Nothing Special   »   [go: up one dir, main page]

WO2010082325A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2010082325A1
WO2010082325A1 PCT/JP2009/050412 JP2009050412W WO2010082325A1 WO 2010082325 A1 WO2010082325 A1 WO 2010082325A1 JP 2009050412 W JP2009050412 W JP 2009050412W WO 2010082325 A1 WO2010082325 A1 WO 2010082325A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
outdoor
heat exchanger
indoor
outdoor heat
Prior art date
Application number
PCT/JP2009/050412
Other languages
English (en)
French (fr)
Inventor
修 森本
信 齊藤
悟 梁池
浩司 山下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2009/050412 priority Critical patent/WO2010082325A1/ja
Priority to CN200980153882.2A priority patent/CN102272534B/zh
Priority to JP2010546507A priority patent/JPWO2010082325A1/ja
Priority to EP09838295.5A priority patent/EP2378215B1/en
Priority to US13/132,092 priority patent/US9506674B2/en
Publication of WO2010082325A1 publication Critical patent/WO2010082325A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • F25B2313/0211Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being only used during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • F25B2313/02322Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • F25B2313/02323Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0251Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0252Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses
    • F25B2313/02522Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting

Definitions

  • the present invention relates to an air conditioner of an electric heat pump that performs air conditioning using a refrigeration cycle (heat pump cycle) and performs air conditioning.
  • the present invention relates to an air conditioner that can efficiently defrost (defrost) an outdoor unit while continuing heating or the like in the indoor unit.
  • one or a plurality of outdoor units having a compressor and an outdoor heat exchanger (heat source side heat exchanger), an expansion device serving as an expansion valve, and an indoor heat exchanger (load side heat)
  • one or a plurality of indoor units having an exchanger are connected by piping.
  • a refrigerant circuit is comprised, a refrigerant
  • coolant is circulated and the air conditioning object space is air-conditioned.
  • a defrosting operation (defrost) is performed on each outdoor unit (see, for example, Patent Document 1). At this time, the defrosting operation was performed in any one of the outdoor units, and the other outdoor units continued the heating operation.
  • an outdoor unit that performs a defrosting operation switches the four-way valve so that hot gas (high-temperature gaseous refrigerant) from the compressor flows directly into the outdoor heat exchanger. And by heat exchange with hot gas and frost, frost melts and a part of hot gas becomes liquid and becomes a gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant and the high-temperature gas refrigerant coming out of the outdoor unit that continues the heating operation are mixed, and the high-temperature two-phase refrigerant flows to the indoor unit side to perform cooling and heating.
  • the defrosting operation could not be performed while continuing heating in the indoor unit. Therefore, heating in the indoor unit is stopped during the defrosting operation. For this reason, for example, the room temperature may deviate from the set temperature during the defrosting operation. Further, even when the operation such as heating was resumed from the defrosting operation, the high-temperature air could not be blown out immediately from the indoor unit.
  • an object of the present invention is to obtain an air conditioner that can perform a defrosting operation more efficiently while continuing a heating operation or the like even if the outdoor unit is configured as a single unit.
  • An air conditioner includes a compressor that pressurizes and discharges a refrigerant, a plurality of outdoor heat exchangers that perform heat exchange between outside air and the refrigerant, and a flow path switching unit that switches a flow path based on an operation mode.
  • An air conditioner that configures a refrigerant circuit by pipe-connecting an outdoor unit having a plurality of indoor units having an indoor-side heat exchanger and an indoor-side flow rate control device that performs heat exchange between air and refrigerant in an air-conditioning target space
  • a bypass pipe for diverting the refrigerant discharged from the compressor and flowing into each of the outdoor heat exchangers connected in parallel with the pipe, and the passage of the refrigerant from the bypass pipe to each of the outdoor heat exchangers or
  • the outdoor unit includes a plurality of first opening / closing means for blocking and a plurality of second opening / closing means for passing or blocking the refrigerant from the indoor unit to each outdoor heat exchanger.
  • each outdoor heat is supplied to a plurality of outdoor heat exchangers piped in parallel.
  • Switching between the passage of the refrigerant from the bypass pipe to the exchanger or the passage of the refrigerant from the indoor unit can be performed by the first opening / closing means and the second opening / closing means.
  • the high temperature refrigerant from the compressor can be sequentially allowed to flow into each outdoor heat exchanger via the bypass pipe so that defrosting can be performed.
  • the defrosting operation can be carried out while continuing the main operation. For this reason, it is possible to maintain a comfortable room temperature environment without stopping the cooling and heating in the indoor unit while performing the defrosting operation. And by using one outdoor unit, cost can be suppressed and installation space can be reduced.
  • FIG. 3 is a diagram illustrating a refrigerant flow in a cooling only operation according to Embodiment 1.
  • FIG. 3 is a diagram illustrating a refrigerant flow in a cooling main operation according to Embodiment 1.
  • FIG. It is a figure showing the flow of the refrigerant
  • FIG. It is a figure showing the flow of the refrigerant
  • FIG. It is a figure showing the flowchart of the compressor 1 in operation and the outdoor heat exchanger 3 heat exchange amount.
  • FIG. 1 It is a figure showing the flow of the refrigerant
  • FIG. 2 It is a figure showing the flow of the other refrigerant
  • FIG. It is a figure showing the flowchart which concerns on the defrost operation in Embodiment 1.
  • FIG. It is a figure showing the structure and refrigerant circuit of the air conditioning apparatus which concern on Embodiment 2.
  • FIG. It is a figure showing the flow of the refrigerant
  • FIG. 1 It is a figure showing the flow of the other refrigerant
  • FIG. It is a figure showing the flow of the refrigerant
  • FIG. It is a figure showing the flow of the other refrigerant
  • FIG. It is a figure showing the flowchart which concerns on the defrost operation in Embodiment 2.
  • FIG. It is a figure showing the structure and refrigerant circuit of the air conditioning apparatus which concern on Embodiment 3.
  • FIG. 11 is a diagram illustrating a flowchart according to a defrosting operation in a third embodiment.
  • FIG. 1 is a diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the means (apparatus) etc. which comprise an air conditioning apparatus are demonstrated.
  • This air conditioner performs cooling and heating using a refrigeration cycle (heat pump cycle) based on refrigerant circulation.
  • the air conditioning apparatus according to the present embodiment is an apparatus capable of performing a cooling / heating simultaneous operation (cooling / heating mixed operation) in which an indoor unit that performs cooling and an indoor unit that performs heating can be mixed.
  • the air conditioner according to the present embodiment mainly includes an outdoor unit (heat source unit side, heat source unit) 51, a plurality of indoor units (load side units) 53a and 53b, and a shunt controller 52.
  • the shunt controller 52 in order to control the flow of a refrigerant
  • the plurality of indoor units 53a and 53b are connected so as to be parallel to each other. For example, in the indoor units 53a and 53b and the like, if there is no need to particularly distinguish or specify, the subscripts a and b may be omitted below.
  • the outdoor unit 51 and the shunt controller 52 are connected by a high pressure pipe 201 and low pressure pipes 202 and 205.
  • the low pressure pipe 205 is a pipe provided in the diversion controller 52.
  • a high-pressure refrigerant flows from the outdoor unit 51 side to the shunt controller 52 side.
  • a refrigerant having a pressure lower than that flowing through the high-pressure pipe 201 flows from the shunt controller 52 side to the outdoor unit 51 side.
  • the level of pressure is not determined by the relationship with the reference pressure (numerical value).
  • the diversion controller 52 and the indoor unit 53a are connected by liquid pipes 203a and 207a and gas pipes 204a and 206a.
  • the gas pipe 206 a and the liquid pipe 207 a are pipes provided in the flow dividing controller 52.
  • the diversion controller 52 and the indoor unit 53b are connected by liquid pipes 203b and 207b and gas pipes 204b and 206b.
  • Pipe connection is made by a low pressure pipe 202, a high pressure pipe 201, a liquid pipe 203 (203a, 203b), a liquid pipe 207 (207a, 207b), a gas pipe 204 (204a, 204b), and a gas pipe 206 (206a, 206b).
  • a refrigerant coolant circulates among the outdoor unit 51, the shunt controller 52, and the indoor unit 53 (53a, 53b), and comprises a refrigerant circuit.
  • the compressor 1 included in the outdoor unit 51 of the present embodiment applies pressure to the sucked refrigerant and discharges (sends out) it.
  • the compressor 1 of the present embodiment can arbitrarily change the drive frequency based on an instruction from the control means 300 by an inverter circuit (not shown). Therefore, the compressor 1 is an inverter compressor that can change the discharge capacity (the amount of refrigerant discharged per unit time) and the cooling / heating capacity according to the discharge capacity.
  • the four-way valve 2 switches the valve corresponding to the mode (mode) of the cooling / heating operation based on the instruction of the control means 300 so that the refrigerant path is switched.
  • the cooling only operation here, the operation when all the indoor units that are performing air conditioning are cooling
  • the cooling main operation the cooling and heating simultaneous operation, when the cooling load is large
  • all-heating operation here, the operation when all indoor units that are air-conditioning are heating
  • heating-based operation heating among the simultaneous cooling and heating operations
  • the outdoor heat exchanger 3 (3a, 3b) has a heat transfer tube that allows the refrigerant to pass therethrough and fins (not shown) for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the outside air, Exchanges heat between the refrigerant and air (outside air).
  • it functions as an evaporator during the heating only operation or during the heating main operation, and evaporates the refrigerant, for example.
  • it functions as a condenser during the cooling only operation or during the cooling main operation, for example, condenses and liquefies the refrigerant.
  • the gas is not completely gasified or liquefied, but is condensed to a state of two-phase mixing of liquid and gas (gas) (gas-liquid two-phase refrigerant). May be performed.
  • gas gas-liquid two-phase refrigerant
  • first flow path opening / closing valve 6 (6a, 6b), the second flow path opening / closing valve 7 (7a, 7b) and the bypass opening / closing valve 8 (8a, 8b) are opened and closed based on an instruction from the control means 300.
  • one of the second flow path opening / closing valves 7a and 7b is closed, and one of the bypass opening / closing valves 8a and 8b is opened.
  • the refrigerant flowing from the indoor unit side is shut off from any one of the outdoor heat exchangers 3a and 3b in the heating only operation and the heating main operation.
  • the defrosting bypass pipe 10 is connected to a pipe having one end connected to the discharge side of the compressor 1. Then, the other end branched in the middle is connected to a pipe connecting the second flow path opening / closing valve 7a and the outdoor heat exchanger 3a, and the other end is connected to the second flow path opening / closing valve 7b and the outdoor heat. It connects with piping which connects the exchanger 3b.
  • the bypass opening / closing valve 8 (8a, 8b) is provided in the defrosting bypass pipe 10.
  • the blower 9 is provided in the vicinity of the outdoor heat exchanger 3 in order to efficiently exchange heat between the refrigerant and the outside air.
  • the blower 9 of the present embodiment can arbitrarily change the number of revolutions based on an instruction from the control means 300. Thereby, the amount of outside air to be fed can be changed to adjust the amount of heat exchange in the outdoor heat exchanger 3 (the amount of heat related to heat exchange).
  • the blower 9 is individually arranged corresponding to each of the outdoor heat exchangers 3a and 3b, and closes the valve provided at the inlet of the outdoor heat exchanger on one side according to the operating capacity of the indoor unit and the outside air temperature. At the same time, the corresponding blower can also be stopped.
  • the accumulator 4 stores excess refrigerant in the refrigerant circuit. Further, the first check valve block 5a to the fourth check valve block 5d prevent the refrigerant from flowing back, regulate the flow of the refrigerant, and make the circulation path of the refrigerant constant according to the mode.
  • the first check valve block 5 a is located on the pipe between the four-way valve 2 and the low-pressure pipe 202 and allows the refrigerant to flow from the low-pressure pipe 202 to the four-way valve 2.
  • the second check valve block 5b is located on the pipe between the four-way valve 2 and the high-pressure pipe 201, and allows the refrigerant to flow from the four-way valve 2 toward the high-pressure pipe 201.
  • the third check valve block 5 c is located on the pipe between the outdoor heat exchange unit 13 and the low pressure pipe 202, and allows the refrigerant to flow from the low pressure pipe 202 toward the outdoor heat exchanger 3.
  • the fourth check valve block 5d is located on the pipe between the outdoor heat exchange unit 13 and the heat source unit side high pressure pipe 201, and allows refrigerant to flow from the outdoor heat exchange unit 13 toward the high pressure pipe 201. To do.
  • the first pressure sensor 101 and the second pressure sensor 102 for detecting the pressure of the refrigerant related to the discharge and suction are attached to the pipe connected to the discharge and suction sides of the compressor 1. Yes.
  • outdoor temperature sensors 103a and 103b for detecting the temperature of the refrigerant between the outdoor heat exchangers 3a and 3b and the four-way valve 2 are attached.
  • the outside temperature sensor 104 for detecting the temperature (outside temperature) of outside air is attached.
  • Each temperature sensor and pressure sensor transmits a detection signal to the control means 300.
  • the gas-liquid separator 21 included in the shunt controller 52 separates the refrigerant flowing from the high pressure pipe 201 into a gas refrigerant and a liquid refrigerant.
  • the gas phase part (not shown) from which the gas refrigerant flows out is connected to the flow dividing side opening / closing valve 26 (26a, 26b).
  • the liquid phase part (not shown) from which the liquid refrigerant flows is connected to the first inter-refrigerant heat exchanger 22.
  • the diversion-side opening / closing valves 26 (26 a, 26 b) and 27 (27 a, 27 b) open and close based on instructions from the control means 300.
  • One end of the flow dividing side opening / closing valve 26 (26a, 26b) is connected to the gas-liquid separator 21, and the other end is connected to the gas pipe 206 (206a, 206b).
  • one end of the flow dividing side opening / closing valve 27 (27a, 27b) is connected to the gas pipe 206 (206a, 206b), and the other end is connected to the low pressure pipe 205.
  • the refrigerant is allowed to flow from the indoor unit 53 side to the low-pressure pipe 202 side based on an instruction from the control means 300, or The valve is switched so that the refrigerant flows from the liquid separator 21 side to the indoor unit 53 side.
  • the flow of the refrigerant is switched by the branch side opening / closing valves 26 and 27, but a three-way valve or the like may be used, for example.
  • the diversion-side first expansion device 23 is provided between the first inter-refrigerant heat exchanger 22 and the second inter-refrigerant heat exchanger 24, controls the opening degree based on an instruction from the control means 300, and gas-liquid separation The refrigerant flow rate flowing from the vessel 21 and the refrigerant pressure are adjusted.
  • the diversion-side second expansion device 25 controls the opening degree based on an instruction from the control means 300 and adjusts the refrigerant flow rate and refrigerant pressure of the refrigerant passing through the diversion-side bypass pipe 208.
  • the refrigerant that has passed through the diversion-side second expansion device 25 passes through the diversion-side bypass pipe 208, for example, supercools the refrigerant in the second inter-refrigerant heat exchanger 24 and the first inter-refrigerant heat exchanger 22, and the low-pressure pipe 202. Will flow into.
  • the second inter-refrigerant heat exchanger 24 includes a refrigerant in a downstream portion of the diversion-side second expansion device 25 (a refrigerant that has passed through the diversion-side second expansion device 25), and a refrigerant that flows from the diversion-side first expansion device 23. Heat exchange between.
  • the first inter-refrigerant heat exchanger 22 heats between the refrigerant that has passed through the second inter-refrigerant heat exchanger 24 and the liquid refrigerant that flows from the gas-liquid separator 21 in the direction of the flow-dividing side first expansion device 23. Exchange.
  • a diversion-side first temperature sensor 111 for detecting the temperature of the refrigerant flowing through the diversion-side bypass pipe 208 is attached.
  • the flow dividing side second temperature sensor 112 for detecting the temperature of the refrigerant in the downstream portion of the flow dividing side second expansion device 25 is attached.
  • a control unit 301 for a diversion controller may be provided separately from the control unit 300 provided in the outdoor unit 51, and processing related to the control of the diversion controller 52 may be performed while communicating with the control unit 300 or the like.
  • the control unit 300 will be described as being performed.
  • the indoor unit 53 includes an indoor side heat exchanger 32 (32a, 32b) and an indoor side expansion device 31 (31a, 31b) connected in series near the indoor side heat exchanger 32. Moreover, in this Embodiment, it has the indoor side control means 33 (33a, 33b). Similarly to the outdoor heat exchanger 3 described above, the indoor heat exchanger 32 becomes an evaporator during the cooling operation and becomes a condenser during the heating operation, and between the air and the refrigerant in the air-conditioning target space. Perform heat exchange.
  • a blower for efficiently performing heat exchange between the refrigerant and the air may be provided in the vicinity of each indoor heat exchanger 32.
  • the indoor expansion device 31 functions as a pressure reducing valve and an expansion valve, and adjusts the pressure of the refrigerant passing through the indoor heat exchanger 32.
  • the indoor-side throttle device 31 of the present embodiment is composed of, for example, an electronic expansion valve that can change the opening degree.
  • the opening degree of the indoor expansion device 31 is determined based on the degree of superheat on the refrigerant outlet side (here, the gas pipe 204 side) of the indoor heat exchanger 32 during the cooling operation. Will be determined. Further, it is determined based on the degree of supercooling on the refrigerant outlet side (here, on the liquid pipe 203 side) during the heating operation.
  • the indoor side control means 33 controls each means that the indoor unit 2 has.
  • the evaporation temperature of the indoor heat exchanger 32 for cooling is a predetermined temperature based on the temperature related to the detection of the indoor temperature sensor 121 (121a, 121b) attached to each indoor unit 53. Determine whether: When it is determined that the state of the predetermined temperature or lower continues for a predetermined time or longer, the cooling of the indoor unit 53 is stopped and the control for preventing the refrigerant from freezing is performed.
  • the control means 300 performs, for example, determination processing based on signals transmitted from various sensors provided in and out of the air conditioner and each device (means) of the air conditioner. And it has a function which operates each apparatus based on the judgment and carries out overall control of the whole operation
  • the storage unit 310 stores various data, programs, and the like necessary for the control unit 300 to perform processing temporarily or for a long time.
  • control unit 300 and the storage unit 310 are provided independently in the vicinity of the outdoor unit 51, but may be provided in the outdoor unit 51, for example. Further, the control means 300 and the storage means 310 may be provided in a remote place and remotely controlled by performing signal communication via a public telecommunication network or the like.
  • the air conditioning apparatus of the present embodiment configured as described above performs the operation in any one of the four modes (modes) of the cooling only operation, the heating only operation, the cooling main operation, and the heating main operation. be able to.
  • modes modes of the cooling only operation
  • the heating only operation the cooling main operation
  • the heating main operation the heating main operation.
  • FIG. 2 is a diagram showing the flow of the refrigerant in the cooling only operation according to the first embodiment.
  • the control means 300 opens the first flow path on / off valves 6a and 6b and the second flow path on / off valves 7a and 7b, and closes the indoor third open / close valves 8a and 8b.
  • both the outdoor heat exchangers 3a and 3b perform heat exchange (the same applies in the description of the flow of each mode).
  • the compressor 1 compresses the sucked refrigerant and discharges the high-pressure gas refrigerant.
  • the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2.
  • the high-pressure gas refrigerant is condensed by heat exchange with the outside air while passing through the outdoor heat exchanger 3, and becomes high-pressure liquid refrigerant and flows through the fourth check valve block 5d (the second pressure is related to the refrigerant pressure). It does not flow to the check valve block 5b and the third check valve block 5c side). Then, the high-pressure liquid refrigerant flows into the shunt controller 52 through the high-pressure pipe 201.
  • the gas-liquid separator 21 separates the refrigerant flowing into the shunt controller 52 into a gas refrigerant and a liquid refrigerant.
  • the refrigerant flowing into the diversion controller 52 during the cooling only operation is a liquid refrigerant
  • the control means 300 opens the diversion-side opening / closing valves 27a, 27b and closes the diversion-side opening / closing valves 26a, 26b. For this reason, the gas refrigerant does not flow from the gas-liquid separator 21 to the indoor unit 53 (53a, 53b) side.
  • the liquid refrigerant passes through the first inter-refrigerant heat exchanger 22, the diversion-side first expansion device 23, and the second inter-refrigerant heat exchanger 24, and part of them passes through the liquid pipes 207a and 207b. Then, it further flows into the indoor units 53a and 53b via the liquid pipes 203a and 203b.
  • the indoor throttle devices 31a and 31b adjust the pressure of the liquid refrigerant flowing from the liquid pipes 203a and 203b, respectively.
  • the opening adjustment of each indoor expansion device 31 is performed based on the degree of superheat on the refrigerant outlet side of each indoor heat exchanger 32.
  • the refrigerant that has become low-pressure liquid refrigerant or gas-liquid two-phase refrigerant by adjusting the opening degree of each indoor side expansion device 31a, 31b flows to the indoor side heat exchangers 32a, 32b, respectively.
  • the low-pressure liquid refrigerant or the gas-liquid two-phase refrigerant evaporates by heat exchange with the indoor air serving as the air-conditioning target space while passing through the indoor heat exchangers 32a and 32b, respectively. And it becomes a low-pressure gas refrigerant and flows into gas pipes 204a and 204b, respectively. At this time, the room air is cooled by heat exchange to cool the room.
  • the gas refrigerant is used here, for example, when the load in each indoor unit 53 is small, or in a transient state such as immediately after the start, the indoor side heat exchangers 32a and 32b are not completely vaporized, and the gas liquid A two-phase refrigerant may flow.
  • the low-pressure gas refrigerant or gas-liquid two-phase refrigerant (low-pressure refrigerant) flowing from the gas pipes 204a and 204b passes through the gas pipes 206a and 206b and the branch-side open / close valves 27a and 27b and flows to the low-pressure pipes 205 and 202. .
  • the refrigerant that has not passed through the liquid pipes 207a and 207b passes through the diversion-side second expansion device 25. Then, in the second inter-refrigerant heat exchanger 24 and the first inter-refrigerant heat exchanger 22, the refrigerant flowing from the gas-liquid separator 21 is supercooled, passes through the diversion-side bypass pipe 208, and flows to the low-pressure pipes 205 and 202. .
  • the enthalpy on the refrigerant inlet side here, the liquid pipe 203 side
  • the amount of heat exchange with air is reduced in the indoor heat exchangers 32a and 32b. Can be bigger.
  • the opening degree of the diversion-side second expansion device 25 is large and the amount of refrigerant flowing through the diversion-side bypass pipe 208 (refrigerant used for supercooling) increases, the amount of refrigerant that is not evaporated increases. Therefore, the gas-liquid two-phase refrigerant flows into the outdoor unit 51 through the low pressure pipes 205 and 202.
  • the refrigerant that has passed through the low pressure pipe 202 and has flowed to the outdoor unit 51 is circulated by returning to the compressor 1 again through the first check valve block 5a, the four-way valve 2, and the accumulator 4. This is the refrigerant circulation path during the cooling only operation.
  • FIG. 3 is a diagram showing the refrigerant flow in the cooling-main operation.
  • the refrigerant flow in the cooling-main operation is indicated by solid line arrows in FIG.
  • the operation performed by each device of the outdoor unit 51 and the flow of the refrigerant are the same as those in the cooling only operation described with reference to FIG. However, here, it is assumed that the refrigerant flowing into the shunt controller 52 through the high-pressure pipe 201 becomes a gas-liquid two-phase refrigerant by controlling the condensation of the refrigerant in the outdoor heat exchanger 3.
  • the diversion controller 52 closes the diversion side on / off valves 26a and 27b and opens the diversion side on / off valves 27a and 26b based on an instruction from the control means 300.
  • the separated liquid refrigerant flows through the liquid pipes 203b and 207b, reaches the indoor unit 53b that performs cooling, passes through the low-pressure pipe 202, and flows into the outdoor unit 51 with reference to FIG. This is basically the same as the flow in the cooling only operation described above.
  • the separated gas refrigerant flows into the indoor unit 53a through the diversion-side opening / closing valve 26a and the gas pipes 206a and 204a.
  • the pressure of the refrigerant flowing in the indoor heat exchanger 32a is adjusted by adjusting the opening of the indoor expansion device 31a.
  • the high-pressure gas refrigerant is condensed by heat exchange while passing through the indoor heat exchanger 32a and passes through the indoor expansion device 31a. At this time, the indoor air is heated by heat exchange to heat the air-conditioning target space (indoor).
  • the refrigerant that has passed through the indoor expansion device 31a becomes an intermediate-pressure liquid refrigerant having a slightly reduced pressure, passes through the liquid pipes 203a and 207a, and flows to the second inter-refrigerant heat exchanger 24. Then, it merges with the liquid refrigerant flowing from the gas-liquid separator 21, a part is used as a refrigerant for cooling in the indoor unit 53 b, and the remaining is the second distilling-side second expansion device 25 as in the case of the entire cooling operation. Etc., and flows from the diversion side bypass pipe 208 to the low pressure pipes 205 and 202.
  • the outdoor heat exchanger 3 of the outdoor unit 51 functions as a condenser.
  • the refrigerant that has passed through the indoor unit 53 that performs heating (here, the indoor unit 53a) is also used as the refrigerant of the indoor unit 53 that performs cooling operation (here, the indoor unit 53b).
  • the control unit 300 increases the opening of the diversion-side second expansion device 25. Thereby, even if it is not necessary to supply more refrigerant than necessary to the indoor unit 53b that is performing the cooling operation, the refrigerant can flow to the low-pressure pipe 202 via the branch-side bypass pipe 208.
  • FIG. 4 is a diagram showing the refrigerant flow in the heating only operation according to the first embodiment.
  • the compressor 1 compresses the sucked refrigerant and discharges high-pressure gas refrigerant.
  • the refrigerant discharged from the compressor 1 flows through the four-way valve 2 and the second check valve block 5b (does not flow toward the first check valve block 5a and the fourth check valve block 5d due to the refrigerant pressure). Then, it flows into the shunt controller 52 through the high-pressure pipe 201.
  • the diversion controller 52 opens the diversion side on / off valves 26a and 26b and closes the diversion side on / off valves 27a and 27b based on an instruction from the control means 300.
  • the gas refrigerant that has flowed into the diversion controller 52 passes through the gas-liquid separator 21, the diversion-side open / close valves 26a and 26b, and the gas pipes 206a, 206b, 204a, and 204b, and then flows into the indoor units 53a and 53b.
  • the pressure of the refrigerant flowing in the indoor heat exchangers 32a and 32b is adjusted by adjusting the opening degree of the indoor expansion devices 31a and 31b.
  • the high-pressure gas refrigerant is condensed by heat exchange while passing through the indoor heat exchangers 32a and 32b, and passes through the indoor expansion devices 31a and 31b. At this time, the indoor air is heated by heat exchange to heat the air-conditioning target space (indoor).
  • the refrigerant that has passed through the indoor expansion devices 31a and 31b becomes, for example, an intermediate-pressure liquid refrigerant or a gas-liquid two-phase refrigerant, passes through the liquid pipes 203a, 203b, 207a, and 207b and enters the second inter-refrigerant heat exchanger 24.
  • the flow further passes through the diversion-side second expansion device 25.
  • the refrigerant that has been reduced in pressure after passing through the diversion-side second expansion device 25 flows from the diversion-side bypass pipe 208 to the low-pressure pipes 205 and 202 and flows into the outdoor unit 51.
  • the refrigerant that has flowed into the outdoor unit 51 passes through the third check valve block 5 c of the outdoor unit 51 and flows into the outdoor heat exchanger 3. While passing through the outdoor heat exchanger 3, it evaporates by heat exchange with air and becomes a gas refrigerant. And it returns to the compressor 1 again through the four-way valve 2 and the accumulator 4, and is discharged. This is the refrigerant circulation path during the all-heating operation.
  • the indoor units 53a and 53b are operating in the above-described cooling and heating operations, some of the indoor units may be stopped, for example. Further, for example, when some of the indoor units 53 are stopped and the load of the air conditioning apparatus as a whole is small, the capacity is increased by stopping the discharge capacity change or any one of the changes in the drive frequency of the compressor 1 or the like. It may be changed.
  • the first channel on / off valve 6 (6a, 6b) and the second channel on / off valve 7 (7a, 7b) control the refrigerant inflow in the outdoor heat exchanger 3 (3a, 3b), for example, The exchange amount can also be changed.
  • FIG. 5 is a diagram illustrating the refrigerant flow in the heating-main operation according to the first embodiment.
  • the indoor unit 53a performs the heating operation
  • the indoor unit 53b performs the cooling operation
  • the flow of the refrigerant during the heating main operation is indicated by solid line arrows in FIG.
  • the operation of each device of the outdoor unit 51 and the flow of the refrigerant are the same as those during the heating described with reference to FIG.
  • the diversion controller 52 opens the diversion side on / off valves 26a and 27b and closes the diversion side on / off valves 27a and 26b based on an instruction from the control means 300.
  • the gas refrigerant that has flowed into the diversion controller 52 passes through the gas-liquid separator 21, the diversion-side opening / closing valve 26a, and the gas pipes 206a and 204a, and then flows into the indoor unit 53a.
  • the pressure of the refrigerant flowing in the indoor heat exchanger 32a is adjusted by adjusting the opening degree of the indoor expansion device 31a.
  • the high-pressure gas refrigerant is condensed by heat exchange while passing through the indoor heat exchangers 32a and 32b, and passes through the indoor expansion devices 31a and 31b. At this time, the indoor air is heated by heat exchange to heat the air-conditioning target space (indoor).
  • the refrigerant that has passed through the indoor expansion device 31a becomes, for example, an intermediate pressure liquid refrigerant, passes through the liquid pipes 203a and 207a, and flows to the second inter-refrigerant heat exchanger 24.
  • a part of the refrigerant that has flowed into the second inter-refrigerant heat exchanger 24 passes through the liquid pipes 207b and 203b and flows into the indoor unit 53b.
  • the indoor throttle device 31b adjusts the pressure by adjusting the opening.
  • the refrigerant that has become low-pressure liquid refrigerant or gas-liquid two-phase refrigerant by adjusting the opening degree of the indoor expansion device 31b passes through the indoor heat exchanger 32b. While passing through the indoor heat exchanger 32b, the refrigerant evaporates due to heat exchange with the indoor air serving as the air-conditioning target space. And it becomes a low-pressure refrigerant and flows into gas pipe 204b, respectively. At this time, the room air is cooled by heat exchange to cool the room.
  • the refrigerant that has flowed out of the gas pipe 204b further passes through the gas pipe 206b and the diversion-side open / close valve 27b, and then flows into the low-pressure pipes 205 and 202.
  • the remainder of the refrigerant that has flowed to the second inter-refrigerant heat exchanger 24 passes through the diversion-side second expansion device 25.
  • the refrigerant that has been depressurized after passing through the second diversion device 25 on the diversion side is supercooled from the intermediate pressure refrigerant that has passed through the liquid pipes 203a and 207a and partly evaporated, while the low pressure pipe 205 from the diversion side bypass pipe 208 is evaporated. , 202 and flows into the outdoor unit 51.
  • the refrigerant that has flowed out of the indoor unit that is heating flows through the indoor unit that performs cooling (here, the indoor unit 20b). Therefore, when the indoor unit 53 that performs the cooling operation stops, the amount of the gas-liquid two-phase refrigerant that flows through the diversion-side bypass pipe 208 increases. Conversely, when the load on the indoor unit 53 that performs cooling increases, the amount of refrigerant flowing through the diversion-side bypass pipe 208 decreases. Therefore, the load of the indoor unit heat exchanger 32 (evaporator) in the indoor unit 53 that performs cooling changes without changing the amount of refrigerant necessary for the indoor unit 53 that performs heating.
  • FIG. 6 is a diagram illustrating a flowchart relating to the determination of the drive frequency of the compressor 1 of the outdoor unit 51 and the heat exchange amount of the outdoor heat exchanger 3 performed by the control unit 300.
  • the control means 300 controls the driving frequency of the compressor 1 and the heat exchange amount of the outdoor heat exchanger 3 so that the refrigerant pressure on the discharge side and the suction side of the compressor 1 becomes a predetermined target value. To do.
  • the control means 300 determines whether or not a predetermined time T0 has passed (STEP 2).
  • the value of the high pressure Pd based on the signal from the first pressure sensor 101 attached to the discharge side of the compressor 1 and the value of the low pressure Ps based on the signal from the second pressure sensor 102 attached to the suction side are read (STEP 3).
  • a difference ⁇ Pdm between the high pressure Pd and the high pressure target value Pdm is calculated.
  • a difference ⁇ Psm between the low pressure Ps and the low pressure target value Psm is calculated (STEP 4).
  • the calculated ⁇ Pdm and ⁇ Psm are substituted into the following equations (1) and (2) to calculate the correction value ⁇ F of the frequency of the compressor 1 and the correction value ⁇ AK of the heat exchange amount of the outdoor heat exchanger 3. (STEP5).
  • a, b, c, and d represent coefficients.
  • ⁇ F a ⁇ Pd + b ⁇ Ps
  • ⁇ AK c ⁇ Pd + d ⁇ Ps (2)
  • the new drive frequency value F and the heat exchange amount AK obtained by correcting the drive frequency value F and the heat exchange amount AK are determined based on the correction values ⁇ F and ⁇ AK (STEP 6). Based on the determined drive frequency F, the refrigerant discharge amount of the compressor 1 is controlled. Further, based on the heat exchange amount AK, the rotational speed of the blower 9 is controlled to control the heat exchange amount.
  • the first flow path on / off valve 6 and the second flow path on / off valve 7 are closed to transfer the entire outdoor heat exchanger 3.
  • the amount of heat exchange may be controlled by increasing or decreasing the heat area.
  • FIG. 7 and 8 are diagrams showing the flow of refrigerant when the defrosting operation is performed during the heating operation in the air-conditioning apparatus according to Embodiment 1.
  • FIG. 7 shows the flow of the refrigerant when defrosting the outdoor heat exchanger 3a during the all-heating operation.
  • FIG. 8 represents the flow of the refrigerant
  • the flow of the refrigerant in the refrigerant circuit for the all heating operation is basically the same as that described with reference to FIG. Although the heating only operation will be described here, the same applies to the outdoor unit 51 when the defrosting operation is performed during the heating main operation.
  • a defrost operation is not performed simultaneously with respect to the outdoor heat exchangers 3a and 3b.
  • the control unit 300 determines that the defrosting operation is performed, the control unit 300 opens the bypass opening / closing valve 8a and closes the second flow path opening / closing valve 7a. And the blower 9 is stopped. For example, when the refrigerant is not flowing into the outdoor heat exchanger 3b, the second flow path opening / closing valve 7b is opened.
  • the heating only operation or the heating main operation is continued in this state, the gas-liquid two-phase refrigerant flowing through the low pressure pipe 202 flows into the outdoor heat exchange via the third check valve block 5c and the second flow path opening / closing valve 7b. It flows into only the vessel 3b and evaporates and vaporizes.
  • the bypass opening / closing valve 8a is closed and the second flow path opening / closing valve 7a is opened.
  • the bypass on-off valve 8b is opened after a predetermined time, and the second flow path on-off valve 7b is closed. In this state, it flows only into the outdoor heat exchanger 3a via the second flow path opening / closing valve 7a, and evaporates and vaporizes. A part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3b via the bypass on-off valve 8b, and melts frost.
  • the gas refrigerant whose temperature has become low due to heat exchange with frost passes through the first flow path opening / closing valve 6b, merges with the gas refrigerant flowing out of the outdoor heat exchanger 3a, and is compressed through the four-way valve 2 and the accumulator 4. Return to machine 1.
  • FIG. 9 is a diagram showing a flowchart relating to the defrosting operation performed by the control means 300 in the first embodiment.
  • the value of the low pressure Ps based on the signal from the second pressure sensor 102 attached to the suction side of the compressor 1 is lower than the low pressure target value Psm2.
  • the bypass opening / closing valve 8a is opened, the second flow path opening / closing valve 7a is closed, and defrosting of the outdoor heat exchanger 3a is started as described above ( (STEP 13).
  • the bypass opening / closing valve 8a is closed and the second flow path opening / closing valve 7a is opened (STEP 15). Further, the bypass on-off valve 8b is opened after a predetermined time, and the second flow path on-off valve 7b is closed (STEP 16). Then, it is determined whether the temperature Trb based on the signal from the temperature sensor 103b is equal to or higher than a predetermined value Tr0 (STEP 17). And it defrosts the outdoor heat exchanger 3b until it judges that temperature Trb is more than predetermined value Tr0.
  • the bypass opening / closing valve 8b is closed and the second flow path opening / closing valve 7b is opened (STEP 18). And it returns to STEP12 and continues a process.
  • the driving frequency of the compressor 1 and the heat exchange amount of the outdoor heat exchanger 3 are set as described with reference to FIG.
  • the pressure of the refrigerant on the discharge side and the suction side of the compressor 1 is set to a predetermined target value.
  • the process related to the determination of the drive frequency of the compressor 1 of the outdoor unit 51 and the heat exchange amount of the outdoor heat exchanger 3 and the process related to the defrosting operation described with reference to FIG. 9 are independent. To do. However, immediately after the drive frequency of the compressor 1 and the heat exchange amount of the outdoor heat exchanger 3 are changed, the low pressure Ps greatly changes. Therefore, after the predetermined time T0 in STEP2 in FIG.
  • the determination in STEP12 in FIG. 9 is made based on the value of the low pressure Ps read based on the signal from the second pressure sensor 102. Do. Thereby, the judgment regarding the defrosting operation is prevented from being mistaken by making the judgment in the stable pressure state.
  • the hot gas from the compressor 1 is diverted to the defrosting bypass pipe 10, so that the pressure on the discharge side (high pressure side) is opened by opening the bypass opening / closing valve 8. Is greatly reduced. Moreover, it raises greatly by closing the bypass on-off valve 8 at the end of defrosting of each outdoor heat exchanger 3. It is desirable to be able to cope with such pressure change at the start of defrosting operation and completion of defrosting of each outdoor heat exchanger 3.
  • control means 300 when the control means 300 performs the process related to the determination of the drive frequency of the compressor 1 and the heat exchange amount of the outdoor heat exchanger 3 during the defrosting operation, the control means 300 in the above formulas (1) and (2) The coefficients a, b, c and d are changed. Thereby, the high pressure in the refrigerant circuit can be maintained more stably, and the compressor 1 can exhibit (can supply) a stable heating capacity even when the defrosting operation is performed. Moreover, you may enable it to change a coefficient also in each driving
  • the number of outdoor heat exchangers 3 functioning as an evaporator is reduced, so the suction side pressure (low pressure side) is drawn. Due to this pull-in, for example, in the heating main operation, the evaporation temperature of the indoor heat exchanger 31 in the indoor unit 53 related to cooling may become a predetermined temperature (for example, 0 ° C.) or less. For this reason, moisture in the air of the air-conditioning target space may freeze (frost) in the indoor heat exchanger 31. This freezing reduces the air volume of the air sent into the air-conditioning target space. Further, for example, when a defrosting function is provided and thawing (defrosting), melted water may overflow from the drain pan and cause water leakage.
  • a defrosting function is provided and thawing (defrosting)
  • melted water may overflow from the drain pan and cause water leakage.
  • the indoor side control means 33 of the indoor unit 53 that is performing the cooling determines whether the evaporation temperature of the indoor side heat exchanger 32 is equal to or lower than a predetermined temperature based on, for example, the temperature that is detected by the indoor side temperature sensor 121. Judge whether. When it is determined that the state of the predetermined temperature or lower continues for a predetermined time or more, the operation of the indoor unit 53 is stopped for a while, and the refrigerant in the air is frozen without flowing into the indoor heat exchanger 31. To prevent. Alternatively, only the blower (not shown) may be rotated to send air to the indoor heat exchanger 31 so that frost is melted by the heat of the air. And when predetermined time passes, it cools again.
  • the indoor temperature sensor 121 is attached.
  • a pressure sensor may be attached to the low pressure side, and the saturation temperature based on the pressure may be estimated and determined.
  • the indoor side control means 33 of each indoor unit 53 makes the determination, but the control means 300 may make the determination in a lump.
  • the outdoor unit 51 is connected to the plurality of outdoor heat exchangers 3 in parallel, and the control unit 300 opens and closes the second flow path opening / closing valve 7 and the bypass. Since the opening and closing of the valve 8 is controlled and the hot gas is sequentially introduced into the outdoor heat exchangers 3 through the defrosting bypass pipe 10, the defrosting is performed. Even if there is, the defrosting operation can be carried out while continuing the all heating operation and the heating main operation. For this reason, it is possible to maintain a comfortable room temperature environment without stopping the air conditioning on the indoor unit 53 side while performing the defrosting operation. And since the outdoor unit 51 is one, cost can be held down. Also, the installation space can be reduced.
  • the outdoor heat used for the heating only operation and the heating main operation by the defrosting operation even when the number of the exchangers 3 is reduced, it can be dealt with.
  • the evaporation temperature of the indoor side heat exchanger 32 of the indoor unit 53 performing the cooling may be lowered due to the low pressure side of the refrigerant circuit being lowered during the heating main operation.
  • the indoor control means 33 determines that the evaporation temperature is equal to or lower than a predetermined temperature, the operation is stopped, so that freezing can be prevented.
  • FIG. FIG. 10 is a diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the same reference numerals as those in FIG. 1 and the like perform the same operations and the like as described in the first embodiment.
  • the outdoor expansion device 11 (11a, 11b) adjusts the flow rate of the refrigerant flowing into and out of the outdoor heat exchangers 3a, 3b, and instead of the second flow path opening / closing valves 7a, 7b.
  • Install about the other end branched in the middle in the defrosting bypass piping 10, one other end is connected with piping which connects the outdoor expansion device 11a and the outdoor heat exchanger 3a. The other end of the other end is connected to a pipe that connects the outdoor expansion device 11b and the outdoor heat exchanger 3b.
  • the refrigerant flow in the cooling only operation, the cooling main operation, the heating only operation, and the heating main operation is the same as in the first embodiment.
  • FIGS. 11 and 12 are diagrams illustrating the refrigerant flow when the defrosting operation is performed during the heating only operation in the air-conditioning apparatus according to Embodiment 2.
  • FIGS. FIG. 11 shows the flow of the refrigerant when defrosting the outdoor heat exchanger 3a during the all-heating operation.
  • FIG. 12 represents the flow of the refrigerant
  • the flow of the refrigerant in the refrigerant circuit for the all heating operation is basically the same as that described with reference to FIG.
  • the bypass opening / closing valve 8a is opened and the outdoor expansion device 11a is set to a predetermined defrosting opening.
  • the outdoor expansion device 11b is set to a predetermined opening degree (hereinafter referred to as heating opening degree) based on the heat exchange amount that must be exchanged by the outdoor heat exchanger 3b. ).
  • a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the defrost bypass pipe 10 and flows into the outdoor heat exchanger 3a by opening the bypass on-off valve 8a.
  • the heat exchange between the high-temperature gas refrigerant and the frost melts the frost attached to the outdoor heat exchanger 3a, and the refrigerant liquefies by condensation.
  • the liquid refrigerant passes through the outdoor expansion device 11a. Then, it merges with the gas-liquid two-phase refrigerant that has passed through the low pressure pipe 202 and the third check valve block 5c, flows into only the outdoor heat exchanger 3a via the outdoor expansion device 11b, and evaporates / vaporizes. And it returns to the compressor 1 through the open valve 6b and the accumulator 4.
  • the control means 300 closes the bypass on-off valve 8a. Moreover, the outdoor expansion device 11a is set to the opening degree for heating based on the heat exchange amount which must be heat-exchanged by the outdoor heat exchanger 3a. Then, the bypass on-off valve 8b is opened, and the outdoor expansion device 11b is set to a predetermined defrosting opening.
  • a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the defrosting bypass pipe 10 and flows into the outdoor heat exchanger 3b by opening the bypass on-off valve 8b.
  • the heat exchange between the high-temperature gas refrigerant and frost melts the frost on the outdoor heat exchanger 3b, and the refrigerant liquefies by condensation.
  • the liquid refrigerant passes through the outdoor expansion device 11b. Then, it merges with the gas-liquid two-phase refrigerant that has passed through the low-pressure pipe 202 and the third check valve block 5c, flows into only the outdoor heat exchanger 3a through the outdoor expansion device 11a, and evaporates and vaporizes. And it returns to the compressor 1 through the open valve 6a and the accumulator 4.
  • FIGS. 13 and 14 are diagrams showing the flow of refrigerant when the defrosting operation is performed during the heating main operation in the air-conditioning apparatus according to Embodiment 2.
  • FIG. 13 shows the flow of the refrigerant when the outdoor heat exchanger 3a is defrosted during the heating main operation.
  • FIG. 14 shows the flow of the refrigerant when the outdoor heat exchanger 3b is defrosted during the heating main operation.
  • the flow of the refrigerant in the refrigerant circuit for the heating-main operation is basically the same as that described with reference to FIG.
  • the bypass opening / closing valve 8a is opened and the outdoor expansion device 11a is set to a predetermined defrosting opening degree. Let it be set.
  • the outdoor expansion device 11b is set to the opening degree for heating based on the heat exchange amount that must be heat exchanged by the outdoor heat exchanger 3b.
  • the control means 300 closes the bypass on-off valve 8a. Moreover, the outdoor expansion device 11a is set to the opening degree for heating based on the heat exchange amount which must be heat-exchanged by the outdoor heat exchanger 3a. Then, the bypass on-off valve 8b is opened, and the outdoor expansion device 11b is set to a predetermined defrosting opening.
  • a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the defrosting bypass pipe 10 and flows into the outdoor heat exchanger 3b by opening the bypass on-off valve 8b. To do.
  • the heat exchange between the high-temperature gas refrigerant and frost melts the frost on the outdoor heat exchanger 3b, and the refrigerant liquefies by condensation.
  • the liquid refrigerant passes through the outdoor expansion device 11b. Then, it merges with the gas-liquid two-phase refrigerant that has passed through the low-pressure pipe 202 and the third check valve block 5c, flows into only the outdoor heat exchanger 3a through the outdoor expansion device 11a, and evaporates and vaporizes. And it returns to the compressor 1 through the open valve 6a and the accumulator 4.
  • FIG. 15 is a diagram illustrating a flowchart relating to a defrosting operation performed by the control unit 300 according to the second embodiment.
  • the heating operation or the heating main operation by the air conditioner is started (STEP 21)
  • the value of the low pressure Ps based on the signal from the second pressure sensor 102 attached to the suction side of the compressor 1 is lower than the low pressure target value Psm2.
  • the bypass on-off valve 8a is opened, the outdoor expansion device 11a is set to the defrosting opening degree, and the defrosting of the outdoor heat exchanger 3a is performed as described above. Is started (STEP 23).
  • the bypass on-off valve 8a When it is determined that the temperature Tra is equal to or higher than the predetermined value Tr0, the bypass on-off valve 8a is closed and the outdoor expansion device 11a is set to the opening degree for heating (STEP 25). Moreover, the bypass on-off valve 8b is opened after a predetermined time, and the outdoor expansion device 11b is set to the defrosting opening (STEP 26). And it is judged whether temperature Trb based on the signal from temperature sensor 103b is more than predetermined value Tr0 (STEP27). And it defrosts the outdoor heat exchanger 3b until it judges that temperature Trb is more than predetermined value Tr0.
  • the bypass on-off valve 8b is closed and the outdoor expansion device 11b is set to the opening degree for heating (STEP 28). And it returns to STEP22 and continues a process.
  • a plurality of outdoor heat exchangers 3 are connected in parallel to the outdoor unit 51, and the control means 300 opens and bypasses the outdoor expansion device 11. Since the opening and closing of the on-off valve 8 is controlled and the hot gas is sequentially introduced into each outdoor heat exchanger 3 via the defrost bypass pipe 10, defrosting is performed, so that one outdoor unit 51 is provided. Even so, the defrosting operation can be carried out while continuing the all heating operation and the heating main operation. For this reason, it is possible to maintain a comfortable room temperature environment without stopping the air conditioning on the indoor unit 53 side while performing the defrosting operation. And since the outdoor unit 51 is one, cost can be held down. Also, the installation space can be reduced.
  • the high-temperature and high-pressure gas refrigerant supplied to the heat exchanger to be defrosted can be used as heat for melting the frost, even in the heating only operation or the heating main operation,
  • the defrosting operation can be completed efficiently and in a short time. For this reason, energy saving can be achieved and comfort can be improved.
  • FIG. 16 is a diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 3 of the present invention.
  • the same reference numerals as those in FIGS. 1, 8, etc. perform the same operations as described in the first and second embodiments.
  • the three-way valve 12 (12 a, 12 b, 12 c) switches the valve based on an instruction from the control means 300 so that the refrigerant path is switched.
  • a flow path between the outdoor heat exchangers 3a and 3b and the discharge side of the compressor 1 hereinafter referred to as a high pressure side flow).
  • a flow path between the outdoor heat exchangers 3a and 3b and the accumulator 4 (hereinafter referred to as a low-pressure side flow path).
  • a pipe provided with a first check valve block 5a and a second check valve block 5b A flow path between a portion connected to the pipe provided with the discharge side of the compressor 1 or a pipe provided with the first check valve block 5a and a pipe provided with the second check valve block 5b are connected. The flow path is switched between the portion to be operated and the suction side of the compressor 1.
  • FIG. 17 is a diagram illustrating the refrigerant flow in the heating-main operation according to the third embodiment.
  • the air conditioner of the present embodiment will be described focusing on the refrigerant flow in the outdoor unit 51 during the heating only operation and the heating main operation.
  • the compressor 1 compresses the sucked refrigerant and discharges the high-pressure gas refrigerant.
  • the refrigerant discharged from the compressor 1 flows through the three-way valve 12c and the second check valve block 5b, and further flows into the branch controller 52 through the high-pressure pipe 201.
  • the diversion controller 52 opens the diversion-side on / off valves 26a and 27b and closes the diversion-side on / off valves 27a and 26b based on an instruction from the control means 300.
  • the gas refrigerant that has flowed into the diversion controller 52 passes through the gas-liquid separator 21, the diversion-side opening / closing valve 26a, and the gas pipes 206a and 204a, and then flows into the indoor unit 53a.
  • the pressure of the refrigerant flowing in the indoor heat exchanger 32a is adjusted by adjusting the opening of the indoor expansion device 31a.
  • the high-pressure gas refrigerant is condensed by heat exchange while passing through the indoor heat exchangers 32a, 32b, and 32c, and passes through the indoor expansion devices 31a and 31b. At this time, the indoor air is heated by heat exchange to heat the air-conditioning target space (indoor).
  • the refrigerant that has passed through the indoor expansion device 31a becomes, for example, an intermediate pressure liquid refrigerant, passes through the liquid pipes 203a and 207a, and flows to the second inter-refrigerant heat exchanger 24.
  • a part of the refrigerant that has flowed into the second inter-refrigerant heat exchanger 24 passes through the liquid pipes 207b and 203b and flows into the indoor unit 53b.
  • the indoor throttle device 31b adjusts the pressure by adjusting the opening.
  • the refrigerant that has become low-pressure liquid refrigerant or gas-liquid two-phase refrigerant by adjusting the opening degree of the indoor expansion device 31b passes through the indoor heat exchanger 32b. While passing through the indoor heat exchanger 32b, the refrigerant evaporates due to heat exchange with the indoor air serving as the air-conditioning target space. And it becomes a low-pressure refrigerant and flows into gas pipe 204b, respectively. At this time, the room air is cooled by heat exchange to cool the room.
  • the refrigerant that has flowed out of the gas pipe 204b further passes through the gas pipe 206b and the diversion-side open / close valve 27b, and then flows into the low-pressure pipes 205 and 202.
  • the remainder of the refrigerant that has flowed to the second inter-refrigerant heat exchanger 24 passes through the diversion-side second expansion device 25.
  • the refrigerant that has been depressurized after passing through the second diversion device 25 on the diversion side is supercooled from the intermediate pressure refrigerant that has passed through the liquid pipes 203a and 207a and partly evaporated, while the low pressure pipe 205 from the diversion side bypass pipe 208 is evaporated. , 202 and flows into the outdoor unit 51.
  • the refrigerant flowing into the outdoor unit 51 passes through the third check valve block 5c of the outdoor unit 51 and the outdoor expansion device 9, and flows into the outdoor heat exchanger 3. While passing through the outdoor heat exchanger 3, it evaporates by heat exchange with air and becomes a gas refrigerant. And it returns to the compressor 1 again through the three-way valves 12a and 12b and the accumulator 4, and is discharged.
  • FIG. 18 and 19 are diagrams showing the flow of the refrigerant when the defrosting operation is performed for the air conditioning apparatus of the third embodiment.
  • FIG. 18 shows the flow of the refrigerant when the defrosting of the outdoor heat exchanger 3a is performed during the heating main operation.
  • FIG. 19 shows the flow of the refrigerant when the outdoor heat exchanger 3b is defrosted during the heating main operation.
  • heating main operation is demonstrated, it is the same also about all heating operation.
  • the flow of refrigerant in the refrigerant circuit for heating-main operation is basically the same as that described with reference to FIG.
  • the control unit 300 switches the three-way valve 12a to the high pressure side flow path.
  • the outdoor expansion device 11a is set to a predetermined opening for defrosting.
  • the outdoor expansion device 11b is set to a predetermined opening degree (hereinafter referred to as heating opening degree) based on the heat exchange amount that must be exchanged by the outdoor heat exchanger 3b. ).
  • a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3a through the defrost bypass pipe 10 and the three-way valve 12a.
  • the heat exchange between the high-temperature gas refrigerant and the frost melts the frost attached to the outdoor heat exchanger 3a, and the refrigerant liquefies by condensation.
  • the liquid refrigerant passes through the outdoor expansion device 11a. Then, it merges with the gas-liquid two-phase refrigerant that has passed through the low pressure pipe 202 and the third check valve block 5c, flows into the outdoor heat exchanger 3b only via the outdoor expansion device 11b, and evaporates and vaporizes. And it returns to the compressor 1 through the three-way valve 12b and the accumulator 4.
  • the control means 300 switches the three-way valve 12b to the high-pressure side flow path. Further, the outdoor expansion device 11b is set to a predetermined opening for defrosting. Then, the three-way valve 12b is switched to the low pressure side flow path. Moreover, the outdoor expansion device 11a is set to the opening degree for heating based on the heat exchange amount which must be heat-exchanged by the outdoor heat exchanger 3a.
  • a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3b through the defrosting bypass pipe 10 and the three-way valve 12b.
  • the heat exchange between the high-temperature gas refrigerant and frost melts the frost on the outdoor heat exchanger 3b, and the refrigerant liquefies by condensation.
  • the liquid refrigerant passes through the outdoor expansion device 11b. Then, it merges with the gas-liquid two-phase refrigerant that has passed through the low-pressure pipe 202 and the third check valve block 5c, flows into only the outdoor heat exchanger 3a through the outdoor expansion device 11a, and evaporates and vaporizes. And it returns to the compressor 1 through the three-way valve 12a and the accumulator 4.
  • FIG. 20 is a diagram illustrating a flowchart relating to the defrosting operation performed by the control unit 300 according to the third embodiment.
  • the heating operation or the heating main operation by the air conditioner is started (STEP 31)
  • the value of the low pressure Ps based on the signal from the second pressure sensor 102 attached to the suction side of the compressor 1 is lower than the low pressure target value Psm2.
  • the three-way valve 12a is switched to the high pressure side flow path, the outdoor expansion device 11a is set to the opening for defrosting, and the outdoor heat exchanger as described above.
  • the defrosting of 3a is started (STEP 33).
  • the three-way valve 10a When it is determined that the temperature Tra is equal to or higher than the predetermined value Tr0, the three-way valve 10a is switched to the low-pressure side flow path, and the outdoor expansion device 11a is set to the opening degree for heating (STEP 35). Further, after a predetermined time, the three-way valve 10b is switched to the high-pressure side flow path, and the outdoor expansion device 11b is set to the opening degree for defrosting (STEP 36). And it is judged whether temperature Trb based on the signal from temperature sensor 103b is more than predetermined value Tr0 (STEP37). And it defrosts the outdoor heat exchanger 3b until it judges that temperature Trb is more than predetermined value Tr0.
  • the three-way valve 10b When it is determined that the temperature Trb is equal to or higher than the predetermined value Tr0, the three-way valve 10b is switched to the low-pressure side flow path, and the outdoor expansion device 11b is set to the opening degree for heating (STEP 38). And it returns to STEP32 and continues a process.
  • a plurality of outdoor heat exchangers 3 are connected in parallel to the outdoor unit 51, and the control unit 300 switches the three-way valves 12a and 12b and opens and closes the bypass. Since the opening and closing of the valve 8 is controlled and the hot gas is sequentially introduced into the outdoor heat exchangers 3 through the defrosting bypass pipe 10, the defrosting is performed. Even if there is, the defrosting operation can be carried out while continuing the all heating operation and the heating main operation. For this reason, it is possible to maintain a comfortable room temperature environment without stopping the air conditioning on the indoor unit 53 side while performing the defrosting operation. And since the outdoor unit 51 is one, cost can be held down. Also, the installation space can be reduced.
  • the amount of heat related to the condensation of the high-temperature and high-pressure gas refrigerant supplied to the outdoor heat exchanger 3 to be defrosted can be used to melt the frost and can be efficiently shortened.
  • the defrosting operation can be completed in time. For this reason, energy saving can be achieved and comfort can be improved.
  • the number of valves can be reduced using the three-way valves 12a and 12b, the circuit can be simplified.
  • the pressure loss in the valve can be reduced, the efficiency is improved.
  • Embodiment 4 FIG.
  • the control means 300 controls the second flow path opening / closing valve 7 and the bypass opening / closing valve 8 in conjunction with each other, and the defrosting bypass pipe 10 is used for the refrigerant flowing into the outdoor heat exchanger 3.
  • the present invention is not limited to this, although switching between the refrigerant from the refrigerant and the refrigerant from the indoor unit 53 (diversion controller) side is performed.
  • the same three-way valve as in the third embodiment may be used to switch the refrigerant.
  • Embodiment 5 FIG.
  • the air conditioner of each of the above-described embodiments is configured by arranging the two outdoor heat exchangers 3 of the outdoor heat exchanger 3a and the outdoor heat exchanger 3b in parallel. .
  • the performance related to heat exchange of each outdoor heat exchanger 3 may be the same or different.
  • Each one is installed, but the number is not limited.
  • the flow of refrigerant into and out of each outdoor heat exchanger 3 may be controlled by switching the open / close state of the valve.
  • Embodiment 6 FIG.
  • the air conditioner capable of simultaneous cooling and heating operation has been described, but the present invention is not limited to this.
  • the present invention can be applied to an air conditioner having a refrigerant circuit configuration that does not perform a cooling main operation or a heating main operation. It can also be applied to a heating device or the like that warms the target space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

室外機を1台で構成しても暖房等を継続しながら効率よく除霜を行うことができる空気調和装置を得る。 冷媒を加圧して吐出する圧縮機1、外気と冷媒との熱交換を行う複数の室外側熱交換器3及び運転形態に基づいて流路を切り換える四方弁2を有する室外機51と、空調対象空間の空気と冷媒との熱交換を行う室内側熱交換器32及び室内側絞り装置31を有する複数の室内機53とを配管接続して冷媒回路を構成する空気調和装置であって、圧縮機1が吐出した冷媒を分流させ、並列に配管接続した各室外側熱交換器3にそれぞれ流入させるためのバイパス配管10と、各室外側熱交換器3へのバイパス配管10からの冷媒の通過又は遮断を行う複数の室外側第3開閉弁8と、各室外側熱交換器3への室内機53からの冷媒の通過又は遮断を行う複数の室外側第2開閉弁7とを室外機51に備える。

Description

空気調和装置
 本発明は、冷凍サイクル(ヒートポンプサイクル)を利用して冷暖房運転を行い、空気調和を行う電気式ヒートポンプの空気調和装置に関するものである。特に室内機において暖房等を継続しながら効率よく、室外機の除霜(デフロスト)を行うことができる空気調和装置に関するものである。
 空気調和装置では、圧縮機と室外熱交換器(熱源側熱交換器)とを有する1又は複数の室外機(熱源側ユニット)と、膨張弁となる絞り装置と室内熱交換器(負荷側熱交換器)とを有する1又は複数の室内機(負荷側ユニット)とを配管接続する。そして、冷媒回路を構成して、冷媒を循環させ、空調対象空間の冷暖房を行っている。
 例えば室外機が暖房運転を行っているとき、蒸発器となる室外熱交換器内の配管を低温の冷媒が通過し、配管を介して冷媒と空気との熱交換を行うため、空気中の水分がフィンもしくは伝熱管で凝結して霜となる。霜が堆積する(着霜する)と、空気との熱交換がうまく行われなくなるため、室外機における暖房能力(室内機側に供給する時間当たりの熱量。以下、冷房能力も含めてこれらを能力という)が低下し、室内機における空調負荷(室内機が必要とする熱量。以下、負荷という)に対して能力を発揮できなくなるおそれがある。そこで、例えば暖房中において熱源側熱交換器に付着した霜を除くため、各室外機に対して除霜運転(デフロスト)が行われる(例えば特許文献1参照)。このとき、いずれか1台の室外機において除霜運転を行い、他の室外機は暖房運転を継続していた。
 例えば、除霜運転を行う室外機は、室外熱交換器に圧縮機からのホットガス(高温の気体の冷媒)が直接流入するように四方弁を切り替える。そして、ホットガスと霜との熱交換により、霜は融け、ホットガスは一部が液体となって気液二相冷媒となる。この気液二相冷媒と暖房運転を継続する室外機から出てくる高温のガス冷媒とが混合し、高温の二相冷媒が室内機側に流れ、冷暖房を実施していた。
特開2007-271094号公報
 上記のように、従来の空気調和装置において室内機における暖房等を継続しながら除霜運転を実施する場合、室外機を2台以上備えていなければならなかった。このため、空気調和装置全体に係るコストが高くなる。また、室外機を2台以上設けるための大きな設置スペースを必要としていた。
 一方で、室外機が1台の場合、室内機での暖房等を継続しながら除霜運転をすることができなかった。したがって、除霜運転中は室内機における暖房が停止する。このため、例えば除霜運転中に室温が設定温度から外れることがあった。また、除霜運転から暖房等の運転を再開しても、室内機からはすぐに温度の高い空気を吹き出すことができなかった。
 そこで、本発明は、室外機を1台で構成しても暖房運転等を継続しながら、さらに効率よく除霜運転を行うことができる空気調和装置を得ることを目的とする。
 本発明に係る空気調和装置は、冷媒を加圧して吐出する圧縮機、外気と冷媒との熱交換を行う複数の室外側熱交換器及び運転形態に基づいて流路を切り替える流路切替手段を有する室外機と、空調対象空間の空気と冷媒との熱交換を行う室内側熱交換器及び室内側流量制御装置を有する複数の室内機とを配管接続して冷媒回路を構成する空気調和装置であって、圧縮機が吐出した冷媒を分流させ、並列に配管接続した各室外側熱交換器にそれぞれ流入させるためのバイパス配管と、各室外側熱交換器へのバイパス配管からの冷媒の通過又は遮断を行う複数の第1の開閉手段と、各室外側熱交換器への室内機からの冷媒の通過又は遮断を行う複数の第2の開閉手段とを室外機に備える。
 本発明によれば、室外機にバイパス配管、第1の開閉手段及び第2の開閉手段を備えるようにしたので、並列に配管接続した複数の室外側熱交換器に対して、各室外側熱交換器へのバイパス配管からの冷媒の通過又は前記室内機からの冷媒の通過の切り替えを第1の開閉手段及び第2の開閉手段により行うことができる。このため、バイパス配管を介して各室外側熱交換器に順次圧縮機からの高温の冷媒を流入させて除霜を行わせることができ、室外機が1台であっても全暖房運転、暖房主体運転を継続しながら除霜運転を実施できる。このため、除霜運転を実施しながらも、室内機における冷暖房を停止することなく、快適な室温環境を保つことができる。そして、室外機を1台とすることで、コストを抑え、設置スペースを小さくすることができる。
実施の形態1に係る空気調和装置の構成及び冷媒回路を表す図である。 実施の形態1に係る全冷房運転の冷媒の流れを表す図である。 実施の形態1に係る冷房主体運転の冷媒の流れを表す図である。 実施の形態1に係る全暖房運転の冷媒の流れを表す図である。 実施の形態1に係る暖房主体運転の冷媒の流れを表す図である。 運転中の圧縮機1、室外熱交換器3熱交換量のフローチャートを表す図である。 実施の形態1に係る全暖房運転の除霜時の冷媒の流れを表す図である。 実施の形態1に係る全暖房運転の除霜時の他の冷媒の流れを表す図である。 実施の形態1における除霜運転に係るフローチャートを表す図である。 実施の形態2に係る空気調和装置の構成及び冷媒回路を表す図である。 実施の形態2に係る全暖房運転の除霜時の冷媒の流れを表す図である。 実施の形態2に係る全暖房運転の除霜時の他の冷媒の流れを表す図である。 実施の形態2に係る暖房主体運転の除霜時の冷媒の流れを表す図である。 実施の形態2に係る暖房主体運転の除霜時の他の冷媒の流れを表す図である。 実施の形態2における除霜運転に係るフローチャートを表す図である。 実施の形態3に係る空気調和装置の構成及び冷媒回路を表す図である。 実施の形態3に係る全暖房運転の冷媒の流れを表す図である。 実施の形態3に係る暖房主体運転の除霜時の冷媒の流れを表す図である。 実施の形態3に係る暖房主体運転の除霜時の他の冷媒の流れを表す図である。 実施の形態3における除霜運転に係るフローチャートを表す図である。
符号の説明
 1 圧縮機、2 四方弁、3,3a,3b 室外側熱交換器、4 アキュムレータ、5a 第1逆止弁ブロック、5b 第2逆止弁ブロック、5c 第3逆止弁ブロック、5d 第4逆止弁ブロック、6,6a,6b 第1流路開閉弁、7,7a,7b 第2流路開閉弁、8,8a,8b バイパス開閉弁、9 送風機、10 除霜用バイパス配管、11,11a,11b 室外側絞り装置、12a,12b,12c 三方弁、13 室外側熱交換部、21 気液分離器、22 第1冷媒間熱交換器、23 分流側第1絞り装置、24 第2冷媒間熱交換器、25 分流側第2絞り装置、26,26a,26b,27,27a,27b 分流側開閉弁、31,31a,31b 室内側絞り装置、32,32a,32b 室内側熱交換器、33,33a,33b 室内側制御手段、51 室外機、52 分流コントローラ、53,53a,53b 室内機、101 第1圧力センサ、102 第2圧力センサ、103,103a,103b 室外側温度センサ、104 外気温度センサ、111 分流側第1温度センサ、112 分流側第2温度センサ、121,121a,121b 室内側温度センサ、201 高圧管、202,205 低圧管、203,203a,203b,207,207a,207b 液管、204,204a,204b,206,206a,206b ガス管、208 分流側バイパス配管、300 制御手段、301 分流コントローラ用制御手段、310 記憶手段。
発明の実施の形態
実施の形態1.
 図1は本発明の実施の形態1に係る空気調和装置の構成を表す図である。まず、図1に基づいて、空気調和装置を構成する手段(装置)等に関して説明する。この空気調和装置は、冷媒循環による冷凍サイクル(ヒートポンプサイクル)を利用して冷暖房を行うものである。特に本実施の形態の空気調和装置は、冷房を行う室内機と暖房を行う室内機とを混在させることができる冷暖房同時運転(冷暖房混在運転)が可能な装置であるものとする。
 図1のように本実施の形態の空気調和装置は、主として、室外機(熱源機側ユニット、熱源機)51、複数の室内機(負荷側ユニット)53a及び53b並びに分流コントローラ52で構成する。本実施の形態では、冷媒の流れを制御するために室外機51と室内機53a、53bとの間に分流コントローラ52を設け、これらの機器の間を各種冷媒配管により配管接続する。また、複数台の室内機53a及び53bについては、互いに並列となるように接続する。なお、例えば室内機53a、53b等において、特に区別したり、特定したりする必要がない場合には、以下、a、bの添字を省略して記載する場合もある。
 配管接続については、室外機51と分流コントローラ52との間は、高圧管201と低圧管202、205とにより接続する。ここで、低圧管205は分流コントローラ52内に設けた配管である。高圧管201には、室外機51側から分流コントローラ52側に高圧の冷媒が流れる。また、低圧管202、205には、高圧管201を流れる冷媒に比べて低圧の冷媒が分流コントローラ52側から室外機51側に流れる。ここで、圧力の高低については、基準となる圧力(数値)との関係により定めているものではない。例えば圧縮機1の加圧、各絞り装置(流量制御装置)の開閉状態(開度)の制御等により、冷媒回路内において、相対的な高低(中間を含む)に基づいて表すものであるとする(以下、同じ。基本的には、圧縮機1から吐出した冷媒の圧力が最も高く、流量制御装置等により圧力が低下していくため、圧縮機1に吸入される冷媒の圧力が最も低くなる)。
 一方、分流コントローラ52と室内機53aとは、液管203a、207aとガス管204a、206aとにより接続する。ここで、ガス管206aと液管207aとは、分流コントローラ52内に設けた配管である。同様に、分流コントローラ52と室内機53bとは液管203b、207b及びガス管204b、206bにより接続する。低圧管202、高圧管201、液管203(203a、203b)、液管207(207a、207b)、ガス管204(204a、204b)及びガス管206(206a、206b)による配管接続を行っている。そして、室外機51、分流コントローラ52並びに室内機53(53a、53b)の間を冷媒が循環し、冷媒回路を構成する。
 本実施の形態の室外機51が有する圧縮機1は、吸入した冷媒に圧力を加えて吐出する(送り出す)。本実施の形態の圧縮機1は、インバータ回路(図示せず)により、制御手段300の指示に基づいて駆動周波数を任意に変化することができる。このため、圧縮機1は吐出容量(単位時間あたりの冷媒の吐出量)と、その吐出容量に伴って冷暖房能力を変化させることができるインバータ圧縮機となる。
 四方弁2は、制御手段300の指示に基づいて、冷暖房運転の形態(モード)に対応した弁の切り替えを行い、冷媒の経路が切り換わるようにする。本実施の形態では、全冷房運転(ここでは、空調を行っているすべての室内機が冷房をしているときの運転をいう)、冷房主体運転(冷暖房同時運転のうち、冷房負荷が大きいときの運転をいう)のモード時と、全暖房運転(ここでは、空調を行っているすべての室内機が暖房をしているときの運転をいう)、暖房主体運転(冷暖房同時運転のうち、暖房負荷が大きいときの運転をいう)のモード時とによって経路が切り換わるようにする。
 室外側熱交換器3(3a、3b)は、冷媒を通過させる伝熱管及びその伝熱管を流れる冷媒と外気との間の伝熱面積を大きくするためのフィン(図示せず)を有し、冷媒と空気(外気)との熱交換を行う。例えば、全暖房運転時、暖房主体運転時においては蒸発器として機能し、例えば冷媒を蒸発させて気化させる。一方、全冷房運転時、冷房主体運転時においては凝縮器として機能し、例えば冷媒を凝縮して液化させる。場合によっては、例えば冷房主体運転時のように、完全にガス化、液化するのではなく、液体とガス(気体)との二相混合(気液二相冷媒)の状態まで凝縮する等の調整が行われることもある。ここで、本実施の形態では、室外側熱交換器3aと室外側熱交換器3bの熱交換に係る性能は同じであるものとする。
 また、第1流路開閉弁6(6a、6b)、第2流路開閉弁7(7a、7b)及びバイパス開閉弁8(8a、8b)は、制御手段300の指示に基づいて開閉する。例えば除霜運転を行う際、第2流路開閉弁7a、7bのいずれか一方を閉止し、バイパス開閉弁8a、8bのいずれか一方を開放する。これにより、例えば除霜運転に際し、室外側熱交換器3a、3bのいずれか一方に対して、全暖房運転、暖房主体運転において室内機側から流れる冷媒が流入しないように遮断する。そして、除霜用バイパス配管10を介して圧縮機1からの高温のガス冷媒が直接流入するようにする。除霜用バイパス配管10は、一端を圧縮機1の吐出側と接続した配管と接続する。そして、途中で分岐した一方の他端を第2流路開閉弁7aと室外側熱交換器3aとを接続する配管と接続し、他方の他端を第2流路開閉弁7bと室外側熱交換器3bとを接続する配管と接続する。バイパス開閉弁8(8a、8b)は除霜用バイパス配管10に設けている。
 また、送風機9は、冷媒と外気との熱交換を効率よく行うため、室外側熱交換器3の近辺に設ける。本実施の形態の送風機9は、制御手段300の指示に基づいて回転数を任意に変化することができる。これにより、外気を送り込む量を変化させて室外側熱交換器3における熱交換量(熱交換に係る熱量)を調整することができる。なお、送風機9は室外熱交換器3aおよび3bの各々に対応して個別に配置し、室内機の運転容量や外気温度に応じて、片側の室外熱交換器の入口に設けた弁を閉止すると共に、対応する送風機も停止することができる。
 アキュムレータ4は冷媒回路中の過剰な冷媒を貯留する。また、第1逆止弁ブロック5a~第4逆止弁ブロック5dは冷媒が逆流することを防止して冷媒の流れを整え、冷媒の循環経路をモードに合わせて一定にするものである。第1逆止弁ブロック5aは、四方弁2と低圧管202との間の配管上に位置し、低圧管202から四方弁2の方向への冷媒流通を許容する。第2逆止弁ブロック5bは、四方弁2と高圧管201との間の配管上に位置し、四方弁2から高圧管201の方向への冷媒流通を許容する。第3逆止弁ブロック5cは、室外側熱交換部13と低圧管202との間の配管上に位置し、低圧管202から室外側熱交換器3の方向への冷媒流通を許容する。第4逆止弁ブロック5dは、室外側熱交換部13と熱源機側高圧管201との間の配管上に位置し、室外側熱交換部13から高圧管201の方向への冷媒流通を許容する。
 また、本実施の形態では、圧縮機1の吐出及び吸入側と接続した配管上に、吐出及び吸入に係る冷媒の圧力を検出するための第1圧力センサ101、第2圧力センサ102を取り付けている。また、室外側熱交換器3a、3bと四方弁2との間の冷媒の温度をそれぞれ検出する室外側温度センサ103a、103bを取り付けている。そして、外気の温度(外気温)を検出するための外気温度センサ104を取り付ける。各温度センサ、圧力センサは検出に係る信号を制御手段300に送信する。
 次に、本実施の形態の分流コントローラ52について説明する。分流コントローラ52が有する気液分離器21は、高圧管201から流れる冷媒をガス冷媒と液冷媒とに分離する。ガス冷媒が流れ出る気相部(図示せず)は、分流側開閉弁26(26a、26b)と接続する。一方、液冷媒が流れ出る液相部(図示せず)は、第1冷媒間熱交換器22と接続する。
 分流側開閉弁26(26a、26b)及び27(27a、27b)は、制御手段300の指示に基づいて開閉する。分流側開閉弁26(26a、26b)の一端は気液分離器21と接続し、他端はそれぞれガス管206(206a、206b)と接続する。また、分流側開閉弁27(27a、27b)の一端はそれぞれガス管206(206a、206b)と接続し、他端は低圧管205と接続する。分流側開閉弁26(26a、26b)及び27(27a、27b)を組み合わせることにより、制御手段300の指示に基づいて室内機53側から低圧管202側に冷媒が流れるようにするか、又は気液分離器21側から室内機53側に冷媒が流れるように弁を切り替える。ここでは分流側開閉弁26及び27により冷媒の流れを切り替えているが、例えば三方弁等を用いてもよい。
 分流側第1絞り装置23は、第1冷媒間熱交換器22と第2冷媒間熱交換器24との間に設けられ、制御手段300の指示に基づいて開度を制御し、気液分離器21から流れる冷媒流量及び冷媒の圧力を調整する。一方、分流側第2絞り装置25は、制御手段300の指示に基づいて開度を制御し、分流側バイパス配管208を通過する冷媒の冷媒流量及び冷媒の圧力を調整する。分流側第2絞り装置25を通過した冷媒は、分流側バイパス配管208を通過し、例えば第2冷媒間熱交換器24、第1冷媒間熱交換器22において冷媒を過冷却し、低圧管202に流れることになる。
 第2冷媒間熱交換器24は、分流側第2絞り装置25の下流部分の冷媒(分流側第2絞り装置25を通過した冷媒)と、分流側第1絞り装置23から流れてくる冷媒との間で熱交換を行う。また、第1冷媒間熱交換器22は、第2冷媒間熱交換器24を通過した冷媒と、気液分離器21から分流側第1絞り装置23の方向に流れる液冷媒との間で熱交換を行う。
 また、分流コントローラ52においては、分流側バイパス配管208を流れる冷媒の温度を検出するための分流側第1温度センサ111を取り付ける。また、分流側第2絞り装置25の下流部分の冷媒の温度を検出するための分流側第2温度センサ112を取り付ける。なお、室外機51に設けた制御手段300とは別に分流コントローラ用の制御手段301を設け、制御手段300との通信等を行いながら分流コントローラ52の制御に係る処理を行うようにしてもよい。ここでは説明を簡単にするために制御手段300が行うものとして説明する。
 次に、室内機53(53a、53b)の構成について説明する。室内機53は、室内側熱交換器32(32a、32b)及び室内側熱交換器32に近接して直列接続した室内側絞り装置31(31a、31b)を有している。また、本実施の形態では、室内側制御手段33(33a、33b)を有している。室内側熱交換器32は、前述した室外側熱交換器3と同様に、冷房運転の際は蒸発器となり、暖房運転の際は凝縮器となって、空調対象空間の空気と冷媒の間で熱交換を行う。ここで、各室内側熱交換器32の近辺に、冷媒と空気との熱交換を効率よく行うための送風機を設けてもよい。
 室内側絞り装置31は、減圧弁や膨張弁として機能し、室内側熱交換器32を通過する冷媒の圧力を調整する。ここで、本実施の形態の室内側絞り装置31は、例えば開度を変化させることができる電子式膨張弁等で構成しているものとする。そして、室内側絞り装置31の開度については、冷房運転時には室内側熱交換器32の冷媒出口側(ここではガス管204側となる)の過熱度に基づいて、各室内側制御手段33等が決定する。また、暖房運転時には冷媒出口側(ここでは液管203側となる)の過冷却度に基づいて決定する。室内側制御手段33は、室内機2が有する各手段を制御する。本実施の形態では、特に、各室内機53に取り付けた室内側温度センサ121(121a,121b)の検出に係る温度に基づいて、冷房に係る室内側熱交換器32の蒸発温度が所定の温度以下であるかどうかを判断する。そして、所定の温度以下の状態が所定時間以上継続していると判断すると、室内機53の冷房を停止して、冷媒の凍結を防止するための制御を行う。
 制御手段300は、例えば空気調和装置内外に設けられた各種センサ、空気調和装置の各機器(手段)から送信される信号に基づく判断処理等を行う。そして、その判断に基づいて各機器を動作させ、空気調和装置の全体の動作を統括制御する機能を有する。具体的には、圧縮機1の駆動周波数制御、絞り装置の流量制御装置の開度制御、開閉弁の開閉制御、四方弁2等の切替制御等がある。また、記憶手段310は、制御手段300が処理を行うために必要となる各種データ、プログラム等を一時的又は長期的に記憶しておく。ここで、本実施の形態では、制御手段300及び記憶手段310を、室外機51近辺に独立して設けるものとするが、例えば室外機51内に設けるようにしてもよい。また、制御手段300及び記憶手段310を、遠隔地に設け、公衆電気通信網等を介した信号通信を行うことにより、遠隔制御できるようにしてもよい。
 以上のように構成した本実施の形態の空気調和装置は、前述したように、全冷房運転、全暖房運転、冷房主体運転及び暖房主体運転の4つの形態(モード)のいずれかによる運転を行うことができる。次に、各モードによる運転における基本的な各機器の動作及び冷媒の流れについて説明する。
 図2は実施の形態1に係る全冷房運転の冷媒の流れを表す図である。まず、図2に基づいて全冷房運転における各機器の動作及び冷媒の流れについて説明する。全冷房運転の冷媒の流れは図2に実線矢印で示している。ここでは、すべての室内機53が停止することなく冷房を行っている場合について説明する。また、制御手段300は、第1流路開閉弁6a、6bと第2流路開閉弁7a、7bについては弁を開放させ、室内側第3開閉弁8a、8bについては閉止させるようにする。これにより、室外側熱交換器3a及び3bの両方に熱交換を行わせるものとする(各モードの流れの説明において同じものとする)。
 室外機51においては、圧縮機1が、吸入した冷媒を圧縮し、高圧のガス冷媒を吐出する。圧縮機1から吐出した冷媒は、四方弁2を経て、室外側熱交換器3に流れる。高圧のガス冷媒は室外側熱交換器3内を通過する間に外気との熱交換により凝縮し、高圧の液冷媒となり、第4逆止弁ブロック5dを流れる(冷媒の圧力の関係で第2逆止弁ブロック5b、第3逆止弁ブロック5c側には流れない)。そして、高圧の液冷媒は高圧管201を通って分流コントローラ52に流入する。
 分流コントローラ52に流入した冷媒を気液分離器21がガス冷媒と液冷媒とに分離する。ここで、全冷房運転時に分流コントローラ52へ流入する冷媒は液冷媒であり、また、制御手段300が分流側開閉弁27a、27bを開放させ、分流側開閉弁26a、26bを閉止させる。このため、気液分離器21から室内機53(53a、53b)側にはガス冷媒は流れない。一方、液冷媒は第1冷媒間熱交換器22、分流側第1絞り装置23、第2冷媒間熱交換器24を通過して、その一部が液管207a、207bを通過する。そして、さらに液管203a、203bを介して室内機53a、53bに流入する。
 室内機53a、53bにおいては、液管203a、203bからそれぞれ流れてきた液冷媒を、室内側絞り装置31a、31bが開度調整し、圧力調整する。ここで、前述したように、各室内側絞り装置31の開度調整は、各室内側熱交換器32の冷媒出口側の過熱度に基づいて行う。各室内側絞り装置31a、31bの開度調整により、低圧の液冷媒又は気液二相冷媒となった冷媒は、それぞれ室内側熱交換器32a、32bに流れる。低圧の液冷媒又は気液二相冷媒は、室内側熱交換器32a、32bをそれぞれ通過する間に空調対象空間となる室内空気との熱交換により蒸発する。そして、低圧のガス冷媒となり、それぞれガス管204a、204bに流れる。このとき、熱交換により室内空気を冷却して室内の冷房を行う。ここではガス冷媒としているが、例えば、各室内機53における負荷が小さい場合、開始直後等過渡的な状態の場合等には、室内側熱交換器32a、32bにおいて完全に気化せず、気液二相冷媒が流れることもあり得る。ガス管204a、204bから流れてきた低圧のガス冷媒又は気液二相冷媒(低圧の冷媒)は、ガス管206a、206b及び分流側開閉弁27a、27bを通過して低圧管205、202に流れる。
 一方、液管207a、207bを通過しなかった冷媒は、分流側第2絞り装置25を通過する。そして、第2冷媒間熱交換器24、第1冷媒間熱交換器22において、気液分離器21から流れる冷媒を過冷却し、分流側バイパス配管208を通過して低圧管205、202に流れる。冷媒を過冷却して室内機53側に流すことにより、冷媒入口側(ここでは、液管203側)のエンタルピを小さくし、室内側熱交換器32a、32bにおいて、空気との熱交換量を大きくすることができる。ここで、分流側第2絞り装置25の開度が大きく、分流側バイパス配管208を流れる冷媒(過冷却に用いる冷媒)の量が多くなると、蒸発されない冷媒が多くなる。そのため、低圧管205、202を介して気液二相冷媒が室外機51側に流れ込むことになる。
 低圧管202を通過して室外機51に流れた冷媒は、第1逆止弁ブロック5a、四方弁2、アキュムレータ4を経て、再び圧縮機1に戻ることで循環する。これが全冷房運転時の冷媒の循環経路となる。
 図3は冷房主体運転の冷媒の流れを表す図である。ここでは、室内機53aが暖房を行い、室内機53bが冷房を行っている場合について説明する。冷房主体運転における冷媒の流れは図3に実線矢印で示している。まず、室外機51の各機器が行う動作及び冷媒の流れは、図2を用いて説明した全冷房運転時と同じである。ただ、ここでは、室外側熱交換器3における冷媒の凝縮を制御することで、高圧管201を通って分流コントローラ52に流入する冷媒が気液二相冷媒となるものとする。
 一方、分流コントローラ52では、制御手段300の指示に基づいて、分流側開閉弁26a、27bを閉止させ、分流側開閉弁27a、26bを開放させておく。そして、分流コントローラ52に流入した冷媒を気液分離器21がガス冷媒と液冷媒とに分離する。分離した液冷媒が、液管203b、207bを流れて冷房を行っている室内機53bに至り、低圧管202を通過し、室外機51に流入するまでの冷媒の流れについては、図2を用いて説明した全冷房運転時における流れと基本的に同じである。
 一方、分離したガス冷媒が、分流側開閉弁26a、ガス管206a、204aを通過して室内機53aに流入する。室内機53aにおいては、室内側絞り装置31aの開度調整により、室内側熱交換器32a内を流れる冷媒の圧力調整をする。そして、高圧のガス冷媒は、室内側熱交換器32a内を通過する間に熱交換により凝縮して液冷媒となり、室内側絞り装置31aを通過する。このとき、熱交換により室内空気を加熱して空調対象空間(室内)の暖房を行う。室内側絞り装置31aを通過した冷媒は若干圧力が減少した中間圧の液冷媒となり、液管203a、207aを通過して、第2冷媒間熱交換器24に流れる。そして、気液分離器21から流れてきた液冷媒と合流し、一部は室内機53bにおける冷房のための冷媒として利用され、残りは全冷房運転時と同様に、分流側第2絞り装置25等を通過して分流側バイパス配管208から低圧管205、202に流れる。
 このように冷房主体運転においては、室外機51の室外側熱交換器3は、凝縮器として機能する。また、暖房を行う室内機53(ここでは室内機53a)を通過した冷媒は、冷房運転を行う室内機53(ここでは室内機53b)の冷媒としても用いる。ここで、室内機53bにおける負荷が小さく、室内機53bに流れる冷媒を抑制する等の場合には、制御手段300は、分流側第2絞り装置25の開度を大きくさせる。これにより、冷房運転を行っている室内機53bに必要以上の冷媒を供給しなくても、分流側バイパス配管208を介して低圧管202に流すことができる。
 図4は実施の形態1に係る全暖房運転の冷媒の流れを表す図である。次に全暖房運転における各機器の動作及び冷媒の流れについて説明する。ここでは、すべての室内機53が停止することなく暖房を行っている場合について説明する。全暖房の冷媒の流れは図4に実線矢印で示している。室外機51においては、圧縮機1が、吸入した冷媒を圧縮し、高圧のガス冷媒を吐出する。圧縮機1が吐出した冷媒は、四方弁2、第2逆止弁ブロック5bを流れ(冷媒の圧力の関係で第1逆止弁ブロック5a、第4逆止弁ブロック5d側には流れない)、さらに高圧管201を通って分流コントローラ52に流入する。
 一方、分流コントローラ52では、制御手段300の指示に基づいて、分流側開閉弁26a、26bを開放させ、分流側開閉弁27a、27bを閉止させておく。分流コントローラ52へ流入したガス冷媒は気液分離器21、分流側開閉弁26a、26b及びガス管206a、206b、204a、204bを通過し、室内機53a、53bに流入する。
 室内機53a、53bにおいては、室内側絞り装置31a、31bの開度調整により、室内側熱交換器32a、32b内を流れる冷媒の圧力調整をする。そして、高圧のガス冷媒は、室内側熱交換器32a、32b内を通過する間に熱交換により凝縮して液冷媒となり、室内側絞り装置31a、31bを通過する。このとき、熱交換により室内空気を加熱して空調対象空間(室内)の暖房を行う。
 室内側絞り装置31a、31bを通過した冷媒は、例えば中間圧の液冷媒又は気液二相冷媒となり、液管203a、203b、207a、207bを通過して、第2冷媒間熱交換器24に流れ、さらに分流側第2絞り装置25を通過する。分流側第2絞り装置25を通過して減圧した冷媒は分流側バイパス配管208から低圧管205、202に流れ、室外機51に流入する。
 室外機51に流入した冷媒は、室外機51の第3逆止弁ブロック5cを通過し、室外側熱交換器3に流入する。室外側熱交換器3を通過する間に空気との熱交換により蒸発してガス冷媒となる。そして、四方弁2、アキュムレータ4を経て、再び圧縮機1に戻って吐出される。これが全暖房運転時の冷媒の循環経路となる。
 ここで、前述した全冷房運転及び全暖房運転において、すべての室内機53a、53bが運転しているものとして説明したが、例えば一部の室内機が停止していてもよい。また、例えば一部の室内機53が停止しており、空気調和装置全体として負荷が小さい場合は、圧縮機1の駆動周波数変更に係る吐出容量変化又はいずれか一方を停止する等して能力を変化させるようにしてもよい。また、第1流路開閉弁6(6a、6b)、第2流路開閉弁7(7a、7b)により、例えば、室外側熱交換器3(3a、3b)における冷媒流入を制御し、熱交換量も変化させることもできる。
 図5は実施の形態1に係る暖房主体運転の冷媒の流れを表す図である。ここでは、室内機53aが暖房運転を行い、室内機53bが冷房運転を行っている場合について説明する。暖房主体運転時の冷媒の流れは図5に実線矢印で示している。室外機51の各機器の動作及び冷媒の流れは、図4を用いて説明した全暖房時と同じである。
 一方、分流コントローラ52では、制御手段300の指示に基づいて、分流側開閉弁26a、27bを開放させ、分流側開閉弁27a、26bを閉止させておく。分流コントローラ52へ流入したガス冷媒は気液分離器21、分流側開閉弁26a及びガス管206a、204aを通過し、室内機53aに流入する。
 室内機53aにおいては、図4と同様に、室内側絞り装置31aの開度調整により、室内側熱交換器32a内を流れる冷媒の圧力調整をする。そして、高圧のガス冷媒は、室内側熱交換器32a、32b内を通過する間に熱交換により凝縮して液冷媒となり、室内側絞り装置31a、31bを通過する。このとき、熱交換により室内空気を加熱して空調対象空間(室内)の暖房を行う。
 室内側絞り装置31aを通過した冷媒は、例えば中間圧の液冷媒となり、液管203a、207aを通過して、第2冷媒間熱交換器24に流れる。そして、第2冷媒間熱交換器24に流れた冷媒の一部は、液管207b、203bを通過して室内機53bに流入する。
 室内機53bにおいては、室内側絞り装置31bが開度調整により圧力調整する。室内側絞り装置31bの開度調整により、低圧の液冷媒又は気液二相冷媒となった冷媒は、室内側熱交換器32bを通過する。室内側熱交換器32bを通過している間に冷媒は空調対象空間となる室内空気との熱交換により蒸発する。そして、低圧の冷媒となり、それぞれガス管204bに流れる。このとき、熱交換により室内空気を冷却して室内の冷房を行う。ガス管204bを流出した冷媒は、さらにガス管206b及び分流側開閉弁27bを通過して低圧管205、202に流れる。
 一方、第2冷媒間熱交換器24に流れた冷媒の残りは分流側第2絞り装置25を通過する。分流側第2絞り装置25を通過して減圧した冷媒は、液管203a、207aを通過してきた中間圧の冷媒を過冷却して一部が蒸発しながら、分流側バイパス配管208から低圧管205、202に流れ、室外機51に流入する。
 暖房主体運転において、冷房を行う室内機(ここでは室内機20b)には、暖房を行っている室内機(ここでは室内機20a)から流出した冷媒が流れることになる。そのため、冷房運転を行う室内機53が停止すると、分流側バイパス配管208を流れる気液二相冷媒の量が増加する。反対に冷房を行う室内機53における負荷が増えると、分流側バイパス配管208を流れる冷媒の量が減少する。そのため、暖房を行う室内機53に必要な冷媒の量は変わらないまま、冷房を行う室内機53における室内機熱交換器32(蒸発器)の負荷が変化する。
 図6は、制御手段300が行う室外機51の圧縮機1の駆動周波数と室外熱交換器3の熱交換量との決定に係るフローチャートを表す図である。制御手段300は、圧縮機1の駆動周波数と室外熱交換器3の熱交換量とを制御することにより、圧縮機1の吐出側及び吸入側の冷媒の圧力を所定の目標値になるようにする。
 制御手段300は、空調運転を開始すると(STEP1)、所定の時間T0が経過したかどうかを判断する(STEP2)。圧縮機1の吐出側に取り付けた第1圧力センサ101からの信号に基づく高圧Pdの値及び吸入側に取り付けた第2圧力センサ102からの信号に基づく低圧Psの値を読み取る(STEP3)。
 そして、高圧Pdと高圧の目標値Pdmとの差ΔPdmを算出する。また、低圧Psと低圧の目標値Psmとの差ΔPsmを算出する(STEP4)。さらに、算出したΔPdmとΔPsmとを、次式(1)、(2)に代入し、圧縮機1の周波数の補正値ΔFと室外熱交換器3の熱交換量の補正値ΔAKとを算出する(STEP5)。ここでa、b、c及びdは係数を表す。
 ΔF =aΔPd+bΔPs                    …(1)
 ΔAK=cΔPd+dΔPs                    …(2)
 補正値ΔFとΔAKにより、駆動周波数の値Fと熱交換量AKとを補正した新たな駆動周波数の値Fと熱交換量AKを決定する(STEP6)。そして、決定した駆動周波数Fに基づいて、圧縮機1の冷媒の吐出量を制御する。また、熱交換量AKに基づいて、送風機9の回転数を制御し、熱交換量を制御する。ここで、室内機53側における負荷が小さく、熱交換量が少なくてもよい場合等、第1流路開閉弁6、第2流路開閉弁7を閉止させ、室外熱交換器3全体の伝熱面積を増減させることにより熱交換量を制御するようにしてもよい。
 図7及び8は、実施の形態1に係る空気調和装置において、全暖房運転中に除霜運転を行った場合の冷媒の流れを表す図である。図7は全暖房運転中に、室外側熱交換器3aの除霜を行う場合の冷媒の流れを表す。また、図8は全暖房運転中に室外側熱交換器3bの除霜を行う場合の冷媒の流れを表す。全暖房運転の冷媒回路における冷媒の流れは、基本的には図4を用いて説明したことと同じである。また、ここでは全暖房運転について説明を行うが、室外機51については、暖房主体運転時に除霜運転を行う場合についても同様である。ここで、除霜運転を実施する場合、室外熱交換器3aと3bに対して同時に除霜運転を行うことはない。
 図7に示すように、全暖房運転を所定の間継続した後、制御手段300は、除霜運転を行うものと判断すると、バイパス開閉弁8aを開放し、第2流路開閉弁7aを閉止させると共に送風機9を停止させる。また、例えば、室外熱交換器3bに冷媒を流入させていない場合には、第2流路開閉弁7bを開放させる。この状態で全暖房運転、暖房主体運転を継続すると、低圧管202を流れて流入した気液二相冷媒は、第3逆止弁ブロック5c、第2流路開閉弁7bを介して室外熱交換器3bのみに流入し、蒸発・気化することになる。
 一方、バイパス開閉弁8aを開放したことにより、圧縮機1が吐出した高温・高圧のガス冷媒の一部がバイパス開閉弁8aを介して室外熱交換器3aに流入する。高温のガス冷媒と霜との熱交換により、室外熱交換器3aについた霜が融け、冷媒は低温のガス冷媒となる。そのガス冷媒は、第1流路開閉弁6aを通過し、室外熱交換器3bを流出したガス冷媒と合流して、四方弁2、アキュムレータ4を介して圧縮機1に戻る。なお、除霜中に送風機9を停止することで、冷媒の熱は霜と熱交換しやすくなるため、短時間での除霜が可能となる。
 また、図8に示すように、室外熱交換器3aの除霜が終了したものと判断すると、バイパス開閉弁8aを閉止させ第2流路開閉弁7aを開放させる。そして、例えば所定時間後にバイパス開閉弁8bを開放させ、第2流路開閉弁7bを閉止させる。この状態では、第2流路開閉弁7aを介して室外熱交換器3aのみに流入し、蒸発・気化する。また、圧縮機1が吐出した高温・高圧のガス冷媒の一部がバイパス開閉弁8bを介して室外熱交換器3bに流入し、霜を融かす。霜との熱交換により低温となったガス冷媒は、第1流路開閉弁6bを通過し、室外熱交換器3aを流出したガス冷媒と合流して、四方弁2、アキュムレータ4を介して圧縮機1に戻る。
 図9は実施の形態1における制御手段300が行う除霜運転に係るフローチャートを表す図である。空気調和装置による全暖房運転又は暖房主体運転を開始すると(STEP11)、圧縮機1の吸入側に取り付けた第2圧力センサ102からの信号に基づく低圧Psの値が低圧の目標値Psm2よりも低いかどうかを判断する(STEP12)。低圧Psの値が目標値Psm2よりも低いと判断すると、バイパス開閉弁8aを開放し、第2流路開閉弁7aを閉止させ、前述したように室外熱交換器3aの除霜を開始する(STEP13)。そして、温度センサ103aからの信号に基づく温度Traが所定値Tr0以上であるかどうかを判断する(STEP14)。そして、温度Traが所定値Tr0以上であると判断するまで室外熱交換器3aの除霜を行う。
 温度Traが所定値Tr0以上であると判断すると、バイパス開閉弁8aを閉止させ第2流路開閉弁7aを開放させる(STEP15)。また、所定時間後にバイパス開閉弁8bを開放させ、第2流路開閉弁7bを閉止させる(STEP16)。そして、温度センサ103bからの信号に基づく温度Trbが所定値Tr0以上であるかどうかを判断する(STEP17)。そして、温度Trbが所定値Tr0以上であると判断するまで室外熱交換器3bの除霜を行う。
 温度Trbが所定値Tr0以上であると判断すると、バイパス開閉弁8bを閉止させ第2流路開閉弁7bを開放させる(STEP18)。そして、STEP12に戻って処理を続ける。
 ここで、全暖房運転、暖房主体運転を継続しながら除霜運転を行う場合でも、図6を用いて説明したように、圧縮機1の駆動周波数と室外熱交換器3の熱交換量とを制御することにより、圧縮機1の吐出側及び吸入側の冷媒の圧力を所定の目標値になるようにする。
基本的には、室外機51の圧縮機1の駆動周波数と室外熱交換器3の熱交換量との決定に係る処理と図9を用いて説明した除霜運転に係る処理とは、独立して行うものである。ただ、圧縮機1の駆動周波数と室外熱交換器3の熱交換量とを変更した直後は、低圧Psが大きく変化する。そのため、除霜運転に係る処理において図9のSTEP2における所定時間T0を経過した後に、第2圧力センサ102からの信号に基づいて読み取った低圧Psの値に基づいて、図9のSTEP12の判断を行う。これにより、安定した圧力状態での判断を行うことで、除霜運転に係る判断を誤らないようにする。
 また、室外機51において、除霜運転を行う際に、除霜用バイパス配管10に圧縮機1からのホットガスを分流させるため、バイパス開閉弁8の開放により、吐出側の圧力(高圧側)が大きく低下する。また、各室外熱交換器3の除霜終了時にバイパス開閉弁8を閉止することで大きく上昇する。このような除霜運転開始、各室外熱交換器3の除霜終了時の圧力変動に対応できるようにする方が望ましい。例えば、制御手段300は、除霜運転中に圧縮機1の駆動周波数と室外熱交換器3の熱交換量との決定に係る処理を行う際、上述の(1)式及び(2)式における係数a、b、c及びdを変更するようにする。これにより、冷媒回路における高圧をより安定維持できるようになり、除霜運転を行っている場合でも圧縮機1は安定した暖房能力を発揮できる(供給できる)ようになる。また、各運転形態(モード)においても係数を変更できるようにしてもよい。これらの係数は、例えば記憶手段310にデータとして記憶させておく。
 また、除霜運転中には、蒸発器として機能する室外熱交換器3の数が減るため、吸入側の圧力(低圧側)が引込む。この引込みにより、例えば暖房主体運転において冷房に係る室内機53における室内熱交換器31の蒸発温度が所定の温度(例えば0℃)以下となることがある。このため、空調対象空間の空気中の水分が室内熱交換器31において凍結(着霜)する場合がある。この凍結により、空調対象空間に送り込む空気の風量が減る。また、例えば除霜機能を設けて解凍(除霜)させた場合に、融けた水がドレンパンからあふれて水漏れを発生させる可能性がある。
 そこで、冷房を行っている室内機53の室内側制御手段33は、例えば室内側温度センサ121の検出に係る温度に基づいて、室内側熱交換器32の蒸発温度が所定の温度以下であるかどうかを判断する。そして、所定の温度以下の状態が所定時間以上継続していると判断すると、室内機53の運転をしばらく停止させて、室内熱交換器31に冷媒を流さないようにして空気中の水分の凍結を防止する。また、送風機(図示せず)のみを回転させて室内熱交換器31に風を送り込み、空気の熱で霜を融かすようにしてもよい。そして、所定の時間が経過すると、再度冷房を行うようにする。ここでは室内側温度センサ121を取り付けているが、例えば低圧となる側に圧力センサを取り付けて、圧力に基づく飽和温度を推定して判断するようにしてもよい。また、ここでは、各室内機53の室内側制御手段33が判断を行っているが、例えば制御手段300が一括して判断を行うようにしてもよい。
 以上のように、実施の形態1の空気調和装置によれば、室外機51に複数の室外側熱交換器3を並列に配管接続し、制御手段300が第2流路開閉弁7とバイパス開閉弁8の開閉を制御して、除霜用バイパス配管10を介して各室外側熱交換器3に順次ホットガスを流入させて除霜を行わせるようにしたので、室外機51が1台であっても全暖房運転、暖房主体運転を継続しながら除霜運転を実施できる。このため、除霜運転を実施しながらも、室内機53側の冷暖房を停止することなく、快適な室温環境を保つことができる。そして、室外機51が1台であるため、コストを抑えることができる。また、設置スペースを小さくすることができる。
 また、除霜運転を行う場合に、圧縮機1の駆動周波数と室外熱交換器3の熱交換量とを制御することで、除霜運転により、全暖房運転、暖房主体運転に用いる室外側熱交換器3の数が少なくなった場合でも対応することができる。また、暖房主体運転中に冷媒回路の低圧側が低くなることで、冷房を行っている室内機53の室内側熱交換器32の蒸発温度が低くなってしまうことがある。本実施の形態では、室内側制御手段33が、蒸発温度が所定の温度以下であると判断すると、動作停止を行うようにしたので、凍結防止をはかることができる。
実施の形態2.
 図10は本発明の実施の形態2に係る空気調和装置の構成を表す図である。図10において、図1等と符号が同一の手段等については、実施の形態1で説明したことと同様の動作等を行う。図10において、室外側絞り装置11(11a、11b)は、室外側熱交換器3a、3bに流入出する冷媒の流量を調整するものであり、第2流路開閉弁7a、7bの代わりに設置する。ここで、本実施の形態では、除霜用バイパス配管10において途中で分岐した他端について、一方の他端を室外側絞り装置11aと室外側熱交換器3aとを接続する配管と接続する。また、他方の他端を室外側絞り装置11bと室外側熱交換器3bとを接続する配管と接続する。
 本実施の形態の空気調和装置における、全冷房運転、冷房主体運転、全暖房運転、暖房主体運転の冷媒の流れについては、実施の形態1と同様である。
 図11及び12は、実施の形態2に係る空気調和装置において、全暖房運転中に除霜運転を行った場合の冷媒の流れを表す図である。図11は全暖房運転中に、室外側熱交換器3aの除霜を行う場合の冷媒の流れを表す。また、図12は全暖房運転中に室外側熱交換器3bの除霜を行う場合の冷媒の流れを表す。全暖房運転の冷媒回路における冷媒の流れは、基本的には図4を用いて説明したことと同じである。
 全暖房運転を所定の間継続した後、制御手段300は、除霜運転を行うものと判断すると、バイパス開閉弁8aを開放させ、室外側絞り装置11aを予め決定した除霜用開度に設定させる。また、例えば実施の形態1で説明したように、室外側熱交換器3bで熱交換しなければならない熱交換量に基づいて室外側絞り装置11bを所定の開度(以下、暖房用開度という)に設定させる。
 図11に示すように、バイパス開閉弁8aを開放することで、圧縮機1が吐出した高温・高圧のガス冷媒の一部が除霜用バイパス配管10を通過して室外熱交換器3aに流入する。高温のガス冷媒と霜との熱交換により、室外熱交換器3aについた霜が融け、冷媒は凝縮により液化する。その液冷媒は、室外側絞り装置11aを通過する。そして、低圧管202、第3逆止弁ブロック5cを通過した気液二相冷媒と合流し、室外側絞り装置11bを介して室外熱交換器3aのみに流入し、蒸発・気化する。そして、開放弁6b、アキュムレータ4を介して圧縮機1に戻る。
 また、室外熱交換器3aの除霜が終了したものと判断すると、制御手段300は、バイパス開閉弁8aを閉止させる。また、室外側熱交換器3aで熱交換しなければならない熱交換量に基づいて室外側絞り装置11aを暖房用開度に設定させる。そして、バイパス開閉弁8bを開放させ、室外側絞り装置11bを予め決定した除霜用開度に設定させる。
 図12に示すように、バイパス開閉弁8bを開放することで、圧縮機1が吐出した高温・高圧のガス冷媒の一部が除霜用バイパス配管10を通過して室外熱交換器3bに流入する。高温のガス冷媒と霜との熱交換により、室外熱交換器3bについた霜が融け、冷媒は凝縮により液化する。その液冷媒は、室外側絞り装置11bを通過する。そして、低圧管202、第3逆止弁ブロック5cを通過した気液二相冷媒と合流し、室外側絞り装置11aを介して室外熱交換器3aのみに流入し、蒸発・気化する。そして、開放弁6a、アキュムレータ4を介して圧縮機1に戻る。
 図13及び14は、実施の形態2に係る空気調和装置において、暖房主体運転中に除霜運転を行った場合の冷媒の流れを表す図である。図13は暖房主体運転中に、室外側熱交換器3aの除霜を行う場合の冷媒の流れを表す。また、図14は暖房主体運転中に室外側熱交換器3bの除霜を行う場合の冷媒の流れを表す。暖房主体運転の冷媒回路における冷媒の流れは、基本的には図5を用いて説明したことと同じである。
 暖房主体運転を所定の時間、継続した後、制御手段300は、除霜運転を行うものと判断すると、バイパス開閉弁8aを開放させ、室外側絞り装置11aを予め決定した除霜用開度に設定させる。また、例えば実施の形態1で説明したように、室外側熱交換器3bで熱交換しなければならない熱交換量に基づいて室外側絞り装置11bを暖房用開度に設定させる。
 図13に示すように、バイパス開閉弁8aを開放することで、圧縮機1が吐出した高温・高圧のガス冷媒の一部が除霜用バイパス配管10を通過して室外熱交換器3aに流入する。高温のガス冷媒と霜との熱交換により、室外熱交換器3aについた霜が融け、冷媒は凝縮により液化する。その液冷媒は、室外側絞り装置11aを通過する。そして、低圧管202、第3逆止弁ブロック5cを通過した気液二相冷媒と合流し、室外側絞り装置11bを介して室外熱交換器3bのみに流入し、蒸発・気化する。そして、開放弁6b、アキュムレータ4を介して圧縮機1に戻る。
 また、室外熱交換器3aの除霜が終了したものと判断すると、制御手段300は、バイパス開閉弁8aを閉止させる。また、室外側熱交換器3aで熱交換しなければならない熱交換量に基づいて室外側絞り装置11aを暖房用開度に設定させる。そして、バイパス開閉弁8bを開放させ、室外側絞り装置11bを予め決定した除霜用開度に設定させる。
 図14に示すように、バイパス開閉弁8bを開放することで、圧縮機1が吐出した高温・高圧のガス冷媒の一部が除霜用バイパス配管10を通過して室外熱交換器3bに流入する。高温のガス冷媒と霜との熱交換により、室外熱交換器3bについた霜が融け、冷媒は凝縮により液化する。その液冷媒は、室外側絞り装置11bを通過する。そして、低圧管202、第3逆止弁ブロック5cを通過した気液二相冷媒と合流し、室外側絞り装置11aを介して室外熱交換器3aのみに流入し、蒸発・気化する。そして、開放弁6a、アキュムレータ4を介して圧縮機1に戻る。
 図15は実施の形態2に係る制御手段300が行う除霜運転に係るフローチャートを表す図である。空気調和装置による全暖房運転又は暖房主体運転を開始すると(STEP21)、圧縮機1の吸入側に取り付けた第2圧力センサ102からの信号に基づく低圧Psの値が低圧の目標値Psm2よりも低いかどうかを判断する(STEP22)。低圧Psの値が目標値Psm2よりも低いと判断すると、バイパス開閉弁8aを開放させ、室外側絞り装置11aを除霜用開度に設定させ、前述したように室外熱交換器3aの除霜を開始する(STEP23)。そして、温度センサ103aからの信号に基づく温度Traが所定値Tr0以上であるかどうかを判断する(STEP24)。そして、温度Traが所定値Tr0以上であると判断するまで室外熱交換器3aの除霜を行う。
 温度Traが所定値Tr0以上であると判断すると、バイパス開閉弁8aを閉止させ、室外側絞り装置11aを暖房用開度に設定させる(STEP25)。また、所定時間後にバイパス開閉弁8bを開放させ、室外側絞り装置11bを除霜用開度に設定させる(STEP26)。そして、温度センサ103bからの信号に基づく温度Trbが所定値Tr0以上であるかどうかを判断する(STEP27)。そして、温度Trbが所定値Tr0以上であると判断するまで室外熱交換器3bの除霜を行う。
 温度Trbが所定値Tr0以上であると判断すると、バイパス開閉弁8bを閉止させ、室外側絞り装置11bを暖房用開度に設定させる(STEP28)。そして、STEP22に戻って処理を続ける。
 以上のように、実施の形態2の空気調和装置によれば、室外機51に複数の室外側熱交換器3を並列に配管接続し、制御手段300が室外側絞り装置11の開度及びバイパス開閉弁8の開閉を制御して、除霜用バイパス配管10を介して各室外側熱交換器3に順次ホットガスを流入させて除霜を行わせるようにしたので、室外機51が1台であっても全暖房運転、暖房主体運転を継続しながら除霜運転を実施できる。このため、除霜運転を実施しながらも、室内機53側の冷暖房を停止することなく、快適な室温環境を保つことができる。そして、室外機51が1台であるため、コストを抑えることができる。また、設置スペースを小さくすることができる。このとき、除霜動作により、全暖房運転でも暖房主体運転でも、除霜する熱交換器に供給される高温・高圧のガス冷媒は凝縮する熱量を霜を融解するための熱として利用できるため、効率よく短時間で除霜運転を完了することができる。このため、省エネルギ化をはかることができ、また、快適性を向上させることができる。
実施の形態3.
 図16は本発明の実施の形態3に係る空気調和装置の構成を表す図である。図16において、図1、図8等と符号が同一の手段等については、実施の形態1及び2で説明したことと同様の動作等を行う。図16において、三方弁12(12a、12b、12c)は、制御手段300の指示に基づいて弁の切り替えを行い、冷媒の経路が切り換わるようにする。本実施の形態では、第2の流路切替手段となる三方弁12a、12bについては、室外側熱交換器3a、3bと圧縮機1の吐出側との間の流路(以下、高圧側流路という)、又は室外側熱交換器3a、3bとアキュムレータ4との間の流路(以下、低圧側流路という)の切り替えを行う。第1の流路切替手段となる三方弁12cについては、実施の形態1、2で説明した四方弁2の代わりに、第1逆止弁ブロック5aを設けた配管と第2逆止弁ブロック5bを設けた配管とが接続する部分と圧縮機1の吐出側との間の流路、又は第1逆止弁ブロック5aを設けた配管と第2逆止弁ブロック5bを設けた配管とが接続する部分と圧縮機1の吸入側との間の流路の切り替えを行う。
 図17は実施の形態3に係る暖房主体運転の冷媒の流れを表す図である。本実施の形態の空気調和装置について、全暖房運転、暖房主体運転の際の室外機51における冷媒の流れを中心に説明する。
 室外機51においては、圧縮機1が、吸入した冷媒を圧縮し、高圧のガス冷媒を吐出する。圧縮機1が吐出した冷媒は、三方弁12c、第2逆止弁ブロック5bを流れ、さらに高圧管201を通って分流コントローラ52に流入する。
 分流コントローラ52では、制御手段300の指示に基づいて、分流側開閉弁26a、27bを開放させ、分流側開閉弁27a、26bを閉止させておく。分流コントローラ52へ流入したガス冷媒は気液分離器21、分流側開閉弁26a及びガス管206a、204aを通過し、室内機53aに流入する。
 室内機53aにおいては、室内側絞り装置31aの開度調整により、室内側熱交換器32a内を流れる冷媒の圧力調整をする。そして、高圧のガス冷媒は、室内側熱交換器32a、32b、32c内を通過する間に熱交換により凝縮して液冷媒となり、室内側絞り装置31a、31bを通過する。このとき、熱交換により室内空気を加熱して空調対象空間(室内)の暖房を行う。
 室内側絞り装置31aを通過した冷媒は、例えば中間圧の液冷媒となり、液管203a、207aを通過して、第2冷媒間熱交換器24に流れる。そして、第2冷媒間熱交換器24に流れた冷媒の一部は、液管207b、203bを通過して室内機53bに流入する。
 室内機53bにおいては、室内側絞り装置31bが開度調整により圧力調整する。室内側絞り装置31bの開度調整により、低圧の液冷媒又は気液二相冷媒となった冷媒は、室内側熱交換器32bを通過する。室内側熱交換器32bを通過している間に冷媒は空調対象空間となる室内空気との熱交換により蒸発する。そして、低圧の冷媒となり、それぞれガス管204bに流れる。このとき、熱交換により室内空気を冷却して室内の冷房を行う。ガス管204bを流出した冷媒は、さらにガス管206b及び分流側開閉弁27bを通過して低圧管205、202に流れる。
 一方、第2冷媒間熱交換器24に流れた冷媒の残りは分流側第2絞り装置25を通過する。分流側第2絞り装置25を通過して減圧した冷媒は、液管203a、207aを通過してきた中間圧の冷媒を過冷却して一部が蒸発しながら、分流側バイパス配管208から低圧管205、202に流れ、室外機51に流入する。
 室外機51に流入した冷媒は、室外機51の第3逆止弁ブロック5c、室外側絞り装置9を通過して、室外側熱交換器3に流入する。室外側熱交換器3を通過する間に空気との熱交換により蒸発してガス冷媒となる。そして、三方弁12a、12b、アキュムレータ4を経て、再び圧縮機1に戻って吐出される。
 図18及び図19は実施の形態3の空気調和装置について、除霜運転を行った場合の冷媒の流れを表す図である。図18は暖房主体運転中に、室外側熱交換器3aの除霜を行う場合の冷媒の流れを表す。また、図19は暖房主体運転中に室外側熱交換器3bの除霜を行う場合の冷媒の流れを表す。ここでは、暖房主体運転について説明するが、全暖房運転についても同様である。暖房主体運転の冷媒回路における冷媒の流れは基本的には、図17を用いて説明したことと同じである。
 暖房主体運転を所定の間継続した後、制御手段300は、除霜運転を行うものと判断すると、高圧側流路に三方弁12aを切り替えさせる。また、室外側絞り装置11aを予め決定した除霜用開度に設定させる。また、例えば実施の形態1で説明したように、室外側熱交換器3bで熱交換しなければならない熱交換量に基づいて室外側絞り装置11bを所定の開度(以下、暖房用開度という)に設定させる。
 図18に示すように、圧縮機1が吐出した高温・高圧のガス冷媒の一部が除霜用バイパス配管10、三方弁12aを介して室外熱交換器3aに流入する。高温のガス冷媒と霜との熱交換により、室外熱交換器3aについた霜が融け、冷媒は凝縮により液化する。その液冷媒は、室外側絞り装置11aを通過する。そして、低圧管202、第3逆止弁ブロック5cを通過した気液二相冷媒と合流し、室外側絞り装置11bを介して室外熱交換器3bのみに流入し、蒸発・気化する。そして、三方弁12b、アキュムレータ4を介して圧縮機1に戻る。
 また、室外熱交換器3aの除霜が終了したものと判断すると、制御手段300は、高圧側流路に三方弁12bを切り替えさせる。また、室外側絞り装置11bを予め決定した除霜用開度に設定させる。そして、低圧側流路に三方弁12bを切り替えさせる。また、室外側熱交換器3aで熱交換しなければならない熱交換量に基づいて室外側絞り装置11aを暖房用開度に設定させる。
 図19に示すように、圧縮機1が吐出した高温・高圧のガス冷媒の一部が除霜用バイパス配管10、三方弁12bを介して室外熱交換器3bに流入する。高温のガス冷媒と霜との熱交換により、室外熱交換器3bについた霜が融け、冷媒は凝縮により液化する。その液冷媒は、室外側絞り装置11bを通過する。そして、低圧管202、第3逆止弁ブロック5cを通過した気液二相冷媒と合流し、室外側絞り装置11aを介して室外熱交換器3aのみに流入し、蒸発・気化する。そして、三方弁12a、アキュムレータ4を介して圧縮機1に戻る。
 図20は実施の形態3に係る制御手段300が行う除霜運転に係るフローチャートを表す図である。空気調和装置による全暖房運転又は暖房主体運転を開始すると(STEP31)、圧縮機1の吸入側に取り付けた第2圧力センサ102からの信号に基づく低圧Psの値が低圧の目標値Psm2よりも低いかどうかを判断する(STEP32)。低圧Psの値が目標値Psm2よりも低いと判断すると、三方弁12aを高圧側流路に切り替えさせ、室外側絞り装置11aを除霜用開度に設定させ、前述したように室外熱交換器3aの除霜を開始する(STEP33)。そして、温度センサ103aからの信号に基づく温度Traが所定値Tr0以上であるかどうかを判断する(STEP34)。そして、温度Traが所定値Tr0以上であると判断するまで室外熱交換器3aの除霜を行う。
 温度Traが所定値Tr0以上であると判断すると、三方弁10aを低圧側流路に切り替えさせ、室外側絞り装置11aを暖房用開度に設定させる(STEP35)。また、所定時間後に三方弁10bを高圧側流路に切り替えさせ、室外側絞り装置11bを除霜用開度に設定させる(STEP36)。そして、温度センサ103bからの信号に基づく温度Trbが所定値Tr0以上であるかどうかを判断する(STEP37)。そして、温度Trbが所定値Tr0以上であると判断するまで室外熱交換器3bの除霜を行う。
 温度Trbが所定値Tr0以上であると判断すると、三方弁10bを低圧側流路に切り替えさせ、室外側絞り装置11bを暖房用開度に設定させる(STEP38)。そして、STEP32に戻って処理を続ける。
 以上のように、実施の形態3の空気調和装置によれば、室外機51に複数の室外側熱交換器3を並列に配管接続し、制御手段300が三方弁12a、12bの切り替え及びバイパス開閉弁8の開閉を制御して、除霜用バイパス配管10を介して各室外側熱交換器3に順次ホットガスを流入させて除霜を行わせるようにしたので、室外機51が1台であっても全暖房運転、暖房主体運転を継続しながら除霜運転を実施できる。このため、除霜運転を実施しながらも、室内機53側の冷暖房を停止することなく、快適な室温環境を保つことができる。そして、室外機51が1台であるため、コストを抑えることができる。また、設置スペースを小さくすることができる。このとき、全暖房運転及び暖房主体運転において、除霜する室外側熱交換器3に供給される高温・高圧のガス冷媒の凝縮に係る熱量を、霜を融解するために利用でき、効率よく短時間で除霜運転を完了することができる。このため、省エネルギ化をはかることができ、また、快適性を向上させることができる。また、三方弁12a、12bを用いて、弁の数を減らすことができるため、回路を簡素化することができる。また、弁における圧力損失を小さくすることができるため、効率の向上にもつながる。
 実施の形態4.
 上述の実施の形態1では、制御手段300が第2流路開閉弁7とバイパス開閉弁8とを連動させて制御し、室外側熱交換器3に流入する冷媒について、除霜用バイパス配管10からの冷媒と、室内機53(分流コントローラ)側からの冷媒との切り替えを行うようにしたが、これに限定するものではない。例えば、第2流路開閉弁7及びバイパス開閉弁8の代わりに、実施の形態3と同様の三方弁を用いて、冷媒の切り替えを行うようにしてもよい。
 実施の形態5.
 上述の各実施の形態の空気調和装置は、室外熱交換器3a及び室外熱交換器3bの2台の室外熱交換器3を並列にして構成したが、3台以上としても同様の効果を有する。また、各室外熱交換器3の熱交換に係る性能を同じにしてもよいし、異なるようにしてもよい。また、図1等においては、室外熱交換器3の冷媒の流入出等を制御するための第1流路開閉弁6、第2流路開閉弁7、バイパス開閉弁8、室外側絞り装置11をそれぞれ1つずつ設置するようにしたが個数は限定しない。また、熱交換に係る熱量が少ない等のような場合には、弁の開閉状態を切り替えることで、各室外熱交換器3への冷媒の流入出を制御するようにしてもよい。
 実施の形態6.
 上述の実施の形態では、冷暖房同時運転が可能な空気調和装置について説明したが、本発明はこれに限定するものではない。例えば、冷房主体運転、暖房主体運転を行わない冷媒回路構成の空気調和装置についても適用することができる。また、対象空間を暖める暖房装置等についても適用することができる。

Claims (7)

  1.  冷媒を加圧して吐出する圧縮機、外気と冷媒との熱交換を行う複数の室外側熱交換器及び運転形態に基づいて流路を切り替える流路切替手段を有する室外機と、
     空調対象空間の空気と冷媒との熱交換を行う室内側熱交換器及び室内側流量制御手段を有する複数の室内機と
    を配管接続して冷媒回路を構成する空気調和装置であって、
     前記圧縮機が吐出した冷媒を分流させ、並列に配管接続した各室外側熱交換器にそれぞれ流入させるためのバイパス配管と、
     前記各室外側熱交換器への該バイパス配管からの冷媒の通過又は遮断を行う複数のバイパス開閉手段と、
     前記各室外側熱交換器への前記室内機からの冷媒の通過又は遮断を行う複数の流路開閉手段と
    を前記室外機に備えることを特徴とする空気調和装置。
  2.  各バイパス開閉手段の閉止及び各流路開閉手段の開放を制御して前記バイパス配管を通過した冷媒を各室外側熱交換器に順次流入させ、該室外側熱交換器の除霜を行わせる制御手段をさらに備えることを特徴とする請求項1に記載の空気調和装置。
  3.  少なくとも前記流路開閉手段の代わりに、前記冷媒の流量を調整するための流量調整手段を用いることを特徴とする請求項1又は請求項2に記載の空気調和装置。
  4.  冷媒を加圧して吐出する圧縮機、外気と冷媒との熱交換を行う複数の室外側熱交換器及び運転形態に基づいて流路を切り替える第1の流路切替手段を有する室外機と、
     空調対象空間の空気と冷媒との熱交換を行う室内側熱交換器及び室内側流量制御手段を有する複数の室内機と
    を配管接続して冷媒回路を構成する空気調和装置であって、
     前記圧縮機が吐出した冷媒を分流させ、並列に配管接続した各室外側熱交換器にそれぞれ流入させるためのバイパス配管と、
     該バイパス配管を通過した冷媒又は前記室内機からの冷媒のいずれかを、前記各室外側熱交換器に流入させるための切り替えを行う複数の第2の流路切替手段と
    を前記室外機に備えることを特徴とする空気調和装置。
  5.  各第2の流路切替手段の切替を制御して前記バイパス配管を通過した冷媒を各室外側熱交換器に順次流入させ、該室外側熱交換器の除霜を行わせる制御手段をさらに備えることを特徴とする請求項4に記載の空気調和装置。
  6.  前記圧縮機の吐出側及び吸入側の圧力を検出するための圧力検出手段と、
     前記圧縮機の吐出側及び吸入側の圧力がそれぞれ目標値となるように、前記圧力検出手段の検出に係る圧縮機の吐出側及び吸入側の圧力の値に基づいて、前記圧縮機による冷媒の吐出量及び前記複数の室外側熱交換器における総熱交換量を決定する制御手段を
    さらに備えることを特徴とする請求項1~請求項5のいずれかに記載の空気調和装置。
  7.  各室内機の室内側熱交換器を流れる冷媒の温度が、所定の時間以上、所定の温度以下であると判断すると、対応する室内機の室内側熱交換器への冷媒の流入を停止させる制御手段をさらに備えることを特徴とする請求項1~請求項6のいずれかに記載の空気調和装置。
PCT/JP2009/050412 2009-01-15 2009-01-15 空気調和装置 WO2010082325A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/050412 WO2010082325A1 (ja) 2009-01-15 2009-01-15 空気調和装置
CN200980153882.2A CN102272534B (zh) 2009-01-15 2009-01-15 空气调节装置
JP2010546507A JPWO2010082325A1 (ja) 2009-01-15 2009-01-15 空気調和装置
EP09838295.5A EP2378215B1 (en) 2009-01-15 2009-01-15 Air conditioner
US13/132,092 US9506674B2 (en) 2009-01-15 2009-01-15 Air conditioner including a bypass pipeline for a defrosting operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/050412 WO2010082325A1 (ja) 2009-01-15 2009-01-15 空気調和装置

Publications (1)

Publication Number Publication Date
WO2010082325A1 true WO2010082325A1 (ja) 2010-07-22

Family

ID=42339594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050412 WO2010082325A1 (ja) 2009-01-15 2009-01-15 空気調和装置

Country Status (5)

Country Link
US (1) US9506674B2 (ja)
EP (1) EP2378215B1 (ja)
JP (1) JPWO2010082325A1 (ja)
CN (1) CN102272534B (ja)
WO (1) WO2010082325A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183108A (zh) * 2011-05-06 2011-09-14 广东美的暖通设备有限公司 三管制热回收系统的除霜方法
US20130019613A1 (en) * 2011-07-18 2013-01-24 Samsung Electronics Co., Ltd Multi-type air conditioner
WO2014083867A1 (ja) * 2012-11-29 2014-06-05 三菱電機株式会社 空気調和装置
WO2014083650A1 (ja) 2012-11-29 2014-06-05 三菱電機株式会社 空気調和装置
WO2015059792A1 (ja) 2013-10-24 2015-04-30 三菱電機株式会社 空気調和装置
WO2015059945A1 (ja) * 2013-10-24 2015-04-30 三菱電機株式会社 空気調和装置
WO2015129080A1 (ja) * 2014-02-27 2015-09-03 三菱電機株式会社 熱源側ユニット及び冷凍サイクル装置
WO2017006596A1 (ja) * 2015-07-06 2017-01-12 三菱電機株式会社 冷凍サイクル装置
CN107036186A (zh) * 2017-04-18 2017-08-11 海信(山东)空调有限公司 一种家用空调器系统
WO2017138108A1 (ja) * 2016-02-10 2017-08-17 三菱電機株式会社 空気調和装置
WO2017199289A1 (ja) * 2016-05-16 2017-11-23 三菱電機株式会社 空気調和装置
KR102076688B1 (ko) * 2019-08-19 2020-02-12 함용한 냉방 운전 중 동시 제상이 가능한 항온 공조기
JP6661843B1 (ja) * 2019-03-25 2020-03-11 三菱電機株式会社 空気調和装置
KR102121169B1 (ko) * 2020-02-06 2020-06-09 함용한 냉방 운전 중 동시 제상이 가능한 항온 공조기
KR102121171B1 (ko) * 2020-02-06 2020-06-09 함용한 냉방 운전 중 동시 제상이 가능한 항온 공조기
KR102121170B1 (ko) * 2020-02-06 2020-06-09 함용한 냉방 운전 중 동시 제상이 가능한 항온 공조기
KR102136046B1 (ko) * 2020-02-06 2020-07-20 함용한 냉방 운전 중 동시 제상이 가능한 항온 공조기
KR102136047B1 (ko) * 2020-02-06 2020-07-20 함용한 냉방 운전 중 동시 제상이 가능한 항온 공조기
KR102136048B1 (ko) * 2020-02-06 2020-07-20 함용한 냉방 운전 중 동시 제상이 가능한 항온 공조기
JP2021509945A (ja) * 2017-12-29 2021-04-08 青島海尓空調器有限総公司Qingdao Haier Air Conditioner General Corp.,Ltd. 空調機システム
WO2022160764A1 (zh) * 2021-01-29 2022-08-04 青岛海尔空调器有限总公司 用于空调系统除霜控制的方法及装置、空调系统
CN115419943A (zh) * 2022-09-28 2022-12-02 海信空调有限公司 空调器
CN115560431A (zh) * 2022-09-23 2023-01-03 青岛海尔空调器有限总公司 用于空调器的控制方法
WO2023112831A1 (ja) * 2021-12-17 2023-06-22 ダイキン工業株式会社 換気装置、及び換気方法

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077166A1 (ja) * 2010-12-09 2012-06-14 三菱電機株式会社 空気調和装置
US9732992B2 (en) * 2011-01-27 2017-08-15 Mitsubishi Electric Corporation Air-conditioning apparatus for preventing the freezing of non-azeotropic refrigerant
WO2013102953A1 (ja) 2012-01-05 2013-07-11 三菱電機株式会社 空気調和装置
EP2905552B1 (en) * 2012-10-01 2019-04-17 Mitsubishi Electric Corporation Air conditioning device
JP5911590B2 (ja) * 2012-10-10 2016-04-27 三菱電機株式会社 空気調和装置
CN103791569B (zh) * 2012-10-30 2016-10-05 珠海格力电器股份有限公司 热泵式空调系统
US9488384B2 (en) * 2013-03-22 2016-11-08 Carrier Corporation Heat pump water module with condensing coil in water storage tank
WO2014192140A1 (ja) * 2013-05-31 2014-12-04 三菱電機株式会社 空気調和装置
CN104236155B (zh) * 2013-06-20 2016-12-28 青岛海尔空调电子有限公司 具有冷媒过冷、除霜制热功能的空调系统及其控制方法
CN103759455B (zh) * 2014-01-27 2015-08-19 青岛海信日立空调系统有限公司 热回收变频多联式热泵系统及其控制方法
US10161652B2 (en) * 2014-04-04 2018-12-25 Mitsubishi Electric Corporation Air-conditioning apparatus
JP6201872B2 (ja) * 2014-04-16 2017-09-27 三菱電機株式会社 空気調和機
US10393408B2 (en) 2014-04-22 2019-08-27 Mitsubishi Electric Corporation Air conditioner
KR20160055583A (ko) * 2014-11-10 2016-05-18 삼성전자주식회사 히트 펌프
CN107110547B (zh) * 2015-01-13 2019-08-20 三菱电机株式会社 制冷循环装置
CN104896675B (zh) * 2015-06-12 2017-12-08 广东美的暖通设备有限公司 多联机系统的回气过热度测试方法和多联机系统
CN104896682B (zh) * 2015-06-30 2017-12-08 广东美的暖通设备有限公司 温湿双控型多联机系统及其的控制方法
CN105115196B (zh) * 2015-07-06 2018-04-06 广东美的暖通设备有限公司 多联机系统的再冷却回路流量控制方法和装置
CN105115199B (zh) * 2015-07-06 2017-10-31 广东美的暖通设备有限公司 多联机系统的冷媒分流控制方法和装置
CN105066539B (zh) * 2015-07-16 2018-07-10 广东美的暖通设备有限公司 多联机系统及其电子膨胀阀控制方法
CN104964371B (zh) * 2015-07-23 2017-07-21 广东美的暖通设备有限公司 组合式空调系统
KR102359300B1 (ko) * 2015-07-28 2022-02-08 엘지전자 주식회사 냉장고
JP2017036882A (ja) * 2015-08-10 2017-02-16 三菱重工業株式会社 ヒートポンプシステム
US10415860B2 (en) * 2015-09-09 2019-09-17 Mitsubishi Electric Corporation Air-conditioning apparatus
JP6615222B2 (ja) * 2015-12-02 2019-12-04 三菱電機株式会社 空気調和装置
JP6252606B2 (ja) * 2016-01-15 2017-12-27 ダイキン工業株式会社 冷凍装置
KR102015031B1 (ko) * 2016-01-28 2019-10-21 엘지전자 주식회사 공기조화기
CN109312946B (zh) * 2016-06-21 2020-10-16 三菱电机株式会社 除霜判断设备、除霜控制设备以及空调机
CN106403081B (zh) * 2016-09-07 2019-08-27 广东美的暖通设备有限公司 多联机及其控制方法
CN106524336B (zh) 2016-11-07 2019-04-30 广东美的暖通设备有限公司 多联机系统及其防回液控制方法
CN107255306B (zh) * 2017-05-19 2023-02-17 海信空调有限公司 一种组合式变频空调及其控制方法
EP3647672B1 (en) * 2017-06-27 2022-05-18 Mitsubishi Electric Corporation Air conditioner
CN108302839A (zh) * 2017-12-29 2018-07-20 青岛海尔空调器有限总公司 空调器系统
CN108375248A (zh) * 2017-12-29 2018-08-07 青岛海尔空调器有限总公司 空调器系统
WO2019146070A1 (ja) * 2018-01-26 2019-08-01 三菱電機株式会社 冷凍サイクル装置
JP7034272B2 (ja) 2018-05-11 2022-03-11 三菱電機株式会社 冷凍サイクル装置
JP6965462B2 (ja) * 2018-12-11 2021-11-10 三菱電機株式会社 空気調和装置
EP3919835A4 (en) * 2019-01-28 2022-01-19 Mitsubishi Electric Corporation AIR CONDITIONER
KR20200114031A (ko) * 2019-03-27 2020-10-07 엘지전자 주식회사 공기조화 장치
JP6594599B1 (ja) * 2019-04-11 2019-10-23 三菱電機株式会社 空気調和装置
KR102688988B1 (ko) * 2019-05-23 2024-07-29 엘지전자 주식회사 공기조화장치
US11927376B2 (en) * 2019-07-25 2024-03-12 Mitsubishi Electric Corporation Refrigeration cycle apparatus
KR20210096522A (ko) * 2020-01-28 2021-08-05 엘지전자 주식회사 공기 조화 장치
CN113513863A (zh) * 2020-04-09 2021-10-19 开利公司 室外机组及热泵系统
JP7317224B2 (ja) * 2020-04-30 2023-07-28 三菱電機株式会社 冷凍サイクル装置
CN111692639A (zh) * 2020-06-29 2020-09-22 广东积微科技有限公司 一种多联热回收的空调系统及其控制方法
CN112443997A (zh) * 2020-11-30 2021-03-05 青岛海信日立空调系统有限公司 空调器
CN112444000A (zh) * 2020-11-30 2021-03-05 青岛海信日立空调系统有限公司 空调器
CN112611027B (zh) * 2021-01-05 2024-08-20 格力电器(合肥)有限公司 空调系统和空调系统的控制方法
CN113007865B (zh) * 2021-04-20 2022-09-20 广东积微科技有限公司 一种多室外机并联式不换向除霜系统及其除霜控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233471A (ja) * 1984-05-07 1985-11-20 松下電器産業株式会社 ヒ−トポンプ式冷暖房装置
JPH04110576A (ja) * 1990-08-31 1992-04-13 Toshiba Corp ヒートポンプ式空気調和装置
JPH06257902A (ja) * 1993-03-01 1994-09-16 Matsushita Refrig Co Ltd 多室型空気調和機
JP2007271094A (ja) 2006-03-30 2007-10-18 Mitsubishi Electric Corp 空気調和装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576011A (en) * 1982-11-01 1986-03-18 Electric Power Research Institute Air conditioning system and method of operation
JPH0799297B2 (ja) * 1986-06-25 1995-10-25 株式会社日立製作所 空気調和機
JPH01247972A (ja) 1988-03-28 1989-10-03 Sanyo Electric Co Ltd 冷凍回路の除霜制御方法
JP3062824B2 (ja) * 1990-11-21 2000-07-12 株式会社日立製作所 空気調和システム
JPH05215437A (ja) 1992-01-23 1993-08-24 Matsushita Refrig Co Ltd 多室型空気調和機
JPH08303883A (ja) * 1995-04-28 1996-11-22 Matsushita Seiko Co Ltd 空気調和機の室外送風機の制御方法
JPH09119754A (ja) 1995-10-27 1997-05-06 Hitachi Ltd 空気調和機
JPH09229500A (ja) * 1995-12-27 1997-09-05 Mando Mach Co Ltd 多室エアコン
EP0904963A3 (en) * 1997-09-26 2001-10-31 Delphi Technologies, Inc. Air conditioning system for a motor vehicle
JPH11337234A (ja) 1998-05-29 1999-12-10 Matsushita Refrig Co Ltd 冷暖房装置
EP1197710B1 (en) * 2000-10-13 2006-09-27 Eaton-Williams Group Limited Heat pump equipment
KR100502304B1 (ko) 2002-10-21 2005-07-20 위니아만도 주식회사 인버터압축기를 갖는 공기조화기 및 그 제어방법
US20050257558A1 (en) * 2002-11-26 2005-11-24 Daikin Industries, Ltd. Heat exchanger for air and freezer device
KR100463548B1 (ko) * 2003-01-13 2004-12-29 엘지전자 주식회사 공기조화기용 제상장치
JP4393786B2 (ja) 2003-04-10 2010-01-06 三菱電機株式会社 冷凍または空気調和装置及びその更新方法
JP4303032B2 (ja) 2003-05-20 2009-07-29 三星電子株式会社 空気調和装置
JP2005233451A (ja) 2004-02-17 2005-09-02 Sanyo Electric Co Ltd 空気調和装置
US7628027B2 (en) * 2005-07-19 2009-12-08 Hussmann Corporation Refrigeration system with mechanical subcooling
DE102006024796B4 (de) * 2006-03-17 2009-11-26 Konvekta Ag Klimaanlage
JP4110576B2 (ja) * 2006-07-06 2008-07-02 株式会社ユーテック Cvd用気化器、溶液気化式cvd装置及びcvd用気化方法
KR101176482B1 (ko) * 2006-10-19 2012-08-22 엘지전자 주식회사 냉난방 동시형 멀티 공기조화기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233471A (ja) * 1984-05-07 1985-11-20 松下電器産業株式会社 ヒ−トポンプ式冷暖房装置
JPH04110576A (ja) * 1990-08-31 1992-04-13 Toshiba Corp ヒートポンプ式空気調和装置
JPH06257902A (ja) * 1993-03-01 1994-09-16 Matsushita Refrig Co Ltd 多室型空気調和機
JP2007271094A (ja) 2006-03-30 2007-10-18 Mitsubishi Electric Corp 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2378215A4

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183108A (zh) * 2011-05-06 2011-09-14 广东美的暖通设备有限公司 三管制热回收系统的除霜方法
US20130019613A1 (en) * 2011-07-18 2013-01-24 Samsung Electronics Co., Ltd Multi-type air conditioner
EP2549203A3 (en) * 2011-07-18 2017-08-02 Samsung Electronics Co., Ltd. Multi-Type Air Conditioner
US9513034B2 (en) * 2011-07-18 2016-12-06 Samsung Electronics Co., Ltd. Multi-type air conditioner
JP6021940B2 (ja) * 2012-11-29 2016-11-09 三菱電機株式会社 空気調和装置
WO2014083867A1 (ja) * 2012-11-29 2014-06-05 三菱電機株式会社 空気調和装置
WO2014083650A1 (ja) 2012-11-29 2014-06-05 三菱電機株式会社 空気調和装置
US10001317B2 (en) 2012-11-29 2018-06-19 Mitsubishi Electric Corporation Air-conditioning apparatus providing defrosting without suspending a heating operation
JPWO2014083867A1 (ja) * 2012-11-29 2017-01-05 三菱電機株式会社 空気調和装置
WO2015059945A1 (ja) * 2013-10-24 2015-04-30 三菱電機株式会社 空気調和装置
JP6017058B2 (ja) * 2013-10-24 2016-10-26 三菱電機株式会社 空気調和装置
JP5992112B2 (ja) * 2013-10-24 2016-09-14 三菱電機株式会社 空気調和装置
JPWO2015059945A1 (ja) * 2013-10-24 2017-03-09 三菱電機株式会社 空気調和装置
JPWO2015059792A1 (ja) * 2013-10-24 2017-03-09 三菱電機株式会社 空気調和装置
WO2015059792A1 (ja) 2013-10-24 2015-04-30 三菱電機株式会社 空気調和装置
JP6022058B2 (ja) * 2014-02-27 2016-11-09 三菱電機株式会社 熱源側ユニット及び冷凍サイクル装置
JPWO2015129080A1 (ja) * 2014-02-27 2017-03-30 三菱電機株式会社 熱源側ユニット及び冷凍サイクル装置
WO2015129080A1 (ja) * 2014-02-27 2015-09-03 三菱電機株式会社 熱源側ユニット及び冷凍サイクル装置
US10018388B2 (en) 2014-02-27 2018-07-10 Mitsubishi Electric Corporation Heat source side unit and refrigeration cycle apparatus
WO2017006596A1 (ja) * 2015-07-06 2017-01-12 三菱電機株式会社 冷凍サイクル装置
JPWO2017006596A1 (ja) * 2015-07-06 2017-10-26 三菱電機株式会社 冷凍サイクル装置
WO2017138108A1 (ja) * 2016-02-10 2017-08-17 三菱電機株式会社 空気調和装置
JPWO2017199289A1 (ja) * 2016-05-16 2018-11-22 三菱電機株式会社 空気調和装置
WO2017199289A1 (ja) * 2016-05-16 2017-11-23 三菱電機株式会社 空気調和装置
GB2563776B (en) * 2016-05-16 2020-11-04 Mitsubishi Electric Corp Air conditioning apparatus
GB2563776A (en) * 2016-05-16 2018-12-26 Mitsubishi Electric Corp Air conditioning device
DE112016006864T5 (de) 2016-05-16 2019-02-14 Mitsubishi Electric Corporation Klimaanlage
DE112016006864B4 (de) 2016-05-16 2023-02-16 Mitsubishi Electric Corporation Klimaanlage
US10808976B2 (en) 2016-05-16 2020-10-20 Mitsubishi Electric Corporation Air-conditioning apparatus
CN107036186A (zh) * 2017-04-18 2017-08-11 海信(山东)空调有限公司 一种家用空调器系统
JP7175985B2 (ja) 2017-12-29 2022-11-21 青島海尓空調器有限総公司 空調機システム
JP2021509945A (ja) * 2017-12-29 2021-04-08 青島海尓空調器有限総公司Qingdao Haier Air Conditioner General Corp.,Ltd. 空調機システム
JP6661843B1 (ja) * 2019-03-25 2020-03-11 三菱電機株式会社 空気調和装置
SE545954C2 (en) * 2019-03-25 2024-03-26 Mitsubishi Electric Corp An air-conditioning apparatus comprising a plurality of parallel heat exchangers and configured to adjust the refrigerant flow rate to defrost one of said heat exchangers
WO2020194435A1 (ja) * 2019-03-25 2020-10-01 三菱電機株式会社 空気調和装置
KR102076688B1 (ko) * 2019-08-19 2020-02-12 함용한 냉방 운전 중 동시 제상이 가능한 항온 공조기
KR102121169B1 (ko) * 2020-02-06 2020-06-09 함용한 냉방 운전 중 동시 제상이 가능한 항온 공조기
KR102136048B1 (ko) * 2020-02-06 2020-07-20 함용한 냉방 운전 중 동시 제상이 가능한 항온 공조기
KR102136047B1 (ko) * 2020-02-06 2020-07-20 함용한 냉방 운전 중 동시 제상이 가능한 항온 공조기
KR102136046B1 (ko) * 2020-02-06 2020-07-20 함용한 냉방 운전 중 동시 제상이 가능한 항온 공조기
KR102121170B1 (ko) * 2020-02-06 2020-06-09 함용한 냉방 운전 중 동시 제상이 가능한 항온 공조기
KR102121171B1 (ko) * 2020-02-06 2020-06-09 함용한 냉방 운전 중 동시 제상이 가능한 항온 공조기
WO2022160764A1 (zh) * 2021-01-29 2022-08-04 青岛海尔空调器有限总公司 用于空调系统除霜控制的方法及装置、空调系统
WO2023112831A1 (ja) * 2021-12-17 2023-06-22 ダイキン工業株式会社 換気装置、及び換気方法
JP2023090577A (ja) * 2021-12-17 2023-06-29 ダイキン工業株式会社 換気装置、及び換気方法
JP7436877B2 (ja) 2021-12-17 2024-02-22 ダイキン工業株式会社 換気装置、及び換気方法
CN115560431A (zh) * 2022-09-23 2023-01-03 青岛海尔空调器有限总公司 用于空调器的控制方法
CN115419943A (zh) * 2022-09-28 2022-12-02 海信空调有限公司 空调器

Also Published As

Publication number Publication date
US20110232308A1 (en) 2011-09-29
JPWO2010082325A1 (ja) 2012-06-28
US9506674B2 (en) 2016-11-29
EP2378215B1 (en) 2022-01-12
EP2378215A1 (en) 2011-10-19
CN102272534B (zh) 2014-12-10
EP2378215A4 (en) 2018-03-21
CN102272534A (zh) 2011-12-07

Similar Documents

Publication Publication Date Title
WO2010082325A1 (ja) 空気調和装置
JP5213817B2 (ja) 空気調和機
EP3388758A1 (en) Heat-pump air conditioner
JP5901107B2 (ja) マルチ型空気調和システム
WO2016113850A1 (ja) 空気調和装置
JP6285172B2 (ja) 空気調和機の室外機
CN112444000A (zh) 空调器
JP5258197B2 (ja) 空気調和システム
CN112443999A (zh) 一种空调器
CN112444001A (zh) 空调器
CN112443997A (zh) 空调器
JP2010276239A (ja) 冷凍空気調和装置
JP6052456B2 (ja) 冷凍装置
CN213841111U (zh) 空调器
WO2006013861A1 (ja) 冷凍装置
JP2006284035A (ja) 空気調和装置およびその制御方法
JP6448780B2 (ja) 空気調和装置
JP2017194201A (ja) 空気調和機
WO2021065156A1 (ja) 熱源ユニット及び冷凍装置
JP2018173197A (ja) 冷凍装置
JP2013108729A (ja) 空気調和装置
JP5424705B2 (ja) 冷凍空気調和装置
CN112444003A (zh) 空调器
CN112443998A (zh) 空调器
JP2007298188A (ja) 冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980153882.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838295

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010546507

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009838295

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13132092

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE