WO2010092941A1 - 血管拡張作用を有する組成物、製造法および用途 - Google Patents
血管拡張作用を有する組成物、製造法および用途 Download PDFInfo
- Publication number
- WO2010092941A1 WO2010092941A1 PCT/JP2010/051851 JP2010051851W WO2010092941A1 WO 2010092941 A1 WO2010092941 A1 WO 2010092941A1 JP 2010051851 W JP2010051851 W JP 2010051851W WO 2010092941 A1 WO2010092941 A1 WO 2010092941A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- condensed tannin
- acid
- oligomer
- fruit
- Prior art date
Links
- WPOAULMSDGYGTA-UHFFFAOYSA-N CCCNCCCCC(C)CCC(C)CC Chemical compound CCCNCCCCC(C)CCC(C)CC WPOAULMSDGYGTA-UHFFFAOYSA-N 0.000 description 1
- 0 CN(*)CC*O Chemical compound CN(*)CC*O 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/52—Adding ingredients
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/105—Plant extracts, their artificial duplicates or their derivatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/194—Carboxylic acids, e.g. valproic acid having two or more carboxyl groups, e.g. succinic, maleic or phthalic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
- A61K31/353—3,4-Dihydrobenzopyrans, e.g. chroman, catechin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/08—Vasodilators for multiple indications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
Definitions
- the present invention relates to a composition having a vasodilating action and a composition for alleviating or alleviating a disease ameliorated by vasodilation, more specifically, at least one condensed tannin oligomer component of dimer to 13mer, and at least one
- the present invention relates to a composition, a production method and a use for synergistically improving a vasodilatory action comprising an organic acid component as an active ingredient.
- flavonoid components such as soybean isoflavone, tea catechin, onion quercetin, and berry anthocyanins, which are relatively easy to prepare, have been scientifically clarified to have their respective healthy functions. It has been used as a useful food ingredient in health foods and supplements.
- a condensed tannin oligomer component having a particularly complicated molecular structure has been left as an unexamined area because it has been difficult to purify and produce the conventional technology.
- Condensed tannin is a structural unit of catechin, epicatechin, gallocatechin, epigallocatechin and their 3-O-gallate well known as green tea catechins, ie, catechin gallate, epicatechin gallate, gallocatechin gallate, epigallocatechin gallate (Monomer) is a general term for a group of polymerized substances. Depending on the degree of polymerization, a low polymerization component (approximately from a dimer to a 20-mer) may be referred to as a condensed tannin oligomer.
- condensed tannins are classified according to their structural units, those having catechin, epicatechin and / or their gallate as the structural unit as procyanidins, and at least one of gallocatechin, epigallocatechin and / or their gallate as the structural unit.
- prodelphinidin is added.
- condensed tannin obtained from cacao has only epicatechin as a constituent unit and is classified as procyanidin.
- the condensed tannin contained in persimmon fruit has epigallocatechin and epicatechin gallate added to epicatechin and epicatechin gallate which are constituent units of procyanidins, and belongs to prodelphinidin.
- the procyanidin oligomer component has a relatively simple molecular structure because its constituent units are limited to catechin, epicatechin and / or gallate thereof, and plant varieties with a high content have been found.
- the research on the condensed tannin oligomer started from the procyanidin oligomer component.
- procyanidin oligomer components contained in apples, grape seeds, cacao beans, pine bark and the like is ongoing, and their health functions include antioxidant activity and therapeutic agents for autoimmune diseases (Patent Document 1). : WO 2005/030200), blood flow improving action (Patent Document 2: Patent Publication 2003-128560 and Patent Document 3: Patent Publication 2003-530410, etc.) have been reported.
- Prodelphinidin oligomer components in which gallocatechin, epigallocatechin and / or their gallates are added to the constituent units in addition to catechin and epicatechin are found to be contained in strawberry fruits and sea buckthorn. ing.
- Non-Patent Document 1 Hibino
- G et al. Reguration of the peripheral body temperature by foods: a temperature decrease induced by the Japanese persimmon (kaki, Diospyros kaki) Biosci. Biotechnol. Biochem., 67, 23-28 (2003)).
- the results show an action of increasing blood pressure and suppressing blood flow, suggesting a vasoconstrictive action opposite to the vasodilatory action.
- the vasodilatory effect of condensed tannin oligomer components is limited to procyanidin oligomer components contained in apples, grape seeds, cacao beans, pine bark, etc., and new active ingredients including prodelphinidin oligomers It has been desired to develop a component having a better action by searching and evaluating. Furthermore, since the condensed tannin oligomer components of the procyanidin oligomer and the prodelphinidin oligomer have a low content in the plant, there is a disadvantage that much labor is required for the extraction and production. Accordingly, it has been desired to search for an enhancing component that efficiently exerts the vasodilatory effect with a smaller amount of use, and to develop a composition and a production method thereof.
- the object of the present invention is to find a new composition that synergistically improves the excellent health function exhibited by the condensed tannin oligomer component, in particular, the vasodilatory effect, and to provide the composition, production method, and use thereof.
- the present inventors have found that the vasodilatory action of procyanidin oligomer components, which has been conventionally known, is at least of dimers to 13-mers including prodelphinidin oligomer components. This is an action commonly exhibited by one condensed tannin oligomer component, and more surprisingly, a composition in which at least one organic acid component coexists with at least one condensed tannin oligomer component of dimer to 13-mer.
- the inventors have found a synergistic effect that dramatically improves the vasodilatory effect, thereby completing the present invention. More specifically, the present invention has the following features. 1.
- a vasodilator comprising as an active ingredient at least one condensed tannin oligomer component of dimer to 13-mer derived from berry fruit or cacao bean or persimmon fruit or persimmon leaf, and at least one organic acid component,
- the condensed tannin oligomer component is a procyanidin oligomer and / or a prodelphinidin oligomer having at least one of catechin, epicatechin, gallocatechin, epigallocatechin and / or their gallate as a constituent unit.
- the berry fruit is Boysenberry, Natsuhaze, Cassis, Blueberry, Cranberry, Strawberry or Grape. 3.
- the vasodilator according to claim 1 or 2 wherein the organic acid component is citric acid, succinic acid, malic acid, acetic acid, phytic acid and / or lactic acid or a salt thereof. 4).
- the vasodilator according to any one of claims 1 to 4 which has a blood flow improving action and / or a blood pressure rise inhibiting action. 6).
- a pharmaceutical product or food comprising the vasodilator according to any one of claims 1 to 5. 7).
- a berry fruit or cacao bean or persimmon fruit or persimmon leaf containing at least one condensed tannin oligomer component and a sugar component, or an organic acid component is produced or increased by microbial fermentation of an extract thereof.
- the production method according to claim 7, wherein the berry fruit or an extract thereof is Boysenberry, Natsuhaze, Cassis, Blueberry, Cranberry, Strawberry or Grape.
- the organic acid component is citric acid, succinic acid, malic acid, acetic acid, phytic acid and / or lactic acid or a salt thereof.
- the organic acid component is citric acid or a salt thereof.
- a composition comprising at least one condensed tannin oligomer component of dimer to 13-mer derived from berry fruit or cacao bean or persimmon fruit or persimmon leaf and at least one organic acid component of the present invention, It has an excellent vasodilatory action due to its synergistic action.
- CA catechin
- EC epicatechin
- ECG epigallocatechin
- ECCg epigallocatechin gallate
- the chromatogram which quantifies the condensed tannin oligomer derived from a berry fruit or cacao bean or a persimmon fruit or a persimmon leaf.
- Boysenberry fruit condensed tannin oligomer extract-1 (BBF-XAD / EtOH fr) (4a)
- Boysenberry fruit condensed tannin oligomer extract-2 (BBF-XAD-LH20 fr) (4b)
- epicatechin standard 4c
- Boysenberry fruit condensed tannin oligomer extract-2 (BBP-XAD-LH20 fr, 1 ⁇ g / mL) alone (5a) and its blood expansion effect of citric acid (100 ⁇ g / mL) composition (5b) .
- BBP-XAD-LH20 fr alone was added (5a arrow)
- the vascular dilation indicated by the change in the broken line was hardly observed, and after addition of the citric acid (100 ⁇ g / mL) composition (5b arrow)
- the measurement graph which shows the blood expansion effect of persimmon fruit condensed tannin oligomer extract (PAF-XAD / EtOH fr, 1 ⁇ g / mL) alone (6a) and its citric acid (100 ⁇ g / mL) composition (6b).
- PAF-XAD / EtOH fr persimmon fruit condensed tannin oligomer extract
- the blood pressure of rats administered with the composition of BBP XAD / EtOH fr and citric acid decreased after administration, particularly significantly after 1 hour and 6 hours compared to the control group. This result indicates that the composition of BBP XAD / EtOH fr and citric acid has a blood pressure lowering effect.
- the vasodilatory action in the present invention has an action of dilating blood vessels, and various symptoms related to vascular circulation function, improvement of blood flow, reduction of blood pressure increase, shoulder stiffness, headache, coldness, cerebral circulation, etc.
- At least one condensed tannin oligomer component of dimer to 13-mer derived from berry fruit or cacao bean or persimmon fruit or persimmon leaves is at least one of catechin, epicatechin, gallocatechin, epigallocatechin and / or gallate thereof. It is a procyanidin oligomer and / or prodelphinidin oligomer having one structural unit.
- Adjacent structural units are bonded at the 4th and 8th positions, and the steric structure at the 4th position is not particularly limited, and can be arranged in both 4 ⁇ - or 4 ⁇ -.
- the structural components of catechin (CA) and epicatechin (EC) are CA8-4 ⁇ EC (generic name procyanidin B1), EC8-4 ⁇ EC (generic name).
- procyanidins B2 There are four types of procyanidins B2), CA8-4 ⁇ CA (generic name procyanidin B3), and EC8-4 ⁇ CA (generic name procyanidin B4).
- the gallated structure there are one (mono-) and two (di-) for each of the four types of non-gallate structural components, so eight types are added. Therefore, 12 possible structures exist only with the structural component of procyanidin dimer having 4-8 bonds.
- the component constituting the procyanidin oligomer and / or prodelphinidin oligomer having at least one of catechin, epicatechin, gallocatechin, epigallocatechin and / or their gallate as a structural unit is a structural unit and its sequence order, Many components exist depending on the degree of polymerization, the steric structure of adjacent bonds, and the ratio of gallation.
- extracts and concentrates such as fruits, leaves and bark of plants containing them can be used.
- the plant species is not particularly limited, but fruits and leaf extracts having food experience can be preferably used for pharmaceuticals and foods and drinks.
- berry fruits and cacao beans (Theobroma cacao) often containing procyanidin oligomer components, Diospyros kaki and koji leaves containing prodelphinidin oligomer components can be preferably used.
- Specific examples of berry fruits include Boysenberry (Rubus sp.
- a specific structural component is a main component as the condensed tannin oligomer component
- the content can be increased by appropriately selecting the fruit, leaf, bark, etc. of the plant as the raw material.
- a procyanidin oligomer component when used as a main component, components prepared from cacao beans, grape seeds, boysenberry, blueberry, cranberry, bilberry and the like can be blended and used.
- the prodelphinidin oligomer component it is possible to add a large amount of components prepared from persimmon fruits and persimmon leaves.
- the condensed tannin oligomer component derived from plants can take the form of an extract or a concentrate, but can be prepared by selecting and combining juice, extraction, fractionation, concentration, and the like.
- the fruit juice obtained by pressing the fruit can be used as such.
- fruit juice is concentrated by membrane or reduced pressure, such as Amberlite XAD-4 and XAD-7 (trademark, manufactured by Organo Corporation, the same applies hereinafter), Diaion HP-10 and HP-20 (trademark, Synthetic adsorption resin from Mitsubishi Chemical Corporation, the same shall apply hereinafter), Sephadex LH-20 (trademark, manufactured by GE Healthcare Biosciences, the same shall apply hereinafter), Toyopearl HW-40 and HW-50 (trademark, It can be used as a concentrate concentrated and fractionated by a gel filtration carrier such as (made by Tosoh Corporation).
- a gel filtration carrier such as (made by Tosoh Corporation).
- the condensed tannin oligomer component extracted with the hydrophilic solvent from the peel and seed in the pressing residue can also be used.
- the hydrophilic solvent include methanol, ethanol, isopropanol, ethylene glycol, acetone, acetonitrile, dimethyl sulfoxide and the like, and these can be used alone or as a mixed solvent of plural kinds including water. .
- ethanol and hydrous ethanol can be preferably used in consideration of the use for food and drink. Similar to fruit juice, the extract can be led to a concentrate by combining a concentration step and a fractionation step.
- the organic acid component constituting the composition of the present invention is a vasodilator by interaction with at least one condensed tannin oligomer component of a dimer to a 13-mer derived from berry fruits or cacao beans or persimmon fruits or persimmon leaves. It can be an active ingredient of a composition that synergistically improves the action.
- the organic acid component is not particularly limited, but preferably citric acid, succinic acid, malic acid, acetic acid, phytic acid, lactic acid, or a salt thereof. These may be used singly or as a mixture of two or more. Specific examples of the salt include sodium, potassium, calcium, magnesium, ammonium and the like.
- the composition can be prepared by adding a predetermined amount of an organic acid component to an extract or concentrated solution containing a condensed tannin oligomer component.
- an organic acid component to be used, raw materials as food and drink, food additives, and citrus and fermented products containing the organic acid component can also be used.
- the content of the condensed tannin oligomer component in the composition that synergistically improves the vasodilatory effect of the present invention is not limited by procyanidin oligomer and prodelphinidin oligomer, but generally 0.00004 to 90 wt. %, Preferably 0.00004 to 40% by weight, more preferably 0.004 to 40% by weight.
- the condensed tannin oligomer component and the organic acid are contained in a weight ratio of 1: 1 to 70000, preferably 1: 2 to 200.
- a sugar component in a plant containing a condensed tannin oligomer component is processed and converted to produce an organic acid and a desired composition can be obtained, it is a great advantage in producing the composition of the present invention. It becomes.
- the present inventors produce or increase an organic acid component to a predetermined amount from a plant containing a condensed tannin oligomer component and a sugar component or an extract thereof by subjecting the sugar component to microbial fermentation without decomposing the condensed tannin oligomer component.
- a new production method for obtaining a desired composition has been established, and the method has been completed as an efficient production method.
- a microorganism that performs organic acid fermentation is allowed to act on a plant or its extract to increase the amount of the organic acid without damaging the condensed tannin oligomer component, so that the condensed tannin oligomer component and the organic acid component are effective ingredients.
- the plant containing the condensed tannin oligomer component to be subjected to organic acid fermentation and the sugar component or the extract thereof is not particularly limited, but a berry fruit or an extract thereof, or an astringent fruit or an extract thereof can be preferably used.
- Specific examples include Boysenberry (Rubus sp. Hydrid “Boysen”), Natsuhaze (Vaccinium oldhamii), Cassis (Ribes nigrum), Blueberry (Vaccinium angustifolium, V. ashei, V.
- the microorganism to be acted on is not particularly limited as long as it is a microorganism that performs organic acid fermentation without impairing the condensed tannin oligomer component, and microorganisms that perform citric acid fermentation or acetic acid fermentation can be suitably used.
- specific examples thereof include organic acid fermentation in which black mold (Aspergillus niger), Bacillus bacterium licheniformis, yeast (Saccharomyces cerevisiae), acetic acid bacterium (Acetobactor aceti), lactic acid bacterium (Lactobacillus sp.) And the like alone or in combination.
- a composition containing a condensed tannin oligomer component and an organic acid component that synergistically improve the vasodilatory effect can be applied to pharmaceuticals or foods and drinks in various forms.
- oral preparations such as powders, granules, capsules, pills, tablets and other solid preparations, liquids such as liquids, suspensions and emulsions are exemplified.
- this oral administration agent includes excipients, disintegrating agents, binders, lubricants, surfactants, alcohols, water, water-soluble polymers generally used according to the form of the oral administration agent. It can be produced by adding sweeteners, flavoring agents, acidulants and the like.
- composition of the present invention When used as a food or drink, it exerts a vasodilatory effect and can be used alone or in combination with other drinks and food materials that can be eaten or consumed.
- Specific drinks include fruit juice drinks, fruit drinks, vegetable drinks, carbonated drinks, tea drinks, sports drinks, milk drinks and other bakery foods, sauces, soups, dressings, etc. Seasonings, dairy products such as milk and yogurt, confectionery such as chocolate and candy, supplements such as capsules, tablets, powders and granules, but are not limited thereto.
- the amount of intake varies depending on the degree of purification, narrow components, age, weight, sex, form of intake, etc., but the condensed tannin oligomer which is an active ingredient
- Ingredient intake is calculated based on the amount of condensed tannin oligomer contained in the range of usually 10 to 5000 g, preferably 100 to 1000 g per day per adult, in terms of the weight of the berry fruit contained.
- An effective dose is easy and preferable.
- the present invention will be described with reference to examples, but the present invention is not limited to the following examples.
- the dimer to 13-mer condensed tannin oligomer component in the present invention is measured by measuring the structural unit and arrangement order, the degree of polymerization, the steric structure of adjacent bonds, the gallation ratio, and measuring the characteristics of the structural component. It is possible to identify the corresponding plant.
- the observed peaks (retention time) could be assigned as follows: catechin (12.1 minutes), epigallocatechin-4 ⁇ -sulfide (17.9 minutes), epigallocatechin gallate-4 ⁇ -sulfide (20.2 minutes), epicatechin -4 ⁇ -sulfide (22.3 min), epicatechin gallate-4 ⁇ -sulfide (24.4 min).
- This result is prodelphinidin in which the coconut leaf tannin component has catechin as a terminal constitutional unit and 4-4 linked epigallocatechin, epigallocatechin gallate, epicatechin, and epicatechin gallate as extension constitutional units. It showed that. Further, from the respective peak areas and relative sensitivities, it was possible to calculate that the gallated ratio was 43%.
- the target substances used in the examples were measured, and the measurement results of the structural units, arrangement order and gallation ratio are shown in Table 1. Has been.
- the Kashiwa condensate tannin contains oligomers having a degree of polymerization of up to 12, and each component having a polymerization degree is composed of components having the same or different molecular weight.
- a structural unit having a polymerization degree of 12 molecular weight around 4064
- epicatechin (EC) 10 units and epigallocatechin 3 units, of which 5 units were gallated (molecular weight 4090).
- Kashiwa tannin was analyzed by high performance liquid chromatography / mass spectrometry (LC / MS) (equipment, Shimadzu Prominence (Shimadzu), equipped with ODS column, gradient elution with formic acid / methanol / water); MS / MS, API 3200 (Applied) Using a negative-ion mode (manufactured by Biosystems), the molecular weight of 577/289 was measured, and the spectrum shown in FIG. 3d was obtained. Similarly, when grape seed preparations were measured, the four stereoisomers (B1, B2, B3, J. Chromatography A, 1177, 114-125, 2008) reported by Kohler N et al. Four peaks consistent with B4,) were observed (FIG.
- LC / MS liquid chromatography / mass spectrometry
- procyanidin dimer derived from cocoa beans is known to contain B2 as a main component
- the results of the measurement of the target substance of the present invention were in good agreement (FIG. 3c).
- the Boysenberry fruit extract showed a spectrum different from the above three types (3b).
- procyanidin dimer constituents have B1 as the main component in the bamboo leaf extract and B4 and B3 as the main components in the Boysenberry fruit extract. It was.
- the protephinidin dimer having molecular weights of 593 and 609 having epigallocatechin as the structural unit was confirmed as the dimer of kashiwa tannin.
- the procyanidin oligomer component and the prodelphinidin oligomer component were observed as a peak having an absorption of 280 nm during a retention time of 15 minutes to 32 minutes.
- Dimer and trimer components are liquid chromatography / mass mass (LC / MSMS) The analysis confirmed that it was in the same range.
- the content of the condensed tannin oligomer component was quantified as an epicatechin equivalent amount using an epicatechin calibration curve. By adding these contents to the mass balance in the extraction and fractionation operations, the amount of each component contained in the raw materials used and the intermediate preparation was calculated.
- the content of condensed tannin oligomer component in Boysenberry fruit condensed tannin oligomer extract-1 (BBF-XAD / EtOH fr) and Boysenberry fruit condensed tannin oligomer extract-2 (BBF-XAD-LH20 fr) is Calculated as 1.6 and 3.2%, respectively.
- the content of the condensed tannin oligomer component of the present invention measured in the same way is shown in the corresponding examples.
- Examples 1 and 2 Vasodilatory effect of the composition of Boysenberry fruit condensed tannin oligomer extract-1 (BBF-XAD / EtOH fr) and citric acid)
- Boysenberry juice concentrate 100 g obtained by squeezing and concentrating Boysenberry fruit is passed through an Amberlite XAD-7 column and eluted.
- Boysenberry syrup containing organic acids and saccharides as adsorbing components.
- the concentrate of the reddish brown fraction eluted with ethanol from the adsorbed polyphenol component was Boysenberry fruit condensed tannin oligomer extract-1 (BBF-XAD / EtOH fr).
- Vasodilation effect of a composition comprising Boysenberry fruit condensed tannin oligomer extract-1 (BBF-XAD / EtOH fr) and citric acid Condensed tannin oligomer extract-1 prepared in (1) (BBF-XAD / EtOH fr) and citric acid were mixed to the final concentrations shown in Table 2 as sample solutions, and the vasodilation rate was measured by the method (3) to give Examples 1 and 2. .
- the results of the same measurement at the concentrations of BBF-XAD / EtOH fr and citric acid alone at 100 and 4 ⁇ g / mL were set as Comparative Examples 1, 1a and 2a, and the results are shown in Table 2.
- the vasodilatory effect of the composition of BBF-XAD / EtOH fr and citric acid of Examples 1 and 2 was improved by 8.7 to 7.2 times compared to the vasodilatory effect of a single component.
- Examples 3, 4, 5 and 6 Vasodilation of a composition comprising Boysenberry fruit condensed tannin oligomer extract-1 (BBF-XAD / EtOH fr) and succinic acid, phytic acid, malic acid, acetic acid or lactic acid Action) Boysenberry fruit condensed tannin oligomer extract-1 (BBF-XAD / EtOH fr) prepared in Example 1 and (1) and succinic acid, phytic acid, malic acid, acetic acid, or lactic acid are shown in Table 3. The composition mixed so as to have the final concentration shown was used as a sample solution, and the vasodilation rate was measured according to the method of Example 1 and 2 (2) to give Examples 3, 4, 5, 6 and 7.
- Examples 8, 9, 10 and 11 Vasodilatory effect of a composition comprising Boysenberry fruit condensed tannin oligomer extract-2 (BBP-XAD-LH20 fr) and citric acid
- BBP-XAD-LH20 fr Boysenberry fruit condensed tannin oligomer extract-2
- citric acid citric acid
- Boysenberry fruit condensed tannin oligomer extract-2 (BBP-XAD-LH20 fr, 1.0 ⁇ g / mL) alone in Comparative Example 11
- Boysenberry fruit condensed tannin oligomer extract-2 (BBP -XAD-LH20 fr, 1.0 ⁇ g / mL) and a measurement graph showing the synergistic vasodilatory effect of a composition consisting of citric acid (100 ⁇ g / mL) are illustrated in FIG.
- the vasodilatory effect of the composition of Boysenberry fruit condensed tannin oligomer extract-2 (BBF-XAD-LH20 fr) and citric acid in Examples 8, 9, 10 and 11 is the Boysenberry fruit condensed tannin oligomer extract- 2 (BBF-XAD-LH20 fr) was improved by 3.6 to 14.5 times compared with the vasodilatory effect alone. Furthermore, the magnitude of the expansion rate was positively correlated with the concentration of Boysenberry fruit condensed tannin oligomer extract-2 (BBF-XAD-LH20 fr). These results indicate that the vasodilatory action is improved by the synergistic action of the composition comprising Boysenberry fruit condensed tannin oligomer extract-2 (BBP-XAD-LH20 fr) and citric acid.
- Examples 12, 13, 14 and 15 Vasodilatory effect of a composition comprising a condensed tannin oligomer extract derived from berry fruits and citric acid)
- a composition comprising a condensed tannin oligomer extract derived from berry fruits and citric acid
- the concentrated solution obtained by distilling off acetone from this extract under reduced pressure was loaded onto an Amberlite XAD-7 column, and water was passed through it. Then, the adsorbed Natsuhaze fruit condensed tannin oligomer component was methanol, followed by 60% acetone aqueous solution. It eluted with.
- a condensed tannin oligomer extract (GRS-XAD-LH20 fr) was obtained.
- Nutzeze fruit condensed tannin oligomer extract (NHF-XAD-LH20 fr), Bilberry fruit condensed tannin oligomer extract (BIF-XAD-LH20 fr) and grape seed condensed tannin oligomer extract (GRS-XAD-LH20 fr) are procyanidin oligomers
- the Cassis fruit condensed tannin oligomer extract (CAF-XAD-LH20 fr) was a prodelphinidin oligomer.
- Natsuhaze condensed tannin oligomer extract (NHF-XAD-LH20 fr) prepared in (1), Cassis fruit condensed tannin oligomer extract (CAF-XAD-LH20 fr), bilberry fruit condensed tannin oligomer extract (BIF-XAD-LH20 fr), grape seed condensed tannin oligomer extract (GRS-XAD-LH20 fr) and citric acid are shown in Table 5, respectively.
- the vasodilatation rate was measured according to the method of Example 1 and 2 (2) to give Examples 12, 13, 14, and 15.
- Examples 16, 17 and 18 Cocoa bean condensed tannin oligomer extract (CCP-XAD-LH20 fr), persimmon fruit condensed tannin oligomer extract (PAF-XAD / EtOH fr) and persimmon leaf condensed tannin oligomer extract (PAL) -XAD / EtOH fr) and vasodilatory effect of a composition comprising citric acid)
- PAF-XAD / EtOH fr persimmon fruit condensed tannin oligomer extract
- PAL persimmon leaf condensed tannin oligomer extract
- Astringent fruit plain nucleus seedless was strip-shaped, and 70% acetone was added and stirred to extract the condensed fruit tannin oligomer component.
- the concentrated solution obtained by distilling off acetone from the extract under reduced pressure was loaded onto an Amberlite XAD-7 column and passed through water.
- the adsorbed persimmon fruit polyphenol component was eluted with ethanol and concentrated to obtain a light brown persimmon fruit condensed tannin oligomer extract (PAF-XAD / EtOH fr).
- 70% acetone was added to Shibuya leaves (Tone seedlings) and stirred to extract the Kashiwa leaf polyphenol component.
- a concentrated aqueous solution obtained by evaporating acetone from the extract under reduced pressure was extracted with ethyl acetate to remove fat-soluble components, and then loaded onto an Amberlite XAD-7 column and passed through water.
- the adsorbed components were eluted with ethanol and concentrated to obtain a light brown maple leaf condensed tannin oligomer extract (PAL-XAD / EtOH fr).
- Cocoa bean condensed tannin oligomer extract (CCP-XAD-LH20 fr) is procyanidin, and persimmon fruit and persimmon leaf condensed tannin oligomer extract has a high epigallocatechin structural unit ratio of 65 and 45% and is also gallated. 62 and 43% were characteristic procyanidins.
- Vasodilatory action Cocoa bean condensed tannin oligomer extract CCP-XAD-LH20 fr
- persimmon fruit condensed tannin oligomer extract PAF-XAD / EtOH fr
- persimmon leaf condensed tannin oligomer extraction prepared in (1) Vasodilatation rate according to the method of Example 1 and 2 (2), using as a sample solution a composition in which the product (PAL-XAD / EtOH fr) and citric acid were mixed to the final concentrations shown in Table 6 respectively.
- Table 6 Vasodilatory action Cocoa bean condensed tannin oligomer extract
- PAF-XAD / EtOH fr persimmon fruit condensed tannin oligomer extract
- persimmon leaf condensed tannin oligomer extraction prepared in (1) Vasodilatation rate according to the method of Example 1 and 2 (2), using as a sample solution a composition in which the product (PAL-XAD / EtOH fr) and citric acid were mixed to the final concentrations shown in
- the vasodilatory action of the composition comprising CCP-XAD-LH20 fr, PAF-XAD / EtOH fr and PAL-XAD / EtOH fr and citric acid in Examples 16, 17 and 18 is a blood vessel of each alone or only citric acid only. Compared with the expansion effect, it improved by 1.4 to 1.7 times. This result shows that the vasodilatory action is improved by the synergistic action of the composition comprising the condensed tannin oligomer component and the citric acid in the cacao bean, persimmon fruit or persimmon leaf extract.
- Example 19 Method for producing Boysenberry juice acetic acid fermentation liquid composition
- Water and alcohol were added to Boysenberry concentrated fruit juice obtained by pressing and concentrating Boysenberry fruit to prepare a charging solution.
- a culture solution containing acetic acid bacteria (Acetobactor aceti) was added thereto, and acetic acid fermentation was performed at 28 ° C. to 32 ° C. for about 5 days.
- Water and alcohol vinegar were added to the resulting Boysenberry juice-containing raw vinegar (fruit juice 60%), and after adjusting the juice content and acidity, sterile filtration was performed to obtain a Boysenberry juice 30% acetic acid fermentation broth composition.
- the organic acid content of this composition by LC / MSMS analysis is 49.2 ⁇ g / mL (acetic acid 45 ⁇ g / mL, citric acid 3.7 ⁇ g / mL, malic acid 0.5 ⁇ g / mL), and the content of Boysenberry juice before fermentation Although the amount was increased 14 times from the amount of 3.5 ⁇ g / mL (acetic acid 0 ⁇ g / mL, citric acid 3.1 ⁇ g / mL, malic acid 0.4 ⁇ g / mL), the composition and content of the condensed tannin oligomer component were not changed.
- Example 20 Vasodilatory effect of Boysenberry juice acetic acid fermentation liquid composition
- the Boysenberry juice acetic acid fermentation broth composition prepared by the production method of Example 19 was used as a sample solution with a final concentration of 10 mg / mL (condensed tannin oligomer concentration of 8 ng / mL, organic acid concentration of 0.49 ⁇ g / mL). And when the vasodilatation rate was measured according to the method of (2) of 2 and 2, it was 26.7 ⁇ 8.3%.
- Example 21 Boysenberry fruit condensed tannin oligomer extract-1 (BBF-XAD / EtOH fr) and citric acid improve blood flow of composition beverage)
- Each mouse in the control group was orally administered 30 ⁇ L of beverage (condensed tannin oligomer component 0.5 ⁇ g) of Boysenberry fruit condensed tannin oligomer extract-1 (BBF-XAD / EtOH fr, 10 mg / mL) alone.
- a pentobarbital solution (6.48 mg / mL) was intraperitoneally administered (10 mL / kg).
- the amount of Boysenberry fruit condensed tannin oligomer component in this administration sample is converted to a human intake of 60 kg body weight, it corresponds to 22.5 mg. This amount corresponds to the amount of condensed tannin oligomer component contained in 480 mL as Boysenberry juice, and is in the range of daily intake as juice.
- Example 22 Boysenberry fruit condensed tannin oligomer extract-1 (BBF-XAD / EtOH fr) and citric acid
- Spontaneous hypertensive rats (SHR / Izm) pre-bred from 12 weeks of age with solid feed and free water were divided into 2 groups. After 12 hours fasting, the control group (6 animals) was deionized water, the test group (5 animals) was BBP XAD / EtOH fr 200 mg / kg and citric acid monohydrate 500 mg / kg. Was forcibly orally administered to the stomach with a sonde.
- FIG. 8 shows a temporal change in blood pressure with the measured values obtained by averaging three measured values.
- the blood pressure of the rats that received the composition of BBP XAD / EtOH fr and citric acid decreased, and showed a significant decrease compared to the control group at 1 hour and 6 hours after the intake. This result shows that the composition of BBP XAD / EtOH fr and citric acid has a blood pressure lowering effect.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Nutrition Science (AREA)
- Mycology (AREA)
- Botany (AREA)
- Medicines Containing Plant Substances (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
血管拡張作用を有し、血液循環に伴う諸症状、すなわち、血流改善のみならず、血圧上昇抑制、肩こり、頭痛、冷え性、脳循環などの軽減および緩和作用を有する組成物、その製造法、および当該機能性を有する飲食品あるいは医薬品を提供する。縮合タンニンオリゴマー成分と有機酸成分とを含有することにより血管拡張作用を相乗的に向上させる組成物、その製造法、および当該機能性を有する飲食品あるいは医薬品に関する。
Description
本発明は血管拡張作用を有する組成物および血管拡張により改善する疾病を緩和・軽減する組成物、更に詳細には、2量体~13量体の少なくとも1つの縮合タンニンオリゴマー成分と、少なくとも1つの有機酸成分とを有効成分とする血管拡張作用を相乗的に向上させる組成物、製造法および用途に関する。
近年、生活環境の多様化や高齢化に伴い、生活習慣病のリスクが高まってきている。その予防とリスク軽減のためには、生体調節機能をもつ食品を摂取する食生活が重要であることが明らかになっており、機能性をもつ食品成分の研究・開発が精力的に行われてきている。例えば、健康な身体を維持する重要な機能として循環機能があり、循環機能を良好に維持・改善する食品類を日常的に摂取することにより、血液循環の悪化に伴う諸症状、すなわち血流のみならず、血圧、肩こり、頭痛、冷え性、脳循環などを改善することが可能となると考えられている。従って、血流を改善する食品成分の探索や評価が機能性食品開発のひとつの標的となっている。私達が日常的に食べている野菜や果実には多種多様なポリフェノール類が含まれており、近年、その健康機能に関する研究が急速に拡大してきている。ポリフェノール類の中でも比較的調製しやすい大豆イソフラボン、茶カテキン、たまねぎケルセチン、ベリー類アントシアニンなどのフラボノイド成分は、それぞれ特徴的な健康機能を有することが科学的にも明らかになってきた結果、健康に役立つ食品成分として健康食品やサプリメント類に利用されてきている。一方、ポリフェノール類の中でも、特に複雑な分子構造をもつ縮合タンニンオリゴマー成分は、従来技術では精製や製造が困難であったために未検討領域として残されていた。しかし、最近では、最新の高度技術を応用して縮合タンニンオリゴマー成分を抽出し、それらの健康機能を解明する研究が進んできた。
縮合タンニンは、緑茶カテキン類としてよく知られるカテキン、エピカテキン、ガロカテキン、エピガロカテキン及びそれらの3-O-ガレート、すなわち、カテキンガレート、エピカテキンガレート、ガロカテキンガレート、エピガロカテキンガレートを構成単位(1量体)として、重合した物質群の総称であり、重合度の違いにより、低重合成分(2量体から20量体程度)を特に縮合タンニンオリゴマーと称することがある。更に、縮合タンニンをその構成単位により分類すると、カテキン、エピカテキン及び/又はそれらのガレートを構成単位とするものをプロシアニジンとして、ガロカテキン、エピガロカテキン及び/又はそれらのガレートの少なくとも1つが構成単位に加わっているものをプロデルフィニジンとする報告例が多い。例を挙げると、カカオから得られる縮合タンニンは、エピカテキンのみを構成単位とするものであり、プロシアニジンに分類される。一方、柿果実に含まれる縮合タンニンは、プロシアニジンの構成単位であるエピカテキン及びエピカテキンガレートに、エピガロカテキン及びエピカテキンガレートが加わっており、プロデルフィニジンに属する。
縮合タンニンオリゴマーの中でもプロシアニジンオリゴマー成分は、その構成単位がカテキン、エピカテキン及び/又はそれらのガレートに限定されるので比較的簡単な分子構造を有し、含有量も高い植物品種が見出された結果、いくつかの研究例がある。従って、縮合タンニンオリゴマーの研究はプロシアニジンオリゴマー成分からスタートしたと言える。例えば、リンゴやブドウ種子、カカオ豆、松樹皮などに含まれているプロシアニジンオリゴマー成分についての研究は現在も進んでおり、それらの健康機能として、抗酸化活性や自己免疫疾患治療剤(特許文献1:WO2005/030200)、血流改善作用(特許文献2:特許公開2003-128560および特許文献3:特許公表2003-530410など)などが報告されている。
カテキン、エピカテキンに加えてガロカテキン、エピガロカテキン及び/又はそれらのガレートが構成単位に加わったプロデルフィニジンオリゴマー成分は、柿果実やグミ科果実(sea buckthorn)に含まれていることが明らかになっている。プロシアニジンオリゴマー成分に比べて構造が複雑になるプロデルフィニジンオリゴマー成分は、それを大量に抽出・精製する方法も見出されておらず、その健康機能に関する科学的な研究は未だ極めて少ない状況にある。わずかに、プロデルフィニジンオリゴマー成分が含まれる柿果実を摂取した報告があるが、プロデルフィニジン成分を抽出せずに柿果実全体の凍結乾燥品を用いた実験を行っている(非特許文献1:Hibino G et al., Reguration of the peripheral body temperature by foods: a temperature decrease induced by the Japanese persimmon (kaki, Diospyros kaki) Biosci. Biotechnol. Biochem., 67, 23-28 (2003))。しかも、その結果は血圧を上昇させるとともに血流を抑制する作用を示すものであり、血管拡張作用とは逆の血管収縮作用を示唆する結果となっていた。
この結果は、あくまで柿果実全体を摂取したときの結果であり、柿果実にあるプロデルフィニジンの作用であるかそれ以外の成分の作用であるか明らかにはなっていなかった。従って、真のプロデルフィニジンオリゴマー成分の血管に及ぼす作用を評価するためには、精製した試料を得て評価する必要があったが、その効率的な抽出法や精製法は見出されていなかった。このように、縮合タンニンの中でもプロデルフィニジンオリゴマー成分の血管拡張作用の評価は未だ明らかになっていないのが現状であった。
このように、縮合タンニンオリゴマー成分の血管拡張作用は、リンゴやブドウ種子、カカオ豆、松樹皮などに含まれているプロシアニジンオリゴマー成分に限定されており、プロデルフィニジンオリゴマーを含めた新たな有効成分を探索・評価して、より優れた作用をもつ成分を開発することが望まれていた。更に、プロシアニジンオリゴマー、プロデルフィニジンオリゴマーのいずれの縮合タンニンオリゴマー成分も植物中の含有量が低いため、その抽出や製造に多大の労力を要する短所があった。従って、より少ない使用量で効率的に血管拡張作用を発揮させる増強成分の探索、その組成物や製造方法の開発が望まれていた。
Hibino G et al., Reguration of the peripheral body temperature by foods: a temperature decrease induced by the Japanese persimmon (kaki, Diospyros kaki) Biosci. Biotechnol. Biochem., 67, 23-28 (2003))
本発明の目的は、縮合タンニンオリゴマー成分が示す優れた健康機能、特に血管拡張作用を相乗的に向上させる新たな組成物を見出し、その組成物、製造法、および用途を提供することである。
本発明者らは、上記課題を解決すべく鋭意研究を行った結果、従来から知られていたプロシアニジンオリゴマー成分の血管拡張作用は、プロデルフィニジンオリゴマー成分を含めた2量体~13量体の少なくとも1つの縮合タンニンオリゴマー成分が共通して示す作用であり、更に驚くべきことには、2量体~13量体の少なくとも1つの縮合タンニンオリゴマー成分に、少なくとも1つの有機酸成分を共存させた組成物において、その血管拡張作用が飛躍的に向上する相乗作用を見出し、本発明を完成させた。より具体的には、本発明は以下の特徴を有する。
1.ベリー類果実又はカカオ豆又は柿果実若しくは柿葉由来の2量体~13量体の少なくとも1つの縮合タンニンオリゴマー成分と、少なくとも1つの有機酸成分とを有効成分とする血管拡張剤であって、縮合タンニンオリゴマー成分がカテキン、エピカテキン、ガロカテキン、エピガロカテキン及び/又はそれらのガレートの少なくとも1つを構成単位とするプロシアニジンオリゴマー及び/又はプロデルフィニジンオリゴマーである、前記血管拡張剤。
2.ベリー類果実が、ボイセンベリー、ナツハゼ、カシス、ブルーベリー、クランベリー、ストロベリー又はブドウである、請求項1記載の血管拡張剤。
3.有機酸成分が、クエン酸、コハク酸、リンゴ酸、酢酸、フィチン酸及び/又は乳酸若しくはそれらの塩である、請求項1又は2記載の血管拡張剤。
4.有機酸成分が、クエン酸若しくはその塩である、請求項3記載の血管拡張剤。
5.血流改善作用及び/又は血圧上昇抑制作用を有する、請求項1~4のいずれか1項記載の血管拡張剤。
6.請求項1~5のいずれか1項記載の血管拡張剤を含有することを特徴とする、医薬品又は食品。
7.少なくとも1つの縮合タンニンオリゴマー成分と糖成分とを含有するベリー類果実又はカカオ豆又は柿果実若しくは柿葉、又はその抽出液を微生物発酵させることにより有機酸成分を生成又は増量させることを特徴とする、請求項1記載の血管拡張剤の製造方法。
8.ベリー類果実又はその抽出物が、ボイセンベリー、ナツハゼ、カシス、ブルーベリー、クランベリー、ストロベリー又はブドウである、請求項7記載の製造方法。
9.有機酸成分が、クエン酸、コハク酸、リンゴ酸、酢酸、フィチン酸及び/又は乳酸若しくはそれらの塩である、請求項7又は8記載の製造方法。
10.有機酸成分が、クエン酸若しくはその塩である、請求項9記載の製造方法。
1.ベリー類果実又はカカオ豆又は柿果実若しくは柿葉由来の2量体~13量体の少なくとも1つの縮合タンニンオリゴマー成分と、少なくとも1つの有機酸成分とを有効成分とする血管拡張剤であって、縮合タンニンオリゴマー成分がカテキン、エピカテキン、ガロカテキン、エピガロカテキン及び/又はそれらのガレートの少なくとも1つを構成単位とするプロシアニジンオリゴマー及び/又はプロデルフィニジンオリゴマーである、前記血管拡張剤。
2.ベリー類果実が、ボイセンベリー、ナツハゼ、カシス、ブルーベリー、クランベリー、ストロベリー又はブドウである、請求項1記載の血管拡張剤。
3.有機酸成分が、クエン酸、コハク酸、リンゴ酸、酢酸、フィチン酸及び/又は乳酸若しくはそれらの塩である、請求項1又は2記載の血管拡張剤。
4.有機酸成分が、クエン酸若しくはその塩である、請求項3記載の血管拡張剤。
5.血流改善作用及び/又は血圧上昇抑制作用を有する、請求項1~4のいずれか1項記載の血管拡張剤。
6.請求項1~5のいずれか1項記載の血管拡張剤を含有することを特徴とする、医薬品又は食品。
7.少なくとも1つの縮合タンニンオリゴマー成分と糖成分とを含有するベリー類果実又はカカオ豆又は柿果実若しくは柿葉、又はその抽出液を微生物発酵させることにより有機酸成分を生成又は増量させることを特徴とする、請求項1記載の血管拡張剤の製造方法。
8.ベリー類果実又はその抽出物が、ボイセンベリー、ナツハゼ、カシス、ブルーベリー、クランベリー、ストロベリー又はブドウである、請求項7記載の製造方法。
9.有機酸成分が、クエン酸、コハク酸、リンゴ酸、酢酸、フィチン酸及び/又は乳酸若しくはそれらの塩である、請求項7又は8記載の製造方法。
10.有機酸成分が、クエン酸若しくはその塩である、請求項9記載の製造方法。
本発明の、ベリー類果実又はカカオ豆又は柿果実若しくは柿葉由来の2量体~13量体の少なくとも1つの縮合タンニンオリゴマー成分と、少なくとも1つの有機酸成分を有効成分とする組成物は、その相乗的な作用により優れた血管拡張作用を有する。
本発明における血管拡張作用は、血管を拡張させる作用を有し、血管循環機能が関与する諸症状、血流改善のみならず、血圧上昇抑制、肩こり、頭痛、冷え性、脳循環などの軽減および緩和作用をいう。
ベリー類果実又はカカオ豆又は柿果実若しくは柿葉由来の2量体~13量体の少なくとも1つの縮合タンニンオリゴマー成分は、カテキン、エピカテキン、ガロカテキン、エピガロカテキン及び/又はそれらのガレートの少なくとも1つを構成単位とするプロシアニジンオリゴマー及び/又はプロデルフィニジンオリゴマーである。隣接する構成単位間は、4位と8位で結合しており、4位の立体構造は特に制限されるものではなく、4α-または4β-両方の配置を取りうる。最も簡単な例になるプロシアニジン2量体を例にあげると、カテキン(CA)およびエピカテキン(EC)を構成単位する構造成分は、CA8-4βEC (一般名プロシアニジンB1)、EC8-4βEC (一般名プロシアニジンB2)、CA8-4αCA (一般名プロシアニジンB3)、EC8-4αCA (一般名プロシアニジンB4)の4種類が存在する。更に、ガレート化構造を考えると、それぞれ4種類のノンガレート構造成分について1個(mono-)および2個(di-)存在するので、8種類が加わる。従って、4-8結合を有するプロシアニジン2量体の構造成分だけでも12種類の可能な構造が存在することになる。このように、カテキン、エピカテキン、ガロカテキン、エピガロカテキン及び/又はそれらのガレートの少なくとも1つを構成単位とするプロシアニジンオリゴマー及び/又はプロデルフィニジンオリゴマーを構成する成分は、構成単位とその配列順、重合度、隣接結合の立体構造、ガレート化の比率により多数の成分が存在することになる。
ベリー類果実又はカカオ豆又は柿果実若しくは柿葉由来の2量体~13量体の少なくとも1つの縮合タンニンオリゴマー成分は、カテキン、エピカテキン、ガロカテキン、エピガロカテキン及び/又はそれらのガレートの少なくとも1つを構成単位とするプロシアニジンオリゴマー及び/又はプロデルフィニジンオリゴマーである。隣接する構成単位間は、4位と8位で結合しており、4位の立体構造は特に制限されるものではなく、4α-または4β-両方の配置を取りうる。最も簡単な例になるプロシアニジン2量体を例にあげると、カテキン(CA)およびエピカテキン(EC)を構成単位する構造成分は、CA8-4βEC (一般名プロシアニジンB1)、EC8-4βEC (一般名プロシアニジンB2)、CA8-4αCA (一般名プロシアニジンB3)、EC8-4αCA (一般名プロシアニジンB4)の4種類が存在する。更に、ガレート化構造を考えると、それぞれ4種類のノンガレート構造成分について1個(mono-)および2個(di-)存在するので、8種類が加わる。従って、4-8結合を有するプロシアニジン2量体の構造成分だけでも12種類の可能な構造が存在することになる。このように、カテキン、エピカテキン、ガロカテキン、エピガロカテキン及び/又はそれらのガレートの少なくとも1つを構成単位とするプロシアニジンオリゴマー及び/又はプロデルフィニジンオリゴマーを構成する成分は、構成単位とその配列順、重合度、隣接結合の立体構造、ガレート化の比率により多数の成分が存在することになる。
本発明の有効成分となる縮合タンニンオリゴマー成分は、それらを含有する植物の果実や葉、樹皮などの抽出物や濃縮物などを使用できる。植物種は特に限定されるものではないが、食経験がある果実や葉抽出物類は医薬品や飲食品用として好ましく使用できる。例えば、プロシアニジンオリゴマー成分を含有することが多いベリー類果実やカカオ豆(Theobroma cacao)、プロデルフィニジンオリゴマー成分を含有する柿果実(Diospyros kaki)や柿葉などは好適に使用することができる。ベリー類果実の具体例として、ボイセンベリー (Rubus sp. Hydrid “Boysen”)、ナツハゼ (Vaccinium oldhamii)、カシス (Ribes nigrum)、ブルーベリー(Vaccinium angustifolium, V. ashei, V. corymbosum)、クランベリー(Vaccinium macrocarpon)、ストロベリー (Fragari sp.)、ブドウ(Vitis vinifera)、ビルベリー (Vaccinium myrtillus)、コケモモ (Vaccinium vits-idea)、ブラックベリー (Rubus fruticosus)、エルダーベリー (Sambucus nigra)、ヤマブドウ (Vitis coignetiae)、チョークベリー (Photinia melanocarpa) などを例示でき、果実には果肉、果皮、種子も含む。柿果実や柿葉の具体例としては、甘柿でも渋柿でも使用できるが、好ましくは縮合タンニンオリゴマー成分を多く含有する渋柿が挙げられる。
縮合タンニンオリゴマー成分として特定の構造成分を主成分とするときは、原料となる植物の果実や葉、樹皮などを適宜選択することにより、その含有量を高めることができる。例えば、プロシアニジンオリゴマー成分を主成分とするときは、カカオ豆やブドウ種子、ボイセンベリーやブルーベリー、クランベリー、ビルベリーなどから調製した成分を配合して使用することができる。プロデルフィニジンオリゴマー成分の配合比率を高めるためには、柿果実や柿葉から調製した成分を多く加えることで可能となる。
植物類に由来する縮合タンニンオリゴマー成分は抽出物や濃縮物などの形態をとることができるが、搾汁、抽出、分画、濃縮などを選択、組合せて調製することができる。例えば、果実を圧搾処理により得られる果汁はそれ自体を使用することができる。更に、果汁は、膜や減圧により濃縮した濃縮物、アンバーライト XAD-4やXAD-7など(商標、オルガノ(株)製、以下同じ)、ダイヤイオン HP-10やHP-20など(商標、三菱化学(株)製、以下同じ)の合成吸着樹脂、セファデックス LH-20 (商標、GEヘルスケアバイオサイエンス(株)製、以下同じ)、トヨパールHW-40やHW-50(商標、(株)東ソー社製)などのゲルろ過担体により濃縮・分画された濃縮物として使用できる。搾汁果汁に縮合タンニンオリゴマー成分と有機酸成分の両有効成分を含むベリー品種もあるので、その有機酸を活用した組成物とすることもできる。また、圧搾残渣中の果皮や種子から親水性溶媒で抽出した縮合タンニンオリゴマー成分も使用することができる。親水性溶媒としては、例えば、メタノール、エタノール、イソプロパノール、エチレングリコール、アセトン、アセトニトリル、ジメチルスルフォキシドなどが挙げられるが、これらを単独または水を含めた複数種の混合溶媒として使用することもできる。これらの溶媒の中でも、飲食品に用いる用途を考慮すると、エタノールおよび含水エタノールを好ましく使用できる。抽出物からは、果汁と同様に、濃縮工程や分画工程を組み合わせることにより濃縮物に導くことができる。
本発明の組成物を構成する有機酸成分は、ベリー類果実又はカカオ豆又は柿果実若しくは柿葉由来の2量体~13量体の少なくとも1つの縮合タンニンオリゴマー成分との相互作用により、血管拡張作用を相乗的に向上させる組成物の有効成分となることができる。
有機酸成分は特に制限されるものではないが、好ましくはクエン酸、コハク酸、リンゴ酸、酢酸、フィチン酸、乳酸またはそれらの塩が挙げられる。これらは単独または二つ以上の混合物を使用することができ、具体的な塩として、ナトリウム、カリウム、カルシウム、マグネシウム、アンモニウムなどを例示できる。また、この組成物は、縮合タンニンオリゴマー成分を含む抽出液や濃縮液に、所定量の有機酸成分を添加することにより調製することができる。使用する有機酸成分の形態としては、飲食品としての原材料、食品添加物、更には有機酸成分を含有するかんきつ類や発酵産物も使用可能である。
有機酸成分は特に制限されるものではないが、好ましくはクエン酸、コハク酸、リンゴ酸、酢酸、フィチン酸、乳酸またはそれらの塩が挙げられる。これらは単独または二つ以上の混合物を使用することができ、具体的な塩として、ナトリウム、カリウム、カルシウム、マグネシウム、アンモニウムなどを例示できる。また、この組成物は、縮合タンニンオリゴマー成分を含む抽出液や濃縮液に、所定量の有機酸成分を添加することにより調製することができる。使用する有機酸成分の形態としては、飲食品としての原材料、食品添加物、更には有機酸成分を含有するかんきつ類や発酵産物も使用可能である。
本発明の血管拡張作用を相乗的に向上させる組成物中の縮合タンニンオリゴマー成分の含有量は、プロシアニジンオリゴマー及びプロデルフィニジンオリゴマーの制限はないが、組成物中に、概して、0.00004~90重量%、好ましくは0.00004~40重量% 、より好ましくは0.004~40重量%である。また、縮合タンニンオリゴマー成分と有機酸とは、重量比で1:1~70000、好ましくは1:2~200の割合で含まれる。
一方、縮合タンニンオリゴマー成分を含有する植物中の糖成分を加工変換することにより、有機酸を生成せしめ、所望の組成物を得ること可能になれば、本発明組成物を製造する上で大きなメリットとなる。本発明者らは、縮合タンニンオリゴマー成分と糖成分を含有する植物またはその抽出液から、縮合タンニンオリゴマー成分を分解させることなく糖成分を微生物発酵させることにより有機酸成分を所定量まで生成または増量させる方法を鋭意検討した結果、所望の組成物を得る新たな製造法を確立し、本組成物の効率的な製造法として完成することができた。具体的には、植物またはその抽出液に、有機酸発酵を行う微生物を作用させて、縮合タンニンオリゴマー成分を損なうことなく有機酸を増量させることにより、縮合タンニンオリゴマー成分と有機酸成分を有効成分とする血管拡張作用を相乗的に向上させる組成物を製造する方法である。
有機酸発酵させる縮合タンニンオリゴマー成分と糖成分を含有する植物またはその抽出液は、特に限定されるものではないが、ベリー類果実又はその抽出液、又は渋柿果実又はその抽出液が好ましく使用できる。その具体例として、ボイセンベリー (Rubus sp. Hydrid “Boysen”)、ナツハゼ (Vaccinium oldhamii)、カシス (Ribes nigrum)、ブルーベリー(Vaccinium angustifolium, V. ashei, V. corymbosum)、クランベリー(Vaccinium macrocarpon)、ストロベリー (Fragari sp.)、ブドウ(Vitis vinifera)、ビルベリー (Vaccinium myrtillus)、コケモモ (Vaccinium vits-idea)、ブラックベリー (Rubus fruticosus)、エルダーベリー (Sambucus nigra)、ヤマブドウ (Vitis coignetiae)、チョークベリー (Photinia melanocarpa)、刀根早生渋柿、平核無渋柿などの果実またはその抽出液、を例示できる。また、作用させる微生物は、縮合タンニンオリゴマー成分を損なうことなく有機酸発酵を行う微生物であれば、特に限定されるものではなく、クエン酸発酵や酢酸発酵を行う微生物類が好適に使用できる。その具定例として、クロカビ(Aspergillus niger)、枯草菌(Bacillus licheniformis)、酵母(Saccharomyces cerevisiae)、酢酸菌(Acetobactor aceti)、乳酸菌(Lactobacillus sp.)などを単独または組み合わせた有機酸発酵が挙げられる。
血管拡張作用を相乗的に向上させる縮合タンニンオリゴマー成分と有機酸成分とを含有する組成物は、多様な形態で医薬品または飲食品に応用することが可能である。本発明の組成物を医薬品として用いる場合は、例えば散剤、顆粒剤、カプセル剤、丸剤、錠剤等の固形製剤、水剤、懸濁剤、乳剤等の液剤等の経口投与剤が挙げられる。この経口投与剤は、上記組成物の他、経口投与剤の形態に応じて一般に用いられる賦形剤、崩壊剤、結合剤、滑沢剤、界面活性剤、アルコール類、水、水溶性高分子、甘味料、矯味剤、酸味料等を添加して製造することができる。
本発明の組成物を飲食品として用いる場合は、血管拡張作用を発揮して、単独または飲食可能な他の飲料および食品素材と組み合わせて使用することができる。具体的な飲食品としては、果汁飲料、果実飲料、野菜飲料、炭酸飲料、茶飲料、スポーツ飲料、乳飲料などの飲料類、パン、ケーキ、クッキーなどのベーカリー食品類、ソース、スープ、ドレッシングなどの調味料類、牛乳、ヨーグルトなどの乳製品類、チョコレート、キャンデーなどの菓子類、カプセル剤、錠剤、粉末剤、顆粒剤などのサプリメント類などが挙げられるがこれらに限定されるものではない。
本発明の組成物を、飲食品として摂取する場合の摂取量は、精製度合や狭雑成分、または、年齢、体重、性別、または摂取の形態等によっても異なるが、有効成分である縮合タンニンオリゴマー成分の摂取量は、含有するベリー果実重量相当に換算して、通常成人1人1日当たり、10~5000g、好ましくは100~1000g の範囲に含まれる縮合タンニンオリゴマー量を目安に設計を行うと、有効量の摂取が容易であり好ましい。しかし、飲食物の場合は医薬品とは異なり、保健機能の維持という目的、並びに、呈味性、嗜好性を考慮した場合においては、上記の範囲に限定されるものではない。
以下に、本発明について実施例をあげて説明するが、本発明は以下の例に限定されるものではない。
以下に、本発明について実施例をあげて説明するが、本発明は以下の例に限定されるものではない。
(参考例1:縮合タンニンオリゴマー成分の構造測定による本発明対象成分の特定化)
本発明における2量体~13量体縮合タンニンオリゴマー成分については、その構成単位と配列順、重合度、隣接結合の立体構造、ガレート化比率を測定し、その構造成分の特徴を測定することにより該当する植物を特定することが可能となっている。
本発明における2量体~13量体縮合タンニンオリゴマー成分については、その構成単位と配列順、重合度、隣接結合の立体構造、ガレート化比率を測定し、その構造成分の特徴を測定することにより該当する植物を特定することが可能となっている。
その1)構成単位、配列順及びガレート化比率の測定による特定:加チオール分解反応による
縮合タンニン成分を、3%塩酸含有メタノール溶液中、トルエンチオールと加チオール分解反応させるGuyot Sらの方法(J. Agric. Food Chem. 49巻、14-20頁、2001年)に準じて行った。例えば、柿葉抽出物を加チオール分解して得られる反応生成物を、液体クロマトグラフィー(ODSカラム、280nmUV検出器)で分析すると、図1のスペクトルが得られた。観測ピーク(保持時間)は次のように帰属できた;カテキン(12.1分)、エピガロカテキン-4β-硫化物(17.9分)、エピガロカテキンガレート-4β-硫化物(20.2分)、エピカテキン-4β-硫化物(22.3分)、エピカテキンガレート-4β-硫化物(24.4分)。この結果は、柿葉タンニン成分が、カテキンを末端構成単位とし、8-4結合したエピガロカテキン、エピガロカテキンガレート、エピカテキン、エピカテキンガレートの4種類を伸張構成単位とするプロデルフィニジンであることを示していた。また、それぞれのピーク面積と相対感度から、ガレート化されている比率は43%であると算出できた。同様にして、実施例において用いた対象物質を測定し、その構成単位、配列順及びガレート化比率の測定した結果を表1に示したが、原料や調製法により特有の構造を持つことが示されている。
縮合タンニン成分を、3%塩酸含有メタノール溶液中、トルエンチオールと加チオール分解反応させるGuyot Sらの方法(J. Agric. Food Chem. 49巻、14-20頁、2001年)に準じて行った。例えば、柿葉抽出物を加チオール分解して得られる反応生成物を、液体クロマトグラフィー(ODSカラム、280nmUV検出器)で分析すると、図1のスペクトルが得られた。観測ピーク(保持時間)は次のように帰属できた;カテキン(12.1分)、エピガロカテキン-4β-硫化物(17.9分)、エピガロカテキンガレート-4β-硫化物(20.2分)、エピカテキン-4β-硫化物(22.3分)、エピカテキンガレート-4β-硫化物(24.4分)。この結果は、柿葉タンニン成分が、カテキンを末端構成単位とし、8-4結合したエピガロカテキン、エピガロカテキンガレート、エピカテキン、エピカテキンガレートの4種類を伸張構成単位とするプロデルフィニジンであることを示していた。また、それぞれのピーク面積と相対感度から、ガレート化されている比率は43%であると算出できた。同様にして、実施例において用いた対象物質を測定し、その構成単位、配列順及びガレート化比率の測定した結果を表1に示したが、原料や調製法により特有の構造を持つことが示されている。
その2)重合度の測定による特定:MALD-TOF MS分析による
上記の柿葉縮合タンニンを、MALD-TOF MS(装置, Bruker Reflex III TOF/TOF; mode, linear positive, matrix, dihydroxybenzoic acid)にて分析すると、図2に示されるスペクトラムが得られた。測定された分子量を、縮合タンニンの構成単位の組合せと重合度で精査した対応ピークも図2中に示される。このMALD-TOF MS結果から、柿葉縮合タンニンは重合度12まで連続したオリゴマーを含み、かつ、それぞれの重合度成分においても分子量が同一または異なる成分から構成されていることがわかった。具体例として重合度12(分子量 4064周辺)の構成単位を解析すると、エピカテキン(EC)が1単位とエピガロカテキン11単位で構成されてそのうちの3単位がガレート化させている成分(分子量 4090)およびエピカテキン(EC)が10単位とエピガロカテキン3単位でそのうちの5単位がガレート化させている成分(分子量 4090)の存在が確認できた。このようにして、実施例において用いた対象物質の重合度を測定した結果、原料や調製法により特有の分子量分布と構成単位を持つことが明らかとなった。その結果についても表1に示す。
上記の柿葉縮合タンニンを、MALD-TOF MS(装置, Bruker Reflex III TOF/TOF; mode, linear positive, matrix, dihydroxybenzoic acid)にて分析すると、図2に示されるスペクトラムが得られた。測定された分子量を、縮合タンニンの構成単位の組合せと重合度で精査した対応ピークも図2中に示される。このMALD-TOF MS結果から、柿葉縮合タンニンは重合度12まで連続したオリゴマーを含み、かつ、それぞれの重合度成分においても分子量が同一または異なる成分から構成されていることがわかった。具体例として重合度12(分子量 4064周辺)の構成単位を解析すると、エピカテキン(EC)が1単位とエピガロカテキン11単位で構成されてそのうちの3単位がガレート化させている成分(分子量 4090)およびエピカテキン(EC)が10単位とエピガロカテキン3単位でそのうちの5単位がガレート化させている成分(分子量 4090)の存在が確認できた。このようにして、実施例において用いた対象物質の重合度を測定した結果、原料や調製法により特有の分子量分布と構成単位を持つことが明らかとなった。その結果についても表1に示す。
その3) 縮合タンニン2量体の立体構造による特定:高速液体クロマトグラフィー/質量分析 (LC/MS)による
ガレートを含まない4-8結合プロシアニジン2量体(分子量:578)は4種類(B1, B2, B3, B4)存在し、立体構造まで確定した構造異性体となっている。これら異性体の含有比率は、その原料や調製法により異なる結果、プロシアニジン2量体の構成成分を測定することにより、縮合タンニンオリゴマーの由来などを特定する一助となる。以下にその具体例を示す。柿葉タンニンを、高速液体クロマトグラフィー/質量分析(LC/MS)(装置、Shimadzu Prominence (島津社製)、ODSカラム装着、ギ酸・メタノール・水によるグラジエント溶出);MS/MS、API 3200 (アプライドバイオシステム社製、negative-ion mode)を用いて、分子量577/289にて測定すると、図3dのスペクトルが得られた。同様にして、ブドウ種子調製品を測定すると、Kohler Nら(J. Chromatography A, 1177巻、114-125頁、2008年)が報告している4種の立体異性体(B1, B2, B3, B4,)と一致する4本のピークが観測できた(図3a)。カカオ豆由来のプロシアニジン2量体はB2を主成分として含有することが知られているが、本発明の対象物質の測定においてもよく一致する結果であった(図3c)。また、ボイセンベリー果実抽出物は、上記3種と異なるスペクトルを示した(3b)。これらの測定値を比較することにより、プロシアニジン2量体構成成分は、柿葉抽出物ではB1を、ボイセンベリー果実抽出物ではB4及びB3を主成分とする特徴を持っていることが明らかとなった。柿葉タンニンの2量体は、分子量577以外にも、エピガロカテキンを構成単位になる分子量 593及び609のプロデルフィニジン2量体が確認された。
ガレートを含まない4-8結合プロシアニジン2量体(分子量:578)は4種類(B1, B2, B3, B4)存在し、立体構造まで確定した構造異性体となっている。これら異性体の含有比率は、その原料や調製法により異なる結果、プロシアニジン2量体の構成成分を測定することにより、縮合タンニンオリゴマーの由来などを特定する一助となる。以下にその具体例を示す。柿葉タンニンを、高速液体クロマトグラフィー/質量分析(LC/MS)(装置、Shimadzu Prominence (島津社製)、ODSカラム装着、ギ酸・メタノール・水によるグラジエント溶出);MS/MS、API 3200 (アプライドバイオシステム社製、negative-ion mode)を用いて、分子量577/289にて測定すると、図3dのスペクトルが得られた。同様にして、ブドウ種子調製品を測定すると、Kohler Nら(J. Chromatography A, 1177巻、114-125頁、2008年)が報告している4種の立体異性体(B1, B2, B3, B4,)と一致する4本のピークが観測できた(図3a)。カカオ豆由来のプロシアニジン2量体はB2を主成分として含有することが知られているが、本発明の対象物質の測定においてもよく一致する結果であった(図3c)。また、ボイセンベリー果実抽出物は、上記3種と異なるスペクトルを示した(3b)。これらの測定値を比較することにより、プロシアニジン2量体構成成分は、柿葉抽出物ではB1を、ボイセンベリー果実抽出物ではB4及びB3を主成分とする特徴を持っていることが明らかとなった。柿葉タンニンの2量体は、分子量577以外にも、エピガロカテキンを構成単位になる分子量 593及び609のプロデルフィニジン2量体が確認された。
以上3つの測定方法により植物種が含有し、以下の実施例で用いた縮合タンニンオリゴマー成分の構造特性を測定した具体例を表1に示す。この表からも明らかなように、原料植物から得られる縮合タンニンオリゴマーの測定値はそれぞれ異なる部分があり、その由来物質を特定することができる。
(参考例2:ベリー類果実又はカカオ豆又は柿果実若しくは柿葉由来の縮合タンニンオリゴマーの定量)
本発明の縮合タンニンオリゴマー抽出物、例えば、ボイセンベリーより得られるBBF-XAD/EtOH fr、BBF-XAD-LH20 frおよびエピカテキン標準品の液体クロマトグラフィー(HPLC)プロファイルを、それぞれ、(4a)、(4b)および(4c)に示す。HPLC測定条件:カラム、Inertsil ODS-3 (250 x 4.6 mm);移動相、A (0.5% トリフルオロ酢酸水溶液)、B (0.5% トリフルオロ酢酸メタノール溶液);グラジエント、0-5分(A/B=90/10)、5-15分(A/B=10/90 - 25/75)、15-35分(A/B=25/75 - 35/65)、35-50分(A/B=35/65 - 50/50)、50-60分(A/B=0/100)、60-75分(A/B=90/10);流速、1.0 mL/分;検出法、UV (280 & 520 nm)。本測定条件下で、プロシアニジンオリゴマー成分及びプロデルフィニジンオリゴマー成分は、保持時間15分から32分の間に280nmの吸収を示すピークとして観測された。2量体および3量体の成分は液体クロマトグラフィー/マスマス(LC/MSMS)
分析により同範囲にあることを確認した。縮合タンニンオリゴマー成分の含有量は、エピカテキンの検量線を用いたエピカテキン換算量として定量した。これらの含有量を抽出および分画操作における物質収支量に算入することにより、使用原料および中間調製品に含まれるそれぞれの成分量を算出した。その結果、ボイセンベリー果実縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr)およびボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBF-XAD-LH20 fr)中の縮合タンニンオリゴマー成分の含有量は、それぞれ、1.6および3.2%と算出された。同様に測定された本発明の縮合タンニンオリゴマー成分の含有量は、該当する実施例の中で示されている。
本発明の縮合タンニンオリゴマー抽出物、例えば、ボイセンベリーより得られるBBF-XAD/EtOH fr、BBF-XAD-LH20 frおよびエピカテキン標準品の液体クロマトグラフィー(HPLC)プロファイルを、それぞれ、(4a)、(4b)および(4c)に示す。HPLC測定条件:カラム、Inertsil ODS-3 (250 x 4.6 mm);移動相、A (0.5% トリフルオロ酢酸水溶液)、B (0.5% トリフルオロ酢酸メタノール溶液);グラジエント、0-5分(A/B=90/10)、5-15分(A/B=10/90 - 25/75)、15-35分(A/B=25/75 - 35/65)、35-50分(A/B=35/65 - 50/50)、50-60分(A/B=0/100)、60-75分(A/B=90/10);流速、1.0 mL/分;検出法、UV (280 & 520 nm)。本測定条件下で、プロシアニジンオリゴマー成分及びプロデルフィニジンオリゴマー成分は、保持時間15分から32分の間に280nmの吸収を示すピークとして観測された。2量体および3量体の成分は液体クロマトグラフィー/マスマス(LC/MSMS)
分析により同範囲にあることを確認した。縮合タンニンオリゴマー成分の含有量は、エピカテキンの検量線を用いたエピカテキン換算量として定量した。これらの含有量を抽出および分画操作における物質収支量に算入することにより、使用原料および中間調製品に含まれるそれぞれの成分量を算出した。その結果、ボイセンベリー果実縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr)およびボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBF-XAD-LH20 fr)中の縮合タンニンオリゴマー成分の含有量は、それぞれ、1.6および3.2%と算出された。同様に測定された本発明の縮合タンニンオリゴマー成分の含有量は、該当する実施例の中で示されている。
(実施例1及び2:ボイセンベリー果実縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr)とクエン酸との組成物の血管拡張作用)
(1)ボイセンベリー果実縮合タンニンオリゴマー抽出物の調製
ボイセンベリー果実を搾汁・濃縮して得たボイセンベリー果汁濃縮液(100g)をアンバーライトXAD-7カラムに通液して、溶出される非吸着成分の有機酸や糖質を含むボイセンベリーシロップとした。吸着されたポリフェノール成分をエタノールで溶出した赤褐色画分の濃縮物をボイセンベリー果実縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr)とした。更に、BBF-XAD/EtOH frのエタノール溶液をセファデックスLH-20カラムに負荷し、メタノールで通液した後、70%アセトン水溶液で溶出された画分の濃縮物をボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBF-XAD-LH20 fr)とした。
(1)ボイセンベリー果実縮合タンニンオリゴマー抽出物の調製
ボイセンベリー果実を搾汁・濃縮して得たボイセンベリー果汁濃縮液(100g)をアンバーライトXAD-7カラムに通液して、溶出される非吸着成分の有機酸や糖質を含むボイセンベリーシロップとした。吸着されたポリフェノール成分をエタノールで溶出した赤褐色画分の濃縮物をボイセンベリー果実縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr)とした。更に、BBF-XAD/EtOH frのエタノール溶液をセファデックスLH-20カラムに負荷し、メタノールで通液した後、70%アセトン水溶液で溶出された画分の濃縮物をボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBF-XAD-LH20 fr)とした。
(2)血管拡張の測定法
8~11週齢のWistarラットの胸部大動脈を2~3mmに切断し、リン酸緩衝液20mLを満たしたマグヌス実験装置(AP-5型、いわしや岸本医科産業(株)製)に付し、300mgの張力を負荷した。平衡化して張力のベースラインが安定した後、収縮剤として10 μMノルエピネフリン(NE)を0.2 mL添加した(終濃度、NE 0.1μM)。 張力が3000mg程度に上昇して一定となった後、試料溶液を所定濃度になるように添加した。試料の添加による張力の減少量を、各試料を添加していない値を100としたときの百分率を血管拡張率として、4検体についての平均値±標準偏差で示した。
8~11週齢のWistarラットの胸部大動脈を2~3mmに切断し、リン酸緩衝液20mLを満たしたマグヌス実験装置(AP-5型、いわしや岸本医科産業(株)製)に付し、300mgの張力を負荷した。平衡化して張力のベースラインが安定した後、収縮剤として10 μMノルエピネフリン(NE)を0.2 mL添加した(終濃度、NE 0.1μM)。 張力が3000mg程度に上昇して一定となった後、試料溶液を所定濃度になるように添加した。試料の添加による張力の減少量を、各試料を添加していない値を100としたときの百分率を血管拡張率として、4検体についての平均値±標準偏差で示した。
(3)ボイセンベリー果実縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr)とクエン酸からなる組成物の血管拡張作用
(1)で調製した縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr)とクエン酸を、それぞれ、表2に示される終濃度になるように混合した組成物を試料溶液として、(3)の方法で血管拡張率を測定し、実施例1、2とした。また、単独成分の活性として、BBF-XAD/EtOH fr及びクエン酸のみ100および4μg/mL濃度で同様に測定した結果を比較例1、1a、2aとし、その結果を表2に示した。実施例1および2のBBF-XAD/EtOH frとクエン酸の組成物の血管拡張作用は、単独成分の血管拡張作用に比べて8.7~7.2倍向上した。
(1)で調製した縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr)とクエン酸を、それぞれ、表2に示される終濃度になるように混合した組成物を試料溶液として、(3)の方法で血管拡張率を測定し、実施例1、2とした。また、単独成分の活性として、BBF-XAD/EtOH fr及びクエン酸のみ100および4μg/mL濃度で同様に測定した結果を比較例1、1a、2aとし、その結果を表2に示した。実施例1および2のBBF-XAD/EtOH frとクエン酸の組成物の血管拡張作用は、単独成分の血管拡張作用に比べて8.7~7.2倍向上した。
(実施例3、4、5及び6:ボイセンベリー果実縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr)とコハク酸、フィチン酸、リンゴ酸、酢酸、または乳酸からなる組成物の血管拡張作用)
実施例1及び2の(1)で調製したボイセンベリー果実縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr)とコハク酸、フィチン酸、リンゴ酸、酢酸、または乳酸を、それぞれ表3に示される終濃度となるように混合した組成物を試料溶液として、実施例1及び2の(2)の方法に従い血管拡張率を測定し、実施例3、4、5、6及び7とした。また、単独成分の活性として、有機酸のみをそれぞれ同様に測定した結果を比較例3、4、5、6及び7として表3に示した。実施例3、4、5、6及び7のBBF-XAD/EtOH frと有機酸とからなる組成物の血管拡張作用は、BBF-XAD/EtOH frまたは有機酸単独の血管拡張作用に比べて9.2~3.0倍向上した。この結果は、縮合タンニンオリゴマー抽出物、BBF-XAD/EtOH frとコハク酸、フィチン酸、リンゴ酸、酢酸、または乳酸からなる組成物が相乗的に作用することにより血管拡張作用を向上させていることを示している。
実施例1及び2の(1)で調製したボイセンベリー果実縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr)とコハク酸、フィチン酸、リンゴ酸、酢酸、または乳酸を、それぞれ表3に示される終濃度となるように混合した組成物を試料溶液として、実施例1及び2の(2)の方法に従い血管拡張率を測定し、実施例3、4、5、6及び7とした。また、単独成分の活性として、有機酸のみをそれぞれ同様に測定した結果を比較例3、4、5、6及び7として表3に示した。実施例3、4、5、6及び7のBBF-XAD/EtOH frと有機酸とからなる組成物の血管拡張作用は、BBF-XAD/EtOH frまたは有機酸単独の血管拡張作用に比べて9.2~3.0倍向上した。この結果は、縮合タンニンオリゴマー抽出物、BBF-XAD/EtOH frとコハク酸、フィチン酸、リンゴ酸、酢酸、または乳酸からなる組成物が相乗的に作用することにより血管拡張作用を向上させていることを示している。
(実施例8、9、10及び11:ボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBP-XAD-LH20 fr)とクエン酸からなる組成物の血管拡張作用)
実施例1及び2の(1)で調製した縮合タンニンオリゴマー抽出物-2(BBF-XAD-LH20 fr)とクエン酸を、それぞれ、表4に示される終濃度となるように混合した組成物を試料溶液として、実施例1及び2 の(2)の方法に従い血管拡張率を測定し、実施例8、9、10及び11とした。また、単独成分の活性として、BBF-XAD-LH20 frのみの試料を同様に測定した結果をそれぞれ比較例8,9、10及び11とし、クエン酸のみの試料を同様に測定した結果を比較例1aとして表4に示した。比較例11のボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBP-XAD-LH20 fr、1.0 μg/mL)単独投与に比較して、実施例11のボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBP-XAD-LH20 fr、1.0 μg/mL)とクエン酸(100 μg/mL)からなる組成物の相乗的な血管拡張作用を示す測定グラフを図5に例示した。実施例8、9、10及び11のボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBF-XAD-LH20 fr)とクエン酸との組成物の血管拡張作用は、ボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBF-XAD-LH20 fr)単独の血管拡張作用に比べて3.6~14.5倍向上した。更に、拡張率の大きさは、ボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBF-XAD-LH20 fr)の濃度と正相関していた。これらの結果は、ボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBP-XAD-LH20 fr)とクエン酸からなる組成物の相乗的な作用により血管拡張作用が向上していることを示している。
実施例1及び2の(1)で調製した縮合タンニンオリゴマー抽出物-2(BBF-XAD-LH20 fr)とクエン酸を、それぞれ、表4に示される終濃度となるように混合した組成物を試料溶液として、実施例1及び2 の(2)の方法に従い血管拡張率を測定し、実施例8、9、10及び11とした。また、単独成分の活性として、BBF-XAD-LH20 frのみの試料を同様に測定した結果をそれぞれ比較例8,9、10及び11とし、クエン酸のみの試料を同様に測定した結果を比較例1aとして表4に示した。比較例11のボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBP-XAD-LH20 fr、1.0 μg/mL)単独投与に比較して、実施例11のボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBP-XAD-LH20 fr、1.0 μg/mL)とクエン酸(100 μg/mL)からなる組成物の相乗的な血管拡張作用を示す測定グラフを図5に例示した。実施例8、9、10及び11のボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBF-XAD-LH20 fr)とクエン酸との組成物の血管拡張作用は、ボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBF-XAD-LH20 fr)単独の血管拡張作用に比べて3.6~14.5倍向上した。更に、拡張率の大きさは、ボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBF-XAD-LH20 fr)の濃度と正相関していた。これらの結果は、ボイセンベリー果実縮合タンニンオリゴマー抽出物-2(BBP-XAD-LH20 fr)とクエン酸からなる組成物の相乗的な作用により血管拡張作用が向上していることを示している。
実施例12、13、14及び15:ベリー果実由来の縮合タンニンオリゴマー抽出物とクエン酸とからなる組成物の血管拡張作用)
(1)ベリー果実由来の縮合タンニンオリゴマー抽出物の調製
ナツハゼ果実を圧搾して得られた圧搾残渣に70%アセトンを加えて攪拌し、ナツハゼ縮合タンニンオリゴマー成分を抽出した。この抽出液からアセトンを減圧にて留去した濃縮液を、アンバーライト XAD-7カラムに負荷し水を通液した後、吸着されたナツハゼ果実縮合タンニンオリゴマー成分をメタノール、続いて60%アセトン水溶液で溶出した。両溶出液をあわせて濃縮して赤褐色のNHF-XAD frを得た。更に、BBF-XAD frのエタノール溶液をセファデックスLH-20カラムに負荷し、エタノールで通液した後、60%アセトン水溶液で溶出された画分の濃縮物をナツハゼ果実縮合タンニンオリゴマー抽出物(NHF-XAD-LH20 fr)とした。カシス果実、ビルベリー果実及びブドウ種子を同様に処理して、それぞれカシス果実縮合タンニンオリゴマー抽出物(CAF-XAD-LH20 fr)、ビルベリー果実縮合タンニンオリゴマー抽出物(BIF-XAD-LH20 fr)及びブドウ種子縮合タンニンオリゴマー抽出物(GRS-XAD-LH20 fr)を得た。ナツハゼ果実縮合タンニンオリゴマー抽出物(NHF-XAD-LH20 fr)、ビルベリー果実縮合タンニンオリゴマー抽出物(BIF-XAD-LH20 fr)及びブドウ種子縮合タンニンオリゴマー抽出物(GRS-XAD-LH20 fr)はプロシアニジンオリゴマーであり、カシス果実縮合タンニンオリゴマー抽出物(CAF-XAD-LH20 fr)はプロデルフィニジンオリゴマーであった。
(1)ベリー果実由来の縮合タンニンオリゴマー抽出物の調製
ナツハゼ果実を圧搾して得られた圧搾残渣に70%アセトンを加えて攪拌し、ナツハゼ縮合タンニンオリゴマー成分を抽出した。この抽出液からアセトンを減圧にて留去した濃縮液を、アンバーライト XAD-7カラムに負荷し水を通液した後、吸着されたナツハゼ果実縮合タンニンオリゴマー成分をメタノール、続いて60%アセトン水溶液で溶出した。両溶出液をあわせて濃縮して赤褐色のNHF-XAD frを得た。更に、BBF-XAD frのエタノール溶液をセファデックスLH-20カラムに負荷し、エタノールで通液した後、60%アセトン水溶液で溶出された画分の濃縮物をナツハゼ果実縮合タンニンオリゴマー抽出物(NHF-XAD-LH20 fr)とした。カシス果実、ビルベリー果実及びブドウ種子を同様に処理して、それぞれカシス果実縮合タンニンオリゴマー抽出物(CAF-XAD-LH20 fr)、ビルベリー果実縮合タンニンオリゴマー抽出物(BIF-XAD-LH20 fr)及びブドウ種子縮合タンニンオリゴマー抽出物(GRS-XAD-LH20 fr)を得た。ナツハゼ果実縮合タンニンオリゴマー抽出物(NHF-XAD-LH20 fr)、ビルベリー果実縮合タンニンオリゴマー抽出物(BIF-XAD-LH20 fr)及びブドウ種子縮合タンニンオリゴマー抽出物(GRS-XAD-LH20 fr)はプロシアニジンオリゴマーであり、カシス果実縮合タンニンオリゴマー抽出物(CAF-XAD-LH20 fr)はプロデルフィニジンオリゴマーであった。
(2)ベリー果実由来の縮合タンニンオリゴマー抽出物とクエン酸の組成物の血管拡張作用
(1)で調製したナツハゼ縮合タンニンオリゴマー抽出物(NHF-XAD-LH20 fr)、カシス果実縮合タンニンオリゴマー抽出物(CAF-XAD-LH20 fr)、ビルベリー果実縮合タンニンオリゴマー抽出物(BIF-XAD-LH20 fr)及びブドウ種子縮合タンニンオリゴマー抽出物(GRS-XAD-LH20 fr)とクエン酸を、それぞれ表5に示される終濃度となるように混合した組成物を試料溶液として、実施例1及び2の(2)の方法に従い血管拡張率を測定し、実施例12、13、14及び15とした。また、それぞれ単独の縮合タンニンオリゴマー抽出物およびクエン酸のみを同様に測定した結果を、単独成分の活性として比較例12、13、14、15及び1aとして表5に示した。実施例12、13、14及び15のベリー果実由来の縮合タンニンオリゴマー抽出物とクエン酸からなる組成物の血管拡張作用は、それぞれの縮合タンニンオリゴマー抽出物単独またはクエン酸のみの血管拡張作用に比べて3.1~1.6倍向上した。この結果は、ベリー果実類の縮合タンニンオリゴマー抽出物とクエン酸からなる組成物が相乗的に作用することにより血管拡張作用が向上していることを示している。
(1)で調製したナツハゼ縮合タンニンオリゴマー抽出物(NHF-XAD-LH20 fr)、カシス果実縮合タンニンオリゴマー抽出物(CAF-XAD-LH20 fr)、ビルベリー果実縮合タンニンオリゴマー抽出物(BIF-XAD-LH20 fr)及びブドウ種子縮合タンニンオリゴマー抽出物(GRS-XAD-LH20 fr)とクエン酸を、それぞれ表5に示される終濃度となるように混合した組成物を試料溶液として、実施例1及び2の(2)の方法に従い血管拡張率を測定し、実施例12、13、14及び15とした。また、それぞれ単独の縮合タンニンオリゴマー抽出物およびクエン酸のみを同様に測定した結果を、単独成分の活性として比較例12、13、14、15及び1aとして表5に示した。実施例12、13、14及び15のベリー果実由来の縮合タンニンオリゴマー抽出物とクエン酸からなる組成物の血管拡張作用は、それぞれの縮合タンニンオリゴマー抽出物単独またはクエン酸のみの血管拡張作用に比べて3.1~1.6倍向上した。この結果は、ベリー果実類の縮合タンニンオリゴマー抽出物とクエン酸からなる組成物が相乗的に作用することにより血管拡張作用が向上していることを示している。
(実施例16、17及び18:カカオ豆縮合タンニンオリゴマー抽出物(CCP-XAD-LH20 fr)、柿果実縮合タンニンオリゴマー抽出物(PAF-XAD/EtOH fr)及び柿葉縮合タンニンオリゴマー抽出物(PAL-XAD/EtOH fr)とクエン酸からなる組成物の血管拡張作用)
(1)縮合タンニンオリゴマー抽出物の調製
カカオ豆から実施例12(1)記載の方法に従って、カカオ豆縮合タンニンオリゴマー抽出物(CCP-XAD-LH20 fr)を調製した。渋柿果実(平核無種)を短冊状にして、70%アセトンを加えて攪拌し、柿果実縮合タンニンオリゴマー成分を抽出した。この抽出液からアセトンを減圧にて留去した濃縮液を、アンバーライト XAD-7カラムに負荷し水で通液した。吸着された柿果実ポリフェノール成分をエタノールで溶出、濃縮して淡褐色の柿果実縮合タンニンオリゴマー抽出物(PAF-XAD/EtOH fr)を得た。また、渋柿葉(刀根早生種)に70%アセトンを加えて攪拌し、柿葉ポリフェノール成分を抽出した。この抽出液からアセトンを減圧にて留去した濃縮水溶液を酢酸エチルにて抽出して脂溶性成分を除去した後、アンバーライト XAD-7カラムに負荷し水で通液した。吸着された成分をエタノールで溶出、濃縮して淡褐色の柿葉縮合タンニンオリゴマー抽出物(PAL-XAD/EtOH fr)を得た。カカオ豆縮合タンニンオリゴマー抽出物(CCP-XAD-LH20 fr)はプロシアニジンであり、柿果実及び柿葉縮合タンニンオリゴマー抽出物は、エピガロカテキン構造単位比率が65及び45%と高く、かつガレート化も62及び 43%されている特徴あるプロシアニジンであった。
(1)縮合タンニンオリゴマー抽出物の調製
カカオ豆から実施例12(1)記載の方法に従って、カカオ豆縮合タンニンオリゴマー抽出物(CCP-XAD-LH20 fr)を調製した。渋柿果実(平核無種)を短冊状にして、70%アセトンを加えて攪拌し、柿果実縮合タンニンオリゴマー成分を抽出した。この抽出液からアセトンを減圧にて留去した濃縮液を、アンバーライト XAD-7カラムに負荷し水で通液した。吸着された柿果実ポリフェノール成分をエタノールで溶出、濃縮して淡褐色の柿果実縮合タンニンオリゴマー抽出物(PAF-XAD/EtOH fr)を得た。また、渋柿葉(刀根早生種)に70%アセトンを加えて攪拌し、柿葉ポリフェノール成分を抽出した。この抽出液からアセトンを減圧にて留去した濃縮水溶液を酢酸エチルにて抽出して脂溶性成分を除去した後、アンバーライト XAD-7カラムに負荷し水で通液した。吸着された成分をエタノールで溶出、濃縮して淡褐色の柿葉縮合タンニンオリゴマー抽出物(PAL-XAD/EtOH fr)を得た。カカオ豆縮合タンニンオリゴマー抽出物(CCP-XAD-LH20 fr)はプロシアニジンであり、柿果実及び柿葉縮合タンニンオリゴマー抽出物は、エピガロカテキン構造単位比率が65及び45%と高く、かつガレート化も62及び 43%されている特徴あるプロシアニジンであった。
(2)血管拡張作用
(1)で調製したカカオ豆縮合タンニンオリゴマー抽出物(CCP-XAD-LH20 fr)、柿果実縮合タンニンオリゴマー抽出物(PAF-XAD/EtOH fr)及び柿葉縮合タンニンオリゴマー抽出物(PAL-XAD/EtOH fr)とクエン酸を、それぞれ表6に示される終濃度となるように混合した組成物を試料溶液として、実施例1及び2の(2)の方法に従い血管拡張率を測定し、実施例16、17及び18として、表6に示した。また、単独成分の活性として、それぞれ単独の縮合タンニンオリゴマー抽出物およびクエン酸のみをそれぞれ同様に測定した結果を比較例16、17、18及び1aとして表6に示した。比較例17の柿果実縮合タンニンオリゴマー抽出物(PAF-XAD/EtOH fr、1.0 μg/mL)単独投与に比較して、実施例17の柿果実縮合タンニンオリゴマー抽出物(PAF-XAD/EtOH fr、1μg/mL)とクエン酸(100 μg/mL)からなる組成物の相乗的な血管拡張作用を示す測定グラフを図6に示した。実施例16、17及び18のCCP-XAD-LH20 fr、PAF-XAD/EtOH fr及びPAL-XAD/EtOH frとクエン酸からなる組成物の血管拡張作用は、それぞれの単独またはクエン酸のみの血管拡張作用に比べて1.4から1.7倍向上した。この結果は、カカオ豆、柿果実または柿葉抽出物中の縮合タンニンオリゴマー成分とクエン酸からなる組成物が相乗的に作用することにより血管拡張作用が向上していることを示している。
(1)で調製したカカオ豆縮合タンニンオリゴマー抽出物(CCP-XAD-LH20 fr)、柿果実縮合タンニンオリゴマー抽出物(PAF-XAD/EtOH fr)及び柿葉縮合タンニンオリゴマー抽出物(PAL-XAD/EtOH fr)とクエン酸を、それぞれ表6に示される終濃度となるように混合した組成物を試料溶液として、実施例1及び2の(2)の方法に従い血管拡張率を測定し、実施例16、17及び18として、表6に示した。また、単独成分の活性として、それぞれ単独の縮合タンニンオリゴマー抽出物およびクエン酸のみをそれぞれ同様に測定した結果を比較例16、17、18及び1aとして表6に示した。比較例17の柿果実縮合タンニンオリゴマー抽出物(PAF-XAD/EtOH fr、1.0 μg/mL)単独投与に比較して、実施例17の柿果実縮合タンニンオリゴマー抽出物(PAF-XAD/EtOH fr、1μg/mL)とクエン酸(100 μg/mL)からなる組成物の相乗的な血管拡張作用を示す測定グラフを図6に示した。実施例16、17及び18のCCP-XAD-LH20 fr、PAF-XAD/EtOH fr及びPAL-XAD/EtOH frとクエン酸からなる組成物の血管拡張作用は、それぞれの単独またはクエン酸のみの血管拡張作用に比べて1.4から1.7倍向上した。この結果は、カカオ豆、柿果実または柿葉抽出物中の縮合タンニンオリゴマー成分とクエン酸からなる組成物が相乗的に作用することにより血管拡張作用が向上していることを示している。
(実施例19:ボイセンベリー果汁酢酸発酵液組成物の製造法)
ボイセンベリー果実を圧搾・濃縮して得たボイセンベリー濃縮果汁に水、アルコールを加えて仕込み液を調製した。そこへ酢酸菌(Acetobactor aceti)を含有する培養液を加え、28℃~32℃で5日程度酢酸発酵させた。得られたボイセンベリー果汁含有原酢(果汁60%)に水、アルコール酢を加え、果汁含有量及び酸度調整の後、滅菌ろ過してボイセンベリー果汁30%酢酸発酵液組成物を得た。LC/MSMS分析によるこの組成物の有機酸含有量は、49.2μg/mL(酢酸45μg/mL、クエン酸3.7μg/mL、リンゴ酸0.5μg/mL)であり、発酵前のボイセンベリー果汁の含有量3.5μg/mL(酢酸0μg/mL、クエン酸3.1μg/mL、リンゴ酸0.4μg/mL)より14倍に増加したが、縮合タンニンオリゴマー成分の組成と含有量の変動は認められなかった。
ボイセンベリー果実を圧搾・濃縮して得たボイセンベリー濃縮果汁に水、アルコールを加えて仕込み液を調製した。そこへ酢酸菌(Acetobactor aceti)を含有する培養液を加え、28℃~32℃で5日程度酢酸発酵させた。得られたボイセンベリー果汁含有原酢(果汁60%)に水、アルコール酢を加え、果汁含有量及び酸度調整の後、滅菌ろ過してボイセンベリー果汁30%酢酸発酵液組成物を得た。LC/MSMS分析によるこの組成物の有機酸含有量は、49.2μg/mL(酢酸45μg/mL、クエン酸3.7μg/mL、リンゴ酸0.5μg/mL)であり、発酵前のボイセンベリー果汁の含有量3.5μg/mL(酢酸0μg/mL、クエン酸3.1μg/mL、リンゴ酸0.4μg/mL)より14倍に増加したが、縮合タンニンオリゴマー成分の組成と含有量の変動は認められなかった。
(実施例20:ボイセンベリー果汁酢酸発酵液組成物の血管拡張作用)
実施例19の製造法により調製したボイセンベリー果汁酢酸発酵液組成物を終濃度10mg/mL、(縮合タンニンオリゴマー濃度8 ng/mL、有機酸濃度0.49μg/mL)の試料溶液として、実施例1及び2の(2)の方法に従い血管拡張率を測定すると、26.7±8.3%であった。また、比較例19として、ボイセンベリー果汁縮合タンニンオリゴマー抽出物(BBF-XAD-LH20 fr、0.27μg/mL)単独の血管拡張率を測定すると、1.3±0.7%であり、前者が21倍高い活性を示した。この活性向上は、ボイセンベリー果汁を、酢酸発酵により有機酸含有量が増強した縮合タンニンオリゴマーと有機酸を含む組成物に変換できた結果によるものであった。
実施例19の製造法により調製したボイセンベリー果汁酢酸発酵液組成物を終濃度10mg/mL、(縮合タンニンオリゴマー濃度8 ng/mL、有機酸濃度0.49μg/mL)の試料溶液として、実施例1及び2の(2)の方法に従い血管拡張率を測定すると、26.7±8.3%であった。また、比較例19として、ボイセンベリー果汁縮合タンニンオリゴマー抽出物(BBF-XAD-LH20 fr、0.27μg/mL)単独の血管拡張率を測定すると、1.3±0.7%であり、前者が21倍高い活性を示した。この活性向上は、ボイセンベリー果汁を、酢酸発酵により有機酸含有量が増強した縮合タンニンオリゴマーと有機酸を含む組成物に変換できた結果によるものであった。
(実施例21:ボイセンベリー果実縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr)とクエン酸からなる組成物飲料の血流改善作用)
(1)使用動物、投与試料、投与方法と投与量
7週齢の雄ICRマウス(平均体重40g)を2群(試験群および対照群、各群4匹づつ)に別けて、試験群の各マウスにボイセンベリー果実縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr、10mg/mL)とクエン酸(20mg/mL)からなる組成物飲料30μL(縮合タンニンオリゴマー成分15μg、クエン酸400μg)を経口投与した。対照群の各マウスには、ボイセンベリー果実縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr、10 mg/mL)のみの飲料30μL(縮合タンニンオリゴマー成分0.5μg)を経口投与した。 投与5分後に、ペントバルビタール溶液(6.48mg/mL)を腹腔内投与(10mL/kg)した。本投与試料中のボイセンベリー果実縮合タンニンオリゴマー成分量を60kg体重のヒト摂取量に換算すると、22.5mgに相当する。本量は、ボイセンベリー果汁として480mLに含まれる縮合タンニンオリゴマー成分量に相当し、ジュースとして1日の摂取量の範囲にある。
(1)使用動物、投与試料、投与方法と投与量
7週齢の雄ICRマウス(平均体重40g)を2群(試験群および対照群、各群4匹づつ)に別けて、試験群の各マウスにボイセンベリー果実縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr、10mg/mL)とクエン酸(20mg/mL)からなる組成物飲料30μL(縮合タンニンオリゴマー成分15μg、クエン酸400μg)を経口投与した。対照群の各マウスには、ボイセンベリー果実縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr、10 mg/mL)のみの飲料30μL(縮合タンニンオリゴマー成分0.5μg)を経口投与した。 投与5分後に、ペントバルビタール溶液(6.48mg/mL)を腹腔内投与(10mL/kg)した。本投与試料中のボイセンベリー果実縮合タンニンオリゴマー成分量を60kg体重のヒト摂取量に換算すると、22.5mgに相当する。本量は、ボイセンベリー果汁として480mLに含まれる縮合タンニンオリゴマー成分量に相当し、ジュースとして1日の摂取量の範囲にある。
(2)試験方法と結果
マウスの尾静脈上にプローブを装着し、レーザードップラー血流測定装置((株)アドバンス製、ALF21型)を用いて、試料投与後15分から70分までの血流の変化を経時的に測定した。図7に示されるように、ボイセンベリー果実縮合タンニンオリゴマー抽出物とクエン酸からなる組成物飲料を投与した試験群の血流は6-9 mL/min/100gで推移した。一方、ボイセンベリー果実縮合タンニンオリゴマー抽出物のみを投与した対照群では、5-7mL/min/100gであり、測定期間中は常に試験群の値より低値を示していた。本結果は、ボイセンベリー果実縮合タンニンオリゴマー抽出物単独投与より、そのクエン酸(20mg/mL)組成物を投与することにより、マウスの血流が相乗的に向上していることを示している。
マウスの尾静脈上にプローブを装着し、レーザードップラー血流測定装置((株)アドバンス製、ALF21型)を用いて、試料投与後15分から70分までの血流の変化を経時的に測定した。図7に示されるように、ボイセンベリー果実縮合タンニンオリゴマー抽出物とクエン酸からなる組成物飲料を投与した試験群の血流は6-9 mL/min/100gで推移した。一方、ボイセンベリー果実縮合タンニンオリゴマー抽出物のみを投与した対照群では、5-7mL/min/100gであり、測定期間中は常に試験群の値より低値を示していた。本結果は、ボイセンベリー果実縮合タンニンオリゴマー抽出物単独投与より、そのクエン酸(20mg/mL)組成物を投与することにより、マウスの血流が相乗的に向上していることを示している。
(実施例22:ボイセンベリー果実縮合タンニンオリゴマー抽出物-1(BBF-XAD/EtOH fr)とクエン酸からなる組成物飲料の血圧低下作用)
固形飼料と自由給水で12週齢から予備飼育した高血圧自然発症ラット(SHR/Izm)の13-14週齢を2群に分けた。12時間絶食後、対照群(6匹)には脱イオン水を、試験群(5匹)にはBBP XAD/EtOH fr 200 mg/kgとクエン酸一水和物500 mg/kgの組成物飲料を胃内にゾンデで強制的に経口投与した。投与後0、1、2、4、8時間に、SHRラットの血圧を、37℃に予備保温してある保温機にラットを固定し、tail-cuff法で1匹につき3回測定した。それぞれ3回の測定値を平均し測定値とした血圧の時間的変化を図8に示す。図8に示されるように、BBP XAD/EtOH fr とクエン酸の組成物を摂取したラットの血圧は低下し、摂取後1時間及び6時間後には対照群に比べて有意な低下を示した。この結果は、BBP XAD/EtOH fr とクエン酸の組成物が血圧の低下作用を有することを示している。
固形飼料と自由給水で12週齢から予備飼育した高血圧自然発症ラット(SHR/Izm)の13-14週齢を2群に分けた。12時間絶食後、対照群(6匹)には脱イオン水を、試験群(5匹)にはBBP XAD/EtOH fr 200 mg/kgとクエン酸一水和物500 mg/kgの組成物飲料を胃内にゾンデで強制的に経口投与した。投与後0、1、2、4、8時間に、SHRラットの血圧を、37℃に予備保温してある保温機にラットを固定し、tail-cuff法で1匹につき3回測定した。それぞれ3回の測定値を平均し測定値とした血圧の時間的変化を図8に示す。図8に示されるように、BBP XAD/EtOH fr とクエン酸の組成物を摂取したラットの血圧は低下し、摂取後1時間及び6時間後には対照群に比べて有意な低下を示した。この結果は、BBP XAD/EtOH fr とクエン酸の組成物が血圧の低下作用を有することを示している。
Claims (10)
- ベリー類果実又はカカオ豆又は柿果実若しくは柿葉由来の2量体~13量体の少なくとも1つの縮合タンニンオリゴマー成分と、少なくとも1つの有機酸成分とを有効成分とする血管拡張剤であって、
縮合タンニンオリゴマー成分がカテキン、エピカテキン、ガロカテキン、エピガロカテキン及び/又はそれらのガレートの少なくとも1つを構成単位とするプロシアニジンオリゴマー及び/又はプロデルフィニジンオリゴマーである、前記血管拡張剤。 - ベリー類果実が、ボイセンベリー、ナツハゼ、カシス、ブルーベリー、クランベリー、ストロベリー又はブドウである、請求項1記載の血管拡張剤。
- 有機酸成分が、クエン酸、コハク酸、リンゴ酸、酢酸、フィチン酸及び/又は乳酸若しくはそれらの塩である、請求項1又は2記載の血管拡張剤。
- 有機酸成分が、クエン酸若しくはその塩である、請求項3記載の血管拡張剤。
- 血流改善作用及び/又は血圧上昇抑制作用を有する、請求項1~4のいずれか1項記載の血管拡張剤。
- 請求項1~5のいずれか1項記載の血管拡張剤を含有することを特徴とする、医薬品又は食品。
- 少なくとも1つの縮合タンニンオリゴマー成分と糖成分とを含有するベリー類果実又はカカオ豆又は柿果実若しくは柿葉、又はその抽出液を微生物発酵させることにより有機酸成分を生成又は増量させることを特徴とする、請求項1記載の血管拡張剤の製造方法。
- ベリー類果実又はその抽出物が、ボイセンベリー、ナツハゼ、カシス、ブルーベリー、クランベリー、ストロベリー又はブドウである、請求項7記載の製造方法。
- 有機酸成分が、クエン酸、コハク酸、リンゴ酸、酢酸、フィチン酸及び/又は乳酸若しくはそれらの塩である、請求項7又は8記載の製造方法。
- 有機酸成分が、クエン酸若しくはその塩である、請求項9記載の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010550514A JPWO2010092941A1 (ja) | 2009-02-16 | 2010-02-09 | 血管拡張作用を有する組成物、製造法および用途 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009032859 | 2009-02-16 | ||
JP2009-032859 | 2009-02-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010092941A1 true WO2010092941A1 (ja) | 2010-08-19 |
Family
ID=42561783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/051851 WO2010092941A1 (ja) | 2009-02-16 | 2010-02-09 | 血管拡張作用を有する組成物、製造法および用途 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2010092941A1 (ja) |
WO (1) | WO2010092941A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013035810A (ja) * | 2011-08-10 | 2013-02-21 | Bourbon Corp | 血圧上昇抑制剤 |
WO2017158041A1 (en) * | 2016-03-18 | 2017-09-21 | Indena S.P.A. | Compositions useful in the prevention and/or treatment of disorders of the oral cavity, upper airways and esophagus |
JP2018008924A (ja) * | 2016-06-29 | 2018-01-18 | サンスター株式会社 | Tie2活性用組成物 |
JP2018043949A (ja) * | 2016-09-15 | 2018-03-22 | サンスター株式会社 | Tie2活性用組成物 |
WO2019082335A1 (ja) * | 2017-10-26 | 2019-05-02 | 大塚製薬株式会社 | イノシトールリン酸含有組成物 |
KR20190076979A (ko) * | 2016-11-02 | 2019-07-02 | 보스케인 뉴트리션 리미티드 | 사료 및 그 제조 방법 |
JP2020186215A (ja) * | 2019-05-16 | 2020-11-19 | 国立大学法人弘前大学 | 更年期症状改善用組成物 |
JP2020186205A (ja) * | 2019-05-15 | 2020-11-19 | 国立大学法人信州大学 | 血管拡張剤 |
JP2021035926A (ja) * | 2019-08-30 | 2021-03-04 | ポッカサッポロフード&ビバレッジ株式会社 | アンジオテンシンIIType1受容体拮抗剤 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021052708A (ja) * | 2019-10-01 | 2021-04-08 | ポッカサッポロフード&ビバレッジ株式会社 | アンジオテンシン変換酵素阻害剤 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04248972A (ja) * | 1991-01-31 | 1992-09-04 | Tube Ekisupaatsu:Kk | 柿の醗酵飲料とその製造方法 |
JPH09173029A (ja) * | 1995-12-21 | 1997-07-08 | Lg Chem Ltd | 柿酢を含有する飲料組成物 |
JP2001046030A (ja) * | 1999-08-02 | 2001-02-20 | Tama Seikagaku Kk | ブルーベリー抽出エキスの製造法 |
JP2002255801A (ja) * | 2000-12-26 | 2002-09-11 | Mitsukan Group Honsha:Kk | 高血圧予防用組成物 |
JP2002291440A (ja) * | 2001-03-30 | 2002-10-08 | Sunstar Inc | 柿の葉抽出物含有食品 |
JP2003524428A (ja) * | 2000-02-29 | 2003-08-19 | ボングリム カンパニー リミテッド | 柿酢粉末及びその製造方法 |
JP2006087337A (ja) * | 2004-09-22 | 2006-04-06 | Yamaka Shoyu Kk | 飲料組成物 |
JP2008156306A (ja) * | 2006-12-26 | 2008-07-10 | Amuko:Kk | ボイセンベリー果実由来の材料及びその材料を用いたサプリメント、薬剤又は食品 |
JP2009500411A (ja) * | 2005-06-29 | 2009-01-08 | マース インコーポレーテッド | 末梢血管の血管拡張の誘導 |
JP2009501161A (ja) * | 2005-06-29 | 2009-01-15 | マース インコーポレーテッド | 血管系の健康改善に有用な熱処理されたカカオ製品 |
-
2010
- 2010-02-09 WO PCT/JP2010/051851 patent/WO2010092941A1/ja active Application Filing
- 2010-02-09 JP JP2010550514A patent/JPWO2010092941A1/ja active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04248972A (ja) * | 1991-01-31 | 1992-09-04 | Tube Ekisupaatsu:Kk | 柿の醗酵飲料とその製造方法 |
JPH09173029A (ja) * | 1995-12-21 | 1997-07-08 | Lg Chem Ltd | 柿酢を含有する飲料組成物 |
JP2001046030A (ja) * | 1999-08-02 | 2001-02-20 | Tama Seikagaku Kk | ブルーベリー抽出エキスの製造法 |
JP2003524428A (ja) * | 2000-02-29 | 2003-08-19 | ボングリム カンパニー リミテッド | 柿酢粉末及びその製造方法 |
JP2002255801A (ja) * | 2000-12-26 | 2002-09-11 | Mitsukan Group Honsha:Kk | 高血圧予防用組成物 |
JP2002291440A (ja) * | 2001-03-30 | 2002-10-08 | Sunstar Inc | 柿の葉抽出物含有食品 |
JP2006087337A (ja) * | 2004-09-22 | 2006-04-06 | Yamaka Shoyu Kk | 飲料組成物 |
JP2009500411A (ja) * | 2005-06-29 | 2009-01-08 | マース インコーポレーテッド | 末梢血管の血管拡張の誘導 |
JP2009501161A (ja) * | 2005-06-29 | 2009-01-15 | マース インコーポレーテッド | 血管系の健康改善に有用な熱処理されたカカオ製品 |
JP2008156306A (ja) * | 2006-12-26 | 2008-07-10 | Amuko:Kk | ボイセンベリー果実由来の材料及びその材料を用いたサプリメント、薬剤又は食品 |
Non-Patent Citations (13)
Title |
---|
ATSUSHI SUGIYAMA ET AL.: "Kajitsu Kanren Shokuhin no Kenko Zoshin Koka ni Kansuru Kono Bunseki Shuho no Kaihatsu - San Gaku Kan Renkei no Model Case", COOPERATIVE RESEARCH AND DEVELOPMENT CENTER UNIVERSITY OF YAMANASHI KENKYU SEIKA HOKOKUSHO, March 2005 (2005-03-01), pages 51 - 53 * |
CHIGUSA NAKAMURA ET AL.: "Kakisu Iri Mikan Juice no In'yo ni yori Koketsuatsu Sha no Ketsuatsu wa Teika suru", THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE, vol. 97, 20 February 2008 (2008-02-20), pages 140 * |
H.P. VASANTHA RUPASINGHE ET AL.: "Total antioxidant capacity, total phenolic content, mineral elements, and histamine concentrations in wines of different fruit sources", JOURNAL OF FOOD COMPOSITION AND ANALYSIS, vol. 20, no. 2, March 2007 (2007-03-01), pages 133 - 137 * |
HONSHO,S. ET AL.: "A Red Wine Vinegar Beverage can Inhibit the Renin-Angiotensin System: Experimental Evidence in Vivo", BIOL PHARM BULL, vol. 28, no. 7, 1 July 2005 (2005-07-01), pages 1208 - 1210 * |
HONSHO,S. ET AL.: "Effects of a wine vinegar beverage on the renin-angiotensin system in vivo", J PHARMACOL SCI, vol. 97, no. 1, 1 March 2005 (2005-03-01), pages 119P * |
IKUHARU MORIOKA ET AL.: "Kakisu ga Kenko ni Oyobosu Eikyo no Ekigakuteki Chosa", WAKAYAMA IGAKU, vol. 59, no. 4, 31 December 2008 (2008-12-31), pages 206 - 207 * |
MAO KAWAMURA ET AL.: "Kakisu no Junkan Kino ni Oyobosu Eikyo ni Tsuite", WAKAYAMA IGAKU, vol. 57, no. 4, 31 December 2006 (2006-12-31), pages 159 * |
MATSUTANI,Y. ET AL.: "Persimmon Vinegar Decreased Blood Pressure in Subjects with High-normal Blood Pressure or Hypertension-Single-Blind Crossover TrialPersimmon Vinegar Decreased Blood Pressure in Subjects with High-normal Blood Pressure or Hypertension-Single-Blind Crossover Trial", CIRC J, vol. 70, no. 1, 1 March 2006 (2006-03-01), pages 508 * |
ORTEGA,T. ET AL.: "Influence of grape variety and their phenolic composition on vasorelaxing activity of young red wines", EUR FOOD RES TECHNOL, vol. 227, no. 6, October 2008 (2008-10-01), pages 1641 - 1650 * |
SACHIKO HONSHO ET AL.: "Rat Tekishutsu Kekkan ni Okeru Budosu Inryo no Kekkan Shikan Sayo", FOLIA PHARMACOLOGICA JAPONICA, vol. 125, no. 1, 1 January 2005 (2005-01-01), pages 13P * |
SUGIYAMA,A. ET AL.: "Acute cardiovascular effects of a new beverage made of wine vinegar and grape juice, assessed using an in vivo rat.", NUTR RES, vol. 23, no. 9, September 2003 (2003-09-01), pages 1291 - 1296 * |
TAKAHARA,A. ET AL.: "The Endothelium-Dependent Vasodilator Action of a New Beverage Made of Red Wine Vinegar and Grape Juice", BIOL PHARM BULL, vol. 28, no. 4, 1 April 2005 (2005-04-01), pages 754 - 756 * |
WADA,L. ET AL.: "Antioxidant Activity and Phenolic Content of Oregon Caneberries.", J AGRIC FOOD CHEM, vol. 50, no. 12, 5 June 2002 (2002-06-05), pages 3495 - 3500 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013035810A (ja) * | 2011-08-10 | 2013-02-21 | Bourbon Corp | 血圧上昇抑制剤 |
WO2017158041A1 (en) * | 2016-03-18 | 2017-09-21 | Indena S.P.A. | Compositions useful in the prevention and/or treatment of disorders of the oral cavity, upper airways and esophagus |
JP2018008924A (ja) * | 2016-06-29 | 2018-01-18 | サンスター株式会社 | Tie2活性用組成物 |
JP2018043949A (ja) * | 2016-09-15 | 2018-03-22 | サンスター株式会社 | Tie2活性用組成物 |
KR102526310B1 (ko) * | 2016-11-02 | 2023-04-26 | 보스케인 뉴트리션 리미티드 | 사료 및 그 제조 방법 |
KR20190076979A (ko) * | 2016-11-02 | 2019-07-02 | 보스케인 뉴트리션 리미티드 | 사료 및 그 제조 방법 |
US11446317B2 (en) | 2017-10-26 | 2022-09-20 | Otsuka Pharmaceutical Co., Ltd. | Inositol phosphate-containing composition |
WO2019082335A1 (ja) * | 2017-10-26 | 2019-05-02 | 大塚製薬株式会社 | イノシトールリン酸含有組成物 |
JP2020186205A (ja) * | 2019-05-15 | 2020-11-19 | 国立大学法人信州大学 | 血管拡張剤 |
JP2020186215A (ja) * | 2019-05-16 | 2020-11-19 | 国立大学法人弘前大学 | 更年期症状改善用組成物 |
JP7352275B2 (ja) | 2019-05-16 | 2023-09-28 | 国立大学法人弘前大学 | 更年期症状改善用組成物 |
JP2021035926A (ja) * | 2019-08-30 | 2021-03-04 | ポッカサッポロフード&ビバレッジ株式会社 | アンジオテンシンIIType1受容体拮抗剤 |
JP7395288B2 (ja) | 2019-08-30 | 2023-12-11 | ポッカサッポロフード&ビバレッジ株式会社 | アンジオテンシンIIType1受容体拮抗剤 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010092941A1 (ja) | 2012-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010092941A1 (ja) | 血管拡張作用を有する組成物、製造法および用途 | |
JP6222626B2 (ja) | フルクトース吸収阻害剤 | |
JP4574788B2 (ja) | プロアントシアニジン含有組成物 | |
EP2433625B1 (en) | Anti-obesity agent comprising compound containing benzotropolone ring | |
KR101645464B1 (ko) | 새싹보리 추출물을 포함하는 비만 억제용 조성물 | |
EP2438923B1 (en) | Composition for preventing or treating obesity-related diseases mediated by the activation of ampk and including 2,5-bis-aryl-3,4-dimethyltetrahydrofuran lignans as active ingredients | |
KR101811122B1 (ko) | 떫은맛이 저감된 아로니아원액과 l-아르기닌을 주원료로하는 젤리 또는 음료조성물의 제조방법 | |
JP6000521B2 (ja) | 血圧上昇抑制剤 | |
KR20160144791A (ko) | 여성 갱년기 증상 개선용 조성물 | |
KR101594972B1 (ko) | 새싹보리 추출물을 포함하는 고혈압 치료용 약학 조성물 | |
JP2009298769A (ja) | 脂肪蓄積抑制用組成物 | |
JP5492615B2 (ja) | ポリフェノール組成物 | |
JP5282340B2 (ja) | 天然素材の抗酸化作用および/またはリパーゼ阻害活性を増強させる方法、ならびに当該活性が増強された天然素材 | |
JP2012006905A (ja) | 美肌用組成物 | |
JP4688795B2 (ja) | バナバ抽出物の調製方法 | |
KR102025572B1 (ko) | 고욤나무 잎 및 포도송이 줄기 추출물의 혼합물을 유효성분으로 함유하는 대사성 질환의 예방, 개선 또는 치료용 조성물 | |
KR101276293B1 (ko) | 현초 추출물 또는 이의 분획물을 유효성분으로 포함하는 당뇨병 합병증의 예방 또는 치료용 조성물 | |
US20240226223A1 (en) | Composition for preventing, improving, or treating muscle loss comprising green tea peptide composition | |
KR101991746B1 (ko) | 카테킨 생체 이용률 증진제 | |
KR101924880B1 (ko) | 가자 추출물을 유효성분으로 포함하는 근 분화 촉진용 조성물 | |
JP2006160668A (ja) | 過酸化脂質生成抑制剤 | |
CN109843087B (zh) | 包含新的后发酵茶来源的山奈酚类化合物的认知功能改善组合物 | |
KR20170076587A (ko) | 모노테르페닐 마그놀올을 유효성분으로 하는 지방간, 고지혈증 또는 비만의 예방 또는 치료용 조성물 및 후박 분획물의 제조방법 | |
US20060105096A1 (en) | Food composition | |
KR101806519B1 (ko) | 발효식품의 바이오제닉 아민 저감화 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10741218 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010550514 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10741218 Country of ref document: EP Kind code of ref document: A1 |