Nothing Special   »   [go: up one dir, main page]

WO2009116283A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2009116283A1
WO2009116283A1 PCT/JP2009/001209 JP2009001209W WO2009116283A1 WO 2009116283 A1 WO2009116283 A1 WO 2009116283A1 JP 2009001209 W JP2009001209 W JP 2009001209W WO 2009116283 A1 WO2009116283 A1 WO 2009116283A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor device
semiconductor
groove
forming
Prior art date
Application number
PCT/JP2009/001209
Other languages
English (en)
French (fr)
Inventor
佐沢洋幸
西川直宏
栗田靖之
秦雅彦
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US12/933,340 priority Critical patent/US20110042719A1/en
Priority to CN2009801073793A priority patent/CN101960576B/zh
Publication of WO2009116283A1 publication Critical patent/WO2009116283A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • the present invention particularly relates to a semiconductor device such as a heterojunction field effect transistor using a Group 3-5 compound semiconductor containing nitrogen such as gallium nitride, and a method for manufacturing the same.
  • Gallium nitride-based heterojunction field effect transistors are expected to be used as switching elements that can operate at high frequencies and can be used with high power.
  • a device using a two-dimensional gas (2DEG) generated at the interface between n-type AlGaN and intrinsic GaN as a channel has been put to practical use as an AlGaN / GaN-HEMT (high electron mobility transistor).
  • 2DEG two-dimensional gas
  • As a characteristic required for the AlGaN / GaN-HEMT there is a case where a normally-off type in which a source-drain high impedance is applied even when no voltage is applied to the gate, that is, an enhancement mode operation is possible. Thereby, operation with a unipolar power supply, low power consumption, and the like can be realized.
  • Non-Patent Document 1 discloses a normally-off type AlGaN / GaN transistor in which a gate recess structure is formed in an AlGaN layer by dry etching. R. Wang et al., “Enhancement-Mode Si3N4 / AlGaN / GaN MISHFETs”, IEEE Electron Device Letters, Vol. 27, no. 10, October 2006, pages 793-795
  • the electron concentration in the 2DEG region facing the groove region can be reduced, and a part of 2DEG at the AlGaN layer / GaN layer interface can be depleted.
  • a state where the channel is cut off even when no gate voltage is applied As a result, it is possible to realize a normally-off state in which the source and drain of the transistor have a high impedance.
  • Non-Patent Document 1 has a problem that the current density of the channel current cannot be sufficiently increased. That is, the enhancement mode can be realized by reducing the thickness of the groove portion of the electron supply layer (AlGaN layer), while an intermediate level due to crystal imperfection exists on the bottom surface of the groove portion.
  • AlGaN layer electron supply layer
  • the charged electrons repel the electrons forming 2DEG, so that channel resistance is increased and channel current density is decreased.
  • operation with a relatively high threshold of about +1 V to +3 V is required.
  • the element resistance is low enough to withstand practical use even with a threshold of about +2 V. There is a problem that can not be realized.
  • the decrease in current density due to the space charge at the bottom of the groove can be taken to some extent by moving the groove away from the 2 DEG region, that is, by reducing the groove depth.
  • reducing the groove depth shifts the gate threshold value to the negative side, so that normally-off cannot be realized.
  • Non-Patent Document 1 an insulating film for reducing gate leakage is formed inside the groove portion of the channel region. For this reason, a depletion portion that is difficult to be controlled by the gate voltage remains at the source end and drain end of the bottom surface of the groove portion, and this depletion portion acts as a parasitic resistance even when conducting, and there is a problem of reducing the current density of the channel.
  • a channel layer of a group 3-5 compound semiconductor a carrier is supplied to the channel layer, and a groove is formed on the surface opposite to the surface facing the channel layer.
  • a carrier supply layer comprising: a semiconductor layer formed in the groove of the carrier supply layer and having a conductivity type opposite to the conductivity type indicated by the carrier; and a control electrode provided on the semiconductor layer.
  • a semiconductor device is provided.
  • the semiconductor layer may be a group 3-5 compound semiconductor layer containing nitrogen.
  • the semiconductor layer may be an InGaN layer, an AlGaN layer, or a GaN layer.
  • the semiconductor layer may be Al x Ga 1-x N, where 0 ⁇ x ⁇ 0.5.
  • the control electrode may be formed via an insulating layer between the semiconductor layer.
  • the insulating layer SiO x, SiN x, SiAl x O y N z, HfO x, HfAl x O y, HfSi x O y, HfN x O y, AlO x, AlN x O y, GaO x, GaO x N It may be a layer having at least one insulating compound selected from y and TaO x , TiN x O y .
  • a chemical formula including the subscripts x, y, or z indicates an insulating compound, and a compound in which the constituent ratio of the element is represented by a stoichiometric ratio or a defect or an amorphous structure is included in the element. It represents a compound whose composition ratio is not shown in the stoichiometric ratio.
  • the semiconductor device may further include a passivation layer that covers the carrier supply layer and has an opening that matches the opening of the groove.
  • the carrier supply layer may be lattice matched or pseudo-lattice matched with the channel layer, and the semiconductor layer may be lattice matched or pseudo-lattice matched with the carrier supply layer.
  • the channel layer may contain nitrogen.
  • the channel layer may be a GaN layer, an InGaN layer, or an AlGaN layer, and the carrier supply layer may be an AlGaN layer, an AlInN layer, or an AlN layer.
  • the control electrode may include at least one metal selected from Ni, Al, Mg, Sc, Ti, Mn, Ag, Sn, Pt, and In.
  • the carrier may be an electron.
  • a step of forming a groove in the surface of the carrier supply layer that supplies carriers to the channel layer of the Group 3-5 compound semiconductor, and the carrier is formed in the groove of the carrier supply layer.
  • a method for manufacturing a semiconductor device comprising: forming a semiconductor layer having a conductivity type opposite to the conductivity type shown; and forming a control electrode after forming the semiconductor layer.
  • a step of preparing a substrate having a channel layer of a Group 3-5 compound semiconductor containing nitrogen and an electron supply layer for supplying electrons to the channel layer, the electron supply layer serving as a surface A semiconductor device comprising: a step of forming a groove on a surface; a step of forming a p-type semiconductor layer in the groove of the electron supply layer; and a step of forming a control electrode after forming the p-type semiconductor layer.
  • the method of manufacturing the semiconductor device further includes a step of forming a passivation layer that covers the carrier supply layer, and a step of forming an opening in the passivation layer in a region where the groove is formed.
  • You may be prepared.
  • the step of forming a groove on the surface of the carrier supply layer may be a step of etching the carrier supply layer exposed in the opening of the passivation layer to form the groove.
  • the step of forming the semiconductor layer may be a step of selectively growing an epitaxial layer to be the semiconductor layer on the carrier supply layer exposed in the opening of the passivation layer.
  • the step of forming the groove on the surface of the carrier supply layer includes the step of forming a mask that covers a part of the carrier supply layer, and further forming a carrier supply layer in the carrier supply layer other than the region covered with the mask And a step of removing the mask.
  • the semiconductor layer may include nitrogen
  • the channel layer may include nitrogen.
  • An example of a cross section of the semiconductor device 100 of this embodiment is shown.
  • An example of a cross section in the manufacturing process of the semiconductor device 100 is shown.
  • An example of a cross section in the manufacturing process of the semiconductor device 100 is shown.
  • An example of a cross section in the manufacturing process of the semiconductor device 100 is shown.
  • An example of a cross section in the manufacturing process of the semiconductor device 100 is shown.
  • An example of a cross section in the manufacturing process of the semiconductor device 100 is shown.
  • An example of a cross section in the manufacturing process of the semiconductor device 100 is shown.
  • An example of a cross section in the manufacturing process of the semiconductor device 100 is shown.
  • An example of a cross section in the manufacturing process of the semiconductor device 100 is shown.
  • the transition characteristic graph of the drain current in DC evaluation of the semiconductor device 100 produced by the experiment example and the comparative example is shown.
  • FIG. 1 shows a cross-sectional example of the semiconductor device 100 of the present embodiment.
  • the semiconductor device 100 is illustrated as one transistor element in FIG. 1, the semiconductor device 100 may include a number of transistor elements.
  • the semiconductor device 100 includes a substrate 102, a buffer layer 104, a channel layer 106, an electron supply layer 108, a groove 110, a p-type semiconductor layer 112, an insulating layer 114, a control electrode 116, an input / output electrode 118, a passivation layer 120, and an element isolation region. 122.
  • the substrate 102 may be a base substrate for epitaxial growth, and examples thereof include single crystal sapphire, silicon carbide, silicon, and gallium nitride.
  • a commercially available substrate for epitaxial growth can be used.
  • the substrate 102 is preferably an insulating type, but a p-type or n-type can also be used.
  • the buffer layer 104 is formed on the substrate 102, and a Group 3-5 compound semiconductor containing nitrogen can be applied as a material.
  • the buffer layer 104 may be a single layer of aluminum gallium nitride (AlGaN), aluminum nitride (AlN), or gallium nitride (GaN), or may be a stack of these single layers.
  • the thickness of the buffer layer 104 is not particularly limited, but is preferably in the range of 300 nm to 3000 nm.
  • the buffer layer 104 can be formed using a metal organic chemical vapor deposition method (MOVPE), a halide VPE method, a molecular beam epitaxy method (MBE), or the like.
  • MOVPE metal organic chemical vapor deposition method
  • MBE molecular beam epitaxy method
  • a material for forming the buffer layer 104 a commercially available organic metal material such as trimethylgallium or trimethylindium can be used.
  • the channel layer 106 is formed on the buffer layer 104 and may be a group 3-5 compound semiconductor containing nitrogen.
  • the channel layer 106 is preferably a GaN layer, but an InGaN layer or an AlGaN layer can also be exemplified.
  • the thickness of the channel layer 106 is not particularly limited, but is preferably in the range of 300 nm to 3000 nm.
  • a method for forming the channel layer 106 a method similar to the method for forming the buffer layer 104 can be exemplified.
  • the electron supply layer 108 may be an example of a carrier supply layer.
  • the electron supply layer 108 supplies electrons to the channel layer 106.
  • the electrons may be an example of a carrier.
  • the electron supply layer 108 is formed on the channel layer 106, and 2DEG is formed on the channel layer 106 side of the interface between the electron supply layer 108 and the channel layer 106.
  • the electron supply layer 108 may be formed directly in contact with the channel layer 106 or may be formed through a suitable intermediate layer.
  • the electron supply layer 108 may be lattice-matched or pseudo-lattice-matched with the channel layer 106, and may be an AlGaN layer, an AlInN layer, or an AlN layer.
  • the thickness of the electron supply layer 108 can be determined within a range smaller than the critical thickness estimated from the lattice constant difference between the channel layer 106 and the electron supply layer 108.
  • the critical film thickness may be a film thickness in which a stress is relieved by generating defects in the crystal lattice due to stress generated by lattice mismatch.
  • the critical film thickness depends on the Al composition or the In composition of each layer, but a range of 10 nm to 60 nm can be exemplified.
  • a method for forming the electron supply layer 108 a method similar to the method for forming the buffer layer 104 can be exemplified.
  • the electron supply layer 108 has a groove 110 on the opposite side of the surface of the electron supply layer 108 that faces the channel layer 106.
  • a groove 110 By forming the groove 110 in the electron supply layer 108, 2DEG below the groove 110 can be easily depleted. As a result, the normally-off operation of the transistor can be easily realized.
  • the film thickness of the trench 110 is determined according to the composition, film thickness of the p-type semiconductor layer 112 and the threshold value of the transistor.
  • Examples of the film thickness of the groove 110 include a range of 5 nm to 40 nm.
  • the range of 7 nm to 20 nm can be exemplified, and more preferably, the range of 9 nm to 15 nm can be exemplified. More preferably, the range of 10 nm to 13 nm can be exemplified.
  • a mask having an opening formed in a region where the groove 110 is formed is applied to the electron supply layer 108, and the electron supply layer 108 exposed in the opening of the mask is anisotropically etched such as dry etching. It can be formed by etching by the method.
  • any material having selectivity with the electron supply layer 108 in etching such as a photoresist, an inorganic film such as SiO x , or a metal can be arbitrarily applied.
  • a chlorine-based gas such as Cl 2 or CH 2 Cl 2 and a fluorine-based gas such as CHF 3 or CF 4 can be used.
  • the groove 110 can be formed by forming a mask in a region corresponding to the groove 110 after the electron supply layer 108 is formed, further forming the electron supply layer 108 in a state where the mask exists, and then removing the mask.
  • a mask SiN x or SiO x can be used, and in this case, a selective growth method can be applied.
  • the MOVPE method can be used as the selectivity length method. Note that the groove 110 may not be formed by appropriately forming the thickness of the electron supply layer 108.
  • the p-type semiconductor layer 112 may be an example of a semiconductor layer.
  • the p-type semiconductor layer 112 is formed in the groove 110 formed on the surface opposite to the surface facing the channel layer 106 of the electron supply layer 108.
  • the p-type semiconductor layer 112 may be lattice-matched or pseudo-lattice-matched with the electron supply layer 108.
  • the p-type semiconductor layer 112 may be a p-type semiconductor of a Group 3-5 compound containing nitrogen, and examples thereof include an InGaN layer, an AlGaN layer, and a GaN layer.
  • the p-type semiconductor layer 112 may be an Al x Ga 1-x N layer (where 0 ⁇ x ⁇ 0.5).
  • the composition of x can be appropriately selected within the specified range. However, since the AlGaN crystal is deteriorated in crystallinity when the Al composition increases, 0 ⁇ x ⁇ 0.4 is preferable, and 0 ⁇ x ⁇ 0.3 is more preferable. More preferably, 0 ⁇ x ⁇ 0.20.
  • the channel current can be modulated by controlling the channel potential via the p-type semiconductor layer 112. That is, the potential of the p-type semiconductor layer 112 in contact with the trench 110 can be displaced in response to the potential of the control electrode 116, and the potential can be displaced in the entire range at the bottom surface of the trench 110 in contact with the p-type semiconductor layer 112. .
  • the semiconductor device 100 having a large current density can be manufactured.
  • the p-type semiconductor layer 112 disposed on the bottom surface of the groove 110 is a p-type semiconductor, the channel potential is raised more than when an insulating film such as an oxide film is disposed on the electron supply layer 108 having the same thickness. Can do. As a result, the threshold value of the semiconductor device 100 can be increased.
  • a p-type impurity such as Mg may be doped.
  • the concentration of the dopant may be a concentration that becomes p-type.
  • the dose of the p-type impurity is preferably 5 ⁇ 10 15 cm ⁇ 2 to 5 ⁇ 10 18 cm ⁇ 2, more preferably 1 ⁇ 10 16 cm ⁇ 2 to 1 ⁇ 10 18 cm ⁇ 2 , and 5 ⁇ 10 16 cm 2. -2 to 5 ⁇ 10 17 cm -2 are more preferred.
  • the p-type semiconductor layer 112 is formed in the groove 110 of the electron supply layer 108, it is easy to realize a normally-off operation.
  • the electron supply layer 108 of the groove 110 is formed.
  • the film thickness can be increased. Even when the groove 110 is formed in the electron supply layer 108, the distance between the bottom surface of the groove 110 where the intermediate level exists and the channel can be increased, and the transistor has a higher current density than the conventional normally-off transistor. Can be made.
  • the film thickness of the p-type semiconductor layer 112 may be in the range of 2 nm to 200 nm, preferably in the range of 5 nm to 100 nm, and more preferably in the range of 7 nm to 30 nm.
  • the p-type semiconductor layer 112 can be formed by, for example, the MOVPE method. When the p-type semiconductor layer 112 is formed in the groove 110, it can be selectively formed in the groove 110.
  • a selective growth method can be applied in which a region other than the groove 110 of the electron supply layer 108 is covered with an inhibition film that is not epitaxially grown by the MOVPE method, and an epitaxial film that becomes the p-type semiconductor layer 112 is epitaxially grown in a specific region opened in the inhibition film.
  • the inhibition film may be removed by etching or left as the passivation layer 120.
  • the inhibition film include a silicon nitride film or a silicon oxide film having a thickness of about 10 nm to 100 nm.
  • the insulating layer 114 can be formed on the p-type semiconductor layer 112. By forming the insulating layer 114, leakage current from the control electrode 116 to the channel can be reduced.
  • the insulating layer 114 includes SiO x , SiN x , SiAl x O y N z , HfO x , HfAl x O y , HfSi x O y , HfN x O y , AlO x , AlN x O y , GaO x , and GaO x N. y and TaO x, it may have at least one insulating compound selected from TiN x O y.
  • the chemical formula including the subscripts x, y, or z indicates an insulating compound as described above, and a compound in which the constituent ratio of the element is represented by a stoichiometric ratio, or a defect or an amorphous structure is included in the element. It represents a compound whose composition ratio is not shown in the stoichiometric ratio.
  • the insulating layer 114 can be formed using a sputtering method, a CVD method, or the like. The thickness of the insulating layer 114 can be determined in consideration of the dielectric constant and dielectric strength voltage of each layer.
  • Examples of the film thickness of the insulating layer 114 include a range of 2 nm to 150 nm, preferably a range of 5 nm to 100 nm, more preferably a range of 7 nm to 50 nm, and still more preferably a range of 9 nm to 20 nm.
  • the control electrode 116 may be formed in contact with the p-type semiconductor layer 112. That is, the insulating layer 114 may not be provided. Alternatively, the control electrode 116 may be formed between the p-type semiconductor layer 112 and an insulating layer 114 as an intermediate layer. Note that an intrinsic (insulating) semiconductor layer may be formed as an intermediate layer instead of the insulating layer 114.
  • the control electrode 116 can have at least one metal selected from Ni, Al, Mg, Sc, Ti, Mn, Ag, Sn, Pt and In, and can be Al, Mg, Sc, Ti, Mn, Ag or In is preferred. Alternatively, the control electrode 116 is more preferably Al, Ti, or Mg.
  • the control electrode 116 can be formed using, for example, a vapor deposition method.
  • the input / output electrode 118 is formed on the electron supply layer 108.
  • the input / output electrode 118 can be formed by, for example, forming a metal such as Ti and Al by a vapor deposition method or the like, processing the metal into a predetermined shape by a lift-off method or the like, and then performing an annealing process at a temperature of about 700 ° C. to 800 ° C. .
  • the passivation layer 120 covers the electron supply layer 108 in a region other than the region where the control electrode 116 and the input / output electrode 118 are formed.
  • the passivation layer 120 can function as a selective length method mask as described above.
  • the passivation layer 120 has an opening that matches the opening of the groove 110.
  • the passivation layer 120 may be a silicon nitride film or a silicon oxide film having a thickness of about 10 nm to 100 nm.
  • the element isolation region 122 is formed through the electron supply layer 108 so as to surround the active region of the transistor.
  • the element isolation region 122 defines a region where current flows.
  • the element isolation region 122 can be formed, for example, by forming an isolation groove by etching and embedding an insulator such as nitride.
  • the element isolation region 122 can be formed by implanting nitrogen or hydrogen into the formation region by ion implantation.
  • FIG. 2 to 10 show cross-sectional examples in the manufacturing process of the semiconductor device 100.
  • FIG. 2 a channel layer 106 of a Group 3-5 compound semiconductor containing nitrogen and an electron supply layer 108 for supplying electrons to the channel layer 106 are prepared, and a substrate 102 on which the electron supply layer 108 forms a surface is prepared.
  • the substrate 102 may have a buffer layer 104.
  • the substrate on which the buffer layer 104, the channel layer 106, and the electron supply layer 108 are sequentially formed and the electron supply layer 108 forms a surface is supplied as an epitaxial substrate for HEMT formation. It may be.
  • a resist film 130 is formed on the passivation layer 120.
  • the resist film 130 is spin-coated with an appropriate resist material on the substrate, and after pre-baking, exposure, and post-baking, the exposed region is removed to form the opening 132.
  • the opening 132 is formed in a region where the groove 110 is formed.
  • an opening is formed in the passivation layer 120 in the region where the groove 110 is formed (opening 132). Then, the electron supply layer 108 exposed in the opening of the passivation layer 120 is etched to form the groove 110. That is, the groove 110 can be formed by a first stage etching that etches the passivation layer 120 using the resist film 130 as a mask and a second stage etching that etches the electron supply layer 108 using the resist film 130 as a mask. Note that in the second stage etching, the resist film 130 can be removed and the passivation layer 120 can be used as a mask.
  • the groove portion 110 has an electron supply layer 108 other than the region covered with the mask. Further, the electron supply layer 108 can be further formed and the mask can be removed.
  • a p-type semiconductor layer 112 of a group 3-5 compound containing nitrogen is formed on the surface of the electron supply layer 108.
  • the p-type semiconductor layer 112 may be formed in the groove 110 of the electron supply layer 108.
  • An epitaxial layer that becomes the p-type semiconductor layer 112 may be selectively grown on the electron supply layer 108 exposed in the opening of the passivation layer 120. Thereafter, an impurity showing p-type, for example Mg, is doped, for example, by ion implantation.
  • a resist film 134 that covers the p-type semiconductor layer 112 and the passivation layer 120 in the groove 110 is formed.
  • the resist film 134 is spin-coated with an appropriate resist material on the substrate, and after pre-baking, exposure, and post-baking, the exposed region is removed to form an opening 136.
  • the opening 136 is formed in a region where the input / output electrode 118 is formed. Thereafter, the passivation layer 120 is etched using the resist film 134 as a mask.
  • the input / output electrode 118 is formed by a lift-off method that removes the resist film 134 and leaves the metal film in the opening 136. .
  • annealing may be performed by heating.
  • the metal film may be a metal laminated film.
  • a resist film 138 is formed to form an opening 140 that exposes the p-type semiconductor layer 112 of the groove 110. Then, as shown in FIG. 9, an insulating film 142 and a metal film 144 to be the insulating layer 114 and the control electrode 116 are formed.
  • the insulating film 142 and the metal film 144 may each be a laminated film of insulating films or a laminated film of metal films.
  • the insulating layer 114 and the control electrode 116 are formed by a lift-off method that removes the resist film 138 and leaves the insulating film 142 and the metal film 144 in the opening 140. That is, the control electrode 116 is formed after the p-type semiconductor layer 112 is formed.
  • an appropriate mask having an opening is formed in a region to be the element isolation region 122, and ions are selectively implanted into the opening of the mask to form the element isolation region 122.
  • the ions implanted into the element isolation region 122 may be, for example, nitrogen or hydrogen, and can be arbitrarily selected as long as the electron supply layer 108 and the channel layer 106 are ions.
  • the semiconductor device 100 of FIG. 1 can be manufactured.
  • the channel current density can be increased while the semiconductor device 100 is operated normally off.
  • the threshold can be increased.
  • the p-type semiconductor layer 112 is formed in the trench 110, the effect of the trench 110 is synergistic, it is easy to perform a normally-off operation, and the channel current density can be increased.
  • Sapphire was applied as the substrate 102.
  • a GaN layer as the buffer layer 104 On the substrate 102, a GaN layer as the buffer layer 104, a GaN layer as the channel layer 106, and an AlGaN layer as the electron supply layer 108 were sequentially formed using the MOVPE method to obtain an HEMT epitaxial substrate.
  • the thickness of each layer was 100 nm, 2000 nm, and 30 nm, respectively.
  • the Al composition of the AlGaN electron supply layer 108 was 25%.
  • a SiN x layer was formed as a passivation layer 120 to a thickness of 100 nm by a sputtering method.
  • a resist film 130 was formed on the SiN x passivation layer 120, and an opening 132 was formed in the resist film 130 at a position where the groove 110 was formed by lithography. The size of the opening 132 was 30 ⁇ m ⁇ 2 ⁇ m.
  • the SiN x passivation layer 120 exposed in the opening 132 of the resist film 130 was removed by ICP plasma etching using CHF 3 gas. Thus, a SiN x passivation layer 120 having an opening was formed.
  • the etching gas was switched to CHCl 2 gas, and the AlGaN electron supply layer 108 was etched to a depth of 20 nm. As a result, the groove 110 was formed in the electron supply layer 108.
  • the substrate 102 was transferred to a MOVPE reactor, and a GaN film was epitaxially grown in the groove 110 to a thickness of 20 nm by a selective growth method. Then, the p-type semiconductor layer 112 was formed by doping Mg in the GaN film. The hole concentration of the p-type semiconductor layer 112 after doping was 5 ⁇ 10 17 cm ⁇ 2 .
  • a resist film 134 was formed, and an opening 136 of the resist film 134 was formed in the shape of the input / output electrode 118 by lithography.
  • the SiN x passivation layer 120 exposed at the opening 136 was removed by the same method as described above.
  • a Ti / Al / Ni / Au laminated film was formed by vapor deposition, and processed into the shape of the input / output electrode 118 by lift-off.
  • the substrate 102 was annealed under conditions of a nitrogen atmosphere, 800 ° C., and 30 seconds. In this way, a pair of input / output electrodes 118 was formed.
  • a resist film 138 was formed, and an opening 140 was formed in the resist film 138 on the GaN p-type semiconductor layer 112 by lithography.
  • the width of the opening 140 was 1.5 ⁇ m.
  • a Ni / Au metal laminated film was formed as the metal film 144 with a thickness of 10 nm as a SiO x insulating film 142 by vapor deposition, and a Ni / Au control electrode 116 and an insulating layer 114 were formed by lift-off. .
  • nitrogen was implanted into the periphery of the element by ion implantation to form an element isolation region 122.
  • the semiconductor device 100 shown in FIG. 1 was produced.
  • a GaN buffer layer 104, a GaN channel layer 106, and an AlGaN electron supply layer 108 were formed on a sapphire substrate 102 to form an HEMT epitaxial substrate.
  • a SiN x passivation layer 120, a groove 110, and a pair of input / output electrodes 118 were formed.
  • the p-type semiconductor layer 112 is not formed in the groove 110, and the insulating film 142 that becomes the SiO x insulating layer 114 and the metal film 144 that becomes the control electrode 116 are directly formed on the bottom surface of the groove 110 by the same method as in the experimental example.
  • the insulating layer 114 and the control electrode 116 were formed.
  • an element isolation region 122 was formed by the same method as in the experimental example.
  • FIG. 11 shows a transition characteristic graph of the drain current in the DC evaluation of the semiconductor device 100 created in the experimental example and the comparative example.
  • a solid line indicates an experimental example, and a broken line indicates a comparative example.
  • the horizontal axis represents the drain voltage, and the vertical axis represents the drain current.
  • the maximum current density of the comparative example is about 50 mA / mm near the gate voltage of 3 V, whereas the experimental example shows a high value of 110 mA / mm near the gate voltage of 3.5 V.
  • the current density of the channel could be increased while the semiconductor device 100 was operated normally off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 GaN系電界効果トランジスタをノーマリオフで動作させつつ、チャネルの電流密度を増加する。  窒素を含む3-5族化合物半導体のチャネル層と、前記チャネル層に電子を供給する電子供給層であって前記チャネル層に対向する面の反対面に溝部を有する電子供給層と、前記電子供給層の前記溝部に形成されたp形半導体層と、前記p形半導体層と接して形成された、または、前記p形半導体層との間に中間層を介して形成された制御電極と、を備えた半導体装置を提供する。

Description

半導体装置および半導体装置の製造方法
 本発明は、半導体装置および半導体装置の製造方法に関する。本発明は、特に、窒化ガリウム等の窒素を含む3-5族化合物半導体を用いたヘテロ接合電界効果トランジスタ等の半導体装置およびその製造方法に関する。
 窒化ガリウム系のへテロ接合電界効果トランジスタは、高周波の動作が可能で、かつ大電力での使用が可能なスイッチング素子としての用途が期待されている。たとえば、n形AlGaNと真性GaNとの界面に生成される二次元ガス(2DEG)をチャネルに用いるデバイスが、AlGaN/GaN-HEMT(高電子移動度トランジスタ)として実用化されている。AlGaN/GaN-HEMTに求められる特性として、ゲートに電圧を印加しない状態でもソース・ドレイン間がハイインピーダンスになるノーマリオフ形、つまりエンハンスメントモードでの動作が可能なことがある。これにより、単極性電源での動作、低消費電力等が実現できる。
 エンハンスメントモードでのトランジスタ動作を実現することを目的として、たとえばゲート領域の電子供給層(AlGaN/GaN-HEMTの場合のAlGaN層)の厚みを他の領域に比較して薄く形成するリセス(溝部)を有する構造が知られている。たとえば、非特許文献1には、ドライエッチングによりAlGaN層にゲートリセス構造を形成したノーマリオフ形のAlGaN/GaNトランジスタが開示されている。
R.Wang他著、「Enhancement-Mode Si3N4/AlGaN/GaN MISHFETs」、IEEE Electron Device Letters,Vol.27,No.10、2006年10月、793~795頁
 AlGaN層の一部に溝部を形成することにより、溝部領域に対向する2DEG領域の電子濃度を低下させ、AlGaN層/GaN層界面の2DEGの一部を空乏化できる。これによりゲート電圧を印加しない状態においてもチャネルが遮断された状態を実現でき、その結果、トランジスタのソース・ドレイン間がハイインピーダンスになるノーマリオフ形の状態を実現できる。ゲート電極に電圧を印加して、溝部領域に対向する2DEG領域に電子が誘起されれば、チャネルが導通してエンハスメントモードの動作が実現される。
 しかし、非特許文献1に記載のトランジスタでは、チャネル電流の電流密度を充分に大きくできない課題があることを本発明者は見出した。すなわち、電子供給層(AlGaN層)の溝部の厚みを薄くしてエンハンスメントモードを実現できる一方、溝部の底面には結晶の不完全性に起因する中間準位が存在する。ゲート電極に印加される電圧により当該中間準位に電子が充電されると、充電された電子は2DEGを形成する電子と反発するので、チャネル抵抗を増大させ、チャネルの電流密度を低下させる。スイッチ素子用途では、+1V~+3V程度の比較的高い閾値での動作が要請されるが、前記したチャネル電流密度の低下の結果、+2V程度の閾値であっても、実用に耐える程度の低い素子抵抗を実現できない問題がある。
 溝部底部の空間電荷による電流密度の低下は、溝部を2DEG領域から遠ざける、つまり溝部深さを小さくすることにより、ある程度の対策にはなり得る。しかし、溝部深さを小さくすることはゲート閾値を負側にシフトさせるので、ノーマリオフを実現できなくなる。つまり、チャネルの電流密度を増加させることとノーマリオフの実現(ゲート閾値の増加)とはトレードオフの関係にあり、スイッチング素子の性能を向上させるには限界があった。
 また、非特許文献1に記載のトランジスタでは、チャネル領域の溝部内部にゲートリークの低減を目的とする絶縁膜が形成される。このため溝部底面のソース端およびドレイン端にはゲート電圧によって制御され難い空乏部が残り、この空乏部が導通時においても寄生抵抗として作用して、チャネルの電流密度を低下させる問題があった。
 上記課題を解決するために、本発明の第1の形態においては、3-5族化合物半導体のチャネル層と、前記チャネル層にキャリアを供給し、前記チャネル層に対向する面の反対面に溝部を有するキャリア供給層と、前記キャリア供給層の前記溝部に形成され、前記キャリアが示す伝導型とは逆の伝導型を示す半導体層と、前記半導体層の上に設けられた制御電極と、を含む半導体装置を提供する。あるいは、窒素を含む3-5族化合物半導体のチャネル層と、前記チャネル層に電子を供給する電子供給層であって前記チャネル層に対向する面の反対面に溝部を有する電子供給層と、前記電子供給層の前記溝部に形成されたp形半導体層と、前記p形半導体層と接して形成された、または、前記p形半導体層との間に中間層を介して形成された制御電極と、を備えた半導体装置を提供する。
 第1の形態において、前記半導体層は、窒素を含む3-5族化合物の半導体層であってよい。前記半導体層は、InGaN層、AlGaN層またはGaN層であってよい。前記半導体層は、AlGa1-xN、ただし、0≦x≦0.5、であってよい。前記制御電極は、前記半導体層との間に絶縁層を介して形成されてよい。前記絶縁層は、SiO、SiN、SiAl、HfO、HfAl、HfSi、HfN、AlO、AlN、GaO、GaOおよびTaO、TiNから選択された少なくとも1つの絶縁性化合物を有する層であってよい。ここで、添え字x、yもしくはzを含む化学式は絶縁性化合物を示しており、元素の構成比が化学量論比で示される化合物、または、欠陥もしくは非晶質構造を含むことにより元素の構成比が化学量論比では示されない化合物を表す。
 また、第1の形態において、前記半導体装置は、前記キャリア供給層を覆い、前記溝部の開口に一致する開口部を有するパッシベーション層、をさらに備えてよい。前記キャリア供給層は、前記チャネル層と格子整合または擬格子整合し、前記半導体層は、前記キャリア供給層と格子整合または擬格子整合してよい。前記チャネル層は、窒素を含んでよい。前記チャネル層は、GaN層、InGaN層またはAlGaN層であり、前記キャリア供給層は、AlGaN層、AlInN層またはAlN層であってよい。前記制御電極は、Ni、Al、Mg、Sc、Ti、Mn、Ag、Sn、PtおよびInから選択された少なくとも1つの金属を有してよい。前記キャリアは電子であってよい。
 本発明の第2の形態においては、3-5族化合物半導体のチャネル層にキャリアを供給するキャリア供給層の表面に、溝部を形成する段階と、前記キャリア供給層の前記溝部に、前記キャリアが示す伝導型とは逆の伝導型を示す半導体層を形成する段階と、前記半導体層を形成した後に、制御電極を形成する段階と、を含む半導体装置の製造方法を提供する。あるいは、窒素を含む3-5族化合物半導体のチャネル層および前記チャネル層に電子を供給する電子供給層を有し、前記電子供給層が表面を為す基板を用意する段階と、前記電子供給層の表面に溝部を形成する段階と、前記電子供給層の前記溝部にp形半導体層を形成する段階と、前記p形半導体層を形成した後に、制御電極を形成する段階と、を備えた半導体装置の製造方法を提供する。
 第2の形態において、前記半導体装置の製造方法は、前記キャリア供給層を覆うパッシベーション層を形成する段階と、前記溝部が形成される領域の前記パッシベーション層に開口部を形成する段階と、をさらに備えてよい。前記キャリア供給層の表面に溝部を形成する段階は、前記パッシベーション層の前記開口部に露出した前記キャリア供給層をエッチングして、前記溝部を形成する段階であってよい。前記半導体層を形成する段階は、前記パッシベーション層の前記開口部に露出した前記キャリア供給層に、前記半導体層となるエピタキシャル層を選択的に成長させる段階であってよい。前記キャリア供給層の表面に溝部を形成する段階は、前記キャリア供給層の一部を覆うマスクを形成する段階と、前記マスクで覆った領域以外の前記キャリア供給層に、さらにキャリア供給層を形成する段階と、前記マスクを除去する段階と、を有する段階であってよい。前記半導体層は、窒素を含み、前記チャネル層は、窒素を含んでよい。
本実施形態の半導体装置100の断面例を示す。 半導体装置100の製造過程における断面例を示す。 半導体装置100の製造過程における断面例を示す。 半導体装置100の製造過程における断面例を示す。 半導体装置100の製造過程における断面例を示す。 半導体装置100の製造過程における断面例を示す。 半導体装置100の製造過程における断面例を示す。 半導体装置100の製造過程における断面例を示す。 半導体装置100の製造過程における断面例を示す。 半導体装置100の製造過程における断面例を示す。 実験例および比較例で作成した半導体装置100のDC評価におけるドレイン電流の遷移特性グラフを示す。
符号の説明
 100 半導体装置
 102 基板
 104 バッファ層
 106 チャネル層
 108 電子供給層
 110 溝部
 112 p形半導体層
 114 絶縁層
 116 制御電極
 118 入出力電極
 120 パッシベーション層
 122 素子分離領域
 130 レジスト膜
 132 開口部
 134 レジスト膜
 136 開口部
 138 レジスト膜
 140 開口部
 142 絶縁膜
 144 金属膜
 図1は、本実施形態の半導体装置100の断面例を示す。同図において半導体装置100は一つのトランジスタ素子として図示するが、半導体装置100は多数のトランジスタ素子を備えていてよい。半導体装置100は、基板102、バッファ層104、チャネル層106、電子供給層108、溝部110、p形半導体層112、絶縁層114、制御電極116、入出力電極118、パッシベーション層120および素子分離領域122を備える。
 基板102は、エピタキシャル成長用の下地基板であってよく、たとえば単結晶のサファイア、シリコンカーバイト、シリコン、ガリウムナイトライドが例示できる。基板102は、エピタキシャル成長用の基板として市販されているものが使用できる。基板102は、絶縁形が好ましいがp形またはn形も使用できる。
 バッファ層104は、基板102の上に形成され、材料として、窒素を含む3-5族化合物半導体が適用できる。たとえば、バッファ層104は、アルミニウムガリウムナイトライド(AlGaN)、アルミニウムナイトライド(AlN)、ガリウムナイトライド(GaN)の単層であってよく、これら単層を積層したものであってもよい。バッファ層104は、その膜厚に特に制限はないが、300nmから3000nmの範囲が好ましい。バッファ層104は、有機金属気相成長法(MOVPE)、ハライドVPE法または分子線エピタキシ法(MBE)などを用いて形成できる。バッファ層104の形成材料として市販の有機金属原料、たとえばトリメチルガリウムあるいはトリメチルインジウム等を用いることができる。
 チャネル層106は、バッファ層104の上に形成され、窒素を含む3-5族化合物半導体であってよい。チャネル層106として、GaN層が好ましいが、InGaN層またはAlGaN層も例示できる。チャネル層106の膜厚に特に制限はないが、300nmから3000nmの範囲が好ましい。チャネル層106の形成方法として、バッファ層104の形成方法と同様な方法が例示できる。
 電子供給層108は、キャリア供給層の一例であってよい。電子供給層108は、チャネル層106に電子を供給する。電子は、キャリアの一例であってよい。電子供給層108は、チャネル層106の上に形成され、電子供給層108とチャネル層106との界面のチャネル層106の側には2DEGが形成される。電子供給層108は、チャネル層106に接して直接形成されてもよく、適切な中間層を介して形成されてもよい。電子供給層108は、チャネル層106と格子整合または擬格子整合してよく、AlGaN層、AlInN層またはAlN層であってよい。
 電子供給層108は、その膜厚を、チャネル層106と電子供給層108との格子定数差から見積もられる臨界膜厚より小さい範囲内で決定できる。臨界膜厚とは、格子不整合により発生した応力により結晶格子に欠陥が発生して応力が緩和される膜厚であってよい。臨界膜厚は、各層のAl組成あるいはIn組成に依存するが、10nmから60nmの範囲が例示できる。電子供給層108の形成方法としてバッファ層104の形成方法と同様な方法が例示できる。
 電子供給層108は、電子供給層108のチャネル層106に対向する面の反対面に溝部110を有する。電子供給層108に溝部110を形成して、溝部110の下部の2DEGを空乏化しやすくできる。この結果、トランジスタのノーマリオフ動作を実現しやすくできる。
 溝部110の膜厚は、p形半導体層112の組成、膜厚およびトランジスタの閾値に応じて決定する。溝部110の膜厚として、たとえば5nmから40nmの範囲が例示できる。好ましくは7nmから20nmnの範囲が例示でき、より好ましくは9nmから15nmの範囲が例示できる。さらに好ましくは10nmから13nmの範囲が例示できる。
 溝部110は、電子供給層108にたとえば溝部110が形成される領域に開口が形成されたマスクを適用して、当該マスクの開口部に露出した電子供給層108をドライエッチング等の異方性エッチング法によりエッチングして形成できる。マスクとして、ホトレジスト、SiO等の無機膜あるいは金属など、エッチングにおいて電子供給層108との選択性を有する材料であれば任意に適用できる。エッチングガスとして、Cl、CHClなどの塩素系ガスおよびCHF、CFなどのフッ素系ガスが使用できる。
 あるいは溝部110は、電子供給層108の形成後の溝部110に対応する領域にマスクを形成して、当該マスクが存在する様態でさらに電子供給層108を形成した後、マスクを除去して形成できる。マスクとして、SiNあるいはSiOが利用でき、この場合、選択成長法が適用できる。選択性長法としてはMOVPE法が使用できる。なお、電子供給層108の膜厚を適切に形成することで、溝部110を形成しなくてよい場合がある。
 p形半導体層112は、半導体層の一例であってよい。p形半導体層112は、電子供給層108のチャネル層106に対向する面の反対面に形成された溝部110に形成される。p形半導体層112は、電子供給層108と格子整合または擬格子整合してよい。p形半導体層112は、窒素を含む3-5族化合物のp形の半導体であってよく、たとえばInGaN層、AlGaN層またはGaN層が例示できる。特に、p形半導体層112は、AlGa1-xN層(ただし、0≦x≦0.5)であってよい。xの組成は指定された範囲で適宜選択できるが、AlGaN結晶はAl組成が高くなると結晶性が劣化するので、0≦x≦0.4が好ましく、0≦x≦0.3がより好ましく、0≦x≦0.20がさらに好ましい。
 電子供給層108の溝部110にp形半導体層112を形成することにより、p形半導体層112を介してチャネルの電位を制御して、チャネル電流が変調できる。すなわち、制御電極116の電位に応答して溝部110に接したp形半導体層112の電位が変位でき、さらにp形半導体層112に接した溝部110の底面部におけるすべての範囲で電位が変位できる。この結果、従来のトランジスタで見られたような溝部(リセス)底面のソース端およびドレイン端での寄生抵抗の発生を防ぐことができる。これにより電流密度の大きい半導体装置100を作製することができる。
 また、溝部110の底面に配置されるp形半導体層112がp形半導体であるので、同じ厚みの電子供給層108に酸化膜等の絶縁膜を配置するよりも、チャネルのポテンシャルをより引き上げることができる。この結果、半導体装置100の閾値を大きくすることができる。
 p形の導電形を得るには、Mgなどのp形不純物をドーピングすればよい。ドーパントの濃度は、p形となる濃度であれば良い。ただし、ドーズ量をあまりに高濃度にすると、結晶性の悪化が懸念されるので、1×1015cm-2から1×1019cm-2の範囲が例示できる。p形不純物のドーズ量は、5×1015cm-2から5×1018cm-2が好ましく、1×1016cm-2から1×1018cm-2がより好ましく、5×1016cm-2から5×1017cm-2がさらに好ましい。
 さらにp形半導体層112は、電子供給層108の溝部110に形成されるので、ノーマリオフ動作を実現しやすくなり、溝部110にp形半導体層112を形成することにより、溝部110の電子供給層108の膜厚を厚くできる。電子供給層108に溝部110を形成する場合であっても、中間準位が存在する溝部110の底面とチャネルとの距離を離すことができ、従来のノーマリオフトランジスタと比較して電流密度の大きなトランジスタを作ることができる。
 p形半導体層112の膜厚は、2nmから200nmの範囲であってよく、好ましくは5nmから100nmの範囲、さらに好ましくは7nmから30nmの範囲であってよい。p形半導体層112は、たとえばMOVPE法により形成できる。p形半導体層112を溝部110に形成する場合、溝部110に選択的に形成できる。たとえば電子供給層108の溝部110以外の領域をMOVPE法ではエピタキシャル成長されない阻害膜で覆い、当該阻害膜に開口した特定の領域にp形半導体層112となるエピタキシャル膜をエピタキシャル成長させる選択成長法が適用できる。阻害膜はエッチングにより除去されてもよく、パッシベーション層120として残してもよい。阻害膜として、たとえば10nmから100nm程度の膜厚の窒化シリコン膜あるいは酸化シリコン膜が例示できる。
 絶縁層114は、p形半導体層112の上に形成できる。絶縁層114を形成することにより、制御電極116からチャネルへのリーク電流を低減できる。絶縁層114は、SiO、SiN、SiAl、HfO、HfAl、HfSi、HfN、AlO、AlN、GaO、GaOおよびTaO、TiNから選択された少なくとも1つの絶縁性化合物を有してよい。添え字x、yもしくはzを含む化学式は上記の通り絶縁性化合物を示しており、元素の構成比が化学量論比で示される化合物、または、欠陥もしくは非晶質構造を含むことにより元素の構成比が化学量論比では示されない化合物を表す。絶縁層114は、スパッタ法、CVD法などを利用して形成できる。絶縁層114の膜厚は、それぞれが有する誘電率、絶縁耐圧を考慮して決定できる。絶縁層114の膜厚として、たとえば2nmから150nmの範囲が例示でき、好ましくは5nmから100nmの範囲が、より好ましくは7nmから50nmの範囲が、さらに好ましくは9nmから20nmの範囲が例示できる。
 制御電極116は、p形半導体層112と接して形成されてよい。すなわち、絶縁層114を備えなくてもよい。あるいは制御電極116は、p形半導体層112との間に中間層である絶縁層114を介して形成されてよい。なお、中間層として、絶縁層114に代えて真性(絶縁形)の半導体層を形成してもよい。
 制御電極116は、Ni、Al、Mg、Sc、Ti、Mn、Ag、Sn、PtおよびInから選択された少なくとも1つの金属を有することができ、Al、Mg、Sc、Ti、Mn、AgまたはInが好ましい。あるいは制御電極116は、Al、TiまたはMgがより好ましい。制御電極116は、たとえば蒸着法などを用いて形成できる。
 入出力電極118は、電子供給層108の上に形成される。入出力電極118は、たとえばTiおよびAlなどの金属を蒸着法などで形成した後、リフトオフ法などで所定の形状に加工した後、700℃から800℃程度の温度でアニール処理することにより形成できる。
 パッシベーション層120は、制御電極116および入出力電極118が形成された領域以外の領域の電子供給層108を覆う。パッシベーション層120は、前記の通り選択性長法のマスクとして機能させることができ、その場合、パッシベーション層120は、溝部110の開口に一致する開口部を有する。パッシベーション層120は、たとえば10nmから100nm程度の膜厚の窒化シリコン膜あるいは酸化シリコン膜が例示できる。
 素子分離領域122は、トランジスタの活性領域を取り囲むように、電子供給層108を貫いて形成される。素子分離領域122は、電流が流れる領域を規定する。素子分離領域122は、たとえばエッチングにより分離溝を形成して、窒化物等の絶縁体を埋め込むことにより形成できる。あるいは素子分離領域122は、窒素または水素を形成領域にイオン打ち込みにより打ち込んで形成できる。
 図2から図10は、半導体装置100の製造過程における断面例を示す。図2に示すように、窒素を含む3-5族化合物半導体のチャネル層106およびチャネル層106に電子を供給する電子供給層108を有して、電子供給層108が表面を為す基板102を用意する。基板102には、バッファ層104を有してよく、バッファ層104、チャネル層106および電子供給層108が順次形成されて電子供給層108が表面を為す基板はHEMT形成用のエピタキシャル基板として供給されているものであってよい。
 図3に示すように、電子供給層108を覆うパッシベーション層120を形成した後、パッシベーション層120の上にレジスト膜130を形成する。レジスト膜130は、適切なレジスト材料を基板にスピンコートしてプリベーク、露光およびポストベークの後に、露光領域を除去して開口部132を形成する。開口部132は、溝部110を形成する領域に形成する。
 図4に示すように、溝部110が形成される領域(開口部132)のパッシベーション層120に開口部を形成する。そして、パッシベーション層120の開口部に露出した電子供給層108をエッチングして、溝部110を形成する。すなわち溝部110は、レジスト膜130をマスクとして、パッシベーション層120をエッチングする第1段階のエッチングと、レジスト膜130をマスクとして、電子供給層108をエッチングする第2段階のエッチングとで形成できる。なお、第2段階のエッチングでは、レジスト膜130を除去して、パッシベーション層120をマスクとしてエッチングできる。また溝部110は、溝部110の底部に相当する膜厚の電子供給層を予め形成して、電子供給層108の一部を覆うマスクを形成した後、マスクで覆った領域以外の電子供給層108に、さらに電子供給層108を形成して、マスクを除去することで形成することもできる。
 図5に示すように、電子供給層108の表面に、窒素を含む3-5族化合物のp形半導体層112を形成する。p形半導体層112は、電子供給層108の溝部110に形成されてよい。パッシベーション層120の開口部に露出した電子供給層108に、p形半導体層112となるエピタキシャル層を選択的に成長させてよい。その後、p形を示す不純物たとえばMgを、たとえばイオン打ち込みによりドープする。
 図6に示すように、溝部110のp形半導体層112とパッシベーション層120とを覆うレジスト膜134を形成する。レジスト膜134は、適切なレジスト材料を基板にスピンコートしてプリベーク、露光およびポストベークの後に、露光領域を除去して開口部136を形成する。開口部136は、入出力電極118が形成される領域に形成する。その後、レジスト膜134をマスクにしてパッシベーション層120をエッチングする。
 図7に示すように、たとえば蒸着法により入出力電極118となる金属膜を形成した後、レジスト膜134を除去して開口部136に金属膜を残すリフトオフ法により、入出力電極118を形成する。入出力電極118を形成した後、加熱によりアニールを実行してもよい。金属膜は金属積層膜であってよい。
 図8に示すように、レジスト膜138を形成して、溝部110のp形半導体層112を露出させる開口部140を形成する。そして、図9に示すように、絶縁層114および制御電極116となる絶縁膜142および金属膜144を各々形成する。絶縁膜142および金属膜144は、各々、絶縁膜の積層膜あるいは金属膜の積層膜であってよい。
 図10に示すように、レジスト膜138を除去して開口部140に絶縁膜142および金属膜144を残すリフトオフ法により、絶縁層114および制御電極116を形成する。すなわちp形半導体層112を形成した後に、制御電極116を形成する。
 その後、素子分離領域122となる領域に開口を有する適切なマスクを形成して、当該マスクの開口部に選択的にイオンを打ち込み、素子分離領域122を形成する。素子分離領域122に打ち込むイオンはたとえば窒素または水素であってよく、電子供給層108およびチャネル層106が絶縁体となるイオンであれば任意に選択できる。以上のようにして、図1の半導体装置100が製造できる。
 本実施形態の半導体装置100とその製造方法によれば、制御電極116の下部にp形半導体層112を形成するので、半導体装置100をノーマリオフで動作させつつ、チャネル電流密度を増加でき、また、閾値を高くすることができる。さらに、p形半導体層112を溝部110に形成するので、溝部110の効果が相乗され、よりノーマリオフ動作をさせやすく、またチャネル電流密度を増加できる。
(実験例)
 基板102としてサファイアを適用した。基板102の上に、バッファ層104としてGaN層を、チャネル層106としてGaN層を、電子供給層108としてAlGaN層を、順次MOVPE法を用いて形成して、HEMT用エピタキシャル基板とした。各層の膜厚は、各々100nm、2000nm、30nmとした。AlGaNの電子供給層108のAl組成は25%とした。
 AlGaNの電子供給層108の上に、パッシベーション層120としてSiN層を、スパッタリング法により100nmの膜厚で形成した。SiNのパッシベーション層120の上にレジスト膜130を形成して、リソグラフィーにより溝部110が形成される位置のレジスト膜130に開口部132を形成した。開口部132の寸法は30μm×2μmとした。
 CHFガスを用いたICPプラズマエッチングにより、レジスト膜130の開口部132に露出したSiNのパッシベーション層120を除去した。このようにして開口部を有するSiNのパッシベーション層120を形成した。ついでエッチングガスをCHClガスに切り替えて、AlGaNの電子供給層108を20nmの深さまでエッチングした。これにより電子供給層108に溝部110を形成した。
 表面のレジスト膜130をアセトンで除去した後、基板102をMOVPE反応炉に移して、選択成長法により溝部110にGaN膜を20nmの膜厚になるまでエピタキシャル成長させた。そしてGaN膜にMgをドーピングしてp形半導体層112を形成した。ドーピングした後のp形半導体層112のホール濃度は5×1017cm-2であった。
 基板102を反応炉から取り出した後、レジスト膜134を形成して、リソグラフィーにより、入出力電極118の形状にレジスト膜134の開口部136を形成した。前記と同様の手法で開口部136に露出したSiNのパッシベーション層120を除去した。そして蒸着法により、Ti/Al/Ni/Auの積層膜を形成して、リフトオフにより、入出力電極118の形状に加工した。その後、基板102を窒素雰囲気、800℃、30秒間の条件でアニールした。このようにして一対の入出力電極118を形成した。
 レジスト膜138を形成して、リソグラフィーにより、GaNのp形半導体層112上のレジスト膜138に、開口部140を形成した。開口部140の幅は1.5μmとした。蒸着法により、SiOの絶縁膜142を10nmの膜厚で、金属膜144としてNi/Auの金属積層膜を形成して、リフトオフにより、Ni/Auの制御電極116および絶縁層114を形成した。さらにレジスト膜をマスクとして素子周辺部に窒素をイオン打ち込みにより打ち込み、素子分離領域122を形成した。このようにして図1に示す半導体装置100を作製した。
(比較例)
 実験例と同様にサファイアの基板102に、GaNのバッファ層104、GaNのチャネル層106、AlGaNの電子供給層108を形成してHEMT用エピタキシャル基板とした。実験例と同様にSiNのパッシベーション層120、溝部110、一対の入出力電極118を形成した。溝部110にp形半導体層112を形成せず、実験例と同様の手法で、溝部110の底面に直接SiOの絶縁層114となる絶縁膜142および制御電極116となる金属膜144を形成して、絶縁層114および制御電極116を形成した。さらに実験例と同様の手法で素子分離領域122を形成した。
 図11は、実験例および比較例で作成した半導体装置100のDC評価におけるドレイン電流の遷移特性グラフを示す。実線は実験例を、破線は比較例を示す。横軸はドレイン電圧を、縦軸はドレイン電流を示す。比較例の最大電流密度が、ゲート電圧3V付近で約50mA/mmであるのに対して、実験例では、ゲート電圧3.5V付近で110mA/mmと高い値を示した。上記実験例と比較例との比較結果が示すとおり、p形半導体層112を備えることにより、半導体装置100をノーマリオフで動作させつつ、チャネルの電流密度を増加させることができた。

Claims (17)

  1.  3-5族化合物半導体のチャネル層と、
     前記チャネル層にキャリアを供給し、前記チャネル層に対向する面の反対面に溝部を有するキャリア供給層と、
     前記キャリア供給層の前記溝部に形成され、前記キャリアが示す伝導型とは逆の伝導型を示す半導体層と、
     前記半導体層の上に設けられた制御電極と、
     を含む半導体装置。
  2.  前記半導体層は、窒素を含む3-5族化合物の半導体層である、
     請求項1に記載の半導体装置。
  3.  前記半導体層は、InGaN層、AlGaN層またはGaN層である、
     請求項2に記載の半導体装置。
  4.  前記半導体層は、
      AlGa1-xN、ただし、0≦x≦0.5、
     である、
     請求項3に記載の半導体装置。
  5.  前記制御電極は、前記半導体層との間に絶縁層を介して形成されている、
     請求項1から請求項4の何れか一項に記載の半導体装置。
  6.  前記絶縁層は、SiO、SiN、SiAl、HfO、HfAl、HfSi、HfN、AlO、AlN、GaO、GaOおよびTaO、TiNから選択された少なくとも1つの絶縁性化合物を有する層である、
     請求項5に記載の半導体装置。
  7.  前記キャリア供給層を覆い、前記溝部の開口に一致する開口部を有するパッシベーション層、をさらに備えた、
     請求項1から請求項6の何れか一項に記載の半導体装置。
  8.  前記キャリア供給層は、前記チャネル層と格子整合または擬格子整合し、
     前記半導体層は、前記キャリア供給層と格子整合または擬格子整合する、
     請求項1から請求項7の何れか一項に記載の半導体装置。
  9.  前記チャネル層は、窒素を含む、
     請求項1から請求項8の何れか一項に記載の半導体装置。
  10.  前記チャネル層は、GaN層、InGaN層またはAlGaN層であり、
     前記キャリア供給層は、AlGaN層、AlInN層またはAlN層である、
     請求項9に記載の半導体装置。
  11.  前記制御電極は、Ni、Al、Mg、Sc、Ti、Mn、Ag、Sn、PtおよびInから選択された少なくとも1つの金属を有する、
     請求項1から請求項10の何れか一項に記載の半導体装置。
  12.  前記キャリアは電子である
     請求項1から請求項11の何れか一項に記載の半導体装置。
  13.  3-5族化合物半導体のチャネル層にキャリアを供給するキャリア供給層の表面に、溝部を形成する段階と、
     前記キャリア供給層の前記溝部に、前記キャリアが示す伝導型とは逆の伝導型を示す半導体層を形成する段階と、
     前記半導体層を形成した後に、制御電極を形成する段階と、
     を含む半導体装置の製造方法。
  14.  前記キャリア供給層を覆うパッシベーション層を形成する段階と、
     前記溝部が形成される領域の前記パッシベーション層に開口部を形成する段階と、
     をさらに備え、
     前記キャリア供給層の表面に溝部を形成する段階は、前記パッシベーション層の前記開口部に露出した前記キャリア供給層をエッチングして、前記溝部を形成する段階である、
     請求項13に記載の半導体装置の製造方法。
  15.  前記半導体層を形成する段階は、前記パッシベーション層の前記開口部に露出した前記キャリア供給層に、前記半導体層となるエピタキシャル層を選択的に成長させる段階である、
     請求項14に記載の半導体装置の製造方法。
  16.  前記キャリア供給層の表面に溝部を形成する段階は、
     前記キャリア供給層の一部を覆うマスクを形成する段階と、
     前記マスクで覆った領域以外の前記キャリア供給層に、さらにキャリア供給層を形成する段階と、
     前記マスクを除去する段階と、
     を有する段階である請求項13に記載の半導体装置の製造方法。
  17.  前記半導体層は、窒素を含み、
     前記チャネル層は、窒素を含む、
     請求項13から請求項16の何れか一項に記載の半導体装置の製造方法。
PCT/JP2009/001209 2008-03-19 2009-03-18 半導体装置および半導体装置の製造方法 WO2009116283A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/933,340 US20110042719A1 (en) 2008-03-19 2009-03-18 Semiconductor device and method of manufacturing a semiconductor device
CN2009801073793A CN101960576B (zh) 2008-03-19 2009-03-18 半导体装置,及半导体装置的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008072583A JP2009231395A (ja) 2008-03-19 2008-03-19 半導体装置および半導体装置の製造方法
JP2008-072583 2008-03-19

Publications (1)

Publication Number Publication Date
WO2009116283A1 true WO2009116283A1 (ja) 2009-09-24

Family

ID=41090698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001209 WO2009116283A1 (ja) 2008-03-19 2009-03-18 半導体装置および半導体装置の製造方法

Country Status (6)

Country Link
US (1) US20110042719A1 (ja)
JP (1) JP2009231395A (ja)
KR (1) KR20110005775A (ja)
CN (1) CN101960576B (ja)
TW (1) TW200950081A (ja)
WO (1) WO2009116283A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073315A1 (ja) * 2011-11-14 2013-05-23 シャープ株式会社 電界効果トランジスタおよびその製造方法
CN106033724A (zh) * 2015-03-09 2016-10-19 中国科学院苏州纳米技术与纳米仿生研究所 Iii族氮化物增强型hemt及其制备方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495257B2 (ja) * 2009-10-09 2014-05-21 シャープ株式会社 Iii族窒化物系電界効果トランジスタおよびその製造方法
US20110210377A1 (en) * 2010-02-26 2011-09-01 Infineon Technologies Austria Ag Nitride semiconductor device
WO2011111505A1 (en) * 2010-03-08 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP2013074068A (ja) * 2011-09-27 2013-04-22 Fujitsu Ltd 半導体装置及び半導体装置の製造方法
JP2013074179A (ja) * 2011-09-28 2013-04-22 Fujitsu Ltd 化合物半導体装置及びその製造方法
KR20130035024A (ko) * 2011-09-29 2013-04-08 삼성전자주식회사 고 전자 이동도 트랜지스터 및 그 제조방법
EP2602827B1 (en) * 2011-12-09 2016-02-03 Imec Enhancement mode III-nitride device and method for manufacturing thereof
JP5888064B2 (ja) * 2012-03-29 2016-03-16 富士通株式会社 化合物半導体装置及びその製造方法
JP6085442B2 (ja) 2012-09-28 2017-02-22 トランスフォーム・ジャパン株式会社 化合物半導体装置及びその製造方法
JP6161246B2 (ja) 2012-09-28 2017-07-12 トランスフォーム・ジャパン株式会社 半導体装置及び半導体装置の製造方法
JP6253886B2 (ja) 2013-01-09 2017-12-27 トランスフォーム・ジャパン株式会社 半導体装置及び半導体装置の製造方法
EP2793255B8 (en) * 2013-04-16 2018-01-17 IMEC vzw Manufacturing method of a semiconductor device comprising a schottky diode and a high electron mobility transistor
WO2015029578A1 (ja) * 2013-08-27 2015-03-05 富士電機株式会社 半導体装置の製造方法および半導体装置
CN106298903A (zh) * 2015-05-18 2017-01-04 中国科学院苏州纳米技术与纳米仿生研究所 二次外延p型ⅲ族氮化物实现增强型hemt的方法及增强型hemt
CN105720097A (zh) * 2016-04-28 2016-06-29 中国科学院半导体研究所 增强型高电子迁移率晶体管及制备方法、半导体器件
CN106373991B (zh) * 2016-11-01 2019-10-01 电子科技大学 一种氮面增强型氮化镓基异质结场效应管
CN112216740B (zh) * 2019-07-09 2024-08-06 联华电子股份有限公司 高电子迁移率晶体管的绝缘结构以及其制作方法
JP7362410B2 (ja) * 2019-10-17 2023-10-17 株式会社東芝 半導体装置の製造方法及び半導体装置
WO2021189182A1 (zh) 2020-03-23 2021-09-30 英诺赛科(珠海)科技有限公司 半导体装置及其制造方法
CN111681958A (zh) * 2020-05-29 2020-09-18 华南理工大学 一种新型异质结构镁扩散制备常关型hemt器件的方法
WO2022051933A1 (en) * 2020-09-09 2022-03-17 Innoscience (Suzhou) Technology Co., Ltd. Semiconductor device structures and methods of manufacturing thereof
CN117855267B (zh) * 2024-03-07 2024-06-21 江苏能华微电子科技发展有限公司 一种高阈值增强型功率器件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247628A (ja) * 1991-02-04 1992-09-03 Asahi Chem Ind Co Ltd ゲート電極リセス構造を有する半導体装置の製造方法
JP2006190991A (ja) * 2004-12-09 2006-07-20 Matsushita Electric Ind Co Ltd 電界効果トランジスタ及びその製造方法
JP2007294528A (ja) * 2006-04-21 2007-11-08 Toshiba Corp 窒化物半導体素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514605A (en) * 1994-08-24 1996-05-07 Nec Corporation Fabrication process for compound semiconductor device
CN100350577C (zh) * 2002-10-29 2007-11-21 松下电器产业株式会社 氮化砷化镓铟系异质场效应晶体管及其制造方法和使用它的发送接收装置
JP2004273486A (ja) * 2003-03-05 2004-09-30 Mitsubishi Electric Corp 半導体装置およびその製造方法
US7834380B2 (en) * 2004-12-09 2010-11-16 Panasonic Corporation Field effect transistor and method for fabricating the same
JP4845872B2 (ja) * 2005-01-25 2011-12-28 富士通株式会社 Mis構造を有する半導体装置及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247628A (ja) * 1991-02-04 1992-09-03 Asahi Chem Ind Co Ltd ゲート電極リセス構造を有する半導体装置の製造方法
JP2006190991A (ja) * 2004-12-09 2006-07-20 Matsushita Electric Ind Co Ltd 電界効果トランジスタ及びその製造方法
JP2007294528A (ja) * 2006-04-21 2007-11-08 Toshiba Corp 窒化物半導体素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073315A1 (ja) * 2011-11-14 2013-05-23 シャープ株式会社 電界効果トランジスタおよびその製造方法
JP2013105863A (ja) * 2011-11-14 2013-05-30 Sharp Corp 電界効果トランジスタおよびその製造方法
CN106033724A (zh) * 2015-03-09 2016-10-19 中国科学院苏州纳米技术与纳米仿生研究所 Iii族氮化物增强型hemt及其制备方法

Also Published As

Publication number Publication date
US20110042719A1 (en) 2011-02-24
CN101960576B (zh) 2012-09-26
JP2009231395A (ja) 2009-10-08
KR20110005775A (ko) 2011-01-19
TW200950081A (en) 2009-12-01
CN101960576A (zh) 2011-01-26

Similar Documents

Publication Publication Date Title
WO2009116283A1 (ja) 半導体装置および半導体装置の製造方法
WO2009116281A1 (ja) 半導体装置および半導体装置の製造方法
US11322599B2 (en) Enhancement mode III-nitride devices having an Al1-xSixO gate insulator
JP5813279B2 (ja) 窒化物ベースのトランジスタのための窒化アルミニウムを含むキャップ層およびその作製方法
JP6357037B2 (ja) 常時オフ半導体デバイスおよびその作製方法
US8723229B2 (en) Semiconductor device and method of manufacturing the device
US7456443B2 (en) Transistors having buried n-type and p-type regions beneath the source region
US20110227093A1 (en) Field effect transistor and method of manufacturing the same
TWI469343B (zh) 化合物半導體裝置及其製造方法
US20150060873A1 (en) Crystalline Layer for Passivation of III-N Surface
JP5495257B2 (ja) Iii族窒化物系電界効果トランジスタおよびその製造方法
US10784361B2 (en) Semiconductor device and method for manufacturing the same
TW201413952A (zh) 化合物半導體裝置及其製造方法
WO2012066701A1 (ja) 窒化物半導体装置
JP2010045343A (ja) 半導体デバイス
US20100148184A1 (en) Gan-based field effect transistor
JP2007165431A (ja) 電界効果型トランジスタおよびその製造方法
US8283700B2 (en) Field effect transistor and manufacturing method thereof
JP5169515B2 (ja) 化合物半導体装置
CN116457946A (zh) 氮化镓再生长中的杂质还原技术
JP2015204425A (ja) 電界効果トランジスタおよびその製造方法
JP2010109117A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107379.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107016844

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12933340

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09721987

Country of ref document: EP

Kind code of ref document: A1