Nothing Special   »   [go: up one dir, main page]

WO2009081929A1 - 実装基板及びその製造方法 - Google Patents

実装基板及びその製造方法 Download PDF

Info

Publication number
WO2009081929A1
WO2009081929A1 PCT/JP2008/073401 JP2008073401W WO2009081929A1 WO 2009081929 A1 WO2009081929 A1 WO 2009081929A1 JP 2008073401 W JP2008073401 W JP 2008073401W WO 2009081929 A1 WO2009081929 A1 WO 2009081929A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
solder
electronic component
mounting
land
Prior art date
Application number
PCT/JP2008/073401
Other languages
English (en)
French (fr)
Inventor
Tomoharu Sagawa
Atsushi Kume
Original Assignee
Fujikura Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd. filed Critical Fujikura Ltd.
Priority to JP2009547106A priority Critical patent/JP5220766B2/ja
Priority to CN2008801231415A priority patent/CN101911845B/zh
Priority to EP08865333.2A priority patent/EP2234466B1/en
Publication of WO2009081929A1 publication Critical patent/WO2009081929A1/ja
Priority to US12/822,611 priority patent/US8039760B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3442Leadless components having edge contacts, e.g. leadless chip capacitors, chip carriers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • H05K3/247Finish coating of conductors by using conductive pastes, inks or powders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/035Paste overlayer, i.e. conductive paste or solder paste over conductive layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10977Encapsulated connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • H05K3/305Affixing by adhesive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.

Definitions

  • the present invention relates to a mounting board and a manufacturing method thereof, and more particularly to a mounting board having excellent connection reliability and capable of mounting a small electronic component, and a manufacturing method thereof.
  • Patent Document 1 discloses a connection terminal structure as shown in FIG.
  • This connection terminal structure includes a wiring board 101 provided with a wiring pattern having a first land 102, and a second land 103 made of a metal material having poor solderability is formed on the first land 102.
  • a third land 104 for solder connection made of a noble metal material having good solder wettability.
  • the electrode part 141 of the electronic component 140 and the wiring board 101 are electrically connected via the solder 106.
  • Patent Document 1 deals with a general problem of solder mounting on a wiring made of copper, for example, peeling of a solder connection land (third land 104) or solder 106.
  • PET polyethylene terephthalate
  • a circuit is formed on the board by printing silver paste. Yes. Therefore, when mounting electronic components by soldering, it is necessary to use low melting point solder (soldering temperature of about 165 ° C. or less) that does not cause PET to become brittle.
  • FIG. 13A is a cross-sectional view schematically showing an example of a mounting board in which electronic components are mounted on a membrane circuit board using a conductive adhesive.
  • the conductive paste circuit 220 disposed on the substrate 210 is electrically connected to the electrode portion 241 of the electronic component 240 via the conductive adhesive 260 (260a).
  • the outer peripheral area of the conductive adhesive 260a is sealed with a sealing resin 261 fixed thereto.
  • the adhesive strength of the electronic component 240 is established by the epoxy resin or the sealing resin 261 included in the conductive adhesive 260. Therefore, unlike the case of mounting with solder, since the connection by metal bonding is not taken, there is a possibility that the connection state is not stable and a conduction failure occurs. Recently, the number of the electrode parts 241 of the electronic component 240 that are tin-plated in addition to the gold-plating is increasing. Since the conductive adhesive 260 usually contains silver powder and an epoxy resin as main components, in this case, tin and silver contained in the conductive adhesive 260 are incompatible with each other because galvanic corrosion occurs.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a mounting substrate that is excellent in connection reliability and on which a small electronic component can be mounted.
  • the mounting substrate of the present invention includes an insulating base; a plurality of first conductors disposed on one surface of the insulating base and having lands; a second conductor disposed on the lands; A solder individually provided on the second conductor; and an electronic component having an electrode portion that is in contact with the solder independently.
  • the first conductor includes a first member containing at least silver, and the second member.
  • the conductor is composed of a second member containing at least copper, and the solder is composed of a third member containing at least tin.
  • the second member preferably further contains silver.
  • the insulating substrate is preferably made of polyethylene terephthalate.
  • the size of the land is larger than that of the second conductor.
  • resin is arranged at least between the electronic component and the insulating substrate.
  • a method of manufacturing a mounting board according to the present invention includes an insulating base; a plurality of first conductors disposed on one surface of the insulating base and having lands; a second conductor disposed on the lands. A solder individually provided on the second conductor; and an electronic component having an electrode portion that is in contact with the solder independently.
  • the first conductor includes at least a silver-containing first member.
  • the second conductor is a manufacturing method of a mounting board composed of a second member containing at least copper and the solder is composed of a third member containing at least tin, and the first conductor is formed on one surface of the insulating substrate.
  • the electrode part of the electronic component and the second conductor are electrically connected using solder containing tin instead of the conductive adhesive containing silver. Therefore, even if the electrode part of the electronic component is made of tin, galvanic corrosion or the like does not occur as in the conventional case, and the connection state does not become unstable. In addition, since the second conductor and the electrode portion are electrically connected by metal bonding, stable conduction can be ensured and connection reliability can be improved. Further, like the conductive adhesive, the viscosity of each solder is lowered and flows out, and it is difficult for each solder to be electrically connected. Therefore, the distance between each solder can be narrowed. Therefore, a mounting substrate capable of mounting small electronic components can be obtained.
  • the conductive adhesive As described above, the viscosity of the solder is lowered, and each solder is difficult to be electrically connected. Therefore, the yield can be improved. Further, the distance between each solder can be made narrow, and a small electronic component can be mounted.
  • FIG. 1 is a cross-sectional view schematically showing a mounting board according to the first embodiment of the present invention.
  • FIG. 2A is a cross-sectional process diagram schematically showing the method of manufacturing the mounting board according to the embodiment.
  • FIG. 2B is a cross-sectional process diagram schematically illustrating the method of manufacturing the mounting board according to the embodiment.
  • FIG. 2C is a cross-sectional process diagram schematically showing the method of manufacturing the mounting board according to the embodiment.
  • FIG. 2D is a cross-sectional process diagram schematically illustrating the manufacturing method of the mounting substrate according to the embodiment.
  • FIG. 3A is a cross-sectional view schematically showing a mounting board according to a modification of the present invention.
  • FIG. 3B is a plan view schematically showing the mounting board according to the embodiment.
  • FIG. 3C is a plan view schematically showing the periphery of the land of the mounting board according to the embodiment.
  • FIG. 4A is a cross-sectional view schematically showing a mounting board according to the second embodiment of the present invention.
  • FIG. 4A is a cross-sectional view schematically showing a modified example of the mounting board according to the embodiment.
  • FIG. 5A is a cross-sectional view schematically showing a mounting board according to the third embodiment of the present invention.
  • FIG. 5B is a plan view schematically showing the mounting board according to the embodiment.
  • FIG. 5C is a plan view schematically showing the periphery of the land of the mounting board according to the embodiment.
  • FIG. 6A is a cross-sectional view schematically showing a mounting board according to the fourth embodiment of the present invention.
  • FIG. 6B is a plan view schematically showing the mounting board according to the embodiment.
  • FIG. 7A is a cross-sectional process diagram schematically illustrating a method of manufacturing the mounting board according to the embodiment.
  • FIG. 7B is a cross-sectional process diagram schematically illustrating the method of manufacturing the mounting substrate according to the embodiment.
  • FIG. 7C is a cross-sectional process diagram schematically showing the method of manufacturing the mounting board according to the embodiment.
  • FIG. 7D is a cross-sectional process diagram schematically illustrating the manufacturing method of the mounting substrate according to the embodiment.
  • FIG. 7E is a cross-sectional process diagram schematically illustrating the method of manufacturing the mounting substrate according to the embodiment.
  • FIG. 8A is a cross-sectional view schematically showing a mounting board according to the fifth embodiment of the present invention.
  • FIG. 8B is a plan view schematically showing the mounting board according to the embodiment.
  • FIG. 9A is a cross-sectional process diagram schematically showing a method of manufacturing the mounting board according to the embodiment.
  • FIG. 9B is a cross-sectional process diagram schematically illustrating the method of manufacturing the mounting substrate according to the embodiment.
  • FIG. 9C is a cross-sectional process diagram schematically showing the method of manufacturing the mounting board according to the embodiment.
  • FIG. 9D is a cross-sectional process diagram schematically illustrating the method of manufacturing the mounting substrate according to the embodiment.
  • FIG. 9E is a cross-sectional process diagram schematically illustrating a method of manufacturing the mounting board according to the embodiment.
  • FIG. 9F is a cross-sectional process diagram schematically illustrating the mounting substrate manufacturing method according to the embodiment.
  • FIG. 10A is an image obtained by photographing a cross section of the mounting board according to the first embodiment of the present invention with an electron microscope.
  • FIG. 10B is a diagram showing a copper distribution in FIG. 10A.
  • FIG. 10C is a diagram showing the distribution of silver in FIG. 10A.
  • FIG. 11A is a diagram showing a result of elemental analysis inside the second conductor.
  • FIG. 11B is a diagram showing a result of elemental analysis performed near the interface between the second conductor and the solder.
  • FIG. 10A is an image obtained by photographing a cross section of the mounting board according to the first embodiment of the present invention with an electron microscope.
  • FIG. 10B is a diagram showing a copper distribution in FIG. 10A.
  • FIG. 10C
  • FIG. 12 is a cross-sectional view schematically showing an example of a conventional mounting board.
  • FIG. 13A is a cross-sectional view schematically showing another example of a conventional mounting board.
  • FIG. 13B is a cross-sectional view schematically showing another example of a conventional mounting board.
  • FIG. 14 is a cross-sectional view schematically showing another example of a conventional mounting board.
  • FIG. 1 is a cross-sectional view schematically showing an example of a mounting board of the present invention.
  • the mounting substrate 1 of the present invention includes an insulating base material 10; a plurality of first conductors 21 disposed on one surface 10a of the insulating base material 10 and having lands 21b; a second conductor disposed on the lands 21b.
  • the first conductor 21 is composed of a first member containing at least silver
  • the second conductor 22 is composed of a second member including at least copper
  • the solder 30 is composed of a third member including at least tin.
  • the insulating substrate 10 is made of, for example, resin or glass, and among these, since it has flexibility, a resin is preferable, and a film-like resin sheet made of PET is preferable.
  • a plurality of the first conductors 21 and the second conductors 22 are arranged on the one surface 10a of the insulating substrate 10 and are electrically connected to the electrode part 41 of the electronic component 40.
  • the first conductor 21 is covered with a resist (not shown) so that the land 21b of the first conductor 21 and the portion excluding its periphery are not exposed.
  • a conventionally known resist can be applied as this resist.
  • two first conductors 21 and two second conductors 22 are shown, but the number is not particularly limited to this.
  • the insulating base 10 and the main body 42 of the electronic component 40 In the space part 50, the some 1st conductor 21 and the 2nd conductor 22, the solder 30, and the electrode part 41 of the electronic component 40 may be distribute
  • the first conductor 21 and the second conductor 22 are each composed of a material having a resistance value close to each other and a chemical reaction occurring at the interface being suppressed as much as possible.
  • the first conductor 21 is made of a first member containing at least silver.
  • the first member for example, an alloy containing platinum, gold, nickel, palladium or the like in addition to silver may be used.
  • the second conductor 22 is made of copper that has a resistance value close to that of silver and hardly causes a chemical reaction or the like at the interface between the first conductor 21 and the second conductor 22.
  • the second member is included.
  • the second member may be an alloy containing silver, gold, platinum, nickel, palladium or the like in addition to copper.
  • the thickness of the first conductor 21 and the second conductor 22 is, for example, 1 to 100 ⁇ m.
  • the solder 30 (30A, 30B) electrically connects the second conductor 22 and the electrode part 41 of the electronic component 40.
  • the solder 30 is made of a third member containing at least tin.
  • As the third member in addition to tin, even if the electrode part 41 includes tin, it is preferable to further include bismuth that is compatible with tin.
  • Examples of such solder 30 include Sn—Bi solder.
  • the Bi content can be appropriately adjusted in consideration of the electrode part 41 of the electronic component 40 to be applied, the insulating base material 10, the second conductor 22, and the like.
  • the solder 30 such as Sn 42 Bi 58 can be used.
  • the soldering temperature is 180 ° C. or higher, so that the insulating base material 10 is damaged. Will occur. Therefore, it is preferable to use Sn—Bi low melting point solder having a soldering temperature of 165 ° C. or lower.
  • the electronic component 40 is electrically connected to the first conductor 21 and the second conductor 22 on the insulating base material 10, and is electrically connected to the main body 42 and the second conductor 22. 41.
  • the main body 42 is not particularly limited, and a known one can be applied.
  • the electrode portion 41 is arranged from one surface 40 a of the electronic component 40 to the other surface 40 c of the electronic component 40 via the side surface 40 b.
  • As the electrode part 41 a well-known thing can be used, For example, what consists of tin, gold
  • the electrode portion 41 is not limited to the shape shown in FIG.
  • the contact portion 41 when the electrode portion 41 is disposed at the corner of the electronic component 40, the contact portion can be increased and the connection reliability can be improved because the three portions are electrically connected to the solder 30.
  • the electrode portion 41 when it is set as the electrode part 41 extended from the one surface 40a of the electronic component 40 to the other surface 40c side, also on the other surface 40c side of the electronic component 40, another board
  • the second conductor 22 and the electrode part 41 of the electronic component 40 are electrically connected via the solder 30 by metal bonding. Therefore, the connection state is stabilized and conduction failure is reduced. Further, the solder 30 flows out with a reduced viscosity like a conductive adhesive, and each solder is not electrically connected. Therefore, the distance between each solder 30 can be narrowed. As a result, the mounting substrate 1 capable of including the small electronic component 40 is obtained.
  • the 1st conductor 21 is comprised from the 1st member containing silver
  • the 2nd conductor 22 is comprised from the 2nd member containing copper.
  • the solder 30 and the conductor 20 are connected by using the solder 30 containing tin such as low melting point solder which is poor in wettability with the first conductor 21 but good in wettability with the second conductor 22. Reliability can be improved. Further, the contact between the solder 30 containing tin and the second conductor 22 containing copper is less likely to cause galvanic corrosion than the contact between the solder 30 containing tin and the first conductor 21 containing silver. . Further, the solder 30 containing tin can maintain a stable connection state regardless of whether the electrode portion 41 is made of tin, copper, gold, or the like.
  • the solder 30 containing tin such as low melting point solder which is poor in wettability with the first conductor 21 but good in wettability with the second conductor 22. Reliability can be improved. Further, the contact between the solder 30 containing tin and the second conductor 22 containing copper is less likely to cause galvanic corrosion than the contact between the solder 30 containing
  • connection reliability between the solder 30 and the second conductor 22 and between the solder 30 and the electrode portion 41 can be improved. Since the copper contained in the second conductor 22 has a resistance value close to that of silver contained in the first conductor 21, a chemical reaction hardly occurs at the interface between the first conductor 21 and the second conductor 22. . As described above, the mounting substrate 1 with improved connection reliability is obtained.
  • a method for manufacturing the mounting substrate 1A of the present embodiment will be described with reference to FIGS. 2A to 2D.
  • a first member made of silver paste or the like is applied to one surface 10a of the insulating base material 10 by, for example, screen printing, dried by heating, and the first conductor 21 having lands 21b is formed. Form.
  • a second member made of a copper paste or the like is applied onto the land 21b of the first conductor 21, for example, by screen printing, and dried by heating to form the second conductor 22.
  • solder 30 made of a third member containing tin, for example, Sn / Bi low melting point solder 30 is applied onto the second conductor 22 by, for example, screen printing or dispensing.
  • the distance between the solders 30 and the distance between the insulating substrate 10 and the electronic component 40 can be appropriately adjusted according to the electronic component 40 to be mounted.
  • the electrode part 41 of the electronic component 40 is aligned with the position where the solder 30 is applied. Then, each electrode part 41 is made to contact and heat with respect to each solder 30, and the electronic component 40 is mounted. Thus, the mounting substrate 1A of the present embodiment is obtained.
  • the second conductor 22 and the electrode part 41 of the electronic component 40 are electrically connected via the solder 30, so that the viscosity of the solder 30 is like a conductive adhesive.
  • the solder 30A and 30B are not electrically connected. Therefore, since the distance between the solders 30A and 30B can be made narrow, a small electronic component 40 can be mounted.
  • the self-alignment of the solder 30 makes it possible to mount the electronic component 40 more accurately than when a conductive paste is used as in the conventional case.
  • FIGS. 3A, 3B, and 3C are diagrams schematically showing an example of a mounting substrate 1B according to a modification of the present embodiment.
  • 3A is a cross-sectional view
  • FIG. 3B is a plan view
  • FIG. 3C is a plan view in the vicinity of the land 21b.
  • the second conductor 22 is formed larger than the land 21 b of the first conductor 21.
  • the radius R2 of the second conductor 22 is larger than the radius R1 of the land 21b of the first conductor 21 by ⁇ as shown in FIG. 3C.
  • is preferably larger than the printing alignment accuracy when the second conductor 22 is formed, and is, for example, 0.2 mm or more.
  • the second conductor 22 is not necessarily formed concentrically with the land 21b.
  • the thickness of the second conductor 22 is appropriately adjusted by an electronic device to which the mounting board of this embodiment is applied. In the case where the mounting substrate is bent a plurality of times, the thickness of the second conductor is preferably thin. The same applies to the size of the second conductor 22, and when the mounting substrate is bent a plurality of times, the radius R2 is preferably small. Further, when it is desired to prioritize the prevention of migration, galvanic corrosion, and solder 30 short circuit over the bending characteristics, the radius R2 of the second conductor 22 is made sufficiently large.
  • the solder 30 since the land 21b of the first conductor 21 is covered with the second conductor 22, the solder 30 does not flow into the land 21b during melting and hardening. Therefore, direct contact between the solder 30 and the land 21b is eliminated. As a result, it is possible to prevent a short circuit of the solder 30 and galvanic corrosion and migration between the solder 30 and the land 21b.
  • Sn / Bi-based low melting point solder since this solder has good wettability with copper (second conductor 22), connection reliability with the solder 30 can be increased by increasing the second conductor 22. Will improve.
  • FIG. 4A is a cross-sectional view schematically showing a mounting substrate 1C according to the second embodiment of the present invention.
  • the mounting board 1 ⁇ / b> C of the present embodiment is different from the mounting board 1 ⁇ / b> A of the first embodiment in that a resin 60 is disposed at least in a space 50 between the electronic component 40 and the insulating base material 10.
  • the first conductor 21 is covered with the resist 70 so that the land excluding the land 21b and the periphery of the first conductor 21 is not exposed.
  • the resin 60 is not particularly limited as long as it is a thermosetting and used as a non-conductive adhesive, and for example, an epoxy resin, an acrylic resin, or the like can be applied.
  • the resin 60 is disposed in the space 50 between the electronic component 40 and the insulating base material 10, and the electronic component 40 and the insulating base material 10 are bonded to each other, thereby fixing the electronic component 40 to the insulating substrate 10. Strength can be increased. Further, not only the space 50 between the electronic component 40 and the insulating base material 10 but also the exposed first conductor 21, land 21b, and second conductor 22 as shown in FIG. 4A. It is preferable to seal with resin 60. This makes it difficult for moisture due to condensation or the like to enter the conductive portion (the first conductor 21, the second conductor 22, and the solder 30 and their connection parts). Therefore, it is possible to provide a mounting board in which migration or the like hardly occurs.
  • the mounting substrate 1C according to the present embodiment can be mounted with higher density than the conventional mounting substrate.
  • the resist 70 that is present.
  • the thickness of the resist 70 can be adjusted as appropriate according to the applied electronic device, and is, for example, 20 ⁇ m to 40 ⁇ m. If the resist 70 is too thick for mounting the electronic component 40, the mounting characteristics (connectivity, mechanical strength, etc.) are reduced. On the other hand, if the resist 70 is too thin, it will be difficult to satisfy the characteristics as a resist.
  • the resin 60 is not limited to the present embodiment, and can be similarly applied to the mounting substrate 1B of the above-described modification. In this case, the same effect as the mounting substrate 1C of the second embodiment can be obtained.
  • FIG. 5A, 5B, and 5C are views schematically showing a mounting substrate 1E according to the third embodiment of the present invention.
  • 5A is a cross-sectional view
  • FIG. 5B is a plan view
  • FIG. 5C is a plan view around the land 21b.
  • the second conductor 22 is formed smaller than the land 21 b of the first conductor 21.
  • the radius R1 of the land 21b of the first conductor 21 is larger by ⁇ than the radius R2 of the second conductor 22, as shown in FIG. 5C.
  • is preferably larger than the printing alignment accuracy when the second conductor 22 is formed, and is, for example, 0.2 mm or more.
  • the second conductor 22 is not necessarily formed concentrically with the land 21b as shown in FIGS. 5A to 5C.
  • the mounting board 1E of the present embodiment has the above-described deformation because the second conductor 22 made of copper is smaller than the land 21b of the first conductor 21 in addition to the effects obtained by the mounting board 1A of the first embodiment described above. It becomes more flexible than the mounting substrate 1B of the example. Therefore, the mounting substrate 1E according to the present embodiment is optimal for an electronic device in which repeated bending occurs.
  • FIGS. 6A and 6B are views schematically showing a mounting substrate 1F according to a fourth embodiment of the present invention.
  • 6A is a cross-sectional view
  • FIG. 6B is a plan view.
  • the mounting substrate 1F of the present embodiment is different from the mounting substrate 1E of the third embodiment in that the resin 60 is disposed in at least the space 50 between the electronic component 40 and the insulating base material 10.
  • the resin 60 is the same as that in the second embodiment described above. According to the mounting substrate 1F of this embodiment, the effect obtained by the mounting substrate 1B of the second embodiment described above and the effect obtained by the mounting substrate 1E of the third embodiment can be obtained. Also in this embodiment, a resist 70 may be used instead of the resin 60 to cover other than the electronic component 40 and the low melting point solder 30 so that the first conductor 21 and the second conductor 22 are not exposed. In this case, as in the case of using the resin 60 described above, moisture due to condensation or the like hardly enters the conductive portion (the first conductor 21, the second conductor 22, and the solder 30 and their connection portions). Therefore, it is possible to provide a mounting board in which migration or the like hardly occurs.
  • the first conductor 21 and the second conductor 22 are formed on the one surface 10a of the insulating base material 10, as in the first embodiment.
  • the second conductor 22 is formed such that the land 21 b of the first conductor 21 is larger than the printing alignment accuracy than the second conductor 22.
  • the second conductor 22 can be formed so as to be always inside the land 21b.
  • the resist 70 is printed by screen printing to the vicinity of the land 21 b and dried so as to cover the exposed first conductor 21.
  • the resin 60 is printed by screen printing on the region of the second conductor 22 other than the portion where the low melting point solder 30 is applied, and the exposed land 21b and the first conductor 21.
  • the resin 60 is printed by screen printing on the region of the second conductor 22 other than the portion where the low melting point solder 30 is applied, and the exposed land 21b and the first conductor 21.
  • the mounting substrate 1F of the present embodiment is obtained.
  • the land 21 b is covered with the resin 60. Therefore, there is no possibility that the low melting point solder 30 flows into the land 21b when the low melting point solder 30 is melted / cured. Therefore, the low melting point solder 30 and the land 21b do not come into contact with each other, and galvanic corrosion and migration occurring between them can be prevented.
  • FIG. 8A and 8B are views schematically showing a mounting substrate 1G according to the fifth embodiment of the present invention.
  • 8A is a cross-sectional view
  • FIG. 8B is a plan view.
  • the mounting substrate 1G of the present embodiment is different from the mounting substrate 1E of the third embodiment in that the resist 70 and the second conductor 22 and the second conductor 22 except for the region where the low melting point solder 30 of the second conductor 22 is disposed.
  • the point is that it covers the one conductor 21 and the land 21b, and the point that the resin 60 is disposed in the space 50, and the resin 60 adheres the electronic component 40 and the insulating substrate 10.
  • the thickness of the resist 70 can be adjusted as appropriate according to the electronic device to be applied, and is, for example, 20 ⁇ m to 40 ⁇ m. If the resist 70 is too thick for mounting the electronic component 40, the mounting characteristics (connectivity, mechanical strength, etc.) are reduced. On the other hand, if the resist 70 is too thin, it will be difficult to satisfy the characteristics as a resist.
  • the mounting substrate 1G of the present embodiment since the first conductor 21, the land 21b, and the second conductor 22 are covered with the resist 70, these are not exposed. Therefore, similarly to the mounting substrate 1E of the third embodiment described above, it is difficult for moisture due to condensation or the like to enter the conductive portion (the first conductor 21, the second conductor 22, and the solder 30 and their connection portions). Therefore, it is possible to improve the migration resistance in the entire mounting part. Furthermore, since the electronic component 40 and the insulating base material 10 are bonded by the resin 60, the fixing strength of the entire mounting portion can be improved.
  • FIGS. 9A to 9F a method for manufacturing the mounting substrate 1G of the present embodiment will be described with reference to FIGS. 9A to 9F.
  • the first conductor 21 and the second conductor 22 are formed on the one surface 10a of the insulating substrate 10 as in the case of the fourth embodiment.
  • a resist 70 is screen-printed so as to cover the first conductor 21, the land 21b, and the second conductor 22 except for the portion of the second conductor 22 where the low melting point solder 30 is applied. Print with. Then, it is heated and dried.
  • FIG. 9C a resist 70 is screen-printed so as to cover the first conductor 21, the land 21b, and the second conductor 22 except for the portion of the second conductor 22 where the low melting point solder 30 is applied. Print with. Then, it is heated and dried.
  • a resin 60 is applied to a portion corresponding to the lower portion on which the electronic component 40 is mounted by screen printing or dispensing.
  • low melting point solder 30 is applied as in the first embodiment.
  • the electrode part 41 of the electronic component 40 is aligned with the position where the solder 30 is applied, and the electronic component 40 is mounted. Then, it heats.
  • the mounting substrate 1G of the present embodiment is obtained.
  • the lands 21b are covered with the resist, there is no possibility that the low melting point solder 30 flows into the lands 21b when the low melting point solder 30 is melted / cured. Therefore, galvanic corrosion and migration can be prevented.
  • the resin 60 is applied or printed after the first conductor 21, the land 21 b, and the second conductor 22 are covered with the resist 70. Therefore, the resist 70 disposed at the end of the second conductor 22 can suppress the resin 60 from entering the portion of the second conductor 22 where the solder 30 is applied. Therefore, the yield can be improved.
  • FIG. 10A is an image obtained by photographing a cross section of the mounting substrate of the first embodiment manufactured using silver-plated copper powder as the second conductor 22 with an electron microscope. The image was taken at a magnification of 2000 times.
  • FIG. 10B is a diagram in which the copper distribution is detected in FIG. 10A.
  • FIG. 10C is a diagram in which a silver distribution is detected in FIG. 10A.
  • FIG. 11A shows the result of elemental analysis of the second conductor 22 produced using silver-plated copper powder.
  • FIG. 11B shows the result of elemental analysis of the interface between the second conductor 22 and the solder 30 manufactured using silver-plated copper powder by SEM-EDS.
  • FIGS. 10A to 10C and FIGS. 11A to 11B when the second conductor 22 is produced using silver-plated copper powder, silver does not exist at the interface between the second conductor 22 and the solder 30. Therefore, even when silver-plated copper powder is used as the second member constituting the second conductor 22, the occurrence of galvanic corrosion between the second conductor 22 and the solder 30 can be suppressed. Furthermore, conductivity can be improved by preventing the oxidation of the copper powder.
  • Example 1 A PET film having a thickness of 100 ⁇ m was used as an insulating substrate. On this PET film, the conductive paste which has a silver filler as a main component was apply
  • Sn / Bi low melting point solder was applied onto the second conductor with a dispenser.
  • the solder application conditions were a nozzle diameter of 0.2 mm, an air pressure of 60 kPa, a discharge time of 500 msec, and a height from the second conductor to the nozzle of 0.1 mm.
  • the electronic component was mounted so that the Sn / Bi-based low melting point solder applied above and the electrode part of the electronic component were electrically connected.
  • a jumper chip resistor having dimensions (L ⁇ W ⁇ H) of 1.6 ⁇ 0.8 ⁇ 0.45 mm and tin-plated electrodes was used. Thereafter, heating was performed to dissolve the Sn / Bi-based low melting point solder to produce a mounting substrate.
  • a first conductor and a second conductor were formed in the same manner as in Example 1, and a conductive adhesive was applied onto the second conductor using a dispenser.
  • the conductive adhesive was applied under the conditions of a nozzle diameter of 0.2 mm, an air pressure of 50 kPa, a discharge time of 200 msec, and a height from the second conductor to the nozzle of 0.1 mm.
  • the electronic component was mounted so that the electrode part formed by tin plating of the electronic component was aligned with the position where the conductive adhesive was applied. Thereafter, the conductive adhesive was dried and cured.
  • the electronic component is the same as that in the embodiment.
  • thermosetting resin was applied as a sealing resin so as to cover the four sides of the mounted electronic component. At this time, the sealing resin was prevented from adhering to the upper surface of the electronic component. Thereafter, the sealing resin was cured to produce a mounting substrate, which was used as a comparative example.
  • connection resistance after wet heat test The mounting substrate whose connection resistance was measured was placed in an atmosphere of 60 ° C. and 95% RH in a test tank (manufactured by Enomoto Kasei Co., Ltd., keyless chamber TH412) and left for 240 hours. Thereafter, the connection resistance was measured again. Note that the number of samples to be measured is 20 as in the case of measuring the connection resistance. Table 1 shows an average value of the resistance values ( ⁇ ) obtained in Example 1 and the comparative example.
  • connection resistance was lower in Example 1 than in Comparative Example. That is, the connection state between the electronic component and the board circuit is stable, and the connection reliability is improved. Looking at the connection resistance after the wet heat test, the resistance value was considerably increased in the comparative example. This is because the electrode part of the electronic component is tin-plated, so that the compatibility with the conductive adhesive is poor and corrosion occurs at the connection interface. In Example 1, the connection resistance after wet heat hardly changed.
  • Example 2 As Example 2, a mounting substrate shown in FIG. A circuit (first conductor) was produced on the PET film in the same manner as in Example 1. At this time, the film thickness of the circuit was 10 ⁇ m, and the land diameter was 1.2 mm. Next, the conductive paste which has a copper filler as a main component was apply
  • Example 3 As Example 3, a mounting substrate on which a resist was arranged as shown in FIG. 4B was produced. Similarly to Example 2, a circuit (first conductor) and a copper land (second conductor) were produced on a PET film. Next, a resist was applied by screen printing so as to cover the circuit and the copper land except for the area of the copper land where the low melting point solder was applied, and dried by heating. The resist film thickness was 20 ⁇ m, and the diameter of the portion where the low melting point solder was applied (on the copper land where the resist was not applied) was 1.2 mm. Thereafter, low melting point solder was formed in the same manner as in Example 1 to mount electronic components. The obtained mounting substrate was referred to as Example 3.
  • Example 4 As Example 4, a mounting substrate shown in FIGS. 6A and 6B was produced. A circuit (first conductor) and a copper land (second conductor) were produced on the PET film in the same manner as in Example 1. At this time, the circuit land had a diameter of 1.6 mm and the copper land had a diameter of 1.2 mm. Thereafter, a resist was printed by screen printing so as to cover the exposed circuit to the vicinity of the circuit land. Further, a thermosetting non-conductive adhesive was applied by screen printing to a region of the copper land other than the portion where the low melting point solder was applied and to the exposed circuit land and circuit.
  • the film thickness of the thermosetting non-conductive adhesive is 30 ⁇ m
  • the diameter of the portion where the low melting point solder is applied (on the copper land, the portion where the thermosetting non-conductive adhesive is not applied) is: It was set to 1.2 mm. Thereafter, low melting point solder was formed in the same manner as in Example 1 to mount electronic components.
  • the obtained mounting substrate was referred to as Example 4.
  • Example 5 As Example 5, a mounting substrate shown in FIGS. 8A and 8B was produced. In the same manner as in Example 4, a circuit and a copper land were produced. Thereafter, the resist was printed by screen printing so as to cover the circuit, the land of the circuit, and the copper land except for the portion where the low melting point solder of the copper land was applied, and dried by heating. Next, a thermosetting non-conductive adhesive was printed on the portion corresponding to the lower part of the mounted component by screen printing. Thereafter, low melting point solder was formed in the same manner as in Example 1 to mount electronic components. The obtained mounting substrate was referred to as Example 5.
  • connection resistance For the mounting substrates of Examples 1 to 5 and Comparative Example obtained above, the connection resistance, appearance, and migration were evaluated. The results are shown in Table 2. Each evaluation method is as follows. The connection resistance evaluation method is as described above, and the number of samples to be measured is 20. Table 2 shows the average resistance values ( ⁇ ) obtained in Examples 1 to 5 and the comparative example.
  • the mounting part of the electronic component was observed from the back of the mounting substrates of Examples 1 to 5 and Comparative Example to confirm whether the conductive adhesive or solder was connected.
  • the table shows the case where connection is not occurring as GOOD and the case where connection is occurring as BAD. Note that the number of mounting boards observed was 50 for each of Examples 1 to 5 and Comparative Example.
  • connection resistance was lower in Examples 1 to 5 than in the comparative example. That is, the connection state between the electronic component and the board circuit is stable, and the connection reliability is improved.
  • the comparative examples defects due to the connection of the conductive adhesive were observed, whereas in Examples 1 to 5, the defects due to the connection were lost.
  • the solder materials are used in the first to fifth embodiments, so that self-alignment, which is a characteristic of the solder, works and connection is difficult to occur. As a result, it can be seen that even small-sized components can be mounted without causing defects.
  • Example 1 In the observation result of migration, migration occurred in many mounting substrates in the comparative example, whereas in Example 1, the occurrence of migration could be effectively suppressed. In particular, no migration was observed at all in the mounting substrates of Examples 2 to 5 in which a resist and an adhesive were disposed between the electronic component and the PET film, and it was confirmed that migration can be prevented more effectively. .
  • the fixing strength of the electronic component of Example 1 was equivalent to the comparative example.
  • the fixing strength of the electronic component could be improved. From the above, in Examples 1 to 5, it can be said that the electronic component can be stably mounted regardless of the electrode made of tin of the electronic component and the size of the electronic component. In particular, it can be said that by arranging the resin between the electronic component and the insulating base material, it is possible to prevent migration and improve the fixing strength of the electronic component.
  • the present invention can be applied to membrane circuit boards and the like, and can be used for various electric devices and electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

 本発明の実装基板は、絶縁性基材と;この絶縁性基材の一面に複数配され、ランドを有した第一導体と;このランド上に配された第二導体と;前記第二導体上にそれぞれ個別に設けられた半田と;前記半田とそれぞれ独立して接する電極部を有する電子部品と;を備え、前記第一導体は少なくとも銀を含む第一部材から、前記第二導体は少なくとも銅を含む第二部材から、前記半田は少なくとも錫を含む第三部材からそれぞれ構成される。

Description

実装基板及びその製造方法
 本発明は実装基板及びその製造方法に係り、より詳しくは、接続信頼性に優れ、小型の電子部品が実装可能な実装基板及びその製造方法に関する。
 本願は、2007年12月26日に、日本国に出願された特願2007-334593号に基づき優先権を主張し、その内容をここに援用する。
 従来、回路基板等への電子部品の実装には、半田や導電性接着剤が用いられている。
 例えば特許文献1には、図12に示すような接続端子構造が開示されている。この接続端子構造は、第1のランド102を有した配線パターンが設けられた配線基板101を備え、第1のランド102上には、半田ヌレ性の悪い金属材からなる第2のランド103が設けられ、この第2のランド103上には、半田ヌレ性の良い貴金属材からなる半田接続用の第3のランド104が設けられている。この第3のランド104の外周には、半田106の排除面を形成する第2のランド103が存在する。そして、半田106を介して電子部品140の電極部141と配線基板101とが電気的に接続されている。この接続端子構造では、配線基板101が、エポキシ樹脂系、セラミック、あるいはアルミナであることから、配線パターンは銅から構成される回路である。そのため、特許文献1では、銅からなる配線上での一般的な半田付け実装の問題、例えば、半田接続用ランド(第3のランド104)や半田106の剥離等に対処している。
 一方、メンブレン回路基板へ電子部品を実装する場合、メンブレン回路基板は、基板としてポリエチレンテレフタレート(以下、PETと呼ぶことがある)が用いられ、この基板上に銀ペーストの印刷により回路が形成されている。従って、半田付けによって電子部品を実装する場合では、半田として、PETが脆化しない低融点半田(半田付け温度が約165℃以下)を用いる必要がある。
 そこで、メンブレン回路基板への実装に関しては、半田の代わりに、比較的低温(約165℃以下)で硬化反応が起きる導電性接着剤が使用されている。図13Aは、メンブレン回路基板に、導電性接着剤を用いて電子部品が実装された実装基板の一例を模式的に示す断面図である。基板210上に配された導電性ペースト回路220は、導電性接着剤260(260a)を介して電子部品240の電極部241と電気的に接続されている。導電性接着剤260aの外周域は、これに固着した封止樹脂261で封止されている。
 この場合、電子部品240の接着強度は、導電性接着剤260に含まれるエポキシ樹脂や封止樹脂261によって確立される。したがって、半田で実装した場合とは異なり、金属接合による接続をとっていないことから、接続状態が安定せず、導通不良を発生させる虞があった。
 また、最近は電子部品240の電極部241が金メッキの他に錫メッキされたものが増えている。導電性接着剤260は通常、銀粉とエポキシ樹脂が主な成分となっているため、この場合だと、錫と、導電性接着剤260に含まれる銀とはガルバニック腐食が起きるなど相性が悪い。また、導電性接着剤260と電極部241との接続部界面において、エポキシ樹脂成分中に水分が入り込むこと、局部電池腐食(ガルバニック腐食)が発生し、錫の溶解もしくは酸化が起き、接続不良が発生する虞がある。これを防止するためには、水分が入り込まないように吸湿性を低減したバインダーを使用する必要がある。
 さらに、導電性接着剤260aは、電子部品240を実装した際につぶれて拡がり、その後の加熱工程では、粘度が下がって塗布した場所から流れ出る虞がある。そのため、図13Bに示すように、2箇所に塗布された導電性接着剤260aが空間250に流れ出し、つながった状態(260b)となる可能性がある。よって、導電性接着剤260aを塗布する2箇所の距離を、ある程度広くしなければならないため、従来の実装基板ではサイズの小さい電子部品を実装することが困難であった。
特開2006-120677号公報
 本発明は、上記事情に鑑みてなされたものであって、接続信頼性に優れ、かつ、小型の電子部品が実装可能な実装基板の提供を目的とする。
 また、錫メッキ加工された小型の電子部品を実装することが可能で、かつ歩留りの向上が図れる実装基板の製造方法の提供を目的とする。
  本発明は、上記課題を解決して係る目的を達成するために以下の手段を採用した。
(1)本発明の実装基板は、絶縁性基材と;この絶縁性基材の一面に複数配され、ランドを有した第一導体と;このランド上に配された第二導体と;前記第二導体上にそれぞれ個別に設けられた半田と;前記半田とそれぞれ独立して接する電極部を有する電子部品と;を備え、前記第一導体は少なくとも銀を含む第一部材から、前記第二導体は少なくとも銅を含む第二部材から、前記半田は少なくとも錫を含む第三部材からそれぞれ構成される。
(2)前記第二部材は、さらに銀を含むのが好ましい。
(3)前記絶縁性基材は、ポリエチレンテレフタレートからなるのが好ましい。
(4)前記ランドの大きさは、前記第二導体よりも大きいのが好ましい。
(5)少なくとも前記電子部品と前記絶縁性基材との間に樹脂が配されているのが好ましい。
(6)本発明の実装基板の製造方法は、絶縁性基材と;この絶縁性基材の一面に複数配され、ランドを有した第一導体と;このランド上に配された第二導体と;前記第二導体上にそれぞれ個別に設けられた半田と;前記半田とそれぞれ独立して接する電極部を有する電子部品と;を備え、前記第一導体は少なくとも銀を含む第一部材から、前記第二導体は少なくとも銅を含む第二部材から、前記半田は少なくとも錫を含む第三部材からそれぞれ構成される実装基板の製造方法であって、 前記絶縁性基材の一面に前記第一導体及び前記第二導体を形成する工程と;前記第二導体上に前記半田を形成する工程と;個々の前記半田に対して、個別に各々の前記電極部を接触させ前記電子部品を実装する工程と;を有する。
(7)前記電子部品と前記絶縁性基材との間に樹脂を配し、少なくとも前記電子部品と前記絶縁性基材との間を、この樹脂で充填する工程をさらに有するのが好ましい。
 上記(1)に記載の実装基板では、銀が含まれた導電性接着剤でなく、錫を含む半田を用いて電子部品の電極部と第二導体とが電気的に接続されている。したがって、電子部品の電極部が錫から構成されていたとしても、従来のようにガルバニック腐食等が発生して、接続状態が不安定となることがない。また金属接合により第二導体と電極部とが電気的に接続されているので、安定した導通を確保でき、接続信頼性の向上が図れる。更に、導電性接着剤のように、各々の半田の粘度が低下して流れ出し、それぞれの半田同士が電気的に接続されることが生じ難い。そのため、それぞれの半田間の距離を狭くできる。ゆえに、小型の電子部品を実装可能な実装基板が得られる。
 上記(6)に記載の実装基板の製造方法によれば、半田を用いて第二導体と電子部品の電極部とを電気的に接続するので、実装基板の製造工程で、導電性接着剤のように半田の粘度が低下し、各々の半田が電気的に接続され難い。従って、歩留りの向上が図れる。また、それぞれの半田間の距離を狭く作製でき、小型の電子部品が実装可能となる。
図1は、本発明の第1実施形態に係る実装基板を模式的に示した断面図である。 図2Aは、同実施形態に係る実装基板の製造方法を模式的に示した断面工程図である。 図2Bは、同実施形態に係る実装基板の製造方法を模式的に示した断面工程図である。 図2Cは、同実施形態に係る実装基板の製造方法を模式的に示した断面工程図である。 図2Dは、同実施形態に係る実装基板の製造方法を模式的に示した断面工程図である。 図3Aは、本発明の変形例に係る実装基板を模式的に示した断面図である。 図3Bは、同実施形態に係る実装基板を模式的に示した平面図である。 図3Cは、同実施形態に係る実装基板の、ランド周辺を模式的に示した平面図である。 図4Aは、本発明の第2実施形態に係る実装基板を模式的に示した断面図である。 図4Aは、同実施形態に係る実装基板の変形例を模式的に示した断面図である。 図5Aは、本発明の第3実施形態に係る実装基板を模式的に示した断面図である。 図5Bは、同実施形態に係る実装基板を模式的に示した平面図である。 図5Cは、同実施形態に係る実装基板の、ランド周辺を模式的に示した平面図である。 図6Aは、本発明の第4実施形態に係る実装基板を模式的に示した断面図である。 図6Bは、同実施形態に係る実装基板を模式的に示した平面図である。 図7Aは、同実施形態に係る実装基板の製造方法を模式的に示した断面工程図である。 図7Bは、同実施形態に係る実装基板の製造方法を模式的に示した断面工程図である。 図7Cは、同実施形態に係る実装基板の製造方法を模式的に示した断面工程図である。 図7Dは、同実施形態に係る実装基板の製造方法を模式的に示した断面工程図である。 図7Eは、同実施形態に係る実装基板の製造方法を模式的に示した断面工程図である。 図8Aは、本発明の第5実施形態に係る実装基板を模式的に示した断面図である。 図8Bは、同実施形態に係る実装基板を模式的に示した平面図である。 図9Aは、同実施形態に係る実装基板の製造方法を模式的に示した断面工程図である。 図9Bは、同実施形態に係る実装基板の製造方法を模式的に示した断面工程図である。 図9Cは、同実施形態に係る実装基板の製造方法を模式的に示した断面工程図である。 図9Dは、同実施形態に係る実装基板の製造方法を模式的に示した断面工程図である。 図9Eは、同実施形態に係る実装基板の製造方法を模式的に示した断面工程図である。 図9Fは、同実施形態に係る実装基板の製造方法を模式的に示した断面工程図である。 図10Aは、本発明の第1実施形態に係る実装基板の断面を、電子顕微鏡によって撮影した画像である。 図10Bは、図10Aにおいて、銅の分布を示した図である。 図10Cは、図10Aにおいて、銀の分布を示した図である。 図11Aは、第二導体内部の元素分析を行なった結果を示す図である。 図11Bは、第二導体と半田との界面近傍で元素分析を行なった結果を示す図である。 図12は、従来の実装基板の一例を模式的に示した断面図である。 図13Aは、従来の実装基板の他の例を模式的に示した断面図である。 図13Bは、従来の実装基板の他の例を模式的に示した断面図である。 図14は、従来の実装基板の他の例を模式的に示した断面図である。
符号の説明
  1(1A,1B,1C,1D,1E,1F,1G) 実装基板
  10                      絶縁性基材
  21                      第一導体
  21b                     ランド
  22                      第二導体
  30(30A、30B)             半田
  40                      電子部品
  41(41A、41B)             電極部
  42                      本体
  50                      空間
  60                      樹脂
  70                      レジスト
 以下、本発明を、図面を参照して詳細に説明するが、本発明はこれに限定されるものではなく、本発明の主旨を逸脱しない範囲において種々の変更が可能である。
<第1実施形態>
 図1は、本発明の実装基板の一例を模式的に示した断面図である。
 本発明の実装基板1は、絶縁性基材10と;この絶縁性基材10の一面10aに複数配され、ランド21bを有した第一導体21と;このランド21b上に配された第二導体22と;第二導体22上にそれぞれ個別に設けられた半田30と;半田30とそれぞれ独立して接する電極部41を有する電子部品40と;から概略構成されている。また、第一導体21は少なくとも銀を含む第一部材から、第二導体22は少なくとも銅を含む第二部材から、半田30は少なくとも錫を含む第三部材からそれぞれ構成されている。
 以下、それぞれについて詳細に説明する。
 絶縁性基材10は、例えば樹脂やガラス等からなり、このうち、可撓性を有することから、樹脂が好ましく、PETからなるフィルム状の樹脂シートが好適である。
 第一導体21及び第二導体22は、絶縁性基材10の一面10aに複数配され、電子部品40の電極部41と導通をとる。第一導体21は、この第一導体21のランド21bとその周囲を除いた部位とが露出しないように、図示略のレジストにより被覆されている。このレジストとしては、従来公知のものを適用できる。図中、第一導体21及び第二導体22は、それぞれ2つ図示されているが、特にこの数に限定されるわけではなく、例えば、絶縁性基材10と電子部品40の本体42との空間部50において、複数の第一導体21及び第二導体22と、半田30と、電子部品40の電極部41とが配され、それぞれが電気的に接続されていてもよい。
 第一導体21と第二導体22とは、両者の抵抗値が近く、また界面で生じる化学反応が極力抑制されるものからそれぞれ構成されることが好ましい。このような第一導体21としては、少なくとも銀を含む第一部材からなる。第一部材としては、例えば、銀に加え、白金、金、ニッケル、パラジウム等が含まれた合金であってもよい。第一導体21が銀を含む第一部材からなるので、第二導体22としては、銀と抵抗値が近く、第一導体21と第二導体22との界面で化学反応等が生じ難い銅を少なくとも含む第二部材からなることが好ましい。第二部材として例えば、銅に加え、銀、金、白金、ニッケル、パラジウム等が含まれた合金であってもよい。これら第一導体21と第二導体22との厚さは、例えば1~100μmである。
 半田30(30A、30B)は、第二導体22と電子部品40の電極部41とを電気的に接続する。半田30は、少なくとも錫を含む第三部材からなる。第三部材としては、錫に加え、電極部41が仮に錫を含んでいたとしても、錫と相性のよいビスマスを更に含むものが好ましい。このような半田30としては、例えばSn-Bi系半田が挙げられる。Bi含有量は適用する電子部品40の電極部41や絶縁性基材10、第二導体22等を考慮して適宜調節できるが、例えばSn42Bi58などの半田30を用いることができる。
 特に絶縁性基材10がPET等のフィルムよりなるメンブレン回路基板に半田付けをする場合、通常の鉛フリー半田であると、半田付け温度が180℃以上であるため、絶縁性基材10に損傷が生じてしまう。従って、半田付け温度が165℃以下であるSn-Bi系低融点半田を用いることが好ましい。
 電子部品40は、絶縁性基材10上の第一導体21及び第二導体22と電気的に接続されるものであって、本体42と、第二導体22に電気的に接続される電極部41とからなる。
 本体42としては、特に限定されるものではなく、公知のものを適用することができる。
 電極部41は、図1で示すように電子部品40の一面40aから側面40bを経由し、電子部品40の他面40cにまで渡って配されている。電極部41としては、公知のものを用いることができ、例えば、錫、金、銅等よりなるものが挙げられる。
 なお、電極部41は、図1の形状に限るものではなく、電子部品40の一面40aから側面40bに配されたものでもよいし、電子部品40本体42の、絶縁性基材10と対向する一面40aにのみ配されたものでもよい。電極部41の領域を電子部品40の側面40bにまで延設し、半田30と導通をとることで、半田30と電極部41との接触面積が増大し、より接続信頼性の向上を図ることができる。また、電子部品40の角に電極部41を配した場合、3つの面で半田30と電気的に接続することになるので、より接触面積を増大させることができ、接続信頼性を向上できる。また、図1に示すように、電子部品40の一面40aから他面40c側にまで延設した電極部41としておけば、電子部品40の他面40c側においても、他の基板、あるいは他の電子部品と導通を図ることが可能である。
 本発明の実装基板1Aは、第二導体22と電子部品40の電極部41とが半田30を介して金属接合により電気的に接続されている。したがって、接続状態が安定して導通不良が低減される。また、半田30は、導電性接着剤のように粘度が低下して流れ出し、各々の半田が電気的に接続されることはない。ゆえに、それぞれの半田30間の距離を狭くできる。その結果、小型の電子部品40を備えることが可能な実装基板1が得られる。
 第一導体21は銀を含む第一部材から構成され、第二導体22は銅を含む第二部材から構成されている。ゆえに、第一導体21とのぬれ性が悪いが、第二導体22とはぬれ性が良好である低融点半田等の錫を含んだ半田30を用いることで、半田30と導体20との接続信頼性を向上できる。また、錫を含んだ半田30と、銅を含んだ第二導体22との接触は、錫を含んだ半田30と銀を含んだ第一導体21との接触と比較し、ガルバニック腐食が生じ難い。更に、この錫を含んだ半田30は、電極部41が錫や銅、金等から構成されたいずれのものであっても、安定した接続状態を保てる。したがって、半田30と第二導体22、及び半田30と電極部41との接続信頼性の向上が図れる。第二導体22に含まれる銅は、その抵抗値が第一導体21に含まれる銀の抵抗値と近いことから、第一導体21と第二導体22との間の界面で化学反応が生じ難い。以上より、接続信頼性の向上した実装基板1が得られる。
 次に、本実施形態の実装基板1Aの製造方法について、図2A~2Dを参照して説明する。
 まず、図2Aに示すように、絶縁性基材10の一面10aに、銀ペースト等からなる第一部材を例えばスクリーン印刷で塗布し、加熱によって乾燥させ、ランド21bを有した第一導体21を形成する。
 次に、図2Bに示すように、第一導体21のランド21b上に、銅ペースト等からなる第二部材を、例えばスクリーン印刷で塗布し、加熱によって乾燥させ、第二導体22を形成する。
 次に、図2Cに示すように、第二導体22上に、例えばスクリーン印刷やディスペンスにより、錫を含んだ第三部材からなる半田30、例えば、Sn/Bi系低融点半田30を塗布する。半田30同士の距離、及び絶縁性基材10と電子部品40との距離は、実装する電子部品40に応じて適宜調節できる。
 次に、図2Dに示すように、半田30が塗布された位置に電子部品40の電極部41を位置合わせする。その後、個々の半田30に対して、各々の電極部41を接触させて加熱し、電子部品40を実装する。
 以上で、本実施形態の実装基板1Aが得られる。
 本実施形態の実装基板1Aの製造方法は、半田30を介して第二導体22と電子部品40の電極部41とを電気的に接続するので、導電性接着剤のように半田30の粘度が低下し、各々の半田30A,30Bが電気的に接続されることはない。従って、それぞれの半田30A,30B間の距離を狭く作製することができるため、小型の電子部品40を実装できる。また、半田30のセルフアライメントにより、従来のように導電性ペーストを用いた場合よりも精確に、電子部品40を実装できる。
<変形例>
 図3A,3B,3Cは、本実施形態の変形例に係る実装基板1Bの一例を、模式的に示した図である。図3Aは断面図、図3Bは平面図、図3Cはランド21b近傍の平面図である。
 本変形例の実装基板1Bは、第二導体22が第一導体21のランド21bよりも大きく形成されている。
 第二導体22の半径R2は、図3Cに示すように、第一導体21のランド21bの半径R1よりも、α分だけ大きくなっている。αは、第二導体22を形成する際の印刷合わせ精度よりも大きいのが好ましく、例えば0.2mm以上である。第二導体22は、図3A~3Cに示すように、ランド21bと同心円状に必ずしも形成する必要はない。
 第二導体22の厚さは、本実施形態の実装基板を適用する電子機器によって適宜調節される。実装基板に複数回の屈曲が生じるような場合では、第二導体の厚さは薄い方が好ましい。第二導体22の大きさに関しても同様で、実装基板に複数回の屈曲が生じる場合は、その半径R2は小さい方が好ましい。また、屈曲特性よりも、マイグレーションやガルバニック腐食、半田30短絡の防止を優先させたい場合には、第二導体22の半径R2を、十分に大きくする。
 本変形例の実装基板1Bによれば、第一導体21のランド21bが第二導体22で覆われているため、半田30が溶融・硬化時にランド21bに流れ込むことがない。そのため、半田30とランド21bとが直接接触することがなくなる。その結果、半田30の短絡や、半田30とランド21bとでガルバニック腐食やマイグレーションが生じるのを防止できる。また、Sn/Bi系低融点半田を用いた場合、この半田は銅(第二導体22)とのぬれ性がよいことから、第二導体22を大きくすることで、半田30との接続信頼性が向上する。
<第2実施形態>
 図4Aは、本発明の第2実施形態に係る実装基板1Cを模式的に示した断面図である。本実施形態の実装基板1Cが、第1実施形態の実装基板1Aと異なる点は、少なくとも電子部品40と絶縁性基材10との間の空間50に樹脂60が配されている点である。本実施形態においても、第一導体21は、この第一導体21のランド21bとその周囲を除いた部位が露出しないようにレジスト70により被覆されている。
 樹脂60は、熱硬化型で、かつ不導電性の接着剤として用いられるものであれば、特に限定されず、例えばエポキシ樹脂、アクリル樹脂等が適用できる。
 樹脂60を、電子部品40と絶縁性基材10との間の空間50に配し、電子部品40と絶縁性基材10とを接着することで、電子部品40の絶縁性基板10への固着強度を高められる。また、電子部品40と絶縁性基材10との間の空間50のみでなく、図4Aに示すように、露出した第一導体21とランド21bと第二導体22とを被覆するように、この樹脂60配して封止するのが好ましい。これにより、結露等による水分が、導電部(第一導体21、第二導体22、および半田30と、これらの接続部位)に浸入し難くなる。そのため、マイグレーション等の生じ難い実装基板を提供できる。
  導電性接着剤を用いた従来の実装基板では、図14に示すように、樹脂262で封止をする際は、電子部品240をも覆うように行なっていた。これに対し、本実施形態では、樹脂60が電子部品40を覆うことなく、導電部の封止と空間50の封止とを行なえる。そのため、本実施形態の実装基板1Cでは、上述した効果に加え、従来の実装基板よりも高密度実装が可能となる。
  本実施形態では、図4Bに示すように、第一導体21と第二導体22とが露出しないように封止している樹脂60に代えて、第一導体21が露出しないように配されているレジスト70を用いて、電子部品40と低融点半田30以外を被覆してもよい。この際、レジスト70の厚さは、適用する電子機器等に応じて適宜調節できるが、例えば20μm~40μmである。電子部品40を実装するため、レジスト70が厚すぎると、実装特性(接続性や機械強度等)が低下する。一方、レジスト70が薄すぎると、レジストとしての特性を満たすことが困難となる。図4Bに示す実装基板1Dでは、上述した樹脂60を用いた場合と同様に、結露等によって水分が導電部(第一導体21、第二導体22、および半田30と、これらの接続部位)に浸入し難くなる。そのため、マイグレーション等の生じ難い実装基板を提供できる。
 樹脂60は、本実施形態に限らず、上述した変形例の実装基板1Bにおいても同様に、適用できる。この場合も、第2実施形態の実装基板1Cと同様な効果が得られる。
<第3実施形態>
 図5A,5B,5Cは、本発明の第3実施形態に係る実装基板1Eを模式的に示した図である。図5Aは断面図、図5Bは平面図、図5Cはランド21b周辺の平面図である。本実施形態の実装基板1Eは、第二導体22が、第一導体21のランド21bよりも小さく形成されている。
 第一導体21のランド21bの半径R1は、図5Cに示すように、第二導体22の半径R2よりも、β分大きくなっている。βは、第二導体22を形成する際の印刷合わせ精度よりも大きいのが好ましく、例えば0.2mm以上である。第二導体22は、図5A~5Cに示すようにランド21bと同心円状に必ずしも形成する必要はない。
 本実施形態の実装基板1Eは、上述した第1実施形態の実装基板1Aで得られる効果に加え、銅からなる第二導体22が、第一導体21のランド21bよりも小さいため、上述した変形例の実装基板1Bよりも、可撓性に優れたものとなる。ゆえに、本実施形態の実装基板1Eは、繰り返しの屈曲が生じるような電子機器に最適である。
<第4実施形態>
  図6A,6Bは、本発明の第4実施形態に係る実装基板1Fを模式的に示した図である。図6Aは断面図、図6Bは平面図である。本実施形態の実装基板1Fが第3実施形態の実装基板1Eと異なる点は、樹脂60が、少なくとも電子部品40と絶縁性基材10との間の空間50に配されている点である。
 樹脂60としては、上述した第2実施形態と同様である。本実施形態の実装基板1Fによれば、上述した第2実施形態の実装基板1Bで得られる効果と、第3実施形態の実装基板1Eで得られる効果とが得られる。
  本実施形態でも、樹脂60に代えて、レジスト70を用いて、第一導体21と第二導体22とが露出しないように、電子部品40と低融点半田30以外を被覆してもよい。この場合、上述した樹脂60を用いた場合と同様に、結露等による水分が導電部(第一導体21、第二導体22、および半田30と、これらの接続部位)に浸入し難くなる。そのため、マイグレーション等の生じ難い実装基板を提供できる。
  次に、本実施形態の実装基板1Fの製造方法について図7A~7Eを参照して説明する。
 まず、図7A~7Bに示すように、第1実施形態の際と同様に、絶縁性基材10の一面10aに、第一導体21と第二導体22とを形成する。この際、第二導体22は、第一導体21のランド21bが第二導体22よりも、印刷あわせ精度より大きくなるように形成する。これにより、第二導体22が常にランド21bの内側となるように形成できる。
 次に、図7Cに示すように、露出した第一導体21を覆うように、レジスト70をランド21bの近傍にまでスクリーン印刷で印刷、乾燥する。さらに、第二導体22の、低融点半田30を塗布する部分以外の領域と、露出したランド21b及び第一導体21とに、樹脂60をスクリーン印刷で印刷する。樹脂60をこれらの領域に配することで、後の工程で、第一導体21と第二導体22とが露出せず、かつ導電部(第一導体21、第二導体22、および半田30と、これらの接続部位)を含むように、この樹脂60で封止できる。
 次に、図7Dに示すように、第1実施形態の際と同様に、低融点半田30を第二導体22上に塗布する。
 次に、図7Eに示すように、半田30が塗布された位置に電子部品40の電極部41を位置合わせし、電子部品40を実装する。その後、加熱する。
 以上で、本実施形態の実装基板1Fが得られる。
 本実施形態の製造方法では、低融点半田30が塗布される時には、ランド21bが樹脂60で覆われている。そのため、低融点半田30の溶融・硬化時に、この低融点半田30がランド21bに流れ込む虞がない。ゆえに、低融点半田30とランド21bとが接触することがなく、これらの間で生じるガルバニック腐食や、マイグレーションを防止できる。
<第5実施形態>
 図8A,8Bは、本発明の第5実施形態に係る実装基板1Gを模式的に示した図である。図8Aは断面図、図8Bは平面図である。本実施形態の実装基板1Gが第3実施形態の実装基板1Eと異なる点は、レジスト70が、第二導体22の低融点半田30が配された領域を除いて、この第二導体22と第一導体21とランド21bとを覆うように配されている点と、空間50に樹脂60が配され、この樹脂60が電子部品40と絶縁性基材10とを接着している点である。レジスト70の厚さは、適用する電子機器等に応じて適宜調節できるが、例えば20μm~40μmである。電子部品40を実装するため、レジスト70が厚すぎると、実装特性(接続性や機械強度等)が低下する。一方、レジスト70が薄すぎると、レジストとしての特性を満たすことが困難となる。
 本実施形態の実装基板1Gでは、レジスト70で第一導体21とランド21bと第二導体22とが被覆されているため、これらが露出しない。そのため、上述した第3実施形態の実装基板1Eと同様に、結露等による水分が導電部(第一導体21、第二導体22、および半田30と、これらの接続部位)に浸入し難くなる。そのため、実装部全体での耐マイグレーション特性の向上が図れる。さらに、樹脂60により電子部品40と絶縁性基材10とが接着されているため、実装部全体の固着強度の向上が図れる。
  次に、本実施形態の実装基板1Gの製造方法について図9A~9Fを参照して説明する。
 まず、図9A~9Bに示すように、第4実施形態の際と同様に、絶縁性基材10の一面10aに、第一導体21と第二導体22とを形成する。
 次に、図9Cに示すように、第二導体22の低融点半田30を塗布する部分を除いて、第一導体21とランド21bと第二導体22とを被覆するようにレジスト70をスクリーン印刷で印刷する。その後、加熱して乾燥させる。
 次に、図9Dに示すように、電子部品40を実装する下部に相当する部分に、スクリーン印刷もしくはディスペンスで樹脂60を塗布する。
 次に、図9Eに示すように、第1実施形態の際と同様に、低融点半田30を塗布する。
 次に、図9Fに示すように、半田30が塗布された位置に電子部品40の電極部41を位置合わせ、電子部品40を実装する。その後、加熱する。
 以上で、本実施形態の実装基板1Gが得られる。
 本実施形態の製造方法では、ランド21bがレジストで覆われているため、低融点半田30の溶融・硬化時に、この低融点半田30がランド21bに流れ込む虞がない。ゆえに、ガルバニック腐食や、マイグレーションの防止が図れる。また、本実施形態の製造方法では、レジスト70で第一導体21とランド21bと第二導体22とを被覆した後に樹脂60を塗布または印刷する。そのため、この第二導体22の端部に配されたレジスト70は、第二導体22の半田30が塗布される部位に樹脂60が侵入するのを抑制できる。ゆえに、歩留まりの向上が図れる。
 上述した実装基板1(1A~1G)では、第二導体22を形成する第二部材として、さらに銀を含むものが用いられる。この銀を含む第二部材としては、例えば銀メッキ銅粉が挙げられる。この場合、銀メッキで銅粉をコーティングすることで、銅粉が酸化するのを防止できる。そのため、導電性の向上が図れる。図10Aは、第二導体22として銀メッキ銅粉を用いて作製された第1実施形態の実装基板において、その断面を電子顕微鏡で撮影して得られた画像である。倍率は、2000倍で撮影をした。図10Bは、図10Aにおいて、銅の分布を検出した図である。図10Cは、図10Aにおいて、銀の分布を検出した図である。図11Aは、銀メッキ銅粉を用いて作製された第二導体22に関し、その内部の元素分析を行なった結果ある。図11Bは、銀メッキ銅粉を用いて作製された第二導体22と半田30との界面の元素分析をSEM-EDSにより行なった結果である。
 図10A~10C及び図11A~11Bに示すように、銀メッキ銅粉を用いて第二導体22を作製した場合では、第二導体22と半田30との界面に銀は存在していない。したがって、第二導体22をなす第二部材として、銀メッキ銅粉を用いた場合であっても、第二導体22と半田30とでガルバニック腐食が生じるのを抑制できる。さらには、銅粉の酸化を防止することで、導電性の向上が図れる。
<実施例1の作製>
 厚さ100μmのPETフィルムを絶縁性基材として用いた。このPETフィルム上に、銀フィラーを主成分とする導電性ペーストをスクリーン印刷にて塗布し、回路パターンを作製した。この際、回路パターンの膜厚は10μmとした。その後、導電性ペーストを加熱により乾燥させ、絶縁性基材上に、ランドを有した回路としての第一導体を形成した。
 次に、第一導体のランド上に、銅フィラーを主成分とする導電性ペーストをスクリーン印刷にて塗布した。その後、導電性ペーストを加熱により乾燥させ、第二導体を形成した。
 次に、第二導体上に、ディスペンサーでSn/Bi系低融点半田を塗布した。なお、半田の塗布条件は、ノズル径が0.2mm、エアー圧力が60kPa、吐出時間は500msec、第二導体からノズルまでの高さを0.1mmとした。
 上記で塗布したSn/Bi系低融点半田と電子部品の電極部とが電気的に接続するように電子部品を実装した。電子部品としては、寸法(L×W×H)が、1.6×0.8×0.45mm、電極部が錫メッキされたジャンパーチップ抵抗器を使用した。その後加熱して、Sn/Bi系低融点半田を溶解させて実装基板を作製し、これを実施例1とした。
<比較例の作製>
 実施例1と同様に第一導体、第二導体を形成し、この第二導体上にディスペンサーを用いて導電性接着剤を塗布した。なお、導電性接着剤の塗布条件は、ノズル径が0.2mm、エアー圧力が50kPa、吐出時間が200msec、第二導体からノズルまでの高さを0.1mmとした。
 次に、実装機を用いて、導電性接着剤を塗布した位置に、電子部品の錫メッキにより形成された電極部が合わさるように、電子部品を実装した。その後、導電性接着剤を乾燥させて硬化した。なお、電子部品は実施例と同一である。
 次に、ディスペンサーを用い、実装された電子部品の四辺を覆うように封止樹脂として熱硬化性樹脂を塗布した。この際、封止樹脂が電子部品の上面に付着しないようにした。
 その後、封止樹脂を硬化させて実装基板を作製し、これを比較例とした。
<実施例1と比較例との対比>
 上記で得た実施例1及び比較例の実装基板に関して、接続抵抗と湿熱試験後の接続抵抗との評価を行った。その結果を表1に示す。それぞれの評価方法は以下の通りである。
<接続抵抗>
 実施例1及び比較例の実装基板に、定電圧電流発生装置(アドバンテスト社製、R6142)を用いて電流1mAを流し、マルチメーター(ケースレー社製、MODEL2000)により、電子部品と第一導体(基板回路)との間にかかる電圧を測定した。測定された電圧から、電子部品と第一導体との間の抵抗(接続抵抗)を算出した。被測定サンプル数は、実施例1及び比較例共に20であった。表1には、実施例1及び比較例で得られた抵抗値(Ω)の、平均値を示している。
<湿熱試験後の接続抵抗>
 接続抵抗を測定した実装基板を、試験槽(楠本化成社製、キーレスチャンバーTH412)にて60℃、95%RHの雰囲気中に置き、240時間放置した。その後、再度接続抵抗を測定した。
 なお、被測定サンプル数は、上記の接続抵抗を測定したものと同様に20である。表1には、実施例1及び比較例で得られた抵抗値(Ω)の、平均値を示している。
Figure JPOXMLDOC01-appb-T000001
 表1から、比較例に比べて実施例1では、接続抵抗が低くなっていることが判明した。つまり、電子部品と基板回路との接続状態が安定しているということであり、接続信頼性が向上していた。
 湿熱試験後の接続抵抗をみると、比較例では抵抗値がかなり上昇していた。これは、電子部品の電極部が錫メッキ処理されているため、導電性接着剤との相性が悪く、接続界面で腐食が発生したためである。実施例1では、湿熱後の接続抵抗がほとんど変化していなかった。
<実施例2>
 実施例2として、図3に示す実装基板を作製した。PETフィルム上に実施例1と同様に回路(第一導体)を作製した。この際、回路の膜厚は10μm、ランドの直径は1.2mmとした。次に、このランド上に銅フィラーを主成分とする導電性ペーストをスクリーン印刷にて塗布し、銅ランド(第二導体)を作製した。銅ランドの膜厚は30μm、銅ランドの直径は1.6mmとした。その後、実施例1と同様に低融点半田を形成し、電子部品の実装を行なった。得られた実装基板を、実施例2とした。
<実施例3>
 実施例3として、図4Bに示すようにレジストを配した実装基板を作製した。実施例2と同様に、PETフィルム上に回路(第一導体)と銅ランド(第二導体)を作製した。次に、銅ランドの、低融点半田が塗布される領域を除いて、回路と銅ランドを被覆するようにレジストをスクリーン印刷にて塗布し、加熱して乾燥させた。レジストの膜厚は20μm、低融点半田が塗布される部分(銅ランド上で、レジストが塗布されていない部位)の直径は、1.2mmとした。その後、実施例1と同様に低融点半田を形成し、電子部品の実装を行なった。得られた実装基板を、実施例3とした。
<実施例4>
 実施例4として、図6A,6Bに示す実装基板を作製した。PETフィルム上に実施例1と同様に回路(第一導体)と銅ランド(第二導体)とを作製した。この際、回路のランドの直径は1.6mm、銅ランドの直径は1.2mmとした。その後、露出した回路を覆うように、レジストを回路のランド近傍にまでスクリーン印刷で印刷した。さらに、銅ランドの、低融点半田を塗布する部分以外の領域と、露出した回路のランド及び回路とに、熱硬化型不導電性接着剤をスクリーン印刷にて塗布した。この際、熱硬化型不導電性接着剤の膜厚は30μm、低融点半田が塗布される部分(銅ランド上で、熱硬化型不導電性接着剤が塗布されていない部位)の直径は、1.2mmとした。その後、実施例1と同様に低融点半田を形成し、電子部品の実装を行なった。得られた実装基板を、実施例4とした。
<実施例5>
 実施例5として、図8A,8Bに示す実装基板を作製した。実施例4と同様に、回路と銅ランドとを作製した。その後、銅ランドの低融点半田を塗布する部分を除いて、回路と回路のランドと銅ランドとを被覆するように、レジストをスクリーン印刷で印刷し、加熱して乾燥させた。次に、実装部品下部に相当する部位に、熱硬化型不導電性接着剤をスクリーン印刷で印刷した。その後、実施例1と同様に低融点半田を形成し、電子部品の実装を行なった。得られた実装基板を、実施例5とした。
  上記で得た実施例1~5及び比較例の実装基板に関して、接続抵抗と、外観と、マイグレーションとの評価を行なった。その結果を、表2に示す。それぞれの評価方法は以下の通りである。
  接続抵抗の評価方法に関しては、上述したとおりであり、被測定サンプル数は、それぞれ20である。表2には、実施例1~5及び比較例で得られた抵抗値(Ω)の平均値を示している。
<外観>
 実施例1~5及び比較例の実装基板の裏から電子部品の実装部分を観察して、導電性接着剤、もしくは半田の繋がりが起きているかを確認した。繋がりが起きていない場合をGOOD、繋がりが起きている場合をBADとして表に示す。なお、観察した実装基板数は、実施例1~5、比較例それぞれ50である。
<マイグレーション>
 実施例1~5及び比較例の実装基板の、部品が実装された部分に水滴をたらし、回路に定電圧電流発生源(アドバンテスト社製、R6142)を使って電流5mAを負荷した。この電流を負荷した状態で、ランド間を観察して、マイグレーションの発生の有無を確認した。試験時間は、3時間行なった。多くの実装基板でマイグレーションが観察された場合をBAD、数個の実装基板でマイグレーションが観察された場合をNOT GOOD、マイグレーションが観察されなかった場合をGOODとした。観察した実装基板は、実施例1~5、及び比較例それぞれ50である。
Figure JPOXMLDOC01-appb-T000002
 表2から、比較例に比べて実施例1~5では、接続抵抗が低くなっていることが判明した。つまり、電子部品と基板回路との接続状態が安定しているということであり、接続信頼性が向上していた。外観の観察結果では、比較例においては、導電性接着剤の繋がりによる不良が観察されたのに対し、実施例1~5では繋がりによる不良がなくなっていた。これは、実施例1~5では半田材料を使用しているため、半田の特性であるセルフアライメントが働いて繋がりが起き難くなっている。これによって、小さいサイズの部品についても不良を発生させることなく実装可能になっていることが分かる。マイグレーションの観察結果では、比較例では多くの実装基板でマイグレーションが生じていたのに対し、実施例1では、マイグレーションの発生を効果的に抑制できた。特に、電子部品とPETフィルムとの間にレジストや接着剤を配した実施例2~5の実装基板では、マイグレーションは全く観察されず、より効果的にマイグレーションの防止を行なえるのが確認できた。
 上記で得た実施例1,4,5及び比較例の実装基板に関して、電子部品の固着強度の評価を行なった。その結果を、表3に示す。評価方法は以下の通りである。
<部品の固着強度>
 実施例1,4,5及び比較例の実装基板において、電子部品を横から押し、この電子部品が剥がれた際の強度を測定した。測定サンプル数は実施例1,4,5、及び比較例それぞれ20である。表3には、実施例1,4,5及び比較例で得られた固着強度(N)の、平均値を示している。
Figure JPOXMLDOC01-appb-T000003
 表3から、実施例1の電子部品の固着強度は比較例と同等であった。電子部品とPETフィルムとの間に接着剤を配することで、電子部品の固着強度を向上できた。
  以上から、実施例1~5において、電子部品の錫からなる電極や、電子部品のサイズに関係なく、安定して電子部品を実装することが可能になったと言える。特に、電子部品と絶縁性基材との間に樹脂を配することで、マイグレーションの防止と、電子部品の固着強度の向上とが図れることが可能になったといえる。
 本発明は、メンブレン回路基板等に適用して種々の電気機器や電子機器等に利用できる。

Claims (7)

  1.  絶縁性基材と;
     この絶縁性基材の一面に複数配され、ランドを有した第一導体と;
     このランド上に配された第二導体と;
      前記第二導体上にそれぞれ個別に設けられた半田と;
      前記半田とそれぞれ独立して接する電極部を有する電子部品と;
      を備え、
      前記第一導体は少なくとも銀を含む第一部材から、前記第二導体は少なくとも銅を含む第二部材から、前記半田は少なくとも錫を含む第三部材からそれぞれ構成されることを特徴とする実装基板。
  2.  前記第二部材は、さらに銀を含むことを特徴とする請求項1に記載の実装基板。
  3.  前記絶縁性基材は、ポリエチレンテレフタレートからなることを特徴とする請求項1または2に記載の実装基板。
  4.  前記ランドの大きさは、前記第二導体よりも大きいことを特徴とする請求項1に記載の実装基板。
  5.  少なくとも前記電子部品と前記絶縁性基材との間に樹脂が配されていることを特徴とする請求項1または4に記載の実装基板。
  6.  絶縁性基材と;この絶縁性基材の一面に複数配され、ランドを有した第一導体と;このランド上に配された第二導体と;前記第二導体上にそれぞれ個別に設けられた半田と;前記半田とそれぞれ独立して接する電極部を有する電子部品と;からなり、前記第一導体は少なくとも銀を含む第一部材から、前記第二導体は少なくとも銅を含む第二部材から、前記半田は少なくとも錫を含む第三部材からそれぞれ構成される実装基板の製造方法であって、
     前記絶縁性基材の一面に前記第一導体及び前記第二導体を形成する工程と;
     前記第二導体上に前記半田を形成する工程と;
     個々の前記半田に対して、個別に各々の前記電極部を接触させ前記電子部品を実装する工程と;を有することを特徴とする実装基板の製造方法。
  7.   前記電子部品と前記絶縁性基材との間に樹脂を配し、少なくとも前記電子部品と前記絶縁性基材との間を、この樹脂で充填する工程をさらに有することを特徴とする請求項6に記載の実装基板の製造方法。
PCT/JP2008/073401 2007-12-26 2008-12-24 実装基板及びその製造方法 WO2009081929A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009547106A JP5220766B2 (ja) 2007-12-26 2008-12-24 実装基板
CN2008801231415A CN101911845B (zh) 2007-12-26 2008-12-24 安装基板及其制造方法
EP08865333.2A EP2234466B1 (en) 2007-12-26 2008-12-24 Mounting board and method of producing the same
US12/822,611 US8039760B2 (en) 2007-12-26 2010-06-24 Mounting board and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007334593 2007-12-26
JP2007-334593 2007-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/822,611 Continuation US8039760B2 (en) 2007-12-26 2010-06-24 Mounting board and method of producing the same

Publications (1)

Publication Number Publication Date
WO2009081929A1 true WO2009081929A1 (ja) 2009-07-02

Family

ID=40801229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073401 WO2009081929A1 (ja) 2007-12-26 2008-12-24 実装基板及びその製造方法

Country Status (5)

Country Link
US (1) US8039760B2 (ja)
EP (1) EP2234466B1 (ja)
JP (1) JP5220766B2 (ja)
CN (1) CN101911845B (ja)
WO (1) WO2009081929A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145076A1 (ja) * 2019-01-10 2020-07-16 株式会社デンソー 半導体装置およびその製造方法
WO2020203135A1 (ja) 2019-03-29 2020-10-08 株式会社村田製作所 伸縮性実装基板
WO2023053412A1 (ja) * 2021-09-30 2023-04-06 株式会社メイコー はんだ実装用ランドを有する基板
WO2023106055A1 (ja) * 2021-12-08 2023-06-15 株式会社村田製作所 伸縮性デバイス

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010036909B3 (de) * 2010-08-06 2012-02-16 Phoenix Contact Gmbh & Co. Kg Thermische Überlastschutzvorrichtung
KR20140030918A (ko) * 2012-09-04 2014-03-12 삼성전기주식회사 인쇄회로기판
JP6386854B2 (ja) * 2014-09-29 2018-09-05 日本特殊陶業株式会社 セラミック基板
ITUB20169865A1 (it) * 2016-01-07 2017-07-07 Osram Gmbh Procedimento per montare componenti su un substrato, substrato e dispositivo corrispondenti
JP6570728B2 (ja) * 2016-02-18 2019-09-04 三菱電機株式会社 電子装置およびその製造方法
JP2018014381A (ja) * 2016-07-20 2018-01-25 富士通株式会社 基板及び電子機器
US10388464B2 (en) * 2016-09-19 2019-08-20 Biotronik Se & Co. Kg Method for manufacturing a leadless solid electrolyte capacitor and corresponding capacitor
JP6732118B2 (ja) * 2017-09-14 2020-07-29 新電元工業株式会社 電子モジュール及び電子モジュールの製造方法
TWI736695B (zh) * 2017-10-24 2021-08-21 啟耀光電股份有限公司 電子裝置與其製造方法
CN114846911A (zh) * 2020-09-29 2022-08-02 株式会社村田制作所 伸缩性安装基板以及伸缩性安装基板的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043490A (ja) * 1990-04-19 1992-01-08 Nippon Chemicon Corp 厚膜集積回路の配線導体の形成方法
JPH04348587A (ja) * 1991-05-27 1992-12-03 Matsushita Electric Ind Co Ltd 回路基板およびその製造方法
JPH0669639A (ja) * 1992-08-21 1994-03-11 Tdk Corp チップ部品の装着方法
JPH09260822A (ja) * 1996-03-18 1997-10-03 Teikoku Tsushin Kogyo Co Ltd 基板への半田による電子部品接続固定構造
JP2006120677A (ja) 2004-10-19 2006-05-11 Alps Electric Co Ltd 配線基板の接続端子構造

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461202A (en) * 1992-10-05 1995-10-24 Matsushita Electric Industrial Co., Ltd. Flexible wiring board and its fabrication method
US6082610A (en) * 1997-06-23 2000-07-04 Ford Motor Company Method of forming interconnections on electronic modules
JPH11103142A (ja) * 1997-09-29 1999-04-13 Kyocera Corp 配線基板およびその製造方法
JPH11251177A (ja) 1998-10-16 1999-09-17 Murata Mfg Co Ltd チップ部品
JP2003007937A (ja) * 2001-06-26 2003-01-10 Fujikura Ltd 電子部品実装モジュール及びその製造方法
JPWO2003021664A1 (ja) * 2001-08-31 2005-07-07 株式会社日立製作所 半導体装置、構造体及び電子装置
JP5001542B2 (ja) * 2005-03-17 2012-08-15 日立電線株式会社 電子装置用基板およびその製造方法、ならびに電子装置の製造方法
JP4893104B2 (ja) * 2005-06-08 2012-03-07 日立化成工業株式会社 導電ペーストおよびそれを用いた電子部品搭載基板
JP2008091719A (ja) * 2006-10-03 2008-04-17 Shinko Electric Ind Co Ltd 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043490A (ja) * 1990-04-19 1992-01-08 Nippon Chemicon Corp 厚膜集積回路の配線導体の形成方法
JPH04348587A (ja) * 1991-05-27 1992-12-03 Matsushita Electric Ind Co Ltd 回路基板およびその製造方法
JPH0669639A (ja) * 1992-08-21 1994-03-11 Tdk Corp チップ部品の装着方法
JPH09260822A (ja) * 1996-03-18 1997-10-03 Teikoku Tsushin Kogyo Co Ltd 基板への半田による電子部品接続固定構造
JP2006120677A (ja) 2004-10-19 2006-05-11 Alps Electric Co Ltd 配線基板の接続端子構造

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145076A1 (ja) * 2019-01-10 2020-07-16 株式会社デンソー 半導体装置およびその製造方法
WO2020203135A1 (ja) 2019-03-29 2020-10-08 株式会社村田製作所 伸縮性実装基板
US11212915B2 (en) 2019-03-29 2021-12-28 Murata Manufacturing Co., Ltd. Stretchable mounting board
US11653445B2 (en) 2019-03-29 2023-05-16 Murata Manufacturing Co., Ltd. Stretchable mounting board
WO2023053412A1 (ja) * 2021-09-30 2023-04-06 株式会社メイコー はんだ実装用ランドを有する基板
WO2023106055A1 (ja) * 2021-12-08 2023-06-15 株式会社村田製作所 伸縮性デバイス

Also Published As

Publication number Publication date
CN101911845A (zh) 2010-12-08
US8039760B2 (en) 2011-10-18
CN101911845B (zh) 2013-05-22
EP2234466A1 (en) 2010-09-29
JP5220766B2 (ja) 2013-06-26
EP2234466A4 (en) 2013-07-10
JPWO2009081929A1 (ja) 2011-05-06
EP2234466B1 (en) 2019-04-10
US20100258341A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5220766B2 (ja) 実装基板
CN101965617B (zh) 导电材料、导电膏、电路板以及半导体器件
CN101578927B (zh) 印刷布线板及其制造方法
CN112201435B (zh) 线圈组件及制造线圈组件的方法
US8210422B2 (en) Solder containment brackets
TW511264B (en) Semiconductor device, mounting substrate and its manufacturing method, circuit substrate and electronic machine
US9363883B2 (en) Printed circuit board and method for manufacturing same
CN111418272A (zh) 柔性印刷电路板和制造柔性印刷电路板的方法
CN216626189U (zh) 一种柔性电路板
CN105702432B (zh) 电子组件以及具有该电子组件的板
JP4991624B2 (ja) プリント回路基板及びその製造方法
JP4254757B2 (ja) 導電材料及び導電性ペースト及び基板
JP2004342766A (ja) 回路基板および電子部品実装体
JP2011009397A (ja) 電子部品実装配線基板
JP5398513B2 (ja) プリント配線板
JP5018752B2 (ja) 導電材料、及び導電材料の製造方法
JP2007300038A (ja) 電子部品実装体とその製造方法
CN111201842A (zh) 印刷电路板和制造印刷电路板的方法
JP3721660B2 (ja) 導電材料及び導電性ペースト
JP2010267903A (ja) プリント回路基板における部品実装構造及び部品実装方法、並びにプリント回路基板
JP5252050B2 (ja) 回路基板、及び回路基板の製造方法
JP5257546B2 (ja) 電子機器の製造方法
JP5435095B2 (ja) 回路基板、及び回路基板の製造方法
JP5257539B2 (ja) 回路基板の製造方法
JP2001326449A (ja) 電子部品、電子部品実装体およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880123141.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08865333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009547106

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008865333

Country of ref document: EP