Nothing Special   »   [go: up one dir, main page]

WO2009075379A1 - Cyclopropanecarboxylate and pest controlling composition containing the same - Google Patents

Cyclopropanecarboxylate and pest controlling composition containing the same Download PDF

Info

Publication number
WO2009075379A1
WO2009075379A1 PCT/JP2008/072897 JP2008072897W WO2009075379A1 WO 2009075379 A1 WO2009075379 A1 WO 2009075379A1 JP 2008072897 W JP2008072897 W JP 2008072897W WO 2009075379 A1 WO2009075379 A1 WO 2009075379A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
configuration
formulation
reaction
Prior art date
Application number
PCT/JP2008/072897
Other languages
English (en)
French (fr)
Inventor
Masayuki Mae
Tatsuya Mori
Noritada Matsuo
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2009075379A1 publication Critical patent/WO2009075379A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N53/00Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring

Definitions

  • the present invention relates to a certain cyclopropanecarboxylate and a pest controlling composition containing the same.
  • An object of the present invention is to provide a novel compound having an excellent pest controlling effect.
  • the present inventors have intensively studied and have found that an ester compound represented by the formula (1) shown hereinafter has an excellent pest controlling effect. Thus, the present invention has been completed.
  • the present invention provides:
  • R 1 represents a C2-C4 alkynyl group or a (C1-C4 alkoxy) methyl group (hereinafter, sometimes, referred to as the present compound) ;
  • a pest controlling method which comprises applying an effective amount of the cyclopropanecarboxylate according to [1] to a pest or a habitat of the pest.
  • the present compound Since the present compound has an excellent pest controlling effect, it is useful as an active ingredient of a pest controlling composition.
  • the present compound there exist two asymmetric carbon atoms on the cyclopropane ring.
  • the present invention includes all of the active isomers and mixtures thereof in given ratios .
  • examples of the C2-C4 alkynyl group include a 2-propynyl group and a 2-butynyl group.
  • examples of the (C1-C4 alkoxy) methyl group include a methoxymethyl group and an ethoxymethyl group.
  • Examples of the present compound include the following compounds :
  • a compound of the formula (1) wherein the absolute configuration at the 1-position on the cyclopropane ring is R-configuration, and the relative configuration of substituents at the 1-position and the 3-position on the cyclopropane ring is trans-configuration;
  • a compound of the formula (1) wherein the absolute configuration at the 1-position on the cyclopropane ring is R-configuration, and the relative configuration of substituents at the 1-position and the 3-position on the cyclopropane ring is cis-configuration;
  • examples of the isomer mixture include the following mixtures: An isomer mixture comprising 50% or more of a compound of the formula (1) wherein the absolute configuration at the 1-position on the cyclopropane ring is R-configuration and the relative configuration of substituents at the 1- position and the 3-position on the cyclopropane ring is trans-configuration;
  • An isomer mixture comprising 80% or more of a compound of the formula (1) wherein the absolute configuration at the 1-position on the cyclopropane ring is R-configuration and the relative configuration of substituents at the 1- position and at the 3-position on the cyclopropane ring is trans-configuration;
  • An isomer mixture comprising 90% or more of a compound of the formula (1) wherein the absolute configuration at the 1-position on the cyclopropane ring is R-configuration and the relative configuration of substituents at the 1- position and the 3-position on the cyclopropane ring is trans-configuration;
  • An isomer mixture comprising 50% or more of a compound of the formula (1) wherein R 1 is a 2-propynyl group, the absolute configuration at the 1-position on the cyclopropane ring is R-configuration, and the relative configuration of substituents at the 1-position and the 3- position on the cyclopropane ring is trans-configuration;
  • An isomer mixture comprising 80% or more of a compound of the formula (1) wherein R 1 is a 2-propynyl group, the absolute configuration at the 1-position on the cyclopropane ring is R-configuration, and the relative configuration of substituents at the 1-position and the 3- position on the cyclopropane ring is trans-configuration;
  • An isomer mixture comprising 90% or more of a compound of the formula (1) wherein R 1 is a 2-propynyl group, the absolute configuration at the 1-position on the cyclopropane ring is R-configuration, and the relative configuration of substituents at the 1-position and the 3- position on the cyclopropane ring is trans-configuration;
  • An isomer mixture comprising 50% or more of a compound of the formula (1) wherein R 1 is a methoxymethyl group, the absolute configuration at the 1-position on the cyclopropane ring is R-configuration, and the relative configuration of substituents at the 1-position and the 3- position on the cyclopropane ring is trans-configuration;
  • An isomer mixture comprising 80% or more of a compound of the formula (1) wherein R 1 is a methoxymethyl group, the absolute configuration at the 1-position on the cyclopropane ring is R-configuration, and the relative configuration of substituents at the 1-position and the 3- position on the cyclopropane ring is trans-configuration; and
  • An isomer mixture comprising 90% or more of a compound of the formula (1) wherein R 1 is a methoxymethyl group, the absolute configuration at the 1-position on the cyclopropane ring is R-configuration, and the relative configuration of substituents at the 1-position and the 3- position on the cyclopropane ring is trans-configuration.
  • an indicated proportion in each isomer mixture means the content of an isomer in the isomer mixture.
  • the present compound can be produced, for example, by production processes as described below.
  • a process comprising a reaction of an alcohol compound of the formula (2) :
  • R 1 represents a C2-C4 alkynyl group or a (C1-C4 alkoxy) methyl group, with a carboxylic acid of the formula (3) :
  • the reaction is usually carried out in the presence of a condensing agent and a base, or in the presence of an acid catalyst.
  • the reaction is usually carried out in a solvent .
  • Examples of the condensing agent include dicyclohexylcarbodiimide and l-ethyl-3- (3- dimethylaminopropyl) carbodiimide hydrochloride.
  • Examples of the base include organic bases such as triethylamine, pyridine, N, N-diethylaniline, 4-dimethylaminopyridine and diisopropylethylamine .
  • Examples of the acid catalyst include inorganic acids such as sulfuric acid, and sulfonic acids such as paratoluenesulfonic acid and methanesulfonic acid.
  • the solvent to be used may be an inert solvent in the reaction, and examples thereof include hydrocarbons such as toluene and hexane; ethers such as diethyl ether and tetrahydrofuran; halogenated hydrocarbons such as chloroform, dichloromethane and 1, 2-dichloroethane; and their mixtures.
  • hydrocarbons such as toluene and hexane
  • ethers such as diethyl ether and tetrahydrofuran
  • halogenated hydrocarbons such as chloroform, dichloromethane and 1, 2-dichloroethane; and their mixtures.
  • the reaction time of the reaction is usually from an instant to 72 hours, and the reaction temperature is usually in the range from -20°C to 100°C.
  • the amount of the alcohol compound of the formula (2) to be used in the reaction is theoretically 1 mol per 1 mol of the carboxylic acid of the formula (3), and however, it can be appropriately selected in the range from 0.5 to 1.5 mol per 1 mol of the carboxylic acid of the formula (3) .
  • the amount of the condensing agent to be used in the reaction is usually 1 mol per 1 mol of the carboxylic acid of the formula (3), and however, it can be appropriately changed according to the reaction conditions.
  • the amount of the base to be used in the reaction is usually in the range from 0.1 to 1 mol per 1 mol of the carboxylic acid of the formula (3) .
  • the amount of the acid catalyst to be used in the reaction is usually in the range from 0.01 to 20 mol per 1 mol of the carboxylic acid of the formula (3), and however, it can be appropriately changed according to the reaction conditions.
  • the present compound can be isolated by subjecting a reaction mixture to conventional after-treatment operations such as pouring into water, followed by extraction with an organic solvent and further concentration. If necessary, the present compound thus isolated can be purified by subjecting to a purification operation such as chromatography and distillation .
  • a process comprising a reaction of the alcohol compound of the formula (2) with a reactive derivative (e.g., an acid halide, an acid anhydride, etc.) of the carboxylic acid of the formula (3) .
  • a reactive derivative e.g., an acid halide, an acid anhydride, etc.
  • the reaction is usually carried out in the presence of a base.
  • the reaction is usually carried out in a solvent.
  • the base examples include organic bases such as triethylamine, pyridine, N, N-diethylaniline, 4- dimethylaminopyridine and diisopropylethylamine .
  • the solvent to be used can be an inert solvent in the reaction, and examples thereof include hydrocarbons such as toluene and hexane; ethers such as diethyl ether and tetrahydrofuran; halogenated hydrocarbons such as chloroform, dichloromethane and 1, 2-dichloroethane; and their mixtures.
  • the reaction time of the reaction is usually from an instant to 72 hours, and the reaction temperature is usually in the range from -20°C to 100°C.
  • the amount of the alcohol compound of the formula (2) to be used in the reaction is theoretically 1 mol per 1 mol of the reactive derivative of the carboxylic acid of the formula (3), and however, usually, it can be appropriately selected in the range from 0.5 to 2.0 mol per 1 mol of the reactive derivative of the carboxylic acid of the formula (3) .
  • the amount of the base to be used in the reaction is usually 1 mol per 1 mol of the reactive derivative of the carboxylic acid of the formula (3), and however, it can be appropriately changed according to the reaction conditions.
  • the present compound can be isolated by subjecting the reaction mixture to conventional after-treatment operations such as pouring into water, followed by extraction with an organic solvent and further concentration. If necessary, the present compound thus isolated can be purified by subjecting to a purification operation such as chromatography and distillation.
  • the alcohol compound of the formula (2) can be a compound described in JP-A 57-123146 or JP-A 61-207361, or can be produced according to processes described in these documents .
  • a process for producing the carboxylic acid of the formula (3) and a reactive derivative thereof will be described later. Further, the present compound can be produced by Production Process 3 and the like.
  • the present compound can be produced by reacting an aldehyde compound of the formula (4) :
  • R 1 is as defined above, with a fluorinating agent.
  • the reaction is usually carried out in the presence of a solvent.
  • a solvent include halogenated hydrocarbons such as methylene chloride and chloroform; hydrocarbons such as toluene and hexane; and their mixtures.
  • fluorinating agent examples include
  • the amount of the fluorinating agent to be used in the reaction is usually in the range from 2 to 6 equivalents per 1 equivalent of the compound of the formula (4) .
  • the reaction time of the reaction is usually in the range from 1 to 24 hours, and the reaction temperature is usually in the range from room temperature to 100°C.
  • the present compound can be isolated by subjecting the reaction mixture to conventional after-treatment operations such as pouring into water, followed by extraction with an organic solvent and further concentration. If necessary, the present compound thus isolated can be purified by subjecting to a purification operation such as chromatography and distillation.
  • the compound represented by the formula (4) can be produced according to the process described in JP-A 2002- 212138 or JP-A 2003-206264. Since the present compound has two asymmetric carbon atoms on the cyclopropane ring, four isomers can exist as the present compound wherein R l! s are identical.
  • the four isomers i.e., a (IR) -trans isomer, a (IS)- trans isomer, a (IR) -cis isomer and a (lS)-cis isomer, can be produced from the respective corresponding isomers of the carboxylic acid of the formula (3) (or a reactive derivative thereof) or the aldehyde compound of the formula (4) .
  • carboxylic acid of the formula (3) can be produced, for example, by the following process.
  • the compound of the formula (6) can be produced by reacting the compound of the formula (5) with a fluorinating agent.
  • the reaction is usually carried out in the presence of a solvent.
  • a solvent include halogenated hydrocarbons such as methylene chloride and chloroform; hydrocarbons such as toluene and hexane; and their mixtures
  • fluorinating agent examples include
  • the amount of the fluorinating agent to be used in the reaction is usually in the range from 2 to 6 equivalents per 1 equivalent of the compound of the formula (5) .
  • the reaction time of the reaction is usually in the range from 1 to 24 hours, and the reaction temperature is usually in the range from room temperature to 100 0 C.
  • the compound of the formula (6) can be isolated by subjecting the reaction mixture to conventional after-treatment operations such as pouring into water, followed by extraction with an organic solvent and further concentration. If necessary, the compound of the formula (6) thus isolated can be purified by subjecting to a purification operation such as chromatography and distillation.
  • the carboxylic acid of the formula (3) can be produced by hydrolyzing the compound of the formula (6) in the presence of a base.
  • the reaction can be carried out in the presence of a solvent.
  • the solvent include alcohols such as methanol and ethanol, 1,4-dioxane, water, and their mixtures .
  • the base include sodium hydroxide and potassium hydroxide. The amount of the base to be used may be usually 1 mol or more per 1 mol of the compound of the formula ( 6) .
  • the reaction time of the reaction is usually in the range from 1 to 24 hours, and the reaction temperature is usually in the range from room temperature to 150°C.
  • the carboxylic acid of the formula (3) can be isolated by subjecting the reaction mixture to after-treatment operations such as adding an acid to acidify the reaction mixture, followed by extraction with an organic solvent, and further concentration.
  • the compound of the formula (5) is a known compound, and can be produced according to a process described in Chem. Lett., 1981, 1097.
  • a reactive derivative of the carboxylic acid of the formula (3) can be produced from said carboxylic acid by a known process.
  • Examples of the pests on which the present compound exerts an effect include harmful arthropods such as harmful insects and ticks. Specific examples thereof are as follows .
  • Lepidoptera Pyralidae such as Chilo suppressalis, Cnaphalocrocis medinalis and Plodia interpunctella, Noctuidae such as Spodoptera litura, Pseudaletia separate and Mamestra brassicae, Pieridae such as Pieris rapae crucivora, Tortricidae such as Adoxophyes spp . , Carposinidae, Lyonetiidae, Lymantriidae, Autographa, Agrotis spp.
  • Culex spp. such as Culex pipiens pallens and Culex tritaeniorhynchus
  • Aedes spp. such as Aedes aegypti and Aedes albopictus, Anopheles spp.
  • Anopheles sinensis Chironomidae
  • Muscidae such as Musca domestica, Muscina stabulans and Fannia canicularis
  • Calliphoridae Sarcophagidae
  • Anthomyiidae such as Delia platura and Delia antique
  • Tephritidae Agromyzidae
  • Drosophilidae agromyzidae
  • Psychodidae Phoridae
  • Tabanidae Simuliidae
  • Stomoxyidae Ceratopogonidae, etc.
  • Hymenoptera
  • Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, etc.
  • Anoplura Pediculus humanus, Pthirus pubis, Pediculus capitis, Pediculus corporis, etc.
  • Hemiptera Delphacidae such as Laodelphax striatellus, Nilaparvata lugens and Sogatella furcifera, Deltocephalidae such as Nephotettix virescens and Nephotettix cincticeps, Aphididae, Pentatomidae, Aleyrodidae, Coccoidea, Cimicidae such as Cimex lectularius, Tingidae, Psyllidae, etc. Coleoptera:
  • Attagenus unicolor japonicus Authrenus verbasci
  • Corn Rootworms such as Diabrotica virgifera and Diabrotica undecimpunctata howardi
  • Scarabaeidae such as Anomala cuprea and Anomala rufocuprea
  • Curculionidae such as Sitophilus zeamais, Lissorhoptrus oryzophilus, Anthonomus grandis grandis and Callosobruchus chinensis
  • Tenebrionidae such as Tenebrio molitor and Tribolium castaneum
  • Chrysomelidae such as Oulema oryzae
  • Phyllotreta striolata and Aulacophora femoralis Anobiidae
  • Epilachna spp such as Epilachna vigintioctopunctata, Lyctidae, Bostrychidae, Ceramby
  • Thysanoptera
  • Pyroglyphidae such as Dermatophagoides farinae and Dermatophagoides pteronyssinus, Acaridae such as Tyrophagus putrescentiae and Aleuroglyphus ovatus, Glycyphagidae such as Glycyphagus privatus, Glycyphagus domesticus and Glycyphagus destructor, Cheyletidae such as Cheyletus malaccensis and v Cheyletus fortis, Tarsonemidae, Chortoglyphus spp., Oribatei, Tetranychidae such as Tetranychus urticae, Tetranychus kanzawai, Panonychus citri and Panonychus ulmi, Ixodidae such as Haemaphysalis longiconis, Dermanyssidae such as Ornithonyssus sylviarum and Dermanyssus gallinae,
  • the pest controlling composition of the present invention contains the present compound as an active ingredient.
  • the pest controlling composition of the present invention may be the present compound itself, or may be formulated into a form as described below.
  • the formulation form examples include an oil solution, an emulsifiable concentrate, a wettable powder, a flowable formulation (e.g., an aqueous suspension, or an aqueous emulsion) , a microcapsule, a dust, a granule, a tablet, an aerosol, a carbon dioxide formulation, a heat transpiration formulation (e.g., an insecticidal coil, an electric insecticidal mat, or a liquid absorbing core-type heat transpiration pesticide) , a piezo insecticidal formulation, a heat fumigant (e.g., a self combustion-type fumigant, a chemical reaction-type fumigant, or a porous ceramic plate fumigant) , an unheated transpiration formulation (e.g., a resin transpiration formulation, a paper transpiration formulation, an unwoven fabric transpiration formulation, a knit fabric transpiration formulation, or a sublimating tablet), an aerosol formulation (e.g., a fogging formulation
  • the formulation can be prepared, for example, by the following methods.
  • a method comprising mixing the present compound with a solid carrier, a liquid carrier, a gaseous carrier or a poison bait, followed by addition of a surfactant and other auxiliary agents for formulation, and if necessary, further processing.
  • a method comprising mixing the present compound and a base material, followed by subjecting the mixture to mold processing.
  • the formulation contains usually 0.001 to 98% by weight of the present compound, depending on formulation forms.
  • the solid carrier for the formulation include fine powders or granules of clays (e.g., kaolin clay, diatomaceous earth, bentonite, Fubasami clay, or acid white clay) , synthetic hydrated silicon oxide, talc, ceramics, other inorganic minerals (e.g., sericite, quartz, sulfur, active carbon, calcium carbonate, or hydrated silica) and chemical fertilizers (e.g., ammonium sulfate, ammonium phosphate, ammonium nitrate, ammonium chloride, or urea); substances that are solid at room temperature (e.g., 2 , 4 , ⁇ -triisopropyl-1, 3, 5-trioxane, naphthalene, p- dichlorobenzene, camphor, or adamantine); and felt, fiber
  • liquid carrier examples include aromatic or aliphatic hydrocarbons (e.g., xylene, toluene, alkylnaphthalene, phenylxylylethane, kerosene, light oil, hexane, or cyclohexane) , halogenated hydrocarbons (e.g., chlorobenzene, dichloromethane, dichloroethane, or trichloroethane) , alcohols (e.g., methanol, ethanol, isopropyl alcohol, butanol, hexanol, benzyl alcohol, or ethylene glycol), ethers (e.g., diethyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, tetrahydrofuran, or dioxane) , esters (e.g., ethyl
  • gaseous carrier examples include butane gas, chlorofluorocarbon, liquefied petroleum gas (LPG) , dimethyl ether and carbon dioxide.
  • LPG liquefied petroleum gas
  • surfactant examples include alkyl sulfate, alkyl sulfonate, alkylaryl sulfonate, alkylaryl ethers, polyoxyethylenated alkylaryl ethers, polyethylene glycol ethers, polyhydric alcohol esters and sugar alcohol derivatives.
  • auxiliary agents for formulation examples include a binder, a dispersant and a stabilizer.
  • a binder e.g., gelatin, polysaccharides (e.g., starch, gum arabic, cellulose derivatives, or alginic acid) , lignin derivatives, bentonite, saccharides, synthetic water-soluble polymers (e.g., polyvinyl alcohol, or polyvinyl pyrrolidone) , polyacrylic acid, BHT (2, 6-di-tert-butyl-4-methylphenol) and BHA (a mixture of 2-tert-butyl-4-methoxyphenol and 3- tert-butyl-4-methoxyphenol) .
  • casein gelatin, polysaccharides (e.g., starch, gum arabic, cellulose derivatives, or alginic acid) , lignin derivatives, bentonite, saccharides, synthetic water-soluble polymers (e.g., polyvinyl alcohol, or
  • Examples of a base material for the insecticidal coil include a mixture of vegetable powder such as wood flour and lees powder, and a binder such as incense material powder, starch and gluten.
  • Examples of a base material for the electric insecticidal mat include a plate obtained by hardening cotton linter and a plate obtained by hardening fibrils of a mixture of cotton linter and pulp.
  • Examples of a base material for the self combustion- type fumigant include combustible exothermic agents such as nitrate, nitrite, guanidine salt, potassium chlorate, nitrocellulose, ethylcellulose and wood flour, thermal decomposition stimulants such as alkali metal salt, alkaline earth metal salt, dichromate and chromate, oxygen carriers such as potassium nitrate, combustion-supporting agents such as melamine and flour starch, extenders such as diatomaceous earth, and binders such as synthetic glue, y
  • combustible exothermic agents such as nitrate, nitrite, guanidine salt, potassium chlorate, nitrocellulose, ethylcellulose and wood flour
  • thermal decomposition stimulants such as alkali metal salt, alkaline earth metal salt, dichromate and chromate
  • oxygen carriers such as potassium nitrate
  • combustion-supporting agents such as melamine and flour starch
  • extenders such as diatomaceous earth
  • Examples of a base material for the chemical reaction- type fumigant include exothermic agents such as alkali metal sulfide, polysulfide, hydrosulfide and calcium oxide, catalytic agents such as a carbonaceous material, iron carbide and active white clay, organic foaming agents such as azodicarbonamide, benzenesulfonylhydrazide, dinitropentamethylenetetramine, polystyrene and polyurethane, and fillers such as strips of natural fiber and synthetic fiber.
  • exothermic agents such as alkali metal sulfide, polysulfide, hydrosulfide and calcium oxide
  • catalytic agents such as a carbonaceous material, iron carbide and active white clay
  • organic foaming agents such as azodicarbonamide, benzenesulfonylhydrazide, dinitropentamethylenetetramine, polystyrene and polyurethane
  • fillers such as strips of natural fiber and synthetic fiber.
  • Examples of a base material for the resin formulations such as resin transpiration formulations include polyethylene resins such as low density polyethylene, straight chain low density polyethylene and high density polyethylene; ethylene-vinyl ester copolymers such as an ethylene-vinyl acetate copolymer; ethylene-methacrylate copolymers such as an ethylene-methyl methacrylate copolymer and an ethylene-ethyl methacrylate copolymer; ethylene-acrylate copolymers such as an ethylene-methyl acrylate copolymer and an ethylene-ethyl acrylate copolymer; ethylene-vinylcarboxylic acid copolymers such as an ethylene-acrylic acid copolymer; ethylene- tetracyclododecene copolymers; polypropylene resins such as a propylene copolymer and a propylene-ethylene copolymer; poly-4-methylpentene-l, polybutene-1, polybutad
  • base materials may be used alone or as a combination of two or more kinds.
  • a plasticizer such as phthalate (e.g., dimethyl phthalate, or dioctyl phthalate), adipic acid esters and stearic acid may be added to these base materials.
  • the resin formulation can be prepared by mixing the present compound with the base material, kneading the mixture, followed by molding it by injection molding, extrusion molding or pressure molding.
  • the resultant resin formulation can be subjected to further molding or cutting procedure, if necessary, to be processed into a plate, film, tape, net or string shape.
  • These resin formulations can be processed into animal collars, animal ear tags, sheet products, trap strings, gardening supports and other products.
  • a base material for the poison bait include food ingredients such as grain powder, vegetable oil, saccharide and crystalline cellulose, antioxidants such as dibutylhydroxytoluene and nordihydroguaiaretic acid, preservatives such as dehydroacetic acid, accidental ingestion inhibitors for children and pets such as a chili powder; insect attraction fragrances such as cheese flavor, onion flavor and peanut oil .
  • the pest controlling method of the present invention comprises applying an effective amount of the present compound to a pest or a habitat thereof.
  • the pest controlling method of the present invention is carried out by applying an effective amount of the present compound, usually in the form of a formulation, to a pest or a habitat thereof.
  • a method for applying the present compound is not particularly limited, and appropriately selected depending on the form of the composition, the application area and the like.
  • Examples of the application method include the following methods.
  • a method comprising applying a formulation of the present compound as it is to a pest or a habitat of the pest .
  • a method comprising diluting a formulation of the present compound with a solvent such as water, and then spraying the dilution to a pest or a habitat of the pest.
  • the present compound is usually formulated into an emulsifiable concentrate, a wettable powder, a flowable formulation, a microcapsule or the like.
  • the formulation is usually diluted so that the concentration of the present compound can be 0.1 to 10,000 ppm before spraying.
  • a method comprising heating or placing a formulation of the present compound at a habitat of a pest, thereby allowing the present compound to volatilize and diffuse from the composition.
  • the present compound when the present compound is formulated into an insecticidal coil or an electric insecticidal mat, the present compound can be volatilized and diffused by heating the formulation.
  • the present compound When the present compound is formulated into a resin transpiration formulation, a paper transpiration formulation, an unwoven fabric transpiration formulation, a knit fabric transpiration formulation or a sublimating tablet, the present compound can be volatilized and diffused by placing the formulation in a space to be pest- controlled with or without air blowing.
  • the controlling method of the present invention can be performed for the purpose of prevention of epidemics and external parasite control.
  • the habitat of a pest is not particularly limited, as long as it is a place where the pest inhabits.
  • the habitat may be a space, or a plane such as floor and ground.
  • examples of the habitat of a pest include a closet, a Japanese cabinet, a Japanese chest, a cupboard, a toilet, a bathroom, a shed, a living room, a dining room, a garage and the interior of a car.
  • the present compound can be also applied to outdoor open space.
  • the amount and concentration of the present compound to be applied can be appropriately determined depending on the form, application period, application area, application method, kind of a pest, damage to be incurred and other factors .
  • the amount to be applied is usually from 0.0001 to 1000 mg/m 3 of the present compound in the case of applying to a space, and from 0.0001 to 1,000 mg/m 2 of the present compound in the case of applying to a plane.
  • the pest controlling composition of the present invention can be applied to the animals by a known method in the veterinary field. Specifically, when systemic control is intended, the pest controlling composition of the present invention is administered to the animals as a tablet, a mixture with feed or a suppository, or by injection (including intramuscular, subcutaneous, intravenous and intraperitoneal injections) .
  • the pest controlling composition of the present invention is applied to the animals by means of spraying of the oil solution or aqueous solution, pour-on or spot-on treatment, or washing of the animal with a shampoo formulation, or by putting a collar or ear tag made of the resin transpiration formulation to the animal.
  • the dosage of the present compound is usually in the range from 0.1 to 1000 mg per 1 kg of an animal body weight.
  • the present compound can be used as a mixture or in combination with one or more other insecticides, acaricides, nematocides, soil pest controlling agents, fungicides, herbicides, repellents and/or synergists.
  • Examples of the active ingredient for the insecticide and the acaricide include: organic phosphorous compounds such as dichlorvos, fenitrothion, cyanophos, profenofos, sulprofos, phenthoate, isoxathion, tetrachlorvinphos, fenthion, chlorpyrifos, diazinon, acephate, terbufos, phorate, chlorethoxyfos, fosthiazate, ethoprophos, cadusafos, methidathion, disulfoton, dioxabenzofos, dimethoate, phenthoate, malathion, trichlorphon, azinphos-methyl, monocrotophos, ethion, etc.
  • organic phosphorous compounds such as dichlorvos, fenitrothion, cyanophos, profenofos, sulprofos, phenthoate, iso
  • carbamate compounds such as propoxur, carbaryl, metoxadiazone, fenobucarb, methomyl, thiodicarb, alanycarb, benfuracarb, oxamyl, aldicarb, methiocarb, carbosulfan, ethiofencarb, fenothiocarb, cartap, etc.; pyrethroid compounds such as allethrin, tetralomethrin, prallethrin, d-phenothrin, d-resmethrin, cyphenothrin, permethrin, cypermethrin, alpha-cypermethrin, zeta- cypermethrin, deltamethrin, tralomethrin, cyfluthrin, beta- cyfluthrin, cyhalothrin, lambda-cyhalothrin, d-furame
  • Examples of the active ingredient of the repellent include 3, 4-caranediol, N, N-diethyl-m-toluamide, 1- methylpropyl 2- (2-hydroxyethyl) -1-piperidine carboxylate, p-menthane-3, 8-diol and vegetable essential oils such as a hyssop oil.
  • Examples of the active ingredient of the synergist include bis- (2,3,3, 3-tetrachloropropyl) ether (S-421), N- (2- ethylhexyl) bicyclo [2.2.1] hept-5-ene-2, 3-dicarboxyimide (MGK-264) and ⁇ - [2- (2-butoxyethoxy) ethoxy] -4 , 5- methylenedioxy-2-propyltoluene (piperonyl butoxide) .
  • Examples of the nematocides, the soil pest controlling agents, the fungicides and the herbicides include conventionally known ones .
  • Present compound (I) (hereinafter referred to as the present compound (I)) as a clear colorless liquid.
  • An emulsifiable concentration is obtained by dissolving 20 parts of any one of the present compounds (1) to (4) in 65 parts of xylene, adding 15 parts of Sorpol 3005X (registered trade name of Toho Chemical Co., Ltd.) thereto, and thoroughly mixing the mixture with stirring.
  • a wettable powder is obtained by adding 5 parts of Sorpol 3005X to 40 parts of any one of the present compounds (1) to (4), thoroughly mixing the mixture, adding 32 parts of Carplex #80 (synthetic hydrated silicon oxide, registered trade name of Sionogi Pharmaceutical Co., Ltd.) and 23 parts of 300 mesh diatomaceous earth thereto, and mixing the mixture with stirring by a juice mixer.
  • Carplex #80 synthetic hydrated silicon oxide, registered trade name of Sionogi Pharmaceutical Co., Ltd.
  • Bentonite Fuji bentonite, manufactured by Hojun Corp.
  • Shokozan A clay kaolin clay, manufactured by Shokozan Kogyosho
  • a mixture of 10 parts of any one of the present compounds (1) to (4), 10 parts of phenylxylylethane and 0.5 part of Sumijul L-75 (tolylene diisocyanate, manufactured by Sumitomo Bayer Urethane Ltd.) is added to 20 parts of a 10% aqueous solution of gum arabic, followed by stirring with a homomixer to obtain an emulsion having a mean particle diameter of 20 ⁇ m.
  • the emulsion is further mixed with 2 parts of ethylene glycol and the mixture is stirred in a warm bath at 60°C for 24 hours to obtain microcapsule slurry.
  • a thickening agent solution is prepared by dispersing 0.2 part of xanthan gum and 1.0 part of Veegum R (aluminum magnesium silicate, manufactured by Sanyo Chemical) in 56.3 parts of ion-exchanged water.
  • a microcapsule formulation is obtained by mixing 42.5 parts of the microcapsule slurry and 57.5 parts of the thickening agent solution.
  • a mixture of 10 parts of any one of the present compounds (1) to (4) and 10 parts of phenylxylylethane is added to 20 parts of a 10% aqueous solution of polyethylene glycol, followed by stirring with a homomixer to obtain an emulsion having a mean particle diameter of 3 ⁇ m.
  • a thickening agent solution is prepared by- dispersing 0.2 part of xanthan gum and 1.0 part of Veegum R (aluminum magnesium silicate, manufactured by Sanyo Chemical) in 58.8 parts of ion-exchanged water.
  • a flowable formulation is obtained by mixing 40 parts of the above emulsion and 60 parts of the thickening agent solution.
  • Formulation Example 6 A dust is obtained by mixing 5 parts of any one of the present compounds (1) to (4), 3 parts of Carplex #80 (synthetic hydrated silicon oxide, registered trade name of Sionogi Pharmaceutical Co., Ltd.), 0.3 part of PAP (a mixture of monoisopropyl phosphate and diisopropyl phosphate) and 91.7 parts of talc (300 mesh) with stirring by a juice mixer.
  • Carplex #80 synthetic hydrated silicon oxide, registered trade name of Sionogi Pharmaceutical Co., Ltd.
  • PAP a mixture of monoisopropyl phosphate and diisopropyl phosphate
  • talc 300 mesh
  • An oil solution is obtained by dissolving 0.1 part of any one of the present compounds (1) to (4) in 10 parts of dichloromethane, and mixing the solution with 89.9 parts of deodorized kerosene.
  • Formulation Example 8 An oil aerosol is obtained by mixing and dissolving 1 part of any one of the present compounds (1) to (4), 5 parts of dichloromethane and 34 parts of deodorized kerosene, filling an aerosol vessel with the resultant solution, attaching a valve to the vessel, and charging the vessel with 60 parts of a propellent (liquefied petroleum gas) under pressure through the valve.
  • a propellent liquefied petroleum gas
  • An aqueous aerosol is obtained by mixing and dissolving 0.6 part of any one of the present compounds (1) to (4), 5 parts of xylene, 3.4 parts of deodorized kerosene and 1 part of sorbitan monolaurate (Leodor SP-LlO, manufactured by Kao Co., Ltd., HLB: 8.6), filling an aerosol vessel with the resultant solution and 50 parts of water, attaching a valve to the vessel, and charging the vessel with 40 parts of a propellent (liquefied petroleum gas) under pressure through the valve.
  • a propellent liquefied petroleum gas
  • An insecticidal. coil is obtained by dissolving 0.3 g of any one of the present compounds (1) to (4) in 20 mL of acetone, uniformly mixing and stirring the solution and 99.7 g of a base material for an insecticidal coil (a mixture of an incense material powder, lees flour and wood flour in a ratio of 4:3:3), adding 100 mL of water thereto, thoroughly kneading the mixture, and molding and drying the mixture .
  • a base material for an insecticidal coil a mixture of an incense material powder, lees flour and wood flour in a ratio of 4:3:3
  • Formulation Example 11 An electric insecticidal mat is obtained by dissolving 0.8 g of any one of the present compounds (1) to (4) and 0.4 g of piperonyl butoxide in acetone to obtain 10 mL of the solution, and uniformly impregnating, with 0.5 mL of the solution, a base material (in a plate form, obtained by hardening fibrils comprised of a mixture of cotton linter and pulp) for an electric insecticidal mat of 2.5 cm x 1.5 cm and 0.3 cm thick.
  • a part to be used for a liquid absorbing core-type heat transpiration device is obtained by dissolving 3 parts of any one of the present compounds (1) to (4) in 97 parts of deodorized kerosene, placing the resultant solution in a vessel made of vinyl chloride, and inserting a liquid- absorbing core into the vessel.
  • the liquid-absorbing core is prepared by solidifying an inorganic powder with a binder, followed by sintering it, upper part of which can be heated by a heater.
  • a heat fumigant is obtained by dissolving 100 mg of any one of the present compounds (1) to (4) in an appropriate amount of acetone, and impregnating a porous ceramic plate of 4.0 cm x 4.0 cm and 1.2 cm thick with the solution.
  • a room-temperature-volatilizing formulation is obtained by dissolving 100 ⁇ g of any one of the present compounds (1) to (4) in an appropriate amount of acetone, uniformly applying the solution onto a filter paper of 2 cm x 2 cm and 0.3 mm thick, and air-drying to remove acetone.
  • Test Examples show that the present compound is effective as an active ingredient of a pest controlling composition.
  • a 0.005% (w/v) solution of a test compound in acetone was prepared.
  • the nota of 10 female imagoes of Culex pipiens pallens were treated with the acetone solution in an amount of 0.015 ⁇ g of the test compound per mosquito.
  • water and feed were given to the test mosquitoes.
  • the number of dead mosquitoes was counted, and a death rate was calculated (2 repetitions) .
  • the present compound has an excellent pest controlling effect, and therefore it is useful as an active ingredient of a pest controlling composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
PCT/JP2008/072897 2007-12-11 2008-12-10 Cyclopropanecarboxylate and pest controlling composition containing the same WO2009075379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007319332A JP2009143810A (ja) 2007-12-11 2007-12-11 シクロプロパンカルボン酸エステル及びその用途
JP2007-319332 2007-12-11

Publications (1)

Publication Number Publication Date
WO2009075379A1 true WO2009075379A1 (en) 2009-06-18

Family

ID=40474591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072897 WO2009075379A1 (en) 2007-12-11 2008-12-10 Cyclopropanecarboxylate and pest controlling composition containing the same

Country Status (4)

Country Link
JP (1) JP2009143810A (zh)
AR (1) AR072038A1 (zh)
TW (1) TW200934388A (zh)
WO (1) WO2009075379A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6242168B2 (ja) * 2013-11-12 2017-12-06 住化エンバイロメンタルサイエンス株式会社 ハチ類駆除用組成物、ハチ類駆除用エアゾール製品、並びに、ハチ類の駆除方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459305A (en) * 1980-04-10 1984-07-10 Dainippon Sochugiku Kabushiki Kaisha Cyclopropanecarboxylic acid ester derivatives, a method of manufacturing them, and their uses
EP0196156A1 (en) * 1985-03-06 1986-10-01 Imperial Chemical Industries Plc Fluorobenzyl esters
JP2001302590A (ja) * 2000-04-25 2001-10-31 Sumitomo Chem Co Ltd エステル化合物及びそれを有効成分とする殺虫剤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459305A (en) * 1980-04-10 1984-07-10 Dainippon Sochugiku Kabushiki Kaisha Cyclopropanecarboxylic acid ester derivatives, a method of manufacturing them, and their uses
EP0196156A1 (en) * 1985-03-06 1986-10-01 Imperial Chemical Industries Plc Fluorobenzyl esters
JP2001302590A (ja) * 2000-04-25 2001-10-31 Sumitomo Chem Co Ltd エステル化合物及びそれを有効成分とする殺虫剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.W. FARNHAM ET AL: "The pyrethrins and related compounds Part XL - Structure-activity relationships of pyrethroidal esters with acyclic side chains in the alcohol component against resistant strains of housefly (Musca domestica)", PESTIC. SCI., vol. 44, 1995, pages 277 - 281, XP002522253 *

Also Published As

Publication number Publication date
AR072038A1 (es) 2010-08-04
JP2009143810A (ja) 2009-07-02
TW200934388A (en) 2009-08-16

Similar Documents

Publication Publication Date Title
US6908945B2 (en) Ester compound and its use
RU2282618C2 (ru) Эфиры циклопропанкарбоновых кислот и содержащие указанные соединения средства борьбы с насекомыми-вредителями
AU2005217253B2 (en) Pyrethroid pesticide
US8367724B2 (en) Ester compound and use thereof
US8039499B2 (en) Ester compound and its use
KR101944576B1 (ko) 해충 방제 조성물
US8048916B2 (en) Ester compound and use thereof
EP1976386B1 (en) Ester compound and its use
WO2010087419A2 (en) Ester compound and use thereof
AU2008341401B2 (en) Cyclopropanecarboxylate and pest controlling composition containing the same
WO2010010959A1 (en) Ester compound and use thereof
WO2009075379A1 (en) Cyclopropanecarboxylate and pest controlling composition containing the same
WO2009064025A1 (en) Cyclopropanecarboxylate and use thereof
EP1870406A1 (en) Ester compound and its use in pest control
WO2010087418A1 (en) Cyclopropanecarboxylic acid esters and their use as pest control agents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08860223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08860223

Country of ref document: EP

Kind code of ref document: A1