WO2009113274A1 - 弾性波フィルタおよびそれを用いたデュプレクサおよび電子機器 - Google Patents
弾性波フィルタおよびそれを用いたデュプレクサおよび電子機器 Download PDFInfo
- Publication number
- WO2009113274A1 WO2009113274A1 PCT/JP2009/000972 JP2009000972W WO2009113274A1 WO 2009113274 A1 WO2009113274 A1 WO 2009113274A1 JP 2009000972 W JP2009000972 W JP 2009000972W WO 2009113274 A1 WO2009113274 A1 WO 2009113274A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- idt electrode
- electrode
- signal terminal
- wave filter
- idt
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/70—Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
- H03H9/72—Networks using surface acoustic waves
- H03H9/725—Duplexers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/0023—Balance-unbalance or balance-balance networks
- H03H9/0028—Balance-unbalance or balance-balance networks using surface acoustic wave devices
- H03H9/0033—Balance-unbalance or balance-balance networks using surface acoustic wave devices having one acoustic track only
- H03H9/0038—Balance-unbalance or balance-balance networks using surface acoustic wave devices having one acoustic track only the balanced terminals being on the same side of the track
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/0023—Balance-unbalance or balance-balance networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/0023—Balance-unbalance or balance-balance networks
- H03H9/0028—Balance-unbalance or balance-balance networks using surface acoustic wave devices
- H03H9/0047—Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks
- H03H9/0066—Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically parallel
- H03H9/0071—Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically parallel the balanced terminals being on the same side of the tracks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
- H03H9/6423—Means for obtaining a particular transfer characteristic
- H03H9/6433—Coupled resonator filters
- H03H9/6436—Coupled resonator filters having one acoustic track only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
- H03H9/6423—Means for obtaining a particular transfer characteristic
- H03H9/6433—Coupled resonator filters
- H03H9/644—Coupled resonator filters having two acoustic tracks
- H03H9/6456—Coupled resonator filters having two acoustic tracks being electrically coupled
- H03H9/6469—Coupled resonator filters having two acoustic tracks being electrically coupled via two connecting electrodes
- H03H9/6476—Coupled resonator filters having two acoustic tracks being electrically coupled via two connecting electrodes the tracks being electrically parallel
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/70—Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
Definitions
- the present invention relates to an elastic wave filter used for a mobile phone or the like, a duplexer using the same, and an electronic device.
- this type of acoustic wave filter has an unbalanced signal terminal 16 and first, second, and third wiring electrodes electrically connected to the unbalanced signal terminal 16 as shown in FIG. IDT electrodes 17A, 17B, and 17C.
- the conventional acoustic wave filter has a fourth IDT electrode 17D provided between the first and second IDT electrodes 17A and 17B, and a second IDT electrode provided between the second and third IDT electrodes 17B and 17C. 5 IDT electrodes 17E.
- the conventional acoustic wave filter is electrically connected to the first balanced signal terminal 18A electrically connected to the wiring electrode of the fourth IDT electrode 17D and the wiring electrode of the fifth IDT electrode 17E. And a second balanced signal terminal 18B.
- the ground electrodes of the first, second, third, fourth, and fifth IDT electrodes 17A, 17B, 17C, 17D, and 17E are electrically connected to the ground.
- a signal having a phase opposite to that of the signal input from the unbalanced signal terminal 16 is output from the first balanced signal terminal 18A and is in phase with the signal input from the unbalanced signal terminal 16.
- the wiring electrodes of the second and third IDT electrodes 17B and 17C and the ground electrode of the fifth IDT electrode 17E are adjacent to each other, and the first and second IDT electrodes 17A and 17B The ground electrode and the ground electrode of the fourth IDT electrode 17D are adjacent to each other (see, for example, Patent Document 1).
- the ground electrodes of the first and second IDT electrodes 17A and 17B and the ground electrode of the fourth IDT electrode 17D are adjacent to each other. As shown, spurious S is generated in the passband.
- an acoustic wave filter in which an acoustic wave filter as shown in FIG. 14 is connected in parallel to improve the pass characteristic.
- the conventional parallel type acoustic wave filter is electrically connected to the first unbalanced signal terminal 2 and the first unbalanced signal terminal 2 formed on the piezoelectric substrate 1.
- a first longitudinally coupled resonator type acoustic wave filter 5 having a first balanced signal terminal 3 and a second balanced signal terminal 4 is provided.
- the second unbalanced signal terminal 6 formed on the piezoelectric substrate 1 and the third balanced signal terminal 7 and the fourth balanced signal electrically connected to the second unbalanced signal terminal 6 are provided.
- a second longitudinally coupled resonator type acoustic wave filter 9 having a terminal 8 is provided.
- the first unbalanced signal terminal 2 and the second unbalanced signal terminal 6 are electrically connected.
- the first balanced signal terminal 3 and the second balanced signal terminal 4 are electrically connected to the first input / output terminal 10.
- the third balanced signal terminal 7 and the fourth balanced signal terminal 8 are electrically connected to the second input / output terminal 11.
- the phase of the input / output signal from the first input / output terminal 10 is shifted by 180 ° with respect to the phase of the input / output signal from the second input / output terminal 11 (see, for example, Patent Document 2).
- FIG. 17 is a diagram showing passband characteristics of a conventional parallel type acoustic wave filter. That is, in the conventional parallel type acoustic wave filter, as shown in FIG. 17, spurious S is generated in a high frequency portion in a desired pass band PB0. As a result, the insertion loss deterioration has been increased.
- the present invention provides an elastic wave filter that can suppress the occurrence of spurious and reduce deterioration of insertion loss, a duplexer using the same, and an electronic apparatus.
- the present invention provides an unbalanced signal terminal, a first, a second, and a third IDT electrode whose wiring electrodes are electrically connected to the unbalanced signal terminal, and the first and second IDT electrodes.
- a fourth IDT electrode provided; a fifth IDT electrode provided between the second and third IDT electrodes; and a first electrode electrically connected to the wiring electrode of the fourth IDT electrode.
- the ground electrode is electrically connected to the ground, and a signal having a phase opposite to that of the signal input from the unbalanced signal terminal is output from the first balanced signal terminal and is input from the unbalanced signal terminal.
- the wiring electrode of the DT electrode and the ground electrode of the fifth IDT electrode are adjacent to each other, and one of the first and second IDT electrodes is adjacent to the wiring electrode of the fourth IDT electrode.
- the other ground electrode of the first and second IDT electrodes and the ground electrode of the fourth IDT electrode are adjacent to each other.
- This configuration can suppress spurious noise in the passband.
- FIG. 1 is a schematic top view of an acoustic wave filter according to Embodiment 1 of the present invention.
- FIG. 2 is a schematic top view of another example of the acoustic wave filter in the embodiment.
- FIG. 3 is a pass characteristic diagram of the acoustic wave filter in the same embodiment.
- FIG. 4 is a pass characteristic diagram of the acoustic wave filter shown in FIG.
- FIG. 5 is a schematic top view of a parallel acoustic wave filter according to Embodiment 2 of the present invention.
- FIG. 6 is a pass characteristic diagram of the parallel-type elastic wave filter in the same embodiment.
- FIG. 7 is a schematic top view of a parallel acoustic wave filter according to Embodiment 3 of the present invention.
- FIG. 8 is a top view showing a specific example of a parallel-type elastic wave filter in the same embodiment.
- FIG. 9 is a perspective view of a main part of the parallel-type elastic wave filter shown in FIG.
- FIG. 10 is a schematic top view of a parallel acoustic wave filter according to Embodiment 4 of the present invention.
- FIG. 11 is an electric circuit diagram of the duplexer according to the fifth embodiment of the present invention.
- FIG. 12 is a pass characteristic diagram of the same embodiment.
- FIG. 13 is a configuration diagram of an electronic device according to the sixth embodiment of the present invention.
- FIG. 14 is a configuration diagram of a conventional acoustic wave filter.
- FIG. 15 is a pass characteristic diagram of a conventional acoustic wave filter.
- FIG. 16 is a configuration diagram of a conventional parallel acoustic wave filter.
- FIG. 17 is a pass characteristic diagram of a conventional parallel type acoustic wave filter.
- FIG. 1 is a schematic top view of an acoustic wave filter according to Embodiment 1 of the present invention.
- the acoustic wave filter according to the present embodiment includes an unbalanced signal terminal 12, and first, second, and third IDTs (Interdigital Transducers) whose wiring electrodes are electrically connected to the unbalanced signal terminal 12.
- Electrodes 13A, 13B, and 13C are provided.
- the acoustic wave filter in the present embodiment includes a fourth IDT electrode 13D provided between the first and second IDT electrodes 13A and 13B.
- the acoustic wave filter in the present embodiment includes a fifth IDT electrode 13E provided between the second and third IDT electrodes 13B and 13C.
- the acoustic wave filter in the present embodiment is electrically connected to the first balanced signal terminal 14A electrically connected to the wiring electrode of the fourth IDT electrode 13D and the wiring electrode of the fifth IDT electrode 13E. And a second balanced signal terminal 14B connected thereto.
- the ground electrodes of the first, second, third, fourth, and fifth IDT electrodes 13A, 13B, 13C, 13D, and 13E are electrically connected to the ground. Yes.
- a signal having a phase opposite to that of the signal input from the unbalanced signal terminal 12 is output from the first balanced signal terminal 14A.
- a signal having the same phase as the signal input from the unbalanced signal terminal 12 is output from the second balanced signal terminal 14B.
- the wiring electrodes of the second and third IDT electrodes 13B and 13C and the ground electrode of the fifth IDT electrode 13E are adjacent to each other.
- one wiring electrode of the first and second IDT electrodes 13A and 13B and the wiring electrode of the fourth IDT electrode 13D are adjacent to each other.
- the other ground electrode of the first and second IDT electrodes 13A and 13B and the ground electrode of the fourth IDT electrode 13D are adjacent to each other.
- the first, second, third, and fifth IDT electrodes 13A, 13B, 13C, and 13E each have five electrode fingers.
- the fourth IDT electrode 13D has six electrode fingers.
- Each electrode finger of the first, second, third, fourth, and fifth IDT electrodes 13A, 13B, 13C, 13D, and 13E includes a wiring electrode and a ground electrode.
- the ground electrode is disposed on the outermost side, and the ground electrode and the ground electrode in the fourth IDT electrode 13D are disposed adjacent to each other.
- the fourth IDT electrode 13D has an even number of electrode fingers, and the electrode finger on the side opposite to the ground electrode adjacent to the first IDT electrode 13A is a wiring electrode.
- the wiring electrode of the fourth IDT electrode 13D is electrically connected to the first balanced signal terminal 14A and is disposed adjacent to the wiring electrode of the second IDT electrode 13B.
- the electrode finger on the side opposite to the wiring electrode adjacent to the fourth IDT electrode 13D is a wiring electrode.
- the electrode is adjacent to the ground electrode of the fifth IDT electrode 13E.
- the wiring electrode of the fifth IDT electrode 13E is electrically connected to the second balanced signal terminal 14B.
- the electrode finger on the opposite side of the ground electrode adjacent to the second IDT electrode 13B is also a ground electrode.
- the electrode is adjacent to the wiring electrode of the third IDT electrode 13C.
- a reflector 15A is disposed on the opposite side of the fourth IDT electrode 13D with respect to the first IDT electrode 13A, and a reflector 15B is disposed on the opposite side of the fifth IDT electrode 13E with respect to the third IDT electrode 13C. It is arranged.
- Such a configuration can suppress the occurrence of spurious in the passband.
- FIG. 3 is a pass characteristic diagram of the elastic wave filter according to the present embodiment.
- a solid line characteristic 301 indicates the characteristic according to the present embodiment
- a dotted line characteristic 302 indicates the characteristic of the conventional acoustic wave filter (same as FIG. 15).
- the spurious S appearing in the conventional characteristic 302 disappears from the pass characteristic.
- the characteristic 301 (the present embodiment) is attenuated more than the characteristic 302 (conventional) as shown in part B of FIG. Characteristics can be improved.
- the first configuration relates to the pitch interval of the electrode fingers existing in the first, second, third, fourth, and fifth IDT electrodes 13A, 13B, 13C, 13D, and 13E. That is, the pitch interval P1 existing on one side and the pitch interval P2 existing on the other side are asymmetric with respect to the center line A-AA in the second IDT electrode 13B.
- the second configuration relates to the pitch gradation of the electrode fingers existing in the first, second, third, fourth, and fifth IDT electrodes 13A, 13B, 13C, 13D, and 13E. That is, with the center line A-AA in the second IDT electrode 13B as the center, the pitch gradation of the pitch interval P1 existing on one side and the pitch gradation of the pitch interval P2 existing on the other side are asymmetric. .
- the pitch gradation of the pitch interval P1 existing on one side is gradually decreased by the interval ⁇ as the distance from the center line A-AA increases, and the pitch gradation of the pitch interval P2 existing on the other side is decreased as the distance ⁇ from the center line A-AA.
- the third configuration relates to the distance between the first, second, third, fourth, and fifth IDT electrodes 13A, 13B, 13C, 13D, and 13E. That is, at least one of the distance L14 between the first IDT electrode 13A and the fourth IDT electrode 13D and the distance L42 between the fourth IDT electrode 13D and the second IDT electrode 13B is the second IDT electrode 13B. Is different from at least one of an interval L25 between the fifth IDT electrode 13E and an interval L53 between the fifth IDT electrode 13E and the third IDT electrode 13C.
- the number of electrode fingers of the second IDT electrode 13B is an odd number.
- the ground electrode of the first IDT electrode 13A and the ground electrode of the fourth IDT electrode 13D are adjacent to each other, and the wiring electrode of the fourth IDT electrode 13D and the wiring electrode of the second IDT electrode 13B are Are adjacent to each other.
- the number of electrode fingers of the second IDT electrode 13B can be an even number.
- the wiring electrode of the first IDT electrode 13A and the wiring electrode of the fourth IDT electrode 13D are adjacent to each other, and the ground electrode of the fourth IDT electrode 13D and the ground electrode of the second IDT electrode 13B are adjacent to each other.
- a suitable configuration is possible configuration.
- FIG. 4 is a pass characteristic diagram of the acoustic wave filter shown in FIG. 4 shows the characteristics 402 of the acoustic wave filter having the configuration shown in FIG. 2 and the characteristics 401 of the acoustic wave filter having the configuration shown in FIG.
- the attenuation characteristic of the characteristic 401 is improved as compared with the characteristic 402. Therefore, the configuration shown in FIG.
- the number of electrode fingers of the second IDT electrode 13B is an odd number
- the ground electrode of the first IDT electrode 13A and the ground electrode of the fourth IDT electrode 13D are adjacent
- the wiring electrode of the fourth IDT electrode 13D and the wiring electrode of the second IDT electrode 13B be adjacent to each other because the attenuation characteristics are further improved.
- the same effect can be obtained even if the arrangement of the electrode fingers of the elastic wave filter in FIG. 1 is inverted upside down.
- the connection relationship between the unbalanced signal electrode 12, the first balanced signal electrode 14A, the second balanced signal electrode 14B, and each electrode finger is the same as in FIG.
- the ground electrodes of the second and third IDT electrodes 13B and 13C and the wiring electrode of the fifth IDT electrode 13E are adjacent to each other, and one of the first and second IDT electrodes 13A and 13B.
- the wiring electrode of the fourth IDT electrode 13D are adjacent to each other, and the other ground electrode of the first and second IDT electrodes 13A and 13B and the ground electrode of the fourth IDT electrode 13D are adjacent to each other.
- the elastic wave filter according to the second embodiment can further improve the pass characteristics by connecting the elastic wave filters described in the first embodiment in parallel.
- the parallel acoustic wave filter of the present embodiment includes a piezoelectric substrate 21, a first unbalanced signal terminal 22, a first balanced signal terminal 23 formed on the piezoelectric substrate 21, and A first longitudinally coupled resonator type acoustic wave filter 25 having a second balanced signal terminal 24 is provided.
- Each of the first unbalanced signal terminal 22, the first balanced signal terminal 23, and the second balanced signal terminal 24 is electrically connected to the first longitudinally coupled resonator type acoustic wave filter 25.
- a second longitudinally coupled resonator having a piezoelectric substrate 21, a second unbalanced signal terminal 26, a third balanced signal terminal 27, and a fourth balanced signal terminal 28 formed on the piezoelectric substrate 21.
- a type elastic wave filter 29 is provided.
- Each of the second unbalanced signal terminal 26, the third balanced signal terminal 27, and the fourth balanced signal terminal 28 is electrically connected to the second longitudinally coupled resonator type acoustic wave filter 29.
- first unbalanced signal terminal 22 and the second unbalanced signal terminal 26 are electrically connected.
- the first balanced signal terminal 23 and the third balanced signal terminal 27 are electrically connected to the first input / output terminal 30.
- the second balanced signal terminal 24 and the fourth balanced signal terminal 28 are electrically connected to the second input / output terminal 31.
- the phase of the input / output signal from the first input / output terminal 30 is configured to be opposite in phase to the phase of the input / output signal from the second input / output terminal 31 by 180 °.
- the phase difference between the input / output signals of the first input / output terminal 30 and the second input / output terminal 31 has a width of about 180 ° ⁇ 10 °.
- the first longitudinally coupled resonator type acoustic wave filter 25 has first, second, third, fourth, and fifth IDT electrodes 32, 33, 34, 35, and 36.
- Grating reflectors 42 and 43 are provided on both sides of the first, second, third, fourth, and fifth IDT electrodes 32, 33, 34, 35, and 36 in the elastic wave propagation direction.
- the second longitudinally coupled resonator type acoustic wave filter 29 includes sixth, seventh, eighth, ninth, and tenth IDT electrodes 37, 38, 39, 40, and 41.
- Grating reflectors 44 and 45 are provided on both sides of the sixth, seventh, eighth, ninth, and tenth IDT electrodes 37, 38, 39, 40, and 41 in the elastic wave propagation direction.
- each of the first, third, and fifth IDT electrodes 32, 34, and 36 is electrically connected to the first unbalanced signal terminal 22, and the other end is connected to the ground.
- one end of each of the sixth, eighth, and tenth IDT electrodes 37, 39, and 41 is electrically connected to the second unbalanced signal terminal 26, and the other end is connected to the ground.
- each of the first, third, and fifth IDT electrodes 32, 34, and 36 includes a plurality of commonly connected electrode fingers and a plurality of commonly connected electrode fingers as shown in FIG. Opposing to cross each other.
- a plurality of commonly connected electrode fingers of each of the first and fifth IDT electrodes 32 and 36 and a plurality of commonly connected electrode fingers of the third IDT electrode 34 have a first imbalance.
- the signal terminal 22 is electrically connected.
- a plurality of commonly connected electrode fingers of each of the first and fifth IDT electrodes 32 and 36 and a plurality of commonly connected electrode fingers of the third IDT electrode 34 are connected to the ground. Yes. As shown in FIG.
- each of the sixth, eighth, and tenth IDT electrodes 37, 39, and 41 has a plurality of commonly connected electrode fingers and a plurality of commonly connected electrode fingers. ing. A plurality of commonly connected electrode fingers of each of the sixth and tenth IDT electrodes 37 and 41 and a plurality of commonly connected electrode fingers of the eighth IDT electrode 39 are in a second unbalanced state. The signal terminal 26 is electrically connected. A plurality of commonly connected electrode fingers of the sixth and tenth IDT electrodes 37 and 41 and a plurality of commonly connected electrode fingers of the eighth IDT electrode 39 are connected to the ground. Yes.
- One end of the second IDT electrode 33 is connected to the ground, and the other end is electrically connected to the first balanced signal terminal 23.
- One end of the seventh IDT electrode 38 is connected to the ground, and the other end is electrically connected to the third balanced signal terminal 27. Further, as described above, the first balanced signal terminal 23 and the third balanced signal terminal 27 are electrically connected to the first input / output terminal 30.
- one end of the fourth IDT electrode 35 is connected to the ground, and the other end is electrically connected to the second balanced signal terminal 24.
- One end of the ninth IDT electrode 40 is connected to the ground, and the other end is electrically connected to the fourth balanced signal terminal 28. Further, as described above, the second balanced signal terminal 24 and the fourth balanced signal terminal 28 are electrically connected to the second input / output terminal 31.
- each of the second, fourth, seventh, and ninth IDT electrodes 33, 35, 38, and 40 has a plurality of commonly connected electrode fingers and a plurality of commonly connected electrode fingers as shown in FIG. The electrode fingers are arranged so as to cross each other. At one end of each of the second and seventh IDT electrodes 33 and 38, a plurality of commonly connected electrode fingers are connected to the ground. In the second IDT electrode 33, the other plurality of commonly connected electrode fingers are electrically connected to the first balanced signal terminal 23. In the seventh IDT electrode 38, the other plurality of commonly connected electrode fingers are electrically connected to the third balanced signal terminal 27. Each of the fourth and ninth IDT electrodes 35 and 40 has one common electrode finger connected to the ground. In the fourth IDT electrode 35, the other plurality of commonly connected electrode fingers are electrically connected to the second balanced signal terminal 24. In the ninth IDT electrode 40, the other plurality of commonly connected electrode fingers are electrically connected to the fourth balanced signal terminal 28.
- phase of the input / output signal from the first balanced signal terminal 23 and the phase of the input / output signal from the second balanced signal terminal 24 are reversed. Further, the phase of the input / output signal from the third balanced signal terminal 27 and the phase of the input / output signal from the fourth balanced signal terminal 28 are reversed.
- phase of the input / output signal from the first balanced signal terminal 23 and the phase of the input / output signal from the third balanced signal terminal 27 are set to the same phase. Further, the phase of the input / output signal from the second balanced signal terminal 24 and the phase of the input / output signal from the fourth balanced signal terminal 28 are set to the same phase.
- phase of the input / output signal from the first input / output terminal 30 is opposite to the phase of the input / output signal from the second input / output terminal 31.
- FIG. 6 is a diagram showing the pass characteristics of the parallel-type elastic wave filter in the present embodiment.
- the horizontal axis indicates the frequency, and the vertical axis indicates the pass characteristic of the filter at that frequency.
- FIG. 6 shows a characteristic 201 according to this embodiment and a characteristic 202 according to the conventional example.
- the characteristic 201 (thick line) of the present embodiment is that the spurious S in the high frequency region is suppressed, and the insertion loss It can be seen that the degradation is reduced.
- the insertion loss of 2.17 GHz which is the high frequency region, is 1.8 dB in the characteristic 202 (thin line) according to the conventional example, but is 1.4 dB according to the characteristic 202 of the present embodiment. You can see that it has improved.
- a piezoelectric substrate having piezoelectricity such as a Y-cut X-propagating LiNbO 3 substrate, a LiNbO 3 substrate having another cut angle, a LiTaO 3 substrate, or a crystal can be used.
- a metal such as aluminum or an alloy can be used as the electrode material formed on the piezoelectric substrate 21.
- the first and second longitudinally coupled resonator type acoustic wave filters 25 and 29 in the present embodiment are each configured to have five IDT electrodes arranged along the acoustic wave propagation direction.
- the number of IDT electrodes is not limited to this as long as one unbalanced signal can be converted into two balanced signals.
- first and second longitudinally coupled resonator type acoustic wave filters 25 and 29 in the present embodiment have the same electrode design.
- each longitudinally coupled resonator type elastic wave filter is configured to convert one unbalanced signal into two balanced signals, the same configuration is not necessarily required.
- the polarities of the electrode fingers of the outermost IDT electrodes 32 and 36 of the IDT electrodes 32 to 36 included in the first longitudinally coupled acoustic wave filter 25 and the second longitudinally coupled acoustic wave filter 29 are included. It is desirable that the electrode fingers of the IDT electrodes 37 and 41 at the outermost ends of the IDT electrodes 37 to 41 have the same polarity. This is because the combination of the comb-teeth electrodes of the IDT electrodes 32 to 36 included in the first longitudinally coupled resonator type elastic wave filter 25 and the IDT electrodes 37 included in the second longitudinally coupled resonator type elastic wave filter 29. It can be realized by using the same combination of the comb electrodes of .about.41.
- the IDT electrodes 32 and 37, the IDT electrodes 33 and 38, the IDT electrodes 34 and 39, the IDT electrodes 35 and 40, and the IDT electrodes 36 and 41 with the same combination of comb electrodes. Can do.
- the input / output signal from the first balanced signal terminal 23 and the input / output signal from the third balanced signal terminal 27 can be in phase, and the input / output signal of the second balanced signal terminal 24
- the input / output signals of the four balanced signal terminals 28 can have the same phase, and the parallel type acoustic wave filter in the present embodiment can be easily realized.
- the cross mode L1 of the first longitudinally coupled resonator type elastic wave filter 25 is made larger than the crossed width L2 of the second longitudinally coupled resonator type elastic wave filter 29, thereby reducing the frequency of occurrence of transverse mode spurious. It can be dispersed effectively.
- FIG. 7 is a schematic top view showing a parallel-type elastic wave filter according to Embodiment 3 of the present invention.
- the parallel type acoustic wave filter according to the present embodiment is different from the parallel type acoustic wave filter according to the second embodiment in that a first input / output terminal 30 and a second input / output terminal 31 are provided.
- a capacitance component 51 is interposed therebetween.
- first balanced signal terminal 23 and the third balanced signal terminal 27 are connected to the first connection point 46.
- the second balanced signal terminal 24 and the fourth balanced signal terminal 28 are connected to the second connection point 47.
- the first connection point 46 and the third balanced signal terminal 27 are connected by the first wiring 48.
- the second connection point 47 and the second balanced signal terminal 24 are connected by the second wiring 49.
- FIG. 7 The configuration shown in FIG. 7 is obtained as specifically shown in FIGS. 8 and 9, for example. 8 is a top view of the specific configuration of FIG. 7, and FIG. 9 is a perspective view of the main part thereof. That is, the first wiring 48 and the second wiring 49 are crossed on the piezoelectric substrate 21. A dielectric film 50 is formed between the first wiring 48 and the second wiring 49. With this configuration, a capacitance component 51 can be interposed between the first input / output terminal 30 and the second input / output terminal 31 as shown in FIG.
- impedances viewed from the first input / output terminal 30 and the second input / output terminal 31 can be matched.
- the dielectric film 50 it is desirable to use silicon oxide as the dielectric film 50. Since the silicon oxide film can be manufactured at a low temperature, damage to the element can be avoided. At the same time, it is possible to obtain the dielectric film 50 with high accuracy, good film quality, and easy thickness control.
- the dielectric film 50 is configured to cover the upper surface of at least one of the first longitudinally coupled resonator type acoustic wave filter 25 and the second longitudinally coupled resonator type acoustic wave filter 29. Furthermore, it is desirable that the first longitudinally coupled resonator type elastic wave filter 25 and the second longitudinally coupled resonator type elastic wave filter 29 function as a functional film for at least one of them.
- the first, second, third, fourth, and fifth IDT electrodes 32 and 33 are formed by the dielectric film 50 interposed between the first wiring 48 and the second wiring 49.
- the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, and tenth IDT electrodes 32, 33, 34, 35, 36, 37 By forming a functional film made of, for example, silicon oxide on 38, 39, 40, and 41, a protective film for the IDT electrode can be obtained. At the same time, unnecessary spurious generated in the vicinity of the resonance frequency can be reduced, and the frequency temperature characteristic can be improved.
- the functional film and the dielectric film 50 are shared by forming the functional film so as to be enlarged between the first wiring 48 and the second wiring 49 existing at positions different from the IDT electrode. Can be realized with high productivity.
- the functional film and the dielectric film 50 are shared by using a resin-based material such as polyimide with good workability. can do.
- FIG. 10 is a schematic top view showing a parallel-type elastic wave filter according to Embodiment 4 of the present invention.
- the parallel type acoustic wave filter according to the present embodiment is different from the parallel type acoustic wave filter according to the second embodiment in that a first input / output terminal 30 and a second input / output terminal 31 are provided.
- An inductance component 52 is interposed therebetween.
- the inductance component 52 is interposed.
- the inductance component 52 By interposing the inductance component 52 between the first input / output terminal 30 and the second input / output terminal 31, impedance matching can be achieved by the inductance component 52. Therefore, the capacitance value required for impedance matching can be reduced. As a result, the cross area of the first wiring 48 and the second wiring 49 shown in FIGS. 8 and 9 can be reduced, and the filter can be downsized.
- FIG. 11 is an electric circuit diagram showing the duplexer in the present embodiment.
- the duplexer 56 in the present embodiment is electrically connected to the transmission elastic wave filter 53, the reception elastic wave filter 54, the transmission elastic wave filter 53, and the reception elastic wave filter 54.
- the reception acoustic wave filter 54 in the present embodiment is configured using the parallel acoustic wave filter described in the second embodiment.
- FIG. 12 shows the pass characteristic of the antenna duplexer for WCDMA (Wideband Code Multiple Access) using this duplexer 56.
- FIG. 12 shows a transmission pass characteristic 801 for the transmission pass band PB1 and a reception pass characteristic 802 for the reception pass band PB2. From FIG. 12, it can be seen that a good insertion loss of about ⁇ 2.1 dB is realized in the reception passband PB2 (2.11 GHz to 2.17 GHz).
- the duplexer 56 having a low insertion loss is obtained. Is possible.
- FIG. 13 is a block diagram showing an electronic apparatus according to the sixth embodiment of the present invention.
- a configuration of a mobile phone 90 is shown as an electronic device. That is, in FIG. 13, a 2.0 GHz reception signal received by the antenna 91 is divided to the reception side by the duplexer 92 and sent to the first-stage elastic wave filter 94 via the low noise amplifier 93. The signal from which noise has been removed by the acoustic wave filter 94 is reduced in frequency to 130 MHz by the mixer 95 and sent to the second stage acoustic wave filter 96. A low-loss signal is extracted by the acoustic wave filter 96, and an audio signal can be heard from the speaker 98 through the demodulation circuit 97.
- the sound emitted from the microphone 99 is converted into a digital signal by the AD converter 100, phase-modulated by the modulator 101, and input to the mixer 102.
- a signal whose frequency is increased by the mixer 102 is input to the elastic wave filter 103.
- the signal from which noise has been cut by the elastic wave filter 103 is transmitted as a 2.0 GHz transmission signal from the antenna 91 via the power amplifier 104 and the duplexer 92.
- the low-loss mobile phone 90 can be obtained. It can. That is, it is possible to improve the listening quality of the mobile phone 90.
- the present invention has the effect of suppressing the occurrence of spurious in the high band part and reducing the deterioration of insertion loss, and is useful in various electronic devices such as mobile phones.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
13A,32 第1のIDT電極
13B,33 第2のIDT電極
13C,34 第3のIDT電極
13D,35 第4のIDT電極
13E,36 第5のIDT電極
14A,23 第1の平衡信号端子
14B,24 第2の平衡信号端子
21 圧電基板
22 第1の不平衡信号端子
25 第1の縦結合共振子型弾性波フィルタ
26 第2の不平衡信号端子
27 第3の平衡信号端子
28 第4の平衡信号端子
29 第2の縦結合共振子型弾性波フィルタ
30 第1の入出力端子
31 第2の入出力端子
37 第6のIDT電極
38 第7のIDT電極
39 第8のIDT電極
40 第9のIDT電極
41 第10のIDT電極
42,43,44,45 反射器
46 第1の接続点
47 第2の接続点
48 第1の配線
49 第2の配線
50 誘電体膜
51 キャパシタンス成分
52 インダクタンス成分
53 送信用弾性波フィルタ
54 受信用弾性波フィルタ
55 移相回路
56 デュプレクサ
90 携帯電話
91 アンテナ
92 分波器
93 ローノイズアンプ
94,96,103 弾性波フィルタ
95,102 ミキサ
97 復調回路
98 スピーカ
99 マイク
100 ADコンバータ
101 変調器
104 パワーアンプ
図1は、本発明の実施の形態1における弾性波フィルタの概略上面図である。図1において、本実施の形態における弾性波フィルタは、不平衡信号端子12と、不平衡信号端子12にその配線電極が電気的に接続された第1、第2、第3のIDT(Interdigital Transducer)電極13A、13B、13Cとを備えている。また、本実施の形態における弾性波フィルタは、第1、第2のIDT電極13A、13B間に設けられた第4のIDT電極13Dを備えている。また、本実施の形態における弾性波フィルタは、第2、第3のIDT電極13B、13C間に設けられた第5のIDT電極13Eを備えている。また、本実施の形態における弾性波フィルタは、第4のIDT電極13Dの配線電極に電気的に接続された第1の平衡信号端子14Aと、第5のIDT電極13Eの配線電極に電気的に接続された第2の平衡信号端子14Bとを備えている。また、本実施の形態における弾性波フィルタは、第1、第2、第3、第4、第5のIDT電極13A、13B、13C、13D、13Eの接地電極はグランドに電気的に接続されている。また、本実施の形態における弾性波フィルタは、不平衡信号端子12から入力される信号と逆位相の信号が第1の平衡信号端子14Aから出力される。また、本実施の形態における弾性波フィルタは、不平衡信号端子12から入力される信号と同位相の信号が第2の平衡信号端子14Bから出力される。また、本実施の形態における弾性波フィルタは、第2、第3のIDT電極13B、13Cの配線電極と第5のIDT電極13Eの接地電極とが隣り合っている。また、本実施の形態における弾性波フィルタは、第1、第2のIDT電極13A,13Bの内の一方の配線電極と第4のIDT電極13Dの配線電極とが隣り合っている。また、本実施の形態における弾性波フィルタは、第1、第2のIDT電極13A、13Bの内の他方の接地電極と第4のIDT電極13Dの接地電極とが隣り合っている。
本実施の形態2における弾性波フィルタは、実施の形態1で説明した弾性波フィルタを並列接続することにより、さらに通過特性を改善することができる。
図7は、本発明の実施の形態3における並列型の弾性波フィルタを示す概略上面図である。本実施の形態の並列型の弾性波フィルタは、実施の形態2の並列型の弾性波フィルタに対して、図7に示すように、第1の入出力端子30と第2の入出力端子31との間にキャパシタンス成分51を介在させている。
図10は、本発明の実施の形態4における並列型の弾性波フィルタを示す概略上面図である。本実施の形態の並列型の弾性波フィルタは、実施の形態2の並列型の弾性波フィルタに対して、図10に示すように、第1の入出力端子30と第2の入出力端子31との間にインダクタンス成分52を介在させている。
以下、本発明の実施の形態5におけるデュプレクサについて図面を参照しながら説明する。図11は、本実施の形態におけるデュプレクサを示す電気回路図である。
図13は本発明の実施の形態6における電子機器を示す構成図である。本実施の形態では、電子機器として携帯電話90の構成を示している。すなわち、図13において、アンテナ91で受信した2.0GHzの受信信号は、デュプレクサ92で受信側に分けられ、ローノイズアンプ93を介して第1段の弾性波フィルタ94に送られる。弾性波フィルタ94でノイズを除去された信号は、ミキサ95で周波数を130MHzに低減され、第2段の弾性波フィルタ96に送られる。弾性波フィルタ96で低損失な信号が取り出され、復調回路97を介してスピーカ98から音声信号を聞くことができる。
Claims (20)
- 不平衡信号端子と、
前記不平衡信号端子に配線電極が電気的に接続された第1のIDT電極、第2のIDT電極、および第3のIDT電極と、
前記第1のIDT電極および前記第2のIDT電極の間に設けられた第4のIDT電極と、
前記第2のIDT電極および前記第3のIDT電極の間に設けられた第5のIDT電極と、
前記第4のIDT電極の配線電極に電気的に接続された第1の平衡信号端子と、
前記第5のIDT電極の配線電極に電気的に接続された第2の平衡信号端子とを備え、
前記第1のIDT電極、前記第2のIDT電極、前記第3のIDT電極、前記第4のIDT電極、および前記第5のIDT電極のそれぞれの接地電極はグランドに電気的に接続されており、
前記不平衡信号端子から入力される信号と逆位相の信号が前記第1の平衡信号端子から出力され、
前記不平衡信号端子から入力される信号と同位相の信号が前記第2の平衡信号端子から出力され、
前記第2のIDT電極および前記第3のIDT電極のそれぞれの配線電極と前記第5のIDT電極の接地電極とが隣り合い、
前記第1のIDT電極および前記第2のIDT電極の内の一方の配線電極と前記第4のIDT電極の配線電極とが隣り合い、
前記第1のIDT電極および前記第2のIDT電極の内の他方の接地電極と前記第4のIDT電極の接地電極とが隣り合っている弾性波フィルタ。 - 不平衡信号端子と、
前記不平衡信号端子に配線電極が電気的に接続された第1のIDT電極、第2のIDT電極、および第3のIDT電極と、
前記第1のIDT電極および前記第2のIDT電極の間に設けられた第4のIDT電極と、
前記第2のIDT電極および前記第3のIDT電極の間に設けられた第5のIDT電極と、
前記第4のIDT電極の配線電極に電気的に接続された第1の平衡信号端子と、
前記第5のIDT電極の配線電極に電気的に接続された第2の平衡信号端子とを備え、
前記第1のIDT電極、前記第2のIDT電極、前記第3のIDT電極、前記第4のIDT電極、および前記第5のIDT電極のそれぞれの接地電極はグランドに電気的に接続されており、
前記不平衡信号端子から入力される信号と逆位相の信号が前記第1の平衡信号端子から出力され、
前記不平衡信号端子から入力される信号と同位相の信号が前記第2の平衡信号端子から出力され、
前記第2のIDT電極および前記第3のIDT電極のそれぞれの接地電極と前記第5のIDT電極の配線電極とが隣り合い、
前記第1のIDT電極および前記第2のIDT電極の内の一方の配線電極と前記第4のIDT電極の配線電極とが隣り合い、
前記第1のIDT電極および前記第2のIDT電極の内の他方の接地電極と前記第4のIDT電極の接地電極とが隣り合っている弾性波フィルタ。 - 前記第2のIDT電極は奇数本の電極指を有し、
前記第1のIDT電極の接地電極と前記第4のIDT電極の接地電極とが隣り合うと共に、
前記第4のIDT電極の配線電極と前記第2のIDT電極の配線電極とが隣り合う請求項1に記載の弾性波フィルタ。 - 前記第2のIDT電極は奇数本の電極指を有し、
前記第1のIDT電極の接地電極と前記第4のIDT電極の接地電極とが隣り合うと共に、
前記第4のIDT電極の接地電極と前記第2のIDT電極の接地電極とが隣り合う請求項2に記載の弾性波フィルタ。 - 前記第1のIDT電極、前記第2のIDT電極、前記第3のIDT電極、前記第4のIDT電極、および前記第5のIDT電極のそれぞれに存在する電極指のピッチ間隔について、
前記第2のIDT電極における中心線に対して、一方側に存在する前記ピッチ間隔と他方側に存在する前記ピッチ間隔とが非対称である請求項1または2に記載の弾性波フィルタ。 - 前記第1のIDT電極、前記第2のIDT電極、前記第3のIDT電極、前記第4のIDT電極、前記第5のIDT電極のそれぞれに存在する電極指のピッチ間隔のピッチグラデーションについて、
前記第2のIDT電極における中心線に対して、一方側に存在する前記ピッチグラデーションと
他方側に存在する前記ピッチグラデーションとが非対称である請求項1または2に記載の弾性波フィルタ。 - 前記第1のIDT電極と前記第4のIDT電極との間隔、
および前記第4のIDT電極と前記第2のIDT電極との間隔の内少なくとも一方が、
前記第2のIDT電極と前記第5のIDT電極との間隔、
および前記第5のIDT電極と前記第3のIDT電極との間隔の内少なくとも一方と異なる請求項1または2に記載の弾性波フィルタ。 - 第1の不平衡信号端子と第1の平衡信号端子と第2の平衡信号端子とを有する第1の縦結合型弾性波フィルタと、
第2の不平衡信号端子と第3の平衡信号端子と第4の平衡信号端子とを有する第2の縦結合型弾性波フィルタとを備え、
前記第1の不平衡信号端子と前記第2の不平衡信号端子とが電気的に接続され、
前記第1の平衡信号端子と前記第3の平衡信号端子とが第1の入出力端子に電気的に接続され、
前記第2の平衡信号端子と前記第4の平衡信号端子とが第2の入出力端子に電気的に接続された弾性波フィルタ。 - 前記第1の平衡信号端子と前記第2の平衡信号端子は互いに逆相の信号を出力するとともに、前記第3の平衡信号端子と前記第4の平衡信号端子は互いに逆相の信号を出力する請求項8に記載の弾性波フィルタ。
- 前記第1平衡信号端子と前記第3の平衡信号端子は互いに同相の信号を出力するとともに、前記第2の平衡信号端子と前記第4の平衡信号端子は互いに同相の信号を出力する請求項8に記載の弾性波フィルタ。
- 前記第1の縦結合型弾性波フィルタおよび前記第2の縦結合型弾性波フィルタは、それぞれ同数のIDT電極を有し、前記第1の縦結合型弾性波フィルタが有する前記各IDT電極の最外端の電極指の極性は、前記第2の縦結合型弾性波フィルタが有する前記各IDT電極の最外端の電極指の極性と同じである請求項8に記載の弾性波フィルタ。
- 前記第1の縦結合型弾性波フィルタが有する前記各IDT電極の交差幅は、前記第2の縦結合型弾性波フィルタが有する前記各IDT電極の交差幅よりも大きい請求項11に記載の弾性波フィルタ。
- 前記第1の入出力端子と前記第2の入出力端子との間にキャパシタンス成分を介在させた請求項8に記載の弾性波フィルタ。
- 前記第1の平衡信号端子と前記第3の平衡信号端子とが第1の接続点で接続され、
前記第2の平衡信号端子と前記第4の平衡信号端子とが第2の接続点で接続され、
前記第1の接続点と前記第3の平衡信号端子とが第1の配線により接続され、
前記第2の接続点と前記第2の平衡信号端子とが第2の配線により接続され、
前記第1の配線と前記第2の配線とを交差させるとともに、前記第1の配線と前記第2の配線との間には誘電体膜を介在させた請求項9に記載の弾性波フィルタ。 - 前記誘電体膜は酸化ケイ素を用いて形成した請求項14に記載の弾性波フィルタ。
- 前記誘電体膜が、前記第1の縦結合共振子型弾性波フィルタおよび前記第2の縦結合共振子型弾性波フィルタの内少なくとも一方の上面を覆うとともに、前記第1の縦結合共振子型弾性波フィルタおよび前記第2の縦結合共振子型弾性波フィルタの内少なくとも一方に対する機能膜として作用する請求項14に記載の弾性波フィルタ。
- 前記誘電体膜は樹脂系材料を用いて形成した請求項14に記載の弾性波フィルタ。
- 前記第1の入出力端子と前記第2の入出力端子との間にインダクタンス成分を介在させた請求項8に記載の弾性波フィルタ。
- 請求項8に記載の弾性波フィルタを用いたデュプレクサ。
- 請求項8に記載の弾性波フィルタを用いた電子機器。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801090322A CN101971496B (zh) | 2008-03-14 | 2009-03-04 | 弹性波滤波器、使用其的双工器以及电子设备 |
US12/921,580 US8427259B2 (en) | 2008-03-14 | 2009-03-04 | Elastic wave filter, and duplexer and electronic device using same |
JP2010502712A JP5343965B2 (ja) | 2008-03-14 | 2009-03-04 | 弾性波フィルタ |
US13/845,547 US9203378B2 (en) | 2008-03-14 | 2013-03-18 | Elastic wave filter, and duplexer and electronic device using same |
US14/943,683 US9722576B2 (en) | 2008-03-14 | 2015-11-17 | Elastic wave filter and duplexer using same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-065388 | 2008-03-14 | ||
JP2008065388 | 2008-03-14 | ||
JP2008-113563 | 2008-04-24 | ||
JP2008113563 | 2008-04-24 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/921,580 A-371-Of-International US8427259B2 (en) | 2008-03-14 | 2009-03-04 | Elastic wave filter, and duplexer and electronic device using same |
US13/845,547 Division US9203378B2 (en) | 2008-03-14 | 2013-03-18 | Elastic wave filter, and duplexer and electronic device using same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009113274A1 true WO2009113274A1 (ja) | 2009-09-17 |
Family
ID=41064948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/000972 WO2009113274A1 (ja) | 2008-03-14 | 2009-03-04 | 弾性波フィルタおよびそれを用いたデュプレクサおよび電子機器 |
Country Status (5)
Country | Link |
---|---|
US (3) | US8427259B2 (ja) |
JP (2) | JP5343965B2 (ja) |
KR (1) | KR20100130602A (ja) |
CN (1) | CN101971496B (ja) |
WO (1) | WO2009113274A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009225085A (ja) * | 2008-03-17 | 2009-10-01 | Fujitsu Media Device Kk | 弾性波フィルタ |
WO2011077773A1 (ja) * | 2009-12-25 | 2011-06-30 | 株式会社村田製作所 | 分波器 |
WO2011089110A1 (de) * | 2010-01-21 | 2011-07-28 | Epcos Ag | Dms filter mit verbesserter signalunterdrückung im sperrband |
JP2011151580A (ja) * | 2010-01-21 | 2011-08-04 | Kyocera Corp | 弾性表面波装置 |
WO2012117864A1 (ja) * | 2011-02-28 | 2012-09-07 | 京セラ株式会社 | 弾性波フィルタ |
WO2012120879A1 (ja) * | 2011-03-09 | 2012-09-13 | パナソニック株式会社 | 弾性波装置 |
US20120235766A1 (en) * | 2010-12-22 | 2012-09-20 | Epcos Ag | Surface Acoustic Wave Filter and Duplexer Component |
JP5673897B2 (ja) * | 2012-08-02 | 2015-02-18 | 株式会社村田製作所 | 弾性波装置及び分波装置 |
US9484883B2 (en) | 2012-01-24 | 2016-11-01 | Taiyo Yuden Co., Ltd. | Acoustic wave device and fabrication method of the same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009113274A1 (ja) * | 2008-03-14 | 2009-09-17 | パナソニック株式会社 | 弾性波フィルタおよびそれを用いたデュプレクサおよび電子機器 |
JP5418091B2 (ja) * | 2009-09-11 | 2014-02-19 | パナソニック株式会社 | 弾性波フィルタ装置及びこれを用いたデュプレクサ及び電子機器 |
KR101467296B1 (ko) * | 2013-04-25 | 2014-12-01 | (주)와이솔 | 이중모드 방식 표면 탄성파 필터 |
JP6465065B2 (ja) | 2016-04-25 | 2019-02-06 | 株式会社村田製作所 | 弾性波装置 |
WO2018157114A1 (en) * | 2017-02-27 | 2018-08-30 | Resonant Inc. | Acoustic wave filter with enhanced rejection |
US11177791B2 (en) | 2019-02-01 | 2021-11-16 | Qorvo Us, Inc. | High quality factor transducers for surface acoustic wave devices |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005223809A (ja) * | 2004-02-09 | 2005-08-18 | Murata Mfg Co Ltd | 電子部品の製造方法 |
WO2007116760A1 (ja) * | 2006-04-06 | 2007-10-18 | Murata Manufacturing Co., Ltd. | デュプレクサ |
JP2008035092A (ja) * | 2006-07-27 | 2008-02-14 | Kyocera Corp | 弾性表面波素子及び弾性表面波装置並びに通信装置 |
JP2008035007A (ja) * | 2006-07-27 | 2008-02-14 | Fujitsu Media Device Kk | フィルタ |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6720842B2 (en) * | 2000-02-14 | 2004-04-13 | Murata Manufacturing Co., Ltd. | Surface acoustic wave filter device having first through third surface acoustic wave filter elements |
JP2001313540A (ja) | 2000-04-28 | 2001-11-09 | Toshiba Corp | 弾性表面波装置 |
JP3435640B2 (ja) * | 2000-05-22 | 2003-08-11 | 株式会社村田製作所 | 縦結合共振子型弾性表面波フィルタ |
JP3729081B2 (ja) * | 2000-06-27 | 2005-12-21 | 株式会社村田製作所 | 弾性表面波装置 |
JP3534080B2 (ja) * | 2001-03-23 | 2004-06-07 | 株式会社村田製作所 | 弾性表面波フィルタ装置 |
JP3509771B2 (ja) | 2001-04-18 | 2004-03-22 | 株式会社村田製作所 | 弾性表面波フィルタ装置、通信装置 |
JP3685102B2 (ja) * | 2001-07-27 | 2005-08-17 | 株式会社村田製作所 | 弾性表面波フィルタ、通信装置 |
TWI315607B (en) * | 2001-10-29 | 2009-10-01 | Panasonic Corp | Surface acoustic wave filter element, surface acoustic wave filter and communication device using the same |
JP2003283290A (ja) * | 2002-01-21 | 2003-10-03 | Murata Mfg Co Ltd | 弾性表面波装置およびそれを有する通信装置 |
JP3928534B2 (ja) * | 2002-02-28 | 2007-06-13 | 株式会社村田製作所 | 弾性表面波フィルタ |
JP3963862B2 (ja) * | 2003-05-20 | 2007-08-22 | 富士通メディアデバイス株式会社 | 弾性表面波フィルタ及びそれを有する分波器 |
JP2007053563A (ja) * | 2005-08-17 | 2007-03-01 | Nippon Dempa Kogyo Co Ltd | 弾性表面波フィルタモジュールおよびこのモジュールの製造方法 |
JP2007104052A (ja) * | 2005-09-30 | 2007-04-19 | Nippon Dempa Kogyo Co Ltd | 弾性表面波フィルタ |
JP4557008B2 (ja) * | 2005-10-03 | 2010-10-06 | 株式会社村田製作所 | 弾性波フィルタ装置及びデュプレクサ |
JP2007142491A (ja) * | 2005-11-14 | 2007-06-07 | Murata Mfg Co Ltd | 弾性表面波装置の製造方法及び弾性表面波装置 |
US7579928B2 (en) * | 2006-04-03 | 2009-08-25 | Kyocera Corporation | Surface acoustic wave device and communication device |
JP5121178B2 (ja) * | 2006-07-24 | 2013-01-16 | 京セラ株式会社 | 弾性表面波装置及び通信装置 |
US7501912B2 (en) * | 2006-08-17 | 2009-03-10 | Avago Technologies Wireless Ip (Singapore) Pte. Ltd. | General matching network for acoustic wave filters and acoustic resonators |
WO2009113274A1 (ja) * | 2008-03-14 | 2009-09-17 | パナソニック株式会社 | 弾性波フィルタおよびそれを用いたデュプレクサおよび電子機器 |
JP5418091B2 (ja) * | 2009-09-11 | 2014-02-19 | パナソニック株式会社 | 弾性波フィルタ装置及びこれを用いたデュプレクサ及び電子機器 |
-
2009
- 2009-03-04 WO PCT/JP2009/000972 patent/WO2009113274A1/ja active Application Filing
- 2009-03-04 CN CN2009801090322A patent/CN101971496B/zh active Active
- 2009-03-04 KR KR1020107020287A patent/KR20100130602A/ko not_active Application Discontinuation
- 2009-03-04 US US12/921,580 patent/US8427259B2/en active Active
- 2009-03-04 JP JP2010502712A patent/JP5343965B2/ja active Active
-
2013
- 2013-03-18 US US13/845,547 patent/US9203378B2/en active Active
- 2013-06-14 JP JP2013125351A patent/JP5690877B2/ja active Active
-
2015
- 2015-11-17 US US14/943,683 patent/US9722576B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005223809A (ja) * | 2004-02-09 | 2005-08-18 | Murata Mfg Co Ltd | 電子部品の製造方法 |
WO2007116760A1 (ja) * | 2006-04-06 | 2007-10-18 | Murata Manufacturing Co., Ltd. | デュプレクサ |
JP2008035092A (ja) * | 2006-07-27 | 2008-02-14 | Kyocera Corp | 弾性表面波素子及び弾性表面波装置並びに通信装置 |
JP2008035007A (ja) * | 2006-07-27 | 2008-02-14 | Fujitsu Media Device Kk | フィルタ |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009225085A (ja) * | 2008-03-17 | 2009-10-01 | Fujitsu Media Device Kk | 弾性波フィルタ |
US8416036B2 (en) | 2009-12-25 | 2013-04-09 | Murata Manufacturing Co., Ltd. | Branching filter |
WO2011077773A1 (ja) * | 2009-12-25 | 2011-06-30 | 株式会社村田製作所 | 分波器 |
JP5170262B2 (ja) * | 2009-12-25 | 2013-03-27 | 株式会社村田製作所 | 分波器 |
WO2011089110A1 (de) * | 2010-01-21 | 2011-07-28 | Epcos Ag | Dms filter mit verbesserter signalunterdrückung im sperrband |
JP2011151580A (ja) * | 2010-01-21 | 2011-08-04 | Kyocera Corp | 弾性表面波装置 |
US9178490B2 (en) | 2010-01-21 | 2015-11-03 | Epcos Ag | DMS filter having improved signal suppression in the stop band |
JP2013517725A (ja) * | 2010-01-21 | 2013-05-16 | エプコス アーゲー | 阻止域における信号抑圧機能を向上させたdmsフィルタ |
US9106206B2 (en) * | 2010-12-22 | 2015-08-11 | Epcos Ag | Surface acoustic wave filter and duplexer component |
US20120235766A1 (en) * | 2010-12-22 | 2012-09-20 | Epcos Ag | Surface Acoustic Wave Filter and Duplexer Component |
JPWO2012117864A1 (ja) * | 2011-02-28 | 2014-07-07 | 京セラ株式会社 | 弾性波フィルタ |
US9048816B2 (en) | 2011-02-28 | 2015-06-02 | Kyocera Corporation | Acoustic wave filter |
WO2012117864A1 (ja) * | 2011-02-28 | 2012-09-07 | 京セラ株式会社 | 弾性波フィルタ |
JP5855639B2 (ja) * | 2011-02-28 | 2016-02-09 | 京セラ株式会社 | 弾性波フィルタ |
CN103053112A (zh) * | 2011-03-09 | 2013-04-17 | 松下电器产业株式会社 | 弹性波装置 |
JP5476617B2 (ja) * | 2011-03-09 | 2014-04-23 | パナソニック株式会社 | 弾性波装置 |
WO2012120879A1 (ja) * | 2011-03-09 | 2012-09-13 | パナソニック株式会社 | 弾性波装置 |
US9172350B2 (en) | 2011-03-09 | 2015-10-27 | Skyworks Panasonic Filter Solutions Japan Co., Ltd. | Elastic wave apparatus |
US9484883B2 (en) | 2012-01-24 | 2016-11-01 | Taiyo Yuden Co., Ltd. | Acoustic wave device and fabrication method of the same |
JP5673897B2 (ja) * | 2012-08-02 | 2015-02-18 | 株式会社村田製作所 | 弾性波装置及び分波装置 |
US9118297B2 (en) | 2012-08-02 | 2015-08-25 | Murata Manufacturing Co., Ltd. | Elastic wave device and duplexing device |
Also Published As
Publication number | Publication date |
---|---|
US8427259B2 (en) | 2013-04-23 |
US9722576B2 (en) | 2017-08-01 |
CN101971496B (zh) | 2013-11-06 |
JP5343965B2 (ja) | 2013-11-13 |
CN101971496A (zh) | 2011-02-09 |
JP5690877B2 (ja) | 2015-03-25 |
KR20100130602A (ko) | 2010-12-13 |
US20160072471A1 (en) | 2016-03-10 |
US20110006855A1 (en) | 2011-01-13 |
US20130214872A1 (en) | 2013-08-22 |
JPWO2009113274A1 (ja) | 2011-07-21 |
JP2013176169A (ja) | 2013-09-05 |
US9203378B2 (en) | 2015-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5343965B2 (ja) | 弾性波フィルタ | |
JP6791403B2 (ja) | マルチプレクサ、高周波フロントエンド回路および通信装置 | |
JP5848675B2 (ja) | 分波器 | |
US7902940B2 (en) | Duplexer | |
JP6347779B2 (ja) | 分波器および通信モジュール | |
US7876176B2 (en) | Acoustic wave filter device and duplexer | |
WO2015080278A1 (ja) | 弾性波素子、分波器および通信装置 | |
US6710676B2 (en) | Surface acoustic wave filter device | |
WO2012169231A1 (ja) | 弾性波フィルタ装置 | |
US20080224790A1 (en) | Balance filter and duplexer | |
US8482363B2 (en) | Surface acoustic wave filter device, duplexer including the same, and electronic apparatus including the same | |
US8525621B2 (en) | Boundary acoustic wave filter | |
US7746199B2 (en) | Acoustic wave device | |
JP7136026B2 (ja) | マルチプレクサ | |
CN108886351B (zh) | 弹性波元件以及通信装置 | |
JP4412326B2 (ja) | バランス型sawフィルタ | |
JP5458738B2 (ja) | 弾性表面波装置 | |
EP1786100A1 (en) | Balance type elastic surface-wave filter | |
US20230198502A1 (en) | Acoustic wave filter and multiplexer | |
JPWO2006048999A1 (ja) | バランス型sawフィルタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980109032.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09721051 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010502712 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12921580 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20107020287 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09721051 Country of ref document: EP Kind code of ref document: A1 |