WO2010084752A1 - 加熱調理器 - Google Patents
加熱調理器 Download PDFInfo
- Publication number
- WO2010084752A1 WO2010084752A1 PCT/JP2010/000321 JP2010000321W WO2010084752A1 WO 2010084752 A1 WO2010084752 A1 WO 2010084752A1 JP 2010000321 W JP2010000321 W JP 2010000321W WO 2010084752 A1 WO2010084752 A1 WO 2010084752A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating
- capacitance
- unit
- electrode
- detection
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/12—Cooking devices
- H05B6/1209—Cooking devices induction cooking plates or the like and devices to be used in combination with them
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
- H05B6/062—Control, e.g. of temperature, of power for cooking plates or the like
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B40/00—Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
Definitions
- the present invention relates to a heating cooker that heats an object to be cooked, and more particularly to a heating cooker that detects spillage of the object to be cooked.
- the conventional cooking device detects the overflowing by detecting the change in the capacitance by covering the electrode disposed on the lower surface of the top plate with foods or the like spilled from the cooking container (for example, patents) Reference 1).
- the present invention solves the above-described conventional problems, and an object thereof is to provide a heating cooker that can accurately determine the spillage.
- a heating cooker includes a top plate connected to a reference potential, a heating unit that heats an object to be heated placed on the top plate, and a lower portion of the top plate. At least one electrode disposed in the electrode, a capacitance detection unit for detecting the capacitance of the electrode, and a value of the capacitance of the electrode detected by the capacitance detection unit. A spill detection unit that detects whether the food to be cooked is spilled on the top plate, and a control unit that controls the heating operation of the heating unit based on the detection result of the spill from the spill detection unit.
- the capacity detection unit spills on the top plate to which the cooking object is connected to the reference potential, the moisture contained in the cooking object functions as a dielectric, and the increase in the amount of spilling of the cooking object increases the electrode and the reference voltage.
- the heating cooker may further include a metal member provided below the top plate and in the vicinity of the electrode. This makes it possible to increase the change in capacitance due to spillage.
- the heating unit may include a heating coil that induction-heats an object to be heated by being supplied with high-frequency power, and a high-frequency power supply unit that supplies high-frequency power to the heating coil.
- the metal member may be a copper winding used for a heating coil. Accordingly, the overflow detection performance can be improved at low cost without adding a new configuration for improving the detection performance.
- the shape of the electrode may be an arc shape substantially concentric with the heating coil. Thereby, the capacitive coupling of a heating coil and an electrode can be improved.
- a filter for removing an induction heating frequency component superimposed on a change in the capacitance of the electrode detected by the capacitance detection unit may be further included. As a result, it is possible to perform stable overflow detection.
- the spill detector may determine the spill by observing an induction heating frequency component generated by the influence of induction heating due to capacitive coupling between the electrode and the heating coil. Thereby, even if the detected value of the capacitance increases due to induction heating, it is possible to determine the spillage. It is also possible to determine whether an object has been placed on the electrode and the capacitance has changed, or whether the capacitance has changed due to spilling.
- the electrode may be printed on the top plate. Therefore, since the adhesiveness of an electrode and a top plate improves, the detection performance of a spill can be improved.
- the capacitance detection unit may observe a change in impedance due to an increase in the capacitance of the electrode using a voltage dividing circuit. This makes it possible to detect a change in capacitance with an inexpensive configuration.
- the heating cooker directly detects the increase in the capacitance of the electrode by capacitively coupling the electrode and the heated object through a spill that is physically in contact with the heated object.
- the spillage contact state detection unit that captures the electric field change of the induction heating base point transmitted to the spillover detection unit detects the spillage of the cooking object from the detection result of the capacitance detection unit and the detection result of the spillage contact state detection unit. May be.
- a small amount of spillage is generated and the object is in contact with the object to be heated, and the capacitance due to the influence of the electric field generated by induction heating of the object to be heated is more than the change in capacitance due to connection with the reference potential. Even if the change is larger, it is possible to accurately determine the overflow.
- the heating cooker is a heating device for confirming whether the increase in the capacitance of the electrode detected by the spilled contact state detection unit is due to capacitive coupling between the electrode and the heated object through the spilled food.
- You may further have a spill contact state confirmation part which performs control via a control part. As a result, it is possible to confirm that spillage has occurred reliably.
- the heating operation stops the heating operation by the heating coil for a predetermined time and heats with a heating power smaller than before the heating operation stops after the predetermined time elapses.
- the coil may be operated. Thereby, it is possible to prevent the spillage from evaporating and changing the state due to the influence of the heating power for confirmation.
- the heating cooker further includes a notification unit that notifies the user that a spill has occurred, and the spill detection unit controls the heating amount of the heating coil via the control unit when it is determined that the spill has occurred.
- a control notification time adjustment unit that executes a overflow detection process including an operation for adjusting the time until the user is notified of the occurrence of the overflow by the notification unit. For example, as a spill detection process, when the capacitance changes, the heating amount control (for example, heating stop) for preventing the expansion of the spill is executed once, and then it is determined whether or not the capacitance change is spilled. In the above, notification of spillage to the user or continuation of heating by the original heating amount is executed.
- the control notification time adjustment unit detects the spilling of the food to be cooked by comparing the detection value of the capacitance detection unit with a predetermined threshold, and the heating cooker is the capacitance of the electrode at the start of heating.
- a threshold value determination unit that determines a predetermined threshold value based on the value may be further provided. For example, when the capacitance of the electrode at the start of heating changes by a predetermined amount or more compared to the case where the object to be heated is not placed on the electrode, the object to be heated such as a pan is placed on the electrode. It is thought that it is placed.
- the threshold value determination unit determines a threshold value that is a criterion for determining a change in electrostatic capacitance for detecting a spill over to a value that is smaller than when the object to be heated is not on the electrode.
- the heating cooker may include a plurality of electrodes, and the control notification time adjustment unit may execute the overflow detection process based on the capacitance values of the plurality of electrodes. Thereby, it is possible to determine how to spill over based on the placement state of the object to be heated, the size of the object to be heated, the order of change of the plurality of electrodes, and to perform heating control according to the amount of spillage of the object to be cooked Become.
- the control notification time adjustment unit may simultaneously perform heating stop of the heating unit and notification by the notification unit.
- the control notification time adjustment unit may simultaneously perform heating stop of the heating unit and notification by the notification unit.
- the control notification time adjustment unit may simultaneously perform the heating stop of the heating unit and the notification by the notification unit. Therefore, even if it is a case where a to-be-cooked item spills into the part in which a pan exists on an electrode, for example, it becomes possible to prevent the to-be-cooked object from burning by performing heating stop and notification.
- the heating cooker may include a plurality of heating coils, and the control notification time adjustment unit may control the heating amount of all the heating coils when detecting the spilling of the cooking object. For example, when a spill occurs, it is not known where the spill will flow on the top plate, so heating of all the heating coils may be stopped. Thereby, it is possible to prevent the spilled food from being burnt in any direction on the top plate.
- the heating cooker may further include a human body detection unit that detects whether or not there is a person, and the control notification time adjustment unit may perform the overflow detection process based on the detection result of the human body detection unit. For example, heating is stopped when the user is not nearby. On the other hand, when the user is nearby, the user is left with the judgment of spillage, so the heating is not stopped and the control of the heating amount is continued or the heating amount is decreased by a predetermined amount.
- the heating cooker further includes a heated object movement detection unit that detects whether the heated object has moved, and the control notification time adjustment unit detects that the heated object has moved by the heated object movement detection unit. Then, the execution of the overflow detection process may be prohibited. Thereby, it is possible to prevent erroneous determination that the spilling has occurred when the capacitance changes due to the movement of an object to be heated such as a pan.
- the heating cooker further includes a temperature detection unit that detects the temperature of the object to be heated, and the control notification time adjustment unit, when the temperature of the object to be heated detected by the temperature detection unit is lower than the boiling point of water, Execution of the overflow detection process may be prohibited. As a result, a change in capacitance that occurs when there is no possibility of occurrence of spilling can be determined as disturbance, and erroneous determination that spilling has occurred can be prevented.
- the connection by capacitive coupling between the electrode and the reference potential is further strengthened according to the amount of food to be cooked on the top plate. Therefore, the change in the capacitance of the electrode can be correctly observed. Therefore, it is possible to accurately detect the spill, and to realize a practical spill detection function.
- the block diagram which shows the structure of the heating cooker of Embodiment 1 of this invention is a conceptual diagram of a capacitance detection unit, (b) is an equivalent circuit diagram of the capacitance detection unit, and (c) is a graph of a detection value of the capacitance detection unit with respect to the amount of spilled water.
- the block diagram which shows the other structure of the heating cooker of Embodiment 1 of this invention.
- FIG. 10 is a flowchart showing the operation of detecting the overflow of the cooking device of FIG.
- the block diagram which shows the structure of the heating cooker of Embodiment 2 of this invention.
- the flowchart which shows the whole operation
- the flowchart which shows the overflow detection operation of the heating cooker of Embodiment 2 of this invention.
- (A) is a figure which shows the detection value of the electrostatic capacitance at the time of occurrence of a spill
- (b) is a figure which shows the detection value of the electrostatic capacitance at the time other than the occurrence of spill
- the block diagram which shows the other structure of the heating cooker of Embodiment 2 of this invention.
- (A) is a figure which shows the change of the detected value of an electrostatic capacitance when a to-be-heated object is not on an electrode
- (b) shows the change of the detected value of an electrostatic capacity when an object to be heated is on an electrode.
- Embodiment 1 The heating cooker according to the first embodiment of the present invention uses the fact that the connection by the capacitive coupling between the electrode and the reference potential is strengthened by connecting the top plate to the reference potential and increasing the amount of the cooked food. As a result, the change in capacitance can be correctly observed, so that it is possible to accurately determine the overflow.
- FIG. 1 shows the configuration of the heating cooker according to the first embodiment of the present invention.
- the heating cooker according to the present embodiment includes a top plate 104 on which the object to be heated 102 is placed, a heating unit 105 that heats the object to be heated 102, an electrode 106 disposed on the lower surface of the top plate 104, A capacitance detection unit 107 that detects capacitance, a bubble detection unit 108 that detects the occurrence of overflow based on the detection result of the capacitance detection unit 107, and a control unit 109 that controls the heating operation of the heating unit 105. And having.
- the top plate 104 is connected to the reference potential 103.
- the heating cooker of this embodiment uses a circuit ground common to the control unit 109 as the reference potential 103, uses crystallized glass as the top plate 104, uses an electric heater as the heating unit 105, and uses the top as the electrode 106.
- a conductor formed by coating or bonding on the lower surface of the plate 104, and using a circuit (see FIG. 2) for converting the capacitance exhibited by the electrode 106 into a voltage as the capacitance detection unit 107 detection of spillage It can be easily realized by using a microcomputer as the unit 108 and the control unit 109.
- the object to be heated 102 is, for example, a pan.
- FIG. 2A schematically shows the configuration of the capacitance detection unit 107.
- the capacitance detection unit 107 includes a high-frequency power source 201 for capacitance detection, an impedance 202 and an impedance 203 connected in series, and a detection voltage terminal 206 for detecting capacitance.
- FIG. 2A shows an example in which the object to be cooked 101 in the object to be heated 102 shown in FIG. 1 is spilled and the spill 204 is placed on the top plate 104. If the spill 204 is present on the electrode 106, an impedance 205 having a capacitance between the reference potential 103 and the electrode 106 is generated by the spill 204, the electrode 106, and the top plate 104 connected to the reference potential 103. It is formed. Thus, the potential of the detection voltage terminal 206 is determined by the reference potential 103 connected to the top plate 104. At this time, the bubble 204 functions as a dielectric.
- FIG. 2B shows an equivalent circuit diagram of the capacitance detection unit 107.
- the impedance 202, the impedance 203, and the impedance 205 divide the high-frequency voltage (for example, 300 kHz) provided by the detection high-frequency power source 201, thereby determining the voltage of the detection voltage terminal 206. If the spill 204 occurs and the capacitance of the impedance 205 increases, the voltage generated at the detection voltage terminal 206 changes with the voltage division ratio.
- the capacitance detection unit 107 detects a change in the capacitance of the electrode 106 when the voltage generated at the detection voltage terminal 206 changes.
- FIG. 2 (c) shows a graph of the amount of water in the spillover 204 and the amount of change in the detection value of the capacitance detection unit 107.
- the horizontal axis in FIG. 2C indicates the amount of water in the spill 204, and the vertical axis indicates the voltage value generated at the detection voltage terminal 206.
- the amount of change in the voltage generated at the detection voltage terminal 206 increases in accordance with the amount of water in the spill 204.
- the voltage changes even after the spill 204 has completely covered the electrode 106 because the voltage changes according to the strength of connection with the reference potential 103 through the top plate 104. That is, the voltage generated at the detection voltage terminal 206 changes as the capacitance due to the impedance 205 increases.
- FIG. 3 shows the operation of detecting the overflow of the cooking device of the present embodiment.
- the control unit 109 operates the heating part 105 to start heating the object to be heated 102 (S301).
- the overflow detection unit 108 acquires a voltage corresponding to the electrostatic capacitance of the electrode 106 output from the electrostatic capacitance detection unit 107 as an “electrostatic capacitance detection value”, and the “previous detection value” which is a variable for detection of the overflow
- the capacitance detection value at the start of heating is substituted for (S302).
- the spill detector 108 acquires a voltage corresponding to the capacitance of the electrode 106 as the “capacitance detection value” by the electrostatic capacitance detector 107, and the “detection this time” The acquired capacitance detection value is substituted for “value” (S304).
- the overflow detection unit 108 determines whether or not the difference between the “previous detection value” and the “current detection value” of the capacitance of the electrode 106 is larger than a predetermined value (for example, 1/10 of the maximum voltage change amount) ( S305). If the difference is larger than a predetermined value, the overflow detector 108 determines that the overflow has occurred. If the capacitance of the impedance 205 shown in FIG. 2 increases, the voltage generated at the detection voltage terminal 206 decreases. Specifically, the “current detection value” is smaller than the “previous detection value” by a predetermined amount or more. If it is a value, it is determined that spilling has occurred.
- a predetermined value for example, 1/10 of the maximum voltage change amount
- the overflow detection process is temporarily terminated, and determination is again made after a predetermined time has elapsed (return to S303). In this way, it is determined whether or not a spill has occurred every time a predetermined time has elapsed.
- the control unit 109 changes the “current heating amount” to “adjusted heating amount (stop or heating amount 1/3, etc.)” (S306), and spillage occurs. The user is notified of this by the notification unit or the like (S307), and the overflow detection operation is terminated.
- the connection by capacitive coupling between the electrode 106 and the reference potential is performed in accordance with the amount of the object 101 to be spilled on the top plate. Becomes stronger. Therefore, the change in the capacitance of the electrode 106 can be correctly observed. Therefore, it is possible to accurately determine the spillage and to realize a practical spillover detection function.
- the capacitance detecting unit 107 spills on the top plate 104 to which the cooking object 101 is connected to the reference potential, and the moisture contained in the cooking object 101 functions as a dielectric, increasing the amount of spillage. This makes use of the fact that the connection by capacitive coupling between the electrode 106 and the reference potential 103 becomes stronger. Therefore, the spill detector 108 can detect the spill by correctly detecting the change in the electrostatic capacitance based on the detection result of the electrostatic capacitance detector 107. Therefore, it is possible to realize a practically used overflow detection function.
- the electrode 106 can be attached to the glass having a high dielectric constant without air having a low dielectric constant, so that the capacitance can be increased.
- the structure of the heating part 105 is not limited to this embodiment.
- a gas heat source may be used as the heating unit 105.
- the circuit ground common to the control unit 109 is used as the reference potential 103, but the reference potential 103 is not limited to this embodiment.
- a housing ground formed of a sheet metal of the housing may be used as the reference potential 103, or a slightly higher potential from the ground may be used as the reference potential 103.
- the cooking device of the present invention is not limited to the first embodiment, and may have the following configuration.
- the heating cooker shown in FIG. 1 uses an electric heater, an induction heating cooker using a heating coil may be used.
- FIG. 4 the other structure of the heating cooker of this embodiment is shown. 4, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
- the heating unit 105 includes a heating coil 401 that induction-heats the article to be heated 102 by receiving high-frequency power, and a high-frequency power supply unit 402 that supplies high-frequency power to the heating coil 401.
- This configuration can be realized by using a copper winding for the heating coil 401 and an inverter for the high-frequency power supply unit 402.
- the copper winding of the heating coil 401 acts as a metal member for capacitively connecting to the electrode 106 through the spill of the object to be cooked 101, and functions to increase the change in capacitance.
- FIG. 5 shows the arrangement of the heating coil 401 and the electrode 106.
- the shape of the electrode 106 is an arc shape that is substantially concentric with the heating coil (metal member) 401. Thereby, since the distance of the electrode 106 and the edge surface of the heating coil 401 which is a metal member can be kept substantially the same, the capacitive coupling of the heating coil 401 as a metal member and the electrode 106 can be improved.
- the basic operation of the induction heating cooker shown in FIG. 4 is substantially the same as that of the heating cooker shown in FIG. 1, and detection of the spillage shown in FIG.
- the heating by the heating unit 105 is performed by the control unit 109 instructing the target power to the high frequency power supply unit 402 and the high frequency power supply unit 402 according to the target power. It is executed by sending high frequency power.
- the induction heating cooker having the function of detecting the overflow is realized by including the heating coil 401 that induction-heats the object to be heated 102 and the high-frequency power supply unit 402 that supplies high-frequency power to the heating coil 401. can do.
- the electrode 106 and the metal member are connected via the spill, so that the capacitance change due to the spill can be increased.
- Capacitive coupling between the heating coil 401 as the metal member and the electrode 106 is improved by making the shape of the electrode 106 an arc shape that can keep the edge distance from the heating coil 401 as the metal member substantially the same. can do.
- the heating coil 401 can be used as a metal member.
- the heating unit 105 is a gas, a heater, or the like, the change in capacitance is strengthened by arranging another metal member. May be.
- the to-be-cooked object 101 is spilled, and the electrode 106 and the heating coil 401 are capacitively coupled through the spill.
- the electrode 106 has a high-frequency current in induction heating flowing through the heating coil 401.
- the spill detector 108 may observe the superimposed induction heating frequency component to determine whether an object has been placed on the electrode 106 and reacted or whether it has reacted by spilling.
- the cooking device may further include a filter 601 that removes the induction heating frequency component.
- a filter 601 that removes the induction heating frequency and passes the frequency of the detection high-frequency power source 201 shown in FIG. 2 can be used.
- the filter 601 removes the induction heating frequency component superimposed on the electrode 106 from the heating coil 401 through the spill.
- the output of the capacitance detection unit 107 is stabilized. Thereby, the spill detector 108 can detect the spill by using the stable output of the capacitance detector 107.
- the filter 601 for removing the induction heating frequency superimposed on the capacitance detection unit 107 induction heating caused by capacitive coupling between the electrode 106 and the heating coil 401 as a metal member is performed. The influence can be removed and stable spill detection can be performed.
- a spillage contact state detection unit for detecting a contact state of spillage may be further provided.
- the spill contact state detection unit 701 can be easily realized by, for example, a microcomputer.
- the overflow detection state differs greatly depending on whether or not the heated object 102 is in contact.
- the overflow detection according to whether the overflow is in contact with the article to be heated 102 is enabled.
- the voltage value detected by the capacitance detection unit 107 decreases due to spilling.
- the object to be cooked 101 spilled on the electrode 106 comes into contact with the object to be heated 102
- the voltage value detected by the capacitance detection unit 107 increases due to the influence of the electric field generated by induction heating. . Therefore, in this example, when the spillage comes into contact with the object to be heated 102, the change in the increasing direction due to the influence of the electric field generated by the induction heating of the object to be heated 102 is greater than the change in the decreasing direction due to the connection with the reference potential.
- a heating cooker capable of detecting a spilling even when the amount of water is large.
- the presence or absence of spillage is determined based on the detected capacitance value of the electrode 106.
- the spillage detection unit 108 determines the presence or absence of spillage based on the change in the decreasing direction of the capacitance
- the spillage contact state detection unit 701 detects the spillage based on the change in the increase direction of the capacitance. Determine the presence or absence.
- FIG. 8A shows the detected capacitance value when the spillage comes into contact with the object to be heated 102 (that is, when the spillage is affected by the electric field generated by induction heating), and FIG. 8B shows the spillage.
- the detection value of the electrostatic capacitance when not in contact with the object to be heated 102 is shown.
- the electrostatic capacitance of the impedance 205 due to the spill shown in FIG. 2 increases, and the divided voltage value of the voltage detected by the detection voltage terminal 206 decreases (time t1). Or later).
- the electrode 106 and the object to be heated 102 are not capacitively coupled through the spill, so that the voltage value is not affected by the influence of the electric field due to induction heating. It stabilizes at.
- the spill detector 108 determines whether or not there is a spill depending on whether the amount of decrease is equal to or greater than a predetermined value (first predetermined value Vb).
- the spillage comes into contact with the object to be heated 102, and the electrode 106 and the object to be heated 102 are capacitively coupled through a small amount of spillage that is physically in contact with the object to be heated 102.
- an electric field change of the induction heating base point directly transmitted from the object to be heated 102 occurs through the spillage functioning as a dielectric.
- This electric field change is superimposed on the overflow detection value with a frequency change of induction heating through capacitive coupling (time t1 to t2).
- the average value of the detected values at the time of occurrence of the overflow is larger than that before the occurrence of the overflow.
- the spilling contact state detecting unit 701 determines whether or not spilling has occurred depending on whether or not the increase amount is equal to or greater than a predetermined value (second predetermined value Va).
- a predetermined value (second predetermined value Va).
- FIG. 9 shows a flowchart of the operation for detecting spillage by the cooking device of the third modification.
- S901 to S903, S906, and S907 are the same as S301 to S303, S306, and S307 of FIG.
- the control unit 109 operates the heating part 105 to start heating the object to be heated 102 (S901).
- the overflow detection unit 108 acquires a voltage corresponding to the capacitance of the electrode 106 output from the capacitance detection unit 107 as a capacitance detection value, and heats it to the “previous detection value” that is a variable for detection of the overflow.
- the capacitance detection value at the start is substituted (S902). Thereafter, it is confirmed whether or not a predetermined time (for example, 0.5 seconds) has elapsed (S903), and after the predetermined time has elapsed, a overflow detection process is executed (S904 to S907).
- a predetermined time for example, 0.5 seconds
- the spill detector 108 acquires a voltage corresponding to the capacitance of the electrode 106 as an electrostatic capacitance detection value by the electrostatic capacitance detector 107, and uses the acquired electrostatic capacitance detection value for detecting the spill. It is substituted into the “current detection value” which is a variable (S904).
- the electrostatic capacitance detection value may include the frequency component of the electric field generated by induction heating as shown in FIG. 8A, the fluctuation generated with the induction heating frequency is stabilized. The obtained value is substituted for “current detection value”.
- the spill detector 108 determines whether spill has occurred (S905).
- the overflow detection unit 108 determines whether or not the difference between the “previous detection value” and the “current detection value” of the capacitance of the electrode 106 is greater than a first predetermined value (for example, 1/10 of the maximum voltage change amount). to decide.
- a first predetermined value for example, 1/10 of the maximum voltage change amount.
- the spill detector 108 determines whether spill has occurred via the spill contact state detector 701. Specifically, the spill contact state detection unit 701 determines the difference between the “previous detection value” and the “current detection value” of the capacitance of the electrode 106 obtained by the spill detection unit 108 to a second predetermined value (for example, voltage By comparing with 1/10 of the maximum change amount, the presence or absence of spillage is further determined. If the difference between the “current detection value” and the “previous detection value” is greater than the second predetermined value, the overflow contact state detection unit 701 determines that the overflow has occurred, and the difference is greater than the second predetermined value. If it is small, it is judged that no spilling has occurred.
- a second predetermined value for example, voltage
- a detection value (voltage generated at the detection voltage terminal 206 shown in FIG. 2) due to the influence of the frequency of the electric field generated by induction heating. Will increase.
- the spilling contact state detection unit 701 determines that spilling has occurred if the “currently detected value” is a value greater than the “previous detected value” by a second predetermined value or more.
- the spill detector 108 receives the presence or absence of spill from the spill contact state detector 701.
- the spill detection process is terminated, and it is determined whether the spill has occurred again after a predetermined time has elapsed (return to S903).
- the control unit 109 changes the current heating amount to the adjusted heating amount (stopped or 1/3 heating amount, etc.) (S906), and the user spills through the notification unit or the like. The occurrence is notified (S907), and the overflow detection operation is terminated.
- the electrode 106 and the object to be heated 102 have a capacity through a small amount of spillage that physically contacts the object to be heated 102.
- the spillage functions as a dielectric. Therefore, the influence of the electric field generated by induction heating is directly transmitted to the electrode 106 from the heated object 102 through the spill.
- the spilling contact state detection unit 701 can determine the presence or absence of spilling by capturing the change in the electric field at the induction heating base point.
- FIG. 10 shows another configuration of the heating cooker.
- This cooking device further includes a spill contact state confirmation unit 1001 for confirming the contact state of the spill.
- the spill contact state confirmation unit 1001 can be easily realized by using a microcomputer.
- Fig. 11 shows the spill detection operation.
- the difference from FIG. 9 is that instead of changing the heating amount (S906), the overflow contact state confirmation control is executed (S1106).
- Other steps S1101 to 1105 and S1107 are the same as steps S901 to 905 and S907 in FIG.
- the cooking device performs a spill detection operation (S1105), and then performs a spill contact state confirmation operation as shown in FIG. 12 by the spill contact state confirmation unit 1001 (S1106).
- the spill contact state confirmation unit 1001 instructs the control unit 109 to confirm the spill contact state.
- the control unit 109 temporarily stops heating (time t2), and again inputs power for contact confirmation (time t3) after a predetermined time has elapsed.
- the spill contact state confirmation unit 1001 confirms whether or not the output of the capacitance detection unit 107 again shows a rising reaction via the spill contact state detection unit 701 when power input for contact confirmation is performed. To do.
- the power input for contact confirmation is set to a heating power (for example, 1/30 of the maximum power) that is sufficiently smaller than that at the time of detecting the overflow. This prevents the spillage from evaporating and changing the state under the influence of the heating power for confirmation.
- a heating power for example, 1/30 of the maximum power
- the spilling contact state confirmation unit 1001 confirms the increase in the detection value again, thereby detecting the influence of induction heating. It can be correctly determined that the increase in value is due to spillage. In other words, by performing the operation of step S1106, the detection of the spilling contact performed by the spilling contact state detection unit 701 is not a false detection due to noise or the like, but the detected value increases when the spilling actually contacts the object to be heated 102. I can confirm that there is. Moreover, since it confirms with weak heating power, it can confirm, without disturbing a spilling state.
- the spill contact state confirmation unit 1001 confirms that the increase in the detection value of the capacitance detection unit 107 is a value corresponding to the heating power amount, and determines that the increase in the detection value is due to spill. It is preferable to do. For example, if heating is started while the object to be heated 102 is placed on the electrode 106 and then the object to be heated 102 is moved and removed from the electrode 106, the capacitance detection unit 107 can be connected even if there is no spillage. The detection value increases.
- the detection value of the capacitance detection unit 107 becomes a constant value regardless of the heating power amount. Therefore, after the spilled contact state detection unit 701 detects an increase in the detected capacitance value due to the movement of the object to be heated 102 as a spill occurred, the spilled contact state confirmation unit 1001 heats weak power for contact confirmation.
- the spill contact state confirmation unit 1001 confirms whether or not the increase in the detection value of the capacitance detection unit 107 is a value corresponding to the amount of heating power. It can be judged correctly.
- the spill contact state confirmation unit 1001 detects that the spill contact state detected by the spill contact state detection unit 701 (that is, the increase in the detection value of the capacitance detection unit 107 is caused by the spill). It is possible to correctly and surely detect the occurrence of spilling by confirming whether or not the determination is correct by performing heating control for state confirmation.
- the cooking device of the first embodiment and each modified example has the top plate 104 connected to the reference potential.
- the moisture contained in the spilled cooking material functions as a dielectric, and the increase in the amount of spillage increases the connection by capacitive coupling between the electrode 106 and the reference potential. Capturing and detecting spills. Therefore, it is possible to detect the spillage with high practicality.
- Such a cooking device is useful for heating cooking devices in general.
- the detection operation of the spilling can be widely applied not only to a cooking device but also to a device that needs to detect a substance having a high dielectric constant such as water.
- Embodiment 2 When the heating cooker according to the second embodiment of the present invention is assumed to have spilled, once the heating amount control for preventing spilling continues is performed, and then it is determined whether or not the spill is really The heating amount control is determined, and it is determined whether to notify the occurrence of spillage or return to the original heating amount. As a result, it is possible to accurately determine the spillage and realize a cooking device having a highly practical spill detection function.
- FIG. 13 shows the configuration of the heating cooker according to the second embodiment of the present invention.
- the heating cooker of this embodiment includes a top plate 104 on which the object to be heated 102 is placed, a heating coil 401 that heats the object to be heated 102, a high-frequency power supply unit 402 that supplies power to the heating coil 401, and a high frequency And a control unit 109 that controls the heating operation by the heating coil 401 by controlling the power supply unit 402.
- the cooking device of the present embodiment further includes an electrode 106 disposed on the lower surface of the top plate 104, a capacitance detection unit 107 that detects the capacitance of the electrode 106, a notification unit 140, a notification unit 140, and And a control notification time adjustment unit 130 that controls the control unit 109.
- the heating coil 401 and the high-frequency power supply unit 402 constitute a heating unit 105 similar to that shown in FIG.
- the top plate 104 is preferably connected to a reference potential.
- FIG. 13 the same components as those in FIGS. 1 and 4 are denoted by the same reference numerals.
- the heating cooker of this embodiment is an induction heating cooker that induction-heats the object to be heated 102 by the heating unit 105.
- a circuit that converts the capacitance of the electrode 106 into voltage is used as the voltage 107
- a microcomputer is used as the control notification time adjustment unit 130 and the control unit 109
- an LED is used as the notification unit 140.
- the configuration can be easily realized.
- the electrode 106 formed on the lower surface of the top plate 104 forms a capacitor together with the conductor on the top plate 104. Normally, there is nothing on the top plate 104, so air serves as a dielectric. When another object such as the object to be heated 102, the user's finger, liquid, or the object to be cooked 101 exists on the top plate 104, the relative permittivity of each object is different, so the capacitance of the capacitor formed by the electrode 106 Changes.
- the capacitance detection unit 107 sequentially converts the capacitance obtained by the electrode 106 into a voltage, and outputs the detected voltage value to the control notification time adjustment unit 130.
- the control notification time adjustment unit 130 determines whether or not the overflow has occurred based on the voltage value detected by the capacitance detection unit 107. That is, the control notification time adjustment unit 130 of FIG. 13 is equivalent to the overflow detection unit 108 that determines whether or not the overflow has occurred, as shown in FIGS. Note that the control notification time adjustment unit 130 of the present embodiment stops heating the heating coil 401 or reduces the heating amount via the control unit 109 when it is assumed that spilling has occurred, When it is determined that the spill has occurred, the user is notified via the notification unit 140 that the spill has occurred.
- Fig. 14 shows the overall operation of the spill detection.
- the control unit 109 operates the high frequency power supply unit 402 to input high frequency power to the heating coil 401.
- the control unit 109 sets a “notifying time adjusting flag” indicating that the overflow notification time is being adjusted to False (false) (S1401).
- the control notification time adjustment unit 130 acquires the detection value of the capacitance of the electrode 106 detected by the capacitance detection unit 107, and sets the electrostatic detection value at the start of heating to the “previous detection value”, which is a variable for detecting overflowing.
- the capacity detection value is substituted (S1402).
- the control unit 109 confirms whether or not a predetermined time (for example, 0.2 seconds) has elapsed (S1403), and executes a spill detection process every time the predetermined time has elapsed (S1404).
- a predetermined time for example, 0.2 seconds
- FIG. 15 shows details of the overflow detection process (S1404).
- FIGS. 16A and 16B show changes in the capacitance of the electrode 106 detected by the capacitance detection unit 107, respectively.
- FIG. 16A shows a change in the detected value (voltage value) of the electrostatic capacitance when a spill occurs.
- FIG. 16 (a) when a spill occurs, the detected capacitance value decreases.
- FIG. 16 (b) shows a temporary change in the detected capacitance value due to other than spilling.
- FIG. 16B shows a change in the detected capacitance value (voltage value) when the top plate 104 is wiped and cleaned using a cloth width or the like. While wiping is being performed, the detected capacitance value repeatedly increases and decreases.
- the capacitance detection unit 107 detects the capacitance of the electrode 106.
- the control notification time adjustment unit 130 substitutes the detection value of the capacitance detected by the capacitance detection unit 107 into “current detection value”, which is a variable for detecting overflow (S1501).
- the control notification time adjustment unit 130 checks whether or not the notification time adjustment flag is True (S1502). Since the notification time adjusting flag is set to False (false) in step S1401 of FIG. 14, the process proceeds to step S1508 in the case of detecting the first overflow. In this case, the control notification time adjustment unit 130 checks whether or not a spill response as shown in FIG. 16A has been newly detected (S1508 to S1511).
- step S1503 in the case of detecting the second overflow. In this case, it is determined whether or not the change in the detected capacitance value detected for the first time is really due to spilling. That is, it is confirmed whether the spilling reaction as shown in FIG. 16A is maintained, or whether it is a temporary reaction due to wiping and cleaning as shown in FIG. 16B (S1503 to 1507).
- the control notification time adjustment unit 130 determines that adjustment is not being performed. That is, it is determined that it is the first detection of the spill. In this case, the control notification time adjustment unit 130 compares the difference between the “previous detection value” and the “current detection value” of the capacitance of the electrode 106 with a predetermined value (for example, 1/3 of the maximum voltage change amount). Thus, the presence or absence of spillage is determined (S1508). If no spill is detected, the detection process ends. When the spilling is detected, the control notification time adjustment unit 130 changes the current heating amount to the heating amount adjustment power (stopping or temperature maintaining power of about 500 W) through the control unit 109 (S1509).
- the control notification time adjustment unit 130 sets a notification time adjustment flag to True (true) through the control unit 109 and confirms whether the change in capacitance is actually due to spillage. Set the “time counter” to measure time for 0. Thereafter, the notification time adjustment unit 130 starts the notification time adjustment process.
- the notification time adjustment unit 130 saves “previous detection value”, which is a capacitance detection value before the detection of overflowing, as “reference detection value” as reference data for determining whether to continue the overflowing (S1510).
- the “current heating power” required for returning the heating amount is set as a variable of “original heating power” indicating the return power. Save (S1511), the process of FIG.
- step S1502 the process proceeds from step S1502 to step S1503.
- the control notification time adjustment unit 130 determines that adjustment is in progress. In other words, it is determined that the spillage is once detected and the heating power is temporarily adjusted. In this case, the control notification time adjustment unit 130 compares the difference between the “reference detection value” and the “current detection value” of the capacitance of the electrode 106 with a predetermined value (for example, 1/3 of the maximum voltage change amount). Based on the above, it is determined whether or not the spilling reaction continues (S1503).
- the control notification time adjustment unit 130 is caused by a spill. It is determined that it is not (for example, by wiping and cleaning as shown in FIG. 16B), and the current heating amount is returned to the value of “original heating power” through the control unit 109 (S1507). Further, the control notification time adjustment unit 130 sets the notification time adjustment flag to False (false) and sets the time counter to 0 through the control unit 109. Thereby, it is determined that the change in capacitance is a temporary reaction, and the adjustment of the notification time is ended.
- the control notification time adjustment unit 130 causes the change in capacitance to be due to spillage. Judge that it is. In this case, the control notification time adjustment unit 130 increments a “time counter” that counts the duration of the spillage (S1504). The control notification time adjustment unit 130 determines whether the duration of the overflow reaction has continued for a predetermined time (for example, 5 seconds) based on whether the time counter has exceeded a predetermined number of times (S1505). If the duration of the spill reaction is longer than the predetermined time, it is determined that the spill has occurred.
- a predetermined time for example, 5 seconds
- the control notification time adjustment unit 130 notifies the user that a spill has occurred via the notification unit 140 and continues the heating amount adjustment power state (stop or power for maintaining temperature of about 500 W) (S1506). . If the duration of the spilling reaction is shorter than the predetermined time, the process is once terminated. Thereafter, every time a predetermined time (for example, 0.2 seconds) elapses (S1403 in FIG. 14), the overflow detection process (S1404) is performed. That is, after a predetermined time (for example, 0.2 seconds) has elapsed, the processing starting from step S1501 shown in FIG. 15 is executed again, and when the spill response time has elapsed for a predetermined time (for example, 5 seconds), The notification is executed.
- a predetermined time for example, 0.2 seconds
- induction heating cookers do not use fire, users often use the top plate 104 as part of the cooking table. In addition, since there is no flame, the user may wipe and clean the top plate 104 with a cloth or the like even during heating. When ingredients, tableware, cooking utensils are moved on the top plate 104 serving as a cooking table, or wiping with a cloth is performed, a change in the capacitance of the electrode 106 is observed. For this reason, if the processing is performed simply by observing the capacitance change of the electrode and determining that it is a spill, the heating amount control unintended for the user is frequently performed.
- the control notification time adjustment unit 130 temporarily stops or reduces heating when the capacitance of the electrode 106 changes.
- the heating amount control for preventing the expansion of the spillage necessary when the spillage is caused by the cooking object 101 is executed.
- the control notification time adjustment unit 130 performs notification to the user and restoration of the heating power after confirming whether the change in the capacitance of the electrode 106 is really due to spillage. Therefore, it is possible to accurately detect the spill, and to realize a cooking device having a highly practical spill detection function.
- the heating power is immediately restored (S1507).
- the heating power may be restored after determining whether or not a predetermined time has elapsed. Further, the heating power may be restored based on whether or not the average value of the detected capacitance value within a predetermined time is greater than or equal to a predetermined value.
- the cooking device of the present invention is not limited to the second embodiment, and may have the following configuration.
- Mode 1 it may further include a threshold value determination unit 1701 that determines a detection threshold value of a change in electrostatic capacitance when performing the determination of overflowing.
- the threshold value determination unit 1701 can be easily realized by using a microcomputer.
- a threshold value according to the situation is used as the predetermined value used in steps S1503 and S1508 in FIG.
- the value of the predetermined value is determined by whether or not a pan as the article to be heated 102 is placed on the electrode 106 when the user instructs to start heating. That is, based on the value of the capacitance of the electrode 106 at the start of heating, a predetermined value used at the time of detecting the overflow is determined in steps S1503 and S1508.
- FIG. 18A shows the detected value (voltage value) of the electrostatic capacitance when the object to be heated 102 is not placed on the electrode 106
- FIG. 18B shows the object to be heated 102 on the electrode 106.
- the detection value (voltage value) of the electrostatic capacitance when being placed is shown.
- FIGS. 18A and 18B when the object to be heated 102 is placed on the electrode 106, the capacitance of the electrode 106 is set so that the object to be heated 102 is placed on the electrode 106. Therefore, the change in the detected value before and after the occurrence of spilling is small (V2 ⁇ V1).
- the capacitance detection value detected by the capacitance detection unit 107 has a value corresponding to the material and shape of the pan.
- the threshold value determination unit 1701 constantly monitors the difference between the detection value (corresponding to the maximum value of the capacitance detection output) when the object to be heated 102 is not placed and the current detection value.
- the threshold value determination unit 1701 provides a detection threshold value for performing a spillage determination from a state in which a certain amount of capacitance change has already occurred due to the object to be heated 102 (for example, a state where the capacitance has decreased by a predetermined amount or more). It has a function to do.
- the control notification time adjustment unit 130 makes an inquiry to the threshold value determination unit 1701 and requests a threshold value used when detecting the overflowing.
- the threshold value determination unit 1701 normally delivers 1/3 of the maximum voltage change amount as a threshold value (when the object to be heated 102 is not placed on the electrode 106).
- the detection threshold that is, the predetermined threshold used in steps S1503 and S1508 in FIG. 15
- the control notification time adjustment unit 130 is based on a predetermined calculation formula. Value
- the predetermined calculation formula is, for example, “(maximum voltage change amount) ⁇ ((output when there is no pan) ⁇ (output when there is a pan)) ⁇ 1/3”.
- the control notification time adjustment unit 130 performs the overflow detection operation by the same operation as that of the second embodiment using the threshold value obtained here.
- the threshold value determination unit 1701 has a capacitance for detecting a spill.
- the threshold value of the change is made smaller than the case where the object to be heated 102 is not on the electrode 106. Therefore, the overflow detection sensitivity can be ensured regardless of the placement state of the article to be heated 102.
- the heating cooker may include an electrode 106 including an electrode 106a disposed near the object to be heated 102 and an electrode 106b disposed far away.
- the overflow can be detected using the plurality of electrodes 106a and 106b. It is also possible to perform heating amount control according to the placement state and size of the object to be heated 102 and the amount of spillage of the object to be cooked 101.
- the control notification time adjustment unit 130 reduces the adjustment amount compared to the heating amount adjustment performed when the capacitance change occurs in both the electrode 106a and the electrode 106b. To do.
- the power is changed to 500W
- the capacitance is changing only in the electrode 106a
- the power is set to 750W.
- the mounting is performed. It can be determined that the object to be heated 102 is a large pan. For example, when the capacitance of all the electrodes 106 at the start of heating is more than a predetermined amount from the value when the pan is not placed, the large heated object 102 covering all the electrodes 106 is the top It is considered that it is placed on the plate 104.
- the pan as the article to be heated 102 is large and exists on the electrode 106, the influence of cleaning, cooking utensils, etc.
- the control notification time adjustment unit 130 immediately heats the spilled food 101 so that it does not burn on the top plate 104. It is preferable to execute stop and notification.
- the heating amount may be adjusted (for example, power down to 500 W). In this way, it may be determined that the object to be cooked 101 has been spilled on the portion where the object to be heated 102 is present on the electrode 106, and the heating stop and heating amount control notification for preventing the burning may be executed.
- the heating amount control according to the placement state and size of the object to be heated 102 and the amount of spillage of the object to be cooked is performed. Can do.
- Mode 4 A case where the cooking device includes a human body detection unit 2101 for confirming the presence of a user who performs cooking will be described with reference to FIG.
- the configuration of the human body detection unit 2101 can be easily realized by using an infrared sensor as the human body detection unit 2101.
- the human body detection unit 2101 checks whether a user is present during heating.
- the cooking device varies the operation when detecting the overflow according to the presence or absence of the user.
- the human body detection unit 2101 always detects whether there is a user in front of the cooking device.
- the control notification time adjustment unit 130 makes an inquiry to the human body detection unit 2101 as to whether or not the user is in front of the heating cooker when performing the determination of spilling in step S1503 or step S1508 in FIG.
- the control notification time adjustment unit 130 prohibits the determination of spilling. That is, the process shown in FIG. 15 is not executed.
- the control notification time adjustment unit 130 detects that the user's reaction is much changed from the human body detection unit 2101 and the user is moving around, the user may not pay attention to the cooking object 101. Therefore, it is determined that the user is not always in front of the cooking device, and the determination of spilling is performed as shown in FIG.
- the user when the user is near the heating cooker, it is left to the user to judge, so no judgment is made on the spill, and if the user is not near the cooking device, the spill is judged. Execute.
- the heating amount when the user is near the cooking device, it is not necessary to completely determine the spillage (that is, the heating amount is not changed), and the heating amount is determined when it is determined that the spillage has occurred. May be reduced. In this way, when the user is near the heating cooker, the user can be left with a judgment, and thus heating need not be stopped.
- the user when there is no user in front of the heating cooker, the user cannot stop it, so it is preferable to stop heating when a spill occurs (S1509). Or, the amount of heating is less than when no spilling occurs.
- the user may be able to set whether or not to prohibit the determination of occurrence of spillage when detecting a human body. Thereby, the operation
- the cooking device may further include a heated object movement detection unit 2201 that detects that the heated object 102 such as a pan has moved.
- a heated object movement detection unit 2201 that detects that the heated object 102 such as a pan has moved.
- This configuration can be easily realized by using a current sensor that observes a change in the current flowing through the heating coil 401 as the object-to-be-heated movement detection unit 2201. In this case, the heating cooker varies the operation at the time of detection of the spillage depending on whether or not the object to be heated 102 has moved.
- the control notification time adjustment unit 130 may erroneously determine that a spill has occurred. In order to prevent this erroneous determination, the control notification time adjustment unit 130 informs the heated object movement detection unit 2201 whether or not the heated object 102 has moved before performing the determination of the overflow detection in steps S1503 and S1508 in FIG. Make an inquiry.
- the magnetic coupling between the heating coil 401 and the object to be heated 102 changes, so that the current flowing through the heating coil 401 is changed. Change.
- the object-to-be-heated movement detection unit 2201 captures this current change and informs the control notification time adjustment unit 130 of the presence or absence of the current change.
- the control notification time adjustment unit 130 determines that the article to be heated 102 has moved, and does not determine the detection of overflowing in steps S1503 and S1508 in FIG.
- the control unit 109 controls the high-frequency power supply unit 402 so as to return to the power instructed by the user.
- the heated object movement detection unit 2201 that detects the movement of the heated object 102 is provided, and when the heated object 102 moves, the control notification time adjustment unit 130 does not perform the determination of spillage. Thereby, it is possible to eliminate an obvious disturbance such as a change in capacitance caused by the movement of the heated object 102 such as a pan in the detection of the spillage.
- the cooking device may further include a temperature detection unit 2301 that detects the temperature of the object to be heated 102 such as a pan.
- a temperature detection unit 2301 that detects the temperature of the object to be heated 102 such as a pan. This configuration can be easily realized by using a thermistor that observes a temperature change as the temperature detection unit 2301. In this case, depending on the temperature of the object to be heated 102 exhibited by the temperature detection unit 2301, the operation of detecting the overflow is varied.
- the control notification time adjustment unit 130 acquires the temperature of the object to be heated 102 from the temperature detection unit 2301 immediately before performing the determination of the overflow detection in steps S1503 and S1508 in FIG.
- control notification time adjustment unit 130 When the acquired temperature of the object to be heated 102 is lower than the boiling point of water, the control notification time adjustment unit 130 does not execute the determination of the overflow detection in step S1503 and step S1508 in FIG. That is, the process at the time of spillage shown in FIG. 15 is not executed.
- the temperature detection unit 2301 that detects the temperature of the object to be heated 102 is provided, and when the temperature of the object to be heated 102 is lower than the boiling point of water, the overflow detection by the control notification time adjustment unit 130 is not executed.
- the change in capacitance that occurs when there is no possibility of occurrence of spilling can be determined as disturbance. Accordingly, there is no need to accidentally perform a process when a spill occurs.
- the heating cooker according to the second embodiment and each modified example arranges the electrode 106 under the top plate 104, and based on the capacitance value of the electrode 106 detected by the capacitance detection unit 107,
- the control notification time adjustment unit 130 captures some state change that occurs on the top plate 104. Furthermore, when it is assumed that the spillage of the object to be cooked 101 has occurred, the control notification time adjustment unit 130 once performs the heating amount control for preventing the spillage from expanding, and then the change in capacitance is due to the spill. After confirming whether it is a thing, the alerting
- the cooking-by-heating machine provided with the highly practical overflow detection function can be provided.
- the spill detection operation can be applied to a cooking device using gas combustion, which can be flattened by using a glass top plate to facilitate wiping and can be used as a cooking table if a flame is avoided.
- the heating cooker of the present invention has an effect that it can realize a highly practical blown-out detection function, and is useful for various heating cookers such as induction heating cookers and gas cookers.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Induction Heating Cooking Devices (AREA)
- Electric Stoves And Ranges (AREA)
Abstract
ふきこぼれの判断を正確に行うことが可能な加熱調理器を提供する。加熱調理器は、基準電位に接続されたトッププレート(104)と、トッププレート上に載置された被加熱物を加熱する加熱部(105)と、トッププレートの下方に配置された電極(106)と、電極の静電容量を検出する静電容量検出部(107)と、静電容量検出部により検出された静電容量の値に基づいて被加熱物内の被調理物がトッププレート上にふきこぼれたか否かを検出するふきこぼれ検出部(108)と、ふきこぼれ検出部によるふきこぼれの検出結果に基づいて加熱部の加熱動作を制御する制御部(109)と、を有する。静電容量検出部(107)は、被調理物がトッププレート上にふきこぼれ、被調理物に含まれる水分が誘電体として機能し、被調理物のふきこぼれの量の増加によって電極と基準電位との容量結合による接続がより強まることを利用して、電極の静電容量の変化を検出する。
Description
本発明は被調理物を加熱する加熱調理器に関するものであって、特に被調理物のふきこぼれを検出する加熱調理器に関する。
従来の加熱調理器は、調理容器からふきこぼれた食材等がトッププレート下面に配置された電極上を覆うことによって静電容量が変化することを検知して、ふきこぼれを検出している(例えば、特許文献1参照)。
しかし、従来のようにトッププレート上のふきこぼれの検出を静電容量の変化を観測して行う場合、電気回路による静電容量の変化を正しく観測できない場合があった。そのため、ふきこぼれの判断を正確に行えない場合があった。
本発明は、上記従来の問題を解決するものであって、ふきこぼれの判断を正確に行える加熱調理器を提供することを目的とする。
上記従来の課題を解決するために、本発明の加熱調理器は、基準電位に接続されたトッププレートと、トッププレート上に載置された被加熱物を加熱する加熱部と、トッププレートの下方に配置された少なくとも1つの電極と、電極の静電容量を検出する静電容量検出部と、静電容量検出部により検出された電極の静電容量の値に基づいて、被加熱物内の被調理物がトッププレート上にふきこぼれたか否かを検出するふきこぼれ検出部と、ふきこぼれ検出部によるふきこぼれの検出結果に基づいて、加熱部の加熱動作を制御する制御部と、を有し、静電容量検出部は、被調理物が基準電位に接続されたトッププレート上にふきこぼれ、被調理物に含まれる水分が誘電体として機能し、被調理物のふきこぼれの量の増加によって電極と基準電位との容量結合による接続がより強まることを利用して、電極の静電容量の変化を検出する。これにより、鍋などの被加熱物に沿って拡がるまとまった量の被調理物のふきこぼれにより、基準電位に接続されたトッププレートと電極が容量で結合されるため、実用上有効なふきこぼれ量の静電容量の変化を観測することができる。よって、実用上有効なふきこぼれの判断が可能となる。
加熱調理器は、トッププレートの下方で且つ電極の近傍に設けられた金属部材をさらに有してもよい。これにより、ふきこぼれによる静電容量の変化を強めることが可能となる。
加熱部は、高周波電力を供給されることにより、被加熱物を誘導加熱する加熱コイルと、高周波電力を加熱コイルに供給する高周波電力供給部と、を含んでもよい。これにより、ふきこぼれ検出機能を備えた誘導加熱調理器を実現できる。
金属部材は加熱コイルに使用される銅巻き線であってもよい。これにより、検出性能を向上させるための構成を新たに追加することなく、安価にふきこぼれ検出性能を向上させることができる。
電極の形状は加熱コイルと略同心円上にある円弧状であってもよい。これにより、加熱コイルと電極の容量結合を向上させることができる。
静電容量検出部が検出する電極の静電容量の変化に重畳される誘導加熱周波数成分を除去するフィルタをさらに有してもよい。これにより、安定したふきこぼれ検出を行うことが可能となる。
ふきこぼれ検出部は、電極と加熱コイルとの容量性結合による誘導加熱の影響により生じる誘導加熱周波数成分を観測して、ふきこぼれの判断を行ってもよい。これにより、誘導加熱により、静電容量の検出値が増加してもふきこぼれの判断を行うことができる。また、電極上に物が置かれて静電容量が変化したのか、ふきこぼれが発生して静電容量が変化したのかを見分けることも可能となる。
電極はトッププレートに印刷されてもよい。これにより、電極とトッププレートとの密着性が向上するため、ふきこぼれの検出性能を向上させることができる。
静電容量検出部は、電極の静電容量の増加によるインピーダンスの変化を分圧回路により観測してもよい。これにより、安価な構成で静電容量の変化を検出することが可能となる。
加熱調理器は、被加熱物に物理的に接触したふきこぼれを介して電極と被加熱物が容量結合して、電極の静電容量が増加したことを検知することにより、被加熱物から直接的に伝わる誘導加熱基点の電界変化を捉えるふきこぼれ接触状態検出部をさらに有し、ふきこぼれ検出部は、静電容量検出部の検出結果とふきこぼれ接触状態検出部の検出結果から被調理物のふきこぼれを検出してもよい。これにより、発生したふきこぼれが少量で且つ被加熱物に接触した状態であり、基準電位との接続による静電容量の変化よりも被加熱物の誘導加熱により発生した電界の影響による静電容量の変化の方が大きい場合であっても、ふきこぼれの判断を正確に行うことが可能となる。
加熱調理器は、ふきこぼれ接触状態検出部が検知した電極の静電容量の増加が、被調理物のふきこぼれを介して電極と被加熱物が容量結合したことによるものかどうかを確認するための加熱制御を、制御部を介して実行するふきこぼれ接触状態確認部をさらに有してもよい。これにより、ふきこぼれが確実に発生していることを確認することが可能となる。
加熱制御は、ふきこぼれ接触状態検出部が電極の静電容量の増加を検知したときに、加熱コイルによる加熱動作を所定時間停止し、所定時間経過後に加熱動作の停止前よりも小さい加熱電力で加熱コイルを動作させることであってもよい。これにより、確認用の加熱電力の影響でふきこぼれが蒸発して状態が変わってしまうことを防ぐことができる。
加熱調理器は、使用者にふきこぼれが発生したことを報知する報知部をさらに有し、ふきこぼれ検出部は、ふきこぼれが発生したと判断したときに、制御部を介して加熱コイルの加熱量を制御する動作と、報知部によりふきこぼれが発生したことを使用者に報知するまでの時間を調整する動作と、を含むふきこぼれ検出処理を実行する制御報知時間調整部であってもよい。例えば、ふきこぼれ検出処理として、静電容量が変化したときに、ふきこぼれの拡大防止のための加熱量制御(例えば、加熱停止)を一旦実行した後、静電容量の変化がふきこぼれかどうかを確定した上で、使用者へのふきこぼれの報知又は元々の加熱量による加熱の継続を実行する。これにより、調理台としても使用されるトッププレート上で食材、食器、調理器具等を移動させたり、布巾による拭き掃除が行われたりした場合と、ふきこぼれの発生の場合とを区別して、ふきこぼれ検出処理を実行することができる。すなわち、正確にふきこぼれの発生の有無の判断をすることができる。
制御報知時間調整部は、静電容量検出部の検出値を所定の閾値と比較して、被調理物のふきこぼれを検出するものであり、加熱調理器は、加熱開始時の電極の静電容量の値に基づいて、所定の閾値を決定する閾値決定部をさらに備えてもよい。例えば、加熱開始時の電極の静電容量が、電極上に被加熱物が載置されていない場合と比較して所定量以上変化している場合、鍋などの被加熱物が電極上に載置されていると考えられる。この場合、閾値決定部は、ふきこぼれを検出するための静電容量の変化の判定の基準となる閾値を、被加熱物が電極上にない場合よりも小さい値に決定する。これにより、被加熱物の載置状況に依らずに、ふきこぼれ検出感度を確保することが可能となる。
加熱調理器は電極を複数個備え、制御報知時間調整部は、複数の電極の静電容量の値に基づいて、ふきこぼれ検出処理を実行してもよい。これにより、被加熱物の載置状態、被加熱物の大きさ、複数の電極の変化順序に基づくふきこぼれ方を判断して、被調理物のふきこぼれ量に応じた加熱制御を行うことが可能となる。
加熱開始時に、複数の電極の全てにおいて静電容量が変化しているとき、制御報知時間調整部は、加熱部の加熱停止と報知部による報知とを同時に行ってもよい。これにより、例えば、複数の電極の全てを覆うような大きな鍋が加熱され、鍋からふきこぼれた被調理物が鍋とトッププレートの間を通って電極上に到達するまでに時間を要する場合であっても、加熱停止と報知を行うことで被調理物の焦げ付き防止が可能となる。
加熱開始時に、複数の電極のうち少なくとも1つの電極において静電容量が変化しているとき、制御報知時間調整部は、加熱部の加熱停止と報知部による報知とを同時に行ってもよい。これにより、例えば、鍋が電極上に存在する部分に被調理物がこぼれた場合であっても、加熱停止と報知を行うことで被調理物の焦げ付き防止が可能となる。
加熱調理器は加熱コイルを複数個備え、制御報知時間調整部は、被調理物のふきこぼれを検出した場合、全ての加熱コイルの加熱量を制御してもよい。例えば、ふきこぼれが発生したときに、そのふきこぼれがトッププレート上のどこに流れていくかが分からないため、全ての加熱コイルの加熱を停止させてもよい。これにより、トッププレート上のどの方向にふきこぼれが流れていっても、ふきこぼれた調理物が焦げ付くことを防止することができる。
加熱調理器は、人がいるか否かを検出する人体検出部をさらに有し、制御報知時間調整部は、人体検出部の検出結果に基づいて、ふきこぼれ検出処理を実行してもよい。例えば、使用者が近くにいない場合は加熱を停止させる。一方、使用者が近くにいる場合は、使用者にふきこぼれの判断を任せられるため、加熱を停止させず、加熱量の制御を継続するか又は加熱量を所定量だけ低下させる。
加熱調理器は、被加熱物が移動したかどうかを検出する被加熱物移動検出部をさらに有し、制御報知時間調整部は、被加熱物移動検出部により被加熱物が移動したことが検出されると、ふきこぼれ検出処理の実行を禁止してもよい。これにより、鍋などの被加熱物の移動により静電容量が変化したときに、ふきこぼれが発生したと誤判断することを防止することができる。
加熱調理器は、被加熱物の温度を検出する温度検出部をさらに有し、制御報知時間調整部は、温度検出部により検出される被加熱物の温度が水の沸点よりも低い場合は、ふきこぼれ検出処理の実行を禁止してもよい。これにより、ふきこぼれの発生の可能性がない場合に生じた静電容量の変化を外乱と判断することができ、ふきこぼれが発生したと誤判断することを防止することができる。
本発明によれば、トッププレートを基準電位に接続しているため、被調理物がトッププレート上にふきこぼれた量に応じて、電極と基準電位との容量結合による接続がより強まる。そのため、電極の静電容量の変化を正しく観測することができる。よって、ふきこぼれの検出を正確に行うことができ、実用性の高いふきこぼれ検出機能を実現することができる。
以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の実施形態によって本発明が限定されるものではない。
《実施形態1》
本発明の実施形態1の加熱調理器は、トッププレートを基準電位に接続し、ふきこぼれた被調理物の量の増加によって、電極と基準電位との容量結合による接続がより強まることを利用する。これにより、静電容量の変化を正しく観測できるため、ふきこぼれの判断を正確に行えるようになる。
本発明の実施形態1の加熱調理器は、トッププレートを基準電位に接続し、ふきこぼれた被調理物の量の増加によって、電極と基準電位との容量結合による接続がより強まることを利用する。これにより、静電容量の変化を正しく観測できるため、ふきこぼれの判断を正確に行えるようになる。
1.1 加熱調理器の構成
図1に、本発明の実施形態1の加熱調理器の構成を示す。本実施形態の加熱調理器は、被加熱物102を載置するトッププレート104と、被加熱物102を加熱する加熱部105と、トッププレート104の下面に配置された電極106と、電極106の静電容量を検出する静電容量検出部107と、静電容量検出部107の検出結果に基づいてふきこぼれの発生を検出するふきこぼれ検出部108と、加熱部105の加熱動作を制御する制御部109と、を有する。本実施形態において、トッププレート104は基準電位103に接続される。
図1に、本発明の実施形態1の加熱調理器の構成を示す。本実施形態の加熱調理器は、被加熱物102を載置するトッププレート104と、被加熱物102を加熱する加熱部105と、トッププレート104の下面に配置された電極106と、電極106の静電容量を検出する静電容量検出部107と、静電容量検出部107の検出結果に基づいてふきこぼれの発生を検出するふきこぼれ検出部108と、加熱部105の加熱動作を制御する制御部109と、を有する。本実施形態において、トッププレート104は基準電位103に接続される。
本実施形態の加熱調理器は、基準電位103として制御部109と共通の回路グランドを使用し、トッププレート104として結晶化ガラスを使用し、加熱部105として電気ヒータを使用し、電極106としてトッププレート104の下面に塗布または接着などによって形成される導電体を使用し、静電容量検出部107として電極106が呈する静電容量を電圧に変換する回路(図2参照)を使用し、ふきこぼれ検出部108及び制御部109としてマイクロコンピュータを使用することで、容易に実現できる。被加熱物102は、例えば鍋である。
図2(a)に、静電容量検出部107の構成を概略的に示す。静電容量検出部107は、静電容量検出用の高周波電源201と、直列に接続されたインピーダンス202及びインピーダンス203と、静電容量を検出するための検出電圧端子206と、を有する。図2(a)は、図1に示す被加熱物102内の被調理物101がふきこぼれ、そのふきこぼれ204がトッププレート104上にのった例を示している。ふきこぼれ204が電極106上に存在していれば、ふきこぼれ204と電極106と基準電位103に接続されたトッププレート104とにより、静電容量を有するインピーダンス205が基準電位103と電極106との間に形成される。このように、トッププレート104に接続された基準電位103により、検出電圧端子206の電位が確定される。この時、ふきこぼれ204は誘電体として機能する。
図2(b)に、静電容量検出部107の等価回路図を示す。図2(b)において、インピーダンス202とインピーダンス203とインピーダンス205が、検出用の高周波電源201が提供する高周波電圧(例えば、300kHz)を分圧することにより、検出電圧端子206の電圧が確定する。ふきこぼれ204が発生して、インピーダンス205の静電容量が増加すれば、検出電圧端子206に発生する電圧は分圧比で変化する。静電容量検出部107は、検出電圧端子206に発生する電圧が変化することにより、電極106の静電容量の変化を検出する。
図2(c)に、ふきこぼれ204の水量と静電容量検出部107の検出値の変化量のグラフを示す。図2(c)の横軸はふきこぼれ204の水量を示し、縦軸は検出電圧端子206に発生する電圧値を示す。検出電圧端子206に発生する電圧の変化量は、ふきこぼれ204の水量に応じて大きくなる。ふきこぼれ204が完全に電極106を覆った後も電圧が変化するのは、トッププレート104を通して基準電位103との接続の強さに応じて、電圧が変化するためである。すなわち、検出電圧端子206に発生する電圧は、インピーダンス205による静電容量の増加に伴い変化する。
1.2 加熱調理器の動作
本実施形態の加熱調理器の動作について説明する。図3に、本実施形態の加熱調理器のふきこぼれ検出動作を示す。使用者が被調理物101を被加熱物102に入れ、加熱開始を指示すると、制御部109は加熱部105を動作させて、被加熱物102の加熱を開始する(S301)。ふきこぼれ検出部108は、静電容量検出部107により出力される電極106の静電容量に応じた電圧を「静電容量検出値」として取得し、ふきこぼれ検出用の変数である「前回検出値」に加熱開始時の静電容量検出値を代入する(S302)。
本実施形態の加熱調理器の動作について説明する。図3に、本実施形態の加熱調理器のふきこぼれ検出動作を示す。使用者が被調理物101を被加熱物102に入れ、加熱開始を指示すると、制御部109は加熱部105を動作させて、被加熱物102の加熱を開始する(S301)。ふきこぼれ検出部108は、静電容量検出部107により出力される電極106の静電容量に応じた電圧を「静電容量検出値」として取得し、ふきこぼれ検出用の変数である「前回検出値」に加熱開始時の静電容量検出値を代入する(S302)。
以降、所定時間(例えば0.5秒)が経過したか否かを確認し(S303)、ふきこぼれ検出処理を実行する(S304~S307)。具体的には、ふきこぼれ検出部108は、静電容量検出部107により電極106の静電容量に応じた電圧を「静電容量検出値」として取得し、ふきこぼれ検出用の変数である「今回検出値」に取得した静電容量検出値を代入する(S304)。
ふきこぼれ検出部108は、電極106の静電容量の「前回検出値」と「今回検出値」の差が所定値(例えば、電圧最大変化量の1/10)より大きいか否かを判断する(S305)。ふきこぼれ検出部108は、差が所定値よりも大きければ、ふきこぼれが発生したと判断する。図2に示すインピーダンス205の静電容量が増加すれば、検出電圧端子206に発生する電圧は低下するため、具体的には、「今回検出値」が「前回検出値」よりも所定量以上小さい値であれば、ふきこぼれが発生したと判断する。ふきこぼれ検出部108が、ふきこぼれが発生していないと判断すると、ふきこぼれ検出処理を一旦終了し、所定時間経過後に再度判断する(S303に戻る)。このように、所定時間経過毎にふきこぼれが発生したかどうかを判断する。ふきこぼれ検出部108が、ふきこぼれが発生したと判断すると、制御部109は「現在の加熱量」を「調整加熱量(停止または加熱量1/3等)」に変更し(S306)、ふきこぼれが発生したことを報知部等により使用者に報知して(S307)、ふきこぼれ検出動作を終了する。
1.3 まとめ
本発明によれば、トッププレート104を基準電位に接続しているため、被調理物101がトッププレート上にふきこぼれた量に応じて、電極106と基準電位との容量結合による接続がより強まる。そのため、電極106の静電容量の変化を正しく観測することができる。よって、ふきこぼれの判断を正確に行うことができ、実用性の高いふきこぼれ検出機能を実現することができる。具体的には、静電容量検出部107は、被調理物101が基準電位に接続されたトッププレート104上にこぼれて被調理物101に含まれる水分が誘電体として機能し、ふきこぼれ量の増加によって電極106と基準電位103との容量結合による接続がより強まることを利用している。よって、ふきこぼれ検出部108は、静電容量検出部107の検出結果により、静電容量の変化を正しくとらえて、ふきこぼれを検出することができる。よって、実用性の高いふきこぼれ検出機能を実現できる。
本発明によれば、トッププレート104を基準電位に接続しているため、被調理物101がトッププレート上にふきこぼれた量に応じて、電極106と基準電位との容量結合による接続がより強まる。そのため、電極106の静電容量の変化を正しく観測することができる。よって、ふきこぼれの判断を正確に行うことができ、実用性の高いふきこぼれ検出機能を実現することができる。具体的には、静電容量検出部107は、被調理物101が基準電位に接続されたトッププレート104上にこぼれて被調理物101に含まれる水分が誘電体として機能し、ふきこぼれ量の増加によって電極106と基準電位103との容量結合による接続がより強まることを利用している。よって、ふきこぼれ検出部108は、静電容量検出部107の検出結果により、静電容量の変化を正しくとらえて、ふきこぼれを検出することができる。よって、実用性の高いふきこぼれ検出機能を実現できる。
なお、電極106をトッププレート104に取り付ける方法として、印刷手段を用いれば、誘電率の高いガラスに誘電率の低い空気を介することなく取り付けることができるため、静電容量を大きくすることができる。
なお、本実施形態では、加熱部105として電気ヒータを使用したが、加熱部105の構成は本実施形態に限定されない。例えば、加熱部105としてガスによる熱源を使用してもよい。
また、本実施形態では、基準電位103として制御部109と共通の回路グランドを使用したが、基準電位103は本実施形態に限定されない。例えば、基準電位103として筐体の板金などで構成される筐体グランドを使用してもいいし、グランドから少し高い電位を基準電位103として使用してもよい。
1.4 変形例
なお、本発明の加熱調理器は、上記実施形態1に限らず、以下に示す構成であってもよい。
なお、本発明の加熱調理器は、上記実施形態1に限らず、以下に示す構成であってもよい。
(変形例1)
図1に示す加熱調理器は電気ヒータを使用するものであったが、加熱コイルを使用した誘導加熱調理器であってもよい。図4に、本実施形態の加熱調理器の他の構成を示す。図4において、図1と同一の構成については、同一の符号を付し、詳細な説明を省略する。図4において、加熱部105は、高周波電力を供給されることにより被加熱物102を誘導加熱する加熱コイル401と、加熱コイル401に高周波電力を供給する高周波電力供給部402と、を含む。加熱コイル401に銅巻き線を使用し、高周波電力供給部402にインバータを用いることにより、この構成を実現することができる。
図1に示す加熱調理器は電気ヒータを使用するものであったが、加熱コイルを使用した誘導加熱調理器であってもよい。図4に、本実施形態の加熱調理器の他の構成を示す。図4において、図1と同一の構成については、同一の符号を付し、詳細な説明を省略する。図4において、加熱部105は、高周波電力を供給されることにより被加熱物102を誘導加熱する加熱コイル401と、加熱コイル401に高周波電力を供給する高周波電力供給部402と、を含む。加熱コイル401に銅巻き線を使用し、高周波電力供給部402にインバータを用いることにより、この構成を実現することができる。
加熱コイル401の銅巻き線は、被調理物101のふきこぼれを介して電極106と容量結合して接続するための金属部材として作用し、静電容量の変化を強める働きをする。
図5に、加熱コイル401と電極106の配置を示す。電極106の形状は、加熱コイル(金属部材)401と略同心円上にある円弧状である。これにより、電極106と金属部材である加熱コイル401の縁面との距離を略同一に保つことができるため、金属部材としての加熱コイル401と電極106との容量結合を高めることができる。
図4に示す誘導加熱調理器の基本的な動作は、図1に示す加熱調理器と実質的に同一でで、図3に示すふきこぼれの検出を行う。なお、図4の誘導加熱調理器の場合、加熱部105による加熱は、制御部109が高周波電力供給部402に目標電力を指示して、高周波電力供給部402から加熱コイル401に目標電力に応じて高周波電力を送ることにより、実行される。
このように、被加熱物102を誘導加熱する加熱コイル401と、加熱コイル401に高周波電力を供給する高周波電力供給部402と、を備えることにより、ふきこぼれ検出機能を備えた誘導加熱調理器を実現することができる。
金属部材である加熱コイル401を備えることにより、ふきこぼれを介して電極106と金属部材が接続されるため、ふきこぼれによる静電容量の変化を強めることができる。
加熱コイル401に使われている銅巻き線を金属部材として利用することで、検出性能向上のための構成を新たに追加することなく、安価にふきこぼれ検出性能を向上することができる。
電極106の形状を、金属部材である加熱コイル401との縁面距離を略同一に保つことが可能な円弧状とすることにより、金属部材としての加熱コイル401と電極106との容量結合を向上することができる。
なお、誘導加熱調理器の場合は金属部材として加熱コイル401を利用できるが、加熱部105がガスやヒータなどである場合は、別の金属部材を配置することにより、静電容量の変化を強めてもよい。
被調理物101がふきこぼれて、電極106と加熱コイル401がふきこぼれを介して容量結合することにより、大きな静電容量の変化を生じると同時に、電極106には加熱コイル401に流れる誘導加熱における高周波電流の成分が電圧として重畳される。そのため、ふきこぼれ検出部108は重畳される誘導加熱周波数成分を観測して、電極106上に物が置かれて反応したのか、ふきこぼれで反応したのかを見分けてもよい。
(変形例2)
図6に示すように、加熱調理器は、誘導加熱周波数成分を除去するフィルタ601をさらに備えても良い。フィルタ601として、誘導加熱周波数を除去し且つ図2に示す検出用の高周波電源201の周波数を通すバンドパスフィルタを用いることができる。この場合、ふきこぼれ検出部108が静電容量検出部107の出力を取得する際、フィルタ601が、加熱コイル401からふきこぼれを介して電極106に重畳される誘導加熱周波数成分を除去することにより、静電容量検出部107の出力を安定化させる。これにより、ふきこぼれ検出部108は、静電容量検出部107の安定した出力を用いて、ふきこぼれを検出することができる。
図6に示すように、加熱調理器は、誘導加熱周波数成分を除去するフィルタ601をさらに備えても良い。フィルタ601として、誘導加熱周波数を除去し且つ図2に示す検出用の高周波電源201の周波数を通すバンドパスフィルタを用いることができる。この場合、ふきこぼれ検出部108が静電容量検出部107の出力を取得する際、フィルタ601が、加熱コイル401からふきこぼれを介して電極106に重畳される誘導加熱周波数成分を除去することにより、静電容量検出部107の出力を安定化させる。これにより、ふきこぼれ検出部108は、静電容量検出部107の安定した出力を用いて、ふきこぼれを検出することができる。
以上のように、静電容量検出部107に重畳される誘導加熱周波数を除去するためのフィルタ601を備えることで、電極106と金属部材としての加熱コイル401との容量性結合により生じる誘導加熱の影響を除去し、安定したふきこぼれ検出を行うことができる。
(変形例3)
図7に示すように、ふきこぼれの接触状態を検出するためのふきこぼれ接触状態検出部をさらに備えもよい。ふきこぼれ接触状態検出部701は、例えばマイクロコンピュータにより、容易に実現できる。
図7に示すように、ふきこぼれの接触状態を検出するためのふきこぼれ接触状態検出部をさらに備えもよい。ふきこぼれ接触状態検出部701は、例えばマイクロコンピュータにより、容易に実現できる。
ふきこぼれが少量である場合は、基準電位との接触が充分ではないことから、電界の影響を受け易く静電容量変化も充分に確保できないため、同程度のふきこぼれが発生しても、ふきこぼれと被加熱物102の接触有無よりふきこぼれ検出状態が大きく異なる。この例では、ふきこぼれが被加熱物102に接触しているか否かに応じたふきこぼれ検出を可能にする。電極106上にふきこぼれた被調理物101が被加熱物102に接触していない場合は、ふきこぼれにより、静電容量検出部107により検出される電圧値は低下する。一方、電極106上にふきこぼれた被調理物101が被加熱物102に接触した場合は、誘導加熱により発生した電界の影響を受けて、静電容量検出部107により検出される電圧値が増加する。よって、この例では、ふきこぼれが被加熱物102に接触して、基準電位との接続による減少方向の変化よりも、被加熱物102の誘導加熱により発生した電界の影響による増加方向の変化の方が大きい場合であっても、ふきこぼれ検出が可能となる加熱調理器を提供する。
図7に示すふきこぼれ接触状態検出部701は、静電容量検出部107の検出値が誘導加熱により発生した電界の影響を受けている場合に、ふきこぼれ検出部108が静電容量検出部107から得た電極106の静電容量の検出値に基づいて、ふきこぼれの有無を判断する。具体的には、ふきこぼれ検出部108が静電容量の減少方向の変化に基づいてふきこぼれの有無を判断するのに対し、ふきこぼれ接触状態検出部701は静電容量の増加方向の変化に基づいてふきこぼれの有無を判断する。
図8(a)にふきこぼれが被加熱物102に接触した場合(すなわち、誘導加熱により発生した電界の影響を受けた場合)の静電容量の検出値を示し、図8(b)にふきこぼれが被加熱物102に接触していない場合(すなわち、誘導加熱により発生した電界の影響を受けていない場合)の静電容量の検出値を示す。
図8(b)に示すようにふきこぼれが発生すると、図2に示すふきこぼれによるインピーダンス205の静電容量が増加して、検出電圧端子206により検出される電圧の分圧値が低下する(時間t1以降)。このとき、ふきこぼれが被加熱物102に接触していない場合は、電極106と被加熱物102がふきこぼれを介して容量結合しないため、誘導加熱による電界の影響を受けず、電圧値が低下した状態で安定する。ふきこぼれ検出部108は、この低下量が所定値(第1の所定値Vb)以上かどうかで、ふきこぼれの有無を判断する。
一方、図8(a)に示すように、ふきこぼれが被加熱物102に接触して、電極106と被加熱物102が、被加熱物102に物理的に接触した少量のふきこぼれを介して容量結合した場合、誘電体として機能するふきこぼれを通して、被加熱物102から直接的に伝わる誘導加熱基点の電界変化が発生する。この電界変化が、容量結合を通して、誘導加熱の周波数変化をもって、ふきこぼれ検出値に重畳される(時間t1~t2)。このとき、ふきこぼれ発生時の検出値の平均値は、ふきこぼれ発生前より大きい値を示す。よって、ふきこぼれ接触状態検出部701は、この増加量が所定値(第2の所定値Va)以上かどうかで、ふきこぼれの有無を判断する。ふきこぼれを検出して加熱を停止すると、誘導加熱により発生した電界の周波数成分の影響を受けなくなるため、電圧は低下した状態で安定する(時間t2以降)。
図9に、変形例3の加熱調理器によるふきこぼれの検出動作のフローチャートを示す。図9において、S901~S903とS906及びS907は、図3のS301~S303とS306及びS307と同一である。
使用者が被調理物101を被加熱物102に入れて加熱開始を指示すると、制御部109は加熱部105を動作させ、被加熱物102の加熱を開始する(S901)。ふきこぼれ検出部108は、静電容量検出部107により出力される電極106の静電容量に応じた電圧を静電容量検出値として取得し、ふきこぼれ検出用の変数である「前回検出値」に加熱開始時の静電容量検出値を代入する(S902)。以降、所定時間(例えば0.5秒)が経過したか否かを確認し(S903)、所定時間経過後は、ふきこぼれ検出処理を実行する(S904~S907)。
具体的には、ふきこぼれ検出部108は、静電容量検出部107により電極106の静電容量に応じた電圧を静電容量検出値として取得し、取得した静電容量検出値をふきこぼれ検出用の変数である「今回検出値」に代入する(S904)。このとき、静電容量検出値が図8(a)に示すような誘導加熱により発生した電界の周波数成分を含んでいる可能性があるため、誘導加熱周波数を伴って発生する変動を安定化させた値を「今回検出値」に代入する。例えば、所定回数(例えば、8回)の検出値の平均値を代入するか、又は積分回路を回路に挿入させることにより、誘導加熱により発生した電界の周波数を伴って発生する変動を安定化させて得た値を代入する。
ふきこぼれ検出部108は、ふきこぼれが発生したかどうかを判断する(S905)。ふきこぼれ検出部108は、電極106の静電容量の「前回検出値」と「今回検出値」の差が第1の所定値(例えば、電圧最大変化量の1/10)より大きいか否かを判断する。ふきこぼれが少量で被加熱物102に接触していないときは、図8(b)に示すように、検出値(図2に示す検出電圧端子206に発生する電圧)は低下するため、具体的には、ふきこぼれ検出部108は「今回検出値」が「前回検出値」よりも第1の所定値(例えば、電圧最大変化量の1/10)以上小さい値であれば、ふきこぼれが発生したと判断する。
さらに、この変形例3では、ふきこぼれ検出部108は、ふきこぼれ接触状態検出部701を介して、ふきこぼれが発生したかどうかを判断する。具体的には、ふきこぼれ接触状態検出部701が、ふきこぼれ検出部108が得た電極106の静電容量の「前回検出値」と「今回検出値」の差を第2の所定値(例えば、電圧最大変化量の1/10)と比較することにより、ふきこぼれの有無をさらに判断する。ふきこぼれ接触状態検出部701は、「今回検出値」と「前回検出値」との差が第2の所定値よりも大きければふきこぼれが発生したと判断し、その差が第2の所定値よりも小さければふきこぼれが発生していないと判断する。ふきこぼれが加熱物102に接触しているときは、図8(a)に示すように、誘導加熱により発生した電界の周波数の影響により検出値(図2に示す検出電圧端子206に発生する電圧)は増加する。よって、具体的には、ふきこぼれ接触状態検出部701は、「今回検出値」が「前回検出値」よりも第2の所定値以上大きな値であれば、ふきこぼれが発生したと判断する。ふきこぼれ検出部108は、ふきこぼれ接触状態検出部701からふきこぼれの発生の有無を受け取る。
ふきこぼれが発生していない場合は、ふきこぼれ検出処理を終了して、所定時間経過後に再度ふきこぼれが発生しているかどうかを判断する(S903に戻る)。ふきこぼれが発生している場合は、制御部109は、現在の加熱量を調整加熱量(停止又は加熱量1/3等)に変更し(S906)、使用者に報知部等を介してふきこぼれが発生したことを報知して(S907)、ふきこぼれ検出動作を終了する。
以上のように、電極106上にふきこぼれた被調理物101が被加熱物102と接触すると、電極106と被加熱物102が、被加熱物102に物理的に接触した少量のふきこぼれを介して容量結合することにより、ふきこぼれが誘電体として機能する。そのため、被加熱物102からふきこぼれを通して直接的に電極106に誘導加熱により発生した電界の影響が伝わる。ふきこぼれ接触状態検出部701は、この誘導加熱基点の電界変化を捉えることにより、ふきこぼれの発生の有無を判断することができる。よって、ふきこぼれが少量で且つ被加熱物に接触した状態で、基準電位との接続による減少方向の変化よりも、被加熱物の誘導加熱により発生した電界の影響による増加方向の変化の方が大きい場合であっても、ふきこぼれ検出が可能な加熱調理器を実現できる。
(変形例4)
なお、より確実にふきこぼれの検出を行うために、ふきこぼれの接触状態を確認してもよい。図10に、加熱調理器の他の構成を示す。この加熱調理器は、ふきこぼれの接触状態を確認するふきこぼれ接触状態確認部1001をさらに有する。ふきこぼれ接触状態確認部1001は、マイクロコンピュータを用いることで容易に実現できる。
なお、より確実にふきこぼれの検出を行うために、ふきこぼれの接触状態を確認してもよい。図10に、加熱調理器の他の構成を示す。この加熱調理器は、ふきこぼれの接触状態を確認するふきこぼれ接触状態確認部1001をさらに有する。ふきこぼれ接触状態確認部1001は、マイクロコンピュータを用いることで容易に実現できる。
図11に、ふきこぼれ検出動作を示す。図11において、図9と異なる点は、加熱量を変更すること(S906)に代えて、ふきこぼれ接触状態確認制御を実行すること(S1106)である。その他のステップS1101~1105及びS1107は、図9のステップS901~905及びS907と同一である。
図11においては、加熱調理器は、ふきこぼれ検出動作を行った後(S1105)、図12に示すようなふきこぼれ接触状態確認動作をふきこぼれ接触状態確認部1001により行う(S1106)。ふきこぼれ接触状態確認部1001は、制御部109にふきこぼれ接触状態を確認するように指示する。この指示を受けて、制御部109は、一旦加熱を停止し(時間t2)、所定時間経過後に、再度、接触確認用の電力入力を行う(時間t3)。ふきこぼれ接触状態確認部1001は、接触確認用の電力入力が行われたときに、ふきこぼれ接触状態検出部701を介して、静電容量検出部107の出力が再度上昇反応を示すか否かを確認する。ここで、接触確認用に入力する電力は、ふきこぼれ検出時よりも充分に小さい加熱電力(例えば最大電力の1/30)に設定する。これにより、確認用の加熱電力の影響で、ふきこぼれが蒸発して状態が変わってしまうことを防ぐ。接触確認用の電力入力が行われたときに、静電容量検出部107の出力が再度上昇反応を示した場合、ふきこぼれ接触状態確認部1001は静電容量検出部107の検出値の増加がふきこぼれによるものであると判断し、制御部109を介して、加熱動作を停止させる(時間t4)。
ふきこぼれ接触状態検出部701が静電容量検出部107の検出値の増加を検知した後に、ふきこぼれ接触状態確認部1001が再度その検出値の増加を確認することにより、誘導加熱の影響を受けた検出値の増加がふきこぼれによるものであることを正しく判断することができる。すなわち、ステップS1106の動作を行うことで、ふきこぼれ接触状態検出部701が行ったふきこぼれ検出がノイズなどによる誤検出ではなく、実際にふきこぼれが被加熱物102と接触して検出値が増加したものであることを確認できる。また、弱い加熱電力で確認するため、ふきこぼれ状態を乱すことなく確認することができる。
なお、ふきこぼれが発生した際に誘導加熱により発生した電界の影響を受けているとき、静電容量検出部107の検出値は、加熱電力量に応じて増加する。よって、ふきこぼれ接触状態確認部1001は、静電容量検出部107の検出値の増加量が加熱電力量に応じた値であることを確認して、検出値の増加がふきこぼれによるものであると判断することが好ましい。例えば、被加熱物102が電極106上に載っている状態で加熱が開始された後に、被加熱物102が移動されて電極106上から外れると、ふきこぼれがなくても静電容量検出部107の検出値が上昇する。このような場合、被加熱物102が移動されて電極106上から外れた後は、静電容量検出部107の検出値は、加熱電力量に関係なく、一定の値となる。そのため、ふきこぼれ接触状態検出部701が被加熱物102の移動による静電容量の検出値の上昇を一旦ふきこぼれが発生したとして検知した後、ふきこぼれ接触状態確認部1001が接触確認用の弱い電力を加熱コイル401に供給した場合、誘導加熱により発生した電界の影響は存在しないためふきこぼれの検出前の加熱時と同一の値が検出される。よって、ふきこぼれ接触状態確認部1001は、静電容量検出部107の検出値の増加量が加熱電力量に応じた値であるか否かを確認することにより、検出値の増加がふきこぼれによるものであると正しく判断することができる。
以上のように、ふきこぼれ接触状態確認部1001が、ふきこぼれ接触状態検出部701が検出した被加熱物102へのふきこぼれの接触状態(すなわち、静電容量検出部107の検出値の増加がふきこぼれによるものであるとする判断)が正しいかどうかを、状態確認用の加熱制御を行って確認することで、ふきこぼれが発生していることを正しく確実に検出することができる。
以上のように、上記実施形態1及び各変形例の加熱調理器は、トッププレート104を基準電位に接続している。そのため、ふきこぼれた被調理物に含まれる水分が誘電体として機能し且つふきこぼれ量の増加によって、電極106と基準電位との容量結合による接続がより強まることを利用して、静電容量の変化をとらえ、ふきこぼれを検出できる。よって、実用性の高いふきこぼれ検出が可能となる。このような加熱調理器は、加熱調理器全般に有用である。さらに、ふきこぼれの検出動作は、加熱調理器だけでなく、水などの誘電率の高い物質を検出する必要のある機器の用途にも広く適用できる。
《実施形態2》
本発明の実施形態2の加熱調理器は、ふきこぼれが発生したと想定されるときに、ふきこぼれ継続防止のための加熱量制御を一旦実施し、その後に、本当にふきこぼれかどうかを判断した上で、加熱量制御を確定して、ふきこぼれの発生を報知するか又は元の加熱量に戻すかを決定する。これにより、ふきこぼれの判断を正確に行うことができ、実用性の高いふきこぼれ検知機能を備えた加熱調理器を実現する。
本発明の実施形態2の加熱調理器は、ふきこぼれが発生したと想定されるときに、ふきこぼれ継続防止のための加熱量制御を一旦実施し、その後に、本当にふきこぼれかどうかを判断した上で、加熱量制御を確定して、ふきこぼれの発生を報知するか又は元の加熱量に戻すかを決定する。これにより、ふきこぼれの判断を正確に行うことができ、実用性の高いふきこぼれ検知機能を備えた加熱調理器を実現する。
2.1 加熱調理器の構成
図13に、本発明の実施形態2の加熱調理器の構成を示す。本実施形態の加熱調理器は、被加熱物102を載置するトッププレート104と、被加熱物102を加熱する加熱コイル401と、加熱コイル401に電力を供給する高周波電力供給部402と、高周波電力供給部402を制御することにより加熱コイル401による加熱動作を制御する制御部109と、を有する。本実施形態の加熱調理器は、さらに、トッププレート104の下面に配置された電極106と、電極106の静電容量を検出する静電容量検出部107と、報知部140と、報知部140及び制御部109を制御する制御報知時間調整部130と、を有する。加熱コイル401と高周波電力供給部402は、図1と同様の加熱部105を構成する。トッププレート104は、実施形態1と同様に、基準電位に接続されることが好ましい。図13において、図1及び図4と同一の構成要素については、同一の符号を付している。本実施形態の加熱調理器は、被加熱物102を加熱部105により誘導加熱する誘導加熱調理器である。
図13に、本発明の実施形態2の加熱調理器の構成を示す。本実施形態の加熱調理器は、被加熱物102を載置するトッププレート104と、被加熱物102を加熱する加熱コイル401と、加熱コイル401に電力を供給する高周波電力供給部402と、高周波電力供給部402を制御することにより加熱コイル401による加熱動作を制御する制御部109と、を有する。本実施形態の加熱調理器は、さらに、トッププレート104の下面に配置された電極106と、電極106の静電容量を検出する静電容量検出部107と、報知部140と、報知部140及び制御部109を制御する制御報知時間調整部130と、を有する。加熱コイル401と高周波電力供給部402は、図1と同様の加熱部105を構成する。トッププレート104は、実施形態1と同様に、基準電位に接続されることが好ましい。図13において、図1及び図4と同一の構成要素については、同一の符号を付している。本実施形態の加熱調理器は、被加熱物102を加熱部105により誘導加熱する誘導加熱調理器である。
トッププレート104に結晶化ガラスを使用し、高周波電力供給部402にインバータを使用し、電極106にトッププレート104の下面に塗布または接着などによって形成される導電体を使用し、静電容量検出部107に電極106が呈する静電容量を電圧に変換する回路を使用し、制御報知時間調整部130と制御部109にマイクロコンピュータを使用し、報知部140にLEDを使用することで、本実施形態の構成を容易に実現できる。
トッププレート104の下面に形成された電極106は、トッププレート104上の導電体と共に、コンデンサを形成する。通常はトッププレート104上には何もない状態であるため、空気が誘電体の役割を果たす。被加熱物102、使用者の指、液体、被調理物101などの別の物がトッププレート104上に存在する場合、それぞれの比誘電率が異なるため、電極106が構成するコンデンサの静電容量が変化する。静電容量検出部107は電極106により得られる静電容量を逐次電圧に変換し、制御報知時間調整部130に検出した電圧値を出力する。
制御報知時間調整部130は、静電容量検出部107により検出された電圧値に基づいて、ふきこぼれが発生したかどうかを判断する。すなわち、図13の制御報知時間調整部130は、図1及び図4等に示す、ふきこぼれが発生したか否かを判断するふきこぼれ検出部108と同等のものである。なお、本実施形態の制御報知時間調整部130は、ふきこぼれが発生したと想定されるときに、制御部109を介して、加熱コイル401の加熱を停止させるか又は加熱量を低減させ、その後、ふきこぼれが発生したことが確実であると判断したときに、報知部140を介して、使用者にふきこぼれが発生したことを報知する。
2.2 加熱調理器の動作
以上のように構成された本実施形態の加熱調理器の動作について説明する。
以上のように構成された本実施形態の加熱調理器の動作について説明する。
図14にふきこぼれ検出の全体動作を示す。使用者が被調理物101を被加熱物102に入れて加熱開始を指示すると、制御部109は高周波電力供給部402を動作させて、加熱コイル401に高周波電力を投入する。このとき、制御部109は、ふきこぼれ報知時間調整中を示す「報知時間調整中フラグ」をFalse(偽)に設定する(S1401)。制御報知時間調整部130は、静電容量検出部107により検出された電極106の静電容量の検出値を取得し、ふきこぼれ検出用の変数である「前回検出値」へ加熱開始時の静電容量検出値を代入する(S1402)。以降、制御部109は、所定時間(例えば0.2秒)経過したか否かを確認し(S1403)、所定時間経過毎にふきこぼれ検出処理を実行する(S1404)。
図15に、ふきこぼれ検出処理(S1404)の詳細を示す。図16(a)及び(b)にそれぞれ静電容量検出部107が検出する電極106の静電容量変化を示す。図16(a)は、ふきこぼれ発生時の静電容量の検出値(電圧値)の変化を示している。図16(a)に示すように、ふきこぼれが発生すると静電容量の検出値は低下する。一方、図16(b)は、ふきこぼれ以外による静電容量の検出値の一時的な変化を示している。具体的には、図16(b)においては、布巾などを使用してトッププレート104が拭き掃除された場合の静電容量の検出値(電圧値)の変化を示している。拭き掃除が行われている間、静電容量の検出値は増減を繰り返す。本実施形態においては、静電容量の検出値の変化がふきこぼれによるものかどうかを判断して、ふきこぼれ時の処理を実行する。
図15において、ふきこぼれ検出処理が開始されると、静電容量検出部107は電極106の静電容量を検出する。制御報知時間調整部130は、ふきこぼれ検出用の変数である「今回検出値」に静電容量検出部107により検出された静電容量の検出値を代入する(S1501)。制御報知時間調整部130は、報知時間調整中フラグがTrue(真)かどうかを確認する(S1502)。図14のステップS1401で報知時間調整中フラグはFalse(偽)に設定されているため、一度目のふきこぼれ検出の場合は、ステップS1508に進む。この場合、制御報知時間調整部130は、図16(a)に示すようなふきこぼれの反応が新たに検出されたかどうかを確認する(S1508~S1511)。一方、図15のステップS1509で報知時間調整中フラグはTrue(真)に設定されるため、二度目のふきこぼれ検出の場合はステップS1503に進むことになる。この場合、一度目に検出した静電容量の検出値の変化が本当にふきこぼれによるものであるかどうかを判断する。すなわち、図16(a)に示すようなふきこぼれの反応が維持されているか、又は図16(b)に示すような拭き掃除などによる一時的な反応であったかを確認する(S1503~1507)。
具体的には、報知時間調整中フラグがFalse(偽)の場合(S1502でNo)、制御報知時間調整部130は調整中でないと判断する。すなわち、一度目のふきこぼれ検出であると判断する。この場合、制御報知時間調整部130は、電極106の静電容量の「前回検出値」と「今回検出値」の差を所定値(例えば、電圧最大変化量の1/3)と比較することにより、ふきこぼれの有無を判断する(S1508)。ふきこぼれが検出されなかった場合は検出処理を終了する。ふきこぼれが検出された場合は、制御報知時間調整部130は、制御部109を通して、現在の加熱量を加熱量調整電力(停止または500W程度の温度維持用電力)に変更する(S1509)。制御報知時間調整部130は、静電容量の変化が本当にふきこぼれによるものであるかどうかを後に確認するために、制御部109を通して、報知時間調整中フラグをTrue(真)に設定すると共に、確認のための時間を測定するための「時間カウンタ」を0に設定する。その後、報知時間調整部130は、報知時間調整処理を開始することになる。ここで、報知時間調整部130は、ふきこぼれ継続を判断するための参照データとして、ふきこぼれ検出前の静電容量検出値である「前回検出値」を「参照検出値」として保存する(S1510)。さらに、図16(b)に示すような一時的な反応であった場合に加熱量を復帰させるときに必要となる「現加熱電力」を、復帰用電力を示す「元加熱電力」の変数に保存し(S1511)、図15の処理を終了する。その後、所定時間経過毎に(図14のS1403)、ふきこぼれ検出処理(S1404)が行われる。すなわち、加熱調理器は、所定時間経過後に、再度、図15に示すステップS1501から始まる処理を実行する。このとき、ステップS1509で、報知時間調整中フラグをTrue(真)に設定しているため、ステップS1502からステップS1503に進むことになる。
報知時間調整中フラグがTrue(真)の場合(S1502でYes)、制御報知時間調整部130は調整中であると判断する。すなわち、一度、ふきこぼれの検出が行われて、一時的に、加熱電力が調整されている状態であると判断する。この場合、制御報知時間調整部130は、電極106の静電容量の「参照検出値」と「今回検出値」の差を所定値(例えば、電圧最大変化量の1/3)と比較することにより、ふきこぼれの反応が継続しているかどうかを判断する(S1503)。
制御報知時間調整部130は、電極106の静電容量の「参照検出値」と「今回検出値」の差が所定値に達していなければ(S1503でNo)、静電容量の変化はふきこぼれによるものではない(例えば、図16(b)に示すような拭き掃除によるものである。)と判断し、制御部109を通して現在の加熱量を「元加熱電力」の値に復帰させる(S1507)。さらに、制御報知時間調整部130は、制御部109を通して、報知時間調整中フラグをFalse(偽)に設定し、時間カウンタを0に設定する。これにより、静電容量の変化が一時的な反応であったことを確定し、報知時間の調整を終了する。
一方、制御報知時間調整部130は、電極106の静電容量の「参照検出値」と「今回検出値」の差が所定値より大きければ(S1503でYes)、静電容量の変化はふきこぼれによるものであると判断する。この場合、制御報知時間調整部130は、ふきこぼれの継続時間をカウントする「時間カウンタ」をインクリメントする(S1504)。制御報知時間調整部130は、時間カウンタが所定回数を超えたかどうかで、ふきこぼれ反応の継続時間が所定時間(例えば、5秒)続いているかどうかを判断する(S1505)。ふきこぼれ反応の継続時間が所定時間よりも長ければ、ふきこぼれが発生していることを確定する。制御報知時間調整部130は、報知部140を介して、使用者にふきこぼれが発生したことを報知すると共に、加熱量調整電力状態(停止または500W程度の温度維持用電力)を継続する(S1506)。ふきこぼれ反応の継続時間が所定時間よりも短ければ、一旦処理を終了する。その後、所定時間(例えば0.2秒)経過毎に(図14のS1403)、ふきこぼれ検出処理(S1404)を行う。すなわち、所定時間(例えば0.2秒)経過後に、再度、図15に示すステップS1501から始まる処理を実行し、ふきこぼれ反応の継続時間が所定時間(例えば、5秒)を経過した時点で、ふきこぼれの報知を実行する。
2.3 まとめ
誘導加熱調理器は火を使わないことから、使用者はトッププレート104上を調理台の一部として使用する場合が多い。また、炎がないことから、使用者は加熱中でも布巾などでトッププレート104上を拭き掃除する場合がある。調理台としてのトッププレート104上で食材・食器・調理器具を移動したり、布巾による拭き掃除を行ったりすると、電極106における静電容量の変化が観測されてしまう。そのため、単純に電極の静電容量変化を観測してふきこぼれであると判断して処理を行うと、使用者にとっては意図しない加熱量制御が頻繁に行われてしまうことになる。しかし、本実施形態の加熱調理器によれば、制御報知時間調整部130が、電極106の静電容量が変化したときに、一旦加熱を停止又は低減している。すなわち、被調理物101によるふきこぼれであったときに必要なふきこぼれ拡大防止のための加熱量制御を実行している。その後、制御報知時間調整部130は、電極106の静電容量の変化が本当にふきこぼれによるものであるかどうかを確認した上で、使用者への報知や加熱力の復帰を行っている。よって、ふきこぼれの検出を正確に行うことができ、実用性の高いふきこぼれ検知機能を備えた加熱調理器を実現できる。
誘導加熱調理器は火を使わないことから、使用者はトッププレート104上を調理台の一部として使用する場合が多い。また、炎がないことから、使用者は加熱中でも布巾などでトッププレート104上を拭き掃除する場合がある。調理台としてのトッププレート104上で食材・食器・調理器具を移動したり、布巾による拭き掃除を行ったりすると、電極106における静電容量の変化が観測されてしまう。そのため、単純に電極の静電容量変化を観測してふきこぼれであると判断して処理を行うと、使用者にとっては意図しない加熱量制御が頻繁に行われてしまうことになる。しかし、本実施形態の加熱調理器によれば、制御報知時間調整部130が、電極106の静電容量が変化したときに、一旦加熱を停止又は低減している。すなわち、被調理物101によるふきこぼれであったときに必要なふきこぼれ拡大防止のための加熱量制御を実行している。その後、制御報知時間調整部130は、電極106の静電容量の変化が本当にふきこぼれによるものであるかどうかを確認した上で、使用者への報知や加熱力の復帰を行っている。よって、ふきこぼれの検出を正確に行うことができ、実用性の高いふきこぼれ検知機能を備えた加熱調理器を実現できる。
なお、本実施形態では、ふきこぼれの反応が継続していなかった場合、加熱電力を即時に復帰させた(S1507)。しかし、ステップS1503の後、所定時間が経過したか否かを判断した後に加熱電力を復帰させてもよい。また、所定時間内の静電容量の検出値の平均値が所定値以上か否かに基づいて、加熱電力を復帰させてもよい。
2.4 変形例
なお、本発明の加熱調理器は、上記実施形態2に限らず、以下に示す構成であってもよい。
なお、本発明の加熱調理器は、上記実施形態2に限らず、以下に示す構成であってもよい。
(変形例1)
図17に示すように、ふきこぼれの判断を行うときの静電容量変化の検出閾値を決定する閾値決定部1701をさらに有してもいい。閾値決定部1701はマイクロコンピュータを用いることで、容易に実現できる。基本的な動作は上記実施形態2と同様であるが、変形例1においては、図15のステップS1503及びS1508で使用される所定値として、状況に合わせた閾値を用いる。具体的には、使用者が加熱開始を指示した時に電極106上に被加熱物102である鍋が置かれているかどうかで、所定値の値を決定する。すなわち、加熱開始時の電極106の静電容量の値に基づいて、ステップS1503及びS1508でふきこぼれの検出時に使用される所定値の値を決定する。
図17に示すように、ふきこぼれの判断を行うときの静電容量変化の検出閾値を決定する閾値決定部1701をさらに有してもいい。閾値決定部1701はマイクロコンピュータを用いることで、容易に実現できる。基本的な動作は上記実施形態2と同様であるが、変形例1においては、図15のステップS1503及びS1508で使用される所定値として、状況に合わせた閾値を用いる。具体的には、使用者が加熱開始を指示した時に電極106上に被加熱物102である鍋が置かれているかどうかで、所定値の値を決定する。すなわち、加熱開始時の電極106の静電容量の値に基づいて、ステップS1503及びS1508でふきこぼれの検出時に使用される所定値の値を決定する。
図18(a)に被加熱物102が電極106上に載置されていないときの静電容量の検出値(電圧値)を示し、図18(b)に被加熱物102が電極106上に載置されているときの静電容量の検出値(電圧値)を示す。図18(a)及び(b)に示すように、被加熱物102が電極106上に載置されていると、電極106の静電容量が、被加熱物102が電極上106に載置されていないときの静電容量の値よりも低下するため、ふきこぼれの発生前後での検出値の変化が小さくなる(V2<V1)。被加熱物102が電極106上に存在する場合は、静電容量検出部107が検出する静電容量検出値は鍋の材質や形に応じた値を持つ。閾値決定部1701は、被加熱物102が載置されていない場合の検出値(静電容量検知出力の最大値に相当)と現在の検出値の違いを常時モニタする。閾値決定部1701は、被加熱物102により既にある程度の静電容量変化が起こっている状態(例えば、所定量以上静電容量が低下している状態)からふきこぼれ判断を行うための検出閾値を提供する機能を持つ。
加熱開始時に、制御報知時間調整部130は、閾値決定部1701に問い合わせを行い、ふきこぼれを検出する際に用いる閾値を要求する。閾値決定部1701は、通常(被加熱物102が電極106上に載置されていないとき)は、電圧最大変化量の1/3を閾値として引き渡す。一方、加熱開始時に、図18(b)のような初期の静電容量変化が生じている場合は、所定の算出式に基づき検出閾値(すなわち、図15のステップS1503及びS1508で使用される所定値)を決定し、制御報知時間調整部130に引き渡す。所定の算出式とは、例えば、「(電圧最大変化量)-((鍋なし時出力)-(鍋あり時出力))×1/3」である。制御報知時間調整部130は、ここで得られた閾値を利用して、実施形態2と同様の動作でふきこぼれ検出動作を行う。
以上のように、被加熱物102が電極上106に載置され、加熱開始時からある程度の静電容量変化を持ってしまっている場合、閾値決定部1701がふきこぼれを検出するための静電容量変化の閾値を被加熱物102が電極106上にない場合よりも小さくしている。よって、被加熱物102の載置状況に依らずに、ふきこぼれ検出感度を確保することができる。
(変形例2)
上記実施形態2では電極106を1つ用いたが、図19に示すように複数の電極106a、106bを用いても良い。例えば、加熱調理器は、被加熱物102の近くに配置された電極106aと、遠くに配置された電極106bとを含む電極106を備えても良い。この場合、複数の電極106a、106bを使用して、ふきこぼれの検出を行うことができる。被加熱物102の載置状態や大きさ及び被調理物101のこぼれ量に応じた加熱量制御を行うこともできる。例えば、電極106aにだけ静電容量変化が発生し、電極106bには静電容量変化が発生していないとき、被加熱物102からの被調理物101のふきこぼれ量は被加熱物102の付近だけのわずかな量であると判断できる。よって、図15のS1509で加熱量を調整するときに、制御報知時間調整部130は、電極106aと電極106bの両方に静電容量変化が発生する場合に行う加熱量調整よりも調整量を少なくする。例えば、電極106aと電極106bの両方で静電容量が変化しているときは500Wに変更し、電極106aのみで静電容量が変化しているときは750Wに設定する。このように電極106と被加熱物102の位置を考慮したふきこぼれ検出処理を行うことで、調理時間を長くすることに繋がる加熱量減少を必要な量だけ実行することが可能となる。
上記実施形態2では電極106を1つ用いたが、図19に示すように複数の電極106a、106bを用いても良い。例えば、加熱調理器は、被加熱物102の近くに配置された電極106aと、遠くに配置された電極106bとを含む電極106を備えても良い。この場合、複数の電極106a、106bを使用して、ふきこぼれの検出を行うことができる。被加熱物102の載置状態や大きさ及び被調理物101のこぼれ量に応じた加熱量制御を行うこともできる。例えば、電極106aにだけ静電容量変化が発生し、電極106bには静電容量変化が発生していないとき、被加熱物102からの被調理物101のふきこぼれ量は被加熱物102の付近だけのわずかな量であると判断できる。よって、図15のS1509で加熱量を調整するときに、制御報知時間調整部130は、電極106aと電極106bの両方に静電容量変化が発生する場合に行う加熱量調整よりも調整量を少なくする。例えば、電極106aと電極106bの両方で静電容量が変化しているときは500Wに変更し、電極106aのみで静電容量が変化しているときは750Wに設定する。このように電極106と被加熱物102の位置を考慮したふきこぼれ検出処理を行うことで、調理時間を長くすることに繋がる加熱量減少を必要な量だけ実行することが可能となる。
さらに、複数の電極106がサイズの大きい被加熱物102の領域までカバーする位置にそれぞれ配置されている場合であって、加熱開始時から全ての電極106の静電容量に変化がある場合、載置された被加熱物102は大きな鍋であると判断できる。例えば、加熱開始時の全ての電極106の静電容量が、鍋が載置されていないときの値から所定量以上離れている場合、全ての電極106を覆うような大きな被加熱物102がトッププレート104上に載置されていると考えられる。被加熱物102である鍋が大きく電極106の上に存在している場合には、掃除や調理器具などの影響は発生しないため、これらの状況と判断を間違うことがない。また、この状態でふきこぼれが発生した場合、電極106に到達するまでに、加熱され高温になった被加熱物102とトッププレート104の狭い隙間を、ふきこぼれた被調理物101が通っていくことになる。そのため、電極106に静電容量の変化の反応が認められた場合は、制御報知時間調整部130はふきこぼれた被調理物102がトッププレート104上に焦げ付くことがないよう即時に加熱停止と報知を実行する。このように動作することで、大きなサイズの被加熱物102が加熱された場合であっても、掃除や調理物の影響がなく、こぼれた被調理物101が電極106の上部に到達するまで時間がかかる状況に対応することができる。
また、複数の電極106のうち加熱開始時から静電容量の変化がある電極が一つ以上存在し、この加熱開始時から静電容量変化があった電極106にさらに変化量が発生した場合、ふきこぼれた被調理物101が電極106に到達するまでに、加熱され高温になった被加熱物102とトッププレート104の狭い隙間を通っていくことになる。そのため、加熱開始時から電極106に静電容量の変化の反応が認められた場合は、制御報知時間調整部130はふきこぼれた被調理物101がトッププレート104上に焦げ付くことがないよう、即時加熱停止と報知を実行することが好ましい。加熱開始時に静電容量変化が起こっていなかった電極106に静電容量変化が発生した場合は加熱量の調整(例えば、500Wにパワーダウン)で対応してもよい。このように、被加熱物102が電極106上に存在する部分に被調理物101がこぼれたと判断して、焦げ付き防止のための加熱停止と加熱量制御実施報知を実行してもよい。
以上のように、複数の電極106の容量変化を用いて種々の判断を行うことで、被加熱物102の載置状態や大きさおよび被調理物のふきこぼれ量に応じた加熱量制御を行うことができる。
(変形例3)
図20を用いて、加熱調理器が複数の加熱コイル401を設けている場合について説明する。この場合、複数の加熱コイル(図20においては2つ)401の間に設けられた電極106の静電容量が変化した場合、すなわちふきこぼれが発生した場合、全ての加熱コイル401の加熱を停止する。ふきこぼれが発生した場合、一方の被加熱物102からふきこぼれた被調理物101が、トッププレート104上を流れて、他方の被加熱物102の下に入り込む場合がある。このとき、他方の加熱コイル401も加熱を実行していた場合、他方の被加熱物102の下に入り込んだ被調理物102により、焦げ付きが発生する場合がある。従って、制御報知時間調整部130は、ふきこぼれが発生したことを検知すると、全ての加熱コイル401の加熱を停止する。以上のように複数の加熱コイル401の全てに対して加熱量制御を適用することで、確実にふきこぼれに対応することができる。
図20を用いて、加熱調理器が複数の加熱コイル401を設けている場合について説明する。この場合、複数の加熱コイル(図20においては2つ)401の間に設けられた電極106の静電容量が変化した場合、すなわちふきこぼれが発生した場合、全ての加熱コイル401の加熱を停止する。ふきこぼれが発生した場合、一方の被加熱物102からふきこぼれた被調理物101が、トッププレート104上を流れて、他方の被加熱物102の下に入り込む場合がある。このとき、他方の加熱コイル401も加熱を実行していた場合、他方の被加熱物102の下に入り込んだ被調理物102により、焦げ付きが発生する場合がある。従って、制御報知時間調整部130は、ふきこぼれが発生したことを検知すると、全ての加熱コイル401の加熱を停止する。以上のように複数の加熱コイル401の全てに対して加熱量制御を適用することで、確実にふきこぼれに対応することができる。
(変形例4)
図21を用いて、加熱調理器が、調理を行う使用者の存在を確認する人体検出部2101を備える場合について説明する。例えば、人体検出部2101として赤外線センサを使用することで、人体検出部2101の構成を容易に実現できる。人体検出部2101は、加熱中に使用者が存在しているか否かを確認する。加熱調理器は、使用者の存在の有無に従って、ふきこぼれの検出時の動作を異ならせる。
図21を用いて、加熱調理器が、調理を行う使用者の存在を確認する人体検出部2101を備える場合について説明する。例えば、人体検出部2101として赤外線センサを使用することで、人体検出部2101の構成を容易に実現できる。人体検出部2101は、加熱中に使用者が存在しているか否かを確認する。加熱調理器は、使用者の存在の有無に従って、ふきこぼれの検出時の動作を異ならせる。
具体的には、人体検出部2101は、常時、加熱調理器の前に使用者がいるかどうかを検出する。制御報知時間調整部130は、図15のステップS1503やステップS1508でふきこぼれの判断を行うときに、人体検出部2101に使用者が加熱調理器の前にいるか否かの問い合わせを行う。使用者が加熱調理器の前に常にいることが判明した場合、制御報知時間調整部130はふきこぼれの判断を禁止する。すなわち、図15に示す処理を実行しない。一方、制御報知時間調整部130は、人体検出部2101から使用者の反応に変化が多く使用者が動き回っていることを検知した場合は、使用者が被調理物101に注意を向けていない可能性があるため、使用者が加熱調理器の前に常時いないと判断し、図15に示すふきこぼれの判断を実行する。
以上のように、使用者が加熱調理器の近くにいる場合は、使用者に判断を任せられるため、ふきこぼれの判断を行わず、使用者が加熱調理器の近くにいない場合にふきこぼれの判断を実行する。なお、使用者が加熱調理器の近くにいる場合、完全にふきこぼれの判断を実行しなくてもいいし(すなわち、加熱量を変化させない。)、ふきこぼれが発生したことを判断したときに加熱量を低下してもよい。このように、使用者が加熱調理器の近くにいる場合は使用者に判断を任せることができるため、加熱を停止しなくてもよい。一方、加熱調理器の前に使用者がいない場合は使用者による停止ができないので、ふきこぼれが発生したときは加熱を停止することが好ましい(S1509)。又は、ふきこぼれが発生していないときよりも加熱量を少なくする。
なお、予め基本設定項目として、人体検出時にふきこぼれ発生の判断を禁止するか否かを使用者が設定できるようにしてもよい。これにより、使用者の意向に応じた動作をすることができる。
(変形例5)
図22に示すように、加熱調理器は、鍋などの被加熱物102が移動したことを検出する被加熱物移動検出部2201をさらに備えてもよい。被加熱物移動検出部2201として、加熱コイル401に流れる電流の変化を観測する電流センサを用いることで、この構成を容易に実現できる。この場合、加熱調理器は、被加熱物102が移動したかどうかによって、ふきこぼれの検出時の動作を異ならせる。
図22に示すように、加熱調理器は、鍋などの被加熱物102が移動したことを検出する被加熱物移動検出部2201をさらに備えてもよい。被加熱物移動検出部2201として、加熱コイル401に流れる電流の変化を観測する電流センサを用いることで、この構成を容易に実現できる。この場合、加熱調理器は、被加熱物102が移動したかどうかによって、ふきこぼれの検出時の動作を異ならせる。
被加熱物102が電極106上に載置されていない状態から電極106上に載置された状態に遷移した場合、電極106の静電容量が変化する。被加熱物102の材質や状態によってこの静電容量は大きく変化する。そのため、制御報知時間調整部130は、ふきこぼれが発生したと誤判断してしまうおそれがある。この誤判断を防ぐために、制御報知時間調整部130は、図15のステップS1503及びステップS1508のふきこぼれ検出の判断を行う前に、被加熱物移動検出部2201に、被加熱物102の移動有無の問い合わせを行う。使用者の調理作業などの原因で、加熱コイル401上の被加熱物102の位置が変わると、加熱コイル401と被加熱物102の磁気的な結合が変化するため、加熱コイル401に流れる電流が変化する。被加熱物移動検出部2201はこの電流変化を捉え、電流の変化の有無を制御報知時間調整部130に伝える。加熱コイル401の電流が変化した場合、制御報知時間調整部130は被加熱物102が移動したと判断して、図15のステップS1503及びステップS1508のふきこぼれ検出の判断を行わない。これにより、被加熱物102の移動により電極106の静電容量が変化していた場合に、ふきこぼれが発生したと誤判断することを防止することができる。なお、被加熱物102の位置が変化したことを検知した場合は、すなわち、被加熱物102が電極106上に載置されていない状態から電極106上に載置された状態に遷移した場合は、制御部109は、使用者が指示する電力に復帰させるように高周波電力供給部402を制御する。
以上のように、被加熱物102の移動を検知する被加熱物移動検出部2201を備え、被加熱物102が移動した場合は、制御報知時間調整部130はふきこぼれの判断を実行しない。これにより、ふきこぼれ検出において、鍋などの被加熱物102の移動によって生じる静電容量の変化などの明らかな外乱を排除することができる。
(変形例6)
図23に示すように、加熱調理器は、鍋などの被加熱物102の温度を検出する温度検出部2301をさらに備えてもよい。温度検出部2301として温度変化を観測するサーミスタを用いることで、この構成を容易に実現できる。この場合、温度検出部2301が呈する被加熱物102の温度に応じて、ふきこぼれの検出の動作を異ならせる。
図23に示すように、加熱調理器は、鍋などの被加熱物102の温度を検出する温度検出部2301をさらに備えてもよい。温度検出部2301として温度変化を観測するサーミスタを用いることで、この構成を容易に実現できる。この場合、温度検出部2301が呈する被加熱物102の温度に応じて、ふきこぼれの検出の動作を異ならせる。
ふきこぼれは、沸騰現象で発生した泡が成長することで発生する。したがって、加熱コイル401で加熱中の被加熱物102の温度が水の沸点より低い場合は、被加熱物102から被調理物101がふきこぼれてくるような現象は起こらない。すなわち、被加熱物102の温度が水の沸点より低い場合に、電極106の静電容量が変化した場合、その静電容量の変化はふきこぼれによるものではないと判断できる。よって、制御報知時間調整部130は、図15のステップS1503及びステップS1508のふきこぼれ検出の判断を行う直前に、温度検出部2301から被加熱物102の温度を取得する。取得した被加熱物102の温度が水の沸点より低い場合は、制御報知時間調整部130は、図15のステップS1503及びステップS1508のふきこぼれ検出の判断を実行しない。すなわち、図15に示すふきこぼれ時の処理を実行しない。
以上のように、被加熱物102の温度を検出する温度検出部2301を備え、被加熱物102の温度が水の沸点より低い場合は、制御報知時間調整部130によるふきこぼれ検出を実行しないことで、ふきこぼれの発生の可能性がない場合に生じた静電容量の変化を外乱と判断することができる。よって、誤ってふきこぼれ時の処理を行うことがなくなる。
以上のように、実施形態2及び各変形例の加熱調理器は、トッププレート104の下に電極106を配置し、静電容量検出部107が検出する電極106の静電容量値に基づいて、制御報知時間調整部130がトッププレート104上で発生する何らかの状態変化を捉えている。さらに、制御報知時間調整部130が、被調理物101のふきこぼれが発生したと想定される場合に、ふきこぼれ拡大防止のための加熱量制御を一旦実行し、その後、静電容量の変化がふきこぼれによるものかどうかを確定した上で、使用者への報知または元の加熱量への復帰を実行している。よって、調理台としても使用されるトッププレート104上で、使用者が食材・食器・調理器具を移動したり、布巾による拭き掃除を行った場合に、ふきこぼれであると誤判断して、ふきこぼれ時の処理を行うことを防ぐことができる。これにより、実用性の高いふきこぼれ検出機能を備えた加熱調理器を提供することができる。なお、ふきこぼれの検出動作は、ガラストッププレートを採用してフラット化し、拭き掃除をし易くし、炎を避ければ調理台としても使用可能な、ガス燃焼による加熱調理器にも適用することができる。
上述した実施形態1、実施形態2、及び各変形例は任意に組み合わせてもよい。
本発明の加熱調理器は実用性の高いふきこぼれ検出機能を実現することができるという効果を有し、誘導加熱調理器やガス調理器などの各種加熱調理器に有用である。
101 被調理物
102 被加熱物
103 基準電位
104 トッププレート
105 加熱部
106 電極
107 静電容量検出部
108 ふきこぼれ検出部
109 制御部
130 制御報知時間調整部
140 報知部
401 加熱コイル
402 高周波電力供給部
601 フィルタ
701 ふきこぼれ接触状態検出部
1001 ふきこぼれ接触状態確認部
1701 閾値決定部
2101 人体検出部
2201 被加熱物移動検出部
2301 温度検出部
102 被加熱物
103 基準電位
104 トッププレート
105 加熱部
106 電極
107 静電容量検出部
108 ふきこぼれ検出部
109 制御部
130 制御報知時間調整部
140 報知部
401 加熱コイル
402 高周波電力供給部
601 フィルタ
701 ふきこぼれ接触状態検出部
1001 ふきこぼれ接触状態確認部
1701 閾値決定部
2101 人体検出部
2201 被加熱物移動検出部
2301 温度検出部
Claims (21)
- 基準電位に接続されたトッププレートと、
前記トッププレート上に載置された被加熱物を加熱する加熱部と、
前記トッププレートの下方に配置された少なくとも1つの電極と、
前記電極の静電容量を検出する静電容量検出部と、
前記静電容量検出部により検出された前記電極の静電容量の値に基づいて、前記被加熱物内の被調理物が前記トッププレート上にふきこぼれたか否かを検出するふきこぼれ検出部と、
前記ふきこぼれ検出部によるふきこぼれの検出結果に基づいて、前記加熱部の加熱動作を制御する制御部と、
を有し、
前記静電容量検出部は、前記被調理物が前記基準電位に接続された前記トッププレート上にふきこぼれ、前記被調理物に含まれる水分が誘電体として機能し、前記被調理物のふきこぼれの量の増加によって前記電極と前記基準電位との容量結合による接続がより強まることを利用して、前記電極の静電容量の変化を検出する、加熱調理器。 - 前記トッププレートの下方で且つ前記電極の近傍に設けられた金属部材をさらに有する、請求項1に記載の加熱調理器。
- 前記加熱部は、
高周波電力を供給されることにより、前記被加熱物を誘導加熱する加熱コイルと、
前記高周波電力を前記加熱コイルに供給する高周波電力供給部と、
を含む、請求項2に記載の加熱調理器。 - 前記金属部材は前記加熱コイルに使用される銅巻き線である、請求項3に記載の加熱調理器。
- 前記電極の形状は前記加熱コイルと略同心円上にある円弧状である、請求項4に記載の加熱調理器。
- 前記静電容量検出部が検出する前記電極の静電容量の変化に重畳される誘導加熱周波数成分を除去するフィルタをさらに有する、請求項3に記載の加熱調理器。
- 前記ふきこぼれ検出部は、前記電極と前記加熱コイルとの容量性結合による誘導加熱の影響により生じる誘導加熱周波数成分を観測して、ふきこぼれの判断を行う請求項3に記載の加熱調理器。
- 前記電極は前記トッププレートに印刷される、請求項1に記載の加熱調理器。
- 前記静電容量検出部は、前記電極の静電容量の増加によるインピーダンスの変化を分圧回路により観測する、請求項1に記載の加熱調理器。
- 前記被加熱物に物理的に接触したふきこぼれを介して前記電極と前記被加熱物が容量結合して、前記電極の静電容量が増加したことを検知することにより、前記被加熱物から直接的に伝わる誘導加熱基点の電界変化を捉えるふきこぼれ接触状態検出部をさらに有し、
前記ふきこぼれ検出部は、前記静電容量検出部の検出結果と前記ふきこぼれ接触状態検出部の検出結果から前記被調理物のふきこぼれを検出する、請求項3に記載の加熱調理器。 - 前記ふきこぼれ接触状態検出部が検知した前記電極の静電容量の増加が、前記被調理物のふきこぼれを介して前記電極と前記被加熱物が容量結合したことによるものかどうかを確認するための加熱制御を前記制御部を介して実行するふきこぼれ接触状態確認部をさらに有する、請求項10に記載の加熱調理器。
- 前記加熱制御は、前記ふきこぼれ接触状態検出部が前記電極の静電容量の増加を検知したときに、前記加熱コイルによる加熱動作を所定時間停止し、所定時間経過後に加熱動作の停止前よりも小さい加熱電力で前記加熱コイルを動作させることである、請求項11に記載の加熱調理器。
- 使用者にふきこぼれが発生したことを報知する報知部をさらに有し、
前記ふきこぼれ検出部は、ふきこぼれが発生したと判断したときに、前記制御部を介して前記加熱コイルの加熱量を制御する動作と、前記報知部によりふきこぼれが発生したことを使用者に報知するまでの時間を調整する動作と、を含むふきこぼれ検出処理を実行する制御報知時間調整部である、請求項3に記載の加熱調理器。 - 前記制御報知時間調整部は、前記静電容量検出部の検出値を所定の閾値と比較して、前記被調理物のふきこぼれを検出するものであり、
加熱開始時の前記電極の静電容量の値に基づいて、前記所定の閾値を決定する閾値決定部をさらに備える、請求項13に記載の加熱調理器。 - 前記電極を複数個備え、
前記制御報知時間調整部は、前記複数の電極の静電容量の値に基づいて、前記ふきこぼれ検出処理を実行する、請求項13に記載の加熱調理器。 - 加熱開始時に、前記複数の電極の全てにおいて静電容量が変化しているとき、前記制御報知時間調整部は、前記加熱部の加熱停止と前記報知部による報知とを同時に行う、請求項15に記載の加熱調理器。
- 加熱開始時に、前記複数の電極のうち少なくとも1つの電極において静電容量が変化しているとき、前記制御報知時間調整部は、前記加熱部の加熱停止と前記報知部による報知とを同時に行う、請求項15に記載の加熱調理器。
- 前記加熱コイルを複数個備え、
前記制御報知時間調整部は、前記被調理物のふきこぼれを検出した場合、全ての前記加熱コイルの加熱量を制御する、請求項13に記載の加熱調理器。 - 人がいるか否かを検出する人体検出部をさらに有し、
前記制御報知時間調整部は、前記人体検出部の検出結果に基づいて、前記ふきこぼれ検出処理を実行する、請求項13に記載の加熱調理器。 - 前記被加熱物が移動したかどうかを検出する被加熱物移動検出部をさらに有し、
前記制御報知時間調整部は、前記被加熱物移動検出部により前記被加熱物が移動したことが検出されると、前記ふきこぼれ検出処理の実行を禁止する、請求項13に記載の加熱調理器。 - 前記被加熱物の温度を検出する温度検出部をさらに有し、
前記制御報知時間調整部は、前記温度検出部により検出される前記被加熱物の温度が水の沸点よりも低い場合は、前記ふきこぼれ検出処理の実行を禁止する、請求項13に記載の加熱調理器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10733360.1A EP2384085B1 (en) | 2009-01-23 | 2010-01-21 | Heating/cooking equipment |
CN201080005108XA CN102293050B (zh) | 2009-01-23 | 2010-01-21 | 加热烹调器 |
US13/145,686 US9078295B2 (en) | 2009-01-23 | 2010-01-21 | Heating/cooking equipment |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-012630 | 2009-01-23 | ||
JP2009012630A JP2010170855A (ja) | 2009-01-23 | 2009-01-23 | 誘導加熱調理器およびプログラム |
JP2009174950 | 2009-07-28 | ||
JP2009-174950 | 2009-07-28 | ||
JP2009244009A JP5568949B2 (ja) | 2009-07-28 | 2009-10-23 | 加熱調理器 |
JP2009-244009 | 2009-10-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010084752A1 true WO2010084752A1 (ja) | 2010-07-29 |
Family
ID=44676122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/000321 WO2010084752A1 (ja) | 2009-01-23 | 2010-01-21 | 加熱調理器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9078295B2 (ja) |
EP (1) | EP2384085B1 (ja) |
CN (1) | CN102293050B (ja) |
WO (1) | WO2010084752A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011243491A (ja) * | 2010-05-20 | 2011-12-01 | Mitsubishi Electric Corp | 誘導加熱調理器 |
JP2013072637A (ja) * | 2011-09-29 | 2013-04-22 | Mitsubishi Electric Corp | 加熱調理器 |
JP2019211162A (ja) * | 2018-06-06 | 2019-12-12 | 三菱電機株式会社 | 加熱調理器 |
CN113640336A (zh) * | 2021-08-23 | 2021-11-12 | 广东纯米电器科技有限公司 | 沸点检测方法、装置、电路及烹饪器具 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120206269A1 (en) * | 2011-02-11 | 2012-08-16 | B.E.A. Inc. | Electronic System to Signal Proximity of an Object |
DE102014201640A1 (de) * | 2014-01-30 | 2015-07-30 | BSH Hausgeräte GmbH | Temperaturmessung an einer Flächenheizung für ein Haushaltsgerät |
CN105674352B (zh) * | 2014-11-18 | 2018-02-13 | 佛山市顺德区美的电热电器制造有限公司 | 电磁炉的控制装置、电磁炉的控制方法和电磁炉 |
JP2016100662A (ja) * | 2014-11-19 | 2016-05-30 | アイシン精機株式会社 | 車両用操作検出装置 |
WO2018066190A1 (ja) | 2016-10-07 | 2018-04-12 | ソニー株式会社 | 情報処理装置、情報処理方法、およびプログラム |
CN110169200B (zh) * | 2017-01-10 | 2021-10-19 | 松下电器产业株式会社 | 电磁场分布调整装置以及微波加热装置 |
CN108309046B (zh) * | 2017-01-18 | 2020-10-30 | 佛山市顺德区美的电热电器制造有限公司 | 电烹饪器及其防溢出加热控制方法和装置 |
WO2020112981A1 (en) | 2018-11-29 | 2020-06-04 | Broan-Nutone Llc | Smart indoor air venting system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS579093A (en) * | 1980-06-17 | 1982-01-18 | Matsushita Electric Ind Co Ltd | Induction heating cooking device |
JPS61243690A (ja) * | 1985-04-20 | 1986-10-29 | 三洋電機株式会社 | 誘導加熱調理装置 |
JP2005166392A (ja) * | 2003-12-02 | 2005-06-23 | Matsushita Electric Ind Co Ltd | タッチキーとそれを備えた電磁調理器 |
JP2008159494A (ja) | 2006-12-26 | 2008-07-10 | Mitsubishi Electric Corp | 誘導加熱調理器 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5945017A (en) * | 1997-08-06 | 1999-08-31 | Cheng; Yu-Tarng | Fire safety device for stove-top burner |
FR2792158B1 (fr) * | 1999-04-09 | 2001-05-18 | Jaeger Regulation | Foyer de cuisson par induction modulable a rayonnement reduit et procede de realisation |
JP3807315B2 (ja) | 2002-01-29 | 2006-08-09 | 松下電器産業株式会社 | 電磁調理器 |
JP4617676B2 (ja) | 2004-01-27 | 2011-01-26 | パナソニック株式会社 | 誘導加熱調理器 |
JP4371861B2 (ja) * | 2004-03-12 | 2009-11-25 | 大阪瓦斯株式会社 | コンロ |
KR20080068775A (ko) * | 2007-01-20 | 2008-07-24 | 삼성전자주식회사 | 용기센서와 이를 갖는 발열유닛 및 그 발열유닛을 갖는조리장치와 그 제어방법 |
KR101261647B1 (ko) * | 2007-03-28 | 2013-05-06 | 엘지전자 주식회사 | 가열조리기기의 제어방법 |
EP2378836B1 (en) | 2009-01-09 | 2019-03-20 | Panasonic Corporation | Inductive heating apparatus |
-
2010
- 2010-01-21 CN CN201080005108XA patent/CN102293050B/zh active Active
- 2010-01-21 US US13/145,686 patent/US9078295B2/en not_active Expired - Fee Related
- 2010-01-21 WO PCT/JP2010/000321 patent/WO2010084752A1/ja active Application Filing
- 2010-01-21 EP EP10733360.1A patent/EP2384085B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS579093A (en) * | 1980-06-17 | 1982-01-18 | Matsushita Electric Ind Co Ltd | Induction heating cooking device |
JPS61243690A (ja) * | 1985-04-20 | 1986-10-29 | 三洋電機株式会社 | 誘導加熱調理装置 |
JP2005166392A (ja) * | 2003-12-02 | 2005-06-23 | Matsushita Electric Ind Co Ltd | タッチキーとそれを備えた電磁調理器 |
JP2008159494A (ja) | 2006-12-26 | 2008-07-10 | Mitsubishi Electric Corp | 誘導加熱調理器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2384085A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011243491A (ja) * | 2010-05-20 | 2011-12-01 | Mitsubishi Electric Corp | 誘導加熱調理器 |
JP2013072637A (ja) * | 2011-09-29 | 2013-04-22 | Mitsubishi Electric Corp | 加熱調理器 |
JP2019211162A (ja) * | 2018-06-06 | 2019-12-12 | 三菱電機株式会社 | 加熱調理器 |
JP7003001B2 (ja) | 2018-06-06 | 2022-01-20 | 三菱電機株式会社 | 加熱調理器 |
CN113640336A (zh) * | 2021-08-23 | 2021-11-12 | 广东纯米电器科技有限公司 | 沸点检测方法、装置、电路及烹饪器具 |
CN113640336B (zh) * | 2021-08-23 | 2023-07-14 | 广东纯米电器科技有限公司 | 沸点检测方法、装置、电路及烹饪器具 |
Also Published As
Publication number | Publication date |
---|---|
CN102293050A (zh) | 2011-12-21 |
US9078295B2 (en) | 2015-07-07 |
EP2384085A4 (en) | 2013-10-30 |
CN102293050B (zh) | 2013-10-16 |
EP2384085A1 (en) | 2011-11-02 |
US20110278285A1 (en) | 2011-11-17 |
EP2384085B1 (en) | 2015-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010084752A1 (ja) | 加熱調理器 | |
JP5830690B2 (ja) | 誘導加熱調理器 | |
WO2010079583A1 (ja) | 誘導加熱装置 | |
JP2010170855A (ja) | 誘導加熱調理器およびプログラム | |
CN108309039B (zh) | 电烹饪器及其防溢出加热控制方法和装置 | |
CN108309046B (zh) | 电烹饪器及其防溢出加热控制方法和装置 | |
JP5845425B2 (ja) | 加熱調理器 | |
JP5975302B2 (ja) | 誘導加熱装置 | |
JP5083273B2 (ja) | 誘導加熱調理器 | |
JP4893014B2 (ja) | 誘導加熱調理器 | |
JP2010160999A (ja) | 加熱調理器 | |
WO2011155222A1 (ja) | 誘導加熱調理器 | |
JP2012209101A (ja) | 誘導加熱調理器 | |
JP2011090914A (ja) | 誘導加熱装置 | |
JP5830665B2 (ja) | 誘導加熱調理器 | |
JP5645697B2 (ja) | 誘導加熱調理器 | |
JP5830664B2 (ja) | 誘導加熱調理器 | |
JP5828083B2 (ja) | 誘導加熱調理器 | |
JP2007053642A (ja) | タッチキーとこれを用いた機器 | |
CN108309043A (zh) | 电烹饪器及其防溢出显示系统和防溢出显示方法 | |
JP2014239066A (ja) | 誘導加熱装置 | |
JP5814235B2 (ja) | 誘導加熱調理器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080005108.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10733360 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010733360 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13145686 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |