WO2009110093A1 - Cis系太陽電池の集積構造 - Google Patents
Cis系太陽電池の集積構造 Download PDFInfo
- Publication number
- WO2009110093A1 WO2009110093A1 PCT/JP2008/054157 JP2008054157W WO2009110093A1 WO 2009110093 A1 WO2009110093 A1 WO 2009110093A1 JP 2008054157 W JP2008054157 W JP 2008054157W WO 2009110093 A1 WO2009110093 A1 WO 2009110093A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- buffer layer
- cis
- thin film
- solar cell
- integrated structure
- Prior art date
Links
- 239000010409 thin film Substances 0.000 claims abstract description 50
- 239000011701 zinc Substances 0.000 claims abstract description 16
- 150000001875 compounds Chemical class 0.000 claims abstract description 12
- 229910052738 indium Inorganic materials 0.000 claims abstract description 11
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 5
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims abstract description 5
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000010408 film Substances 0.000 claims description 57
- 230000031700 light absorption Effects 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 33
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 16
- 238000005229 chemical vapour deposition Methods 0.000 claims description 14
- 239000012535 impurity Substances 0.000 claims description 12
- 229910052717 sulfur Inorganic materials 0.000 claims description 11
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 10
- 229910052733 gallium Inorganic materials 0.000 claims description 10
- 239000011593 sulfur Substances 0.000 claims description 10
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 9
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 8
- 229910052796 boron Inorganic materials 0.000 claims description 8
- 239000011787 zinc oxide Substances 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 abstract description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 abstract description 6
- 125000005842 heteroatom Chemical group 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 253
- 238000006243 chemical reaction Methods 0.000 description 18
- 239000010949 copper Substances 0.000 description 17
- 239000000758 substrate Substances 0.000 description 16
- 240000002329 Inga feuillei Species 0.000 description 11
- 230000001629 suppression Effects 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000011669 selenium Substances 0.000 description 9
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 8
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 239000002344 surface layer Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- 150000003346 selenoethers Chemical class 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000005987 sulfurization reaction Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- -1 that is Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910000807 Ga alloy Inorganic materials 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- NSEQHAPSDIEVCD-UHFFFAOYSA-N N.[Zn+2] Chemical compound N.[Zn+2] NSEQHAPSDIEVCD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical group [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 1
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
- H01L31/03923—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022466—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
- H01L31/022483—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
- H01L31/0749—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1884—Manufacture of transparent electrodes, e.g. TCO, ITO
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
Definitions
- the present invention relates to an integrated structure of CIS-based thin film solar cells.
- CIS-based thin-film solar cells have been put into practical use in a wide range.
- growing a cadmium sulfide (CdS) layer as a high-resistance buffer layer on the light absorption layer made of a CuInSe 2- based thin film provides a thin film solar cell with high exchange efficiency. It is supposed to be possible.
- a solution growth method in which a CdS thin film is chemically formed from a solution forms a high-quality heterojunction with the thin film light absorption layer by immersing the CuInSe 2 thin film light absorption layer in the solution. And has the effect of increasing the shunt resistance.
- Patent Document 2 discloses that a zinc mixed crystal compound containing oxygen, sulfur, and a hydroxyl group chemically grown from a solution on a p-type light absorption layer, that is, Zn (O, S, OH) x is a high resistance buffer.
- a manufacturing method is disclosed that can be used as a layer to obtain a thin film solar cell with high conversion efficiency equivalent to that obtained when a CdS layer is used as a buffer layer.
- Patent Document 3 discloses a technique for continuously forming a film on a glass substrate in the order of a buffer layer and a window layer by metal organic chemical vapor deposition (MOCVD method).
- MOCVD method metal organic chemical vapor deposition
- Patent Document 2 discloses a manufacturing method effective for eliminating a CdS buffer layer, which is understood to be essential in a method for manufacturing a thin film solar cell with high conversion efficiency.
- the CBD buffer layer suppresses leaks
- the invention described in Patent Document 3 suppresses leaks with a buffer layer formed by metal organic chemical vapor deposition (MOCVD method). There was room for improvement.
- MOCVD method metal organic chemical vapor deposition
- the surface of the light-absorbing layer formed with the sulfurization reaction at a high temperature for a long time has many leak components such as low-resistance Cu—Se compounds and Cu—S compounds. Therefore, in order to improve the solar cell performance, it has been demanded to enhance leakage suppression.
- the CBD buffer layer is increased, a problem of increased series resistance occurs, and As a result, there is a problem that the leak suppression becomes insufficient.
- the amount of waste to be generated increases, leading to an increase in manufacturing cost.
- the present invention has been made to solve the above-mentioned problems and problems, and can suppress leakage without increasing the series resistance, improve the pn heterojunction interface characteristics, and obtain a highly efficient solar cell. For the purpose.
- an integrated structure of a CIS thin film solar cell is a CIS thin film solar in which a p-type CIS light absorption layer, a buffer layer, and an n-type transparent conductive film are laminated in this order.
- the buffer layer has a laminated structure of three or more layers, and the first buffer layer in contact with the p-type CIS light absorption layer is made of cadmium (Cd), zinc (Zn), or indium (In ),
- the second buffer layer in contact with the first buffer layer is made of a zinc oxide thin film, and the p-type CIS light absorption layer, the first buffer layer, and the second buffer layer
- a third buffer layer is formed to cover the end surface exposed by forming the wiring pattern and the end surface between the second buffer layer and the n-type transparent conductive film, and the third buffer layer Oxide Characterized by comprising the system thin film.
- the resistivity of the third buffer layer may be smaller than the resistivity of the second buffer layer.
- the film thickness of the third buffer layer may be in the range of 10 to 300 nm.
- the third buffer layer may be formed by a metal organic chemical vapor deposition method (MOCVD method).
- MOCVD method metal organic chemical vapor deposition method
- the doping impurity element concentration contained in the third buffer layer may be 1 ⁇ 10 19 atoms / cm 3 or less.
- the doping impurity element may be aluminum (Al), gallium (Ga), or boron (B).
- the resistivity of the third buffer layer may be in the range of 0.1 to 100 ⁇ cm.
- the film thickness of the first buffer layer may be 20 nm or less, and the film thickness of the second buffer layer may be 100 nm or more.
- the ratio of the thickness of the first buffer layer to the thickness of the second buffer layer may be 5 or more.
- the first buffer layer may be formed by a CBD method (solution growth method).
- the second buffer layer may be formed by a metal organic chemical vapor deposition method (MOCVD method).
- MOCVD method metal organic chemical vapor deposition method
- the doping impurity element concentration contained in the second buffer layer may be 1 ⁇ 10 19 atoms / cm 3 or less.
- the doping impurity element may be aluminum (Al), gallium (Ga), or boron (B).
- the first buffer layer includes Cd x S y , Zn x S y , Zn x O y , Zn x (OH) y , In x S y , In x (OH) y , and In x O y (where, A compound containing any of x and y are natural numbers) may be used.
- the sulfur concentration on the surface of the CIS light absorption layer may be 0.5 atom% or more.
- the resistivity of the second buffer layer may be 0.1 ⁇ cm or more.
- an increase in series resistance due to the presence of the high-resistance second buffer layer in the wiring pattern portion can be avoided.
- leakage suppression can be enhanced by increasing the resistivity of the second buffer layer. For this reason, the film thickness of the first buffer layer can be reduced, and the series resistance at the pn junction can be reduced.
- the resistivity of the third buffer layer is smaller than the resistivity of the second buffer layer, there is no problem as a series resistance even if a film is formed on the wiring pattern portion, and it is exposed by the wiring pattern formation.
- the end surfaces of the light absorption layer, the first buffer layer, and the second buffer layer By covering the end surfaces of the light absorption layer, the first buffer layer, and the second buffer layer, leakage at the end surfaces can be suppressed. Moreover, the passivation effect in an end surface can be acquired.
- the third buffer layer By forming the third buffer layer by a metal organic chemical vapor deposition method (MOCVD method), it is possible to form a film with good coverage even in a portion that is difficult to form, such as an end face of a wiring pattern.
- MOCVD method metal organic chemical vapor deposition method
- a CIS thin film solar cell 1 includes a glass substrate 11, a metal back electrode layer 12, and a p-type CIS light absorption layer (hereinafter simply referred to as “light absorption layer”) 13. , A high-resistance buffer layer 14, an n-type transparent conductive film (hereinafter simply referred to as “window layer”) 15, and a substrate structure pn-type heterojunction device.
- the glass substrate 11 is a substrate on which the above layers are laminated, and a glass substrate such as blue plate glass, a metal substrate such as a stainless plate, and a resin substrate such as a polyimide film are used.
- the metal back electrode layer 12 is a high-corrosion-resistant and high-melting-point metal such as molybdenum (Mo) or titanium (Ti) having a thickness of 0.2 to 2 ⁇ m formed on the glass substrate 11.
- Mo molybdenum
- Ti titanium
- a film is formed as a target by a DC sputtering method or the like.
- the light absorption layer 13 is a thin film having a thickness of 1 to 3 ⁇ m having a p-type conductivity I-III-VI 2 group chalcopyrite structure.
- CuInSe 2 Cu (InGa) Se 2
- Cu (InGa) It is a multi-component compound semiconductor thin film such as (SSe) 2 .
- Other examples of the light absorption layer 13 include a selenide CIS light absorption layer, a sulfide CIS light absorption layer, and a selenide / sulfide CIS light absorption layer, and the selenide CIS light absorption layer.
- Is made of CuInSe 2 , Cu (InGa) Se 2 or CuGaSe 2 , and the sulfide-based CIS light absorption layer is made of CuInS 2 , Cu (InGa) S 2 , CuGaS 2, and is made of the selenide / sulfide-based material.
- the CIS-based light absorption layer is CuIn (SSe) 2 , Cu (InGa) (SSe) 2 , CuGa (SSe) 2 , or CuInSe 2 having CuIn (SSe) 2 as a surface layer.
- CuIn (SSe) Cu (InGa ) Se 2 having 2 as the surface layer CuIn (SSe) Cu with 2 as a surface layer (InGa) (SSe) 2, CuIn (SS ) CuGaSe 2 with 2 as a surface layer, Cu (InGa) (SSe) Cu (InGa) Se 2 having 2 as the surface layer, Cu (InGa) (SSe) CuGaSe with 2 as a surface layer 2, CuGa (SSe) There are Cu (InGa) Se 2 having 2 as a surface layer and CuGaSe 2 having CuGa (SSe) 2 as a surface layer.
- the light absorption layer 13 typically has two types of manufacturing methods, one is a selenization / sulfurization method, and the other is a multi-source co-evaporation method.
- a laminated structure or mixed crystal metal precursor film (Cu / In, Cu / Ga, Cu— containing copper (Cu), indium (In), gallium (Ga) is formed on the back electrode layer 12.
- the light absorption layer 13 can be formed by heat-treating in a selenium and / or sulfur-containing atmosphere after forming a Ga alloy / In, Cu—Ga—In alloy, etc.) by sputtering or vapor deposition. it can.
- a raw material containing copper (Cu), indium (In), gallium (Ga), and selenium (Se) on the glass substrate 11 on which the back electrode layer 12 heated to about 500 ° C. or more is formed.
- the light absorption layer 13 can be formed by simultaneously vapor-depositing the above in an appropriate combination.
- the optical forbidden band width on the light incident side can be increased by setting the sulfur concentration on the surface of the light absorbing layer 13 (approximately up to 100 nm from the surface) to 0.5 atom% or more, more preferably 3 atoms% or more. Therefore, light can be absorbed more effectively. In addition, there is an effect of improving the bonding interface characteristics with the CBD buffer layer described later.
- the window layer 15 is a transparent conductive film having a wide forbidden band width having n-type conductivity, a transparent and low resistance, and a film thickness of 0.05 to 2.5 ⁇ m.
- the window layer 15 is a zinc oxide thin film or an ITO thin film. It is.
- this window layer 15 is a group III element of the periodic table, for example, any one of aluminum (Al), gallium (Ga), and boron (B), or a combination thereof to serve as a dopant. .
- the high-resistance buffer layer 14 includes a CBD buffer layer 141 that is a first buffer layer, an MOCVD buffer layer 142 that is a second buffer layer, and an MOCVD buffer layer 143 that is a third buffer layer. Although it is comprised from the layer, it can also be set as the laminated structure of four or more layers.
- the CBD buffer layer 141 is in contact with the upper end portion of the light absorption layer 13 and is made of a compound containing cadmium (Cd), zinc (Zn), or indium (In).
- the film thickness of the CBD buffer layer 141 is 20 nm or less, more preferably 10 nm or less.
- the CBD buffer layer 141 is formed by a solution growth method (CBD method).
- the solution growth method (CBD method) is to deposit a thin film on a substrate by immersing the substrate in a solution containing a chemical species as a precursor and causing a heterogeneous reaction between the solution and the substrate surface. Is the method.
- zinc acetate is dissolved in ammonium hydroxide at a liquid temperature of 80 ° C. to form a zinc ammonium complex salt, and thiolia, which is a sulfur-containing salt, is dissolved in the solution.
- This solution is brought into contact with the light absorption layer 13 for 10 minutes, and a sulfur-containing zinc mixed crystal compound semiconductor thin film is chemically grown on the light absorption layer 13 from the solution. Further, the grown sulfur-containing zinc mixed crystal compound semiconductor thin film is set at a set temperature of 200 in the atmosphere. Drying by annealing at 15 ° C.
- the CBD buffer layer 141 Cd x S y by adjusting the solution, Zn x S y, Zn x O y, Zn x (OH) y, In x S y, In x (OH) y, In x O y (where x and y are natural numbers) may be included.
- the MOCVD buffer layer 142 which is the second buffer layer, is made of a zinc oxide-based thin film and is formed so as to cover the upper end surface of the CBD buffer layer 141.
- the doping impurity element contained in the MOCVD buffer layer 142 is any one of aluminum (Al), gallium (Ga), boron (B), and the like, and the doping impurity element concentration is 1 ⁇ 10 19 atoms / cm 3 or less, More preferably, a high-resistance film suitable as a buffer layer can be obtained by adjusting so as to be 1 ⁇ 10 18 atoms / cm 3 or less.
- the resistivity of the MOCVD buffer layer 142 is 0.1 ⁇ cm or more, more preferably 1 ⁇ cm or more.
- the MOCVD buffer layer 142 is formed by metal organic chemical vapor deposition (MOCVD).
- MOCVD buffer layer 142 is made of, for example, zinc (Zn) organometallic compound (for example, diethyl zinc, dimethyl zinc) and pure water as raw materials, filled in a bubbler or the like, and then helium (He), argon (Ar).
- a film is formed in a MOCVD apparatus by bubbling with an inert gas such as the like.
- the MOCVD buffer layer 142 may be formed not only by a metal organic chemical vapor deposition method (MOCVD method) but also by a sputtering method or the like, but in order to obtain a good pn junction interface with the light absorption layer, A metal organic chemical vapor deposition method (MOCVD method) that does not cause damage during film formation is more suitable than a sputtering method in which energetic particles are used as a film formation seed.
- MOCVD method metal organic chemical vapor deposition method
- the film thickness of the MOCVD buffer layer 142 is 100 nm or more. Therefore, the ratio of the film thickness of the CBD buffer layer 141 to the film thickness of the MOCVD buffer layer 142 ((MOCVD buffer layer 142) / (CBD buffer layer 141)) ⁇ 5.
- the film thickness of the CBD buffer layer generally has to be 50 nm or more.
- the MOCVD buffer layer 142 is mainly responsible for leakage suppression.
- the thickness of the MOCVD buffer layer 142 is increased, the thickness of the CBD buffer layer 141 can be reduced to 20 nm or less. For this reason, since the film formation time of the CBD buffer layer 141 can be significantly shortened, a high tact is realized, and not only the manufacturing cost is reduced, but also the generation of waste during the film formation of the CBD buffer layer 141 is significantly larger than in the past. Since it can be reduced, it is further effective in reducing the manufacturing cost.
- the MOCVD buffer layer 142 since the MOCVD buffer layer 142 is mainly responsible for leakage suppression, it normally has a complementary role for leakage suppression. Therefore, the thickness of the thin MOCVD buffer layer 142 of about 50 nm or less is set to a thickness of 100 nm or more. In addition, the doping impurity concentration and resistivity are adjusted.
- the MOCVD buffer layer 143 which is the third buffer layer, is composed of a zinc oxide-based thin film.
- the MOCVD buffer layer 143 forms a wiring pattern P2 on the light absorption layer 13, the CBD buffer layer 141, and the MOCVD buffer layer 142. By doing so, the exposed end surface and the upper end surface of the MOCVD buffer layer 142 are formed to be covered.
- the doping impurity element contained in the MOCVD buffer layer 143 is any one of aluminum (Al), gallium (Ga), B (boron), and the concentration is more preferably 1 ⁇ 10 19 atoms / cm 3 or less. Is 1 ⁇ 10 18 atoms / cm 3 or less.
- the film thickness of the MOCVD buffer layer 143 is in the range of 10 to 300 nm, more preferably in the range of 50 to 200 nm.
- the resistivity of the MOCVD buffer layer 143 that is the third buffer layer is configured to be smaller than the resistivity of the MOCVD buffer layer 142 that is the second buffer layer.
- the resistivity of the MOCVD buffer layer 142 which is the second buffer layer is 0.1 ⁇ cm or more, preferably 1 ⁇ cm or more, more preferably 10 ⁇ cm or more, and the MOCVD buffer layer which is the third buffer layer.
- the resistivity of 143 is 0.1 to 100 ⁇ cm, preferably 0.1 to 10 ⁇ cm.
- the MOCVD buffer layer 143 that is the third buffer layer has a lower resistivity than the MOCVD buffer layer 142 that is the second buffer layer.
- the MOCVD buffer layer 142 When viewed as a laminated structure of a CIS-based thin film solar cell, the MOCVD buffer layer 142 is mainly responsible for leakage suppression at the pn junction, and the CBD buffer layer 141 is also responsible for part of leakage suppression.
- the MOCVD buffer layer 143 plays a complementary role in suppressing leakage, but is not necessary as a laminated structure.
- the n-type window layer 15 is formed at the end of the light absorption layer 13. Will be in direct contact with each other, causing a leak.
- a high resistance buffer layer capable of suppressing leakage at the pn junction is formed in the pattern 2 part, a resistance loss occurs with respect to the current to be collected through the pattern 2 part and the output of the solar cell Will fall.
- a structure in which only the MOCVD buffer layer 143 is formed in the pattern 2 portion is provided as a structure that satisfies the requirements from the stacked structure and the integrated structure at the same time. That is, the CBD buffer layer 141 and the MOCVD buffer layer 142 sufficient to suppress leakage are formed as a stacked structure, and then the pattern 2 is formed.
- the exposed end surface of the light absorption layer 13 is covered with the MOCVD buffer layer 143.
- the resistivity of the MOCVD buffer layer 13 is adjusted in order to suppress leakage at the edge of the light absorption layer and minimize resistance loss at the pattern 2 portion.
- the high resistance buffer layer 14 has three layers.
- the high resistance buffer layer 14 may be laminated in three or more layers. Also in this case, the same effect can be obtained by configuring the buffer layer stacked at the uppermost end in the same manner as the MOCVD buffer layer 143 described above.
- FIGS. 2 to 7 show an integrated structure having a substrate size of 30 cm ⁇ 30 cm.
- FIG. 2 shows a graph of the film thickness (nm) of the MOCVD buffer layer 142 and the conversion efficiency characteristics of the solar cell
- FIG. 3 shows the film thickness (nm) of the MOCVD buffer layer 142 and the fill factor (FF) of the solar cell.
- the relationship is shown. 4 shows the relationship between the film thickness ratio of the MOCVD buffer layer 142 / CBD buffer layer 141 and the conversion efficiency (%)
- FIG. 5 shows the film thickness ratio of the MOCVD buffer layer 142 / CBD buffer layer 141 and the fill factor (FF).
- FIG. 6 shows a graph of the film thickness of the MOCVD buffer layer 143 and the conversion efficiency characteristics of the solar cell.
- FIG. 7 shows the relationship between the film thickness (nm) of the MOCVD buffer layer 143 and the solar cell fill factor (FF). Respectively.
- the horizontal axis represents the film thickness of the MOCVD buffer layer 142
- the vertical axis represents the conversion efficiency (%)
- the horizontal axis represents the film thickness of the MOCVD buffer layer 142
- the vertical axis represents the fill factor (FF).
- the horizontal axis represents the film thickness ratio of the MOCVD buffer layer 142 / C boron (B) D buffer layer 141
- the vertical axis represents the conversion efficiency (%)
- the film thickness ratio of the / CBD buffer layer 141, and the vertical axis represents the conversion efficiency (%).
- the conversion efficiency corresponding to the film thickness of the CBD buffer layer 141 and the change of the fill factor (FF) are shown. 2 to 5, the thickness of the MOCVD buffer layer 143 is 70 nm and the resistivity is 0.5 ⁇ cm.
- the horizontal axis represents the film thickness of the MOCVD buffer layer 143
- the vertical axis represents the conversion efficiency (%)
- the horizontal axis represents the film thickness of the MOCVD buffer layer 143
- the vertical axis represents the fill factor (FF). ).
- the conversion efficiency corresponding to the resistivity of the MOCVD buffer layer 143 and the change of the fill factor (FF) are shown.
- the CBD buffer layer 5 nm, 10 nm As shown in FIGS. 2 and 3, by setting the thickness of the MOCVD buffer layer 142 to 60 nm or more, more preferably, by setting the thickness of the MOCVD buffer layer 142 to 100 nm or more, the CBD buffer layer 5 nm, 10 nm. In any case of 15 nm, 15 nm, conversion efficiency of 13.5% or more could be achieved.
- the film thickness ratio is set to 5 or more, preferably 10 or more, more preferably 20 or more, so that the CBD buffer layer 5 nm. In any of 10 nm, 15 nm, and 20 nm, conversion efficiency of 13.5% or more could be achieved.
- FF was 0.65 or more, and a high value could be achieved as a CIS thin film solar cell having a large area and an integrated structure. This can be achieved by both reducing the series resistance and suppressing the leakage by the buffer layer structure of the present invention.
- the results when the film thickness of the MOCVD buffer layer 143 is 70 nm and the resistivity is 0.5 ⁇ cm are shown, but the film thickness of the MOCVD buffer layer 143 is 10 to 300 nm and the resistivity is 0.1 to In the case of 100 ⁇ cm, the same result is obtained.
- the MOCVD buffer layer 143 has a thickness of 10 to 300 nm, more preferably, the MOCVD buffer layer 143 has a thickness of 50 to 200 nm.
- the conversion efficiency of 13.5% or more could be achieved in any case of the resistivity of the buffer layer 143 being 0.15 ⁇ cm, 0.5 ⁇ cm, 10 ⁇ cm, and 80 ⁇ cm.
- the resistivity of the MOCVD buffer layer 143 is less than 0.1 ⁇ cm, since the effect of suppressing leakage at the end face of the light absorption layer 13 is not sufficient, a slight FF reduction is observed, and the resistivity of the MOCVD buffer layer 143 is 100 ⁇ cm. When larger, a decrease in FF was observed due to an increase in series resistance.
- the electrode pattern P1 of the metal back electrode layer 12 is formed on the glass substrate 11, and the light absorption layer 13, the CBD buffer layer 141, and the MOCVD buffer layer 142 are formed thereon.
- the MOCVD buffer layer 142 is formed, the pattern 2 is formed by cutting the light absorption layer 13, the CBD buffer layer 141, and the MOCVD buffer layer 142 with a mechanical scribe device or a laser scribe device, and further organically formed thereon.
- the MOCVD buffer layer 143 is formed as a third buffer layer by metal chemical vapor deposition (MOCVD).
- the MOCVD buffer layer 142 and the MOCVD buffer layer 143 may be formed not only by a metal organic chemical vapor deposition method (MOCVD method) but also by a sputtering method or the like, but a light-absorbing layer and a good pn junction interface are formed.
- MOCVD method metal organic chemical vapor deposition method
- the metal organic chemical vapor deposition method (MOCVD method) which does not cause damage during film formation is more suitable than the sputtering method in which high-energy particles are used as the film formation seed.
- the MOCVD buffer layer 143 which is the third buffer layer, has a resistivity smaller than that of the MOCVD buffer layer 142, which is the second buffer layer, even if the wiring pattern P2 is formed, the series resistance As described above, it is possible to suppress leakage at the end face by covering the side end faces of the light absorption layer 13, the CBD buffer layer 141, and the MOCVD buffer layer 142 exposed by forming the wiring pattern P2. . Moreover, the passivation effect in an end surface can be acquired.
- the MOCVD buffer layer 143 is a portion that is difficult to form as an end face of the wiring pattern. However, the MOCVD buffer layer 143 can be formed with good coverage by forming the film by metal organic chemical vapor deposition (MOCVD). .
Landscapes
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
特許文献1には、溶液から化学的にCdS薄膜を製膜する溶液成長法は、CuInSe2薄膜光吸収層を溶液中へ浸漬することにより、薄膜光吸収層と高品質なヘテロ接合を形成し、且つシャント抵抗を高める効果を有するとしている。
一方で、このリーク抑制のために、リーク抑制の主体であるCBDバッファ層を厚くしてリーク抑制を行うことも考えられるが、CBDバッファ層を厚くすると直列抵抗増加という不具合が発生し、かつ、結果的にリーク抑制は不十分になってしまうという問題があった。また、生成する廃棄物の量も増大するため製造コストの増大にも繋がってしまうという問題があった。
また、このドーピング不純物元素がアルミニウム(Al)、ガリウム(Ga)、ホウ素(B)であってもよい。
このドーピング不純物元素が、アルミニウム(Al)、ガリウム(Ga)、ホウ素(B)であってもよい。
また、第2のバッファ層の抵抗率を上げることで、リーク抑制の強化を図ることができる。このため、第1のバッファ層の膜厚を低減することができ、pn接合部における直列抵抗を低減させることができる。
図1に示すように、本実施形態に係るCIS系薄膜太陽電池1は、ガラス基板11、金属裏面電極層12、p型CIS系光吸収層(以下、単に「光吸収層」という。)13、高抵抗バッファ層14、n型透明導電膜、(以下、単に「窓層」という。)15の順に積層されたサブストレート構造のpn型へテロ接合デバイスを構成している。
光吸収層13は代表的には2種の製法があり、一つがセレン化/硫化法であり、一つが多元同時蒸着法である。
セレン化/硫化法では、裏面電極層12上に、銅(Cu)、インジウム(In)、ガリウム(Ga)を含む積層構造または混晶の金属プリカーサー膜(Cu/In、Cu/Ga、Cu-Ga合金/In、Cu-Ga-In合金等)を、スパッタ法や蒸着法等により製膜した後、セレン及び/又は硫黄含有雰囲気中で熱処理することによって光吸収層13を製膜することができる。
また多元同時蒸着法では、500℃程度以上に加熱した裏面電極層12が形成されたガラス基板11上に、銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)を含む原料を適当な組合せで同時に蒸着することによって光吸収層13を製膜することができる。
この光吸収層13の表面(概ね表面より100nmまで)における硫黄濃度が0.5atoms%以上、より好ましくは3atoms%以上とすることで光入射側での光学的禁制帯幅を増大させることができるため、より効果的に光を吸収させることができる。また、後述のCBDバッファ層との接合界面特性が向上する効果がある。
この窓層15は、酸化亜鉛系薄膜の場合、周期律表III族元素、例えば、アルミニウム(Al)、ガリウム(Ga)、ホウ素(B)のいずれか1つ、又はこれらを組み合わせてドーパントとする。
このCBDバッファ層141の膜厚は、20nm以下、より好ましくは10nm以下に形成されている。
CBDバッファ層141は、溶液成長法(CBD法)により製膜されている。溶液成長法(CBD法)とは前駆体となる化学種を含む溶液に基材を浸し、溶液と基材表面との間で不均一反応を進行させることによって薄膜を基材上に析出させるという方法である。
具体的には、例えば、光吸収層13上に、酢酸亜鉛を液温80℃の水酸化アンモニウムに溶解して亜鉛アンモニウム錯塩を形成させ、その溶液中に硫黄含有塩であるチオリアを溶解し、この溶液を光吸収層13に10分間接触させて、光吸収層13上に当該溶液から硫黄含有亜鉛混晶化合物半導体薄膜を化学的に成長させる。さらに成長した硫黄含有亜鉛混晶化合物半導体薄膜を大気中で設定温度200
℃で15分間アニールすることで乾燥し、かつ膜中の水酸化亜鉛の一部を酸化亜鉛に転化すると同時に硫黄により改質を促進することにより、硫黄含有亜鉛混晶化合物を高品質化させることができる。
なお、このCBDバッファ層141は、溶液を調整することによりCdxSy、ZnxSy、ZnxOy、Znx(OH)y、InxSy、Inx(OH)y、InxOy(ここで、x、yは自然数)が含まれてもよい。
MOCVDバッファ層142に含まれるドーピング不純物元素としては、アルミニウム(Al)、ガリウム(Ga)、ホウ素(B)などのいずれかであり、そのドーピング不純物元素濃度を1×1019atoms/cm3以下、より好ましくは1×1018atoms/cm3以下となるように調整することによりバッファ層として好適な高抵抗な膜とすることができる。
そして、このMOCVDバッファ層142の抵抗率は、0.1Ωcm以上、より好ましくは1Ωcm以上となっている。
このMOCVDバッファ層142は、例えば、亜鉛(Zn)の有機金属化物(例えば、ジエチル亜鉛、ジメチル亜鉛)と純水を原料として、これをバブラー等に充填し、ヘリウム(He)、アルゴン(Ar)等の不活性ガスで泡立てて、同伴させてMOCVD装置内にて成膜する。
具体的には、第2のバッファ層であるMOCVDバッファ層142の抵抗率は0.1Ωcm以上、好ましくは1Ωcm以上、より好ましくは10Ωcm以上となっており、第3のバッファ層であるMOCVDバッファ層143の抵抗率は0.1~100Ωcm、好ましくは0.1~10Ωcmとなっている。
これにより、第3のバッファ層であるMOCVDバッファ層143は、第2のバッファ層であるMOCVDバッファ層142よりも抵抗率が低くなっている。
図2~図7に示した結果はいずれも、30cm×30cm基板サイズの集積構造となっている。
図2にMOCVDバッファ層142の膜厚(nm)と、太陽電池の変換効率の特性のグラフを示し、図3にMOCVDバッファ層142の膜厚(nm)と、太陽電池の曲線因子(FF)の関係を示す。
図4にMOCVDバッファ層142/CBDバッファ層141の膜厚比と、変換効率(%)の関係を示し、図5にMOCVDバッファ層142/CBDバッファ層141の膜厚比と、曲線因子(FF)との関係を示す。
また、図6にMOCVDバッファ層143の膜厚と太陽電池の変換効率の特性のグラフを示し、図7にMOCVDバッファ層143の膜厚(nm)と、太陽電池の曲線因子(FF)の関係をそれぞれ示す。
図4のグラフでは、横軸にMOCVDバッファ層142/Cホウ素(B)Dバッファ層141の膜厚比、縦軸に変換効率(%)、図5のグラフでは、横軸にMOCVDバッファ層142/CBDバッファ層141の膜厚比、縦軸に変換効率(%)を示している。
そして、それぞれのグラフにおいて、CBDバッファ層141の膜厚に応じた変換効率、曲線因子(FF)の変化を表している。また、図2~図5においては、MOCVDバッファ層143の膜厚は70nm、抵抗率は0.5Ωcmである。
そして、それぞれのグラフにおいて、MOCVDバッファ層143の抵抗率に応じた変換効率、曲線因子(FF)の変化を表している。
まず、ガラス基板11上に金属裏面電極層12の電極パターンP1を形成し、その上に光吸収層13及びCBDバッファ層141、MOCVDバッファ層142を製膜する。
そして、MOCVDバッファ層142を製膜した時点で、メカニカルスクライブ装置又はレーザスクライブ装置により光吸収層13及びCBDバッファ層141、MOCVDバッファ層142を削ることによりパターン2を形成し、その上にさらに有機金属化学的気相成長法(MOCVD法)により第3のバッファ層としてMOCVDバッファ層143を製膜したものである。
また、MOCVDバッファ層143は、配線パターンの端面という製膜しにくい部分であるが、有機金属化学的気相成長法(MOCVD法)により製膜することで、カバーレッジよく製膜することができる。
12 金属裏面電極層
13 光吸収層
14 高抵抗バッファ層
15 窓層
141 CBDバッファ層(第1のバッファ層)
142 MOCVDバッファ層(第2のバッファ層)
143 MOCVDバッファ層(第3のバッファ層)
P1 パターン1
P2 パターン2
P3 パターン3
Claims (16)
- p型CIS系光吸収層、バッファ層、n型透明導電膜の順に積層されたCIS系薄膜太陽電池において、
前記バッファ層は3層以上の積層構造であり、
前記p型CIS系光吸収層と接する第1のバッファ層は、カドミウム(Cd)、又は、亜鉛(Zn)、又は、インジウム(In)を含む化合物からなり、
前記第1のバッファ層と接する第2のバッファ層は酸化亜鉛系薄膜からなり、
前記p型CIS系光吸収層、前記第1のバッファ層及び第2のバッファ層に配線パターンを形成することにより露出した端面及び、前記第2のバッファ層の前記n型透明導電膜との間の端面を覆う第3のバッファ層が形成されており、
前記第3のバッファ層は酸化亜鉛系薄膜からなる、
ことを特徴とするCIS系薄膜太陽電池の集積構造。 - 前記第3のバッファ層の抵抗率が、前記第2のバッファ層の抵抗率より小さい、
請求項1記載のCIS系薄膜太陽電池の集積構造。 - 前記第3のバッファ層の膜厚が10~300nmの範囲内である、
請求項1又は2記載のCIS系薄膜太陽電池の集積構造。 - 前記第3のバッファ層が有機金属化学的気相成長法(MOCVD法)により形成される、
請求項1~3のいずれかに記載のCIS系薄膜太陽電池の集積構造。 - 前記第3のバッファ層に含まれるドーピング不純物元素濃度が1×1019atoms/cm3以下である、
請求項1~4のいずれかに記載のCIS系薄膜太陽電池の集積構造。 - 前記ドーピング不純物元素が、アルミニウム(Al)、ガリウム(Ga)、ホウ素(B)のいずれかである、
請求項5記載のCIS系薄膜太陽電池の集積構造。 - 前記第3のバッファ層の抵抗率が0.1~100Ωcmの範囲内である、
請求項1~6のいずれかに記載のCIS系薄膜太陽電池の集積構造。 - 前記第1のバッファ層の膜厚が20nm以下、かつ、前記第2のバッファ層の膜厚が100nm以上である、
請求項1~7のいずれかに記載のCIS系薄膜太陽電池の集積構造。 - 前記第1のバッファ層の膜厚と、前記第2のバッファ層の膜厚の比(第2のバッファ層の膜厚/第1のバッファ層の膜厚)が5以上である、
請求項1~8のいずれかに記載のCIS系薄膜太陽電池の集積構造。 - 前記第1のバッファ層が、溶液成長法(CBD法)により形成される、
請求項1~9のいずれかに記載のCIS系薄膜太陽電池の集積構造。 - 前記第2のバッファ層が、有機金属化学的気相成長法(MOCVD法)により形成される、
請求項1~10のいずれかに記載のCIS系薄膜太陽電池の集積構造。 - 前記第2のバッファ層に含まれるドーピング不純物元素濃度が、1×1019atoms/cm3以下である、
請求項1~11のいずれかに記載のCIS系薄膜太陽電池の集積構造。 - 前記ドーピング不純物元素が、アルミニウム(Al)、ガリウム(Ga)、ホウ素(B)のいずれかである、
請求項12記載のCIS系薄膜太陽電池の集積構造。 - 前記第1のバッファ層が、CdxSy、ZnxSy、ZnxOy、Znx(OH)y、InxSy、Inx(OH)y、InxOy(x、yは自然数)のいずれかを含む化合物である、
請求項1~13のいずれかに記載のCIS系薄膜太陽電池の集積構造。 - 前記CIS系光吸収層表面における硫黄濃度が、0.5atoms%以上である、
請求項1~14のいずれかに記載のCIS系薄膜太陽電池の集積構造。 - 前記第2のバッファ層の抵抗率が0.1Ωcm以上である、
請求項1~15のいずれかに記載のCIS系薄膜太陽電池の集積構造。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/921,222 US8575478B2 (en) | 2008-03-07 | 2008-03-07 | Integrated structure of CIS based solar cell |
JP2010501745A JP5156090B2 (ja) | 2008-03-07 | 2008-03-07 | Cis系太陽電池の集積構造 |
PCT/JP2008/054157 WO2009110093A1 (ja) | 2008-03-07 | 2008-03-07 | Cis系太陽電池の集積構造 |
DE112008003755T DE112008003755T5 (de) | 2008-03-07 | 2008-03-07 | Integrierte Struktur einer Solarzelle auf CIS-Grundlage |
KR1020107019676A KR101488413B1 (ko) | 2008-03-07 | 2008-03-07 | Cis계 태양전지의 집적 구조 |
TW097116848A TW200939499A (en) | 2008-03-07 | 2008-05-07 | Integrated structure of cis-type solar battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/054157 WO2009110093A1 (ja) | 2008-03-07 | 2008-03-07 | Cis系太陽電池の集積構造 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009110093A1 true WO2009110093A1 (ja) | 2009-09-11 |
Family
ID=41055672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/054157 WO2009110093A1 (ja) | 2008-03-07 | 2008-03-07 | Cis系太陽電池の集積構造 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8575478B2 (ja) |
JP (1) | JP5156090B2 (ja) |
KR (1) | KR101488413B1 (ja) |
DE (1) | DE112008003755T5 (ja) |
TW (1) | TW200939499A (ja) |
WO (1) | WO2009110093A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101034150B1 (ko) | 2009-11-02 | 2011-05-13 | 엘지이노텍 주식회사 | 태양전지 및 이의 제조방법 |
US20120067392A1 (en) * | 2010-09-22 | 2012-03-22 | Markus Gloeckler | Photovoltaic device containing an n-type dopant source |
EP2439788A2 (en) * | 2010-03-24 | 2012-04-11 | LG Innotek Co., Ltd. | Solar cell apparatus and method for manufacturing same |
JP2012124286A (ja) * | 2010-12-07 | 2012-06-28 | Toyota Industries Corp | 光電素子 |
US20120204939A1 (en) * | 2010-08-23 | 2012-08-16 | Stion Corporation | Structure and Method for High Efficiency CIS/CIGS-based Tandem Photovoltaic Module |
KR101210046B1 (ko) | 2011-10-17 | 2012-12-07 | 엘지이노텍 주식회사 | 태양전지 및 이의 제조방법 |
JP2013533637A (ja) * | 2010-07-30 | 2013-08-22 | エルジー イノテック カンパニー リミテッド | 太陽光発電装置及びその製造方法 |
WO2014077395A1 (ja) * | 2012-11-19 | 2014-05-22 | 東ソー株式会社 | 酸化物焼結体、それを用いたスパッタリングターゲット及び酸化物膜 |
US20140158191A1 (en) * | 2011-07-29 | 2014-06-12 | Lg Innotek Co., Ltd. | Solar cell and method for manufacturing the same |
US20140246073A1 (en) * | 2011-10-05 | 2014-09-04 | Lg Innotek Co., Ltd. | Solar cell and solar cell module using the same |
WO2017068923A1 (ja) * | 2015-10-19 | 2017-04-27 | ソーラーフロンティア株式会社 | 光電変換素子 |
US12004414B2 (en) | 2018-09-18 | 2024-06-04 | Lg Chem, Ltd. | Method for manufacturing device |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2012086703A1 (ja) * | 2010-12-22 | 2014-05-22 | 京セラ株式会社 | 光電変換装置 |
KR101154786B1 (ko) * | 2011-05-31 | 2012-06-18 | 중앙대학교 산학협력단 | 태양전지 및 이의 제조방법 |
KR101273093B1 (ko) * | 2011-07-29 | 2013-06-13 | 엘지이노텍 주식회사 | 태양전지 및 이의 제조방법 |
KR20130136739A (ko) * | 2012-06-05 | 2013-12-13 | 엘지이노텍 주식회사 | 태양전지 및 이의 제조방법 |
US8697478B2 (en) * | 2012-09-06 | 2014-04-15 | Tsmc Solar Ltd. | Cover for protecting solar cells during fabrication |
KR101923729B1 (ko) * | 2012-10-29 | 2018-11-29 | 한국전자통신연구원 | 태양전지의 제조방법 |
KR101415251B1 (ko) * | 2013-03-12 | 2014-07-07 | 한국에너지기술연구원 | 다중 버퍼층 및 이를 포함하는 태양전지 및 그 생산방법 |
US9240501B2 (en) * | 2014-02-12 | 2016-01-19 | Solar Frontier K.K. | Compound-based thin film solar cell |
CN105514215A (zh) * | 2015-12-16 | 2016-04-20 | 山东建筑大学 | 一种用氧化锌制备硫化锌光电薄膜的方法 |
US10478518B2 (en) * | 2016-03-02 | 2019-11-19 | Better Vision Solutions LLC | Method for disinfecting contact lenses |
CA3024714C (en) | 2016-05-18 | 2019-06-11 | Menzel Diversified Enterprises, LLC | Insulated container |
US10583977B2 (en) * | 2016-08-16 | 2020-03-10 | Mp Global Products, L.L.C. | Method of making an insulation material and an insulated mailer |
CN111416015A (zh) * | 2018-12-18 | 2020-07-14 | 领凡新能源科技(北京)有限公司 | 太阳能电池及其制备方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0494174A (ja) * | 1990-08-10 | 1992-03-26 | Fuji Electric Co Ltd | 化合物薄膜太陽電池およびその製造方法 |
JP2000323733A (ja) * | 1999-03-05 | 2000-11-24 | Matsushita Electric Ind Co Ltd | 太陽電池 |
JP2002319686A (ja) * | 2001-04-23 | 2002-10-31 | Matsushita Electric Ind Co Ltd | 集積型薄膜太陽電池の製造方法 |
JP2002373995A (ja) * | 2001-06-15 | 2002-12-26 | Honda Motor Co Ltd | 太陽電池の製造方法 |
JP2004103959A (ja) * | 2002-09-11 | 2004-04-02 | Matsushita Electric Ind Co Ltd | 太陽電池およびその製造方法 |
JP2004119953A (ja) * | 2002-09-26 | 2004-04-15 | Honda Motor Co Ltd | 薄膜太陽電池およびその製造方法 |
JP2004214300A (ja) * | 2002-12-27 | 2004-07-29 | National Institute Of Advanced Industrial & Technology | ヘテロ接合を有する太陽電池 |
JP2005191167A (ja) * | 2003-12-25 | 2005-07-14 | Showa Shell Sekiyu Kk | 集積型薄膜太陽電池及びその製造方法 |
JP2006332190A (ja) * | 2005-05-24 | 2006-12-07 | Honda Motor Co Ltd | カルコパイライト型太陽電池 |
JP2007287926A (ja) * | 2006-04-17 | 2007-11-01 | Kaneka Corp | 集積化薄膜光電変換装置の製造方法および、その製造方法で得られうる集積化薄膜光電変換装置。 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4335266A (en) * | 1980-12-31 | 1982-06-15 | The Boeing Company | Methods for forming thin-film heterojunction solar cells from I-III-VI.sub.2 |
US4611091A (en) | 1984-12-06 | 1986-09-09 | Atlantic Richfield Company | CuInSe2 thin film solar cell with thin CdS and transparent window layer |
JPH03249342A (ja) | 1990-02-28 | 1991-11-07 | Mitsubishi Motors Corp | 混合燃料エンジン用燃料供給装置 |
JPH0766984B2 (ja) * | 1992-02-13 | 1995-07-19 | インターナショナル・ビジネス・マシーンズ・コーポレイション | ヘテロ超格子pn接合 |
JP3402515B2 (ja) * | 1994-05-23 | 2003-05-06 | 日本碍子株式会社 | 水素分離体とそれを用いた水素分離装置及び水素分離体の製造方法 |
JP3527815B2 (ja) * | 1996-11-08 | 2004-05-17 | 昭和シェル石油株式会社 | 薄膜太陽電池の透明導電膜の製造方法 |
JPH11220151A (ja) * | 1998-02-02 | 1999-08-10 | Shinko Electric Ind Co Ltd | 化合物半導体薄膜光電変換素子 |
US6259016B1 (en) * | 1999-03-05 | 2001-07-10 | Matsushita Electric Industrial Co., Ltd. | Solar cell |
JP2000332273A (ja) * | 1999-05-25 | 2000-11-30 | Matsushita Electric Ind Co Ltd | 太陽電池およびその製造方法 |
JP2002094089A (ja) * | 2000-09-11 | 2002-03-29 | Honda Motor Co Ltd | 化合物薄膜太陽電池の製造方法 |
JP4662616B2 (ja) * | 2000-10-18 | 2011-03-30 | パナソニック株式会社 | 太陽電池 |
SE0301350D0 (sv) * | 2003-05-08 | 2003-05-08 | Forskarpatent I Uppsala Ab | A thin-film solar cell |
JP4841173B2 (ja) | 2005-05-27 | 2011-12-21 | 昭和シェル石油株式会社 | Cis系薄膜太陽電池の高抵抗バッファ層・窓層連続製膜方法及び製膜装置 |
-
2008
- 2008-03-07 KR KR1020107019676A patent/KR101488413B1/ko active IP Right Grant
- 2008-03-07 JP JP2010501745A patent/JP5156090B2/ja not_active Expired - Fee Related
- 2008-03-07 DE DE112008003755T patent/DE112008003755T5/de not_active Withdrawn
- 2008-03-07 US US12/921,222 patent/US8575478B2/en not_active Expired - Fee Related
- 2008-03-07 WO PCT/JP2008/054157 patent/WO2009110093A1/ja active Application Filing
- 2008-05-07 TW TW097116848A patent/TW200939499A/zh unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0494174A (ja) * | 1990-08-10 | 1992-03-26 | Fuji Electric Co Ltd | 化合物薄膜太陽電池およびその製造方法 |
JP2000323733A (ja) * | 1999-03-05 | 2000-11-24 | Matsushita Electric Ind Co Ltd | 太陽電池 |
JP2002319686A (ja) * | 2001-04-23 | 2002-10-31 | Matsushita Electric Ind Co Ltd | 集積型薄膜太陽電池の製造方法 |
JP2002373995A (ja) * | 2001-06-15 | 2002-12-26 | Honda Motor Co Ltd | 太陽電池の製造方法 |
JP2004103959A (ja) * | 2002-09-11 | 2004-04-02 | Matsushita Electric Ind Co Ltd | 太陽電池およびその製造方法 |
JP2004119953A (ja) * | 2002-09-26 | 2004-04-15 | Honda Motor Co Ltd | 薄膜太陽電池およびその製造方法 |
JP2004214300A (ja) * | 2002-12-27 | 2004-07-29 | National Institute Of Advanced Industrial & Technology | ヘテロ接合を有する太陽電池 |
JP2005191167A (ja) * | 2003-12-25 | 2005-07-14 | Showa Shell Sekiyu Kk | 集積型薄膜太陽電池及びその製造方法 |
JP2006332190A (ja) * | 2005-05-24 | 2006-12-07 | Honda Motor Co Ltd | カルコパイライト型太陽電池 |
JP2007287926A (ja) * | 2006-04-17 | 2007-11-01 | Kaneka Corp | 集積化薄膜光電変換装置の製造方法および、その製造方法で得られうる集積化薄膜光電変換装置。 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101034150B1 (ko) | 2009-11-02 | 2011-05-13 | 엘지이노텍 주식회사 | 태양전지 및 이의 제조방법 |
US8962984B2 (en) * | 2010-03-24 | 2015-02-24 | Lg Innotek Co., Ltd. | Solar cell apparatus and manufacturing method thereof |
US20130008496A1 (en) * | 2010-03-24 | 2013-01-10 | Lg Innotek Co., Ltd. | Solar cell apparatus and manufacturing method thereof |
EP2439788A4 (en) * | 2010-03-24 | 2014-01-08 | Lg Innotek Co Ltd | SOLAR CELL DEVICE AND METHOD FOR THE PRODUCTION THEREOF |
JP2013522927A (ja) * | 2010-03-24 | 2013-06-13 | エルジー イノテック カンパニー リミテッド | 太陽光発電装置及びその製造方法 |
EP2439788A2 (en) * | 2010-03-24 | 2012-04-11 | LG Innotek Co., Ltd. | Solar cell apparatus and method for manufacturing same |
CN102844879A (zh) * | 2010-03-24 | 2012-12-26 | Lg伊诺特有限公司 | 太阳能电池设备及其制造方法 |
US9871159B2 (en) | 2010-07-30 | 2018-01-16 | Lg Innotek Co., Ltd. | Apparatus for generating electricity using solar power and method for manufacturing same |
JP2013533637A (ja) * | 2010-07-30 | 2013-08-22 | エルジー イノテック カンパニー リミテッド | 太陽光発電装置及びその製造方法 |
US20120204939A1 (en) * | 2010-08-23 | 2012-08-16 | Stion Corporation | Structure and Method for High Efficiency CIS/CIGS-based Tandem Photovoltaic Module |
US20120067392A1 (en) * | 2010-09-22 | 2012-03-22 | Markus Gloeckler | Photovoltaic device containing an n-type dopant source |
US9559247B2 (en) * | 2010-09-22 | 2017-01-31 | First Solar, Inc. | Photovoltaic device containing an N-type dopant source |
JP2012124286A (ja) * | 2010-12-07 | 2012-06-28 | Toyota Industries Corp | 光電素子 |
US20140158191A1 (en) * | 2011-07-29 | 2014-06-12 | Lg Innotek Co., Ltd. | Solar cell and method for manufacturing the same |
US20140246073A1 (en) * | 2011-10-05 | 2014-09-04 | Lg Innotek Co., Ltd. | Solar cell and solar cell module using the same |
KR101210046B1 (ko) | 2011-10-17 | 2012-12-07 | 엘지이노텍 주식회사 | 태양전지 및 이의 제조방법 |
WO2014077395A1 (ja) * | 2012-11-19 | 2014-05-22 | 東ソー株式会社 | 酸化物焼結体、それを用いたスパッタリングターゲット及び酸化物膜 |
JP2014114207A (ja) * | 2012-11-19 | 2014-06-26 | Tosoh Corp | 酸化物焼結体、それを用いたスパッタリングターゲット及び酸化物膜 |
WO2017068923A1 (ja) * | 2015-10-19 | 2017-04-27 | ソーラーフロンティア株式会社 | 光電変換素子 |
JPWO2017068923A1 (ja) * | 2015-10-19 | 2018-08-09 | ソーラーフロンティア株式会社 | 光電変換素子 |
US12004414B2 (en) | 2018-09-18 | 2024-06-04 | Lg Chem, Ltd. | Method for manufacturing device |
Also Published As
Publication number | Publication date |
---|---|
DE112008003755T5 (de) | 2011-02-24 |
JPWO2009110093A1 (ja) | 2011-07-14 |
KR101488413B1 (ko) | 2015-01-30 |
TW200939499A (en) | 2009-09-16 |
JP5156090B2 (ja) | 2013-03-06 |
KR20100124741A (ko) | 2010-11-29 |
US8575478B2 (en) | 2013-11-05 |
US20110011451A1 (en) | 2011-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5156090B2 (ja) | Cis系太陽電池の集積構造 | |
WO2009110092A1 (ja) | Cis系太陽電池の積層構造、及び集積構造 | |
JP2009135337A (ja) | Cis系太陽電池の積層構造、cis系薄膜太陽電池の集積構造及び製造方法 | |
US9935211B2 (en) | Back contact structure for photovoltaic devices such as copper-indium-diselenide solar cells | |
WO2011158899A1 (ja) | Cis系薄膜太陽電池 | |
WO2013077431A1 (ja) | 薄膜太陽電池モジュール及びその製造方法 | |
WO2013077417A1 (ja) | Czts系薄膜太陽電池及びその製造方法 | |
JP2014209586A (ja) | 薄膜太陽電池及びその製造方法 | |
JP6377338B2 (ja) | 光電変換素子、光電変換素子の製造方法及び太陽電池 | |
Nakada et al. | Improved efficiency of Cu (In, Ga) Se/sub 2/thin film solar cells with chemically deposited ZnS buffer layers by air-annealing-formation of homojunction by solid phase diffusion | |
EP2619800B1 (en) | Solar cell | |
JP5421752B2 (ja) | 化合物半導体太陽電池 | |
JP2009170928A (ja) | Cis系太陽電池の製造方法 | |
JP5245034B2 (ja) | Cis系太陽電池の製造方法 | |
US20110287579A1 (en) | Method of manufacturing solar cell | |
JP2003008039A (ja) | 化合物太陽電池の製造方法 | |
JP5918765B2 (ja) | 太陽光発電装置 | |
KR20090034079A (ko) | 이셀렌화몰리브덴층을 포함하는 태양전지 및 그의 제조방법 | |
JP2013229506A (ja) | 太陽電池 | |
JP5420775B2 (ja) | Cis系太陽電池の製造方法 | |
KR101283240B1 (ko) | 태양전지 및 이의 제조방법 | |
KR101300642B1 (ko) | 태양전지 | |
US20140315348A1 (en) | Thin film solar cell | |
KR20150115363A (ko) | Ci(g)s 광흡수층을 구비하는 태양전지의 제조 방법 | |
WO2017068923A1 (ja) | 光電変換素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08721575 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010501745 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20107019676 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120080037558 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12921222 Country of ref document: US |
|
RET | De translation (de og part 6b) |
Ref document number: 112008003755 Country of ref document: DE Date of ref document: 20110224 Kind code of ref document: P |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08721575 Country of ref document: EP Kind code of ref document: A1 |