Nothing Special   »   [go: up one dir, main page]

WO2009119765A1 - 無線通信装置および通信装置 - Google Patents

無線通信装置および通信装置 Download PDF

Info

Publication number
WO2009119765A1
WO2009119765A1 PCT/JP2009/056178 JP2009056178W WO2009119765A1 WO 2009119765 A1 WO2009119765 A1 WO 2009119765A1 JP 2009056178 W JP2009056178 W JP 2009056178W WO 2009119765 A1 WO2009119765 A1 WO 2009119765A1
Authority
WO
WIPO (PCT)
Prior art keywords
handover
wireless communication
communication network
unit
time
Prior art date
Application number
PCT/JP2009/056178
Other languages
English (en)
French (fr)
Inventor
知津子 長澤
空悟 守田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2010505794A priority Critical patent/JP5002707B2/ja
Priority to US12/934,586 priority patent/US20110026494A1/en
Publication of WO2009119765A1 publication Critical patent/WO2009119765A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface

Definitions

  • the present invention relates to a wireless communication apparatus capable of performing handover between different wireless communication networks, and a communication apparatus communicating with the wireless communication apparatus.
  • IP mobility technology that enables handover between different wireless communication networks, such as mobile phone networks and wireless LANs, in order to realize a ubiquitous environment.
  • mobile IP Mobile IPv4 and Mobile IPv6
  • NEMO Network Mobility
  • a mobile node MN: Mobile Node
  • the home agent HA: Home Agent
  • CoA Care of
  • CN counterpart node
  • an MBB Make-Before-Break method in which a handover destination network is connected before disconnecting the handover source network, or a handover destination network is connected after disconnecting the handover source network.
  • a BBM Block-Before-Make
  • the HA receives Registration Request (Binding Update in NEMO) that is handover request information from the MN, and registers the handover destination CoA. Communication is performed between the MN and the CN via the wireless communication network. Further, the MN receives Registration Reply (Binding Acknowledge in NEMO), which is handover completion information returned from the HA, and disconnects from the handover source wireless communication network. Communication is performed via a wireless communication network.
  • the MN transmits a packet from the handover source wireless communication network.
  • the absolute delay time of the handover source downlink is longer than the absolute delay time of the handover destination downlink
  • the wireless communication network is switched based on the handover completion information from the handover destination, after the switching, the packet transmitted from the HA via the handover source wireless communication network is disconnected from the handover source wireless communication network.
  • the packet cannot be received and the packet is lost.
  • the lost amount of this packet increases as the absolute delay time of the downlink from the HA to the MN in the handover source wireless communication network is longer than that in the handover destination wireless communication network.
  • a first object of the present invention made in view of such a point is to provide a wireless communication apparatus that can be handed over to a different wireless communication network without causing packet loss and can always maintain stable reproduction quality and real-time performance. There is.
  • a second object of the present invention is to provide a communication device that can transmit a packet without causing packet loss to a wireless communication device handed over to a different wireless communication network, and can always maintain stable reproduction quality and real-time performance. It is to provide.
  • the invention of the wireless communication apparatus for achieving the first object is as follows: A wireless communication unit that performs wireless communication by connecting to a first wireless communication network and a second wireless communication network different from the first wireless communication network; An execution unit that executes an application of a real-time communication system via the wireless communication unit; A communication quality acquisition unit for acquiring communication quality of a radio link in the first wireless communication network while executing the application by connecting to the first wireless communication network; A determination unit that determines whether to start preparation for handover from the first wireless communication network to the second wireless communication network based on the communication quality acquired by the communication quality acquisition unit; When the determination unit determines the start of handover preparation, the data is transmitted through the first wireless communication network, the data is stored for a predetermined time, and after the handover, the stored data is transferred to the second wireless communication network.
  • a control unit controlling to transmit via, It is characterized by providing.
  • the invention according to a second aspect is the wireless communication device according to the first aspect,
  • an estimation unit that estimates a handover preparation time until the handover is started based on the communication quality acquired by the communication quality acquisition unit;
  • a measurement unit that measures respective delay times in the first wireless communication network and the second wireless communication network, and
  • the control unit accumulates the data based on respective delay times in the first wireless communication network and the second wireless communication network measured by the measurement unit and the handover preparation time estimated by the estimation unit. It is characterized by determining a start time to be performed.
  • the invention according to a third aspect is the wireless communication device according to the first aspect,
  • a measurement unit that measures respective delay times in the first wireless communication network and the second wireless communication network, and
  • the control unit determines a predetermined time for storing the data based on respective delay times in the first wireless communication network and the second wireless communication network measured by the measurement unit. is there.
  • the invention according to a fourth aspect is the wireless communication device according to the first, second or third aspect, An encoding unit for encoding transmission data;
  • the encoding unit encodes the accumulated data at a rate lower than an encoding bit rate before the determination unit determines start of handover preparation.
  • the invention of the communication device is as follows: A communication unit that connects to a communication network and executes communication; An execution unit that executes an application of a real-time communication system via the communication unit; When a wireless communication device that is a communication partner of the application receives handover information from the wireless communication device that performs handover from the first wireless communication network in communication to a second wireless communication network different from the first wireless communication network, A control unit for transmitting data via a communication network, storing the data for a predetermined time, and controlling the stored data to be transmitted to the wireless communication device after handover of the wireless communication device; It is characterized by providing.
  • the invention according to a sixth aspect is the communication apparatus according to the fifth aspect,
  • the control unit based on the handover preparation time, the delay time in the first radio communication network and the second radio communication network, and the delay time in the communication network, included in the handover information, A start time for storing the data is determined.
  • the invention according to a seventh aspect is the communication apparatus according to the fifth aspect,
  • the control unit determines a predetermined time for storing the data based on respective delay times in the first wireless communication network and the second wireless communication network included in the handover information. Is.
  • the invention according to an eighth aspect is the communication apparatus according to the sixth aspect,
  • the control unit determines a predetermined time for storing the data based on respective delay times in the first wireless communication network and the second wireless communication network included in the handover information. Is.
  • the invention according to a ninth aspect is the communication device according to the fifth, sixth, seventh or eighth aspect, An encoding unit for encoding transmission data;
  • the encoding unit encodes the accumulated data at a rate lower than an encoding bit rate before receiving the handover information.
  • the wireless communication device of the present invention determines to start preparation for handover from the first wireless communication network to the second wireless communication network, transmits data via the first wireless communication network and stores the data for a predetermined time. Then, the stored data is transmitted via the second wireless communication network after the handover. Therefore, it is possible to accumulate while transmitting data for a predetermined time that is thought to be lost due to handover, and transmit the accumulated data after the handover. As a result, handover to a different wireless communication network can be performed without causing packet loss, and stable reproduction quality and real-time performance can always be maintained.
  • the communication apparatus of the present invention receives information on handover from the first wireless communication network with which the wireless communication apparatus is communicating to another second wireless communication network from the wireless communication apparatus that is the communication partner, While transmitting data to the communication device, the data is stored for a predetermined time, and the stored data is transmitted after the handover of the wireless communication device. Therefore, based on the handover information from the wireless communication device, the wireless communication device accumulates while transmitting data for a predetermined time that is considered to be lost when the wireless communication device hands over to a different wireless communication network, and the stored data is handed over. Can be sent later. As a result, stable reproduction quality and real-time performance can always be maintained without causing packet loss.
  • FIG. 3 is a diagram for explaining a method for calculating a handover preparation time by the handover control unit shown in FIG. 2. It is a figure for demonstrating an example of the absolute delay time acquisition method.
  • FIG. 3 is a diagram illustrating an example of a conversion table between radio conditions and throughput stored in a handover control unit illustrated in FIG. 2.
  • FIG. 2 is a sequence diagram for explaining a handover process between the wireless communication apparatus shown in FIG. 1 and an HA. It is a figure for demonstrating generation
  • FIG. 4 is a flowchart showing an operation at the time of handover by a transmission control unit shown in FIG. 3.
  • FIG. It is a figure which shows the state of the transmission / reception packet between communication apparatuses when the radio
  • FIG. 2 is a sequence diagram illustrating a flow of handover information between the wireless communication device, the HA, and the communication device illustrated in FIG. 1.
  • 15 is a flowchart showing an operation of a reproduction speed calculation unit shown in FIG. It is a figure for demonstrating the reproduction
  • FIG. 15 is a diagram for describing an example of a reception packet reproduction rate control method by the jitter buffer control unit illustrated in FIG. 14. It is a figure which shows schematic structure of the communication network which can use the communication apparatus which concerns on 2nd Embodiment of this invention. It is a block diagram which shows schematic structure of the radio
  • FIG. 31 is a sequence diagram showing an operation of a main part of the telephone function unit shown in FIG. 30. It is a figure for demonstrating the reproduction
  • FIG. 1 is a diagram showing a schematic configuration of a communication network that can be used by the wireless communication apparatus according to the first embodiment of the present invention.
  • a wireless communication device (MN) 11 that is a mobile node makes a call with a communication device (CN) 12 that is an opposite node by VoIP that is a real-time communication system application.
  • the wireless communication device 11 can be handed over between the first wireless communication network 15 and the second wireless communication network 16.
  • the first wireless communication network 15 and the second wireless communication network 16 are coupled to the Internet 18.
  • the first wireless communication network 15 is assumed to be, for example, a mobile phone network of cdma2000 1xEV-DO (Code Division Multiple Access 2000-1x Evolution Data Only), and the second wireless communication network 16 is, for example, a wireless LAN (Local Area Network). ) Is assumed. It is assumed that the uplink absolute delay time in the second radio communication network 16 is shorter than the uplink absolute delay time in the first radio communication network 15.
  • reference numeral 15 a indicates a base station of the first wireless communication network 15, and reference numeral 16 a indicates an access point of the second wireless communication network 16.
  • the communication device 12 includes, for example, a personal computer to which a handset 12a is connected and a softphone as a telephone function unit is installed, and is connected to the Internet 18 through an Internet service provider (not shown).
  • SIP Session Initiation Protocol
  • SIP server 21 and 22 for controlling communication are connected to the first wireless communication network 15 and the second wireless communication network 16, respectively.
  • a home agent (HA) 23 that transfers a received packet addressed to the wireless communication device 11 to the wireless communication network to which the wireless communication device 11 is connected and a SIP server 24 that controls communication are connected to the Internet 18.
  • the home address used in the wireless communication network to which the wireless communication apparatus 11 originally belongs is registered in the HA 23, and the IP address of the handover destination wireless communication network is taken care of (CoA: care) at the time of handover.
  • CoA care
  • handover between different wireless communication networks becomes possible.
  • IP mobility technology is well known in the above-described mobile IP and NEMO, and thus detailed description thereof is omitted here.
  • the wireless communication device 11 registers the IP address of the first wireless communication network 15 in the HA 23 as a care-of address (first wireless CoA), and communicates with the communication device 12 via the first wireless communication network 15. It is assumed that handover is performed from the current state to the second wireless communication network 16.
  • FIG. 2 is a functional block diagram showing a schematic configuration of the wireless communication apparatus 11 according to the present embodiment shown in FIG.
  • the wireless communication device 11 executes a first wireless I / F (interface) 31 corresponding to the first wireless communication network 15, a second wireless I / F 32 corresponding to the second wireless communication network 16, and a VoIP application.
  • the wireless information of the telephone function unit 33, the communication processing unit 34 that controls connection to the first wireless communication network 15 and the second wireless communication network 16, and the wireless information of the first wireless communication network 15 and the second wireless communication network 16 is acquired.
  • a wireless information acquisition unit 35; and a handover control unit 36 that controls a handover between the first wireless communication network 15 and the second wireless communication network 16.
  • the communication processing unit 34 constitutes a wireless communication unit that performs wireless communication, and calls between the telephone function unit 33 and the communication device 12 via the first wireless communication network 15 or the second wireless communication network 16. And the connection of the first wireless I / F 31 or the second wireless I / F 32 is controlled to communicate with the HA 23 under the control of the handover control unit 36.
  • the wireless information acquisition unit 35 acquires the communication quality of the corresponding first wireless communication network 15 and second wireless communication network 16 from the first wireless I / F 31 and the second wireless I / F 32 as wireless information,
  • the acquired communication quality is supplied to the handover control unit 36.
  • the communication quality for example, RSSI (Received Signal Signal Strength Indicator) indicating a wireless state is acquired. Therefore, the radio information acquisition unit 35 constitutes a communication quality acquisition unit that acquires the communication quality of the radio link.
  • the handover control unit 36 Based on the communication quality from the radio information acquisition unit 35, the handover control unit 36 generates handover information including a decision whether to schedule a handover, that is, whether to start preparation for handover, and the handover information Based on the above, handover is controlled.
  • FIG. 3 is a functional block diagram showing a schematic configuration of the telephone function unit 33 of the wireless communication apparatus 11 shown in FIG.
  • the telephone function unit 33 is composed of, for example, a soft phone, and has a button input unit 41, a screen display unit 42, a microphone 43, an encoder 44, a packet transmission unit 45, a packet reception unit 46, a jitter buffer, as in the configuration of a known soft phone. 47, a decoder 48, a speaker 49, a jitter buffer monitoring unit 50, a jitter buffer control unit 51, a SIP control unit 52, and an overall control unit 53 for controlling the overall operation.
  • the overall control unit 53 acquires user operation information via the button input unit 41 and the screen display unit 42, and controls the overall operation based on the acquired information.
  • the SIP control unit 52 controls SIP procedures for starting and ending a call.
  • the audio data acquired from the microphone 43 is encoded by the encoder 44 which is an encoding unit, and the encoded data is put into a packet from the packet transmission unit 45 and communicated via the communication processing unit 34. Transmitted to the device 12.
  • the packet from the communication device 12 received by the packet receiving unit 46 via the communication processing unit 34 is once fetched into the jitter buffer 47 and then read out. Are decoded and output as reproduced sound from the speaker 49.
  • the reception status of packets in the jitter buffer 47 and the number of packets (data amount) in the jitter buffer 47 are monitored by the jitter buffer monitoring unit 50. Based on the monitoring result, the jitter buffer control unit 51 Processing such as a packet reading speed from the jitter buffer 47 and discarding of the received packet is controlled.
  • the radio communication apparatus 11 further includes a telephone function unit 33, a handover information acquisition unit 55, a transmission control unit 56, and a transmission buffer 57.
  • the handover information acquisition unit 55 monitors handover information from the handover control unit 36 at regular intervals, and acquires handover schedule determination information for determining a handover schedule. When the handover schedule determination information is acquired, the handover information acquisition unit 55 further acquires the required handover information from the handover control unit 36 and supplies the acquired required handover information to the transmission control unit 56.
  • the transmission control unit 56 controls the encoding bit rate of transmission data by the encoder 44 and the transmission of data from the encoder 44 to the packet transmission unit 45. That is, the transmission control unit 56 directly transmits the data encoded by the encoder 44 to the packet transmission unit 45 in a normal call state in which handover information is not supplied from the handover information acquisition unit 55. On the other hand, when the handover information is supplied from the handover information acquisition unit 55, the transmission control unit 56 stores the data from the encoder 44 that seems to be lost due to the handover in the transmission buffer 57 based on the handover information. The accumulated data is controlled to be transmitted to the packet transmitter 45 after the handover is completed. The transmission control by the transmission control unit 56 will be further described later.
  • the telephone function unit 33 configures an execution unit that executes a real-time communication system application and a control unit that controls transmission of data of the application.
  • the handover control unit 36 determines a handover schedule based on the communication qualities acquired from the first wireless I / F 31 and the second wireless I / F 32 via the wireless information acquisition unit 35, respectively. For example, when a call is made by forming a wireless link with the first wireless communication network 15, the communication quality acquired from the first wireless I / F 31 becomes worse than the handover schedule determination threshold, and the second wireless I / F When the communication quality of F32 is equal to or higher than the handover schedule determination threshold, the handover control unit 36 determines the handover schedule to the second wireless communication network 16, that is, determines the start of handover preparation.
  • the communication quality of the second wireless communication network 16 that is not used for a call is acquired (measured) by receiving broadcast information transmitted from the access point 16a, for example.
  • the handover preparation time Ts (sec), which is the time until the start of the handover, that is, the time until the Registration Request (Binding Update in NEMO) is transmitted,
  • the predicted bandwidth Rbup2 (bps) the predicted bandwidth
  • handover control unit 36 supplies the obtained information to the telephone function unit 33 as necessary handover information including handover schedule determination information indicating handover schedule determination.
  • the telephone function unit 33 transmits the required handover information among the handover information acquired from the handover control unit 36 to the communication apparatus 12 via the HA 23 as a handover advance notice message. Therefore, in radio communication apparatus 11 according to the present embodiment, handover control unit 36 includes a determination unit that determines whether to start preparation for handover, an estimation unit that estimates handover preparation time, and the first radio communication network. 15 and the measurement part which measures each delay time in the 2nd radio
  • the handover preparation time Ts is calculated based on a unit time change rate ⁇ Rs (slope) of the radio state (Rs) for determining communication quality.
  • the rate of change ⁇ Rs can be measured and acquired when the radio state falls below the handover schedule determination threshold and the handover schedule is determined, but in this embodiment, the handover schedule determination is performed during the call.
  • the change rate average value ⁇ Rsrms from the time point to a predetermined time before is acquired.
  • the handover control unit 36 calculates the change rate ⁇ Rs (t) of the unit time ( ⁇ t) of the radio state in the currently used radio communication network according to the following formula at a predetermined timing, A plurality of change rates ⁇ Rs (t) up to 2 seconds before) are held in the memory.
  • the change rate average value ⁇ Rsrms up to a predetermined time held at that time is calculated.
  • the handover control unit 36 determines whether or not the calculated change rate average value ⁇ Rsrms is smaller than a preset change rate threshold value Rsref.
  • the handover preparation time Ts is set to a preset standard time Tref (for example, 5 sec). To do.
  • Ts Tref (Rsref / ⁇ Rsrms) is calculated, and the higher the rate of change ⁇ Rsrms, the greater the handover preparation time Ts. Is set shorter than the standard time Tref.
  • FIG. 4B shows a case where ⁇ Rsrms> Rsref and the handover preparation time Ts is set to approximately half the standard time Tref (2.5 sec).
  • the handover source uplink absolute delay time Tdup1, the handover destination uplink and downlink absolute delay times Tdup2 and Tddn2 between the wireless communication apparatus 11 and the HA 23 are, for example, any of the first to third absolute delay time acquisition methods described below. Get by.
  • the handover control unit 36 determines a handover schedule
  • the handover control unit 36 synchronizes with the radio communication apparatus 11 via the first radio I / F 31 and the second radio I / F 32 in time synchronization.
  • the HA 23 transmits a measurement packet having a transmission time stamp, and requests the HA 23 to return a measurement packet having the transmission time stamp, the reception time stamp at the HA 23, and a return time stamp from the HA 23. Thereby, the measurement packet is transmitted from both the first wireless communication network 15 and the second wireless communication network 16 from the HA 23.
  • the wireless communication device 11 receives the measurement packet transmitted from the HA 23 via the corresponding first wireless I / F 31 and second wireless I / F 32, respectively, and based on the reception time and the time stamp of the measurement packet. Measure absolute delay times Tdup1, Tdup2, and Tddn2 of the corresponding network.
  • the handover control unit 36 determines a handover schedule
  • the handover control unit 36 transmits a first wireless communication network from the wireless communication device 11 to the HA 23 that is time-synchronized with the wireless communication device 11.
  • 15 and the second wireless communication network 16 transmit measurement packets such as PING and RTCP, receive the reply, and measure the absolute delay times Tdup1, Tdup2, and Tddn2 of the corresponding networks.
  • the handover control unit 36 determines a handover schedule, acquires the absolute delay time of each wireless communication network by using a handover technique studied in IEEE 802.21.
  • IEEE 802.21 Media Independent Handover (MIH)
  • MIH Media Independent Handover
  • WiFi Wireless Fidelity
  • WiMAX Worldwide Interoperability for Microwave Access
  • mobile phones etc.
  • the handover control unit 36 is defined as an MIH user, and MIHF (MIH Function) acquires wireless information of a communication device based on a request from the MIH user and provides it to the MIH user.
  • MIHF MIH Function
  • FIG. 5 is a diagram for explaining the third absolute delay time acquisition method.
  • a measurement server 61 that operates to measure delay time is connected to the Internet 18 that is a backbone network, and a first information server 62 is connected to the first wireless communication network 15.
  • a second information server 63 is connected to the second wireless communication network 16.
  • the first information server 62 includes a network delay reference time Tn1 as a reference for delay time measurement from the measurement server 61 directly connected to the Internet 18 to the base station 15a, and upper and lower distances from the base station 15a to the wireless communication device 11. Holds radio delay reference times Trup1 and Trdn1.
  • the second information server 63 holds the network delay reference time Tn2 from the measurement server 61 to the access point 16a, and the upper and lower radio delay reference times Trup2 and Trdn2 from the access point 16a to the wireless communication device 11.
  • the network delay reference times Tn1 and Tn2 are transmitted and received between the base station 15a and the measurement server 61, and between the access point 16a and the measurement server 61, respectively (such as PING and RTCP).
  • the round trip time is measured, and the round trip time is halved.
  • the upper and lower radio delay reference times Trup1 and Trdn1 in the first radio communication network 15 send a packet from the base station 15a to the radio communication device 11, and the radio communication device 11 that has received the packet records and returns the received time.
  • the respective uplink and downlink delay times are calculated based on the times transmitted and received between the base station 15a and the wireless communication device 11.
  • the upper and lower radio delay reference times Trup2 and Trdn2 in the second radio communication network 16 send a packet from the access point 16a to the radio communication device 11, and the radio communication device 11 that receives the packet records the received time. By sending it back, each of the uplink and downlink delay times is calculated based on the time transmitted and received between the access point 16a and the wireless communication device 11.
  • Trup1 and Trup2 indicate uplink radio delay reference times
  • Trdn1 and Trdn2 indicate downlink radio delay reference times.
  • the handover control unit 36 of the wireless communication device 11 When connecting to the first wireless communication network 15 that is the handover source, the handover control unit 36 of the wireless communication device 11 sends a network delay from the first information server 62 connected to the first wireless communication network 15 via the MIHF. The reference time Tn1 and the radio delay reference times Trdn1 and Trup1 are acquired. Further, the handover control unit 36 transmits / receives a packet to / from the other party (here, the HA 23) whose delay time is to be measured, and the round-trip time (Tn3 + Trdn3 + Tn3 + Trup3) between the other party and its own wireless communication device 11 ).
  • the other party here, the HA 23
  • the handover controller 36 obtains a one-way delay time (Tn3-Tn1) between the HA 23 and the Internet 18 from this value as follows, and performs a handover between the wireless communication apparatus 11 and the HA 23.
  • Tn3 + Trup3 corresponding to the original upstream absolute delay time Tdup1 is calculated.
  • Tn3-Tn1 ⁇ (Tn3 + Trdn3 + Tn3 + Trup3)-(Tn1 + Trdn1 + Tn1 + Trup1) ⁇ / 2
  • the handover control unit 36 acquires the network delay reference time Tn2 and the radio delay reference times Trup2 and Trdn2 of the handover destination. Therefore, the location information of the wireless communication device 11 is transmitted to the second information server 63 of the second wireless communication network 16 that is the handover destination via the first information server 62 of the first wireless communication network 15 that is currently connected. To request a reply of the network delay reference time Tn2 and the radio delay reference times Trup2 and Trdn2. As a result, the second information server 63 determines the network delay reference time Tn2 and the radio delay reference times Trup2 and Trdn2 of the access point 16a that is considered to be connected in consideration of the position information and the number of connected users of each access point. The response is made to the wireless communication device 11 via the first information server 62.
  • the handover controller 36 receives the handover destination network delay reference time Tn2 and the radio delay reference times Trup2, Trdn2 returned from the second information server 63, and uses the obtained information and the calculated (Tn3-Tn1). In the following manner, Tn4 + Trup4 corresponding to the handover destination uplink absolute delay time Tdup2 and Tn4 + Trdn4 corresponding to the downlink absolute delay time Tddn2 between the wireless communication apparatus 11 and the HA 23 are calculated.
  • the handover control unit 36 stores the absolute delay times Tdup1, Tdup2, and Tddn2 acquired by any of the first to third absolute delay time acquisition methods in the memory (see FIG. (Not shown).
  • the uplink predicted bandwidth Rbup2 of the handover destination is obtained by predicting the uplink radio state in the handover destination radio communication network after completion of the handover. For this reason, the handover control unit 36 stores, for example, a conversion table between the wireless state (communication quality) and the throughput (predicted bandwidth) as shown in FIG. For example, the handover control unit 36 linearly predicts the handover destination radio status at the completion of the handover based on the handover destination radio status at the time when the handover schedule is determined and the handover destination radio status a predetermined time before that time.
  • the handover completion time point is the round-trip time between the HA 23 and the wireless communication device 11 in the handover destination wireless communication network (here, the second wireless communication network 16) from the handover schedule determination time point.
  • the absolute delay time (Trup2 + Trdn2) is added.
  • the handover control unit 36 acquires the handover preparation time Ts, the handover source uplink absolute delay time Tdup1, the handover destination uplink and downlink absolute delay times Tdup2 and Tddn2, and the handover destination predicted bandwidth Rbup2. Is acquired to the telephone function unit 33.
  • the handover control unit 36 determines a handover schedule, the handover control unit 36 executes a handover process.
  • FIG. 7 is a sequence diagram for explaining a handover process between the wireless communication apparatus 11 and the HA 23.
  • the handover control unit 36 of the wireless communication device (MN) 11 determines a handover schedule
  • the handover control unit 36 controls the communication processing unit 34 to transfer the second wireless I / F 32 to the second wireless communication network 16. Connecting. Thereafter, when the handover preparation time Ts elapses, the handover control unit 36 transmits a Registration Request (in NEMO, Binding Update) to the HA 23 via the second wireless communication network 16 that is the handover destination.
  • the handover control unit 36 transmits the handover request information to the HA 23
  • the handover control unit 36 transmits a handover schedule notification indicating the fact to the telephone function unit 33 as the handover information.
  • the HA 23 Upon receipt of the handover request information, the HA 23 registers the IP address of the handover destination as a care-of address (second wireless CoA), and registers Registration Reply (Binding Acknowledge in NEMO) as the second wireless communication network. 16 is sent back to the wireless communication apparatus 11 via 16. Note that the HA 23 registers only one care-of address with the wireless communication device 11. Therefore, the care-of address of the handover destination (second radio CoA) is registered by overwriting the care-of address of the handover source (first radio CoA) already registered. When the care-of address of the handover destination is registered, the HA 23 accepts only the packet from the registered care-of address (second wireless CoA) from that point, and the packet whose source is the previous care-of address (first wireless CoA) Not accepted.
  • the handover control unit 36 After receiving RegistrationRegReply (Binding Acknowledge in NEMO) as handover completion information sent back from the HA 23, the handover control unit 36 starts transmission / reception of packets by the second wireless communication network 16 as the handover destination, and performs communication.
  • the processing unit 34 is controlled to disconnect the connection between the first wireless I / F 31 and the first wireless communication network 15 that is the handover source.
  • the handover control unit 36 transmits a handover completion notification indicating the fact to the telephone function unit 33 as the handover information.
  • the HA 23 does not accept a transmission packet from the handover source after registering the IP address of the handover destination as the care-of address (second wireless CoA). For this reason, of the packets transmitted from the wireless communication device 11 to the HA 23 via the first wireless communication network 15 that is the handover source, the packet that arrives at the HA 23 after the handover request information reaches the HA 23 is lost. Become.
  • FIG. 8 is a diagram for explaining the occurrence of packet loss in this case.
  • NEMO will be described as an example.
  • the HA 23 receives the Binding Update from the wireless communication device (MN) 11 and registers the handover destination IP address as the care-of address (second wireless CoA). Only the packet will be accepted.
  • the HA 23 does not receive a packet during a period from reception of Binding-Update until arrival of a packet from the handover destination, that is, a period of Tdup2 + Tddn2.
  • the alternate long and short dash line indicates the packet flow before the handover.
  • the transmission data 57 that is supposed to be lost due to handover is transmitted to the transmission buffer 57 in the telephone function unit 33.
  • the transmission of data is controlled so as to be transmitted after the handover is completed.
  • FIG. 9 is a diagram for explaining an outline of data transmission processing at the time of handover by the telephone function unit 33.
  • the packet transmitted from the wireless communication device (MN) 11 is lost in the period A corresponding to the lost period Tlost from the time Tws before Tsttlow before the time when the Binding Update is transmitted. For this reason, during this period A, the telephone function unit 33 lowers the encoding bit rate of the transmission data and accumulates a copy thereof in the transmission buffer 57 while transmitting the data.
  • the telephone function unit 33 After that, when transmission of a packet from the handover destination is started, the telephone function unit 33 accumulates new data in the transmission buffer 57 and keeps data in the transmission buffer 57 until the packet in the transmission buffer 57 becomes zero. Is transmitted quickly (period B). Thereafter, the telephone function unit 33 encodes the transmission data at the normal encoding bit rate and stores it in the transmission buffer 57 until the communication is completed or until the period A by the next handover schedule is started. (Period C).
  • FIG. 10 is a flowchart showing the operation at the time of handover by the transmission control unit 56 of the telephone function unit 33.
  • the data transmission process at the time of handover by the telephone function unit 33 will be described in more detail with reference to the flowchart shown in FIG.
  • the handover information acquisition unit 55 of the telephone function unit 33 monitors the handover information from the handover control unit 36 at regular intervals. As a result, when the handover schedule determination information is acquired, the handover preparation time Ts, the handover source uplink absolute delay time Tdup1, the handover destination uplink and downlink absolute delay time Tdup2 are further required handover information from the handover control unit 36. And Tddn2 and handover destination predicted bandwidth Rbup2 are acquired, and the acquired required handover information is supplied to the transmission control unit 56. Thereafter, the handover information acquisition unit 55 monitors the handover schedule notification and the handover completion notification from the handover control unit 36 at regular intervals, supplies the received information to the transmission control unit 56, and acquires the handover completion notification. If so, the process returns to obtaining information on whether or not there is a handover schedule.
  • the transmission control unit 56 When the transmission control unit 56 acquires the handover information from the handover information acquisition unit 55, the transmission control unit 56 transmits, to the communication device 12, handover information excluding information on the handover destination predicted band Rbup2 among the acquired information.
  • the transmission control unit 56 acquires the handover information, first, the data storage start time in the transmission buffer 57, which is the start time Tws of the period A (see FIG. 8) in which the packet loss occurs, and the encoded bit at that time The rate R1 is calculated (step S11).
  • the encoding bit rate R1 is obtained Rbup2 (bps), the reproduction speed VfV (sec / sec) with respect to the standard reproduction speed Vn after the handover of the communication device 12, the maximum capacity Sbf (bit) of the transmission buffer 57, the lost period
  • Tlost (sec) is the standard encoding bit rate Rn (bps), (i) Sbf / Tlost and (ii) Rbup2 / Vf Select the maximum value.
  • the encoding bit rate selected here may be set to a lower encoding bit rate with some margin in consideration of band fluctuations and the like.
  • the reproduction speed Vf after the handover is set in advance as 1.25 times the standard reproduction speed Vn, for example, and is held by both, or notified from the communication apparatus 12 to the wireless communication apparatus 11 in advance.
  • the transmission control unit 56 waits until the packet accumulation start time Tws (step S12).
  • the transmission control unit 56 sets the encoding bit rate of the transmission data to the encoder 44.
  • An instruction is given to lower the calculated encoding bit rate R1 (step S13).
  • the transmission control unit 56 copies the transmission data received from the encoder 44 to the packet transmission unit 45 as it is, and accumulates it in the transmission buffer 57 (step S14).
  • the silence data having a length of a certain length (for example, 500 msec) or more in the transmission data is compressed to the above-mentioned length.
  • step S14 The processing in step S14 is performed until handover completion information is received from the HA 23 (step S15). Thereafter, when handover completion information is received (Yes in S15, start of period B), the transmission control unit 56 transmits the handover completion information to the communication device 12, and transmits the transmission data received from the encoder 44 to the packet transmission unit 45.
  • the data (packet) stored in the transmission buffer 57 is transferred from the oldest to the packet transmission unit 45 at a high speed according to the band and transmitted to the communication device 12 while being stored in the transmission buffer 57 without being passed to (Step S16).
  • the transmission control unit 56 monitors the number of packets in the transmission buffer 57 (step S17). As a result, when the packet in the transmission buffer 57 becomes 0 (Yes in S17, start of period C), the transmission control unit 56 instructs the encoder 44 to restore the encoding bit rate (step S18). The transmission data from the encoder 44 is transferred to the packet transmission unit 45 without being stored in the transmission buffer 57 and transmitted to the communication device 12 (step S19).
  • FIG. 11 is a diagram illustrating a state of a transmission / reception packet with the communication device 12 when the wireless communication device 11 according to the present embodiment performs transmission control at the time of handover.
  • FIG. 12 is a diagram illustrating a state of transmission / reception packets between the wireless communication apparatus and the communication apparatus 12 when the above transmission control is not performed at the time of handover for comparison with FIG. 11 and 12, (a) to (c) respectively indicate the received packet sequence number, the number of received packets per unit time, and the received data amount (byte) per unit time in the communication device 12, and (d) The encoding bit rate (bps) of the transmission data by the radio
  • wireless communication apparatus 11 is shown.
  • the radio communication apparatus (MN) 11 As is clear from the comparison between FIG. 11 and FIG. 12, the radio communication apparatus (MN) 11 according to the present embodiment accumulates transmission packets that will be lost at the time of handover on the radio communication apparatus 11 side and accumulates the transmission packets. Since the transmitted packet is transmitted after the handover, the lost packet that occurred in FIG. 12A does not occur in FIG. Therefore, the continuity of the text can be maintained on the communication device (CN) 12 side even at the time of handover, so that the user who listens to the voice does not feel uncomfortable.
  • the encoding bit rate of transmission data is constant, but the wireless communication apparatus (MN) 11 according to the present embodiment accumulates packets as shown in FIG. 11 (d). During this time, the encoding bit rate is reduced. Therefore, thereafter, the accumulated packets can be transmitted more than usual without causing stagnation in a limited band. As a result, the receiving side communication device (CN) 12 reproduces packets received more than usual shown in FIGS. 11B and 11C at a higher speed than usual, thereby achieving the original absolute delay. Can return to playback. In addition, the wireless communication apparatus (MN) 11 can silently compress the stored packets, thereby reducing the overall data capacity and transmitting the stored packets faster.
  • FIG. 13 is a functional block diagram showing a schematic configuration of the communication device (CN) 12.
  • the communication device 12 includes a network I / F (interface) 81 that connects to the Internet 18 via an Internet service provider (not shown), a communication processing unit 82 that controls connection to the network, and a telephone function unit that executes VoIP applications. 83.
  • the communication processing unit 82 controls the connection of the network I / F 81 to the Internet 18 and executes communication between the telephone function unit 83 and the wireless communication device 11.
  • FIG. 14 is a functional block diagram showing a schematic configuration of the telephone function unit 83 of the communication device 12 shown in FIG.
  • the telephone function unit 83 includes, for example, a soft phone, and has a button input unit 101, a screen display unit 102, a microphone 103, an encoder 104, a packet transmission unit 105, a packet reception unit 106, a jitter buffer, as in the configuration of a known soft phone. 107, a decoder 108, a speaker 109, a jitter buffer monitoring unit 110, a jitter buffer control unit 111, a SIP control unit 112, and an overall control unit 113 that controls the overall operation.
  • the microphone 103 and the speaker 109 are constituted by, for example, a handset 12a as shown in FIG.
  • the overall control unit 113 acquires user operation information via the button input unit 101 and the screen display unit 102, and controls the overall operation based on the acquired information.
  • the SIP control unit 112 also controls SIP procedures for starting and ending a call.
  • the audio data acquired from the microphone 103 is encoded by the encoder 104, and the encoded data is put into a packet from the packet transmission unit 105 and wirelessly transmitted through the communication processing unit 82 and the network I / F 81. It is transmitted to the communication device 11.
  • a packet from the wireless communication apparatus 11 received by the packet receiving unit 106 via the communication processing unit 82 is once taken into the jitter buffer 107 and then read out.
  • the read packet is loaded into the payload by the decoder 108.
  • the portion is decoded and output as reproduced sound from the speaker 109.
  • the reception status of packets in the jitter buffer 107 and the number of packets (data amount) in the jitter buffer 107 are monitored by the jitter buffer monitoring unit 110, and based on the monitoring result, the jitter buffer control unit 111 Processing such as a packet reading speed from the jitter buffer 107 and discarding of the received packet is controlled.
  • the handover information acquisition unit 115 monitors the handover information from the wireless communication apparatus 11 transferred from the HA 23 at regular intervals. As a result, when there is handover schedule determination information, the handover information acquisition unit 115 further acquires the required handover information from the radio communication apparatus 11 and uses the acquired required handover information as the reproduction speed calculation unit 116. To supply.
  • the reproduction speed calculation unit 116 reads the packet reading speed of the jitter buffer 107, that is, the received packet.
  • the playback speed (here, the playback speed of the VoIP application) is calculated, and the calculation result is supplied to the jitter buffer control unit 111.
  • the jitter buffer control unit 111 controls reading of the received packet from the jitter buffer 107 so that the playback speed of the received packet becomes the playback speed calculated by the playback speed calculation unit 116.
  • FIG. 15 is a sequence diagram showing the operation of the main part of the telephone function unit 83.
  • FIG. 16 is a sequence diagram showing a flow of handover information between the wireless communication device (MN) 11, the HA 23 and the communication device (CN) 12.
  • MN wireless communication device
  • CN communication device
  • the alternate long and short dash line indicates the flow of packets before handover from the wireless communication apparatus 11 to the HA 23.
  • the handover information acquisition unit 115 of the telephone function unit 83 monitors the handover information from the wireless communication apparatus 11 at regular intervals. As a result, when the handover schedule determination information is acquired, the handover preparation time Ts, the handover source upstream absolute delay time Tdup1, the handover destination upstream and downstream absolute delay times Tdup2 and Tddn2 from the wireless communication apparatus 11 are further acquired. And supplied to the reproduction speed calculation unit 116.
  • the playback speed calculation unit 116 acquires the current accumulated packet count Tc (sec) in the jitter buffer 107 from the jitter buffer monitoring unit 110, and also acquires the absolute delay time Tdhc3 to HA23.
  • the absolute delay time Tdhc3 to the HA 23 is set to 1 ⁇ 2 of the measured value by measuring the RTT (Round Trip Time) by transmitting / receiving a packet to / from the HA 23.
  • the playback speed calculation unit 116 calculates the playback speed Vs (sec / sec) until the completion of the handover, that is, the time ratio with respect to the standard playback speed Vn based on the obtained information by the following formula.
  • the reproduction speed Vs calculated by the reproduction speed calculation unit 116 is supplied to the jitter buffer control unit 111.
  • the jitter buffer control unit 111 controls reading of the received packet from the jitter buffer 47 so as to reproduce the received packet at the calculated reproduction speed Vs lower than the standard reproduction speed Vn.
  • the playback speed calculation unit 116 controls reading of the received packet from the jitter buffer 107 via the jitter buffer control unit 111 according to the flowchart shown in FIG.
  • the playback speed calculation unit 116 when receiving the handover completion information, the playback speed calculation unit 116 periodically acquires the packet accumulation amount (number of packets) and the packet reception interval (reception speed) in the jitter buffer 107 from the jitter buffer control unit 111. (Step S21), it is monitored whether or not the packet accumulation amount in the jitter buffer 107 exceeds the standard accumulation amount (Step S22). As a result, when the standard accumulation amount is exceeded (Yes in S22), the playback speed control unit 116 calculates the average reception speed in a past fixed period (step S23), and the calculated reception speed is preset. It is determined whether or not 125% of the standard speed corresponding to the reproduction speed Vf (1.25) is exceeded (step S24).
  • the reproduction speed calculation unit 116 instructs the jitter buffer control unit 111 to start high-speed reproduction at the reproduction speed Vf (Step S24).
  • the reproduction speed calculation unit 116 instructs the jitter buffer control unit 111 to start high-speed reproduction at the reproduction speed Vf (Step S24).
  • step S27 determines whether or not the reception speed is the standard speed (100%). As a result, if the standard speed is exceeded (Yes in S27), the playback speed calculation unit 116 starts high-speed playback at the same speed as the reception speed calculated in step S23 with respect to the jitter buffer control unit 111. Instructed (step S28), the process proceeds to step S26.
  • the reproduction speed calculation unit 116 continues to regularly monitor the accumulation amount of the jitter buffer 107 and the packet reception interval (reception speed) thereafter.
  • step S26 when the packet accumulation amount in the jitter buffer 107 becomes standard (Yes in S26), it is determined whether or not the average packet reception interval (reception speed) is within a certain range from the standard value (step S29). ). As a result, when the packet accumulation amount is standard and the packet reception interval is within a certain range (Yes in S29), the jitter buffer control unit 111 is instructed to return the jitter buffer 107 to normal control (step S30). Then, the control at the time of handover is terminated. If the average reception speed calculated in step S23 does not exceed the standard speed in step S27 (No in S27), the process proceeds to step S30 and similarly returns the jitter buffer 107 to normal control. .
  • FIG. 18 is a diagram for explaining packet reproduction control by the communication device 12 described above.
  • 18A shows the number of packets received by the jitter buffer 107 per unit time
  • FIG. 18B shows the amount of packets stored in the jitter buffer 107
  • FIG. 18C shows the playback speed.
  • the jitter buffer 107 receives the number of packets larger than 125% of the standard number of received packets, and thereafter In this example, the number of packets equal to the standard number of received packets is received.
  • the packet accumulation amount Tn indicates a standard accumulation amount corresponding to the standard reproduction speed Vn.
  • the communication device 12 determines the application reproduction speed from the standard reproduction speed Vn based on the handover information including the handover schedule notification, in the jitter buffer 107 at the reception start time of the packet from the handover destination. Is reduced to a constant reproduction speed Vs at which the number of packets becomes zero. After that, it is confirmed that the handover is completed and the packet accumulation amount and the packet reception interval in the jitter buffer 107 have returned to the standard, and the standard reproduction speed Vn is restored.
  • the application can be played back at a constant playback speed that is closer to the standard playback speed, so that the playback quality and real-time performance are not degraded. .
  • the packet playback speed control at the playback speed Vs lower than the standard playback speed Vn by the jitter buffer controller 111 is, for example, the first playback speed control method or the second playback speed control method described below. Execute by either.
  • First playback speed control method TR1 is the packet reading interval from the jitter buffer 107 with respect to the standard playback speed Vn, (Tb + Tc) / (Tb + Ta) is k, and the jitter corresponding to the calculated playback speed Vs.
  • TR TR1 / k.
  • the [ ⁇ Vn / (Vn-Vs) ⁇ -1] -th read packet is copied and stored in the memory in the decoder 108, and the copy source packet is stored. After reproduction, the copied packet is read and reproduced at the next reproduction timing.
  • the playback speed Vs is set to 80% of the standard playback speed Vn, as shown in FIG. 19, the sequential four packets P1 to P4 in the jitter buffer 107 are sequentially read and played back, The fourth packet P4 is copied, and the copied packet P4 ′ is reproduced at the next reproduction timing after reproducing the copy source packet P4.
  • the TD is increased by the reproduction interval time by copying. If the [ ⁇ Vn / (Vn ⁇ Vs) ⁇ ⁇ 1] -th packet to be read has not arrived or has been discarded and is not in the jitter buffer 107, the packet at the next reproduction timing is The same processing is performed.
  • the communication device 12 appropriately responds to a state in which a period in which packets do not arrive occurs at the time of handover of the wireless communication device 11, and then the accumulated packets arrive from the wireless communication device 11 at high speed. Thus, packets can be played back at an optimum speed.
  • the case where a packet is transmitted from the wireless communication apparatus 11 to the communication apparatus 12 via the HA 23 using mobile IP reverse tunneling or NEMO is exemplified.
  • Lost of the transmission packet from the device 11 to the communication device 12 optimizes the route with Mobile IPv6, and also when the packet is directly transmitted and received between the wireless communication device 11 and the communication device 12, This also occurs due to the difference in delay time. Accordingly, even in such a case, the packet loss can be prevented by accumulating the packets transmitted by the wireless communication apparatus 11 at the time of handover and transmitting the accumulated packets after the handover in the same manner as in the above embodiment. it can.
  • the transmission packets in this period may be stored in the transmission buffer 57 and transmitted at high speed after the handover is completed.
  • the period during which the HA 23 does not receive a packet from the wireless communication apparatus 11 due to handover is Tdup2 + Tddn2.
  • the reproduction speed calculation unit 116 calculates the reproduction speed Vs
  • the number of packets in the jitter buffer 107 is zero at the start of packet reception from the handover destination.
  • the playback speed Vs can also be calculated so that the number of packets in the jitter buffer 107 becomes a predetermined number at the start of reception of packets from the handover destination.
  • FIG. 20 is a diagram showing a schematic configuration of a communication network that can be used by the communication apparatus according to the second embodiment of the present invention.
  • the communication network shown in FIG. 20 has the same configuration as that in FIG.
  • the wireless communication device (MN) 121 that is a mobile node can be handed over between the first wireless communication network 15 and the second wireless communication network 16, and the communication device (CN) 122 that is the opposite node , VoIP, which is a real-time communication system application, is assumed to make a call.
  • the same reference numerals are assigned to the same components as those in the communication network shown in FIG.
  • the communication device 122 is composed of, for example, a personal computer to which a handset 122a is connected and a soft phone as a telephone function unit is installed, and is connected to the Internet 18 as a communication network through an Internet service provider (not shown).
  • the wireless communication device 121 registers the IP address of the first wireless communication network 15 in the HA 23 as a care-of address (first wireless CoA), and communicates with the communication device 122 via the first wireless communication network 15. It is assumed that handover is performed from the current state to the second wireless communication network 16.
  • FIG. 21 is a functional block diagram showing a schematic configuration of the wireless communication apparatus 121 shown in FIG. Similarly to the wireless communication device 11 illustrated in FIG. 2, the wireless communication device 121 includes a first wireless I / F (interface) 131 corresponding to the first wireless communication network 15 and a second wireless communication network 16 corresponding to the second wireless communication network 16.
  • a wireless information acquisition unit 135 that acquires wireless information of the second wireless communication network 16, and a handover control unit 136 that controls a handover between the first wireless communication network 15 and the second wireless communication network 16.
  • the communication processing unit 134 makes a call between the telephone function unit 133 and the communication device 122 via the first wireless communication network 15 or the second wireless communication network 16.
  • the connection of the first wireless I / F 131 or the second wireless I / F 132 is controlled so as to communicate with the HA 23 under the control of the handover control unit 136.
  • the wireless information acquisition unit 135 receives the first wireless communication network 15 and the corresponding wireless information from the first wireless I / F 131 and the second wireless I / F 132 as wireless information.
  • the communication quality (for example, RSSI) of the second wireless communication network 16 is acquired, and the acquired communication quality is supplied to the handover control unit 136.
  • the handover control unit 136 Based on the communication quality from the radio information acquisition unit 135, the handover control unit 136 generates handover information including a decision whether to schedule a handover, that is, whether to start preparation for handover, and the handover information Based on the above, handover is controlled.
  • the handover control unit 136 for example, in the same way as the handover control unit 36 shown in FIG. 2, the communication quality acquired from the first wireless I / F 131 and the second wireless I / F 132 via the wireless information acquisition unit 135, respectively. Based on the above, the handover schedule is determined.
  • Up and down absolute delay times Tdup2 (sec) and Tddn2 (sec) between the radio communication apparatus 121 and the HA 23 in the handover destination radio communication network (here, the second radio communication network 16), and the handover of the HA 23 is completed.
  • the handover destination information when the handover request information arrives at the HA 23 And acquires the calculated bandwidth Rbdn2 (bps) of the downlink on line communication network.
  • the handover control unit 136 supplies the acquired information as necessary handover information to the telephone function unit 133 including handover schedule determination information indicating schedule determination of handover.
  • the telephone function unit 133 selectively transmits the handover information acquired from the handover control unit 136 to the communication device 12 via the HA 23 as a handover advance notice message according to the comparison result of absolute delay time described later.
  • the handover preparation time Ts, handover source uplink and downlink absolute delay times Tdup1 and Tddn1, handover destination uplink and downlink absolute delay times Tdup2 and Tddn2, and handover destination predicted bandwidth Rbdn2 by the handover control unit 36 are, for example, Each is acquired by the acquisition method described in the first embodiment.
  • the handover preparation time Ts is acquired by the acquisition method described with reference to FIGS. 4 (a) and 4 (b).
  • the absolute delay times Tdup1, Tddn1, Tdup2, and Tddn2 are acquired by any one of the first to third absolute delay time acquisition methods, and are stored in a memory (not shown) in the handover control unit 136 for each radio communication network. ).
  • the reception time of the measurement packet from the HA 23 received via the first wireless I / F 131 and the second wireless I / F 132, and the time of the measurement packet From the stamp the absolute delay times Tdup1, Tddn1, Tdup2, and Tddn2 of the corresponding network are measured.
  • the absolute delay times Tdup1, Tdup2, and Tddn2 are acquired by the above [Equation 2] and [Equation 3], and the absolute delay time Tddn1 is obtained by the following equation. get.
  • the downlink predicted bandwidth Rbdn2 of the handover destination is obtained by predicting the downlink radio state in the handover destination radio communication network when the handover of the HA 23 is completed.
  • the handover control unit 136 stores, for example, a conversion table between the radio state (communication quality) and the throughput (predicted bandwidth) as shown in FIG.
  • the handover control unit 36 linearly predicts the handover destination radio status at the completion of the handover based on the handover destination radio status at the time when the handover schedule is determined and the handover destination radio status a predetermined time before that time. Then, based on the predicted radio state, the handover destination predicted bandwidth Rbdn2 at the time of handover completion is acquired from the conversion table of FIG.
  • the handover completion time is determined from the handover schedule determination time to the handover preparation time Ts and the uplink between the HA 23 and the radio communication device 11 in the handover destination radio communication network (here, the second radio communication network 16).
  • the absolute delay time Trup2 is added.
  • the handover control unit 136 sets the handover preparation time Ts, the handover source uplink and downlink absolute delay times Tdup1 and Tddn1, the handover destination uplink and downlink absolute delay times Tdup2 and Tddn2, and the handover destination downlink predicted bandwidth Rbdn2.
  • the acquired information is supplied to the telephone function unit 133 as required handover information together with handover schedule determination information indicating handover schedule determination.
  • the handover control unit 136 determines a handover schedule, the handover control unit 136 executes a handover process.
  • FIG. 22 is a sequence diagram for explaining a handover process between the wireless communication apparatus 121 and the HA 23.
  • the handover control unit 136 of the wireless communication apparatus (MN) 121 determines a handover schedule
  • the handover control unit 136 controls the communication processing unit 134 to transfer the second wireless I / F 132 to the second wireless communication network 16. Connecting. Thereafter, when the handover preparation time Ts elapses, the handover control unit 136 transmits a Registration request (handling update in NEMO) to the HA 23 via the second wireless communication network 16 that is the handover destination.
  • a Registration request (handling update in NEMO)
  • the HA 23 Upon receipt of the handover request information, the HA 23 registers the IP address of the handover destination as a care-of address (second wireless CoA), and registers Registration Reply (Binding Acknowledge in NEMO) as the second wireless communication network. 16 to the wireless communication apparatus 121 via Note that the HA 23 registers only one care-of address with the wireless communication apparatus 121. Therefore, the care-of address of the handover destination (second radio CoA) is registered by overwriting the care-of address of the handover source (first radio CoA) already registered.
  • the handover control unit 136 starts transmission / reception of a packet by the second wireless communication network 16 at the handover destination and performs communication.
  • the processing unit 134 is controlled to disconnect the connection between the first wireless I / F 31 and the first wireless communication network 15 that is the handover source.
  • the handover control unit 136 transmits a handover completion notification indicating that to the telephone function unit 133 as the handover information.
  • the wireless communication device (MN) 121 receives the packet transferred from the HA 23 to the first wireless communication network 15 of the handover source after disconnecting the first wireless I / F 131 of the handover source from the first wireless communication network 15. It becomes impossible and the lost packet occurs.
  • FIG. 23 is a diagram for explaining the occurrence of packet loss in this case.
  • NEMO will be described as an example.
  • Tddn1 of the handover source downlink is longer than the absolute delay time Tddn2 of the handover destination downlink, (Tddn1-Tddn2) from the time when the wireless communication device (MN) 121 receives BindingckAck.
  • the packet transmitted from the first wireless communication network 15 that is the handover source in the previous period cannot be received by the wireless communication apparatus (MN) 121, and this period (Tddn1-Tddn2) becomes the lost period Tlost of the packet.
  • the communication device (CN) 122 assumes that the transmission timing of the data Dat (n1) transmitted first in the lost period Tlost is T1, and the transmission timing of the data Dat (n2) transmitted last is T2.
  • CN) 122 receives a handover notice message Msg (HO) from the wireless communication apparatus (MN) 121 via HA 23, and until a transmission timing T1 of data Dat (n1), Tlowstt (sec) is a handover notice.
  • the absolute delay time Tdn with the HA 23 can be obtained by transmitting / receiving a packet to / from the HA 23, measuring RTT (Round Trip Time), and halving the measured value.
  • the telephone function unit 133 When the telephone function unit 133 obtains the handover information from the handover control unit 136, it compares the downlink absolute delay times Tddn1 and Tddn2 of the handover source and the handover destination, and if Tddn1> Tddn2, A handover notice message is transmitted to the communication device (CN) 122 via the HA 23.
  • the communication device (CN) 122 based on the handover information from the wireless communication device (MN) 121 and the absolute delay time Tdn with the HA 23 described above, the transmission data that is supposed to be lost due to the handover is Data is stored in the communication device (CN) 122 and data transmission is controlled so that the wireless communication device 121 can receive the data after the handover is completed.
  • the absolute delay time Tdn with the HA 23 may be measured in advance and stored in the communication device (CN) 122, or measured by receiving handover information from the wireless communication device (MN) 121. You may make it do.
  • FIG. 24 is a functional block diagram showing a schematic configuration of the communication device (CN) 122.
  • the communication device 122 includes a network I / F (interface) 181 that connects to the Internet 18 via an Internet service provider (not shown), a communication processing unit 182 that controls connection to the network, and a telephone function unit that executes VoIP applications. 183.
  • the communication processing unit 182 controls the connection of the network I / F 181 to the Internet 18 and executes communication between the telephone function unit 183 and the wireless communication device 121. Therefore, the network I / F 181 and the communication processing unit 182 constitute a communication unit.
  • FIG. 25 is a functional block diagram showing a schematic configuration of the telephone function unit 183 of the communication device 122 shown in FIG.
  • the telephone function unit 183 includes, for example, a soft phone, and has a configuration of a known soft phone, like the communication device 12 illustrated in FIG. 14, and includes a button input unit 141, a screen display unit 142, a microphone 143, an encoder 144, a packet The transmitter 145, the packet receiver 146, the jitter buffer 147, the decoder 148, the speaker 149, the jitter buffer monitor 150, the jitter buffer controller 151, the SIP controller 152, and the overall controller 153 that controls the overall operation.
  • the microphone 143 and the speaker 149 are configured by a handset 122a as shown in FIG. 20, for example.
  • the overall control unit 153 acquires user operation information via the button input unit 141 and the screen display unit 142, and controls the overall operation based on the acquired information.
  • the SIP control unit 152 controls SIP procedures for starting and ending a call.
  • the audio data acquired from the microphone 143 is encoded by the encoder 144 which is an encoding unit, and the encoded data is put into a packet from the packet transmission unit 145, and the communication processing unit 182 and the network I
  • the data is transmitted to the wireless communication apparatus 121 via / F181.
  • a packet from the wireless communication apparatus 121 received by the packet receiving unit 146 via the communication processing unit 182 is once taken into the jitter buffer 147 and read out.
  • the read packet is loaded into the payload by the decoder 148.
  • the portion is decoded and output as reproduced sound from the speaker 149.
  • the reception status of packets in the jitter buffer 147 and the number of packets (data amount) in the jitter buffer 147 are monitored by the jitter buffer monitoring unit 150. Based on the monitoring result, the jitter buffer control unit 51 Processing such as a packet reading speed from the jitter buffer 47 and discarding of the received packet is controlled.
  • the telephone function unit 183 has the same configuration as the telephone function unit 33 of the wireless communication apparatus 11 according to the first embodiment shown in FIG.
  • the handover information acquisition unit 155 monitors handover notification messages from the wireless communication apparatus 121 at regular intervals, and acquires handover schedule determination information for determining a handover schedule. When the handover schedule determination information is acquired, the handover information acquisition unit 155 further acquires the required handover information from the radio communication apparatus 121 and supplies the acquired required handover information to the transmission control unit 156. .
  • the transmission control unit 156 controls the encoding bit rate of transmission data by the encoder 144 and the transmission of data from the encoder 144 to the packet transmission unit 145. That is, the transmission control unit 156 directly transmits the data encoded by the encoder 44 to the packet transmission unit 145 in a normal call state in which handover information is not supplied from the handover information acquisition unit 155. On the other hand, when handover information is supplied from the handover information acquisition unit 155, the transmission control unit 156 acquires the absolute delay time Tdn and performs handover based on the absolute delay time Tdn and the handover information. Is stored in the transmission buffer 157, and the stored data is controlled to be transmitted to the packet transmission unit 145 after the handover is completed. The transmission control by the transmission control unit 156 will be described later.
  • telephone function unit 183 constitutes an execution unit that executes a real-time communication system application and a control unit that controls transmission of data of the application.
  • FIG. 26 is a diagram for explaining an outline of data transmission processing at the time of handover by the telephone function unit 183.
  • the packet transmitted from the communication device (CN) 122 is the lost period Tlost in which the period Tlowstt (sec) has elapsed from the time when the handover notice message Msg (HO) is received from the wireless communication device (MN) 121. Lost in (period A). For this reason, during this period A, the telephone function unit 183 lowers the encoding bit rate of the transmission data and accumulates a copy thereof in the transmission buffer 157 while transmitting the data.
  • the telephone function unit 183 stores the data in the transmission buffer 157 until the packet in the transmission buffer 157 reaches 0 while accumulating new data in the transmission buffer 157. Is transmitted quickly (period B). Thereafter, the telephone function unit 183 encodes the transmission data at the normal encoding bit rate and stores it in the transmission buffer 157 until the communication is completed or until the period A by the next handover schedule is started. (Period C).
  • FIG. 27 is a flowchart showing the operation at the time of handover by the transmission control unit 156 of the telephone function unit 183.
  • the data transmission processing at the time of handover by the telephone function unit 183 will be described in more detail with reference to the flowchart shown in FIG.
  • the handover information acquisition unit 155 of the telephone function unit 183 monitors the handover information from the wireless communication device (MN) 121 transferred from the HA 23 at regular intervals.
  • the required handover information is the handover preparation time Ts, the handover source uplink absolute delay times Tdup1 and Tddn1, the handover destination uplink and downlink absolute delay times Tdup2 and Tddn2, the handover destination predicted bandwidth Rbdn2 Is acquired (step S111), and the acquired required handover information is supplied to the transmission control unit 156.
  • the transmission control unit 156 acquires the handover information, first, the time Tlowstt from the time when the handover notice message Msg (HO) is received to the period A in which packet loss occurs (see FIG. 26), the lost period Tlost of the packet that is the period A And the encoding bit rate R1 are calculated (step S112).
  • the time Tlowstt is calculated based on the equation shown in Equation 4 above, and the lost period Tlost is calculated from (Tddn1-Tddn2).
  • the encoding bit rate R1 is obtained Rbdn2 (bps)
  • the reproduction speed Vf sec / sec
  • the maximum capacity Sbf (bit) of the transmission buffer 157 the maximum capacity of the transmission buffer 157 .
  • Lost period Tlost sec
  • standard encoding bit rate Rn bps
  • Sbf / Tlost Sbf / Tlost
  • Rbdn2 / Vf Select the maximum bit rate.
  • the encoding bit rate selected here may be set to a lower encoding bit rate with some margin in consideration of band fluctuations and the like.
  • the reproduction speed Vf after the handover is set in advance as, for example, 1.25 times the standard reproduction speed Vn and is held by both, or notified from the communication apparatus 122 to the wireless communication apparatus 121 in advance.
  • the transmission control unit 156 waits for the Tlowstt time (step S113), and when the Tlowstt time has elapsed (start of the lost period Tlost), the encoding bit rate obtained by calculating the encoding bit rate of the transmission data to the encoder 144.
  • the transmission data received from the encoder 144 is transferred to the packet transmission unit 145 as it is, and the transmission data is copied and stored in the transmission buffer 157 (step S114).
  • the silence data having a length of a certain length (for example, 500 msec) or more in the transmission data is compressed to the above-mentioned length.
  • step S114 The process of step S114 is performed until the lost period Tlost ends (step S115).
  • the transmission control unit 156 transmits the transmission received from the encoder 144. While storing the data in the transmission buffer 157 without passing the data to the packet transmission unit 145, the data (packets) stored in the transmission buffer 157 is transferred from the oldest to the packet transmission unit 145 at a high speed according to the bandwidth. It transmits to the radio
  • MN wireless communication apparatus
  • the transmission control unit 156 monitors the number of packets in the transmission buffer 157 (step S117). As a result, when the packet in the transmission buffer 157 becomes 0 (Yes in S117, the start of period C), the transmission control unit 156 instructs the encoder 144 to restore the encoding bit rate (step S118). The transmission data from the encoder 144 is transferred to the packet transmission unit 145 without being stored in the transmission buffer 157 and transmitted to the wireless communication device (MN) 121 (step S119).
  • MN wireless communication device
  • FIG. 28 is a diagram illustrating a state of a received packet in the wireless communication device when transmission control is performed at the time of handover by the communication device 122 according to the present embodiment.
  • FIG. 29 is a diagram illustrating a state of a received packet in the wireless communication apparatus when the above transmission control is not performed at the time of handover. 28 and 29, (a) shows the sequence number of the received packet, (b) shows the number of received packets per unit time, and (c) shows the received data amount (byte) per unit time.
  • the communication device (CN) 122 As is clear from the comparison between FIG. 28 and FIG. 29, the communication device (CN) 122 according to the present embodiment accumulates in the transmission buffer 157 packets that the wireless communication device (MN) 121 will lose at the time of handover. Then, since the accumulated packets are transmitted so that the wireless communication apparatus (MN) 121 can receive them after handover, the lost packets that occurred in FIG. 29A do not occur in FIG. Therefore, even at the time of handover, the continuity of the text can be maintained on the wireless communication device (MN) 121 side that is the communication partner, so that the user who listens to the voice does not feel uncomfortable.
  • the communication device (CN) 122 since the communication device (CN) 122 according to the present embodiment reduces the encoding bit rate by the encoder 144 while accumulating lost packets, the accumulated packets are limited thereafter. It is possible to transmit more than usual without causing retention in the band. Therefore, the receiving-side wireless communication device (MN) 121 reproduces packets received more than usual shown in FIGS. 28 (b) and (c) at a higher speed than usual, thereby achieving the original absolute delay. Can return to playback. Further, by silently compressing the packet stored in the transmission buffer 157, the overall data capacity can be reduced, and the stored packet can be transmitted faster.
  • FIG. 30 is a functional block diagram showing a schematic configuration of the telephone function unit 133 of the wireless communication apparatus 121.
  • FIG. 31 is a sequence diagram showing the operation of the main part of the telephone function unit 133.
  • the telephone function unit 133 is made of, for example, a known soft phone, and similarly to the telephone function unit 183 of the communication apparatus 122 shown in FIG.
  • a control unit 213 is included.
  • the overall control unit 213 acquires user operation information via the button input unit 201 and the screen display unit 202, and controls the overall operation based on the acquired information.
  • the SIP control unit 212 also controls SIP procedures for starting and ending a call.
  • the audio data acquired from the microphone 203 is encoded by the encoder 204, and the encoded data is put into a packet from the packet transmission unit 205 and transmitted to the communication device 122 via the communication processing unit 134.
  • the packet from the communication device 122 received by the packet receiving unit 206 via the communication processing unit 134 is once fetched into the jitter buffer 207 and read out. Are decoded and output as reproduced sound from the speaker 209.
  • the jitter buffer monitoring unit 210 monitors the reception status of packets in the jitter buffer 207 and the number of packets (data amount) in the jitter buffer 207. Based on the monitoring result, the jitter buffer monitoring unit 210 The controller 211 controls processing such as the packet reading speed from the jitter buffer 207 and discarding of received packets.
  • the wireless communication apparatus 121 shown in FIG. 20 is further provided with a telephone function unit 133, a handover information acquisition unit 215, and a playback speed calculation unit 216. That is, the telephone function unit 133 has the same configuration as the telephone function unit 83 of the communication device 12 shown in FIG.
  • the handover information acquisition unit 215 monitors the handover information from the handover control unit 136 at regular intervals, and when there is handover information, as described above, the handover source included in the handover information And the absolute delay times Tddn1 and Tddn2 of the downlink of the handover destination are compared, and when Tddn1> Tddn2, the acquired handover information is transmitted to the communication device 122 as a handover notice message.
  • the handover information acquisition unit 215 further monitors the handover completion notification included in the handover information when Tddn1> Tddn2, and when receiving the handover completion notification, the reproduction speed calculation unit 216 is notified. As a result, the playback speed calculation unit 216 notifies the jitter buffer control unit 211 to play back at a predetermined speed Vf that is faster than the standard playback speed Vn (for example, 1.25 times the standard playback speed Vn).
  • the playback speed calculation unit 216 acquires the packet accumulation amount and the packet reception interval in the jitter buffer 207 from the jitter buffer monitoring unit 210 at regular intervals, and the packet reception interval corresponds to the reception interval of the standard playback speed Vn.
  • the packet accumulation amount is equal to or less than the standard packet accumulation amount as described above, the jitter buffer control unit 211 is instructed to return to the normal reproduction control.
  • the handover information acquisition unit 215 does not generate a packet loss due to handover when the absolute delay times Tddn1 and Tddn2 of the handover source and the handover destination included in the acquired handover information are Tddn1 ⁇ Tddn2.
  • the handover notification message is not transmitted to the communication device 122, and even when the handover completion notification is received, the playback speed calculation unit 216 is not notified of this. Therefore, in this case, the jitter buffer control unit 211 reproduces the packet in the jitter buffer 207 by normal control based on the monitoring result by the jitter buffer monitoring unit 210.
  • FIG. 32 is a diagram for explaining packet reproduction control by the wireless communication apparatus 121 described above.
  • FIG. 32A shows the number of packets received by the jitter buffer 207 per unit time
  • FIG. 32B shows jitter.
  • the amount of packets stored in the buffer 207, FIG. 32 (c) shows the playback speed.
  • the communication device 122 accumulates transmission data that is supposed to be lost due to handover, and transmits the data at a high speed at a timing that can be received by the wireless communication device 121 after the handover is completed.
  • the playback speed is set to a speed Vf higher than the standard playback speed Vn. Therefore, the packet accumulation amount in the jitter buffer 207 is unit time. After the number of received packets returns to the standard, it gradually decreases, and when the standard accumulation amount is reached, the playback speed also returns to the standard playback speed Vn.
  • the wireless communication device (MN) 121 determines a handover schedule
  • the wireless communication device (MN) 121 transmits a handover notification message to the communication device (CN) 122 according to the present embodiment.
  • the communication device 122 receives the handover advance notice message from the wireless communication device 121, estimates transmission data that is thought to be lost due to the handover based on the handover information included in the handover advance notice message, and the estimated transmission Data is stored in the transmission buffer 157, and is transmitted to the wireless communication apparatus 121 at a speed matching the wireless band after the handover is completed.
  • the transmission data accumulation start by the transmission buffer 157 is determined by the transmission control unit 156 calculating the transmission data accumulation start timing that is considered to be lost based on the timing of the received handover notice message. For this reason, in order to more accurately estimate and accumulate the packet that seems to be lost, the accumulation start timing calculated by the transmission control unit 156 and the lost timing generated by the handover actually performed by the wireless communication apparatus 11 are set. It is preferable to make them match exactly. As the method, the following two methods can be considered.
  • the accumulation start message is transmitted from the wireless communication apparatus 121 so that the accumulation start message reaches the communication apparatus 122 at the timing when the transmission buffer 157 of the communication apparatus 122 starts the accumulation process.
  • the timing cycle of the communication device 122 is synchronized with the timing cycle of the wireless communication device 121.
  • an accumulation start message is sent from the wireless communication apparatus 121 to the communication apparatus 122 before the transmission delay time from the wireless communication apparatus 121 to the communication apparatus 122 from the accumulation start timing. That's fine. In this way, if handover is performed during the time measurement in the wireless communication apparatus 121, there is no theoretical error.
  • the wireless communication device 121 sends both a prior handover notice message and a previous accumulation start message, and the communication device 122 monitors the stay from the reception state of the packet, When it is determined that no retention has occurred, priority is given to the previous accumulation start message, and when it is determined that retention has occurred, accumulation is performed in accordance with the scheduled accumulation start timing based on the handover notice message. It is preferable to start.
  • the communication device 122 receives the wireless state from the wireless communication device 121 for a certain period, measures the RTP packet reception period in a state where the wireless state is determined to be good, and performs the measurement. It is conceivable to synchronize the timing period of the communication apparatus 122 with the wireless communication apparatus 121 using the received reception period as the correction period. Accordingly, the communication device 122 can start accumulation by correcting the accumulation start timing calculated by the wireless communication device 121.
  • the timing cycle of the communication device 122 is corrected using the RTP packet from the wireless communication device 121, for example, in a VoIP application, basically, an audio RTP packet is transmitted at a constant cycle, and the wireless state is When it is favorable, the jitter is small, so that the timing periods of the wireless communication device 121 and the communication device 122 can be accurately synchronized.
  • the handover schedule is changed on the wireless communication apparatus 121 side, a message to that effect is sent from the wireless communication apparatus 121 to the communication apparatus 122. Then, the operation of the communication device 122 is corrected according to the scheduled change of the handover. For example, if the wireless communication apparatus 121 detects that a stagnation has occurred from a packet that has arrived at the wireless communication apparatus 121 before the handover after sending a handover notification message to the communication apparatus 122, the wireless communication apparatus 121 A message indicating the occurrence of stagnation is sent.
  • the communication apparatus 122 sets an estimated accumulation capacity within a range not exceeding the set maximum accumulation time (the maximum capacity Sbf of the transmission buffer 157). Further increase, and accumulation starts at a timing going back from the initial accumulation start timing. Then, the encoding bit rate is recalculated with the increased accumulation time.
  • the accumulation time Tlost is set to 200 (msec). Is set.
  • the maximum capacity Sbf of the transmission buffer 157 is set to 500 (msec)
  • the amount is increased by 300 (msec) with respect to the previous accumulation start timing T1 so that the accumulation time becomes 500 (msec).
  • Accumulation starts at the timing of (T1-300) (msec) retroactive.
  • the packet when packet retention occurs on the wireless route near the handover, the packet is accumulated including the remaining amount, and the accumulated packet is transmitted using the handover destination route.
  • the non-transmission state (gap) itself due to the retention of the handover source cannot be compensated for, but the number of lost packets during that time can be reduced.
  • a playback speed calculation unit 216 included in the telephone function unit 133 of the wireless communication apparatus 121 shown in FIG. 30 is added to the telephone function unit 33 of the wireless communication apparatus 11 according to the first embodiment, and at the time of handover.
  • a wireless communication apparatus that performs both the transmission control and the reproduction control described above can be configured.
  • a playback speed calculation unit 116 included in the telephone function unit 83 of the communication apparatus 12 illustrated in FIG. 14 is added to the telephone function unit 183 of the communication apparatus 122 according to the second embodiment, and the above-described operation is performed at the time of handover. It is possible to configure a communication device that performs both transmission control and reproduction control.
  • the present invention is not limited to the case of executing a VoIP application, but can be effectively applied to the case of executing a real-time communication application such as streaming transmission of multimedia data such as video and music.
  • the application execution unit may be configured by a multimedia function unit having a similar transmission control function instead of the telephone function unit.
  • the present invention is not limited to handover between cdma2000 1xEV-DO and a wireless LAN, but other wireless communication networks such as PDC (Personal Digital Cellular), W-CDMA (Wideband) CDMA), PHS (Personal Handy-
  • PDC Personal Digital Cellular
  • W-CDMA Wideband
  • PHS Personal Handy-
  • the present invention can be effectively applied to handover between any different wireless communication networks such as phone (System), Bluetooth, WiMAX, LTE (Long Term Evolution), UMB (Ultra Mobile Broadband), and IMT-Advanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 第1無線通信ネットワーク15から第2無線通信ネットワーク16へハンドオーバする際に、第1無線通信ネットワーク15から第2無線通信ネットワーク16へのハンドオーバの準備の開始を決定すると、第1無線通信ネットワーク15を介してデータを送信するとともに、該データを所定時間蓄積して、その蓄積したデータをハンドオーバ後に、第2無線通信ネットワーク16を介して送信することにより、ハンドオーバによってロストすると思われる所定時間のデータを送信しながら蓄積し、その蓄積したデータをハンドオーバ後に送信することを可能にする。これにより、パケットロスを生じることなく、異なる無線通信ネットワークへハンドオーバでき、常に安定した再生品質およびリアルタイム性を維持できる無線通信装置および通信装置を提供する。

Description

無線通信装置および通信装置 関連出願の相互参照
 本出願は、2008年3月27日に出願された日本国特許出願2008-84124号および同2008-84131号の優先権を主張するものであり、これら先の出願の開示全体をここに参照のために取り込む。
 本発明は、異なる無線通信ネットワーク間でのハンドオーバが可能な無線通信装置、および、該無線通信装置と通信する通信装置に関するものである。
 近年、IETF(Internet Engineering Task Force)では、ユビキタス環境の実現に向けて、例えば携帯電話ネットワークや無線LAN等、異なる複数の無線通信ネットワーク間でのハンドオーバを可能とするIPモビリティ技術が検討されている(例えば、非特許文献1参照)。このIPモビリティ技術における具体的なプロトコルとしては、通信端末個々の移動をサポートするモバイルIPv4およびモバイルIPv6(以下、これらを総称してモバイルIPと略称する)が知られており、ネットワーク単位での移動をサポートするNEMO(Network Mobility)が知られている。
 モバイルIPやNEMOでは、移動ノード(MN:Mobile Node)がハンドオーバする際、当該MNが属するホームエージェント(HA:Home Agent)に、ハンドオーバ先の無線通信ネットワークのIPアドレスを気付けアドレス(CoA:Care of Address)として登録することにより、ハンドオーバ先の無線通信ネットワークを介して、通信相手である対向ノード(CN:Correspondent Node)との通信を可能としている。
 ここで、ハンドオーバ方式には、ハンドオーバ元のネットワークを切断する前にハンドオーバ先のネットワークを接続するMBB(Make-Before-Break)方式や、ハンドオーバ元のネットワークを切断してからハンドオーバ先のネットワークを接続するBBM(Break-Before- Make)方式等が知られている。MBB方式は、MNを無線通信ネットワークにシームレスに切り替え接続するので、VoIPなどのリアルタイム性を有するアプリケーションには有効である。
C. Perkins、"IP Mobility Support (RFC2002)"、[online]、1996年10月、IETF、[平成18年3月15日検索]、インターネット<URL: http: //www.ietf.org /rfc/rfc2002.txt
 しかし、MBB方式によりハンドオーバを行う場合、HAは、MNからのハンドオーバ要求情報であるRegistration Request(NEMOでは、Binding Update)を受信して、ハンドオーバ先のCoAを登録することにより、以後は、ハンドオーバ先の無線通信ネットワークを介して、MNとCNとの間で通信が行われることになる。また、MNは、HAから返信されるハンドオーバ完了情報であるRegistration Reply(NEMOでは、Binding Acknowledge)を受信して、ハンドオーバ元の無線通信ネットワークとの接続を切断することにより、以後は、ハンドオーバ先の無線通信ネットワークを介して通信を行うことになる。
 すなわち、MBB方式によるハンドオーバでは、HAにハンドオーバ先のCoAが登録された後も、MNが、HAからのハンドオーバ完了情報を受信して、ハンドオーバ先の無線通信ネットワークからパケットの送信を開始するまでは、MNは、ハンドオーバ元の無線通信ネットワークからパケットを送信することになる。
 このため、HAに1つのCoAのみを登録して、MNからHAを経てCNへパケットを送信する場合は、HAにハンドオーバ先のCoAが登録された後に、ハンドオーバ元の無線通信ネットワークを経てHAに到達したパケットは、CNに転送されずに破棄されて、ロストすることになる。このパケットのロスト量は、ハンドオーバ元の無線通信ネットワークにおけるMNからHAまでの上りの絶対遅延時間が長いほど多くなり、また、ハンドオーバ先の無線通信ネットワークにおけるHAからMNまでの下りの絶対遅延時間が長いほど多くなる。
 その結果、VoIPなどのリアルタイムアプリケーションでの通信中に、ハンドオーバした場合は、CN側において、パケットロスにより音が切れて、無音が発生し、再生品質およびリアルタイム性の低下を招くことになる。
 また、HAに1つのCoAのみを登録して、CNからの送信パケットをMNへ転送する場合において、ハンドオーバ元の下りの絶対遅延時間が、ハンドオーバ先の下りの絶対遅延時間よりも長いと、MNは、ハンドオーバ先からのハンドオーバ完了情報に基づいて無線通信ネットワークを切替えるので、切替え後、ハンドオーバ元の無線通信ネットワークを介してHAから送信されていたパケットがハンドオーバ元の無線通信ネットワークを切断した後では受信できなくなって、パケットのロストが生じることになる。このパケットのロスト量は、ハンドオーバ元の無線通信ネットワークにおけるHAからMNからまでの下りの絶対遅延時間が、ハンドオーバ先の無線通信ネットワークにおけるそれよりも長いほど、多くなる。
 その結果、VoIPなどのリアルタイムアプリケーションでの通信中に、ハンドオーバした場合は、MN側においても、同様に、パケットロスにより音が切れて、無音が発生し、再生品質およびリアルタイム性の低下を招くことになる。
 このようなパケットロスによる無音の発生を防止する方法として、例えば、パケットロスの前後の音を繋げるように再生処理することが考えられる。しかし、この場合は、文章が連続しなくなるなど、音声を聞くユーザに違和感を与えることになる。
 したがって、かかる点に鑑みてなされた本発明の第1の目的は、パケットロスを生じることなく、異なる無線通信ネットワークへハンドオーバでき、常に安定した再生品質およびリアルタイム性を維持できる無線通信装置を提供することにある。
 さらに、本発明の第2の目的は、異なる無線通信ネットワークへハンドオーバする無線通信装置に対して、パケットロスを生じることなくパケットを送信でき、常に安定した再生品質およびリアルタイム性を維持できる通信装置を提供することにある。
 上記第1の目的を達成する第1の観点に係る無線通信装置の発明は、
 第1無線通信ネットワーク、および該第1無線通信ネットワークと異なる第2無線通信ネットワークに接続して無線通信を実行する無線通信部と、
 該無線通信部を介してリアルタイム通信系のアプリケーションを実行する実行部と、
 前記第1無線通信ネットワークに接続して前記アプリケーションを実行中に、当該第1無線通信ネットワークにおける無線リンクの通信品質を取得する通信品質取得部と、
 該通信品質取得部により取得した前記通信品質に基づいて、前記第1無線通信ネットワークから前記第2無線通信ネットワークへのハンドオーバの準備を開始するか否かを決定する決定部と、
 前記決定部によりハンドオーバ準備の開始を決定すると、前記第1無線通信ネットワークを介してデータを送信するとともに、該データを所定時間蓄積し、ハンドオーバ後に、該蓄積したデータを前記第2無線通信ネットワークを介して送信するよう制御する制御部と、
 を備えることを特徴とするものである。
 第2の観点に係る発明は、第1の観点に係る無線通信装置において、
 前記アプリケーションの実行中に、前記決定部がハンドオーバ準備の開始を決定すると、前記通信品質取得部が取得した通信品質に基づいてハンドオーバを開始するまでのハンドオーバ準備時間を推定する推定部と、
 前記決定部がハンドオーバ準備の開始を決定すると、前記第1無線通信ネットワークおよび前記第2無線通信ネットワークにおけるそれぞれの遅延時間を計測する計測部と、を備え、
 前記制御部は、前記計測部により計測した前記第1無線通信ネットワークおよび前記第2無線通信ネットワークにおけるそれぞれの遅延時間と、前記推定部により推定した前記ハンドオーバ準備時間とに基づいて、前記データを蓄積する開始時間を決定することを特徴とするものである。
 第3の観点に係る発明は、第1の観点に係る無線通信装置において、
 前記決定部がハンドオーバ準備の開始を決定すると、前記第1無線通信ネットワークおよび前記第2無線通信ネットワークにおけるそれぞれの遅延時間を計測する計測部と、を備え、
 前記制御部は、前記計測部により計測した前記第1無線通信ネットワークおよび前記第2無線通信ネットワークにおけるそれぞれの遅延時間に基づいて、前記データを蓄積する所定時間を決定することを特徴とするものである。
 第4の観点に係る発明は、第1,2または3の観点に係る無線通信装置において、
 送信データを符号化する符号化部を備え、
 該符号化部は、前記決定部がハンドオーバ準備の開始を決定する前の符号化ビットレートよりも低いレートで、前記蓄積するデータを符号化することを特徴とするものである。
 上記第2の目的を達成する第5の観点に係る通信装置の発明は、
 通信ネットワークに接続して通信を実行する通信部と、
 該通信部を介してリアルタイム通信系のアプリケーションを実行する実行部と、
 前記アプリケーションの通信相手である無線通信装置が、通信中の第1無線通信ネットワークから該第1無線通信ネットワークと異なる第2無線通信ネットワークヘハンドオーバするハンドオーバの情報を前記無線通信装置から受信すると、前記通信ネットワークを介してデータを送信するとともに、該データを所定時間蓄積し、前記無線通信装置のハンドオーバ後に、該蓄積したデータを前記無線通信装置へ送信するよう制御する制御部と、
 を備えることを特徴とするものである。
 第6の観点に係る発明は、第5の観点に係る通信装置において、
 前記制御部は、前記ハンドオーバの情報に含まれる、ハンドオーバの準備時間と、前記第1無線通信ネットワークおよび前記第2無線通信ネットワークにおけるそれぞれの遅延時間と、前記通信ネットワークにおける遅延時間とに基づいて、前記データを蓄積する開始時間を決定することを特徴とするものである。
 第7の観点に係る発明は、第5の観点に係る通信装置において、
 前記制御部は、前記ハンドオーバの情報に含まれる、前記第1無線通信ネットワークおよび前記第2無線通信ネットワークにおけるそれぞれの遅延時間に基づいて、前記データを蓄積する所定時間を決定することを特徴とするものである。
 第8の観点に係る発明は、第6の観点に係る通信装置において、
 前記制御部は、前記ハンドオーバの情報に含まれる、前記第1無線通信ネットワークおよび前記第2無線通信ネットワークにおけるそれぞれの遅延時間に基づいて、前記データを蓄積する所定時間を決定することを特徴とするものである。
 第9の観点に係る発明は、第5,6,7または8の観点に係る通信装置において、
 送信データを符号化する符号化部を備え、
 前記符号化部は、前記ハンドオーバの情報を受信する前の符号化ビットレートよりも低いレートで、前記蓄積するデータを符号化することを特徴とするものである。
 本発明の無線通信装置は、第1無線通信ネットワークから第2無線通信ネットワークへのハンドオーバの準備の開始を決定すると、第1無線通信ネットワークを介してデータを送信するとともに、該データを所定時間蓄積して、その蓄積したデータをハンドオーバ後に、第2無線通信ネットワークを介して送信する。したがって、ハンドオーバによってロストすると思われる所定時間のデータを送信しながら蓄積し、その蓄積したデータをハンドオーバ後に送信することができる。これにより、パケットロスを生じることなく、異なる無線通信ネットワークへハンドオーバでき、常に安定した再生品質およびリアルタイム性を維持することができる。
 また、本発明の通信装置は、通信相手である無線通信装置から、該無線通信装置が通信中の第1無線通信ネットワークから他の第2無線通信ネットワークヘハンドオーバするハンドオーバの情報を受信すると、無線通信装置にデータを送信しながら、該データを所定時間蓄積し、その蓄積したデータを無線通信装置のハンドオーバ後に送信する。したがって、無線通信装置からのハンドオーバの情報に基づいて、当該無線通信装置が異なる無線通信ネットワークへハンドオーバする際にロストすると思われる所定時間のデータを送信しながら蓄積して、その蓄積したデータをハンドオーバ後に送信することができる。これにより、パケットロスを生じることなく、常に安定した再生品質およびリアルタイム性を維持することができる。
本発明の第1実施の形態に係る無線通信装置が使用可能な通信ネットワークの概略構成を示す図である。 図1に示した無線通信装置の概略構成を示すブロック図である。 図2に示した無線通信装置の電話機能部の概略構成を示す機能ブロック図である。 図2に示したハンドオーバ制御部によるハンドオーバ準備時間の算出方法を説明するための図である。 絶対遅延時間取得方法の一例を説明するための図である。 図2に示したハンドオーバ制御部に記憶する無線状態とスループットとの変換テーブルの一例を示す図である。 図1に示した無線通信装置とHAとの間のハンドオーバ処理を説明するためのシーケンス図である。 図7に示したハンドオーバ処理によるパケットロスの発生を説明するための図である。 図2に示した電話機能部によるハンドオーバ時のデータ送信処理の概要を説明するための図である。 図3に示した送信制御部によるハンドオーバ時の動作を示すフローチャートである。 図1に示した無線通信装置がハンドオーバ時に送信制御を行った場合の通信装置との間における送受信パケットの状態を示す図である。 ハンドオーバ時に送信制御を行わなかった場合の無線通信装置と通信装置との間における送受信パケットの状態を示す図である。 図1に示した通信装置の概略構成を示す機能ブロック図である。 図13に示した電話機能部の概略構成を示す機能ブロック図である。 図14に示した電話機能部の要部の動作を示すシーケンス図である。 図1に示した無線通信装置、HAおよび通信装置間でのハンドオーバ情報の流れを示すシーケンス図である。 図14に示した再生速度計算部の動作を示すフローチャートである。 図1に示した通信装置によるパケットの再生制御を説明するための図である。 図14に示したジッタバッファ制御部による受信パケットの再生速度制御方法の一例を説明するための図である。 本発明の第2実施の形態に係る通信装置が使用可能な通信ネットワークの概略構成を示す図である。 図20に示した無線通信装置の概略構成を示すブロック図である。 図20に示した無線通信装置とHAとの間のハンドオーバ処理を説明するためのシーケンス図である。 図22に示したハンドオーバ処理によるパケットロスの発生を説明するための図である。 図20に示した通信装置の概略構成を示す機能ブロック図である。 図24に示した電話機能部の概略構成を示す機能ブロック図である。 図25に示した電話機能部によるハンドオーバ時のデータ送信処理の概要を説明するための図である。 図25に示した送信制御部によるハンドオーバ時の動作を示すフローチャートである。 ハンドオーバ時に図20に示した通信装置が送信制御を行った場合の無線通信装置における受信パケットの状態を示す図である。 ハンドオーバ時に通信装置が送信制御を行わなかった場合の無線通信装置における受信パケットの状態を示す図である。 図21に示した無線通信装置の電話機能部の概略構成を示す機能ブロック図である。 図30に示した電話機能部の要部の動作を示すシーケンス図である。 図20に示した無線通信装置によるパケットの再生制御を説明するための図である。
符号の説明
 11 無線通信装置
 12 通信装置
 12a 送受話器
 15 第1無線通信ネットワーク
 15a 基地局
 16 第2無線通信ネットワーク
 16a アクセスポイント
 18 インターネット
 21,22,24 SIPサーバ
 23 ホームエージェント(HA)
 31 第1無線I/F
 32 第2無線I/F
 33 電話機能部
 34 通信処理部
 35 無線情報取得部
 36 ハンドオーバ制御部
 44 エンコーダ
 47 ジッタバッファ
 50 ジッタバッファ監視部
 51 ジッタバッファ制御部
 55 ハンドオーバ情報取得部
 56 送信制御部
 57 送信バッファ
 61 計測用サーバ
 62 第1インフォメーションサーバ
 63 第2インフォメーションサーバ
 121 無線通信装置
 122 通信装置
 122a 送受話器
 144 エンコーダ
 147 ジッタバッファ
 150 ジッタバッファ監視部
 151 ジッタバッファ制御部
 155 ハンドオーバ情報取得部
 156 送信制御部
 157 送信バッファ
 181 ネットワークI/F
 182 通信処理部
 183 電話機能部
 以下、本発明の実施の形態について、図を参照して説明する。
(第1実施の形態)
 図1は、本発明の第1実施の形態に係る無線通信装置が使用可能な通信ネットワークの概略構成を示す図である。図1において、移動ノードである無線通信装置(MN)11は、対向ノードである通信装置(CN)12との間で、リアルタイム通信系のアプリケーションであるVoIPによる通話を行うものとする。無線通信装置11は、第1無線通信ネットワーク15と第2無線通信ネットワーク16との間で、ハンドオーバが可能となっている。第1無線通信ネットワーク15および第2無線通信ネットワーク16は、インターネット18に結合されている。
 ここで、第1無線通信ネットワーク15は、例えばcdma2000 1xEV-DO(Code Division Multiple Access 2000 1x Evolution Data Only)の携帯電話ネットワークを想定し、第2無線通信ネットワーク16は、例えば無線LAN(Local Area Network)を想定する。第2無線通信ネットワーク16における上りの絶対遅延時間は、第1無線通信ネットワーク15における上りの絶対遅延時間よりも短いと仮定する。なお、図1において、符号15aは、第1無線通信ネットワーク15の基地局を示し、符号16aは、第2無線通信ネットワーク16のアクセスポイントを示す。
 通信装置12は、例えば送受話器12aが接続され、電話機能部としてのソフトフォンがインストールされたパーソナルコンピュータからなり、図示しないインターネットサービスプロバイダを介してインターネット18に接続されている。
 また、第1無線通信ネットワーク15および第2無線通信ネットワーク16には、それぞれ通信を制御するSIP(Session Initiation Protocol)サーバ21および22が接続されている。さらに、インターネット18には、無線通信装置11宛の受信パケットを、無線通信装置11が接続されている無線通信ネットワークに転送するホームエージェント(HA)23と、通信を制御するSIPサーバ24とが接続されている。
 図1に示す通信ネットワークにおいては、HA23に、無線通信装置11が本来属する無線通信ネットワークで用いるホームアドレスを登録するとともに、ハンドオーバ時に、ハンドオーバ先の無線通信ネットワークのIPアドレスを気付けアドレス(CoA:care of address)として登録することにより、異なる無線通信ネットワーク間でのハンドオーバが可能となる。なお、このようなIPモビリティ技術については、上述したモバイルIPや、NEMOにおいて公知であるので、ここでは詳細な説明は省略する。
 図1において、無線通信装置11は、HA23に第1無線通信ネットワーク15のIPアドレスを気付けアドレス(第1無線CoA)として登録して、第1無線通信ネットワーク15を介して通信装置12と通信を行っている状態から、第2無線通信ネットワーク16へハンドオーバするものとする。
 図2は、図1に示した本実施の形態に係る無線通信装置11の概略構成を示す機能ブロック図である。無線通信装置11は、第1無線通信ネットワーク15に対応する第1無線I/F(インターフェース)31と、第2無線通信ネットワーク16に対応する第2無線I/F32と、VoIPのアプリケーションを実行する電話機能部33と、第1無線通信ネットワーク15および第2無線通信ネットワーク16への接続を制御する通信処理部34と、第1無線通信ネットワーク15および第2無線通信ネットワーク16の無線情報を取得する無線情報取得部35と、第1無線通信ネットワーク15と第2無線通信ネットワーク16との間のハンドオーバを制御するハンドオーバ制御部36と、を有する。
 通信処理部34は、無線通信を実行する無線通信部を構成するもので、電話機能部33と通信装置12との間で、第1無線通信ネットワーク15または第2無線通信ネットワーク16を介して通話を行うとともに、ハンドオーバ制御部36による制御のもとに、HA23と通信するように、第1無線I/F31または第2無線I/F32の接続を制御する。
 無線情報取得部35は、無線情報として、第1無線I/F31および第2無線I/F32から、それぞれ対応する第1無線通信ネットワーク15および第2無線通信ネットワーク16の通信品質を取得し、その取得した通信品質をハンドオーバ制御部36に供給する。ここで、通信品質は、例えば、無線状態を表すRSSI(Received Signal Strength Indicator)を取得する。したがって、無線情報取得部35は、無線リンクの通信品質を取得する通信品質取得部を構成する。
 ハンドオーバ制御部36は、無線情報取得部35からの通信品質に基づいて、ハンドオーバを予定するか否か、すなわちハンドオーバの準備を開始するか否かの決定を含むハンドオーバ情報を生成し、そのハンドオーバ情報に基づいてハンドオーバを制御する。
 図3は、図2に示した無線通信装置11の電話機能部33の概略構成を示す機能ブロック図である。電話機能部33は、例えばソフトフォンからなり、公知のソフトフォンの構成と同様に、ボタン入力部41、画面表示部42、マイク43、エンコーダ44、パケット送信部45、パケット受信部46、ジッタバッファ47、デコーダ48、スピーカ49、ジッタバッファ監視部50、ジッタバッファ制御部51、SIP制御部52、および全体の動作を制御する全体制御部53を有する。
 全体制御部53は、ボタン入力部41や画面表示部42を介して、ユーザの操作情報を取得し、その取得情報に基づいて全体の動作を制御する。また、SIP制御部52は、通話の開始や終了のSIPの手続きを制御する。通話中において、マイク43から取得された音声データは、符号化部であるエンコーダ44でエンコードされ、そのエンコードされたデータは、パケット送信部45からパケットに入れられて、通信処理部34を経て通信装置12へ送信される。
 また、通信処理部34を経てパケット受信部46で受信された通信装置12からのパケットは、ジッタバッファ47に一旦取り込まれてから読み出され、その読み出されたパケットは、デコーダ48でペイロード部分がデコードされて、スピーカ49から再生音声として出力される。なお、ジッタバッファ47のパケットの受信状況や、ジッタバッファ47内のパケット数(データ量)の状態は、ジッタバッファ監視部50で監視され、その監視結果に基づいて、ジッタバッファ制御部51により、ジッタバッファ47からのパケットの読み出し速度や、受信したパケットの破棄などの処理が制御される。
 本実施の形態に係る無線通信装置11は、電話機能部33に、さらに、ハンドオーバ情報取得部55、送信制御部56および送信バッファ57を備える。ハンドオーバ情報取得部55は、ハンドオーバ制御部36からのハンドオーバ情報を一定間隔毎に監視して、ハンドオーバの予定を決定するハンドオーバ予定決定情報を取得する。ハンドオーバ予定決定情報を取得した場合は、ハンドオーバ情報取得部55は、さらに、ハンドオーバ制御部36から所要のハンドオーバ情報を取得して、その取得した所要のハンドオーバ情報を送信制御部56に供給する。
 送信制御部56は、エンコーダ44による送信データの符号化ビットレートおよびエンコーダ44からパケット送信部45へのデータの送信を制御する。すなわち、送信制御部56は、ハンドオーバ情報取得部55からハンドオーバ情報が供給されない通常の通話状態では、エンコーダ44でエンコードされたデータをパケット送信部45に直接送信する。これに対し、ハンドオーバ情報取得部55からハンドオーバ情報が供給された場合は、送信制御部56は、そのハンドオーバ情報に基づいて、ハンドオーバによってロストすると思われるエンコーダ44からのデータを送信バッファ57に蓄積し、その蓄積したデータをハンドオーバ完了後にパケット送信部45に送信するように制御する。この送信制御部56による送信制御については、さらに後述する。
 したがって、本実施の形態に係る無線通信装置11において、電話機能部33は、リアルタイム通信系のアプリケーションを実行する実行部、および当該アプリケーションのデータの送信を制御する制御部を構成する。
 以下、本実施の形態に係る無線通信装置11の動作について説明する。
 先ず、主としてハンドオーバ制御部36の動作について説明する。ハンドオーバ制御部36は、第1無線I/F31および第2無線I/F32から無線情報取得部35を経由してそれぞれ取得した通信品質に基づいて、ハンドオーバの予定を決定する。例えば、第1無線通信ネットワーク15と無線リンクを形成して通話を行っている場合に、第1無線I/F31から取得した通信品質がハンドオーバ予定決定閾値よりも悪くなり、かつ第2無線I/F32の通信品質がハンドオーバ予定決定閾値以上となった場合には、ハンドオーバ制御部36は、第2無線通信ネットワーク16へのハンドオーバ予定を決定する、すなわちハンドオーバ準備の開始を決定する。なお、通話に使用していない第2無線通信ネットワーク16の通信品質は、例えば、アクセスポイント16aから送信される報知情報を受信して取得(測定)する。
 ハンドオーバ制御部36は、ハンドオーバ予定を決定すると、ハンドオーバ開始までの時間、すなわちハンドオーバ要求情報であるRegistration Request(NEMOでは、Binding Update)を送信するまでの時間であるハンドオーバ準備時間Ts(sec)と、現在使用中の無線通信ネットワーク(ここでは、第1無線通信ネットワーク15)における無線通信装置11とHA23との間の上りの絶対遅延時間Tdup1(sec)、ハンドオーバ先の無線通信ネットワーク(ここでは、第2無線通信ネットワーク16)における無線通信装置11とHA23との間の上りの絶対遅延時間Tdup2(sec)および下りの絶対遅延時間Tddn2(sec) と、ハンドオーバ完了後のハンドオーバ先の無線通信ネットワークにおける上りの予測帯域Rbup2(bps) とを取得する。
 そして、ハンドオーバ制御部36は、これらの取得情報を、所要のハンドオーバ情報として、ハンドオーバの予定決定を示すハンドオーバ予定決定情報を含めて、電話機能部33に供給する。また、電話機能部33は、ハンドオーバ制御部36から取得したハンドオーバ情報のうち、所要のハンドオーバ情報をハンドオーバ予告メッセージとして、HA23を介して通信装置12に送信する。したがって、本実施の形態に係る無線通信装置11において、ハンドオーバ制御部36は、ハンドオーバの準備を開始するか否かを決定する決定部、ハンドオーバ準備時間を推定する推定部、および第1無線通信ネットワーク15および第2無線通信ネットワーク16におけるそれぞれの遅延時間を計測する計測部を構成する。
 次に、ハンドオーバ制御部36による、上記のハンドオーバ準備時間Ts、ハンドオーバ元上り絶対遅延時間Tdup1、ハンドオーバ先上りおよび下り絶対遅延時間Tdup2およびTddn2、並びに、ハンドオーバ先予測帯域Rbup2の取得方法について説明する。
(ハンドオーバ準備時間Tsの取得方法)
 ハンドオーバ準備時間Tsは、例えば、図4(a)および(b)に示すように、通信品質を決定する無線状態(Rs)の単位時間の変化率ΔRs(傾き)に基づいて算出する。ここで、変化率ΔRsは、無線状態がハンドオーバ予定決定閾値を下回ってハンドオーバ予定を決定した時点で計測して取得することもできるが、本実施の形態では、当該通話中において、ハンドオーバの予定決定時点から所定時間前までの変化率平均値ΔRsrmsを取得する。
 このため、ハンドオーバ制御部36は、下式に従って、現在使用中の無線通信ネットワークにおける無線状態の単位時間(Δt)の変化率ΔRs(t)を所定のタイミングで算出して、所定時間前(例えば、2sec前)までの複数の変化率ΔRs(t)をメモリに保持する。そして、ハンドオーバ予定を決定すると、その時点で保持していた所定時間前までの変化率平均値ΔRsrmsを算出する。なお、ここでは、徐々に無線状態が悪化していることを前提とする。
[数1]
 ΔRs(t)=|{Rs(t)-Rs(t-Δt)}/Δt|
 その後、ハンドオーバ制御部36は、算出した変化率平均値ΔRsrmsが、予め設定した変化率閾値Rsrefよりも小さいか否かを判定する。その結果、ΔRsrms≦Rsrefの場合、すなわち、無線状態の変化が緩やかな場合には、図4(a)に示すように、ハンドオーバ準備時間Tsを、予め設定した標準時間Tref(例えば、5sec)とする。
 これに対し、ΔRsrms>Rsrefの場合、すなわち、無線状態の変化が急激な場合には、例えば、Ts=Tref(Rsref/ΔRsrms)、を演算して、変化率ΔRsrmsが大きいほど、ハンドオーバ準備時間Tsを、標準時間Trefよりも短く設定する。図4(b)は、ΔRsrms>Rsrefの場合で、ハンドオーバ準備時間Tsを、標準時間Trefのほぼ半分の時間(2.5sec)に設定した場合を示す。
(絶対遅延時間Tdup1、Tdup2、Tddn2の取得方法)
 無線通信装置11とHA23との間のハンドオーバ元上り絶対遅延時間Tdup1、ハンドオーバ先上りおよび下り絶対遅延時間Tdup2およびTddn2は、例えば、以下に説明する第1~第3の絶対遅延時間取得方法のいずれかによって取得する。
(a)第1の絶対遅延時間取得方法
 ハンドオーバ制御部36は、ハンドオーバの予定を決定すると、第1無線I/F31および第2無線I/F32を介して、無線通信装置11と時間同期しているHA23に対して送信タイムスタンプを有する計測用パケットを送信して、HA23から当該送信タイムスタンプとHA23での受信タイムスタンプ、およびHA23からの返信タイムスタンプを有する計測用パケットの返信を要求する。これにより、HA23から、第1無線通信ネットワーク15および第2無線通信ネットワーク16の双方から計測用パケットを送信させる。無線通信装置11は、HA23から送信された計測用パケットを、対応する第1無線I/F31および第2無線I/F32を介してそれぞれ受信し、その受信時刻と計測用パケットのタイムスタンプとから、対応するネットワークの絶対遅延時間Tdup1、Tdup2、Tddn2を計測する。
(b)第2の絶対遅延時間取得方法
 ハンドオーバ制御部36は、ハンドオーバの予定を決定すると、無線通信装置11から該無線通信装置11と時間同期しているHA23に対して、第1無線通信ネットワーク15および第2無線通信ネットワーク16の双方から、PINGやRTCP等の計測用パケットを送信させ、その返信を受信して、対応するネットワークの絶対遅延時間Tdup1、Tdup2、Tddn2を計測する。
(c)第3の絶対遅延時間取得方法
 ハンドオーバ制御部36は、ハンドオーバの予定を決定すると、IEEE802.21において検討されているハンドオーバ技術を利用して、各無線通信ネットワークの絶対遅延時間を取得する。IEEE802.21(Media Independent Handover(MIH))では、異種無線通信ネットワーク(WiFi(Wireless Fidelity)、WiMAX(Worldwide Interoperability for Microwave Access)、携帯電話など)間のハンドオーバ技術として、ハンドオーバを制御する手段(図2では、ハンドオーバ制御部36)をMIHユーザと定義し、MIHF(MIH Function)がMIHユーザからの要求に基づいて、通信デバイスの無線情報を取得して、MIHユーザに提供することを考えている。また、MIHユーザが、自らの端末内のMIHFを通して、接続しているネットワーク内のインフォメーションサーバから情報を取得することも考えられている。
 図5は、この第3の絶対遅延時間取得方法を説明するための図である。図5において、基幹ネットワーク網であるインターネット18には、遅延時間を計測するために動作する計測用サーバ61が接続されており、第1無線通信ネットワーク15には、第1インフォメーションサーバ62が接続されており、第2無線通信ネットワーク16には、第2インフォメーションサーバ63が接続されている。
 第1インフォメーションサーバ62は、インターネット18に直接繋がった計測用サーバ61から基地局15aまでの、遅延時間計測の基準とするネットワーク遅延基準時間Tn1と、基地局15aから無線通信装置11までの上下の無線遅延基準時間Trup1、Trdn1を保持する。同様に、第2インフォメーションサーバ63は、計測用サーバ61からアクセスポイント16aまでのネットワーク遅延基準時間Tn2と、アクセスポイント16aから無線通信装置11までの上下の無線遅延基準時間Trup2、Trdn2を保持する。
 ここで、ネットワーク遅延基準時間Tn1およびTn2は、基地局15aと計測用サーバ61との間、およびアクセスポイント16aと計測用サーバ61との間で、それぞれパケット(PINGやRTCPなど)を送受信して往復時間を測り、その往復時間を1/2して取得される。
 また、第1無線通信ネットワーク15における上下の無線遅延基準時間Trup1、Trdn1は、基地局15aから無線通信装置11へパケットを送り、パケットを受信した無線通信装置11は受信した時間を記録して送り返すことで、基地局15aと無線通信装置11との間で送受信した時間に基づいて、上り・下りのそれぞれの遅延時間が計算される。
 同様に、第2無線通信ネットワーク16における上下の無線遅延基準時間Trup2、Trdn2は、アクセスポイント16aから無線通信装置11へパケットを送り、パケットを受信した無線通信装置11は受信した時間を記録して送り返すことで、アクセスポイント16aと無線通信装置11との間で送受信した時間に基づいて、上り・下りのそれぞれの遅延時間が計算される。なお、Trup1,Trup2は上りの無線遅延基準時間を示しており、Trdn1,Trdn2は下りの無線遅延基準時間を示している。
 無線通信装置11のハンドオーバ制御部36は、ハンドオーバ元である第1無線通信ネットワーク15への接続時に、当該第1無線通信ネットワーク15に接続されている第1インフォメーションサーバ62からMIHFを介してネットワーク遅延基準時間Tn1と無線遅延基準時間Trdn1,Trup1とを取得する。また、ハンドオーバ制御部36は、遅延時間を測りたい相手先(ここでは、HA23)とパケットの送受信を行い、相手と自らの無線通信装置11との間の往復時間(Tn3+Trdn3+Tn3+Trup3)を計測する。そして、ハンドオーバ制御部36は、この値から、以下のようにして、HA23とインターネット18との間の片道の遅延時間(Tn3-Tn1)を求めて、無線通信装置11とHA23との間のハンドオーバ元上り絶対遅延時間Tdup1に相当するTn3+Trup3を計算する。
[数2]
 Tn3-Tn1={(Tn3+Trdn3+Tn3+Trup3)-(Tn1+Trdn1+Tn1+Trup1)}/2
 Tdup1=Tn3+Trup3=Tn1+Trup1+(Tn3-Tn1)
 なお、無線通信装置11とHA23との間のハンドオーバ元下り絶対遅延時間Tddn1に相当するTn3+Trdn3は、Tn3+Trdn3=Tn1+Trdn1+(Tn3-Tn1)、により算出することができる。
 また、ハンドオーバ制御部36は、ハンドオーバ先のネットワーク遅延基準時間Tn2および無線遅延基準時間Trup2、Trdn2を取得する。このため、現在接続している第1無線通信ネットワーク15の第1インフォメーションサーバ62を経由して、ハンドオーバ先の第2無線通信ネットワーク16の第2インフォメーションサーバ63に、当該無線通信装置11の位置情報を送信して、ネットワーク遅延基準時間Tn2および無線遅延基準時間Trup2、Trdn2の返信を要求する。これにより、第2インフォメーションサーバ63は、位置情報と各アクセスポイントの接続ユーザ数とを考慮して、接続されると思われるアクセスポイント16aのネットワーク遅延基準時間Tn2および無線遅延基準時間Trup2,Trdn2を、第1インフォメーションサーバ62を経由して無線通信装置11へ返信する。
 ハンドオーバ制御部36は、第2インフォメーションサーバ63から返信されるハンドオーバ先のネットワーク遅延基準時間Tn2および無線遅延基準時間Trup2,Trdn2を受信し、その取得情報と算出した(Tn3-Tn1)とを用いて、以下のようにして、無線通信装置11とHA23との間のハンドオーバ先上り絶対遅延時間Tdup2に相当するTn4+Trup4と、下り絶対遅延時間Tddn2に相当するTn4+Trdn4とを計算する。
[数3]
 Tdup2=Tn4+Trup4=(Tn2+Trup2)+(Tn3-Tn1)
 Tddn2=Tn4+Trdn4=(Tn2+Trdn2)+(Tn3-Tn1)
 ハンドオーバ制御部36は、上記の第1~第3の絶対遅延時間取得方法のいずれかによって取得した絶対遅延時間Tdup1、Tdup2、Tddn2を、無線通信ネットワーク毎に、ハンドオーバ制御部36内のメモリ(図示せず)に記憶する。
(ハンドオーバ先予測帯域Rbup2の取得方法)
 ハンドオーバ先の上りの予測帯域Rbup2は、ハンドオーバ完了後のハンドオーバ先の無線通信ネットワークにおける上りの無線状態を予測して取得する。このため、ハンドオーバ制御部36には、例えば、図6に示すような無線状態(通信品質)とスループット(予測帯域)との変換テーブルを予め記憶しておく。ハンドオーバ制御部36は、例えば、ハンドオーバ予定決定時点におけるハンドオーバ先の無線状況と、その時点から所定時間前のハンドオーバ先の無線状況とに基づいて、ハンドオーバ完了時のハンドオーバ先の無線状態を線形に予測し、その予測した無線状態に基づいて、図6の変換テーブルから、ハンドオーバ完了時点のハンドオーバ先予測帯域Rbup2を取得する。ここで、ハンドオーバ完了時点は、ハンドオーバ予定決定時点から、ハンドオーバ準備時間Tsと、ハンドオーバ先の無線通信ネットワーク(ここでは、第2無線通信ネットワーク16)におけるHA23と無線通信装置11との間の往復の絶対遅延時間(Trup2+Trdn2)とを加算した時点とする。
 以上のようにして、ハンドオーバ制御部36は、ハンドオーバ準備時間Ts、ハンドオーバ元上り絶対遅延時間Tdup1、ハンドオーバ先上りおよび下り絶対遅延時間Tdup2およびTddn2、並びに、ハンドオーバ先予測帯域Rbup2を取得して、それらの取得情報を電話機能部33に供給する。
 また、ハンドオーバ制御部36は、ハンドオーバ予定を決定した場合は、ハンドオーバ処理を実行する。
 図7は、無線通信装置11とHA23との間のハンドオーバ処理を説明するためのシーケンス図である。図7に示すように、無線通信装置(MN)11のハンドオーバ制御部36は、ハンドオーバ予定を決定すると、通信処理部34を制御して、第2無線I/F32を第2無線通信ネットワーク16に接続する。その後、ハンドオーバ制御部36は、ハンドオーバ準備時間Tsが経過した時点で、ハンドオーバ先の第2無線通信ネットワーク16を介してHA23にハンドオーバ要求情報であるRegistration Request(NEMOでは、Binding Update)を送信する。なお、ハンドオーバ制御部36は、HA23にハンドオーバ要求情報を送信すると、その旨を示すハンドオーバ予定通知を、ハンドオーバ情報として電話機能部33に送信する。
 HA23は、ハンドオーバ要求情報を受信すると、ハンドオーバ先のIPアドレスを気付けアドレス(第2無線CoA)として登録して、ハンドオーバ完了情報であるRegistration Reply(NEMOでは、Binding Acknowledge)を、第2無線通信ネットワーク16を介して無線通信装置11に返信する。なお、HA23は、無線通信装置11に対して一つの気付けアドレスのみを登録する。したがって、ハンドオーバ先の気付けアドレス(第2無線CoA)は、既に登録されているハンドオーバ元の気付けアドレス(第1無線CoA)に上書きして登録する。HA23は、ハンドオーバ先の気付けアドレスを登録すると、その時点から、登録した気付けアドレス(第2無線CoA)からのパケットのみを受け付け、以前の気付けアドレス(第1無線CoA)が送信元であるパケットは受け付けない。
 その後、ハンドオーバ制御部36は、HA23から返信されるハンドオーバ完了情報であるRegistration Reply(NEMOでは、Binding Acknowledge)を受信すると、ハンドオーバ先の第2無線通信ネットワーク16によりパケットの送受信を開始するとともに、通信処理部34を制御して、第1無線I/F31とハンドオーバ元の第1無線通信ネットワーク15との接続を切断する。なお、ハンドオーバ制御部36は、HA23からハンドオーバ完了情報を受信すると、その旨を示すハンドオーバ完了通知を、ハンドオーバ情報として電話機能部33に送信する。
 図7から明らかなように、HA23は、ハンドオーバ先のIPアドレスを気付けアドレス(第2無線CoA)として登録した後は、ハンドオーバ元からの送信パケットは受け付けない。このため、ハンドオーバ元の第1無線通信ネットワーク15を介して、無線通信装置11からHA23に送信されたパケットのうち、ハンドオーバ要求情報がHA23に届いた後に、HA23に到着するパケットはロストすることになる。
 図8は、この場合のパケットロスの発生を説明するための図である。ここでは、便宜上、NEMOを例にとって説明する。図8に示すように、HA23は、無線通信装置(MN)11からBinding Updateを受信して、そのハンドオーバ先のIPアドレスを気付けアドレス(第2無線CoA)として登録すると、その後は、ハンドオーバ先からのパケットのみを受け付けることになる。
 このため、ハンドオーバ元の上りの絶対遅延時間Tdup1が、ハンドオーバ先の上りの絶対遅延時間Tdup2よりも長い場合は、無線通信装置(MN)11がBinding Updateを送信した時点よりも、Tsttlow=Tdup1-Tdup2、手前の時点Twsから、無線通信装置(MN)11がHA23からBinding Ackを受信する時点までに、ハンドオーバ元から送信されたパケットは、ロストすることになる。このパケットのロスト期間Tlostは、Tlost=Tdup1+Tddn2、となる。また、HA23は、Binding Updateを受信してから、ハンドオーバ先からのパケットが到着するまでの期間、すなわち、Tdup2+Tddn2、の期間はパケットを受信しないことになる。なお、図8において、一点鎖線はハンドオーバ前のパケットの流れを示している。
 そこで、本実施の形態に係る無線通信装置11は、電話機能部33において、ハンドオーバ制御部36からのハンドオーバ情報に基づいて、ハンドオーバによってロストすると思われる送信データを電話機能部33内の送信バッファ57に蓄積して、ハンドオーバ完了後に送信するようにデータの送信を制御する。
 次に、電話機能部33によるハンドオーバ時のデータ送信処理について説明する。
 図9は、電話機能部33によるハンドオーバ時のデータ送信処理の概要を説明するための図である。上述したように、無線通信装置(MN)11から送信されるパケットは、Binding Updateが送信される時点よりもTsttlow手前の時点Twsから、ロスト期間Tlostに相当する期間Aでロストする。このため、この期間Aにおいては、電話機能部33は、送信データの符号化ビットレートを下げるとともに、データを送信しながらそのコピーを送信バッファ57に蓄積する。
 その後、電話機能部33は、ハンドオーバ先からのパケットの送信が開始されたら、新しいデータを送信バッファ57内に蓄積しながら、送信バッファ57内のパケットが0となるまで、送信バッファ57内のデータを速く送信する(期間B)。その後、通信が終了するまで、あるいは、次のハンドオーバ予定による期間Aが開始されるまでは、電話機能部33は、送信データを通常の符号化ビットレートでエンコードして、送信バッファ57に蓄積することなく送信する(期間C)。
 図10は、電話機能部33の送信制御部56によるハンドオーバ時の動作を示すフローチャートである。以下、図10に示すフローチャートを参照しながら、電話機能部33によるハンドオーバ時のデータ送信処理について、さらに詳細に説明する。
 電話機能部33のハンドオーバ情報取得部55は、ハンドオーバ制御部36からのハンドオーバ情報を一定間隔毎に監視する。その結果、ハンドオーバ予定決定情報を取得した場合は、さらに、ハンドオーバ制御部36からの所要のハンドオーバ情報である、ハンドオーバ準備時間Ts、ハンドオーバ元上り絶対遅延時間Tdup1、ハンドオーバ先上りおよび下り絶対遅延時間Tdup2およびTddn2、ハンドオーバ先予測帯域Rbup2を取得して、その取得した所要のハンドオーバ情報を送信制御部56に供給する。その後、ハンドオーバ情報取得部55は、ハンドオーバ制御部36からのハンドオーバ予定通知およびハンドオーバ完了通知を一定間隔毎に監視して、それらの受信情報を送信制御部56に供給するとともに、ハンドオーバ完了通知を取得した場合は、ハンドオーバの予定があるか否かの情報取得に戻る。
 送信制御部56は、ハンドオーバ情報取得部55からハンドオーバ情報を取得すると、その取得情報のうち、ハンドオーバ先予測帯域Rbup2の情報を除くハンドオーバ情報を、通信装置12に送信する。また、送信制御部56は、ハンドオーバ情報を取得すると、先ず、パケットロスが生じる期間A(図8参照)の開始時間Twsである送信バッファ57へのデータ蓄積開始時間と、その際の符号化ビットレートR1とを算出する(ステップS11)。
 ここで、データ蓄積開始時間Twsは、取得したTs、Tdup1、Tdup2から、Tsttlow=Tdup1-Tdup2、として、Tws=Ts-Tsttlow、により算出する。また、符号化ビットレートR1は、取得したRbup2(bps)、通信装置12のハンドオーバ後の標準再生速度Vnに対する再生速度Vf (sec/sec)、送信バッファ57の最大容量Sbf(bit)、ロスト期間Tlost(sec)、標準の符号化ビットレートRn(bps)、とするとき、(i)Sbf/ Tlost、(ii)Rbup2/Vf、のうち、小さい方を上限として、取り得る符号化ビットレートの最大値を選択する。なお、ここで選択する符号化ビットレートは、帯域の変動等を考慮して、多少のマージンを持たせて、より低い符号化ビットレートを選択するようにしてもよい。また、ハンドオーバ後の再生速度Vfは、例えば、標準再生速度Vnの1.25倍と予め設定して、両者で保持するか、あるいは通信装置12から無線通信装置11に事前に通知する。
 その後、送信制御部56は、パケット蓄積開始時間Twsまで待機し(ステップS12)、パケット蓄積開始時間Twsに達すると(期間Aの開始)、エンコーダ44に対して、送信データの符号化ビットレートを算出した符号化ビットレートR1まで下げるように指示する(ステップS13)。また、送信制御部56は、エンコーダ44から受け取った送信データを、そのままパケット送信部45に渡しつつ、当該送信データをコピーして送信バッファ57に蓄積する(ステップS14)。なお、その際、送信データ中の一定(例えば、500msec)以上の長さの無音部分は、上記の一定の長さまで無音データを圧縮する。
 上記のステップS14の処理は、HA23からのハンドオーバ完了情報を受信するまで行う(ステップS15)。その後、ハンドオーバ完了情報を受信すると(S15のYes、期間Bの開始)、送信制御部56は、そのハンドオーバ完了情報を通信装置12に送信するとともに、エンコーダ44から受け取った送信データをパケット送信部45に渡さずに、送信バッファ57に蓄積しながら、送信バッファ57に蓄積されているデータ(パケット)を古いものから、帯域に合わせてパケット送信部45に高速に渡して、通信装置12に送信する(ステップS16)。
 送信制御部56は、送信バッファ57内のパケット数を監視する(ステップS17)。その結果、送信バッファ57内のパケットが0になると(S17のYes、期間Cの開始)、送信制御部56は、エンコーダ44に符号化ビットレートを元に戻すように指示するとともに(ステップS18)、エンコーダ44からの送信データを送信バッファ57に蓄積することなく、パケット送信部45に渡して、通信装置12に送信する(ステップS19)。
 図11は、本実施の形態に係る無線通信装置11がハンドオーバ時に送信制御を行った場合の通信装置12との間における送受信パケットの状態を示す図である。また、図12は、図11との比較のために、ハンドオーバ時に上記の送信制御を行わなかった場合の無線通信装置と通信装置12との間における送受信パケットの状態を示す図である。図11および図12において、(a)~(c)は、通信装置12における受信パケットシーケンス番号、単位時間の受信パケット数、単位時間の受信データ量(byte)をそれぞれ示し、(d)は、無線通信装置11による送信データの符号化ビットレート(bps)を示す。
 図11および図12の比較から明らかなように、本実施の形態に係る無線通信装置(MN)11は、ハンドオーバ時にロストするであろう送信パケットを、無線通信装置11側で蓄積し、その蓄積したパケットをハンドオーバ後に送信するので、図12(a)では生じていたパケットのロストが、図11(a)では生じない。したがって、ハンドオーバ時でも、通信装置(CN)12側では文章の連続性を保つことができるので、音声を聞くユーザに違和感を与えることもない。
 また、図12(d)では、送信データの符号化ビットレートは一定であるが、本実施の形態に係る無線通信装置(MN)11は、図11(d)に示すように、パケットを蓄積している間は、符号化ビットレートを落としている。したがって、その後、蓄積されたパケットを、限られた帯域の中で滞留を起すことなく、通常より多く送信することができる。これにより、受信側の通信装置(CN)12では、図11(b)および(c)に示す通常よりも多く受信されるパケットを、通常よりも高速に再生することで、本来の絶対遅延での再生に戻すことができる。また、無線通信装置(MN)11で、蓄積するパケットを無音圧縮することにより、全体的なデータ容量を低減でき、より速く蓄積したパケットを送信することができる。
 次に、図1に示した通信装置(CN)12について説明する。
 図13は、通信装置(CN)12の概略構成を示す機能ブロック図である。通信装置12は、図示しないインターネットサービスプロバイダを介してインターネット18に接続するネットワークI/F(インターフェース)81と、ネットワークへの接続を制御する通信処理部82と、VoIPのアプリケーションを実行する電話機能部83と、を有する。
 通信処理部82は、ネットワークI/F81のインターネット18への接続を制御して、電話機能部83と無線通信装置11との間の通信を実行する。
 図14は、図13に示した通信装置12の電話機能部83の概略構成を示す機能ブロック図である。電話機能部83は、例えばソフトフォンからなり、公知のソフトフォンの構成と同様に、ボタン入力部101、画面表示部102、マイク103、エンコーダ104、パケット送信部105、パケット受信部106、ジッタバッファ107、デコーダ108、スピーカ109、ジッタバッファ監視部110、ジッタバッファ制御部111、SIP制御部112、および全体の動作を制御する全体制御部113を有する。なお、マイク103およびスピーカ109は、例えば、図1に示したように送受話器12aで構成される。
 全体制御部113は、ボタン入力部101や画面表示部102を介して、ユーザの操作情報を取得し、その取得情報に基づいて全体の動作を制御する。また、SIP制御部112は、通話の開始や終了のSIPの手続きを制御する。通話中において、マイク103から取得された音声データは、エンコーダ104でエンコードされ、そのエンコードされたデータは、パケット送信部105からパケットに入れられて、通信処理部82およびネットワークI/F81を経て無線通信装置11へ送信される。
 また、通信処理部82を経てパケット受信部106で受信された無線通信装置11からのパケットは、ジッタバッファ107に一旦取り込まれてから読み出され、その読み出されたパケットは、デコーダ108でペイロード部分がデコードされて、スピーカ109から再生音声として出力される。なお、ジッタバッファ107のパケットの受信状況や、ジッタバッファ107内のパケット数(データ量)の状態は、ジッタバッファ監視部110で監視され、その監視結果に基づいて、ジッタバッファ制御部111により、ジッタバッファ107からのパケットの読み出し速度や、受信したパケットの破棄などの処理が制御される。
 図1に示した通信装置12は、電話機能部83に、さらに、ハンドオーバ情報取得部115および再生速度計算部116を備える。ハンドオーバ情報取得部115は、HA23から転送される無線通信装置11からのハンドオーバ情報を一定間隔毎に監視する。その結果、ハンドオーバ予定決定情報があった場合は、ハンドオーバ情報取得部115は、さらに、無線通信装置11からの所要のハンドオーバ情報を取得して、その取得した所要のハンドオーバ情報を再生速度計算部116に供給する。
 再生速度計算部116は、ジッタバッファ監視部110によるジッタバッファ107の監視結果と、ハンドオーバ情報取得部115から取得した所要のハンドオーバ情報とに基づいて、ジッタバッファ107のパケットの読み出し速度、すなわち受信パケットの再生速度(ここでは、VoIPアプリケーションの再生速度)を計算し、その計算結果をジッタバッファ制御部111に供給する。これにより、ジッタバッファ制御部111は、受信パケットの再生速度が、再生速度計算部116で計算された再生速度となるように、ジッタバッファ107からの受信パケットの読み出しを制御する。
 以下、電話機能部83の動作について説明する。図15は、電話機能部83の要部の動作を示すシーケンス図である。また、図16は、無線通信装置(MN)11、HA23および通信装置(CN)12間でのハンドオーバ情報の流れを示すシーケンス図である。なお、図16において、一点鎖線は無線通信装置11からHA23に対するハンドオーバ前のパケットの流れを示している。
 電話機能部83のハンドオーバ情報取得部115は、無線通信装置11からのハンドオーバ情報を一定間隔毎に監視する。その結果、ハンドオーバ予定決定情報が取得された場合は、さらに、無線通信装置11からのハンドオーバ準備時間Ts、ハンドオーバ元上り絶対遅延時間Tdup1、ハンドオーバ先上りおよび下り絶対遅延時間Tdup2およびTddn2を取得して、再生速度計算部116に供給する。
 また、再生速度計算部116は、ジッタバッファ監視部110から現在のジッタバッファ107内の蓄積パケット数Tc(sec)を取得するとともに、HA23までの絶対遅延時間Tdhc3を取得する。なお、HA23までの絶対遅延時間Tdhc3は、HA23との間でパケットを送受信してRTT(Round Trip Time)を測定し、その測定値の1/2とする。
 そして、再生速度計算部116は、これらの取得情報に基づいて、ハンドオーバ完了までの再生速度Vs (sec/sec)、すなわち、標準再生速度Vnに対する時間比を下式により算出する。
[数4]
 Vs=(Tb+Tc)/(Tb+Ta)
 ここで、Tbは、ハンドオーバまでの時間 (sec)で、図16に示すように、Tb=Ts-Tdup1-Tdhc3、から求める。また、Taは、ハンドオーバによってパケットが到着しない時間で、Ta=Tdup2+Tddn2、から求める。すなわち、ここでは、再生速度Vsとして、再生時に不所望な無音が発生せず、かつ、ハンドオーバ先からのパケットが到着する時点で、ジッタバッファ107内のパケットが0となる速度を算出する。
 再生速度計算部116で算出した再生速度Vsは、ジッタバッファ制御部111に供給する。これにより、ジッタバッファ制御部111は、受信パケットを標準再生速度Vnよりも低速の算出した再生速度Vsで再生するように、ジッタバッファ47からの受信パケットの読み出しを制御する。
 その後、再生速度計算部116は、ハンドオーバ情報取得部115からハンドオーバ完了情報を取得すると、図17に示すフローチャートに従って、ジッタバッファ制御部111を介してジッタバッファ107からの受信パケットの読み出しを制御する。
 以下、図17に示すフローチャートを参照しながら、ハンドオーバ完了後のジッタバッファ107の読み出し制御について説明する。先ず、再生速度計算部116は、ハンドオーバ完了情報を受けると、ジッタバッファ制御部111から、ジッタバッファ107内のパケット蓄積量(パケット数)およびパケット受信間隔(受信速度)を定期的に取得して(ステップS21)、ジッタバッファ107内のパケット蓄積量が標準の蓄積量を超えるか否かを監視する(ステップS22)。その結果、標準の蓄積量を超えると(S22のYes)、再生速度制御部116は、過去の一定期間における受信速度の平均を算出して(ステップS23)、その算出した受信速度が予め設定した再生速度Vf(1.25)に相当する標準速度の125%を超えるか否かを判定する(ステップS24)。
 ここで、受信速度が125%を超えていれば(S24のYes)、再生速度計算部116は、ジッタバッファ制御部111に対して再生速度Vfで高速再生を開始するように指示して(ステップS25)、ジッタバッファ107内のパケット蓄積量が標準になったか否かを監視する(ステップS26)。
 これに対し、ステップS24において、受信速度が125%を超えていなければ(S24のNo)、再生速度計算部116は、次に、受信速度が標準速度(100%)か否かを判定する(ステップS27)。その結果、標準速度を超えていれば(S27のYes)、再生速度計算部116は、ジッタバッファ制御部111に対して、ステップS23で計算した受信速度と同じ速度で高速再生を開始するように指示して(ステップS28)、ステップS26に移行する。
 再生速度計算部116は、その後も、ジッタバッファ107の蓄積量およびパケット受信間隔(受信速度)を定期的に監視し続ける。そして、ステップS26において、ジッタバッファ107内のパケット蓄積量が標準になると(S26のYes)、パケット受信間隔(受信速度)の平均が、標準値から一定範囲内か否かを判定する(ステップS29)。その結果、パケット蓄積量が標準で、かつパケット受信間隔が一定範囲内(S29のYes)になると、ジッタバッファ107を通常の制御に戻すようにジッタバッファ制御部111に指示して(ステップS30)、ハンドオーバ時の制御を終了する。なお、ステップS23において算出した受信速度の平均が、ステップS27において、標準速度を超えていない場合は(S27のNo)、ステップS30に移行して、同様に、ジッタバッファ107を通常の制御に戻す。
 図18は、上述した通信装置12によるパケットの再生制御を説明するための図である。図18(a)は、ジッタバッファ107が単位時間に受信するパケット数、図18(b)は、ジッタバッファ107内のパケット蓄積量、図18(c)は、再生速度をそれぞれ示す。ここでは、図18(a)に示すように、第2無線通信ネットワーク16にハンドオーバされた最初の部分では、ジッタバッファ107は、標準受信パケット数の125%より多いパケット数を受信し、その後は、標準受信パケット数と等しいパケット数を受信した場合を例示している。なお、図18(b)において、パケット蓄積量Tnは、標準再生速度Vnに相当する標準蓄積量を示す。
 図18から明らかなように、通信装置12は、ハンドオーバ予定通知を含むハンドオーバ情報に基づいて、アプリケーションの再生速度を、標準再生速度Vnから、ハンドオーバ先からのパケットの受信開始時点でジッタバッファ107内のパケット数が0となる定速度の再生速度Vsに低下させる。その後、ハンドオーバが完了して、ジッタバッファ107内のパケット蓄積量およびパケットの受信間隔が標準に戻ったのを確認して、標準再生速度Vnに戻すようにしている。
 したがって、ハンドオーバによってパケットが到着しない期間(Ta=Tdup2+Tddn2)でも、より標準再生速度に近い定速度の再生速度でアプリケーションを再生することができるので、再生品質およびリアルタイム性を低下させることがなくなる。
 なお、ジッタバッファ制御部111による、標準再生速度Vnよりも低速の再生速度Vsによるパケットの再生速度制御は、例えば、以下に説明する第1の再生速度制御方法または第2の再生速度制御方法のいずれかにより実行する。
(a)第1の再生速度制御方法
 標準再生速度Vnに対するジッタバッファ107からのパケットの読み出し間隔をTR1、(Tb+Tc)/(Tb+Ta)をk、算出した再生速度Vsに対応するジッタバッファ107からのパケットの読み出し間隔をTR、とするとき、TR=TR1/k、とする。例えば、標準再生速度Vnでは、ジッタバッファ107内のパケットを20msecの間隔で読み出して再生するVoIPアプリケーションにおいて、再生速度Vsを標準再生速度Vnの80%(k=0.8)とする場合には、ジッタバッファ47からのパケットの読み出し間隔TRを、TR=20/0.8(msec)、とする。
(b)第2の再生速度制御方法
 ハンドオーバのための再生速度のコントロールを開始すると、その直後に再生したパケットのタイムスタンプと、その再生時間とを組み合わせて記録する。その後のパケットについては、下式で示す時間Tvに、ジッタバッファ107から読み出して再生する。なお、下式において、TDは、遅延時間で、初期値は0である。
[数5]
 Tv=(パケットのタイムスタンプ-最初のパケットのタイムスタンプ)+(最初のパケットの再生時間+TD)
 ここで、ジッタバッファ107からパケットを読み出す際、[{Vn/(Vn-Vs)}-1]個目に読み出したパケットは、コピーしてデコーダ108内のメモリに記憶し、コピー元のパケットを再生した後、次の再生タイミングでコピーしたパケットを読み出して再生する。例えば、再生速度Vsを、標準再生速度Vnの80%とする場合には、図19に示すように、ジッタバッファ107内の順次の4個のパケットP1~P4を順番に読み出して再生するとともに、4個目のパケットP4はコピーし、そのコピーしたパケットP4′は、コピー元のパケットP4を再生した後、次の再生タイミングで再生する。その後、ジッタバッファ107からパケットP5を読み出す際は、上記のTDを、コピーによる再生間隔の時間分増加する。なお、[{Vn/(Vn-Vs)}-1]個目に読み出すパケットが、届いていなかったり、破棄されたりして、ジッタバッファ107にない場合には、次の再生タイミングのパケットに対して、同様の処理を行う。
 以上の処理により、通信装置12は、無線通信装置11のハンドオーバ時にパケットの到着しない期間が発生し、その後、無線通信装置11から、蓄積されたパケットが高速に到着するという状態に適切に対応して、最適な速度でパケットを再生することができる。
 なお、上記第1実施の形態では、モバイルIPのリバーストンネリングまたはNEMOを使用して、無線通信装置11からHA23を経由して通信装置12にパケットを送信する場合を例示したが、ハンドオーバによる無線通信装置11から通信装置12への送信パケットのロストは、モバイルIPv6で経路の最適化を行い、無線通信装置11と通信装置12との間で直接パケットの送受信を行う場合にも、ハンドオーバによる経路の遅延時間の差により同様に生じる。したがって、このような場合にも、上記実施の形態と同様にして、ハンドオーバ時に無線通信装置11で送信するパケットを蓄積して、ハンドオーバ後に蓄積したパケットを送信することにより、パケットロスを防ぐことができる。
 また、上記実施の形態では、第1無線通信ネットワーク15よりも上りの絶対遅延時間が短い第2無線通信ネットワーク16へハンドオーバする場合について説明したが、逆に、第2無線通信ネットワーク16から上りの絶対遅延時間が長い第1無線通信ネットワーク15へハンドオーバする場合にも、同様にしてパケットロスを防ぐことができる。この場合は、無線通信装置(MN)11がBinding Update等のハンドオーバ要求情報を送信した時点から、Tsttlow=Tdup1-Tdup2、先の時点を始点として、この始点から、無線通信装置(MN)11がHA23からBinding Ack等のハンドオーバ完了情報を受信する時点までに、ハンドオーバ元から送信されたパケットがロストすることになる。したがって、この場合のロスト期間Tlostは、Tlost=Tdup1+Tddn2、となるので、この期間の送信パケットは送信バッファ57に蓄積して、ハンドオーバ完了後に高速送信すればよい。なお、この場合、ハンドオーバによって、HA23が無線通信装置11からパケットを受信しない期間は、Tdup2+Tddn2、となる。
 さらに、上述した通信装置12においては、再生速度計算部116で再生速度Vsを計算する際、ハンドオーバ先からのパケットの受信開始時点で、ジッタバッファ107内のパケット数が0となるようにしたが、ハンドオーバ先からのパケットの受信開始時点で、ジッタバッファ107内のパケット数が所定数となるように、再生速度Vsを計算することもできる。
(第2実施の形態)
 次に、本発明の第2実施の形態に係る通信装置ついて説明する。
 図20は、本発明の第2実施の形態に係る通信装置が使用可能な通信ネットワークの概略構成を示す図である。図20に示す通信ネットワークは、図1と同様の構成を有している。移動ノードである無線通信装置(MN)121は、第1無線通信ネットワーク15と第2無線通信ネットワーク16との間で、ハンドオーバが可能となっており、対向ノードである通信装置(CN)122との間で、リアルタイム通信系のアプリケーションであるVoIPによる通話を行うものと仮定する。なお、図20に示した通信ネットワークにおいて、図1に示した通信ネットワークと同様の作用を成す構成要素には、同一の参照符号を付して説明を省略する。
 通信装置122は、例えば送受話器122aが接続され、電話機能部としてのソフトフォンがインストールされたパーソナルコンピュータからなり、図示しないインターネットサービスプロバイダを介して通信ネットワークであるインターネット18に接続されている。
 図20において、無線通信装置121は、HA23に第1無線通信ネットワーク15のIPアドレスを気付けアドレス(第1無線CoA)として登録して、第1無線通信ネットワーク15を介して通信装置122と通信を行っている状態から、第2無線通信ネットワーク16へハンドオーバするものとする。
 図21は、図20に示した無線通信装置121の概略構成を示す機能ブロック図である。無線通信装置121は、図2に示した無線通信装置11と同様に、第1無線通信ネットワーク15に対応する第1無線I/F(インターフェース)131と、第2無線通信ネットワーク16に対応する第2無線I/F132と、VoIPのアプリケーションを実行する電話機能部133と、第1無線通信ネットワーク15および第2無線通信ネットワーク16への接続を制御する通信処理部134と、第1無線通信ネットワーク15および第2無線通信ネットワーク16の無線情報を取得する無線情報取得部135と、第1無線通信ネットワーク15と第2無線通信ネットワーク16との間のハンドオーバを制御するハンドオーバ制御部136と、を有する。
 通信処理部134は、図2に示した通信処理部34と同様に、電話機能部133と通信装置122との間で、第1無線通信ネットワーク15または第2無線通信ネットワーク16を介して通話を行うとともに、ハンドオーバ制御部136による制御のもとに、HA23と通信するように、第1無線I/F131または第2無線I/F132の接続を制御する。
 無線情報取得部135は、図2に示した無線情報取得部35と同様に、無線情報として、第1無線I/F131および第2無線I/F132から、それぞれ対応する第1無線通信ネットワーク15および第2無線通信ネットワーク16の通信品質(例えば、RSSI)を取得し、その取得した通信品質をハンドオーバ制御部136に供給する。
 ハンドオーバ制御部136は、無線情報取得部135からの通信品質に基づいて、ハンドオーバを予定するか否か、すなわちハンドオーバの準備を開始するか否かの決定を含むハンドオーバ情報を生成し、そのハンドオーバ情報に基づいてハンドオーバを制御する。
 以下、ハンドオーバ制御部136の動作について、さらに詳細に説明する。
 ハンドオーバ制御部136は、例えば、図2に示したハンドオーバ制御部36と同様にして、第1無線I/F131および第2無線I/F132から無線情報取得部135を経由してそれぞれ取得した通信品質に基づいて、ハンドオーバの予定を決定する。
 ハンドオーバ制御部136は、ハンドオーバ予定を決定すると、ハンドオーバ開始までの時間、すなわちハンドオーバ要求情報であるRegistration Request(NEMOでは、Binding Update)を送信するまでの時間であるハンドオーバ準備時間Ts(sec)と、現在使用中の無線通信ネットワーク(ここでは、第1無線通信ネットワーク15)における無線通信装置11とHA23との間の上りの絶対遅延時間Tdup1(sec)および下りの絶対遅延時間Tddn1(sec)と、ハンドオーバ先の無線通信ネットワーク(ここでは、第2無線通信ネットワーク16)における無線通信装置121とHA23との間の上りおよび下りの絶対遅延時間Tdup2(sec)およびTddn2(sec)と、HA23のハンドオーバ完了時すなわちハンドオーバ要求情報がHA23に到着した時点のハンドオーバ先の無線通信ネットワークにおける下りの予測帯域Rbdn2(bps) とを取得する。
 そして、ハンドオーバ制御部136は、これらの取得情報を、所要のハンドオーバ情報として、ハンドオーバの予定決定を示すハンドオーバ予定決定情報を含めて、電話機能部133に供給する。また、電話機能部133は、ハンドオーバ制御部136から取得したハンドオーバ情報を、後述する絶対遅延時間の比較結果に応じて、ハンドオーバ予告メッセージとして、HA23を介して通信装置12に選択的に送信する。
 ここで、ハンドオーバ制御部36による、上記のハンドオーバ準備時間Ts、ハンドオーバ元上りおよび下り絶対遅延時間Tdup1およびTddn1、ハンドオーバ先上りおよび下り絶対遅延時間Tdup2およびTddn2、並びに、ハンドオーバ先予測帯域Rbdn2は、例えば、第1実施の形態において説明した取得方法によりそれぞれ取得する。
 すなわち、ハンドオーバ準備時間Tsは、図4(a)および(b)を用いて説明した取得方法により取得する。また、絶対遅延時間Tdup1、Tddn1、Tdup2、Tddn2は、第1~第3の絶対遅延時間取得方法のいずれかによって取得して、無線通信ネットワーク毎に、ハンドオーバ制御部136内のメモリ(図示せず)に記憶しておく。
 例えば、第1の絶対遅延時間取得方法による場合は、第1無線I/F131および第2無線I/F132を介してそれぞれ受信したHA23からの計測用パケットの受信時刻と、当該計測用パケットのタイムスタンプとから、対応するネットワークの絶対遅延時間Tdup1、Tddn1、Tdup2、Tddn2を計測する。
 また、第2の絶対遅延時間取得方法による場合は、HA23に対して、第1無線通信ネットワーク15および第2無線通信ネットワーク16の双方から、PINGやRTCP等の計測用パケットの送信時刻と、その返信の受信時刻とに基づいて、対応するネットワークの絶対遅延時間Tdup1、Tddn1、Tdup2、Tddn2を計測する。
 また、第3の絶対遅延時間取得方法による場合は、絶対遅延時間Tdup1、Tdup2、Tddn2については、上記の[数2]および[数3]により取得し、絶対遅延時間Tddn1については、下式により取得する。
[数6]
 Tddn1=Tn3+Trdn3=Tn1+Trdn1+(Tn3-Tn1)
 また、ハンドオーバ先の下りの予測帯域Rbdn2は、HA23のハンドオーバ完了時におけるハンドオーバ先の無線通信ネットワークにおける下りの無線状態を予測して取得する。このため、ハンドオーバ制御部136には、例えば、図6に示したような無線状態(通信品質)とスループット(予測帯域)との変換テーブルを予め記憶しておく。ハンドオーバ制御部36は、例えば、ハンドオーバ予定決定時点におけるハンドオーバ先の無線状況と、その時点から所定時間前のハンドオーバ先の無線状況とに基づいて、ハンドオーバ完了時のハンドオーバ先の無線状態を線形に予測し、その予測した無線状態に基づいて、図6の変換テーブルから、ハンドオーバ完了時点のハンドオーバ先予測帯域Rbdn2を取得する。ここで、ハンドオーバ完了時点は、ハンドオーバ予定決定時点から、ハンドオーバ準備時間Tsと、ハンドオーバ先の無線通信ネットワーク(ここでは、第2無線通信ネットワーク16)におけるHA23と無線通信装置11との間の上りの絶対遅延時間Trup2とを加算した時点とする。
 以上のようにして、ハンドオーバ制御部136は、ハンドオーバ準備時間Ts、ハンドオーバ元上りおよび下り絶対遅延時間Tdup1およびTddn1、ハンドオーバ先上りおよび下り絶対遅延時間Tdup2およびTddn2、並びに、ハンドオーバ先下り予測帯域Rbdn2を取得すると、それらの取得情報を、ハンドオーバの予定決定を示すハンドオーバ予定決定情報とともに、所要のハンドオーバ情報として、電話機能部133に供給する。
 また、ハンドオーバ制御部136は、ハンドオーバ予定を決定した場合は、ハンドオーバ処理を実行する。
 図22は、無線通信装置121とHA23との間のハンドオーバ処理を説明するためのシーケンス図である。図22に示すように、無線通信装置(MN)121のハンドオーバ制御部136は、ハンドオーバ予定を決定すると、通信処理部134を制御して、第2無線I/F132を第2無線通信ネットワーク16に接続する。その後、ハンドオーバ制御部136は、ハンドオーバ準備時間Tsが経過した時点で、ハンドオーバ先の第2無線通信ネットワーク16を介してHA23にハンドオーバ要求情報であるRegistration Request(NEMOでは、Binding Update)を送信する。
 HA23は、ハンドオーバ要求情報を受信すると、ハンドオーバ先のIPアドレスを気付けアドレス(第2無線CoA)として登録して、ハンドオーバ完了情報であるRegistration Reply(NEMOでは、Binding Acknowledge)を、第2無線通信ネットワーク16を介して無線通信装置121に返信する。なお、HA23は、無線通信装置121に対して一つの気付けアドレスのみを登録する。したがって、ハンドオーバ先の気付けアドレス(第2無線CoA)は、既に登録されているハンドオーバ元の気付けアドレス(第1無線CoA)に上書きして登録する。
 その後、ハンドオーバ制御部136は、HA23から返信されるハンドオーバ完了情報であるRegistration Reply(NEMOでは、Binding Acknowledge)を受信すると、ハンドオーバ先の第2無線通信ネットワーク16によりパケットの送受信を開始するとともに、通信処理部134を制御して、第1無線I/F31とハンドオーバ元の第1無線通信ネットワーク15との接続を切断する。なお、ハンドオーバ制御部136は、HA23からハンドオーバ完了情報を受信すると、その旨を示すハンドオーバ完了通知を、ハンドオーバ情報として電話機能部133に送信する。
 図22から明らかなように、ハンドオーバ元の第1無線通信ネットワーク15を経由する下りの絶対遅延時間Tddn1が、ハンドオーバ先の第2無線通信ネットワーク16を経由する下りの絶対遅延時間Tddn2よりも長いと、無線通信装置(MN)121には、ハンドオーバ元の第1無線I/F131を第1無線通信ネットワーク15から切断した後、HA23からハンドオーバ元の第1無線通信ネットワーク15に転送されたパケットが受信できなくなって、パケットのロストが生じることになる。
 図23は、この場合のパケットロスの発生を説明するための図である。ここでは、便宜上、NEMOを例にとって説明する。図23に示すように、無線通信装置(MN)121は、HA23からBinding Ackを受信すると、その後は、ハンドオーバ先からのパケットのみを受信することになる。このため、ハンドオーバ元の下りの絶対遅延時間Tddn1が、ハンドオーバ先の下りの絶対遅延時間Tddn2よりも長い場合は、無線通信装置(MN)121がBinding Ackを受信した時点から、(Tddn1-Tddn2)先の期間における、ハンドオーバ元の第1無線通信ネットワーク15から送信されたパケットが無線通信装置(MN)121で受信できず、この期間(Tddn1-Tddn2)がパケットのロスト期間Tlostとなる。
 ここで、通信装置(CN)122が、ロスト期間Tlostに最初に送信するデータDat(n1)の送信タイミングをT1、最後に送信するデータDat(n2)の送信タイミングをT2とすると、通信装置(CN)122が、HA23を経て無線通信装置(MN)121からのハンドオーバ予告メッセージMsg(HO)を受信した時点から、データDat(n1)の送信タイミングT1までの期間Tlowstt(sec)は、ハンドオーバ予告メッセージMsg(HO)に含まれるハンドオーバ情報と、通信装置(CN)122とHA23との間の絶対遅延時間Tdnとを用いて、以下のように求めることができる。なお、HA23との間の絶対遅延時間Tdnは、HA23との間でパケットを送受信してRTT(Round Trip Time)を測定し、その測定値を1/2することにより求めることができる。
[数7]
 Tlowstt=Ts-Tdup1-Tdn+Tdup2-Tdn-(Tddn1-Tddn2)
    =Ts+Tddn2-2Tdn-(Tddn1+Tdup1)+Tdup2
 電話機能部133は、ハンドオーバ制御部136からハンドオーバ情報を取得すると、ハンドオーバ元およびハンドオーバ先の下りの絶対遅延時間Tddn1、Tddn2を比較し、Tddn1>Tddn2、の場合は、取得した全てのハンドオーバ情報をハンドオーバ予告メッセージとして、HA23を介して通信装置(CN)122に送信する。これにより、通信装置(CN)122において、無線通信装置(MN)121からのハンドオーバ情報、および上述したHA23との間の絶対遅延時間Tdnに基づいて、ハンドオーバによってロストすると思われる送信データを、当該通信装置(CN)122内に蓄積して、ハンドオーバ完了後に無線通信装置121で受信できるようにデータの送信を制御する。なお、上記のHA23との間の絶対遅延時間Tdnは、予め測定して通信装置(CN)122内に格納してもよいし、無線通信装置(MN)121からのハンドオーバ情報を受信して測定するようにしてもよい。
 以下、図20に示した本実施の形態に係る通信装置(CN)122の構成および動作について説明する。
 図24は、通信装置(CN)122の概略構成を示す機能ブロック図である。通信装置122は、図示しないインターネットサービスプロバイダを介してインターネット18に接続するネットワークI/F(インターフェース)181と、ネットワークへの接続を制御する通信処理部182と、VoIPのアプリケーションを実行する電話機能部183と、を有する。
 通信処理部182は、ネットワークI/F181のインターネット18への接続を制御して、電話機能部183と無線通信装置121との間の通信を実行する。したがって、ネットワークI/F181および通信処理部182は、通信部を構成する。
 図25は、図24に示した通信装置122の電話機能部183の概略構成を示す機能ブロック図である。電話機能部183は、例えばソフトフォンからなり、図14に示した通信装置12と同様に、公知のソフトフォンの構成である、ボタン入力部141、画面表示部142、マイク143、エンコーダ144、パケット送信部145、パケット受信部146、ジッタバッファ147、デコーダ148、スピーカ149、ジッタバッファ監視部150、ジッタバッファ制御部151、SIP制御部152、および全体の動作を制御する全体制御部153を有する。なお、マイク143およびスピーカ149は、例えば、図20に示したように送受話器122aで構成される。
 全体制御部153は、ボタン入力部141や画面表示部142を介して、ユーザの操作情報を取得し、その取得情報に基づいて全体の動作を制御する。また、SIP制御部152は、通話の開始や終了のSIPの手続きを制御する。通話中において、マイク143から取得された音声データは、符号化部であるエンコーダ144でエンコードされ、そのエンコードされたデータは、パケット送信部145からパケットに入れられて、通信処理部182およびネットワークI/F181を経て無線通信装置121へ送信される。
 また、通信処理部182を経てパケット受信部146で受信された無線通信装置121からのパケットは、ジッタバッファ147に一旦取り込まれてから読み出され、その読み出されたパケットは、デコーダ148でペイロード部分がデコードされて、スピーカ149から再生音声として出力される。なお、ジッタバッファ147のパケットの受信状況や、ジッタバッファ147内のパケット数(データ量)の状態は、ジッタバッファ監視部150で監視され、その監視結果に基づいて、ジッタバッファ制御部51により、ジッタバッファ47からのパケットの読み出し速度や、受信したパケットの破棄などの処理が制御される。
 図20に示した通信装置122は、電話機能部183に、さらに、ハンドオーバ情報取得部155、送信制御部156および送信バッファ157を備える。すなわち、電話機能部183は、図3に示した第1実施の形態に係る無線通信装置11の電話機能部33と同様の構成を有する。
 ハンドオーバ情報取得部155は、無線通信装置121からのハンドオーバ予告メッセージを一定間隔毎に監視して、ハンドオーバの予定を決定するハンドオーバ予定決定情報を取得する。そして、ハンドオーバ予定決定情報が取得された場合は、ハンドオーバ情報取得部155は、さらに、無線通信装置121から所要のハンドオーバ情報を取得し、その取得した所要のハンドオーバ情報を送信制御部156に供給する。
 送信制御部156は、エンコーダ144による送信データの符号化ビットレートおよびエンコーダ144からパケット送信部145へのデータの送信を制御する。すなわち、送信制御部156は、ハンドオーバ情報取得部155からハンドオーバ情報が供給されない通常の通話状態では、エンコーダ44でエンコードされたデータをパケット送信部145に直接送信する。これに対し、ハンドオーバ情報取得部155からハンドオーバ情報が供給された場合は、送信制御部156は、上記の絶対遅延時間Tdnを取得して、該絶対遅延時間Tdnとハンドオーバ情報とに基づいて、ハンドオーバによってロストすると思われるエンコーダ144からのデータを送信バッファ157に蓄積し、その蓄積したデータをハンドオーバ完了後にパケット送信部145に送信するように制御する。この送信制御部156による送信制御については、さらに後述する。
 したがって、本実施の形態に係る通信装置122においてでは、電話機能部183は、リアルタイム通信系のアプリケーションを実行する実行部、および当該アプリケーションのデータの送信を制御する制御部を構成する。
 次に、電話機能部183によるハンドオーバ時のデータ送信処理について説明する。
 図26は、電話機能部183によるハンドオーバ時のデータ送信処理の概要を説明するための図である。上述したように、通信装置(CN)122から送信するパケットは、無線通信装置(MN)121からのハンドオーバ予告メッセージMsg(HO)を受信した時点から、期間Tlowstt(sec)が経過したロスト期間Tlost(期間A)でロストする。このため、この期間Aにおいては、電話機能部183は、送信データの符号化ビットレートを下げるとともに、データを送信しながらそのコピーを送信バッファ157に蓄積する。
 その後、電話機能部183は、ハンドオーバ先からのパケットの送信が開始されたら、新しいデータを送信バッファ157内に蓄積しながら、送信バッファ157内のパケットが0となるまで、送信バッファ157内のデータを速く送信する(期間B)。その後、通信が終了するまで、あるいは、次のハンドオーバ予定による期間Aが開始されるまでは、電話機能部183は、送信データを通常の符号化ビットレートでエンコードして、送信バッファ157に蓄積することなく送信する(期間C)。
 図27は、電話機能部183の送信制御部156によるハンドオーバ時の動作を示すフローチャートである。以下、図27に示すフローチャートを参照しながら、電話機能部183によるハンドオーバ時のデータ送信処理について、さらに詳細に説明する。
 電話機能部183のハンドオーバ情報取得部155は、HA23から転送される無線通信装置(MN)121からのハンドオーバ情報を一定間隔毎に監視する。その結果、ハンドオーバ予定決定情報を取得すると、所要のハンドオーバ情報である、ハンドオーバ準備時間Ts、ハンドオーバ元上り絶対遅延時間Tdup1およびTddn1、ハンドオーバ先上りおよび下り絶対遅延時間Tdup2およびTddn2、ハンドオーバ先予測帯域Rbdn2を取得して(ステップS111)、その取得した所要のハンドオーバ情報を送信制御部156に供給する。
 送信制御部156は、ハンドオーバ情報を取得すると、先ず、ハンドオーバ予告メッセージMsg(HO)の受信時点からパケットロスが生じる期間A(図26参照)までの時間Tlowstt、期間Aであるパケットのロスト期間Tlost、および、符号化ビットレートR1とを算出する(ステップS112)。
 ここで、時間Tlowsttは、上記の数4で示した式に基づいて算出し、ロスト期間Tlostは、(Tddn1-Tddn2)から算出する。また、符号化ビットレートR1は、取得したRbdn2(bps)、通信装置122のハンドオーバ後の当該アプリケーションの標準再生速度Vnに対する再生速度Vf (sec/sec)、送信バッファ157の最大容量Sbf(bit)、ロスト期間Tlost(sec)、標準の符号化ビットレートRn(bps)、とするとき、(i)Sbf/ Tlost、(ii)Rbdn2/Vf、のうち、小さい方を上限として、取り得る符号化ビットレートの最大値を選択する。なお、ここで選択する符号化ビットレートは、帯域の変動等を考慮して、多少のマージンを持たせて、より低い符号化ビットレートを選択するようにしてもよい。また、ハンドオーバ後の再生速度Vfは、例えば、標準再生速度Vnの1.25倍と予め設定して、両者で保持するか、あるいは通信装置122から無線通信装置121に事前に通知する。
 その後、送信制御部156は、Tlowstt時間待機し(ステップS113)、Tlowstt時間が経過すると(ロスト期間Tlostの開始)、エンコーダ144に対して、送信データの符号化ビットレートを算出した符号化ビットレートR1まで下げるように指示するとともに、エンコーダ144から受け取った送信データを、そのままパケット送信部145に渡しつつ、当該送信データをコピーして送信バッファ157に蓄積する(ステップS114)。なお、その際、送信データ中の一定(例えば、500msec)以上の長さの無音部分は、上記の一定の長さまで無音データを圧縮する。
 上記のステップS114の処理は、ロスト期間Tlostが終了するまで行い(ステップS115)、ロスト期間Tlostが終了すると(S115のYes、期間Bの開始)、送信制御部156は、エンコーダ144から受け取った送信データをパケット送信部145に渡さずに、送信バッファ157に蓄積しながら、送信バッファ157に蓄積されているデータ(パケット)を古いものから、帯域に合わせてパケット送信部145に高速に渡して、無線通信装置(MN)121に送信する(ステップS116)。
 送信制御部156は、送信バッファ157内のパケット数を監視する(ステップS117)。その結果、送信バッファ157内のパケットが0になると(S117のYes、期間Cの開始)、送信制御部156は、エンコーダ144に符号化ビットレートを元に戻すように指示するとともに(ステップS118)、エンコーダ144からの送信データを送信バッファ157に蓄積することなく、パケット送信部145に渡して、無線通信装置(MN)121に送信する(ステップS119)。
 図28は、本実施の形態に係る通信装置122によりハンドオーバ時に送信制御を行った場合の無線通信装置における受信パケットの状態を示す図である。また、図29は、図28との比較のために、ハンドオーバ時に上記の送信制御を行わなかった場合の無線通信装置における受信パケットの状態を示す図である。図28および図29において、(a)は受信パケットのシーケンス番号、(b)は単位時間の受信パケット数、(c)は単位時間の受信データ量(byte)を示す。
 図28および図29の比較から明らかなように、本実施の形態に係る通信装置(CN)122は、ハンドオーバ時に無線通信装置(MN)121がロストするであろうパケットを、送信バッファ157に蓄積し、その蓄積したパケットを、無線通信装置(MN)121がハンドオーバした後に受信できるように送信するので、図29(a)では生じていたパケットのロストが、図28(a)では生じない。したがって、ハンドオーバ時でも、通信相手である無線通信装置(MN)121側では文章の連続性を保つことができるので、音声を聞くユーザに違和感を与えることもない。また、本実施の形態に係る通信装置(CN)122は、ロストするパケットを蓄積している間は、エンコーダ144による符号化ビットレートを落としているので、その後、蓄積されたパケットを、限られた帯域の中で滞留を起すことなく、通常より多く送信することができる。したがって、受信側の無線通信装置(MN)121では、図28(b)および(c)に示す通常よりも多く受信されるパケットを、通常よりも高速に再生することで、本来の絶対遅延での再生に戻すことができる。また、送信バッファ157に蓄積するパケットを無音圧縮することにより、全体的なデータ容量を低減でき、より速く蓄積したパケットを送信することができる。
 次に、図20に示した無線通信装置(MN)121について、図30および図31を参照して、さらに詳細に説明する。
 図30は、無線通信装置121の電話機能部133の概略構成を示す機能ブロック図である。また、図31は、電話機能部133の要部の動作を示すシーケンス図である。図30に示すように、電話機能部133は、例えば、公知のソフトフォンからなり、図25に示した通信装置122の電話機能部183と同様に、ボタン入力部201、画面表示部202、マイク203、エンコーダ204、パケット送信部205、パケット受信部206、ジッタバッファ207、デコーダ208、スピーカ209、ジッタバッファ監視部210、ジッタバッファ制御部211、SIP制御部212、および全体の動作を制御する全体制御部213を有する。
 全体制御部213は、ボタン入力部201や画面表示部202を介して、ユーザの操作情報を取得し、その取得情報に基づいて全体の動作を制御する。また、SIP制御部212は、通話の開始や終了のSIPの手続きを制御する。通話中において、マイク203から取得された音声データは、エンコーダ204でエンコードされ、そのエンコードされたデータは、パケット送信部205からパケットに入れられて、通信処理部134を経て通信装置122へ送信される。
 また、通信処理部134を経てパケット受信部206で受信された通信装置122からのパケットは、ジッタバッファ207に一旦取り込まれてから読み出され、その読み出されたパケットは、デコーダ208でペイロード部分がデコードされて、スピーカ209から再生音声として出力される。
 ジッタバッファ監視部210は、図31に示すように、ジッタバッファ207のパケットの受信状況や、ジッタバッファ207内のパケット数(データ量)の状態を監視し、その監視結果に基づいて、ジッタバッファ制御部211により、ジッタバッファ207からのパケットの読み出し速度や、受信したパケットの破棄などの処理を制御する。
 図20に示した無線通信装置121は、図30に示すように、電話機能部133に、さらに、ハンドオーバ情報取得部215および再生速度計算部216を備える。すなわち、電話機能部133は、図14に示した通信装置12の電話機能部83と同様の構成を有する。
 図31に示すように、ハンドオーバ情報取得部215は、ハンドオーバ制御部136からのハンドオーバ情報を一定間隔毎に監視し、ハンドオーバ情報があった場合は、上述したように、ハンドオーバ情報に含まれるハンドオーバ元およびハンドオーバ先の下りの絶対遅延時間Tddn1、Tddn2、を比較して、Tddn1>Tddn2、の場合は、取得したハンドオーバ情報をハンドオーバ予告メッセージとして通信装置122に送信する。
 また、ハンドオーバ情報取得部215は、ハンドオーバ情報を取得すると、Tddn1>Tddn2、の場合は、さらにハンドオーバ情報に含まれるハンドオーバ完了通知を監視し、ハンドオーバ完了通知を受信すると、その旨を再生速度計算部216へ通知する。これにより、再生速度計算部216は、ジッタバッファ制御部211に標準再生速度Vnよりも速い所定の速度Vf(例えば、標準再生速度Vnの1.25倍)で再生するように通知する。
 その後、再生速度計算部216は、一定間隔でジッタバッファ監視部210からジッタバッファ207内のパケット蓄積量とパケット受信間隔とを取得し、パケット受信間隔が標準再生速度Vnの受信間隔に対応する一定以上で、かつパケット蓄積量が標準のパケット蓄積量以下になると、通常の再生制御に戻すようにジッタバッファ制御部211に指示する。
 なお、ハンドオーバ情報取得部215は、取得したハンドオーバ情報に含まれるハンドオーバ元およびハンドオーバ先の下りの絶対遅延時間Tddn1、Tddn2が、Tddn1≦Tddn2、の場合は、ハンドオーバによるパケットロスは発生しないので、この場合は、通信装置122にハンドオーバ予告メッセージを送信しないとともに、ハンドオーバ完了通知を受信しても、その旨を再生速度計算部216へ通知しない。したがって、この場合は、ジッタバッファ制御部211は、ジッタバッファ監視部210による監視結果に基づいて、ジッタバッファ207内のパケットを通常の制御で再生することになる。
 図32は、上述した無線通信装置121によるパケットの再生制御を説明するための図で、図32(a)は、ジッタバッファ207が単位時間に受信するパケット数、図32(b)は、ジッタバッファ207内のパケット蓄積量、図32(c)は、再生速度を示す。上述したように、通信装置122は、ハンドオーバによってロストすると思われる送信データを蓄積して、ハンドオーバ完了後に無線通信装置121で受信できるタイミングでデータを高速に送信する。
 したがって、図32(a)に示すように、HA23からハンドオーバ完了情報を受信した直後は、一時的に単位時間の受信パケット数が増加し、その増加に応じて、図32(b)に示すように、ジッタバッファ207内のパケット蓄積量も漸増する。しかし、図32(c)に示すように、再生速度は、HA23からハンドオーバ完了情報を受信すると、標準再生速度Vnよりも速い速度Vfとするので、ジッタバッファ207内のパケット蓄積量は、単位時間の受信パケット数が標準に戻った後は漸減し、標準蓄積量になると、再生速度も標準再生速度Vnに戻る。
 以上の処理により、HA23からのハンドオーバ完了情報を受信した後に、通信装置122から、蓄積されたパケットが高速に到着するという状態に適切に対応して、最適な速度でパケットを再生することができる。
 上述したように、無線通信装置(MN)121は、ハンドオーバの予定を決定すると、本実施の形態に係る通信装置(CN)122にハンドオーバ予告メッセージを送信する。そして、通信装置122は、無線通信装置121からのハンドオーバ予告メッセージを受信して、該ハンドオーバ予告メッセージに含まれるハンドオーバ情報に基づいて、ハンドオーバによってロストすると思われる送信データを推定し、その推定した送信データを送信バッファ157に蓄積して、ハンドオーバ完了後に、無線の帯域に合わせた速度で無線通信装置121に送信する。
 ここで、送信バッファ157による送信データの蓄積開始は、受信したハンドオーバ予告メッセージのタイミングを基準に、ロストすると思われる送信データの蓄積開始のタイミングを送信制御部156で算出して決定される。このため、ロストすると思われるパケットを、より正確に推定して蓄積するには、送信制御部156で算出した蓄積開始のタイミングと、無線通信装置11が実際に行うハンドオーバによって生じるロストのタイミングとを、正確に一致させるのが好適である。その方法として、下記の2つの方法が考えられる。
(1)通信装置122の送信バッファ157が蓄積処理を開始するタイミングに合わせて、蓄積開始のメッセージが通信装置122に到達するように、無線通信装置121から蓄積開始メッセージを送出する。
(2)通信装置122の計時周期を無線通信装置121の計時周期に同期させる。
 上記(1)を採用する場合は、蓄積開始のタイミングから、無線通信装置121から通信装置122への伝送遅延時間分前に、無線通信装置121から通信装置122に向けて蓄積開始メッセージを送出すればよい。このように、無線通信装置121における計時で、ハンドオーバを行うようにすれば、理論上誤差はないことになる。
 しかし、ハンドオーバは、無線の通信状態が悪化する方向にあるために行うということを考えると、ハンドオーバを行う時間付近においては、通信経路上でパケットの滞留が生じることが想定される。このようにパケットの滞留が生じると、上記の蓄積開始メッセージは、滞留のために、予定したタイミングで通信装置122に到達することが不可能になる(無線通信装置121から通信装置122への上りの滞留は、無線通信装置121では計測できない)。
 以上のことを考慮すると、無線通信装置121からは、事前のハンドオーバ予告メッセージと、直前の蓄積開始メッセージの双方を送出するようにし、通信装置122では、パケットの受信状態から滞留の監視を行い、滞留が生じていないと判断した場合には、直前の蓄積開始メッセージを優先し、滞留が生じていると判断した場合には、ハンドオーバ予告メッセージに基づいて予定した蓄積開始タイミングに対応して、蓄積を開始するようにするのが好ましい。
 上記(2)を採用する場合は、無線通信装置121と通信装置122との計時周期を事前に同期させる必要がある。その同期方法としては、例えば、通信装置122により、無線通信装置121からの無線状態を一定期間受信して、無線状態が良いと判断される状態で、RTPパケットの受信周期を計測し、その計測した受信周期を補正周期として用いて、通信装置122の計時周期を無線通信装置121に同期させることが考えられる。これにより、通信装置122では、無線通信装置121で算出された蓄積開始タイミングを補正して蓄積を開始することができる。
 このように、無線通信装置121からのRTPパケットを用いて通信装置122の計時周期を補正すれば、例えば、VoIPのアプリケーションでは、基本的に音声のRTPパケットは一定周期で送出され、無線状態が良好な場合はジッタが小さいので、無線通信装置121と通信装置122との計時周期を正確に同期させることができる。
 なお、上記(1)または(2)のいずれを採用する場合でも、無線通信装置121側において、ハンドオーバの予定が変更された場合は、その旨のメッセージを無線通信装置121から通信装置122に送出して、ハンドオーバの予定変更に応じて通信装置122の動作を修正する。例えば、無線通信装置121は、通信装置122にハンドオーバ予告メッセージを送出した後、ハンドオーバ前に、無線通信装置121に到着したパケットから、滞留が生じていることを検知した場合は、通信装置122に滞留発生のメッセージを送出する。また、通信装置122は、蓄積開始タイミング前に滞留発生のメッセージを受信した場合は、設定している最大蓄積時間(送信バッファ157の最大容量Sbf)を越えない範囲で、想定される蓄積容量をさらに増やして、当初の蓄積開始タイミングから前に遡ったタイミングで蓄積を開始する。そして、増量した蓄積時間にて、符号化ビットレートを再計算する。
 例えば、図23において、ハンドオーバ予告メッセージMsg(HO)の受信時に、ハンドオーバ元とハンドオーバ先の伝送遅延差によるパケットのロストが200(msec)であった場合、蓄積時間Tlostは、200(msec)に設定される。この状態で、蓄積開始タイミングT1から500(msec)手前の時点で、無線通信装置121から滞留発生メッセージを受信した場合は、想定される最大蓄積時間は、200+500=700(msec)、となる。この場合、送信バッファ157の最大容量Sbfが、500(msec)に設定されていれば、蓄積時間が500(msec)となるように、先の蓄積開始タイミングT1に対して、増量した300(msec)分遡った(T1-300)(msec)のタイミングで蓄積を開始する。
 このように、ハンドオーバ付近で、無線経路上でパケットの滞留が生じている場合は、その滞留分を含めてパケットを蓄積して、その蓄積したパケットをハンドオーバ先の経路を用いて送信することにより、ハンドオーバ元の滞留による無通状態(間隙)自体は補うことはできないが、その間にロストするパケット数を低減することが可能となる。
 なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、第1実施の形態に係る無線通信装置11の電話機能部33に、図30に示した無線通信装置121の電話機能部133が有する再生速度計算部216を付加して、ハンドオーバの際に上述した送信制御と再生制御との双方を実行する無線通信装置を構成することができる。同様に、第2実施の形態に係る通信装置122の電話機能部183に、図14に示した通信装置12の電話機能部83が有する再生速度計算部116を付加して、ハンドオーバの際に上述した送信制御と再生制御との双方を実行する通信装置を構成することができる。
 また、本発明は、VoIPのアプリケーションを実行する場合に限らず、映像や音楽等のマルチメディアデータをストリーミング送信する場合のようなリアルタイム通信系のアプリケーションを実行する場合にも有効に適用できる。この場合は、アプリケーションの実行部を、電話機能部に代えて、同様の送信制御機能を有するマルチメディア機能部で構成すればよい。さらに、本発明は、cdma2000 1xEV-DOと無線LANとの間のハンドオーバに限らず、他の無線通信ネットワーク、例えば、PDC(Personal Digital Cellular)、W-CDMA(Wideband CDMA)、PHS(Personal Handy-phone System)、Bluetooth、WiMAX、LTE(Long Term Evolution)、UMB(Ultra Mobile Broadband)、IMT-Advanced等の任意の異なる無線通信ネットワーク間でのハンドオーバの際にも有効に適用することができる。

Claims (9)

  1.  第1無線通信ネットワーク、および該第1無線通信ネットワークと異なる第2無線通信ネットワークに接続して無線通信を実行する無線通信部と、
     該無線通信部を介してリアルタイム通信系のアプリケーションを実行する実行部と、
     前記第1無線通信ネットワークに接続して前記アプリケーションを実行中に、当該第1無線通信ネットワークにおける無線リンクの通信品質を取得する通信品質取得部と、
     該通信品質取得部により取得した前記通信品質に基づいて、前記第1無線通信ネットワークから前記第2無線通信ネットワークへのハンドオーバの準備を開始するか否かを決定する決定部と、
     前記決定部によりハンドオーバ準備の開始を決定すると、前記第1無線通信ネットワークを介してデータを送信するとともに、該データを所定時間蓄積し、ハンドオーバ後に、該蓄積したデータを前記第2無線通信ネットワークを介して送信するよう制御する制御部と、
     を備えることを特徴とする無線通信装置。
  2.  前記アプリケーションの実行中に、前記決定部がハンドオーバ準備の開始を決定すると、前記通信品質取得部が取得した通信品質に基づいてハンドオーバを開始するまでのハンドオーバ準備時間を推定する推定部と、
     前記決定部がハンドオーバ準備の開始を決定すると、前記第1無線通信ネットワークおよび前記第2無線通信ネットワークにおけるそれぞれの遅延時間を計測する計測部と、を備え、
     前記制御部は、前記計測部により計測した前記第1無線通信ネットワークおよび前記第2無線通信ネットワークにおけるそれぞれの遅延時間と、前記推定部により推定した前記ハンドオーバ準備時間とに基づいて、前記データを蓄積する開始時間を決定することを特徴とする請求項1に記載の無線通信装置。
  3.  前記決定部がハンドオーバ準備の開始を決定すると、前記第1無線通信ネットワークおよび前記第2無線通信ネットワークにおけるそれぞれの遅延時間を計測する計測部と、を備え、
     前記制御部は、前記計測部により計測した前記第1無線通信ネットワークおよび前記第2無線通信ネットワークにおけるそれぞれの遅延時間に基づいて、前記データを蓄積する所定時間を決定することを特徴とする請求項1に記載の無線通信装置。
  4.  送信データを符号化する符号化部を備え、
     該符号化部は、前記決定部がハンドオーバ準備の開始を決定する前の符号化ビットレートよりも低いレートで、前記蓄積するデータを符号化することを特徴とする請求項1,2または3に記載の無線通信装置。
  5.  通信ネットワークに接続して通信を実行する通信部と、
     該通信部を介してリアルタイム通信系のアプリケーションを実行する実行部と、
     前記アプリケーションの通信相手である無線通信装置が、通信中の第1無線通信ネットワークから該第1無線通信ネットワークと異なる第2無線通信ネットワークヘハンドオーバするハンドオーバの情報を前記無線通信装置から受信すると、前記通信ネットワークを介してデータを送信するとともに、該データを所定時間蓄積し、前記無線通信装置のハンドオーバ後に、該蓄積したデータを前記無線通信装置へ送信するよう制御する制御部と、
     を備えることを特徴とする通信装置。
  6.  前記制御部は、前記ハンドオーバの情報に含まれる、ハンドオーバの準備時間と、前記第1無線通信ネットワークおよび前記第2無線通信ネットワークにおけるそれぞれの遅延時間と、前記通信ネットワークにおける遅延時間とに基づいて、前記データを蓄積する開始時間を決定することを特徴とする請求項5に記載の通信装置。
  7.  前記制御部は、前記ハンドオーバの情報に含まれる、前記第1無線通信ネットワークおよび前記第2無線通信ネットワークにおけるそれぞれの遅延時間に基づいて、前記データを蓄積する所定時間を決定することを特徴とする請求項5に記載の通信装置。
  8.  前記制御部は、前記ハンドオーバの情報に含まれる、前記第1無線通信ネットワークおよび前記第2無線通信ネットワークにおけるそれぞれの遅延時間に基づいて、前記データを蓄積する所定時間を決定することを特徴とする請求項6に記載の通信装置。
  9.  送信データを符号化する符号化部を備え、
     前記符号化部は、前記ハンドオーバの情報を受信する前の符号化ビットレートよりも低いレートで、前記蓄積するデータを符号化することを特徴とする請求項5,6,7または8に記載の通信装置。
PCT/JP2009/056178 2008-03-27 2009-03-26 無線通信装置および通信装置 WO2009119765A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010505794A JP5002707B2 (ja) 2008-03-27 2009-03-26 無線通信装置、通信装置、無線通信方法および通信方法
US12/934,586 US20110026494A1 (en) 2008-03-27 2009-03-26 Wireless communication apparatus and communication apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008084131 2008-03-27
JP2008-084124 2008-03-27
JP2008084124 2008-03-27
JP2008-084131 2008-03-27

Publications (1)

Publication Number Publication Date
WO2009119765A1 true WO2009119765A1 (ja) 2009-10-01

Family

ID=41113952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056178 WO2009119765A1 (ja) 2008-03-27 2009-03-26 無線通信装置および通信装置

Country Status (4)

Country Link
US (1) US20110026494A1 (ja)
JP (1) JP5002707B2 (ja)
KR (1) KR20100118146A (ja)
WO (1) WO2009119765A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222777A (ja) * 2011-04-14 2012-11-12 Hitachi Ltd 通信装置及びハンドオーバの制御方法
JP2013048368A (ja) * 2011-08-29 2013-03-07 Kyocera Corp 通信装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8918051B1 (en) * 2007-06-18 2014-12-23 Marvell International Ltd. Method and apparatus for performing a handoff of a data communication session from one network to another network
US20110124253A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-infused fibers in carbon-carbon composites
EP2522180B1 (en) * 2010-01-04 2016-04-27 Thomson Licensing Handover method of multicast and broadcast service in wireless network
US20130094472A1 (en) * 2011-10-14 2013-04-18 Qualcomm Incorporated Methods and apparatuses for reducing voice/data interruption during a mobility procedure
US9949187B2 (en) * 2015-08-28 2018-04-17 Panasonic Intellectual Property Management Co., Ltd. Mobile wireless terminal and control method
CN108370521B (zh) * 2016-01-05 2023-03-24 富士通株式会社 信息传输方法、装置和系统
US10028155B2 (en) * 2016-09-29 2018-07-17 Nokia Solutions And Networks Oy Buffer management for wireless networks
WO2020117404A1 (en) * 2018-12-06 2020-06-11 Amazon Technologies, Inc. Wireless device connection handover

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015143A (ja) * 2002-06-04 2004-01-15 Fujitsu Ltd 移動通信システムにおけるハンドオーバ方法、および移動通信システムにおいて使用されるルータ装置
JP2004153542A (ja) * 2002-10-30 2004-05-27 Samsung Yokohama Research Institute Co Ltd エージェントプログラム及び無線端末並びにハンドオフ制御方法
WO2007073508A1 (en) * 2005-10-21 2007-06-28 Qualcomm Incorporated Method and system for adaptive encoding of real-time information in wireless networks

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2859204B2 (ja) * 1996-04-18 1999-02-17 日本電気ホームエレクトロニクス株式会社 移動無線ネットワークシステム
US7440430B1 (en) * 2004-03-30 2008-10-21 Cisco Technology, Inc. Jitter buffer management for mobile communication handoffs
KR101075657B1 (ko) * 2004-05-29 2011-10-21 삼성전자주식회사 무선랜에서의 빠른 핸드오프 방법
US8085678B2 (en) * 2004-10-13 2011-12-27 Qualcomm Incorporated Media (voice) playback (de-jitter) buffer adjustments based on air interface
US8068460B2 (en) * 2005-07-14 2011-11-29 Toshiba America Research, Inc. Dynamic packet buffering system for mobile handoff

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015143A (ja) * 2002-06-04 2004-01-15 Fujitsu Ltd 移動通信システムにおけるハンドオーバ方法、および移動通信システムにおいて使用されるルータ装置
JP2004153542A (ja) * 2002-10-30 2004-05-27 Samsung Yokohama Research Institute Co Ltd エージェントプログラム及び無線端末並びにハンドオフ制御方法
WO2007073508A1 (en) * 2005-10-21 2007-06-28 Qualcomm Incorporated Method and system for adaptive encoding of real-time information in wireless networks

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222777A (ja) * 2011-04-14 2012-11-12 Hitachi Ltd 通信装置及びハンドオーバの制御方法
US8761845B2 (en) 2011-04-14 2014-06-24 Hitachi, Ltd. Communication apparatus and handover control method
JP2013048368A (ja) * 2011-08-29 2013-03-07 Kyocera Corp 通信装置

Also Published As

Publication number Publication date
US20110026494A1 (en) 2011-02-03
KR20100118146A (ko) 2010-11-04
JPWO2009119765A1 (ja) 2011-07-28
JP5002707B2 (ja) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5002707B2 (ja) 無線通信装置、通信装置、無線通信方法および通信方法
US8665824B2 (en) Wireless communication apparatus
JP5079870B2 (ja) 無線通信装置
JP5015319B2 (ja) 無線通信装置及び通信装置
US8619711B2 (en) Wireless communication apparatus
JP5250255B2 (ja) 無線通信装置
KR101169160B1 (ko) 무선 통신 장치
JP5048539B2 (ja) 無線通信装置
JP5224996B2 (ja) 無線通信装置
JP5128974B2 (ja) 無線通信装置
JP5053071B2 (ja) 無線通信装置
JP2010130226A (ja) 無線通信装置
JP2009182653A (ja) 無線通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010505794

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12934586

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107021420

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724655

Country of ref document: EP

Kind code of ref document: A1