100% matched to the region containing the 944th base (C) in the normal bcr-abl gene
  • the mutant primer (Xmt) is the 944th base.
  • C is a complementary sequence that is 100% matched to the region containing the 944th base (T) in the mutant bcr-abl gene in which C is mutated to T.
  • the base indicated by capital letters at the 3 ′ end is the 944th base of the normal bcr-abl gene and the mutant bcr-abl gene, respectively.
  • the positional relationship between the normal primer (Xwt) and the mutant primer (Xmt) and the sense strand that they anneal, and the positional relationship between the sense primer (Y2) and the antisense strand that it anneals are, for example, Although the schematic diagram of FIG. 6 described above can be referred to, it is merely a schematic diagram and does not limit the present invention.
  • Sense primer SEQ ID NO: 1 5'-ggacggacggaccgtcctcgttgtcttgttggc-3 ' Normal primer (Xwt) SEQ ID NO: 2 5'-ttcccgtaggtcatgaactcaG-3 ' Mutant primer (Xmt) SEQ ID NO: 3 5'-aggttcccgtaggtcatgaactcaA-3 '
  • the sequence of the detection probe used for Tm analysis is shown below.
  • the detection probe is a complementary sequence that is 100% matched to the region containing the 944th base in the mutant bcr-abl gene (sense strand) in which the 944th base C is mutated to T.
  • the base A shown in capital letters corresponds to the 944th mutated base T.
  • P at the 3 ′ end represents a phosphate group.
  • FIG. 1 is a graph of Tm analysis showing changes in fluorescence intensity with increasing temperature.
  • the horizontal axis represents the temperature (° C.) at the time of measurement, the vertical axis represents the change in fluorescence intensity (hereinafter also referred to as “fluorescence change amount”), and the unit was “ ⁇ d fluorescence intensity increase / dt”.
  • fluorescence change amount the change in fluorescence intensity increase / dt.
  • the 944th is either a normal base (C) or a mutated base (T) Regardless, the region containing the 944th base is amplified.
  • Antisense primer SEQ ID NO: 5 5'-ggacggacggaccgcactccctcaggtagtccag-3 '
  • FIG. 2 is a graph of Tm analysis showing changes in fluorescence intensity with increasing temperature.
  • the horizontal axis represents the temperature (° C.) at the time of measurement, the vertical axis represents the change in fluorescence intensity (hereinafter also referred to as “fluorescence change amount”), and the unit was “ ⁇ d fluorescence intensity increase / dt”.
  • fluorescence change amount the change in fluorescence intensity increase / dt.
  • a wt reaction solution for amplifying wt having a normal 944th base and an mt reaction solution for amplifying mt in which the base was mutated were prepared.
  • the composition of these reaction solutions is shown below.
  • the wt reaction solution used the normal primer (Xwt) of Example 1 as an antisense primer
  • the mt reaction solution used the mutant primer (Xmt) of Example 1 as an antisense primer.
  • the primer (Y2) was used for the sense primer as in Example 1.
  • Example 1 detection sensitivity superior to the method of Comparative Example 2 can be achieved. Further, in the conventional ASP-PCR method in Comparative Example 2, it was necessary to prepare separate reaction systems for detection of the normal type and the mutant type. According to Example 1, in one reaction system, Normal and mutant types can be determined. For this reason, it can be said that the labor and cost of mutation detection can be reduced.
  • Example 2 Based on the first embodiment, a point mutation (C ⁇ T) at the 944th base of the bcr-abl gene (sense strand) was detected by Tm analysis.
  • an oligonucleotide complementary to a partial sequence of a normal bcr-abl gene having no mutation at the 944th base C (antisense strand, SEQ ID NO: 6, hereinafter referred to as “wt”) and ,
  • An oligonucleotide complementary to the partial sequence of the mutant bcr-abl gene in which the 944th base C was mutated to T (antisense strand, SEQ ID NO: 7, hereinafter referred to as “mt”) was prepared.
  • the two oligonucleotides were mixed at a predetermined ratio to prepare a plurality of nucleic acid samples.
  • the mt content ratios in the plurality of nucleic acid samples were 100%, 3%, and 0%, respectively.
  • 1 ⁇ L of a 10 ⁇ mol / L nucleic acid reagent and 19 ⁇ L of the primer reagent shown in Table 4 below were added and heated at 95 ° C. for 1 minute. After heating, 5 ⁇ L of the enzyme reagent shown in Table 5 below was further added to the tube, and PCR was performed using a thermal cycler (trade name Mastercycler ep gradient S, manufactured by Eppendorf). PCR was repeated 5 cycles, with 95 ° C. for 5 seconds and 62 ° C.
  • the tube was heated to 95 ° C., and 2.5 ⁇ L of 10 wt% SDS solution was added to stop the reaction. Further, the tube containing the PCR reaction solution was transferred to i-densy (trade name, manufactured by Arkray), treated at 95 ° C. for 1 second and 40 ° C. for 60 seconds, and then the temperature was set at a rate of 1 ° C./3 seconds. And heated from 40 ° C to 75 ° C. During this heating, changes in fluorescence intensity (excitation wavelength: 420 to 485 nm, detection wavelength: 520 to 555 nm) at each temperature from 40 ° C. to 60 ° C. were measured, and Tm analysis was performed.
  • i-densy trade name, manufactured by Arkray
  • the normal primer (Xwt) and the mutant primer (Xmt) are sense primers in PCR.
  • the sequences of these primers are shown below.
  • the normal primer (Xwt) is 100% identical to the region containing the 944th base (C) in the sense strand of the normal bcr-abl gene
  • the mutant primer (Xmt) is the 944th base.
  • the sequence is 100% identical to the region containing the 944th base (T).
  • the base indicated by capital letters at the 3 ′ end is the 944th base of the normal bcr-abl gene and the mutant bcr-abl gene, respectively. Equivalent to.
  • the positional relationship between the normal primer (Xwt) and the mutant primer (Xmt) and the antisense strands they anneal can be referred to, for example, the schematic diagram of FIG. 6 described above. It is not intended to limit the invention.
  • the same detection probe as in Example 1 was used as the detection probe.
  • FIG. 3 is a graph of Tm analysis showing changes in fluorescence intensity with increasing temperature.
  • the horizontal axis indicates the temperature (° C.) at the time of measurement, the vertical axis indicates the change in fluorescence intensity (hereinafter also referred to as “fluorescence change amount”), and the unit is “d fluorescence intensity increase / dt”.
  • fluorescence change amount the change in fluorescence intensity increase / dt.
  • the peaks at the mt Tm value and the wt Tm value were confirmed for each sample.
  • the mt Tm value is as strong as the peak in the Tm value of wt, even though the mt is very small, 3%. A peak was confirmed.
  • Example 3 Based on the third embodiment, a point mutation (C ⁇ T) at the 944th base of the bcr-abl gene (sense strand) was detected by Tm analysis.
  • Example 2 In the same manner as in Example 1, the normal plasmid (wt) and the mutant plasmid (mt) were mixed at a predetermined ratio to prepare a plurality of nucleic acid samples.
  • the mt content ratios in the plurality of nucleic acid samples were 100%, 10%, 5%, 3%, and 0%, respectively.
  • 1 ⁇ L of the nucleic acid sample (2 ⁇ 10 4 copies / test) and 24 ⁇ L of the PCR reaction solution shown in Table 6 below were added, and a thermal cycler (trade name: Mastercycler gradient S, manufactured by Eppendorf) was used. PCR was performed as in Example 1.
  • Tm analysis was performed in the same manner as in Example 1 except that the change in fluorescence intensity (detection wavelength 515 to 545 nm) at each temperature from 40 ° C. to 75 ° C. was measured during 35 cycles. .
  • the primer (Y2) is a sense primer in PCR, and the primer (Y1) and the mutant primer (Xmt) are antisense primers in PCR.
  • the sense primer (Y2) and the mutant primer (Xmt) were the same as those in Example 1, respectively.
  • the sequences of these primers are shown below.
  • the mutant primer (Xmt) is a complementary sequence that is 100% matched to the region containing the 944th base (T) in the mutant bcr-abl gene in which the 944th base C is mutated to T.
  • the base indicated by the capital letter at the 3 'end corresponds to the 944th base of the mutant bcr-abl gene.
  • the positional relationship between the sense primer (Y2) and the antisense strand that it anneals, and the positional relationship between the normal primer (Xwt) and the antisense primer (Y1) and the sense strand that they anneal are as follows:
  • the schematic diagram of FIG. 7 described above can be referred to, it is a schematic diagram only and does not limit the present invention.
  • Sense primer SEQ ID NO: 1 5'-ggacggacggaccgtcctcgttgtcttgttggc-3 '
  • Antisense primer SEQ ID NO: 10 5'-gaccgaccgaccccaggaggttcccgtaggtc-3 '
  • Mutant primer SEQ ID NO: 3 5'-aggttcccgtaggtcatgaactcaA-3 '
  • the sequence of the detection probe is shown below.
  • the detection probe is a complementary sequence that is 100% matched to the region containing the 944th base in the antisense strand of the mutant bcr-abl gene in which the 944th base C is mutated to T.
  • the base T shown in capital letters corresponds to the 944th mutated base A in the antisense strand.
  • P at the 3 ′ end represents a phosphate group.
  • Probe for detection SEQ ID NO: 11 5 '-(BODIPY FL) -cccgttctatatcatcaTtgag-P-3'
  • Example 3 The results of Example 3 are shown in FIG. 4, and the results of Comparative Example 3 are shown in FIG. Both figures are graphs of Tm analysis showing changes in fluorescence intensity with increasing temperature.
  • the horizontal axis represents the temperature (° C.) at the time of measurement, the vertical axis represents the change in fluorescence intensity (hereinafter also referred to as “fluorescence change amount”), and the unit was “ ⁇ d fluorescence intensity increase / dt”.
  • fluorescence change amount the change in fluorescence intensity increase / dt.
  • Example 3 shown in FIG. 4 with respect to the sample in which mt and wt coexist (mt 3% to 10%), a peak was confirmed in the Tm value of mt even though the amount of mt was small.
  • Comparative Example 3 shown in FIG. 5 with respect to the sample in which mt and wt coexist (mt 3% to 10%), only a peak was confirmed at the Tm value of wt. A peak in the Tm value of mt could not be confirmed. From this result, according to the present Example, it can be said that a mutation can be detected with higher sensitivity.
  • the present invention for example, when a template nucleic acid in which the base site is a mutant type and a template nucleic acid in which the base site is a normal type coexist in a sample as a template nucleic acid.
  • the mutant target nucleic acid sequence is preferentially amplified over the normal target nucleic acid sequence.
  • the mutant target nucleic acid sequence is preferentially amplified over the normal target nucleic acid sequence.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 1つの反応系で感度と信頼性に優れた変異検出を可能とする変異検出方法を提供する。プライマー(Xmt)および(Xwt)を用いて、検出目的の塩基が変異型である標的核酸配列を、検出目的の塩基が正常型である標的核酸配列の増幅効率よりも高い増幅効率で増幅させる。(Xmt)は、鋳型核酸における変異型塩基を含む領域に相補的かつ3’領域に変異型塩基に相補的な塩基を有するプライマーであり、(Xwt)は、鋳型核酸における正常型塩基を含む領域に相補的かつ3’領域に正常型塩基に相補的な塩基を有するプライマーである。変異型鋳型核酸に対する(Xmt)による増幅効率は、正常型鋳型核酸に対する(Xwt)による増幅効率よりも高いことが好ましい。そして、得られた増幅産物とプローブとのハイブリッド形成体の融解状態を示すシグナル値を測定し、温度変化に伴うシグナル値変動から目的の塩基部位の変異の有無を決定する。

Description

標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬
 本発明は、検出目的の変異が発生する塩基部位を含む標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬に関する。
 あらゆる疾患の予防や治療において、一塩基多型(SNP)をはじめとする遺伝子の変異の検出が広く行われている。例えば、癌細胞の遺伝子には多くの変異が見られ、これらが細胞の癌化に関与していることが知られている。このため、細胞中の遺伝子の変異を検出することによって、癌化の可能性や進行度等を確認可能であり、治療において非常に有用な情報と考えられる。また、投薬中、癌細胞の遺伝子に薬剤耐性を示す変異も報告されている。この変異の検出によって、各患者に対する薬剤の有効性を判断できることから、より適切な治療が可能となっている。例えば、慢性骨髄性白血病(CML)は、抗癌剤イマチニブの投薬治療が広く用いられているが、bcr-abl遺伝子上の変異(例えば、T315I)が薬剤耐性に影響していると考えられている。このように遺伝子における変異の検出は、臨床分野において早期発見や治療において有用となることから、高い信頼性が求められている。
 遺伝子における変異の検出方法としては、一般に、ダイレクトシーケンシング法、ASP(Allele Specific Primer)-PCR(Polymerase Chain Reaction)法(特許文献1)、Tm(Melting temperature)解析法(非特許文献1)、が知られている。前記ダイレクトシーケンシング法は、検出目的の塩基部位を含む領域を増幅させ、得られた増幅産物の塩基配列を解析する方法である。前記ASP-PCR法は、検出目的の塩基部位を含む領域に相補的であって、前記検出目的の塩基部位の塩基に相補的な塩基を3’末端領域に有するプライマーを用いてPCRを行い、増幅の有無によって変異を判断する方法である。この方法によれば、例えば、前記検出目的の塩基部位を変異型塩基に設定した配列(以下、「変異配列」ともいう)に対する相補的なプライマーを使用した場合、増幅の検出によって変異を確認できる。また、検出目的の塩基部位を正常型塩基に設定した配列(以下、「正常配列」ともいう)に対する相補的なプライマーを使用した場合、増幅の検出によって非変異(すなわち正常)を確認できる。前記Tm解析は、まず、前記検出目的の塩基部位を含む領域を増幅させ、得られた増幅産物と前記変異配列に相補的なプローブとのハイブリッド(二本鎖DNA)を形成させる。そして、このハイブリッド形成体に加熱処理を施して、温度上昇に伴うハイブリッドの解離(融解)を、吸光度等のシグナル測定により検出し、Tm値を決定する。これによって、変異の有無を判断する。Tm値は、ハイブリッド形成体を構成する各鎖が、マッチしている程高く、ミスマッチである程低くなる。このため、前記変異配列と、それに相補的なプローブとのハイブリッド形成体について、予めTm値(評価基準値)を求めておき、この評価基準値と、前述の決定したTm値(測定値)とを比較することで、以下のような判断が可能である。前記測定値が前記評価基準値と同じであれば、パーフェクトマッチ、すなわち、前記検出目的の塩基部位に変異が存在すると判断できる。他方、前記測定値が前記評価基準値より低ければ、ミスマッチ、すなわち、前記検出目的の塩基部位が正常(変異が存在しない)と判断できる。
 しかしながら、前記ダイレクトシーケンシング法は、感度が低く、操作に多大な手間と時間がかかる。前記ASP-PCR法は、感度に優れるものの、特異性に欠けるという問題がある。つまり、前記変異配列に相補的なプライマーを使用した際に、変異が存在しないにもかかわらず、増幅が確認され、擬陽性と判断されるおそれがある。また、前記ASP-PCR法では、1つの反応系において、前記変異配列に相補的なプライマーおよび前記正常配列に相補的なプライマーのいずれか一方しか使用できない。このため、検出目的の塩基部位が、正常か変異かを確認するためには、前記変異配列に相補的なプライマーを用いる反応系および前記正常配列に相補的なプライマーを用いる反応系の計2種類について、PCRを行う必要がある。このように2種類の反応系を使用することで、操作の手間と時間、コストがかかる。さらに、2種類の反応系を使用しても、十分に信頼性に優れる判断が困難という問題がある。すなわち、2種類の反応系のうち、前記正常配列に相補的なプライマーを用いた反応系で増幅が確認されず、前記変異配列に相補的なプライマーを用いた反応系のみで増幅が確認された場合、真の陽性という判断は可能である。しかし、両方の反応系で増幅がみられた場合、依然、正常であるか変異であるかの判断は困難となる。他方、前記Tm解析法は、特異性に優れるため、擬陽性の問題は回避可能であり、また、1つの反応系で、前記検出目的の塩基部位について、正常であるか変異であるかを判断できる。しかしながら、Tm解析法は、感度が十分ではないという問題がある。
 特に、前述のように、癌に関して変異を検出する場合、患者から採取する検体には目的の遺伝子が変異している細胞と正常である細胞が混在している。このため、例えば、多量の正常遺伝子と少量の変異遺伝子とを含む生体試料についても、正確に変異の有無を検出できることが求められている。
特許第2853864号
Analytical Biochemistry 290, 89-97(2001)
 そこで、本発明は、1つの反応系で簡便に、感度および信頼性に優れた変異の検出を可能とする標的核酸配列の増幅方法、および、変異の検出方法、ならびに、それに用いる試薬の提供を目的とする。
 前記目的を達成するために、本発明の標的核酸配列の増幅方法は、鋳型核酸における標的核酸配列の増幅方法であって、
前記標的核酸配列が、前記鋳型核酸における検出目的の変異が発生する塩基部位を含む配列であり、
同一の反応系において、前記塩基部位が変異型塩基である標的核酸配列を、前記塩基部位が正常型塩基である標的核酸配列よりも優先的に増幅させる増幅工程を含むことを特徴とする。
 本発明の変異検出方法は、鋳型核酸における検出目的の塩基部位の変異の有無を検出する方法であって、下記(a)~(c)工程を含むことを特徴とする。
(a)本発明の標的核酸配列の増幅方法により、前記鋳型核酸における前記塩基部位を含む標的核酸配列を反応系で増幅させる工程
(b)前記鋳型核酸における前記塩基部位を含む配列にハイブリダイズ可能なプローブの存在下、前記(a)工程により得られた増幅産物を含む前記反応系の温度を変化させ、前記増幅産物と前記プローブとのハイブリッド形成体の融解状態を示すシグナル値を測定する工程
(c)温度変化に伴う前記シグナル値の変動から、前記目的の塩基部位の変異の有無を決定する工程
 本発明は、例えば、試料中に、鋳型核酸として、前記塩基部位が変異型である鋳型核酸と前記塩基部位が正常型である鋳型核酸とが共存している場合であっても、前記変異型の標的核酸配列を、正常型の標的核酸配列よりも優先的に増幅させることを特徴とする。このように、変異型の標的核酸配列を優先的に増幅させることによって、例えば、変異型の鋳型核酸の割合が正常型の鋳型核酸より低い場合であっても、本発明の増幅産物に対してプローブを用いたTm解析を行うことで、変異の有無を、優れた感度ならびに信頼性で検出することができる。このため、前述のように、正常遺伝子と変異遺伝子とを両方含む試料に対して、特に有用である。以上の点から、本発明は、例えば、遺伝子変異の検出により治療や診断を行う近年の臨床分野において、極めて有用といえる。
図1は、本発明の実施例1におけるTm解析の結果を示すグラフである。 図2は、比較例1におけるTm解析の結果を示すグラフである。 図3は、本発明の実施例2におけるTm解析の結果を示すグラフである。 図4は、本発明の実施例3におけるTm解析の結果を示すグラフである。 図5は、比較例3におけるTm解析の結果を示すグラフである。 図6は、本発明の一実施形態における、プライマーと鋳型核酸との関係を示す模式図である。 図7は、本発明の他の実施形態における、プライマーと鋳型核酸との関係を示す模式図である。
<標的核酸配列の増幅方法>
 本発明の標的核酸配列の増幅方法は、前述のように、鋳型核酸における標的核酸配列の増幅方法であって、前記標的核酸配列が、前記鋳型核酸における検出目的の変異が発生する塩基部位を含む配列であり、同一の反応系において、前記塩基部位が変異型塩基である標的核酸配列を、前記塩基部位が正常型塩基である標的核酸配列よりも優先的に増幅させる増幅工程を含むことを特徴とする。
 本発明においては、以下、前記塩基部位の塩基が変異型である鋳型核酸を「変異型鋳型核酸」、前記塩基部位の塩基が変異型である標的核酸配列を「変異型標的核酸配列」、前記塩基部位の塩基が正常型である鋳型核酸を「正常型鋳型核酸」、前記塩基部位の塩基が正常型である標的核酸配列を「正常型標的核酸配列」ともいう。なお、本発明の増幅方法は、前記鋳型核酸が、例えば、正常型鋳型核酸のみである場合は正常型鋳型核酸を、変異型鋳型核酸のみである場合は変異型鋳型核酸を、正常型鋳型核酸と変異型鋳型核酸とを両方含む場合はそれぞれを、増幅できる方法である。
 本発明において、「優先的に増幅」とは、例えば、変異型標的核酸配列の増幅を促進する意味であってもよいし、正常型標的核酸配列の増幅を抑制または阻害する意味であってもよい。
 本発明においては、例えば、一本鎖の核酸を鋳型核酸として、増幅を行ってもよいし、相補的な二本鎖核酸について、これを構成する2つの一本鎖をそれぞれ鋳型として、増幅を行ってもよい。本発明において、二本鎖核酸を構成する2つの一本鎖をそれぞれ鋳型とする場合、便宜上、一方を(+)鎖、他方を(-)鎖ともいう。なお、本発明において、(+)鎖および(-)鎖は、いずれがセンス鎖であってもアンチセンス鎖であってもよい。また、後述する本発明の変異検出方法において、検出目的の塩基部位とは、例えば、(+)鎖における塩基部位でもよいし、前記塩基部位に対応する前記(-)鎖の塩基部位であってもよい。後述する本発明の変異検出方法において使用するプローブは、例えば、(+)鎖にハイブリダイズ可能なように設計してもよいし、(-)鎖にハイブリダイズ可能なように設計してもよい。
 本発明の標的核酸配列の増幅方法によれば、前述のように変異型である標的核酸配列を正常型標的核酸配列よりも優先的に増幅することができる。このため、本発明の増幅方法は、例えば、変異型標的核酸配列の増幅方法ということもできる。本発明の増幅方法は、例えば、変異型である標的核酸配列を正常型標的核酸配列よりも優先的に増幅することができればよく、その他の工程や条件は何ら制限されない。本発明について、以下に具体例をあげるが、本発明は、これに制限されない。
(第1の実施形態)
 本発明の第1の増幅方法としては、例えば、プライマー(Xmt)およびプライマー(Xwt)を含む前記第1の増幅試薬を使用する形態があげられる。具体的には、前記増幅工程が、同一の反応系において、前記プライマー(Xmt)および前記プライマー(Xwt)を用いて前記標的核酸配列を増幅する工程である形態である。
プライマー(Xmt)
前記鋳型核酸における変異型の前記塩基部位を含む領域に相補的であり、3’領域に前記塩基部位の塩基に相補的な塩基を有するプライマー
プライマー(Xwt)
前記鋳型核酸における正常型の前記塩基部位を含む領域に相補的であり、3’領域に前記塩基部位の塩基に相補的な塩基を有するプライマー
 本発明において、以下、各種プライマーがアニーリングする、前記鋳型核酸における領域を、「アニーリング領域」ともいう。また、本発明において、各種プライマーは、例えば、前記鋳型核酸におけるアニーリング領域に対して特異的に結合できればよく、前記アニーリング領域に対して、完全に相補的な配列であってもよいし、部分的に相補的な配列、部分的にミスマッチの塩基を有する配列であってもよい。以下、他の実施形態においても同様である。
 前記プライマー(Xmt)は、前記塩基部位が変異型である領域にアニーリング可能なプライマーであり、以下、「変異型プライマー」ともいう。他方、プライマー(Xwt)は、前記塩基部位が正常型である領域にアニーリング可能なプライマーであり、以下、「正常型プライマー」ともいう。前記鋳型核酸は、前述のように一本鎖でも二本鎖でもよい。前記鋳型核酸が二本鎖の場合、例えば、前記二本鎖を構成するいずれか一方の一本鎖に対して、変異型プライマー(Xmt)および正常型プライマー(Xwt)を相補的に設計することが好ましい。また、他方の一本鎖に対しては、例えば、後述するプライマー(Y2)を相補的に設計することが好ましい。鋳型核酸とプライマーとの関係の一例を、図6の模式図に示す。図6において、(+)および(-)は、それぞれ、二本鎖の鋳型核酸を構成する一本鎖であり、斜線部分が、検出目的の塩基部位を示す。同図に示すように、変異型プライマー(Xmt)および正常型プライマー(Xwt)は、ともに、(+)鎖に相補的なプライマーとして設計される。この場合、前記プライマー(Y2)は、(-)鎖に相補的なプライマーとして設計されることが好ましい。なお、図6は、あくまでも一例を示す模式図であり、例えば、各プライマーの長さや、鋳型核酸におけるアニーリング領域等を制限するものではなく、プライマー(Y2)も任意である。また、変異型プライマー(Xmt)および正常型プライマー(Xwt)が、ともに、(-)鎖に相補的なプライマーとして設計され、前記プライマー(Y2)が、(+)鎖に相補的なプライマーとして設計されてもよい。
 本実施形態において、前記プライマー(Xmt)および前記プライマー(Xwt)は、前記塩基部位が変異型である鋳型核酸に対する前記プライマー(Xmt)による増幅効率が、前記塩基部位が正常型である鋳型核酸に対する前記プライマー(Xwt)による増幅効率よりも高い、という関係を満たすことが好ましい。これによって、例えば、以下のようなことが可能となる。すなわち、前記鋳型核酸が正常型鋳型核酸と変異型鋳型核酸とを含み且つ変異型鋳型核酸が低含有量であっても、正常型鋳型核酸に対するプライマー(Xwt)による増幅効率よりも、変異型鋳型核酸に対するプライマー(Xmt)による増幅効率が高いため、低含有量の変異型鋳型核酸を効率よく増幅できる。このため、低含有量の変異型鋳型核酸であっても、例えば、後述するTm解析において検出可能な程度の増幅産物が得られ、変異型鋳型核酸の検出が可能となる。なお、本発明によれば、例えば、前記鋳型核酸における変異型鋳型核酸の含有量が約0.1%程度であっても、後述するTm解析において検出可能な増幅産物が得られる。
 また、前記鋳型核酸が変異型鋳型核酸のみの場合、または正常型鋳型核酸のみの場合は、変異型プライマー(Xmt)または正常型プライマー(Xwt)によって、それぞれ増幅可能である。このため、前述のように、変異型鋳型核酸と正常型鋳型核酸との両者が含まれる場合だけでなく、いずれか一方の鋳型核酸であっても、後述するTm解析によって検出可能である。なお、前記鋳型核酸が正常型鋳型核酸のみの場合、例えば、正常型プライマーだけでなく、変異型プライマーが鋳型核酸にアニーリングして伸長する可能性がある。しかしながら、本実施形態において、変異型プライマー(Xmt)は、「変異型」鋳型核酸に対する増幅効率を、正常型プライマー(Xwt)の「正常型」鋳型核酸に対する増幅効率よりも高く設定している。このため、変異型プライマー(Xmt)の「正常型」鋳型核酸に対する増幅効率は、例えば、正常型プライマー(Xwt)の「正常型」鋳型核酸に対する増幅効率よりも、さらに低くなり、正常型鋳型核酸に対しては、正常型プライマーの方が、各段に優れる増幅効率を示すこととなる。したがって、たとえ誤って変異型プライマーによる増幅が生じたとしても、その増幅効率の点から、例えば、後述するTm解析で十分な検出感度を得られる程度にまで増幅することは困難である。この結果、例えば、Tm解析において、誤った増幅に起因する擬陽性の問題も防止可能である。
 変異型プライマー(Xmt)および正常型プライマー(Xwt)は、特に制限されず、前述の関係を満たすものが好ましく使用できる。このような関係は、例えば、変異型鋳型核酸に対する変異型プライマー(Xmt)の親和性、つまり、アニーリングのし易さを、正常型鋳型核酸に対する正常型プライマー(Xwt)の親和性よりも高くすることで実現できる。また、例えば、変異型鋳型核酸にアニーリングした変異型プライマー(Xmt)の伸長反応を、正常型鋳型核酸にアニーリングした正常型プライマー(Xmt)の伸長反応よりも起こり易くすることで実現できる。
 前記プライマーの親和性の調節方法は、特に制限されず、例えば、Tm値の設定により行うことができる。本実施形態においては、例えば、相補配列に対する変異型プライマー(Xmt)のTm値が、相補配列に対する正常型プライマー(Xwt)のTm値よりも相対的に高い値であることが好ましい。このように、変異型プライマー(Xmt)のTm値を、正常型プライマー(Xwt)よりも高く設定することで、前記鋳型核酸に対する変異型プライマー(Xmt)の結合性を、正常型プライマー(Xwt)よりも向上できるため、変異型プライマー(Xmt)による増幅効率を向上できる。変異型プライマー(Xmt)のTm値と正常型プライマー(Xwt)のTm値との差は、特に制限されないが、例えば、0を超え20℃以下が好ましく、より好ましくは0を超え10℃以下であり、特に好ましくは0を超え5℃以下である。ここでいうプライマー設計におけるTm値とは、例えば、正常型プライマーとそれに100%相補的な塩基配列とのハイブリッド形成体についてのTm値、変異型プライマーとそれに100%相補的な塩基配列とのハイブリッド形成体についてのTm値を意味する。
 変異型プライマー(Xmt)のTm値および正常型プライマー(Xwt)のTm値の設定方法は、特に制限されないが、例えば、各プライマーの長さ、およびGC含量等によって調節できる。長さにより調節する場合、一般的に、プライマーが相対的に長い程、Tm値を相対的に高く設定できる。本実施形態の場合、例えば、変異型プライマー(Xmt)の長さを、正常型プライマー(Xwt)よりも長く設定することが好ましい。これによって、変異型プライマー(Xmt)のTm値を、正常型プライマー(Xwt)のTm値よりも相対的に高い値に設定できる。また、GC含量によって調節する場合、例えば、GC含量が相対的に高い程、Tm値を相対的に高く設定できる。本実施形態の場合、例えば、変異型プライマー(Xmt)のGC含量を、正常型プライマー(Xwt)よりも高く設定することが好ましい。また、プライマーの長さとGC含量との両方によって、Tm値を設定することもできる。これらの他にも、例えば、RNAアナログであるLNA、ペプチド核酸であるPNA、架橋化核酸であるBNA等を含む配列にすることで、例えば、これらを含まない配列よりも、Tm値を相対的に高く設定できる。
 変異型プライマー(Xmt)を正常型プライマー(Xwt)よりも長く設定する場合、両者の長さの差は、特に制限されないが、例えば、0を超え20塩基以下であり、好ましくは0を超え10塩基以下であり、より好ましくは0を超え5塩基以下である。
 また、プライマーからの伸長反応の反応性は、例えば、調節可能であり、その方法は、特に制限されず、従来公知の方法によって行える。具体例としては、例えば、変異型プライマー(Xmt)の5’領域に、蛍光物質およびビオチン等の物質、または、付加配列を付加する方法等があげられる。これらの方法は、例えば、特開2004-337124号公報等の記載に基づいて行うことができる。
 変異型プライマー(Xmt)は、その3’領域に、前記検出目的の塩基部位の塩基(変異型塩基)に対して相補的な塩基が存在すればよいが、例えば、3’末端の1番目または2番目の塩基が、前記変異型塩基に対して相補的な塩基であることが好ましい。具体例としては、例えば、鋳型核酸の配列を「5’-・・・actt・・・-3’」、変異型塩基を下線部「」と想定した場合、変異型プライマー(Xmt)は、3’末端の1番目の塩基が変異型塩基(G)の相補塩基()である配列「5’-・・・aa-3’」に設計することができる。また、前記変異型プライマー(Xmt)は、例えば、3’末端の2番目の塩基が変異型塩基(G)の相補塩基()である配列「5’-・・・aag-3’」に設計してもよい。3’末端の1番目の塩基とは、3’末端の塩基であり、3’末端の2番目の塩基とは、3’末端の塩基を1番目として、5’方向に向って2番目の塩基を意味する(以下、同様)。
 前者の場合、前記3’末端の1番目の塩基を変異型塩基に相補的な塩基とし、さらに、前記3’末端の2番目から5’末端までの少なくとも1つの塩基を、前記鋳型核酸に対してミスマッチとなる塩基(ミスマッチ塩基)に設定することが好ましい。中でも、前記3’末端の2番目および3番目のうち少なくとも1つの塩基を、前記ミスマッチ塩基に設定することが好ましく、前記3’末端の2番目の塩基をミスマッチ塩基に設定することがより好ましい。具体例としては、例えば、鋳型核酸における配列を、前述と同様に、「5’-・・・acGtt・・・-3’」、変異型塩基を下線部「」と想定した場合、変異型プライマー(Xmt)は、3’末端の1番目の塩基を変異型塩基(G)の相補塩基()、2番目の塩基を鋳型核酸の塩基()に対して相補的な塩基(a)ではなく、ミスマッチ塩基()とする配列「5’-・・・atC-3’」に設計してもよい。また、後者の場合、前記3’末端の2番目の塩基を変異型塩基に相補的な塩基とし、さらに、前記3’末端の1番目、および/または3番目から5’末端までの少なくとも1つの塩基を、前記鋳型核酸に対してミスマッチとなる塩基(ミスマッチ塩基)に設定することが好ましい。中でも、前記3’末端の1番目および3番目のうち少なくとも1つの塩基を、前記ミスマッチ塩基に設定することが好ましく、前記3’末端の3番目の塩基をミスマッチ塩基に設定することがより好ましい。具体例としては、例えば、鋳型核酸における配列を、前述と同様に、「5’-・・・actt・・・-3’」、変異型塩基を下線部「」と想定した場合、変異型プライマー(Xmt)は、3’末端の2番目の塩基を変異型塩基(G)の相補塩基()、3番目の塩基を鋳型核酸の塩基(t)に対して相補的な塩基(a)ではなくミスマッチ塩基()とする配列「5’-・・・atCg-3’」に設計してもよい。このように、変異型プライマーに、ミスマッチ塩基を入れることで、変異型プライマー(Xmt)の変異型鋳型核酸に対する特異性をさらに向上できる。
 正常型プライマー(Xwt)は、その3’領域に、前記検出目的の塩基部位の塩基(正常型塩基)に対して相補的な塩基が存在すればよいが、例えば、3’末端の1番目または2番目の塩基が、前記正常型塩基に対して相補的な塩基であることが好ましい。具体例としては、例えば、鋳型核酸の配列を「5’-・・・actt・・・-3’」、正常型塩基を下線部「」と想定した場合、正常型プライマー(Xwt)は、3’末端の1番目の塩基が正常型塩基(A)の相補塩基()である配列「5’-・・・aa-3’」に設計することができる。また、前記正常型プライマー(Xwt)は、3’末端から2番目の塩基が正常型塩基(A)の相補塩基()である配列「5’-・・・aag-3’」に設計してもよい。
 前者の場合、前記3’末端の1番目の塩基を正常型塩基に相補的な塩基とし、さらに、前記3’末端の2番目から5’末端までの少なくとも1つの塩基を、前記鋳型核酸に対してミスマッチとなる塩基(ミスマッチ塩基)に設定することが好ましい。中でも、前記3’末端の2番目および3番目のうち少なくとも1つの塩基を、前記ミスマッチ塩基に設定することが好ましく、前記3’末端の2番目の塩基をミスマッチ塩基に設定することがより好ましい。具体例としては、例えば、鋳型核酸における配列を、前述と同様に、「5’-・・・acAtt・・・-3’」、正常型塩基を下線部「」と想定した場合、正常型プライマー(Xwt)は、3’末端の1番目の塩基を正常型塩基()の相補塩基()、2番目の塩基を鋳型核酸の塩基()に対して相補的な塩基(a)ではなく、ミスマッチ塩基()とする配列「5’-・・・atA-3’」に設計してもよい。また、後者の場合、前記3’末端の2番目の塩基を正常型塩基に相補的な塩基とし、さらに、前記3’末端の1番目、および/または3番目から5’末端までの少なくとも1つの塩基を、前記鋳型核酸に対してミスマッチとなる塩基(ミスマッチ塩基)に設定することが好ましい。中でも、前記3’末端の1番目および3番目のうち少なくとも1つの塩基を、前記ミスマッチ塩基に設定することが好ましく、より好ましくは前記3’末端の3番目の塩基をミスマッチ塩基に設定することが好ましい。具体例としては、例えば、鋳型核酸における配列を、前述と同様に、「5’-・・・actt・・・-3’」、正常型塩基を下線部「」と想定した場合、正常型プライマー(Xwt)は、3’末端の2番目の塩基を正常型塩基(A)の相補塩基()、3番目の塩基を鋳型核酸の塩基(t)に対して相補的な塩基(a)ではなくミスマッチ塩基()とする配列「5’-・・・atAg-3’」に設計してもよい。このように、正常型プライマーに、ミスマッチ塩基を入れることで、正常型プライマー(Xwt)の正常型鋳型核酸に対する特異性をさらに向上できる。
 変異型プライマー(Xmt)および正常型プライマー(Xwt)の長さは、特に制限されず、一般的な長さとして、例えば、10~50塩基があげられ、好ましくは、15~40塩基、さらに好ましくは、16~35塩基があげられる。
 本発明の前記増幅工程において、変異型プライマー(Xmt)および正常型プライマー(Xwt)とあわせて、前述のように、下記プライマー(Y2)を使用することが好ましい。
プライマー(Y2)
前記鋳型核酸における前記塩基部位よりも5’側の領域に対する相補配列に相補的なプライマー
 プライマー(Y2)は、例えば、変異型プライマー(Xmt)および正常型プライマー(Xwt)がアニーリング可能な鋳型核酸の相補鎖に対して、相補的なプライマーである(図6参照)。このため、例えば、変異型プライマー(Xmt)とプライマー(Y2)、正常型プライマー(Xwt)とプライマー(Y2)は、それぞれ対のプライマーとして、鋳型核酸とその相補鎖とを増幅できる。そして、このプライマー(Y2)は、検出目的の前記塩基部位とは異なる領域にアニーリングするプライマーであるため、前記塩基部位が変異型であるか正常型であるかに関わらず、標的核酸配列を増幅できる。前述のように、変異型プライマー(Xmt)が正常型塩基にアニーリングして増幅が起こった場合、または、正常型プライマー(Xwt)が変異型塩基にアニーリングして増幅が起こった場合、それぞれ、得られる増幅産物は、各プライマーに依存した配列となる。しかしながら、プライマー(Y2)を共存させることで、鋳型核酸の本来の配列を維持した増幅産物をあわせて得ることができる。これによって、より一層、変異検出の信頼性を向上することができる。
 プライマー(Y2)の長さは、特に制限されないが、通常、10~50塩基であることが好ましく、より好ましくは15~40塩基であり、特に好ましくは16~35塩基である。また、プライマー(Y2)は、前記鋳型核酸における前記塩基部位よりも5’側の領域に対する相補配列にアニーリングできればよく、その配列は特に制限されず、従来公知の一般的なプライマーの設計方法に従って設計できる。
 前記鋳型核酸は、前述のように、一本鎖でもよいし、二本鎖でもよい。前記鋳型核酸としては、例えば、DNA、および、トータルRNA、mRNA等のRNA等があげられる。また、前記鋳型核酸は、例えば、生体試料等の試料に含まれる核酸があげられる。前記試料中の核酸は、例えば、生体試料中に元来含まれている核酸でもよいが、例えば、変異検出の精度を向上できることから、前記生体試料中の核酸を鋳型として核酸増幅法により増幅させた増幅産物等があげられる。具体例としては、例えば、前記生体試料に元来含まれているDNAを鋳型として、核酸増幅法により増幅させた増幅産物や、前記生体試料に元来含まれているRNAから逆転写-PCR反応(RT-PCR:Reverse Transcription PCR)により生成させたcDNAを鋳型として、核酸増幅法により増幅させた増幅産物があげられる。これらの増幅産物を、本発明における鋳型核酸としてもよい。前記増幅産物の長さは、特に制限されないが、例えば、50~1000塩基であり、好ましくは80~200塩基である。
 本発明の増幅工程において、同一の反応系での増幅とは、例えば、一つの反応液内で標的核酸配列を増幅させることがあげられる。
 本発明の増幅工程においては、試料中の核酸を鋳型として、増幅反応を行うことが好ましい。前記試料としては、鋳型となる核酸を含む試料であればよく、特に制限されないが、例えば、生体試料由来の核酸を含む試料があげられる。前記生体試料としては、例えば、全血、口腔粘膜等の口腔内細胞、爪および毛髪等の体細胞、生殖細胞、喀痰、羊水、パラフィン包埋組織、尿、胃液、胃洗浄液等、ならびに、それらの懸濁液等があげられる。また、前述のように、生体試料由来の核酸を鋳型として核酸増幅法を行った反応液を、本発明における核酸試料とし、前記反応液に含まれる増幅産物を鋳型核酸としてもよい。
 また、本発明の標的核酸配列の増幅方法を後述する本発明の変異検出方法に適用する場合、前記試料は、特に制限されないが、例えば、目的の塩基部位が変異型および正常型のいずれを示すか不明である核酸を含む試料、変異型を有する核酸と正常型を有する核酸とを含む試料、これらを含む可能性のある試料等に対して、非常に有用である。前記DNAやRNA等の核酸の由来は、制限されず、例えば、各種癌細胞等の細胞、ウィルス、ミトコンドリア等があげられる。このように癌化した血液細胞等の細胞には、変異型が発生した核酸を有する細胞と、正常型を示す核酸を有する細胞とが含まれるため、前述のような問題が起こり易い。したがって、本発明の変異検出方法は、特に、変異型を示す核酸と正常型を示す核酸とを有する試料への適用が好ましく、例えば、白血病等の各種癌細胞等の生体試料、具体例としては、血液試料および白血球細胞等に適用することが好ましい。なお、本発明において、試料の採取方法、核酸の調製方法等は、制限されず、従来公知の方法が採用できる。
 前述のような生体試料由来の核酸は、例えば、従来公知の方法によって、生体試料から単離できる。全血からのゲノムDNAの単離は、例えば、市販のゲノムDNA単離キット(商品名GFX Genomic Blood DNA Purification kit;GEヘルスケアバイオサイエンス社製)等が使用できる。
 本発明の標的核酸配列の増幅方法は、前記増幅工程において、前述のプライマーを使用する点が特徴であり、その他の工程や条件等は何ら制限されない。前記増幅工程における核酸増幅法は、特に制限されず、例えば、PCR(Polymerase Chain Reaction)法、NASBA(Nucleic acid sequence based amplification)法、TMA(Transcription-mediated amplification)法、SDA(Strand Displacement Amplification)法等があげられ、中でも、PCR法が好ましい。なお、核酸増幅法の条件は、特に制限されず、従来公知の方法により行うことができる。
 前記増幅工程において、増幅反応の反応系(例えば、反応液)における核酸試料の添加割合は、特に制限されない。具体例として、前記核酸試料が生体試料(例えば、全血試料)の場合、前記反応系における添加割合の下限が、例えば、0.01体積%以上であることが好ましく、より好ましくは0.05体積%以上、さらに好ましくは0.1体積%以上である。また、前記添加割合の上限も、特に制限されないが、例えば、2体積%以下が好ましく、より好ましくは1体積%以下、さらに好ましくは0.5体積%以下である。
 また、後述する変異の検出において、例えば、標識化プローブを用いた光学的検出を行う場合、前記反応系における全血試料等の生体試料の添加割合は、例えば、0.1~0.5体積%に設定することが好ましい。PCR反応においては、通常、DNA変性(一本鎖DNAへの解離)のために熱処理が施されるが、この熱処理によって、試料に含まれる糖やタンパク質等が変性し、不溶化の沈殿物または濁り等が発生するおそれがある。このため、変異の有無を光学的手法により確認する場合、このような沈殿物または濁りの発生が、測定精度に影響を及ぼす可能性がある。しかしながら、反応系における全血試料の添加割合を前述の範囲に設定すれば、メカニズムは不明であるが、例えば、変性による沈殿物等の発生による影響を十分に防止できるため、光学的手法による測定精度を向上できる。また、全血試料中の夾雑物によるPCRの阻害も十分に抑制されるため、増幅効率をより一層向上できる。したがって、全血試料等の生体試料の添加割合を前述の範囲に設定することによって、例えば、沈澱物または濁りの発生を防止したり除去するための、前記試料の前処理の必要性を排除できる。
 また、前記反応系中の全血試料の割合は、前述のような体積割合(例えば、0.1~0.5体積%)ではなく、ヘモグロビン(以下、「Hb」という)の重量割合で表すこともできる。この場合、前記反応系における全血試料の割合は、Hb量に換算して、例えば、0.565~113g/Lの範囲が好ましく、より好ましくは2.825~56.5g/Lの範囲、さらに好ましくは5.65~28.25μg/Lの範囲である。なお、前記反応系における全血試料の添加割合は、例えば、前記体積割合とHb重量割合との両方を満たしてもよいし、いずれか一方を満たしてもよい。全血としては、例えば、溶血した全血、未溶血の全血、抗凝固全血、凝固画分を含む全血等のいずれであってもよい。
 前記増幅工程における増幅反応の開始に先立ち、前記反応系にさらにアルブミンを添加することが好ましい。このようなアルブミンの添加によって、例えば、前述のような沈殿物または濁りの発生による影響を、より一層低減でき、且つ、増幅効率もさらに向上することができる。
 前記反応系におけるアルブミンの添加割合は、例えば、0.01~2重量%の範囲であり、好ましくは0.1~1重量%であり、より好ましくは0.2~0.8重量%である。前記アルブミンとしては、特に制限されず、例えば、ウシ血清アルブミン(BSA)、ヒト血清アルブミン、ラット血清アルブミン、ウマ血清アルブミン等があげられ、これらはいずれか1種類でもよいし2種類以上を併用してもよい。
 つぎに、本発明の標的核酸配列の増幅方法に関し、前記増幅工程における増幅法としてPCR法を例にあげて、本発明を説明する。なお、本発明は、これには制限されない。また、PCRの条件は、特に制限されず、従来公知の方法により行うことができる。
 まず、鋳型核酸と前述の各種プライマーとを含むPCR反応液を調製する。前記PCR反応液における各種プライマーの添加割合は、特に制限されないが、変異型プライマー(Xmt)は、例えば、0.01~10μmol/Lとなるように添加することが好ましく、より好ましくは0.05~5μmol/Lであり、特に好ましくは0.1~1μmol/Lである。正常型プライマー(Xwt)は、例えば、0.01~10μmol/Lとなるように添加することが好ましく、より好ましくは0.05~5μmol/Lであり、特に好ましくは0.1~0.5μmol/Lである。変異型プライマー(Xmt)と正常型プライマー(Xwt)とのモル比(Xmt:Xwt)は、例えば、1:0.001~1:10であることが好ましく、より好ましくは、1:0.01~1:2であり、特に好ましくは、1:0.1~1:1である。
 また、変異型プライマー(Xmt)と正常型プライマー(Xwt)とに加えてプライマー(Y2)を併用する場合、プライマー(Y2)は、例えば、0.01~10μmol/Lとなるように添加することが好ましく、より好ましくは0.05~5μmol/Lであり、特に好ましくは0.1~1μmol/Lである。変異型プライマー(Xmt)とプライマー(Y2)とのモル比(Xmt:Y2)は、例えば、1:0.001~1:10であることが好ましく、より好ましくは、1:0.01~1:2であり、特に好ましくは、1:0.1~1:1である。
 前記反応液における他の組成成分は、特に制限されず、従来公知の成分があげられ、その割合も特に制限されない。前記組成成分としては、例えば、DNAポリメラーゼ、ヌクレオシド三リン酸(dNTP)等のヌクレオチドおよび溶媒等があげられる。前記反応液において、各組成成分の添加順序は何ら制限されない。
 前記DNAポリメラーゼとしては、特に制限されず、例えば、従来公知の耐熱性細菌由来のポリメラーゼが使用できる。具体例としては、テルムス・アクアティカス(Thermus aquaticus)由来DNAポリメラーゼ(米国特許第4,889,818号および同第5079,352号)(商品名Taqポリメラーゼ)、テルムス・テルモフィラス(Thermus thermophilus)由来DNAポリメラーゼ(WO 91/09950)(rTth DNA polymerase)、ピロコッカス・フリオサス(Pyrococcus furiosus)由来DNAポリメラーゼ(WO 92/9689)(Pfu DNA polymerase:Stratagene社製)、テルモコッカス・リトラリス(Thermococcus litoralis)由来DNAポリメラーゼ(EP0455430)(商標Vent:New England Biolabs社製)等が商業的に入手可能であり、中でも、テルムス・アクアティカス(Thermus aquaticus)由来の耐熱性DNAポリメラーゼが好ましい。
 前記反応液中のDNAポリメラーゼの添加割合は、特に制限されないが、例えば、1~100U/mLであり、好ましくは5~50U/mLであり、より好ましくは20~30U/mLである。なお、DNAポリメラーゼの活性単位(U)は、一般に、活性化サケ精子DNAを鋳型プライマーとして、活性測定用反応液中、74℃で、30分間に10nmolの全ヌクレオチドを酸不溶性沈殿物に取り込む活性が1Uである。前記活性測定用反応液の組成は、例えば、25mmol/L TAPS buffer(pH9.3、25℃)、50mmol/L KCl、2mmol/L MgCl、1mmol/Lメルカプトエタノール、200μmol/L dATP、200μmol/L dGTP、200μmol/L dTTP、100μmol/L [α-32P]dCTP、0.25mg/mL活性化サケ精子DNAである。
 前記ヌクレオシド三リン酸としては、通常、dNTP(例えば、dATP、dGTP、dCTP、dTTPおよびdUTP等)があげられる。前記反応液中のdNTPの添加割合は、特に制限されないが、例えば、0.01~1mmol/Lであり、好ましくは0.05~0.5mmol/Lであり、より好ましくは0.1~0.3mmol/Lである。
 前記溶媒としては、例えば、Tris-HCl、Tricine、MES、MOPS、HEPES、CAPS等の緩衝液があげられ、市販のPCR用緩衝液や市販のPCRキットの緩衝液等が使用できる。
 また、前記PCR反応液は、さらに、グリセロ-ル、ヘパリン、ベタイン、KCl、MgCl、MgSO、グリセロール等を含んでもよく、これらの添加割合は、例えば、PCR反応を阻害しない範囲で設定すればよい。
 反応液の全体積は、特に制限されず、例えば、使用する機器(サーマルサイクラー)等に応じて適宜決定できるが、通常、1~500μLであり、好ましくは10~100μLである。
 つぎに、PCRを行う。PCRは、例えば、(1)二本鎖核酸の一本鎖核酸への解離、(2)プライマーのアニーリング、(3)プライマーの伸長(ポリメラーゼ反応)の3つの工程を含む。各工程の条件は、特に制限されないが、前記(1)工程は、例えば、90~99℃、1~120秒が好ましく、より好ましくは、92~95℃、1~60秒であり、前記(2)工程は、例えば、40~70℃、1~300秒が好ましく、より好ましくは、50~70℃、5~60秒であり、前記(3)工程は、例えば、50~80℃、1~300秒が好ましく、より好ましくは、50~75℃、5~60秒である。また、サイクル数も特に制限されず、前記(1)~(3)の3工程を1サイクルとして、例えば、30サイクル以上が好ましい。上限は特に制限されないが、例えば、合計100サイクル以下、好ましくは70サイクル以下、さらに好ましくは50サイクル以下である。各ステップの温度変化は、例えば、サーマルサイクラー等を用いて自動的に制御すればよい。
 以上のようにして、検出目的の塩基部位を含む標的核酸配列を製造することができる。なお、本発明においては、1つの反応液において同時に二種類以上の標的核酸配列を増幅することもできる。この場合は、目的の標的核酸配列ごとに、前述の変異型プライマー(Xmt)および正常型プライマー(Xwt)、任意でプライマー(Y2)を準備し、これらの共存下で前述のような増幅反応を行えばよい。
 本発明の標的核酸配列の増幅方法は、さらに、前述の増幅反応によって得られた増幅産物を検出する工程を含んでもよい。これによって、例えば、前記標的核酸配列における目的の塩基部位の変異の有無を検出することができる。前記変異の検出は、例えば、後述するようなTm解析によって確認できる。具体的には、例えば、前記増幅工程における前記増幅反応の反応系に、さらに、検出目的の前記塩基部位を含む配列(以下、「検出目的配列」ともいう)にハイブリダイズ可能なプローブを添加する。そして、前記反応系の温度を変化させ、増幅産物と前記プローブとのハイブリッド形成体の融解状態を示すシグナル値を測定することによって、温度変化に伴う前記シグナル値の変動から、変異の有無を確認できる。前記プローブの添加のタイミングは、特に制限されず、例えば、前記増幅反応前、増幅反応途中および増幅反応後のいずれの段階で前記反応系に添加してもよいが、中でも、増幅反応前であることが好ましい。なお、変異の検出に関しては、具体的に、後述する本発明の変異検出方法において説明する。また、前記プローブ等に関しても後述のとおりである。
(第2の実施形態)
 本発明の第2の増幅方法としては、例えば、前記プライマー(Xmt)およびプライマー(Y1)を含む前記第2の増幅試薬を使用する形態があげられる。具体的には、前記増幅工程が、同一の反応系において、前記プライマー(Xmt)およびプライマー(Y1)を用いて前記標的核酸配列を増幅する工程である形態があげられる。
プライマー(Y1)
前記鋳型核酸における前記塩基部位よりも3’側の領域に相補的なプライマー
 本実施形態におけるプライマー(Xmt)は、第1の実施形態と同様である。また、本実施形態は、特に示さない限り、前述の第1の実施形態と同様に行うことができる。鋳型核酸は、前述のように一本鎖でも二本鎖でもよい。前記鋳型核酸が二本鎖の場合、例えば、前記二本鎖を構成するいずれか一方の一本鎖に対して、変異型プライマー(Xmt)およびプライマー(Y1)を相補的に設計することが好ましい。また、他方の一本鎖に対しては、例えば、前述のプライマー(Y2)を相補的に設計することが好ましい。鋳型核酸とプライマーとの関係の一例を、図7の模式図に示す。図7において、(+)および(-)は、それぞれ、二本鎖の鋳型核酸を構成する一本鎖であり、斜線部分が、検出目的の塩基部位を示す。同図に示すように、変異型プライマー(Xmt)およびプライマー(Y1)は、ともに、(+)鎖に相補的なプライマーとして設計される。この場合、前記プライマー(Y2)は、(-)鎖に相補的なプライマーとして設計されることが好ましい。なお、図7は、あくまでも一例を示す模式図であり、例えば、各プライマーの長さや、鋳型核酸におけるアニーリング領域等を制限するものではなく、プライマー(Y2)も任意である。また、変異型プライマー(Xmt)およびプライマー(Y1)が、ともに、(-)鎖に相補的なプライマーとして設計され、前記プライマー(Y2)が、(+)鎖に相補的なプライマーとして設計されてもよい。
 本実施形態によれば、変異型プライマー(Xmt)およびプライマー(Y1)を使用することで、例えば、以下のようなことが可能となる。すなわち、鋳型核酸が正常型鋳型核酸と変異型鋳型核酸とを含み且つ前記変異型鋳型核酸が低含有量であっても、変異型プライマー(Xmt)は、正常型鋳型核酸よりも変異型鋳型核酸への親和性が高いことから、低含有量の変異型鋳型核酸を効率よく増幅できる。他方、プライマー(Y1)は、検出目的の前記塩基部位とは異なる領域にアニーリングするプライマーであるため、前記塩基部位が変異型であるか正常型であるかに関わらず、標的核酸配列を増幅できる。したがって、プライマー(Y1)によっても、さらに、変異型鋳型核酸が増幅されることとなる。このため、低含有量の変異型鋳型核酸であっても、例えば、後述するTm解析において検出可能な程度の増幅産物が得られ、変異型鋳型核酸の検出が可能となる。また、プライマー(Y1)によって、正常型鋳型核酸も増幅され、Tm解析により正常型を検出可能である。また、鋳型核酸が変異型鋳型核酸のみの場合も、同様に、変異型プライマー(Xmt)とプライマー(Y1)によって、増幅が可能である。さらに、鋳型核酸が正常型鋳型核酸のみであっても、このプライマー(Y1)によって、前記検出目的の塩基部位が正常型塩基である標的核酸配列が増幅できることから、正常型鋳型核酸についても、後述するTm解析によって、正常型の解析が可能である。
 また、プライマー(Y1)を使用すれば、鋳型核酸の本来の配列を維持した増幅産物を得ることが可能となる。すなわち、例えば、変異型プライマー(Xmt)が正常型鋳型核酸にアニーリングして増幅が起こった場合、得られる増幅産物は、変異型プライマー(Xmt)に依存した配列となる。しかしながら、プライマー(Y1)を共存させることで、鋳型核酸の本来の配列を維持した増幅産物をあわせて得ることができる。これによって、誤って得られた増幅産物のみが増加することを防止することができ、変異検出の信頼性を向上できる。
 前記プライマー(Y1)の長さは、特に制限されないが、通常、10~50塩基であることが好ましく、より好ましくは15~40塩基であり、特に好ましくは16~35塩基である。また、前記プライマー(Y1)は、前記鋳型核酸における前記塩基部位よりも3’側の領域にアニーリングできればよく、その配列は特に制限されず、従来公知の一般的なプライマーの設計方法に従って設計できる。
 増幅反応の反応液における各種プライマーの添加割合は、特に制限されないが、変異型プライマー(Xmt)は、例えば、0.01~10μmol/Lとなるように添加することが好ましく、より好ましくは0.05~5μmol/Lであり、特に好ましくは0.1~1μmol/Lである。プライマー(Y1)は、例えば、0.01~10μmol/Lとなるように添加することが好ましく、より好ましくは0.05~5μmol/Lであり、特に好ましくは0.1~1μmol/Lである。変異型プライマー(Xmt)およびプライマー(Y1)とのモル比(Xmt:Y1)は、例えば、1:0.001~1:10であることが好ましく、より好ましくは、1:0.01~1:2であり、特に好ましくは、1:0.1~1:1である。また、第1の実施形態と同様に、さらに、対となるプライマー(Y2)を併用することが好ましい。
(第3の実施形態)
 本発明の第3の増幅方法としては、例えば、前記増幅工程が、前記反応系において、下記プライマー(Xmt)および3’→5’エキソヌクレアーゼを用いて前記標的核酸配列を増幅する工程である形態があげられる。
 本実施形態におけるプライマー(Xmt)は、第1の実施形態と同様であり、また、特に示さない限り、本実施形態は、前述の各実施形態と同様に行うことができる。
 本実施形態によれば、3’→5’エキソヌクレアーゼの存在下で、変異型プライマー(Xmt)を用いた増幅反応を行うことで、例えば、以下のようなことが可能となる。すなわち、鋳型核酸が正常型鋳型核酸と変異型鋳型核酸とを含む場合、変異型鋳型核酸だけでなく正常型鋳型核酸にも変異型プライマー(Xmt)がアニーリングして、伸長鎖が合成されることが考えられる。しかしながら、変異型プライマー(Xmt)は、正常型鋳型核酸ではなく、変異型鋳型核酸に相補的なプライマーであることから、たとえ、正常型鋳型核酸にアニーリングしたとしても、少なくとも検出目的の塩基部位でミスマッチが生じることから、変異型鋳型核酸に対する伸長反応よりも、反応性が劣る。このため、正常型鋳型核酸と変異型鋳型核酸とが共存する場合でも、変異型鋳型核酸を優先的に増幅することが可能となる。一方、正常型鋳型核酸にアニーリングした変異型プライマー(Xmt)は、その3’領域(すなわち変異型塩基の対応塩基を含む領域)が正常型鋳型核酸に対してミスマッチであることから、前記領域に関しては、アニーリングせずに一本鎖の状態となっている。この一本鎖の領域が、3’→5’エキソヌクレアーゼによって切断されることにより、正常鋳型配列に相補的な配列が増幅されることとなる。これにより得られた増幅産物は、正常型の標的核酸配列であることから、鋳型核酸に正常型が含まれる場合には、変異型プライマー(Xmt)からの増幅産物によって、正常型についても検出が可能となる。
 増幅反応の反応液における変異型プライマー(Xmt)の添加割合は、特に制限されないが、例えば、0.001~10μmol/Lとなるように添加することが好ましく、より好ましくは0.01~5μmol/Lであり、特に好ましくは0.1~1μmol/Lである。また、3’→5’エキソヌクレアーゼとしては、特に制限されないが、例えば、増幅反応に用いるポリメラーゼが、この触媒反応を備えていることが好ましい。3’→5’エキソヌクレアーゼ活性を有するポリメラーゼとしては、例えば、Pfuポリメラーゼ、Tliポリメラーゼ、KODポリメラーゼ、Ventポリメラーゼ、Tgoポリメラーゼ等があげられる。また、第1の実施形態または第2の実施形態と同様に、さらに、前述したプライマー(Y1)、プライマー(Y2)およびプライマー(Xwt)のうちいずれか一種類または二種類以上を併用してもよい。
<増幅試薬>
 本発明の増幅試薬は、本発明の標的核酸配列の増幅方法に使用する増幅試薬である。本発明の第1の増幅試薬は、プライマー(Xmt)およびプライマー(Xwt)を含むことを特徴とし、第2の増幅試薬は、プライマー(Xmt)およびプライマー(Y1)を含むことを特徴とする。
 本発明の第1の増幅試薬は、例えば、本発明の標的核酸配列の増幅方法における第1の実施形態に使用でき、本発明の第2の増幅試薬は、例えば、本発明の標的核酸配列の増幅方法における第2の実施形態に使用できる。また、本発明の第1および第2の増幅試薬は、さらに、プライマー(Y2)を含むことが好ましい。なお、本発明において、各プライマーは、前述の通りである。
 本発明の第3の増幅試薬は、プライマー(Xmt)および3’→5’エキソヌクレアーゼを含むことを特徴とする。本発明の第3の増幅試薬は、例えば、本発明の標的核酸配列の増幅方法における第3の実施形態に使用できる。本発明の第3の増幅試薬は、さらに、プライマー(Y1)、プライマー(Y2)およびプライマー(Xwt)のうち、いずれか一種類または二種類以下を含んでもよい。
 本発明の増幅試薬において、前記各プライマーは、前述と同様である。本発明の増幅試薬は、例えば、本発明の標的核酸配列の増幅方法において記載した、増幅反応に使用する各種成分をさらに含んでもよい。本発明の増幅試薬は、一つの反応系内で使用することが好ましい。また、本発明の増幅試薬は、本発明の標的核酸配列の増幅方法に使用する増幅キットであってもよく、各成分は、それぞれ別個の容器に含まれてもよいし、適宜組み合せて、同一の容器に含まれてもよい。前記増幅キットは、例えば、使用説明書を含むことが好ましい。
<変異検出方法>
 本発明の変異の検出方法は、前述のように、鋳型核酸における検出目的の塩基部位の変異の有無を検出する方法であって、下記(a)~(c)工程を含むことを特徴とする。
(a)本発明の標的核酸配列の増幅方法により、前記鋳型核酸における前記塩基部位を含む標的核酸配列を反応系で増幅させる工程
(b)前記鋳型核酸における前記塩基部位を含む配列にハイブリダイズ可能なプローブの存在下、前記(a)工程により得られた増幅産物を含む前記反応系の温度を変化させ、前記増幅産物と前記プローブとのハイブリッド形成体の融解状態を示すシグナル値を測定する工程
(c)温度変化に伴う前記シグナル値の変動から、前記目的の塩基部位の変異の有無を決定する工程
 本発明は、前述の方法によって標的核酸配列を増幅し、且つ、いわゆるTm解析を行うことが特徴であって、その他の工程ならびに条件等は、何ら制限されない。本発明において、「変異」とは、例えば、SNP等があげられる。
 本発明は、核酸を含む試料に適用することが好ましく、前記試料としては、特に制限されず、前述と同様の試料があげられる。また、鋳型核酸の種類も、特に制限されず、前述と同様の核酸があげられる。
 変異を検出するための前記プローブ(以下、「検出用プローブ」ともいう)は、特に制限されず、従来公知の方法によって設定できる。例えば、鋳型核酸が二本鎖の場合、センス鎖の検出目的配列にハイブリダイズするように設計してもよいし(センス鎖の検出用プローブ)、アンチセンス鎖の検出目的配列にハイブリダイズするように設計してもよい(アンチセンス鎖の検出用プローブ)。また、プローブを設計する際、前記検出目的配列における検出目的の塩基部位は、正常型塩基に設定してもよいし、変異型塩基に設定してもよい。すなわち、検出用プローブは、検出目的配列にアニーリングさせた際、前記検出目的配列における検出目的の塩基部位に対応する塩基が、例えば、正常型塩基に相補的であってもよいし、変異型塩基に相補的であってもよい。本発明では、特に、変異型の検出を目的とすることから、例えば、前記プローブにおいて、検出目的の塩基部位に対応する塩基が、変異型塩基に相補的であって、正常型塩基に非相補的であることが好ましい。
 本発明において、前記検出用プローブは、前述のように、前記目的の塩基部位を含む検出目的配列にハイブリダイズ可能な配列であればよい。前記プローブの配列は、特に制限されないが、例えば、ハイブリッド形成の際に、検出目的の塩基部位(目的の変異が発生する部位)と対をなす部位(塩基)を除いて、90%~100%同じ配列であることが好ましく、特に好ましくは100%である。
 前記反応系におけるプローブの添加割合は、特に制限されないが、例えば、前記プローブを10~400nmol/Lの範囲となるように添加することが好ましく、より好ましくは20~200nmol/Lである。また、前記プローブが、蛍光色素等の標識化物質で標識化された標識化プローブである場合、例えば、検出する蛍光強度等のシグナル強度を調節するために、前記標識化プローブと同じ配列である未標識プローブを併用してもよい。この未標識プローブは、例えば、その3’末端にリン酸が付加されてもよい。この場合、前記標識化プローブと前記非標識プローブとのモル比は、例えば、1:10~10:1が好ましい。前記プローブの長さは、特に制限されず、例えば、5~50merであり、好ましくは10~30merである。
 前記プローブは、前記(a)工程の後、すなわち、標的核酸配列の増幅反応を行った後、増幅反応の反応系に添加することもできるが、容易且つ迅速に解析を行えることから、前記(a)工程の増幅反応に先立って、予め、反応系に添加しておくことが好ましい。なお、反応系における各種プライマーの添加割合等は、前述の通りである。このように、増幅反応に先立って前記反応系に前記プローブを添加する場合、例えば、プローブ自体の伸長を予防するために、その3’末端に、さらにリン酸基が付加されてもよいし、前述のような蛍光色素で3’末端を標識化してもよい。
 Tm値について説明する。二本鎖DNAを含む溶液を加熱していくと、260nmにおける吸光度が上昇する。これは、二本鎖DNAにおける両鎖間の水素結合が加熱によってほどけ、一本鎖DNAに解離(DNAの融解)することが原因である。そして、全ての二本鎖DNAが解離して一本鎖DNAになると、その吸光度は加熱開始時の吸光度(二本鎖DNAのみの吸光度)の約1.5倍程度を示し、これによって融解が完了したと判断できる。この現象に基づき、融解温度Tmとは、一般に、吸光度が、吸光度全上昇分の50%に達した時の温度と定義される。
 前記(b)工程において、前記増幅産物と前記プローブとのハイブリッド形成体の融解状態を示すシグナル値の測定は、前述したように、260nmの吸光度測定でもよいが、標識物質のシグナル測定であってもよい。具体的には、前記プローブとして、標識物質で標識化された標識化プローブを使用し、前記標識物質のシグナル測定を行うことが好ましい。前記標識化プローブとしては、例えば、単独でシグナルを示し且つハイブリッド形成によりシグナルを示さない標識化プローブ、または、単独でシグナルを示さず且つハイブリッド形成によりシグナルを示す標識化プローブがあげられる。前者のようなプローブであれば、検出目的配列とハイブリッド(例えば、二本鎖DNA)を形成している際にはシグナルを示さず、加熱によりプローブが遊離するとシグナルを示す。また、後者のプローブであれば、検出目的配列とハイブリッド(例えば、二本鎖DNA)を形成することによってシグナルを示し、加熱によりプローブが遊離するとシグナルが減少(消失)する。したがって、この標識によるシグナルをシグナル特有の条件(吸収波長等)で検出することによって、前記260nmの吸光度測定と同様に、ハイブリッド形成体の融解の進行ならびにTm値の決定等を行うことができる。
 また、前述のように(a)工程においては、同一反応系において同時に、二種類以上の標的核酸配列を増幅することができる。そして、各増幅産物について、それぞれの目的の変異を確認することができる。この場合、目的の変異が発生する塩基部位を含む検出目的配列ごとに、ハイブリダイズするプローブを準備すればよい。前記各プローブとしては、それぞれ異なる条件で検出される異なる標識物質で標識化した標識化プローブを使用することが好ましい。このようなプローブを用いれば、同一反応系であっても、検出条件を変更することによって、各変異をそれぞれ検出することができる。
 前記標識化プローブにおける標識物質の具体例としては、例えば、蛍光色素および蛍光団があげられる。前記標識化プローブの具体例としては、例えば、蛍光色素で標識され、単独で蛍光を示し且つハイブリッド形成により蛍光が減少(例えば、消光)するプローブが好ましい。このような蛍光消光現象(Quenching phenomenon)を利用したプローブは、一般に、蛍光消光プローブと呼ばれる。中でも、前記プローブとしては、オリゴヌクレオチドの3’領域(例えば、3’末端)もしくは5’領域(例えば、5’末端)の塩基が蛍光色素で標識化されていることが好ましく、標識化される前記塩基は、シトシン(C)であることが好ましい。この場合、前記標識化プローブがハイブリダイズする検出目的配列において、前記標識化プローブの末端塩基Cと対をなす塩基もしくは前記対をなす塩基から1~3塩基離れた塩基がグアニン(G)となるように、前記標識化プローブの塩基配列を設計することが好ましい。このようなプローブは、一般的にグアニン消光プローブと呼ばれ、いわゆるQProbe(登録商標)として知られている。このようなグアニン消光プローブが検出目的配列にハイブリダイズすると、蛍光色素で標識化された末端のCが、前記検出目的配列におけるGに近づくことによって、前記蛍光色素の発光が弱くなる(蛍光強度が減少する)という現象を示す。このようなプローブを使用すれば、シグナルの変動により、ハイブリダイズと解離とを容易に確認することができる。また、前記標識物質は、例えば、通常、ヌクレオチドのリン酸基に結合することができる。
 前記蛍光色素としては、特に制限されないが、例えば、フルオレセイン、リン光体、ローダミン、ポリメチン色素誘導体等があげられ、市販の蛍光色素としては、例えば、BODIPY FL(商標、モレキュラー・プローブ社製)、FluorePrime(商品名、アマシャムファルマシア社製)、Fluoredite(商品名、ミリポア社製)、FAM(ABI社製)、Cy3およびCy5(アマシャムファルマシア社製)、TAMRA(モレキュラープローブ社製)等があげられる。複数のプローブに使用する蛍光色素の組み合わせは、例えば、異なる条件で検出できればよく、特に制限されないが、例えば、Pacific Blue(検出波長450~480nm)、TAMRA(検出波長585~700nm)およびBODIPY FL(検出波長515~555nm)の組み合わせ等があげられる。
 次に、本発明の変異検出方法について、PCRにより核酸を増幅し、検出用プローブとして標識化プローブを使用する一例をあげて説明する。なお、本発明は、これには制限されない。
 まず、鋳型核酸を含む試料、前述の本発明における各種プライマー、および、前記検出目的配列にハイブリダイズする標識化プローブを添加した反応液を用いて、前述のようにPCRを行う。前記反応液は、前記各種プライマーおよび標識化プローブの他に、例えば、DNAポリメラーゼ、dNTP、その他の核酸増幅に使用できる種々の添加剤を含んでもよい。
 前記標識化プローブの添加のタイミングは、特に制限されず、例えば、増幅反応前、増幅反応途中および増幅反応後のいずれであってもよいが、前記(a)工程の増幅反応と、前記(b)工程とを連続的に行うことができるため、増幅反応前に添加することが好ましい。
 次に、得られた増幅産物の解離、および、解離により得られた一本鎖DNAと前記標識化プローブとのハイブリダイズを行う。これは、例えば、前記反応液の温度を変化させることで行うことができる。
 前記解離工程における加熱温度は、前記増幅産物が解離できる温度であれば特に制限されないが、例えば、85~95℃である。加熱時間も特に制限されないが、通常、1秒~10分であり、好ましくは1秒~5分である。
 解離した一本鎖DNAと前記標識化プローブとのハイブリダイズは、例えば、前記解離工程の後、前記解離工程における加熱温度を降下させることによって行うことができる。温度条件としては、例えば、40~50℃である。
 そして、前記反応液の温度を変化させ、前記増幅産物と前記標識化プローブとのハイブリッド形成体の融解状態を示すシグナル値を測定する。具体的には、例えば、前記反応液を加熱し、すなわち、前記一本鎖DNAと前記標識化プローブとのハイブリッド形成体を加熱し、温度上昇に伴うシグナル値の変動を測定する。前述のように、例えば、末端のC塩基が標識化されたプローブ(グアニン消光プローブ)を使用した場合、一本鎖DNAとハイブリダイズした状態では、蛍光が減少(または消光)し、解離した状態では、蛍光を発する。したがって、例えば、蛍光が減少(または消光)しているハイブリッド形成体を徐々に加熱し、温度上昇に伴う蛍光強度の増加を測定すればよい。なお、前記標識化プローブを使用する場合、前記シグナル値は、例えば、前記標識化プローブの標識物質に応じた条件で測定することができる。検出目的の塩基が複数であり、複数種のプローブを使用して、変異を検出する際には、前述のように、異なる検出条件の標識化物質で標識化したプローブを使用し、各プローブの標識化物質に応じた条件で、それぞれのシグナル値を測定すればよい。
 蛍光強度の変動を測定する際の温度範囲は、特に制限されないが、例えば、開始温度が室温~85℃であり、好ましくは25~70℃であり、終了温度は、例えば、40~105℃である。また、温度の上昇速度は、特に制限されないが、例えば、0.1~20℃/秒であり、好ましくは0.3~5℃/秒である。
 次に、前記シグナルの変動を解析してTm値を決定する。具体的には、得られた蛍光強度から、例えば、各温度における単位時間当たりの蛍光強度変化量を算出する。変化量を(-d蛍光強度増加量/dt)とする場合は、例えば、最も低い値を示す温度をTm値として決定できる。また、変化量を(d蛍光強度増加量/t)とする場合は、例えば、最も高い点をTm値として決定することもできる。なお、標識化プローブとして、消光プローブではなく、単独でシグナルを示さず且つハイブリッド形成によりシグナルを示すプローブを使用した場合には、反対に、蛍光強度の減少量を測定すればよい。
 前記Tm値は、例えば、従来公知のMELTCALCソフトウエア(http://www.meltcalc.com/)等により算出でき、また、隣接法(Nearest Neighbor Method)によって決定することもできる。
 そして、これらのTm値から、目的の塩基部位における塩基の種類、すなわち、変異型または正常型等の遺伝子型を決定する。Tm解析において、完全に相補であるハイブリッド(マッチ)は、一塩基が異なるハイブリッド(ミスマッチ)よりも、解離を示すTm値が高くなるという結果が得られる。したがって、予め、前記プローブについて、完全に相補であるハイブリッドのTm値と、一塩基が異なるハイブリッドのTm値とを決定しておくことにより、目的の塩基部位における遺伝子型を決定することができる。例えば、目的の塩基部位の塩基を変異型と仮定し、その変異型塩基を含む検出目的配列に相補的なプローブを使用した場合、形成したハイブリッドのTm値が、完全に相補なハイブリッドのTm値と同じであれば、目的塩基は変異型と判断できる。また、形成したハイブリッドのTm値が、一塩基異なるハイブリッドのTm値と同じ(完全に相補なハイブリッドのTm値より低い値)であれば、目的塩基は正常型と判断できる。また、両方のTm値が検出された場合には、例えば、変異型を示す核酸と、正常型を示す核酸とが共存すると決定できる。
 また、本発明においては、前述のように、前記プローブを含む反応液の温度を上昇させて、すなわち、ハイブリッド形成体を加熱して、温度上昇に伴うシグナル変動を測定する方法に代えて、例えば、ハイブリッド形成時におけるシグナル変動の測定を行ってもよい。つまり、前記プローブを含む反応液の温度を降下させてハイブリッド形成体を形成する際に、前記温度降下に伴うシグナル変動を測定してもよい。
 具体例として、単独でシグナルを示し且つハイブリッド形成によりシグナルを示さない標識化プローブ(例えば、グアニン消光プローブ)を使用した場合、一本鎖DNAと前記プローブとが解離している状態では蛍光を発しているが、温度の降下によりハイブリッドを形成すると、前記蛍光が減少(または消光)する。したがって、例えば、前記反応液の温度を徐々に降下させて、温度下降に伴う蛍光強度の減少を測定すればよい。他方、単独でシグナルを示さず且つハイブリッド形成によりシグナルを示す標識化プローブを使用した場合、一本鎖DNAとプローブとが解離している状態では蛍光を発していないが、温度の降下によりハイブリッドを形成すると、蛍光を発するようになる。したがって、例えば、前記反応液の温度を徐々に降下させて、温度下降に伴う蛍光強度の増加を測定すればよい。
 本発明において、前記試料中の核酸は、一本鎖でもよいし二本鎖であってもよい。前記核酸が二本鎖の場合は、例えば、前記(b)工程のハイブリダイズに先立って、加熱により前記試料中の二本鎖核酸を解離させる工程を含むことが好ましい。二本鎖核酸を一本鎖核酸に解離することによって、次の(b)工程において、前記検出用プローブとのハイブリダイズを効率よく行うことができる。
<変異検出試薬>
 本発明の変異検出試薬は、本発明の変異の検出方法に使用する検出試薬であり、本発明の増幅試薬、および鋳型核酸における検出目的の塩基部位を含む配列にハイブリダイズ可能なプローブを含むことを特徴とする。本発明の増幅試薬は、一つの反応系内で使用することが好ましい。
 なお、本発明の変異検出試薬は、例えば、本発明の変異の検出方法において記載した、増幅反応に使用する各種成分をさらに含んでもよい。また、本発明の変異検出試薬は、例えば、本発明の変異検出キットであってもよく、例えば、使用説明書を含むことが好ましい。
 次に、本発明の実施例について説明する。ただし、本発明は下記の実施例により制限されない。
[実施例1]
 前記第1の実施形態に基づいて、bcr-abl遺伝子の944番目の塩基の点突然変異(C→T)をTm解析により検出した。
 まず、944番目の塩基Cに変異を有さない正常型bcr-abl遺伝子配列を挿入した正常型プラスミド(以下、「wt」という)と、944番目の塩基CがTに変異した変異型bcr-abl遺伝子を挿入した異常型プラスミド(以下、「mt」という)とを準備した。両者を所定の割合で混合し、複数の核酸試料を調製した。前記複数の核酸試料におけるmt含有割合は、それぞれ、100%、10%、5%、3%、1%、0.5%、0.3%、および、0%とした。チューブ内に、前記核酸試料1μL(2×10copies/test)と下記表1のPCR反応液24μLとを添加し、サーマルサイクラー(商品名Mastercycler ep gradient S、eppendorf社製)を用いてPCRを行った。PCRは、95℃で60秒処理した後、99℃4秒および66℃30秒を1サイクルとして50サイクル繰り返した。さらに、前記PCR反応液が入ったチューブを、iCycler(商品名、Bio-Rad Laboratories社製)に移し、95℃で5秒、40℃で60秒処理した後、温度を1℃上昇させて15秒インキュベートする工程を1サイクルとして55サイクル繰り返し、前記PCR反応液を40℃から95℃まで加熱した。前記55サイクルの間に、40℃から75℃までの各温度における蛍光強度(検出波長515~545nm)の変化を測定し、Tm解析を行った。
Figure JPOXMLDOC01-appb-T000001
 前記プライマー(Y2)は、PCRにおけるセンスプライマーであり、正常型プライマー(Xwt)および変異型プライマー(Xmt)は、PCRにおけるアンチセンスプライマーである。これらのプライマーの配列を以下に示す。正常型プライマー(Xwt)は、正常型bcr-abl遺伝子における944番目の塩基(C)を含む領域に、100%マッチした相補的な配列であり、変異型プライマー(Xmt)は、944番目の塩基CがTに変異した変異型bcr-abl遺伝子における944番目の塩基(T)を含む領域に、100%マッチした相補的な配列である。なお、正常型プライマー(Xwt)および変異型プライマー(Xmt)の配列において、3’末端の大文字で示した塩基は、それぞれ正常型bcr-abl遺伝子および変異型bcr-abl遺伝子の944番目の塩基に対応する。前記正常型プライマー(Xwt)および変異型プライマー(Xmt)と、これらがアニーリングするセンス鎖との位置関係、ならびに、前記センスプライマー(Y2)と、これがアニーリングするアンチセンス鎖との位置関係は、例えば、前述の図6の模式図を参照できるが、あくまでも模式図であって、本発明を制限するものではない。
センスプライマー(Y2) 配列番号1
 5’-ggacggacggaccgtcctcgttgtcttgttggc-3’
正常型プライマー(Xwt) 配列番号2
 5’-ttcccgtaggtcatgaactcaG-3’
変異型プライマー(Xmt) 配列番号3
 5’-aggttcccgtaggtcatgaactcaA-3’
 また、Tm解析に使用する前記検出用プローブの配列を以下に示す。前記検出用プローブは、944番目の塩基CがTに変異した変異型bcr-abl遺伝子(センス鎖)において前記944番目の塩基を含む領域に、100%マッチした相補的な配列である。下記配列において、大文字で示した塩基Aは、前記944番目の変異した塩基Tに対応する。また、3’末端のPはリン酸基を示す。
検出用プローブ 配列番号4
5’-(BODIPY FL)-ctcaAtgatgatatagaacg-P-3’
 これらの結果を図1に示す。図1は、温度上昇に伴う蛍光強度の変化を示すTm解析のグラフである。横軸は測定時の温度(℃)を示し、縦軸は蛍光強度の変化(以下、「蛍光変化量」ともいう)を示し、単位は、「-d蛍光強度増加量/dt」とした。図1に示すように、mt100%(wt0%)のピーク、すなわちTmは、55℃であり、wt100%(mt0%)のピーク、すなわちTmは、47℃であった。これらをmtおよびwtの評価基準として、各試料について、mtのTm値およびwtのTm値におけるピークを確認した。その結果、mtとwtとが共存する全ての試料(mt0.3%~10%)について、wtと比較してmtが少量であるにもかかわらず、mtのTm値において、ピークが確認できた。
[比較例1]
 アンチセンスプライマーとして、正常型プライマー(Xwt)および変異型(Xmt)に代えて、100μmol/Lの下記プライマー0.126μLを使用し、PCRの条件を、95℃で60秒処理した後、99℃4秒および62℃30秒を1サイクルとして50サイクルとした以外は、前記実施例1と同様にして、Tm解析を行った。前述のセンスプライマー(Y2)と下記アンチセンスプライマーは、bcr-abl遺伝子の944番目の塩基とは異なる領域にアニーリングするため、944番目が正常塩基(C)または変異塩基(T)のいずれであるかにかかわらず、前記944番目の塩基を含む領域が増幅される。
アンチセンスプライマー 配列番号5
5’-ggacggacggaccgcactccctcaggtagtccag-3’
 これらの結果を図2に示す。図2は、温度上昇に伴う蛍光強度の変化を示すTm解析のグラフである。横軸は測定時の温度(℃)を示し、縦軸は蛍光強度の変化(以下、「蛍光変化量」ともいう)を示し、単位は、「-d蛍光強度増加量/dt」とした。図2に示すように、mt100%(wt0%)のピーク、すなわち、Tmは55℃であり、wt100%(mt0%)のピーク、すなわち、Tmは47℃であった。これらをmtおよびwtの評価基準として、各試料について、mtのTm値およびwtのTm値におけるピークを確認した。その結果、mtとwtとが共存する試料については、mtが10%以上であれば、mtのTm値におけるピークが確認できたが、10%未満では、ピークが確認できなかった。以上の結果から、実施例1によれば、比較例1の方法よりも優れた検出感度が達成できることがわかる。
[比較例2]
 従来のASP-PCR法により、bcr-abl遺伝子の944番目の塩基の点突然変異(C→T)を検出した。
 比較例2では、944番目の塩基が正常であるwtを増幅するためのwt用反応液と、前記塩基が変異しているmtを増幅するためのmt用反応液とを調製した。これらの反応液組成を以下に示す。wt用反応液は、アンチセンスプライマーとして、実施例1の正常型プライマー(Xwt)を使用し、mt用反応液は、アンチセンスプライマーとして、実施例1の変異型プライマー(Xmt)を使用した。なお、センスプライマーは、実施例1と同様にプライマー(Y2)を使用した。
Figure JPOXMLDOC01-appb-T000002
 チューブ内に、実施例1と同様の核酸試料1μL(2×10copies/test)と前記表2に示すASP-PCR反応液(wt用またはmt用)24μLとを添加し、前述のiCyclerを用いてリアルタイムPCRを行った。リアルタイムPCRは、95℃で60秒処理した後、99℃4秒および66℃30秒を1サイクルとして50サイクル繰り返し、各サイクルの66℃における反応液の蛍光強度を測定して(波長515~545nm)、Threshold Cycle(Ct値)を求めた。変異型プライマーを用いたmt100%の結果から、各試料についてのCt値の理論値を求めた。
 これらの結果を下記表3に示す。下記表3に示すように、正常型プライマーを使用した場合、正常型に相補的であるにもかかわらず、mt100%の試料においても増幅が検出された。また、変異型プライマーを使用した場合、変異型に相補的であるにもかかわらず、wt100%の試料においても増幅が確認された。これらの結果から、従来のASP-PCRでは、擬陽性と判断する可能性が高いことがわかった。また、下記表3の理論値と比較した結果、実測値では±2程度のバラつきが生じていることから、適切に検出できるmt含有割合は、mt1%~mt3%に限られると考えられる。以上の結果から、実施例1によれば、比較例2の方法よりも優れた検出感度が達成できることがわかる。また、比較例2における従来のASP-PCR法では、正常型と変異型の検出に、それぞれ別個の反応系を準備する必要があったが、実施例1によれば、1つの反応系において、正常型および変異型を判断することができる。このため、変異検出の労力やコストも軽減できるといえる。
Figure JPOXMLDOC01-appb-T000003
[実施例2]
 前記第1の実施形態に基づいて、bcr-abl遺伝子(センス鎖)の944番目の塩基の点突然変異(C→T)をTm解析により検出した。
 まず、PCRの鋳型として、944番目の塩基Cに変異を有さない正常型bcr-abl遺伝子の部分配列に相補的なオリゴヌクレオチド(アンチセンス鎖、配列番号6、以下、「wt」という)と、944番目の塩基CがTに変異した変異型bcr-abl遺伝子の部分配列に相補的なオリゴヌクレオチド(アンチセンス鎖、配列番号7、以下、「mt」という)とを準備した。なお、正常型オリゴヌクレオチド(wt)および変異型オリゴヌクレオチド(mt)の配列において、大文字で示した塩基は、それぞれ正常型bcr-abl遺伝子および変異型bcr-abl遺伝子の944番目の塩基に対応する。
正常型オリゴヌクレオチド(wt) 配列番号6
 5’-gtaggtcatgaactcaGtgatgatatagaacgggggctcccgggtgcaga-3’
変異型オリゴヌクレオチド(mt) 配列番号7
 5’-gtaggtcatgaactcaAtgatgatatagaacgggggctcccgggtgcaga-3’
 前記両オリゴヌクレオチドを所定の割合で混合し、複数の核酸試料を調製した。前記複数の核酸試料におけるmt含有割合は、それぞれ、100%、3%、および、0%とした。チューブ内に、10μmol/Lの核酸試薬1μLと下記表4のプライマー試薬19μLとを添加し、95℃で1分加熱した。加熱後、前記チューブ内に、さらに、下記表5の酵素試薬5μLを添加し、サーマルサイクラー(商品名Mastercycler ep gradient S、eppendorf社製)を用いてPCRを行った。PCRは、95℃5秒および62℃15秒を1サイクルとして5サイクル繰り返した。PCR終了後、前記チューブを95℃に加熱し、10重量%SDS溶液2.5μLを添加し、反応を停止させた。さらに、前記PCR反応液の入ったチューブを、i-densy(商品名、アークレイ社製)に移し、95℃で1秒、40℃で60秒処理した後、温度を1℃/3秒の速度で上昇させて、40℃から75℃まで加熱した。この加熱の間、40℃から60℃までの各温度における蛍光強度(励起波長420~485nm、検出波長520~555nm)の変化を測定し、Tm解析を行った。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 正常型プライマー(Xwt)および変異型プライマー(Xmt)は、PCRにおけるセンスプライマーである。これらのプライマーの配列を以下に示す。正常型プライマー(Xwt)は、正常型bcr-abl遺伝子のセンス鎖において、944番目の塩基(C)を含む領域と100%同一の配列であり、変異型プライマー(Xmt)は、944番目の塩基CがTに変異した変異型bcr-abl遺伝子のセンス鎖において、944番目の塩基(T)を含む領域と100%同一の配列である。なお、正常型プライマー(Xwt)および変異型プライマー(Xmt)の配列において、3’末端の大文字で示した塩基は、それぞれ正常型bcr-abl遺伝子および変異型bcr-abl遺伝子の944番目の塩基に相当する。前記正常型プライマー(Xwt)および変異型プライマー(Xmt)と、これらがアニーリングするアンチセンス鎖との位置関係は、例えば、前述の図6の模式図を参照できるが、あくまでも模式図であって、本発明を制限するものではない。
正常型プライマー(Xwt) 配列番号8
 5’-cccccgttctatatcatcaC-3’
変異型プライマー(Xmt) 配列番号9
 5’-ggagcccccgttctatatcatcaT-3’
 前記検出用プローブには、前記実施例1と同じ検出用プローブを使用した。
 これらの結果を図3に示す。図3は、温度上昇に伴う蛍光強度の変化を示すTm解析のグラフである。横軸は測定時の温度(℃)を示し、縦軸は蛍光強度の変化(以下、「蛍光変化量」ともいう)を示し、単位は、「d蛍光強度増加量/dt」とした。図3に示すように、mt100%(wt0%)のピーク、すなわちTmは、52~54℃であり、wt100%(mt0%)のピーク、すなわちTmは、47~48℃であった。これらをmtおよびwtの評価基準として、各試料について、mtのTm値およびwtのTm値におけるピークを確認した。その結果、mtとwtとが共存する試料(mt3%)について、mtが3%と極めて少量であるにもかかわらず、mtのTm値において、wtのTm値におけるピークと同程度の強さでピークが確認できた。
[実施例3]
 前記第3の実施形態に基づいて、bcr-abl遺伝子(センス鎖)の944番目の塩基の点突然変異(C→T)をTm解析により検出した。
 実施例1と同様にして、前記正常型プラスミド(wt)と、前記変異型プラスミド(mt)とを、所定の割合で混合し、複数の核酸試料を調製した。前記複数の核酸試料におけるmt含有割合は、それぞれ、100%、10%、5%、3%、および、0%とした。チューブ内に、前記核酸試料1μL(2×10copies/test)と下記表6のPCR反応液24μLとを添加し、サーマルサイクラー(商品名Mastercycler ep gradient S、eppendorf社製)を用いて、実施例1と同様にPCRを行った。PCRの後、35サイクルの間における、40℃から75℃までの各温度における蛍光強度(検出波長515~545nm)の変化を測定した以外は、前記実施例1と同様にしてTm解析を行った。
Figure JPOXMLDOC01-appb-T000006
 前記プライマー(Y2)は、PCRにおけるセンスプライマーであり、前記プライマー(Y1)および変異型プライマー(Xmt)は、PCRにおけるアンチセンスプライマーである。前記センスプライマー(Y2)および前記変異型プライマー(Xmt)は、それぞれ、前記実施例1と同じものを使用した。これらのプライマーの配列を以下に示す。変異型プライマー(Xmt)は、944番目の塩基CがTに変異した変異型bcr-abl遺伝子における944番目の塩基(T)を含む領域に、100%マッチした相補的な配列である。なお、変異型プライマー(Xmt)の配列において、3’末端の大文字で示した塩基は、変異型bcr-abl遺伝子の944番目の塩基に対応する。前記センスプライマー(Y2)と、これがアニーリングするアンチセンス鎖との位置関係、ならびに、前記正常型プライマー(Xwt)および前記アンチセンスプライマー(Y1)と、これらがアニーリングするセンス鎖との位置関係は、例えば、前述の図7の模式図を参照できるが、あくまでも模式図であって、本発明を制限するものではない。
センスプライマー(Y2) 配列番号1
 5’-ggacggacggaccgtcctcgttgtcttgttggc-3’
アンチセンスプライマー(Y1) 配列番号10
 5’-gaccgaccgaccccaggaggttcccgtaggtc-3’
変異型プライマー(Xmt) 配列番号3
 5’-aggttcccgtaggtcatgaactcaA-3’
 前記検出用プローブの配列を以下に示す。前記検出用プローブは、944番目の塩基CがTに変異した変異型bcr-abl遺伝子のアンチセンス鎖における前記944番目の塩基を含む領域に、100%マッチした相補的配列である。下記配列において、大文字で示した塩基Tは、アンチセンス鎖における前記944番目の変異した塩基Aに対応する。また、3’末端のPはリン酸基を示す。
検出用プローブ 配列番号11
5’-(BODIPY FL)-cccgttctatatcatcaTtgag-P-3’
[比較例3]
 前記表6のPCR反応液において、変異型プライマー(Xmt)0.125μLに代えて、アンチセンスプライマー(Y1)を倍量である0.25μL添加した以外は、前記実施例3と同様にして、Tm解析を行った。
 前記実施例3の結果を図4に、前記比較例3の結果を図5に、それぞれ示す。両図は、温度上昇に伴う蛍光強度の変化を示すTm解析のグラフである。横軸は測定時の温度(℃)を示し、縦軸は蛍光強度の変化(以下、「蛍光変化量」ともいう)を示し、単位は、「-d蛍光強度増加量/dt」とした。図4および図5における、mt100%(wt0%)およびwt100%(mt0%)に示すように、mt100%(wt0%)のピーク、すなわちTmは、59℃であり、wt100%(mt0%)のピーク、すなわちTmは、54℃であった。これらをmtおよびwtの評価基準として、各試料について、mtのTm値およびwtのTm値におけるピークを確認した。その結果、図4に示す実施例3では、mtとwtとが共存する試料(mt3%~10%)について、mtが少量であるにもかかわらず、mtのTm値において、ピークが確認できた。これに対して、図5に示す比較例3では、mtとwtとが共存する試料(mt3%~10%)について、いずれも、wtのTm値において、ピークが確認されたのみであって、mtのTm値におけるピークは確認できなかった。この結果から、本実施例によれば、より高感度に変異を検出できるといえる。
 以上のように、本発明によれば、例えば、試料中に、鋳型核酸として、前記塩基部位が変異型である鋳型核酸と前記塩基部位が正常型である鋳型核酸とが共存している場合であっても、前記変異型の標的核酸配列を、正常型の標的核酸配列よりも優先的に増幅させることを特徴とする。このように、変異型の標的核酸配列を優先的に増幅させることによって、例えば、変異型の鋳型核酸の割合が正常型の鋳型核酸より低い場合であっても、本発明の増幅産物に対してプローブを用いたTm解析を行うことで、変異の有無を、優れた感度ならびに信頼性で検出することができる。このため、前述のように、正常遺伝子と変異遺伝子とを両方含む試料に対して、特に有用である。以上の点から、本発明は、例えば、遺伝子変異の検出により治療や診断を行う近年の臨床分野において、極めて有用といえる。

Claims (22)

  1. 鋳型核酸における標的核酸配列の増幅方法であって、
    前記標的核酸配列が、前記鋳型核酸における検出目的の変異が発生する塩基部位を含む配列であり、
    同一の反応系において、前記塩基部位が変異型塩基である標的核酸配列を、前記塩基部位が正常型塩基である標的核酸配列よりも優先的に増幅させる増幅工程を含むことを特徴とする標的核酸配列の増幅方法。
  2. 前記増幅工程が、前記同一の反応系において、下記プライマー(Xmt)およびプライマー(Xwt)を用いて前記標的核酸配列を増幅する工程であり、
    前記塩基部位が変異型である鋳型核酸に対する下記プライマー(Xmt)による増幅効率が、前記塩基部位が正常型である鋳型核酸に対する下記プライマー(Xwt)による増幅効率よりも高い、請求の範囲1記載の標的核酸配列の増幅方法。
    プライマー(Xmt)
    前記鋳型核酸における変異型の前記塩基部位を含む領域に相補的であり、3’領域に前記塩基部位の塩基に相補的な塩基を有するプライマー
    プライマー(Xwt)
    前記鋳型核酸における正常型の前記塩基部位を含む領域に相補的であり、3’領域に前記塩基部位の塩基に相補的な塩基を有するプライマー
  3. 前記プライマー(Xmt)およびプライマー(Xwt)において、3’末端の1番目または2番目の塩基が、前記塩基部位の塩基に相補的な塩基である、請求の範囲2記載の標的核酸配列の増幅方法。
  4. 相補配列に対する前記プライマー(Xmt)のTm値は、相補配列に対する前記プライマー(Xwt)のTm値よりも高い値である、請求の範囲2記載の標的核酸配列の増幅方法。
  5. 前記増幅工程が、前記同一の反応系において、下記プライマー(Xmt)およびプライマー(Y1)を用いて前記標的核酸配列を増幅する工程である、請求の範囲1記載の標的核酸配列の増幅方法。
    プライマー(Xmt)
    前記鋳型核酸における変異型の前記塩基部位を含む領域に相補的であり、3’領域に前記塩基部位の塩基に相補的な塩基を有するプライマー
    プライマー(Y1)
    前記鋳型核酸における前記塩基部位よりも3’側の領域に相補的なプライマー
  6. 前記増幅工程において、あわせて、下記プライマー(Y2)を使用する、請求の範囲2または5記載の標的核酸配列の増幅方法。
    プライマー(Y2)
    前記鋳型核酸における前記塩基部位よりも5’側の領域に対する相補配列に相補的なプライマー
  7. 前記増幅工程において、前記反応系に、さらに、前記鋳型配列における前記塩基部位を含む配列にハイブリダイズ可能なプローブを添加する、請求の範囲1記載の標的核酸配列の増幅方法。
  8. 前記プローブが、標識化プローブである、請求の範囲7記載の標的核酸配列の増幅方法。
  9. 鋳型核酸における検出目的の塩基部位の変異の有無を検出する方法であって、下記(a)~(c)工程を含むことを特徴とする変異の検出方法。
    (a)請求の範囲1記載の標的核酸配列の増幅方法により、前記鋳型核酸における前記塩基部位を含む標的核酸配列を反応系で増幅させる工程
    (b)前記鋳型核酸における前記塩基部位を含む配列にハイブリダイズ可能なプローブの存在下、前記(a)工程により得られた増幅産物を含む前記反応系の温度を変化させ、前記増幅産物と前記プローブとのハイブリッド形成体の融解状態を示すシグナル値を測定する工程
    (c)温度変化に伴う前記シグナル値の変動から、前記目的の塩基部位の変異の有無を決定する工程
  10. 前記増幅工程が、前記同一の反応系において、下記プライマー(Xmt)およびプライマー(Xwt)を用いて前記標的核酸配列を増幅する工程であり、
    前記塩基部位が変異型である鋳型核酸に対する下記プライマー(Xmt)による増幅効率が、前記塩基部位が正常型である鋳型核酸に対する下記プライマー(Xwt)による増幅効率よりも高い、請求の範囲9記載の変異の検出方法。
    プライマー(Xmt)
    前記鋳型核酸における変異型の前記塩基部位を含む領域に相補的であり、3’領域に前記塩基部位の塩基に相補的な塩基を有するプライマー
    プライマー(Xwt)
    前記鋳型核酸における正常型の前記塩基部位を含む領域に相補的であり、3’領域に前記塩基部位の塩基に相補的な塩基を有するプライマー
  11. 前記プライマー(Xmt)およびプライマー(Xwt)において、3’末端の1番目または2番目の塩基が、前記塩基部位の塩基に相補的な塩基である、請求の範囲10記載の変異の検出方法。
  12. 相補配列に対する前記プライマー(Xmt)のTm値は、相補配列に対する前記プライマー(Xwt)のTm値よりも高い値である、請求の範囲10記載の変異の検出方法。
  13. 前記増幅工程が、前記同一の反応系において、下記プライマー(Xmt)およびプライマー(Y1)を用いて前記標的核酸配列を増幅する工程である、請求の範囲9記載の変異の検出方法。
    プライマー(Xmt)
    前記鋳型核酸における変異型の前記塩基部位を含む領域に相補的であり、3’領域に前記塩基部位の塩基に相補的な塩基を有するプライマー
    プライマー(Y1)
    前記鋳型核酸における前記塩基部位よりも3’側の領域に相補的なプライマー
  14. 前記増幅工程において、あわせて、下記プライマー(Y2)を使用する、請求の範囲10または13記載の変異の検出方法。
    プライマー(Y2)
    前記鋳型核酸における前記塩基部位よりも5’側の領域に対する相補配列に相補的なプライマー
  15. 前記(a)工程において、前記標的核酸配列の増幅に先立って、前記反応系に、前記鋳型核酸における前記塩基部位を含む配列にハイブリダイズ可能なプローブを添加する、請求の範囲9記載の変異の検出方法。
  16. 前記プローブが、標識化プローブである、請求の範囲15記載の変異の検出方法。
  17. 前記標識化プローブが、単独でシグナルを示し且つハイブリッド形成によりシグナルを示さない標識化プローブ、または、単独でシグナルを示さず且つハイブリッド形成によりシグナルを示す標識化プローブである、請求の範囲16記載の変異の検出方法。
  18. 請求の範囲1記載の標的核酸配列の増幅方法に使用する増幅試薬であって、
    下記プライマー(Xmt)およびプライマー(Xwt)を含み、
    前記塩基部位が変異型である鋳型核酸に対する下記プライマー(Xmt)による増幅効率が、前記塩基部位が正常型である鋳型核酸に対する下記プライマー(Xwt)による増幅効率よりも高いことを特徴とする増幅試薬。
    プライマー(Xmt)
    前記鋳型核酸における変異型の前記塩基部位を含む領域に相補的であり、3’領域に前記塩基部位の塩基に相補的な塩基を有するプライマー
    プライマー(Xwt)
    前記鋳型核酸における正常型の前記塩基部位を含む領域に相補的であり、3’領域に前記塩基部位の塩基に相補的な塩基を有するプライマー
  19. 相補配列に対する前記プライマー(Xmt)のTm値は、相補配列に対する前記プライマー(Xwt)のTm値よりも高い値である、請求の範囲18記載の増幅試薬。
  20. 請求の範囲1記載の標的核酸配列の増幅方法に使用する増幅試薬であって、
    下記プライマー(Xmt)およびプライマー(Y1)を含むことを特徴とする増幅試薬。
    プライマー(Xmt)
    前記鋳型核酸における変異型の前記塩基部位を含む領域に相補的であり、3’領域に前記塩基部位の塩基に相補的な塩基を有するプライマー
    プライマー(Y1)
    前記鋳型核酸における前記塩基部位よりも3’側の領域に相補的なプライマー
  21. さらに、下記プライマー(Y2)を含む、請求の範囲18または20記載の増幅試薬。
    プライマー(Y2)
    前記鋳型核酸における前記塩基部位よりも5’側の領域に対して相補的な配列に相補的なプライマー
  22. 請求の範囲9記載の変異の検出方法に使用する検出試薬であって、
    請求の範囲18または20記載の増幅試薬、および、
    鋳型核酸における検出目的の塩基部位を含む配列にハイブリダイズ可能なプローブを含むことを特徴とする検出試薬。
PCT/JP2009/062143 2008-07-02 2009-07-02 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬 WO2010001969A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/002,194 US9115391B2 (en) 2008-07-02 2009-07-02 Method of detecting a polymorphism at a polymorphism site
EP20090773547 EP2314680B1 (en) 2008-07-02 2009-07-02 Method for amplification of target nucleic acid sequence, method for detection of mutation by using the method, and reagents for use in the methods
CN200980125546.7A CN102076850B (zh) 2008-07-02 2009-07-02 靶核酸序列的扩增方法、使用该方法的突变检测方法、以及用于该方法的试剂
JP2010519111A JP5637850B2 (ja) 2008-07-02 2009-07-02 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008173986 2008-07-02
JP2008-173986 2008-07-02

Publications (1)

Publication Number Publication Date
WO2010001969A1 true WO2010001969A1 (ja) 2010-01-07

Family

ID=41466060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062143 WO2010001969A1 (ja) 2008-07-02 2009-07-02 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬

Country Status (6)

Country Link
US (1) US9115391B2 (ja)
EP (1) EP2314680B1 (ja)
JP (1) JP5637850B2 (ja)
KR (1) KR20100080621A (ja)
CN (1) CN102076850B (ja)
WO (1) WO2010001969A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447377A1 (en) 2010-10-29 2012-05-02 Arkray, Inc. Primer set for detecting EGFR exon 21 polymorphism and application thereof
EP2450443A1 (en) * 2010-01-21 2012-05-09 Arkray, Inc. Target sequence amplification method, polymorphism detection method, and reagents for use in the methods
EP2520666A1 (en) 2011-05-06 2012-11-07 ARKRAY, Inc. Oligonucleotide for detection test of polymorphism of EGFR exon 19 and use thereof
JP2013063062A (ja) * 2011-09-02 2013-04-11 Arkray Inc 核酸検出装置、方法、及びプログラム
WO2013065646A1 (ja) 2011-10-31 2013-05-10 アークレイ株式会社 遺伝子存在量の測定方法
JP2014528721A (ja) * 2011-09-30 2014-10-30 エピスタム リミテッド Jak2の突然変異解析
US9115391B2 (en) 2008-07-02 2015-08-25 Arkray, Inc. Method of detecting a polymorphism at a polymorphism site
KR101747090B1 (ko) 2010-04-30 2017-06-14 아크레이 가부시키가이샤 표적 폴리뉴클레오티드의 증폭 효율의 조절 방법
JP2021533769A (ja) * 2018-08-16 2021-12-09 ライフ テクノロジーズ コーポレーション 核酸の増幅のための試薬、混合物、キット、および方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095639A2 (en) * 2011-01-14 2012-07-19 Genefirst Limited Methods, compositions, and kits for determing the presence/absence of a varian nucleic acid sequence
WO2012146251A1 (en) * 2011-04-29 2012-11-01 Aarhus Universitet Method for detecting mutations using a three primer system and differently melting amplicons
GB201121869D0 (en) * 2011-11-17 2012-02-01 Clarient Inc Method of allele-specific amplification
JP5997407B1 (ja) * 2016-04-21 2016-09-28 日鉄住金環境株式会社 多項目増幅手法
CN110951828A (zh) * 2016-04-29 2020-04-03 广州市康立明生物科技有限责任公司 一种引物和探针的设计方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889818A (en) 1986-08-22 1989-12-26 Cetus Corporation Purified thermostable enzyme
WO1991009950A1 (en) 1989-12-22 1991-07-11 F. Hoffmann-La Roche Ag Recombinant expression vectors and purification methods for thermus thermophilus dna polymerase
EP0455430A2 (en) 1990-04-26 1991-11-06 New England Biolabs, Inc. Purified thermostable DNA polymerase obtainable from Thermococcus litoralis
US5079352A (en) 1986-08-22 1992-01-07 Cetus Corporation Purified thermostable enzyme
WO1992009689A1 (en) 1990-12-03 1992-06-11 Stratagene PURIFIED THERMOSTABLE $i(PYROCOCCUS FURIOSUS)
JP2853864B2 (ja) 1988-03-10 1999-02-03 ゼネカ リミテッド ヌクレオチド配列を検出する方法
WO2008066163A1 (fr) * 2006-11-30 2008-06-05 Arkray, Inc. Ensemble d'amorces utilisé dans l'amplification du gène cyp2c9, réactif utilisé dans l'amplification du gène cyp2c9, et son utilisation
WO2008066136A1 (en) * 2006-11-30 2008-06-05 Arkray, Inc. Primer set for amplification of ugt1a1 gene, reagent for amplification of ugt1a1 gene comprising the same, and use of the same
WO2008066161A1 (fr) * 2006-11-30 2008-06-05 Arkray, Inc. Jeu d'amorces pour l'amplification du gène nat2, réactif pour l'amplification du gène nat2 comprenant ledit jeu d'amorces et utilisation du réactif
WO2008066165A1 (fr) * 2006-11-30 2008-06-05 Arkray, Inc. Jeu d'amorces pour l'amplification du gène sult1a1, réactif pour l'amplification du gène sult1a1 comprenant ledit jeu d'amorces et utilisation du réactif
WO2008066162A1 (fr) * 2006-11-30 2008-06-05 Arkray, Inc. Jeu d'amorces pour l'amplification du gène cyp2c19, réactif pour l'amplification du gène cyp2c19 comprenant ledit jeu d'amorces et utilisation du réactif
WO2008066164A1 (en) * 2006-11-30 2008-06-05 Arkray, Inc. Primer set for amplification of obesity gene, reagent for amplification of obesity gene comprising the primer set, and use of the primer set

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006137A1 (en) * 1993-08-27 1995-03-02 Australian Red Cross Society Detection of genes
US6472156B1 (en) * 1999-08-30 2002-10-29 The University Of Utah Homogeneous multiplex hybridization analysis by color and Tm
AUPS076902A0 (en) 2002-02-26 2002-03-21 Commonwealth Scientific And Industrial Research Organisation Novel selective polymerase chain reaction
US7785776B2 (en) * 2002-05-13 2010-08-31 Idaho Technology, Inc. Genotyping by amplicon melting curve analysis
USRE44894E1 (en) * 2003-04-16 2014-05-13 Arkray, Inc. Method of detecting or quantitatively determining mitochondrial DNA 3243 variation, and kit therefor
JP4322554B2 (ja) 2003-05-19 2009-09-02 株式会社ニチレイフーズ Dna増幅反応の効率向上方法
US7563572B2 (en) 2004-08-02 2009-07-21 University Of Utah Research Foundation Method for long range allele-specific PCR
US20060172324A1 (en) 2005-01-28 2006-08-03 Roche Molecular Systems, Inc. Methods of genotyping using differences in melting temperature
CA3027954C (en) * 2005-06-07 2021-11-02 Luminex Corporation Methods for detection and typing of nucleic acids
US20070154892A1 (en) 2005-12-30 2007-07-05 Simon Wain-Hobson Differential amplification of mutant nucleic acids by PCR in a mixure of nucleic acids
JP4942508B2 (ja) 2007-02-20 2012-05-30 アークレイ株式会社 abl遺伝子変異の検出用プローブおよびその用途
JP5637850B2 (ja) 2008-07-02 2014-12-10 アークレイ株式会社 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889818A (en) 1986-08-22 1989-12-26 Cetus Corporation Purified thermostable enzyme
US5079352A (en) 1986-08-22 1992-01-07 Cetus Corporation Purified thermostable enzyme
JP2853864B2 (ja) 1988-03-10 1999-02-03 ゼネカ リミテッド ヌクレオチド配列を検出する方法
WO1991009950A1 (en) 1989-12-22 1991-07-11 F. Hoffmann-La Roche Ag Recombinant expression vectors and purification methods for thermus thermophilus dna polymerase
EP0455430A2 (en) 1990-04-26 1991-11-06 New England Biolabs, Inc. Purified thermostable DNA polymerase obtainable from Thermococcus litoralis
WO1992009689A1 (en) 1990-12-03 1992-06-11 Stratagene PURIFIED THERMOSTABLE $i(PYROCOCCUS FURIOSUS)
WO2008066163A1 (fr) * 2006-11-30 2008-06-05 Arkray, Inc. Ensemble d'amorces utilisé dans l'amplification du gène cyp2c9, réactif utilisé dans l'amplification du gène cyp2c9, et son utilisation
WO2008066136A1 (en) * 2006-11-30 2008-06-05 Arkray, Inc. Primer set for amplification of ugt1a1 gene, reagent for amplification of ugt1a1 gene comprising the same, and use of the same
WO2008066161A1 (fr) * 2006-11-30 2008-06-05 Arkray, Inc. Jeu d'amorces pour l'amplification du gène nat2, réactif pour l'amplification du gène nat2 comprenant ledit jeu d'amorces et utilisation du réactif
WO2008066165A1 (fr) * 2006-11-30 2008-06-05 Arkray, Inc. Jeu d'amorces pour l'amplification du gène sult1a1, réactif pour l'amplification du gène sult1a1 comprenant ledit jeu d'amorces et utilisation du réactif
WO2008066162A1 (fr) * 2006-11-30 2008-06-05 Arkray, Inc. Jeu d'amorces pour l'amplification du gène cyp2c19, réactif pour l'amplification du gène cyp2c19 comprenant ledit jeu d'amorces et utilisation du réactif
WO2008066164A1 (en) * 2006-11-30 2008-06-05 Arkray, Inc. Primer set for amplification of obesity gene, reagent for amplification of obesity gene comprising the primer set, and use of the primer set

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANALYTICAL BIOCHEMISTRY, vol. 290, 2001, pages 89 - 97
See also references of EP2314680A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9115391B2 (en) 2008-07-02 2015-08-25 Arkray, Inc. Method of detecting a polymorphism at a polymorphism site
EP2450443A4 (en) * 2010-01-21 2014-01-29 Arkray Inc METHOD FOR AMPLIFYING TARGET SEQUENCES, METHOD FOR DETECTION OF POLYMORPHISM, AND REAGENTS SUITABLE FOR THESE PROCESSES
US9284603B2 (en) 2010-01-21 2016-03-15 Arkray, Inc. Target sequence amplification method, polymorphism detection method, and reagents for use in the methods
CN102471771B (zh) * 2010-01-21 2016-01-20 爱科来株式会社 靶序列的扩增方法、多态性检测方法以及其中使用的试剂
EP2450443A1 (en) * 2010-01-21 2012-05-09 Arkray, Inc. Target sequence amplification method, polymorphism detection method, and reagents for use in the methods
JP5684737B2 (ja) * 2010-01-21 2015-03-18 アークレイ株式会社 標的配列の増幅方法、多型検出方法およびそれに用いる試薬
CN102471771A (zh) * 2010-01-21 2012-05-23 爱科来株式会社 靶序列的扩增方法、多态性检测方法以及其中使用的试剂
KR101747090B1 (ko) 2010-04-30 2017-06-14 아크레이 가부시키가이샤 표적 폴리뉴클레오티드의 증폭 효율의 조절 방법
EP2447377A1 (en) 2010-10-29 2012-05-02 Arkray, Inc. Primer set for detecting EGFR exon 21 polymorphism and application thereof
US9169518B2 (en) 2010-10-29 2015-10-27 Arkray, Inc. Primer set for detecting EGFR exon 21 polymorphism and application thereof
JP2012105645A (ja) * 2010-10-29 2012-06-07 Arkray Inc Egfrエクソン21l858r遺伝子多型検出用プライマー及びその用途
JP2012249630A (ja) * 2011-05-06 2012-12-20 Arkray Inc Egfrエクソン19多型検出試験用オリゴヌクレオチド及びその用途
EP2520666A1 (en) 2011-05-06 2012-11-07 ARKRAY, Inc. Oligonucleotide for detection test of polymorphism of EGFR exon 19 and use thereof
US8748590B2 (en) 2011-05-06 2014-06-10 Arkray, Inc. Oligonucleotides for detection test of polymorphism of EGFR exon 19 and use therof
JP2013063062A (ja) * 2011-09-02 2013-04-11 Arkray Inc 核酸検出装置、方法、及びプログラム
JP2014528721A (ja) * 2011-09-30 2014-10-30 エピスタム リミテッド Jak2の突然変異解析
WO2013065646A1 (ja) 2011-10-31 2013-05-10 アークレイ株式会社 遺伝子存在量の測定方法
JP2021533769A (ja) * 2018-08-16 2021-12-09 ライフ テクノロジーズ コーポレーション 核酸の増幅のための試薬、混合物、キット、および方法

Also Published As

Publication number Publication date
US9115391B2 (en) 2015-08-25
CN102076850B (zh) 2014-05-07
EP2314680A1 (en) 2011-04-27
EP2314680A4 (en) 2011-12-14
US20110117568A1 (en) 2011-05-19
KR20100080621A (ko) 2010-07-09
CN102076850A (zh) 2011-05-25
EP2314680B1 (en) 2014-10-01
JP5637850B2 (ja) 2014-12-10
JPWO2010001969A1 (ja) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5637850B2 (ja) 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬
JP5509075B2 (ja) 核酸増幅のコントロールの検出方法およびその用途
WO2009081967A1 (ja) 標的核酸配列の増幅方法およびそれに用いるプローブ
JP5224526B2 (ja) 遺伝子増幅用プライマーセット、それを含む遺伝子増幅用試薬およびその用途
EP3219814A1 (en) Probe for detection of polymorphism in egfr gene, amplification primer, and use thereof
KR20080100429A (ko) Cyp2c19 유전자 증폭용 프라이머 세트, 그것을포함하는 cyp2c19 유전자 증폭용 시약 및 그 용도
WO2011062258A1 (ja) Mthfr遺伝子増幅用プライマーセット、それを含むmthfr遺伝子増幅用試薬およびその用途
JP5917144B2 (ja) 疾患関連遺伝子の多型検出用プローブおよびその用途
JP5684737B2 (ja) 標的配列の増幅方法、多型検出方法およびそれに用いる試薬
WO2011052755A1 (ja) Mpl遺伝子多型検出用プローブおよびその用途
KR101119417B1 (ko) 비만 유전자 증폭용 프라이머 세트, 그것을 포함하는 비만 유전자 증폭용 시약 및 그 용도
JPWO2008066163A1 (ja) Cyp2c9遺伝子増幅用プライマーセット、それを含むcyp2c9遺伝子増幅用試薬およびその用途
JP5367365B2 (ja) Sult1a1遺伝子増幅用プライマーセット、それを含むsult1a1遺伝子増幅用試薬およびその用途
WO2011077990A1 (ja) c-kit遺伝子の多型検出用プローブおよびその用途
KR101110425B1 (ko) Nat2 유전자 증폭용 프라이머 셋트, 그것을 포함하는 nat2 유전자 증폭용 시약 및 그 용도
JP5635496B2 (ja) Egfr遺伝子多型検出用プローブおよびその用途
JP5860667B2 (ja) Egfrエクソン21l858r遺伝子多型検出用プライマーセット及びその用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980125546.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010519111

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107012069

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13002194

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009773547

Country of ref document: EP