Nothing Special   »   [go: up one dir, main page]

WO2007125783A1 - プリン系物質生産菌及びプリン系物質の製造法 - Google Patents

プリン系物質生産菌及びプリン系物質の製造法 Download PDF

Info

Publication number
WO2007125783A1
WO2007125783A1 PCT/JP2007/058357 JP2007058357W WO2007125783A1 WO 2007125783 A1 WO2007125783 A1 WO 2007125783A1 JP 2007058357 W JP2007058357 W JP 2007058357W WO 2007125783 A1 WO2007125783 A1 WO 2007125783A1
Authority
WO
WIPO (PCT)
Prior art keywords
purine
gene
bacillus
acid
activity
Prior art date
Application number
PCT/JP2007/058357
Other languages
English (en)
French (fr)
Inventor
Takayuki Asahara
Kiyoshi Matsuno
Yukiko Mori
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to KR1020087028621A priority Critical patent/KR101173533B1/ko
Priority to EP07741793A priority patent/EP2011861A1/en
Priority to JP2008513147A priority patent/JP5251505B2/ja
Priority to CN200780014925XA priority patent/CN101432418B/zh
Priority to BRPI0709635-6A priority patent/BRPI0709635A2/pt
Publication of WO2007125783A1 publication Critical patent/WO2007125783A1/ja
Priority to US12/255,031 priority patent/US8236531B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/32Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/38Nucleosides
    • C12P19/40Nucleosides having a condensed ring system containing a six-membered ring having two nitrogen atoms in the same ring, e.g. purine nucleosides

Definitions

  • Purine substance producing bacteria and method for producing purine substance are provided.
  • the present invention relates to purine nucleotides such as 5'-inosinic acid and 5'-guaric acid, and purine nucleosides such as inosine and guanosine, which are important as raw materials for their synthesis. And a Bacillus bacterium used therein. Purine substances are useful as seasonings, medicines, and raw materials thereof. Background art
  • mutants Conventionly, microorganisms have been subjected to mutagenesis treatment such as UV irradiation or nitrosoguanidine (N-methy ⁇ ⁇ '-nitro-N-nitrosoguanidine) treatment, and appropriate selections have been made. A method of obtaining a target mutant strain using a medium has been performed.
  • mutagenesis treatment such as UV irradiation or nitrosoguanidine (N-methy ⁇ ⁇ '-nitro-N-nitrosoguanidine) treatment
  • the repressor protein in addition to the purine operon gene group, includes a purA gene involved in AMP biosynthesis (see Non-Patent Document 2), and a glyA gene involved in formyltetrahydrofolate biosynthesis ( It is known to regulate the expression of the pbuG gene (see Non-patent Document 4) encoding the transporter of hypoxanthine Z guanine (see Non-patent Document 3).
  • the succin-lou AMP synthase gene (purA) A microorganism that efficiently produces inosine by destroying and imparting adenine requirement, and destroying purine nucleoside phosphorylase gene (deoD) to inhibit degradation of inosine into hypoxanthine, and A method for producing inosine using bismuth has been disclosed (see Patent Document 8).
  • Transaldolase is one of the pentose phosphate pathways and catalyzes the reversible reaction to produce D erythrose 4-phosphate and D-fructose 6-phosphate from sedheptulose 7-phosphate and D-glyceraldehyde 3-phosphate. It is an enzyme. The relationship between this enzyme and the biosynthetic pathway of purine substances is not well known, and no attempt has been made to breed purine substance-producing bacteria by reducing the enzyme activity.
  • Patent Document 1 Japanese Patent Publication No. 38-23099
  • Patent Document 2 Japanese Patent Publication No.54-17033
  • Patent Document 3 Japanese Patent Publication No. 55-2956
  • Patent Document 4 Japanese Patent Publication No. 55-45199
  • Patent Document 5 Japanese Patent Publication No.57--14160
  • Patent Document 6 Japanese Patent Publication No.57-41915
  • Patent Document 7 JP 59-42895 A
  • Patent Document 8 Japanese Unexamined Patent Application Publication No. 2004-242610
  • Patent Document 9 Japanese Patent Publication No. 51--5075
  • Patent Document 10 Japanese Patent Publication No. 58-17592
  • Patent Document 11 Japanese Patent Laid-Open No. 58-158197
  • Patent Document 12 JP-A-58-175493
  • Patent Document 13 JP 59-28470
  • Patent Document 14 Japanese Patent Application Laid-Open No. 60-156388
  • Patent Document 16 Japanese Patent Laid-Open No. 1 174385
  • Patent Document 18 Japanese Patent Laid-Open No. 3-164185
  • Patent Document 19 JP-A-5-84067
  • Patent Document 20 JP-A-5-192164
  • Patent Document 21 Japanese Patent Laid-Open No. 63-248394
  • Patent Document 22 Pamphlet of International Publication No. 99Z03988
  • Patent Document 23 U.S. Pat.No. 6,284,495
  • Non-patent literature l Agri Biol. Chem., 1978, 42, 399-405
  • Non-Patent Document 2 Pro Natl. Acad. Sci. USA, 1995, 92, 7455-7459
  • Non-Patent Document 3 J. BacterioL, 2001, 183, 6175-6183
  • Non-Patent Document 4 J. BacterioL, 2003, 185, 5200-5209
  • the present invention provides a method for producing a bacterium belonging to the genus Bacillus suitable for producing purine-based substances such as purine nucleosides and Z or purine nucleotides by fermentation, and a method for producing a purine-based substance using the bacteria.
  • the issue is to provide.
  • the present inventor has intensively studied to solve the above problems. As a result, it was found that the ability to produce purine nucleotides was improved by reducing the enzyme activity of transaldolase in the pentose phosphate pathway in Bacillus bacteria, and the present invention was completed.
  • the present invention is as follows.
  • a Bacillus bacterium having an ability to produce purine substances and modified so that the enzyme activity of transaldolase is reduced.
  • the Bacillus bacterium wherein the purine substance is a purine nucleoside selected from the group consisting of inosine, xanthosine, guanosine, and adenosine.
  • the purine substance is a purine nucleotide selected from the group consisting of inosinic acid, xanthylic acid, guaric acid, and adenylic acid.
  • the expression level of the purine operon is increased due to the destruction of the purR gene, which encodes the purine operon repressor, or the removal of part of the purine operon's ate-user region.
  • the Bacillus bacterium as described above.
  • the bacterium belonging to the genus Bacillus is cultured in a medium, the purine substance is accumulated in the cells of the bacteria or in the medium, and the purine substance is recovered from the cell or medium. Manufacturing method.
  • the purine substance is a purine nucleoside selected from the group consisting of inosine, xanthosine, guanosine, and adenosine.
  • the purine substance is a purine nucleotide selected from the group consisting of inosinic acid, xanthylic acid, guanylic acid, and adenylic acid.
  • the purine substance is a purine nucleotide selected from the group consisting of inosinic acid, xanthylic acid, guanylic acid, and adenylic acid.
  • a method for producing a purine nucleotide which comprises producing a purine nucleotide by allowing a microorganism having acid or acid phosphatase to act, and collecting the purine nucleotide.
  • the Bacillus bacterium of the present invention is a bacterium belonging to the genus Bacillus which has a purine substance-producing ability and has been modified so that the enzyme activity of transaldolase is reduced.
  • Purine-based substance refers to a substance containing a purine skeleton, and examples thereof include purine nucleosides and purine nucleotides.
  • Purine nucleosides include inosine, xanthosine, guanosine, adenosine, etc.
  • purine nucleotides include purine nucleoside 5, monophosphate esters, such as inosine acid (also referred to as “IMP”).
  • Xanthylic acid xanthosine-5, monophosphate, also referred to as “XMP”
  • guaric acid guanosine 5, monomonophosphate, hereinafter also referred to as “GMP”
  • AMP adenylate
  • Bacillus bacterium of the present invention is cultured in a medium, the purine-based substance is produced in the cell or in the medium to such an extent that it can be recovered from the cell or the medium. The ability to secrete and accumulate.
  • the Bacillus bacterium of the present invention may have two or more kinds of productivity among the purine substances.
  • the Bacillus bacterium having purine-based substance-producing ability may be inherently purine-based substance-producing ability, but the following Bacillus genus bacteria may be mutated or modified by DNA. It may be obtained by modifying it so that it has the ability to produce purine substances using the law. Further, it may be a Bacillus bacterium to which the purine substance production ability is imparted or enhanced by modifying so that the enzyme activity of transaldolase is lowered as described later.
  • enzyme activity is reduced means that the transaldolase, an enzyme that degrades purine substances described later, an inosine monophosphate (IMP) dehydrogenase, or the like.
  • Elementary activity is lower than that in an unmodified strain, such as a wild-type Bacillus bacterium, and the activity is substantially lost. The same applies to the activity of the purine operon repressor described later.
  • Bacillus bacterium used to obtain the Bacillus bacterium of the present invention examples include Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus pumilus, and the like.
  • Bacillus subtilis Bacillus subtilis 168 Marburg (ATCC6051), Bacillus subtilis PY79 (Plasmid, 1984, 12, 1-9) isobaric Bacillus amyloliquefaciens as Bacillus amyloliquefaciens T And Bacillus' Miloliquefaciens N (ATCC23845).
  • Bacillus pumilus include Bacillus pumilus Gottheil No. 3218 (ATCC No. 21005) (US Pat. No. 3,616,206). These strains can be obtained from the American 'Type' Culture 'Collection, Address P.O. Box 1549 Manassas, VA 20108, United States of America.
  • a Bacillus bacterium having a purine-based substance-producing ability can be obtained by, for example, imparting a resistance to a drug such as a purine nucleoside requirement or a purine analog to the Bacillus bacterium as described above. Yes (see Japanese Examined Sho 38-23099, Shoko Sho 54-170 33, Shoko Sho 55-45199, Shoko Sho 57-14160, Shoko Sho 57-41915, Shoko Sho 59-4 2895). Bacillus bacteria with auxotrophy and drug resistance are used for normal mutation treatments such as N-methyl-N, -nitro-N--trosoguanidine (NTG) or EMS (ethylmethanesulfonate). It can be obtained by treatment with a known mutagen.
  • NTG N-methyl-N, -nitro-N--trosoguanidine
  • EMS ethylmethanesulfonate
  • Bacillus bacteria that produce purine nucleosides include the following.
  • Bacillus subtilis KMBS16 strain 6 can be used as a specific example of an inosine producing strain belonging to the genus Bacillus.
  • the strain encodes the pur R gene (purR :: spc), which encodes the purine operon repressor, the purA gene (purA :: erm), which encodes succi-loop AMP synthase, and the purine nucleoside phosphorylase.
  • This is a known derivative of Bacillus subtilis trpC2 strain (168 Marburg) into which a deoD gene deletion (deoD :: kan) has been introduced (JP 2004-242610, US2004166575A1).
  • Rus subtilis strain AJ3772 FERM P-2555
  • Japanese Patent Laid-Open No. 62-014794 Japanese Patent Laid-Open No. 62-014794.
  • Bacillus bacterium having an ability to produce guanosine a Bacillus bacterium having an increased IMP dehydrogenase activity (JP-A-3-58787), a purine analog resistance or a decoin resistance gene is incorporated.
  • Examples include Bacillus bacteria (Japanese Patent Publication No. 4-28357) in which a vector is introduced into an adenine-requiring mutant.
  • Bacillus bacteria that produce purine nucleotides include the following.
  • inosinic acid-producing bacteria inosine-producing strains with reduced phosphatase activity of Bacillus subtilis have been reported (Uchida, K. et al., Agr. Biol. Chem., 1961, 25, 804-805, Fujimoto, M. Uchida, K., Agr. Biol. Chem., 1965, 29, 249-259).
  • guanylate-producing bacterium As a guanylate-producing bacterium, adenine-requiring bacteria and resistance to decoinin or methionine sulfoxide are used, and 5, -guanyl acid (guanosine 5, monomonophosphate, hereinafter also referred to as “GMP”) ) Mutants of the genus Bacillus having production ability (Japanese Patent Publication No. 56-12438).
  • the xanthylic acid-producing bacterium can be constructed by using the method used for breeding coryneform bacteria centering on Corynebacterium ammmoniagenes. For example, by obtaining a PRPP amidotransferase-enhanced strain (JP-A 8-168383), an aliphatic amino acid resistant strain (JP-A 4-262790), and a dehydroproline resistant strain (Korea Patent Publication 2003-56490), xanthylic acid is obtained. Production bacteria can be constructed.
  • Bacillus bacteria having the ability to produce purine-based substances examples thereof include a method for increasing the intracellular activity of an enzyme involved in purine biosynthesis common to purine nucleosides and purine nucleotides, that is, purine biosynthesis enzyme.
  • the intracellular activity of the enzyme is preferably increased as compared to an unmodified strain of a Bacillus bacterium, for example, a wild-type Bacillus bacterium.
  • Activity increases corresponds to, for example, a case where the number of enzyme molecules per cell increases or a case where the specific activity per enzyme molecule increases.
  • the activity can be increased by increasing the expression level of the enzyme gene.
  • Examples include phosphoribosyl pyrophosphate amide transferase, phosphoribosyl pyrophosphate synthetase (PRPP synthetase [EC: 2.7.6.1]), etc.
  • a part of the catabolite produced by metabolism by a sugar source such as glucose incorporated into the pentose phosphate system becomes ribose 1-5-phosphate via ribulose 1-5-phosphate.
  • Biosynthesized ribose 5-phosphate produces purine nucleosides, histidine, and phosphoribosyl pyrophosphate (PRPP), an indispensable precursor for tryptophan biosynthesis.
  • PRPP phosphoribosyl pyrophosphate
  • PRPP phosphoribosyl pyrophosphate
  • the ability to produce purine substances can be imparted to or enhanced in bacteria belonging to the genus Bacillus by modifying the phosphoribosyl pyrophosphate synthetase activity to increase.
  • the activity of phosphoribosyl pyrophosphate synthetase is increased means that the activity of phosphoribosyl pyrophosphate synthetase is increased relative to an unmodified strain such as a wild strain or a parent strain.
  • the activity of phosphoribosyl pyrophosphate synthetase can be measured by, for example, the method of Switzer et al. (Methods EnzymoL, 1978, 51, 3-11), the method of Roth et al. (Methods EnzymoL, 1978, 51, 12-17) .
  • Bacteria belonging to the genus Bacillus whose activity of phosphoribosyl pyrophosphate synthetase has been increased can be obtained by, for example, phosphoribosyl pyrophosphate synthetase by a method using a plasmid or a method of integrating on a chromosome in the same manner as described in JP-A-2004-242610. Can be produced by highly expressing a gene coding for Bacillus bacteria.
  • Examples of a gene encoding a phosphoribosyl pyrophosphate synthetase that can be used in the present invention include a prs gene derived from a bacterium belonging to the genus Bacillus described in SEQ ID NO: 3 (Genbank Accession No. X16518). Any gene derived from animals or plants can be used as long as it encodes a protein belonging to the genus Bacillus and having phosphoribosyl pyrophosphate synthetase activity.
  • PRPP which is an essential precursor for purine nucleoside, histidine, and tryptophan biosynthesis
  • a part of it is converted to purine nucleotides and purine nucleosides by enzymes involved in purine biosynthesis. Is converted.
  • the genes encoding such enzymes include the Bacillus subtilis purine operon, specifically the purEKB—pu rC (orf) QLF-purMNH (J) —purD operon gene (Ebbole DJ and Zalkin H, J . Biol. Chem., 1987, 262, 17, 8274-87) (Currently also called purEKBCSQLFMNHD: Bacillus subtilis and Its Closest Relatives, Editor in Chief: AL Sonenshein, ASM
  • purine operon genes that can be used in the present invention are not limited to these, and genes derived from other microorganisms and animals and plants can also be used.
  • Examples of a method for increasing the expression level of the purine operon include a method in which the purine operon gene is highly expressed in Bacillus bacteria by a method using a plasmid or a method of incorporating it into a chromosome.
  • the purine operon-specific promoter may be replaced with a stronger promoter, or the 35--10 region of the unique promoter may be replaced with a consensus sequence. Is mentioned.
  • a third method for increasing the expression level of the purine operon there is a method of decreasing the expression level of the repressor of the purine operon (USP6, 284, 495). “Expression of purine operon repressor” includes both transcription of the purine operon gene and translation of the transcript. Further, “reducing the expression level” means that the expression level is lower than that in an unmodified strain such as a wild-type Bacillus genus, and the expression is substantially lost. Including.
  • the Bacillus bacterium is treated with ultraviolet rays or a mutagen that is usually used for mutagenesis such as NTG or EMS.
  • a method of selecting a mutant strain in which the expression level of the purine repressor is reduced can be employed.
  • the Bacillus bacterium in which the expression level of the purine repressor has decreased for example, a homologous recombination method (Experiments in Molecular Genetics, old Spring Harbor Laboratory) press (1972); Matsuyama, b. ana izushima, S., J. BacterioL, 1985, 162, 1196-1202), a gene encoding a purine repressor on the chromosome (purR; GenBank Accession NC—000964 (coding region) Can be obtained by substituting the base numbers 54439 to 5 5293; SEQ ID NO: 5) with a gene that does not function normally (hereinafter sometimes referred to as “destructive gene”).
  • Such a gene disruption technique by homologous recombination has already been established, and a method using linear DNA, a method using a temperature-sensitive plasmid, and the like can be used.
  • the purR gene can also be destroyed by using a plasmid that contains a purR gene into which a marker gene such as drug resistance is inserted and cannot replicate in the target microorganism cell. You can. That is, a transformant that has been transformed with the plasmid and has acquired drug resistance has a marker gene incorporated in the chromosomal DNA. Since this marker gene is likely to be integrated by homologous recombination between the purR gene sequence at both ends of the marker gene and the purR gene on the chromosome, a gene-disrupted strain can be efficiently selected.
  • the disrupted purR gene used for gene disruption is a deletion of a specific region of the purR gene by restriction enzyme digestion and recombination, or other DNA fragments (one gene per gene). Etc.), site-specific mutagenesis (Kramer, W. and Fritz, HJ, Methods EnzymoL, 1987, 154, 350-367) or recombinant PCR (PCR Technology, Stockton Press (1989)) PurR gene coding by treatment with chemical agents such as sodium sulfite and hydroxylamine (Shortle, D. and Nathans, D., Proc. Natl. Acad. Sci.
  • the method of deleting a certain region of the purR gene by restriction enzyme digestion and recombination, or the method of inserting another DNA fragment into the purR gene is from the viewpoint of certainty and stability. preferable.
  • the fixed region of the purR gene to be deleted may be on the 5 ′ end side, the internal side, or the 3 ′ end side of the purR gene, but 90% or more, more preferably 95% or more of the total length of the purR gene, particularly If it is preferably 97% or more, the certainty that the activity of the repressor is lowered is increased.
  • the base is deleted or inserted into the coding region of the purR gene to cause a frame shift mutation, the base is deleted or inserted at a plurality of positions, and the base at the 3 ′ end side. Deletion or insertion is preferable in that the activity of the repressor can be surely reduced.
  • a decrease in purine repressor activity is caused by a mutation that reduces the activity of purine repressor in the cell to the purR gene on the chromosome by the usual mutation treatment method.
  • introducing an amino acid substitution (missense mutation) into a region encoding an enzyme on a chromosome, introducing a stop codon (nonsense mutation), or introducing a frameshift mutation that deletes one or two base additions , Remains It can also be achieved by deleting part or all of the gene.
  • the activity of the repressor can be reduced by inserting a transposon into the purR gene on the chromosome.
  • the reduction of the activity of the purine repressor can also be achieved by substituting a weaker expression regulatory sequence such as a purR gene promoter on the chromosomal DNA.
  • Promoter strength is defined by the frequency of RNA synthesis initiation. Methods for evaluating promoter strength and examples of strong promoters are described in Goldstein et al. (Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev., 1995, 1, 105-128).
  • RBS ribosome binding site
  • a recombinant DNA into which a mutation that causes instability in the messenger RNA transcribed from the purR gene may be prepared, and this may be introduced into a Bacillus bacterial host and transformed.
  • the activity of the encoded enzyme can be reduced in the same manner as described above.
  • the purR gene can be obtained from the chromosomal DNA of a microorganism having a purine operon by a PCR method using an oligonucleotide prepared based on the base sequence of a known purR gene as a primer.
  • the purR gene can be obtained from a chromosomal DNA library of a microorganism having a purine operon by a hybridization method using an oligonucleotide prepared as a probe based on the base sequence of a known purR gene. it can.
  • the base sequence of the purR gene has been reported (GenBank accession No.
  • D26185 (the coding region is base numbers 118041 to 11898), NC_000964 (the coding region is base numbers 54439 to 55296)).
  • the base sequence of the purR gene and the amino acid sequence encoded by the same gene are shown in SEQ ID NOs: 5 and 6 in the sequence listing. (See JP 2004-242610).
  • Primers used in PCR to obtain the purR gene are not limited as long as they can amplify a part or the full length of the purR gene. Specifically, SEQ ID NO: 17 (GAA GTTGATGATCAAAA) and sequence And an oligonucleotide having the base sequence shown by No. 18 (ACATATTGTTGACGATAAT).
  • the purR gene used for the preparation of a disrupted gene need only have a length necessary for causing gene disruption, not necessarily including the entire length.
  • the microorganism used for obtaining each gene is not particularly limited as long as the gene has homology that causes homologous recombination with the purR gene of the genus Bacillus used to create the gene disruption strain. ⁇ .
  • Examples of the marker gene include drug resistance genes such as a spectinomycin resistance gene, a kanamycin resistance gene, and a tetracycline resistance gene.
  • the spectinomycin metagene derived from Enterococcus faecalis was prepared from the strain of Escherichia coli ECE101 commercially available from Bacillus Dienetic Stock Center (BGSC). It can be acquired by issuing.
  • the erythromycin metagene of Staphylococcus aureus was prepared by preparing plasmid pDG646 from Escherichia coli ECE91 marketed by Bacillus Dienetic Stock Center (BGSC) and removing it from the plasmid as a cassette. Can get.
  • Streptococcus faecalis kanamycin resistance gene is prepared from Escherichia coli ECE94 marketed by Bacillus dienetic stock center (BGSC), and plasmid pDG783 is prepared. Can also be obtained by taking it out as a cassette.
  • the chloramphee-cole metagene of Staphylococcus aureus was prepared from the Bacillus subtilis 1 E17 strain commercially available from the Bacillus dienetic stock center (BGSC). It can be obtained by PCR amplification as a saddle type.
  • the Escherichia coli ECE99 strain can also be obtained by preparing plasmid pDG1513 and removing it as a plasmid force cassette (Gene 1995 167: 335-336).
  • a drug resistance gene is used as a marker gene
  • the gene is inserted into an appropriate site of the purR gene in the plasmid, and a microorganism is transformed with the resulting plasmid. If selected, a purR gene-disrupted strain can be obtained.
  • the destruction of the purR gene on the chromosome can be confirmed by analyzing the purR gene or marker gene on the chromosome by Southern blotting or PCR. Confirmation that the spectinomycin resistance gene, erythromycin resistance gene or kanamycin resistance gene has been incorporated into the chromosomal DNA can be carried out by PCR using a primer capable of amplifying these genes.
  • the expression of the purine operon is controlled by a terminator-antiterminator sequence (hereinafter referred to as a "category sequence") located downstream of the promoter (Ebbole, DJ and Zalkin, H “J. Biol. Chem., 1987, 262, 8274-8287, E bbole, DJ and Zalkin, H., J. Biol. Chem., 1988, 263, 10894-10902, Ebbole, DJ and Zalkin, H "J. BacterioL, 1989, 171, 2136-2141). Therefore, deletion of the Atheneue sequence can increase the expression level of the purine operon. Deletion of the satellite sequence can be carried out in the same manner as purR destruction.
  • the above methods may be combined.
  • the purine operon in which the purR gene is disrupted and the ate-user sequence is deleted can be used as a plasmid.
  • the activity of an enzyme involved in purine biosynthesis may be increased by releasing the regulation of the enzyme involved in purine biosynthesis, for example, by a method of releasing feedback inhibition of the enzyme. Yes (WO99 / 03988).
  • the ability to produce purine substances can also be enhanced by weakening the incorporation of purine substances into cells.
  • purine nucleoside uptake into cells is weakened by blocking the reactions involved in the uptake of purine nucleosides into cells. You can do it.
  • the reaction involved in the incorporation of the purine nucleoside into the cell is, for example, a reaction catalyzed by a nucleoside permease.
  • purine nucleoside phosphorylase when producing purine nucleosides, the activity of an enzyme that degrades purine substances may be reduced in order to enhance the ability to produce purine nucleosides.
  • An example of such an enzyme is purine nucleoside phosphorylase.
  • Purine nucleotides biosynthesized by an enzyme group involved in purine biosynthesis such as PRPP are dephosphorylated and converted to purine nucleosides.
  • an enzyme group involved in purine biosynthesis such as PRPP
  • purine nucleosides are dephosphorylated and converted to purine nucleosides.
  • the reduction of purine nucleoside phosphorylase activity can be achieved by disrupting the deoD gene and pupG gene encoding purine nucleoside phosphorylase in Bacillus bacteria.
  • the Bacillus bacterium of the present invention may be modified so as to disrupt the deoD gene and the pupG gene alone or simultaneously as described above.
  • the deoD gene and pupG gene for example, a gene derived from the genus Bacillus (deoD; Genbank Accession No. NC—000964 (SEQ ID NO: 7), pupG; Genbank Accession No. NC—000964 (SEQ ID NO: 9)) can be used, A gene-disrupted strain can be obtained in the same manner as the purR gene disruption.
  • succin-lou AMP synthase examples include the purrA gene.
  • purA gene examples include those having the nucleotide sequence registered under GenBank Accession No. NC — 000964 (coding region is base number 4153460-4155749 of complementary strand) (SEQ ID NO: 11).
  • the activity of inosine monophosphate (IMP) dehydrogenase may be decreased in order to enhance the ability to produce purine substances.
  • Examples of the gene encoding IMP dehydrogenase include the guaB gene.
  • the guaB gene has, for example, the nucleotide sequence registered in GenBank Accession No. NC-000 964 (coding region is 15913-17376) (SEQ ID NO: 13) Things.
  • fructose-bisphosphatase may be reduced in order to enhance the ability to produce purine substances.
  • An example of a gene encoding fructose bisphosphatase is the ip gene.
  • Examples of the fcp gene include those having a base sequence registered in GenBank Accession No. NC_000964 (coding region is 4127053-4129065) (SEQ ID NO: 15).
  • the purR, deoD, pupG, purA, guaB, or fcp gene disrupted as described above, or the prs gene whose expression is enhanced may each be a conservative Norient, for example, SEQ ID NO: 6, In the amino acid sequence shown in 8, 10, 12, 14, 16, or 4, it contains one or several amino acid substitutions, deletions, insertions, additions, or inversions, and a purine librelator, a purine nucleoside phosphorylase, and a succinose, respectively.
  • It may be DNA encoding a protein having the activity of rho AMP synthase, IMP dehydrogenase, or fructose-bisphosphatase, phosphoribosyl pyrophosphate synthetase.
  • the “several” is, for example, 2 to 50, preferably 2 to 30, more preferably 2 to 10.
  • Changes to the amino acid sequence as described above are usually conservative changes that maintain the activity of the protein.
  • Conservative amino acid substitutions include substitution of Ala by ser or thr; substitution of arg by gln, his or lys; substitution of asn by glu, gln, lys, his, asp; by as n, glu or gin asp; cys with ser or ala; gin with asn, glu, lys, hi s, asp or arg; glu with asn, gln, lys or asp; gly with pro; asn, substitution of his by lys, gln, arg, tyr; substitution of i le by leu, met ⁇ val, phe; substitution of leu by ile, met ⁇ val, phe; substitution of lys by asn, glu, gln, his, arg Substitution of met by ile, leu, val, phe; substitution of
  • Examples of stringent conditions include conditions in which washing is performed at a salt concentration corresponding to 60 ° C., 1 ⁇ SSC, 0.1% SDS, and preferably 0.1 ⁇ SSC, 0.1% SDS.
  • the number of washings is one or more, preferably two or three.
  • DNA homology can be evaluated by a calculation method such as BLAST search, FASTA search and CrustalW.
  • BLAST Basic Local Alignment Search Tool
  • blastp, bias tn, blastx, megablast, tblastn, and tblastx are statistics from Karlin, Samuel and Stephen F. Alts chul Methods for assessing the statistical s ignificance of molecular sequence features by using general scoring schemes (“Methods for assessing the statistical s ignificance of molecular sequence features by using general scoring schemes ) ", Proc. Natl. Acad. Sci. USA, 1990, 87: 2264-68," Applications and statistics for multiple high-s coring segments in molecular sequences ". Proc. Natl. Acad. Sci.
  • the FASTA search method is described by WR Pearson !, ("Rapid and sensitive Sequence Comparison with FAb ⁇ and FASTA", Metho ds in Enzymology, 1990 183: 63-98)
  • the ClustalW method is described by Thompson JD ⁇ Higgins DG and Gibson TJ (“CLUSTAL W: The sensitivity of progressive multi-sequence alignments by selection of sequence weights, position-specific gap penalties and weight matrix methods”). CLUSTAL W: improving the sensitivity of progressive multiple se quence alignment through sequence weighting, position-specific gap penalties and w eight matrix choices ", Nucleic Acids Res. 1994, 22: 4673-4680).
  • DNA used for the preparation of the disrupted gene may also be a conservative noble of the purR, deoD, pupG, purA or guaB gene.
  • the target gene In order to incorporate the target gene into the chromosomal DNA of a bacterium belonging to the genus Bacillus, it may be carried out in the same manner as a gene encoding a transaldase described later.
  • the Bacillus bacterium of the present invention can be obtained by modifying a strain having the purine substance-producing ability as described above so that the enzyme activity of transaldolase is reduced.
  • the order of modification is not limited, and purine nucleotide-producing ability may be imparted after modification so that the enzyme activity of transaldolase is reduced.
  • transaldolase catalyzes a reaction that reversibly generates D-erythrose 4-phosphate and D-fructose 6-phosphate from sedheptulose 7-phosphate and D-glycose aldehyde 3-phosphate. This reaction is part of the pentose phosphate pathway reaction.
  • the “Pentose Phosphate Pathway” is phosphorylated by the glucose power glucose kinase incorporated into cells and biosynthesizes glucose-6-phosphate.
  • Glucose-6-phosphate is oxidized to ribose 5- Phosphate of triose, tetrorose, pentose, hexose, heptose by the action of epimerase, transketolase (EC: 2.2.1.1), and transrenodolase (EC: 2.2.1.2) This means a pathway consisting of a reversible process in which an ester interconverts.
  • the enzyme activity of transaldolase can be measured by the following method.
  • the produced D-daliceraldehyde 3-phosphate is converted into hydroxyaceton phosphate by triosephosphate isomerase, and this is measured using glycerol 3-phosphate dehydrogenase and NADH (Ochoa, T "and Horecker, B. L "1966, Methods EnzymoL, 9, 499-5 05).
  • transaldolase In order to modify the enzyme activity of transaldolase to decrease, for example, as shown in the above-mentioned destruction of the purR gene, a gene encoding transaldolase on the chromosome by homologous recombination. Genes that do not function properly (for example, markers such as drug resistance) This can be achieved by replacing one gene with a disrupted gene inserted into the gene encoding transaldolase. Further, as described for the purR gene, a mutation that reduces the enzyme activity of transaldase in the cell may be introduced into the transaldolase gene on the chromosome by a usual mutation treatment method.
  • the transaldolase of Bacillus subtilis includes a protein composed of 212 amino acids shown in SEQ ID NO: 2, and a gene encoding the protein, preferably SEQ ID NO: 1 (ywjH gene; Genbank Accession No. NC_000964 ) Can be used for modification.
  • the ywjH gene is present at around 325 degrees on the Bacillus subtilis chromosome.
  • transaldolase may also be a conservative variant of the ywjH gene, similar to the aforementioned genes. Specifically, in the amino acid sequence shown in SEQ ID NO: 1, it encodes a protein containing one or several amino acid substitutions, deletions, insertions, additions or inversions and having transaldolase enzyme activity. DNA to do. Alternatively, it has a homology of preferably 50% or more, more preferably 70% or more, further preferably 80%, particularly preferably 90% or more, most preferably 95% or more, with the amino acid sequence shown in SEQ ID NO: 2. And DNA encoding a protein having the enzyme activity of transaldolase.
  • Stringent conditions include conditions in which washing is performed at a salt concentration corresponding to 60 ° C., 1 ⁇ SSC, 0.1% SDS, preferably 0.1 ⁇ SSC, 0.1% SDS.
  • the number of washings is one or more, preferably two or three.
  • DNA encoding a protein substantially the same as transaldolase as described above is substituted, deleted, inserted, added, or reversed by substitution of an amino acid residue at a specific site, for example, by site-directed mutagenesis. It is obtained by modifying the base sequence encoding these enzymes so as to include the position.
  • the modified DNA as described above can also be obtained by a conventionally known mutation treatment.
  • Mutation treatment includes in vitro treatment of DNA before mutation treatment with hydroxylamine or the like, and microorganisms that retain the DNA before mutation treatment, such as bacteria belonging to the genus Escherichia, by ultraviolet irradiation or N-methyl-N '-tro. — N— -Torosogua
  • a method of treating with a mutagen that is usually used for mutagenesis treatment such as nisine (NTG) or nitrous acid.
  • the target gene is, for example, a PCR method (PCR: polymerase chain reaction; PCR) using a chromosomal DNA of a bacterium belonging to the genus Bacillus as a cage and using an oligonucleotide prepared based on the base sequence of the target gene as a primer.
  • Chromosomal DNA can be obtained from bacterial donors such as DNA donors such as the method of Saito and Miura (H. Saito and K. Miura, Biochem. Biophys. Acta, 1963, 72, 619-629, Japan Biotechnology Society, 97-98, Bafukan, 199 2).
  • Primers for PCR should be prepared based on the known gene sequences of Bacillus bacteria, or based on information on regions where sequences are conserved between known genes in other bacteria, etc. Can do.
  • a temperature such as pHV1248 (Prtit, M.-A., et. Al., J. BacterioL, 1990, 172, 6736-6740) is used.
  • examples include vectors having a sensitive origin of replication, and vectors for E. coli such as PHSG398 (Takara Shuzo Co., Ltd.) and pBluescript SK— (Stratagene).
  • the vector is cleaved with a restriction enzyme that matches the end of the target gene. Ligation is usually performed using a ligase such as T4DNA ligase.
  • any transformation method reported so far may be used.
  • a method for preparing competent cells from cells at the growth stage and introducing DNA Dubnau, D., and Davidoff-Abelson, R., J. Mol. Biol, 1971, 56, 209-221 or host A method in which cells are converted into protoplasts or spheroplasts that readily incorporate recombinant DNA, and thread-replaced DNA is introduced into DNA recipients (Chang, S. and Cohen, SN, Molec. Gen. Genet., 1979 168, 111-11 5).
  • the Bacillus bacterium of the present invention efficiently produces purine substances. Therefore, by culturing the Bacillus bacterium of the present invention in a suitable medium, the bacteria can be subcellular or in the medium. It is possible to produce and accumulate purine substances such as purine nucleosides and purine nucleotides.
  • a normal nutrient medium containing a carbon source, a nitrogen source, inorganic salts, and other organic micronutrients such as amino acids and vitamins as necessary is used. Can do. Either synthetic or natural media can be used.
  • the carbon source and nitrogen source used in the medium may be any one that can be used by the strain to be cultured.
  • carbon source glucose, fructose, sucrose, maltose, mannose, galactose, arabinose, xylose, trehalose, ribose, starch hydrolysate, sugars such as molasses, alcohols such as glycerol and mannitol are used.
  • organic acids such as darconic acid, acetic acid, succinic acid, maleic acid, fumaric acid and succinic acid may be used alone or in combination with other carbon sources.
  • ammonia ammonium sulfate, ammonium carbonate, ammonium chloride, ammonium phosphate, ammonium acetate, ammonium salt, nitrate or soybean Organic nitrogen such as hydrolyzate is used.
  • amino acids As organic micronutrients, amino acids, vitamins, fatty acids, nucleic acids, and peptone, casamino acids, yeast extracts, soy proteolysates containing these are used, and nutritional requirements that require amino acids for growth. When using a sex mutant, it is necessary to supplement the required nutrients.
  • inorganic salts phosphates, magnesium salts, calcium salts, iron salts, manganese salts and the like are used.
  • the culture conditions are the power depending on the type of the bacterium belonging to the genus Bacillus to be used. If PH decreases during the culture, neutralize with an alkali such as ammonia gas. Purine nucleoside is accumulated in the culture medium by culturing for about 40 hours to 3 days.
  • a known method may be used to collect inosine accumulated in the culture solution. For example, it can be isolated by precipitation or ion exchange chromatography.
  • the microorganism used in the present invention may further comprise nucleosidase nucleotidase. If the gene to be deleted is deleted, the corresponding nucleoside or nucleotide can be accumulated, and if the requirement for inosine is added, the precursor and its related substances on the biosynthetic pathway are accumulated. Can be made.
  • 5'-inosinic acid or 5'-guanylic acid is obtained by allowing purine nucleoside phosphorylase and phosphoribosyltransferase to act on inosine or guanosine produced by the method of the present invention.
  • purine nucleotides are produced by phosphorylation of purine nucleosides produced using the microorganism of the present invention by causing phosphotransferase to act on them. Is also possible (JP 2000-295996).
  • a method for producing a purine nucleotide using a bacterium belonging to the genus Escherichia into which a gene encoding inosinosine kinase of Escherichia coli has been introduced (WO91 / 08286 pamphlet), and a gene in which the gene encoding inosinosine kinase of excigotata teratum acetylicum has been introduced.
  • a method for producing purine nucleotides using Linea teratium. Ammoniagenes (WO96 / 3050 No. 1 pamphlet) can be employed.
  • a phosphoric acid donor selected from the group consisting of polyphosphoric acid, phenylphosphoric acid, and strong rubamyl phosphoric acid, and a nucleoside-5'-phosphate ester are produced from the purine nucleoside produced using the microorganism of the present invention. It is also possible to produce purine nucleotides (nucleoside -5'-phosphate esters) by the action of microorganisms that have the ability to act or acid phosphatase (EC 3.1.3.2). The microorganism having the ability to produce a nucleoside-5′-phosphate ester is not particularly limited as long as it has the ability to convert purine nucleoside into a purine nucleotide. For example, it was described in International Publication Pamphlet WO9637603. Such microorganisms.
  • acid phosphatase for example, those disclosed in JP-A-2002-000289 can be used, and more preferably, acid phosphatase with increased affinity for nucleosides (see JP-A-10-201481)
  • acid phosphatase with increased affinity for nucleosides see JP-A-10-201481
  • Mutant acid phosphatase with reduced nucleotidase activity see WO9637603
  • mutant acid phosphatase with reduced phosphate ester hydrolysis activity Japanese Patent Laid-Open No. 2001-245676
  • Purine nucleotides can also be obtained by phosphorylating purine nucleosides produced using the microorganism of the present invention (Bulletin of the Chemical Society of Japan 42,3505). .
  • a method of obtaining GMP by conjugating XMP aminase activity to a microorganism capable of producing XMP of the present invention IMP is obtained by conjugating inosine kinase.
  • a method can also be employed (Biosd. Biotech. Biochem., 51, 840 (1997), Japanese Patent Laid-Open No. 63-230094).
  • the inosine or guanosine or purine nucleoside produced by the method of the present invention used for the production of the above purine nucleotides may be purified, but contains a purine nucleoside fermentation solution or purine nucleoside. A crude product may be used.
  • B. subtilis 168 Marburg strain ATCC6051 and lacks the purinoperin repressor gene (purR), succin-lou AMP synthase gene (purA), purine nucleoside phosphorylase gene (pupG) and IMP dehydrogenation Enzyme gene (guaB ) And a deficient purine nucleoside phosphorylase gene (deoD) using a recombinant KMBS310 (Japanese Patent Application No. 2005-280186) in which the SD sequence of the purine operon promoter region and PRPP synthetase gene (prs) is modified.
  • the fabrication of was performed as follows.
  • the purine operon and PRPP synthetase genes are enhanced in expression by modification of the promoter region and the SD sequence, respectively.
  • IMP dehydrogenase gene (guaB) is weakened, and purine operon promoter region, PRPP synthetase inheritance
  • KMBS321 in which the SD sequence of the offspring (prs) is modified and the purine nucleoside phosphorylase gene (deoD) is deleted, the production of a strain lacking the fructose monobisphosphatase gene (ip) is as follows. I went there.
  • B. subtilis 168 Marburg strain chromosomal DNA is in a saddle shape and PCR is performed using the above primers.
  • Chromosomal DNA of Bacillus subtilis 168 Marburg strain is used as a saddle, and PCR (98 ° C, 10 seconds; 55 ° C, 30 seconds; 72 ° C, 1.5 minutes; 30 cycles; Gene Amp) PCR System
  • Plasmid pC194 carrying the chloramphee-cole resistance gene (cat) is used as a saddle and PCR (98 ° C, 10 seconds; 55 ° C, 30 seconds; 72 ° C, 1.5) Min; 30 cycles; Gene Amp PCR System Model 9600 (manufactured by Perkin Elma Co., Ltd.)) to obtain an amplified fragment of about 980 bp containing the cat gene.
  • the DNA fragment of the ibp region (ibp :: cat) into which the cat gene obtained in (iv) was inserted was subjected to agarose gel electrophoresis, and the target fragment was extracted from the gel.
  • the purified DNA fragment was used to transform B. subtilis KMBS321 competent cells prepared by the method of Dubnau and Davidoff-Abelson (J. Mol. Biol, 1971, 56, 209-221). Converted to obtain a small plate that grows on LB agar plates containing 2.5 ⁇ g / ml chloramfecol and 20 ⁇ g / ml guanine.
  • KMBS321 A strain deficient in the transaldolase gene (ywjH) was prepared as follows.
  • C. chromosomal DNA of B. subtilis 168 Marburg strain was used as a cage, and PCR was performed using the above primers.
  • GGATGACGTTATCGATAATGACTTCCTT SEQ ID NO: 28
  • the chromosomal DNA of B. subtilis 168 Marburg strain is in a saddle shape and PCR (98 ° C, 10 seconds; 55 ° C, 30 seconds; 72 ° C, 1.5 minutes; 30 cycles; Gene Amp PCR System Model) 9 600 (manufactured by Perkin Elma Co., Ltd.)), and an amplified fragment containing ywjH gene 3, the terminal region and about 1370 bp downstream was obtained.
  • gagaagcgaatgaattaggaattctAAAGCACCCATTAGTTCAACAAACG SEQ ID NO: 29; the small base is the sequence of the 5 'end region of the ywjH gene and is designed to be complementary to the 3' end region of SEQ ID NO: 26
  • the plasmid pC194 which carries the chloramphee-chol resistance gene (cat), is used as a saddle and PCR (98 ° C, 10 seconds; 55 ° C, 30 seconds; 72 ° C, 1.5 minutes; 30) Cycle; Gene Amp PCR System Model 9600 (manufactured by Perkin Elma Co., Ltd.)) to obtain an amplified fragment of about 980 bp containing the cat gene.
  • the DNA fragment of the ywjH region (ywjH :: cat) into which the cat gene obtained in (iv) was inserted was subjected to agarose gel electrophoresis, and the target fragment was extracted from the gel.
  • the purified DNA fragment was used to transform a competent cell of B. subtilis KMBS321 prepared by the method of Dubnau and Davidoff-Abelson (J. Mol. Biol, 1971, 56, 209-221). Convert to 2.5 ⁇ g / ml
  • colony strengths were also prepared by preparing chromosomal DNA, and by the PCR method shown in (iv), the ywjH region force on the chromosome was replaced twice with the ywj H region (ywjH :: cat) in which the inside of the chromosome was replaced with the chloramphee-chol resistance gene.
  • the replacement strain was identified, and one of these strains was named TA BS135.
  • B. subtilis 168 Marburg strain ATCC6051
  • purine operin repressor gene purR
  • succin-lou AMP synthase gene purA
  • purA purine nucleoside phosphorylase gene
  • ip fructose and bisphosphatase gene
  • the IMP dehydrogenase gene (guaB) is weakened, and the SD sequence of the purine operon mouth motor region and pRpp synthetase gene (prs) is modified.
  • a strain lacking (ywjH) was prepared as follows.
  • cattgcaagacttttttcaccaagcAGAATTCCTAATTCATTCGCTTCTCTC (SEQ ID NO: 32; small base is the upstream sequence of the tetracycline resistance gene (tet) promoter crawled on PDG1513)
  • Chromosomal DNA of B. subtilis 168 Marburg strain is in a saddle shape and PCR is performed using the above primers.
  • gagagagttcaaaattgatcctttTTGACCTGATTTCAGAAGTTAAACAG SEQ ID NO: 33; the small base is the downstream sequence of the tetracycline resistance gene (tet) structural gene crawled on PDG1513)
  • Chromosomal DNA of B. subtilis 168 Marburg strain is in a saddle shape and PCR is performed using the above primers.
  • gagaagcgaatgaattaggaattctGCTTGGTGAAAAAAGTCTTGCAATG (SEQ ID NO: 35; the small base is the sequence of the 5 'end region of the ywjH gene and is designed to be complementary to the 3' end region of SEQ ID NO: 32)
  • pDG1513 carrying a tetracycline resistance gene (tet) is used as a saddle and PCR (98 ° C, 10 seconds; 55 ° C, 30 seconds; 72 ° C, 2.5 minutes; 30) Cycle; Gene Amp PCR System Model 9600 (manufactured by Perkin Elma)), and an amplified fragment of about 2070 bp containing the cat gene was obtained.
  • the DNA fragment of the ywjH region (ywjH :: tet) into which the tet gene obtained in (iv) was inserted was subjected to agarose gel electrophoresis, and the target fragment was extracted from the gel.
  • a competent cell of B. subtilis TABS 133 strain prepared by the method of Dubnau and Davidoff-Abelson (J. Mol. Biol, 1971, 56, 209-221) was used. After transformation, colonies were obtained that grew on LB agar plates containing 12.5 ⁇ g / ml tetracycline and 20 ⁇ g / ml guanine.
  • colony strengths were also prepared by preparing chromosomal DNA and recombining the ywjH region on the chromosome with the ywjH region (ywjH :: tet) in which the inside was replaced with a tetracycline resistance gene by the PCR method shown in (iv).
  • the substituted strain was identified and one of these was named TABS 174.
  • Ade force Nord (antifoaming agent) 0.5 ml / L
  • SEQ ID NO: 1 nucleotide sequence of ywjH gene
  • SEQ ID NO: 2 amino acid sequence of transaldolase
  • SEQ ID NO: 3 Base sequence of prs gene
  • SEQ ID NO: 4 amino acid sequence of phosphoribosinole pyrophosphate synthetase
  • SEQ ID NO: 5 base sequence of purR gene
  • SEQ ID NO: 6 amino acid sequence of purine repressor
  • SEQ ID NO: 7 nucleotide sequence of deoD gene
  • SEQ ID NO: 8 amino acid sequence of deoD gene product (purine nucleoside phosphorylase)
  • SEQ ID NO: 9 nucleotide sequence of pupG gene
  • SEQ ID NO: 10 amino acid sequence of pupG gene product (purine nucleoside phosphorylase)
  • SEQ ID NO: 11 pur A gene base sequence
  • SEQ ID NO: 13 nucleotide sequence of guaB gene
  • SEQ ID NO: 16 fructose bisphosphatase amino acid sequence
  • SEQ ID NO: 18 purR gene amplification primer
  • SEQ ID NO: 22 Primer for fbp gene downstream amplification
  • SEQ ID NO: 23 cat gene amplification primer
  • SEQ ID NO: 24 primer for gene amplification
  • SEQ ID NO: 25 Primer for amplification of upstream region of ywjH gene
  • SEQ ID NO: 26 Primer for amplification of upstream region of ywjH gene
  • SEQ ID NO: 27 Primer for amplification of downstream region of ywjH gene
  • SEQ ID NO: 28 Primer for amplifying the downstream region of the ywjH gene
  • SEQ ID NO: 30 cat gene amplification primer
  • SEQ ID NO: 32 Primer for amplification of upstream region of ywjH gene
  • SEQ ID NO: 36 Primer for tet gene amplification
  • nucleosides and / or purine By using the Bacillus bacterium of the present invention, purine nucleosides and / or purine The production efficiency of the nucleotide can be improved.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

プリン系物質生産能を有し、トランスアルドラーゼの酵素活性が低下したバチルス属細菌培地中で培養し、該培地中または菌体内にプリン系物質を生成蓄積させ、同培地中又は菌体内からプリン系物質を回収することにより、プリン系物質を製造する。              

Description

明 細 書
プリン系物質生産菌及びプリン系物質の製造法
技術分野
[0001] 本発明は 5'—イノシン酸および 5 '—グァ-ル酸を代表とするプリンヌクレオチド、 並びにこれらの合成原料として重要な物質であるイノシンおよびグアノシン等のプリン ヌクレオシド、などのプリン系物質の製造法、及びそれに用いられるバチルス属細菌 に関する。プリン系物質は、調味料、医薬並びにそれらの原料等として有用である。 背景技術
[0002] 発酵法によるイノシンおよびグアノシンの生産に関しては、アデニン要求株、または それにプリンアナログをはじめとする各種の薬剤に対する耐性を付与したバチルス属 の微生物 (特許文献 1〜8参照)、およびブレビパクテリゥム属の微生物 (特許文献 9、 10又は非特許文献 1参照)等を用いる方法が知られて 、る。
[0003] このような変異株を取得するには、従来、微生物に紫外線照射やニトロソグァニジ ン(N- methy卜 Ν'- nitro- N- nitrosoguanidine)処理などの変異誘起処理を行 、、適当 な選択培地を用いて、 目的とする変異株を取得するという方法が行われてきた。
[0004] 一方で、遺伝子工学技術を用いたプリン系物質生産株の育種もバチルス属の微生 物 (特許文献 11〜20参照)、ブレビパクテリゥム属の微生物 (特許文献 21参照)、お よびェシエリヒア属の微生物(特許文献 22参照)で行われている。具体的には、例え ば、プリンオペロンのリプレッサータンパク質遺伝子 (purR)が破壊されたバチルス属 細菌を用いて、ヒポキサンチン、ゥラシル、グァニン及びアデニン等の核酸系物質を 効率よく製造する方法 (特許文献 23参照)が開示されて ヽる。
[0005] バチルス'ズブチリスでは、前記リプレッサータンパク質は、プリンオペロンの遺伝子 群の他に、 AMP生合成に関与する purA遺伝子 (非特許文献 2参照)、ホルミルテト ラヒドロ葉酸生合成に関与する glyA遺伝子 (非特許文献 3参照)およびヒポキサンチ ン Zグァニンのトランスポーターをコードする pbuG遺伝子 (非特許文献 4参照)など の発現を調節することが知られて ヽる。
[0006] さらに、 purR遺伝子破壊に加えて、サクシ-ルー AMPシンターゼ遺伝子(purA)を 破壊してアデニン要求性を付与すること、およびプリンヌクレオシドホスホリラーゼ遺 伝子(deoD)を破壊して、イノシンのヒポキサンチンへの分解を抑制することによって、 イノシンを効率的に製造する微生物、及びそれを用いたイノシンの製造法が開示さ れている (特許文献 8参照)。
トランスアルドラーゼは、ペントースリン酸経路の一つであり、セドヘプッロース 7—リ ン酸と D グリセルアルデヒド 3—リン酸から D エリトロース 4 リン酸と D フルクト ース 6—リン酸を生成する可逆反応を触媒する酵素である。この酵素とプリン系物質 の生合成経路との関係はあまり知られておらず、同酵素活性を低下させてプリン系物 質生産菌を育種すると ヽぅ試みはなされて ヽなかった。
特許文献 1 特公昭 38 - - 23099号公報
特許文献 2 特公昭 54- - 17033号公報
特許文献 3 特公昭 55 - - 2956号公報
特許文献 4特公昭 55 - -45199号公報
特許文献 5 特公昭 57- - 14160号公報
特許文献 6 特公昭 57- -41915号公報
特許文献 7 特開昭 59 - -42895号公報
特許文献 8 特開 2004 - - 242610号公報
特許文献 9 特公昭 51— - 5075号公報
特許文献 10 特公昭 58 — 17592号公報
特許文献 11 特開昭 58 — 158197号公報
特許文献 12 特開昭 58 — 175493号公報
特許文献 13 特開昭 59 — 28470号公報
特許文献 14特開昭 60 — 156388号公報
特許文献 15 特開平 1 27477号公報
特許文献 16 特開平 1 174385号公報
特許文献 17 特開平 3— 58787号公報
特許文献 18 特開平 3— 164185号公報
特許文献 19 特開平 5— 84067号公報 特許文献 20 :特開平 5— 192164号公報
特許文献 21:特開昭 63— 248394号公報
特許文献 22:国際公開第 99Z03988号パンフレット
特許文献 23 :米国特許第 6, 284, 495号
非特許文献 l :Agri Biol.Chem., 1978, 42, 399-405
非特許文献 2 : Pro Natl. Acad. Sci. USA, 1995, 92, 7455-7459
非特許文献 3 : J. BacterioL, 2001, 183, 6175-6183
非特許文献 4 : J. BacterioL, 2003, 185, 5200-5209
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、発酵法によってプリンヌクレオシド及び Z又はプリンヌクレオチドなどの プリン系物質を製造するために好適なバチルス属細菌を創製すること、及び同細菌 を用いたプリン系物質の製造法を提供することを課題とする。
課題を解決するための手段
[0009] 本発明者は、上記課題を解決するために鋭意研究を行った。その結果、バチルス 属細菌において、ペントースリン酸経路のトランスアルドラーゼの酵素活性を低下さ せることによって、プリンヌクレオシドゃプリンヌクレオチドの生産能が向上することを 見出し、本発明を完成するに至った。
すなわち本発明は以下のとおりである。
[0010] (1)プリン系物質生産能を有し、トランスアルドラーゼの酵素活性が低下するように改 変されたバチルス属細菌。
(2)前記プリン系物質がイノシン、キサントシン、グアノシン、及びアデノシン力もなる 群より選択されるプリンヌクレオシドである前記バチルス属細菌。
(3)前記プリン系物質がイノシン酸、キサンチル酸、グァ-ル酸、アデニル酸力 なる 群より選択されるプリンヌクレオチドである前記バチルス属細菌。
(4)前記トランスアルドラーゼをコードする遺伝子を破壊することまたは、トランスアル ドラーゼをコードする遺伝子の発現量を低下させることにより、トランスアルドラーゼ活 性が低下した前記バチルス属細菌。 (5)前記トランスアルドラーゼをコードする遺伝子が下記 (A)又は(B)に示すタンパク 質をコードする遺伝子である前記バチルス属細菌。
(A)配列番号 1に記載のアミノ酸配列を有するタンパク質
(B)配列番号 1に記載のアミノ酸配列において、 1若しくは数個のアミノ酸残基の置 換、欠失、挿入、付加、又は逆位を含むアミノ酸配列を有し、かつ、トランスアルドラ ーゼ酵素活性を有するタンパク質。
(6)さらにホスホリボシルピロリン酸シンセターゼ活性が上昇するように改変されたこと を特徴とする前記バチルス属細菌。
(7)さらに、プリンオペロンの発現量が上昇するように改変されたことを特徴とする前 記バチルス属細菌。
(8)プリンオペロンのリブレッサーをコードする遺伝子である purR遺伝子が破壊され たこと、または、プリンオペロンのァテ-ユエ一ター領域の一部が除去されたことにより 、プリンオペロンの発現量が上昇したことを特徴とする前記バチルス属細菌。
(9)さらに、プリンヌクレオシドホスホリラーゼ活性が低下するように改変されたことを 特徴とする前記バチルス属細菌
(10)さらにフルクトース ビスフォスファターゼ活性が低下するように改変されたこと を特徴とする前記バチルス属細菌。
(11)さらに、 IMP脱水素酵素活性が低下するように改変されたことを特徴とする前記 バチルス属細菌。
( 12)バチノレス属細菌がバチノレス ·ズブチリスである前記バチノレス属細菌。
(13)前記バチルス属細菌を培地に培養して、同細菌の細胞内又は培地中にプリン 系物質を蓄積せしめ、同細胞又は培地力 プリン系物質を回収することを特徴とする プリン系物質の製造法。
(14)プリン系物質がプリンヌクレオシド又はプリンヌクレオチドである、前記方法。
(15)前記プリン系物質がイノシン、キサントシン、グアノシン、及びアデノシン力もなる 群より選択されるプリンヌクレオシドである前記方法。
(16)前記プリン系物質がイノシン酸、キサンチル酸、グァニル酸、及びアデ二ル酸か らなる群より選択されるプリンヌクレオチドである前記方法。 (17)前記方法によりプリンヌクレオシドを製造し、該プリンヌクレオシドに、ポリ燐酸、 フエニル燐酸、及び力ルバミル燐酸からなる群より選択される燐酸供与体と、ヌクレオ シドー 5'—燐酸エステルを生成する能力を有する微生物又は酸性フォスファターゼ を作用させて、プリンヌクレオチドを生成せしめ、該プリンヌクレオチドを採取すること を特徴とするプリンヌクレオチドの製造法。
[0011] < 1 >本発明のバチルス属細菌
(I)プリン系物質生産能の付与
本発明のバチルス属細菌は、プリン系物質生産能を有し、トランスアルドラーゼの 酵素活性が低下するように改変されたバチルス属細菌である。
[0012] 「プリン系物質」とはプリン骨格を含む物質をいうが、プリンヌクレオシド、プリンヌクレ ォチドなどが挙げられる。プリンヌクレオシドには、イノシン、キサントシン、グアノシン、 アデノシンなどが含まれ、プリンヌクレオチドには、プリンヌクレオシドの 5,一燐酸エス テル、例えばイノシン酸 (イノシン一 5'—リン酸 以下「IMP」ともいう)、キサンチル酸( キサントシンー 5,一リン酸 以下「XMP」ともいう)、グァ -ル酸(グアノシン 5,一モノ リン酸、以下「GMP」ともいう)、アデ-ル酸(アデノシン— 5,一モノリン酸以下「AMP」 ともいう)などが含まれる。
[0013] 「プリン系物質生産能」とは、本発明のバチルス属細菌を培地中で培養したときに、 プリン系物質を細胞又はまたは培地から回収できる程度に細胞内または培地中に生 成、分泌、蓄積できる能力をいう。なお、本発明のバチルス属細菌は、上記プリン系 物質のうちの 2種類以上の生産能を有するものであってもよい。
[0014] プリン系物質生産能を有するバチルス属細菌としては、本来的にプリン系物質生産 能を有するものであってもよいが、以下に示すようなバチルス属細菌を、変異法や組 換え DNA法を利用して、プリン系物質生産能を有するように改変することによって得 られるものでもよい。また、後述するようにしてトランスアルドラーゼの酵素活性が低下 するように改変することによってプリン系物質生産能が付与又は増強されたバチルス 属細菌であってもよい。
[0015] 尚、本発明において、「酵素活性が低下する」とは、前記トランスアルドラーゼ、又は 後述するプリン系物質を分解する酵素、イノシンモノリン酸 (IMP)脱水素酵素等の酵 素活性が、非改変株、例えば野生型のバチルス属細菌における活性よりも低いこと、 及び、活性が実質的に消失していることを含む。また、後述するプリンオペロンリプレ ッサ一の活'性についても同様である。
[0016] 本発明のバチルス属細菌を得るために用いられるバチルス属細菌としては、バチ ルス'ズブチリス、バチルス 'アミロリケファシエンス、バチルス'プミルス等が挙げられ る。
バチルス'ズブチリスとしては、バチルス'ズブチリス 168 Marburg (ATCC6051) , バチルス'ズブチリス PY79 (Plasmid, 1984, 12, 1-9)等力 バチルス 'アミロリケファシ エンスとしては、バチルス 'アミロリケファシエンス T(ATCC23842)、及びバチルス'ァ ミロリケファシエンス N (ATCC23845)等が挙げられる。また、バチルス ·プミルスとして は、バチルス'プミルス Gottheil No.3218 (ATCC No.21005) (米国特許第 3, 616,206 号)等が挙げられる。これらの菌株は、アメリカン'タイプ'カルチャー 'コレクション (Am erican Type Culture Collection),住所 P.O. Box 1549 Manassas, VA 20108, United States of America)力 ら入手することができる。
[0017] プリン系物質生産能を有するバチルス属細菌は、上記のようなバチルス属細菌に、 例えば、プリンヌクレオシド要求性、又はさらにプリンアナログ等の薬剤に対する耐性 を付与することにより、取得することが出来る(特公昭 38— 23099、特公昭 54— 170 33、特公昭 55— 45199、特公昭 57— 14160、特公昭 57— 41915、特公昭 59— 4 2895参照)。栄養要求性及び薬剤耐性を持つバチルス属細菌は、 N-メチル - N,- ニトロ- N- -トロソグァ-ジン(NTG)、または EMS (ェチルメタンスルフォネート)等の 通常の変異処理に用いられている変異剤による処理によって取得することが出来る。
[0018] プリンヌクレオシドを生産するバチルス属細菌としては、以下のものが挙げられる。
バチルス属に属するイノシン生産株の具体例として、バチルス'ズブチリス KMBS1 6株を使用することができる。同菌株は、プリンオペロンリプレッサーをコードする pur R遺伝子の欠損(purR::spc)、スクシ-ルー AMPシンターゼをコードする purA遺伝 子の欠損(purA::erm)、およびプリンヌクレオシドホスホリラーゼをコードする deoD遺 伝子の欠損(deoD::kan)が導入された、既知のバチルス'ズブチリス trpC2株(168 M arburg)の誘導体である(特開 2004— 242610、 US2004166575A1)。また、ノ チ ルス ·ズブチリス菌株 AJ3772 (FERM P— 2555) (特開昭 62— 014794)等を使 用することちでさる。
[0019] グアノシン生産能を有するバチルス属細菌としては、 IMP脱水素酵素の活性が上 昇したバチルス属細菌(特開平 3— 58787)、プリンアナログ耐性又はデコイ-ン耐 性遺伝子が組み込まれているベクターをアデニン要求性変異株に導入したバチルス 属細菌(特公平 4— 28357)等が挙げられる。
[0020] またプリンヌクレオチドを生産するバチルス属細菌としては、以下のものが挙げられ る。
イノシン酸生産菌としては、バチルス'ズブチリスのフォスファターゼ活性が弱化した イノシン生産株が報告されている(Uchida, K. et al., Agr. Biol. Chem., 1961, 25, 804 -805、 Fujimoto, M. Uchida, K., Agr. Biol. Chem., 1965, 29, 249-259)。グァニル酸 生産菌としては、アデニン要求性を有しさらにデコイニンまたはメチォニンスルフォキ シドに耐性を有し、かつ 5,ーグァ -ル酸(グアノシン 5,一モノリン酸、以下「GMP」 ともいう)生産能を有するバチルス属の変異株が挙げられる(特公昭 56— 12438号 公報)。
[0021] また、キサンチル酸生産菌は、コリネバタテリゥム.アンモニアゲネス(Corynebacteri um ammmoniagenes)を中心とするコリネ型細菌の育種に用いた方法を使用して構築 することができる。例えば、 PRPP amidotransferaseを強化株(特開平 8-168383)、脂 肪族アミノ酸耐性株 (特開平 4-262790)、デヒドロプロリン耐性株 (韓国特許公開公報 2003-56490)を取得することによって、キサンチル酸生産菌を構築することができる。
[0022] また、プリン系物質生産能を有するバチルス属細菌を育種する方法として、以下の 方法が挙げられる。プリンヌクレオシド及びプリンヌクレオチドに共通のプリン生合成 に関与する酵素、すなわちプリン生合成酵素の細胞内での活性を上昇させる方法が 挙げられる。該酵素の細胞内での活性は、バチルス属細菌の非改変株、例えば野生 型のバチルス属細菌よりも上昇させることが好ましい。「活性が上昇する」とは、例え ば、細胞当たりの酵素分子の数が増加した場合や、酵素分子当たりの比活性が上昇 した場合などが該当する。例えば、前記酵素の遺伝子の発現量を上昇させることによ り活性を上昇させることができる。 前記プリン生合成に関与する酵素としては、たと えばホスホリボシルピロリン酸アミドトランスフェラーゼ、ホスホリボシルピロリン酸シン セターゼ(PRPP synthetase [EC:2.7.6.1])などが挙げられる
[0023] ペントースリン酸系に取り込まれたグルコースなどの糖源が代謝により生成したカタ ボライトの一部は、リブロース一 5—リン酸を経由して、リボース一 5—リン酸となる。生 合成されたリボース 5—リン酸より、プリンヌクレオシド、ヒスチジン、およびトリプトフ アン生合成の不可欠な前駆物質であるホスホリボシルピロリン酸 (PRPP)が生成され る。具体的には、リボースー5—リン酸は、ホスホリボシルピロリン酸シンセターゼによ り PRPPに転換される。したがって、ホスホリボシルピロリン酸シンセターゼの活性が 上昇するように改変することにより、バチルス属細菌にプリン系物質生産能を付与又 は増強することができる。
[0024] 「ホスホリボシルピロリン酸シンセターゼの活性が上昇する」とは、ホスホリボシルピロ リン酸シンセターゼの活性が野生株又は親株等の非改変株に対して増カロしているこ とをいう。ホスホリボシルピロリン酸シンセターゼの活性は例えば、 Switzer等の方法( Methods EnzymoL, 1978, 51, 3-11)、 Roth等の方法(Methods EnzymoL, 1978, 51, 12-17)により、測定することができる。ホスホリボシルピロリン酸シンセターゼの活性が 上昇したバチルス属細菌は、例えば、特開 2004— 242610号公報に記載の方法と 同様にして、プラスミドを用いる方法や染色体上に組込む方法などにより、ホスホリボ シルピロリン酸シンセターゼをコードする遺伝子をバチルス属細菌で高発現させるこ とにより作製することができる。本発明に利用出来るホスホリボシルピロリン酸シンセタ ーゼをコードする遺伝子は、配列番号 3に記載のバチルス属細菌由来の prs遺伝子( Genbank Accession No. X16518)が挙げられるが、他の細菌由来の遺伝子、動植物 由来の遺伝子でもバチルス属でホスホリボシルピロリン酸シンセターゼ活性を有する タンパク質をコードする遺伝子であれば、何れも用いることが出来る。
[0025] 一方、プリンヌクレオシド、ヒスチジン、およびトリプトファン生合成に不可欠な前駆 物質である PRPPが生成されると、その一部は、プリン生合成に関与する酵素群によ りプリンヌクレオチド、プリンヌクレオシドへと変換される。そのような酵素群をコードす る遺伝子としては、バチルス'ズブチリスのプリンオペロン、具体的には purEKB—pu rC (orf ) QLF - purMNH (J)— purDオペロンの遺伝子(Ebbole DJ and Zalkin H, J. Biol. Chem., 1987, 262, 17, 8274-87) (現在では、 purEKBCSQLFMNHDとも呼ばれ る: Bacillus subtilis and Its Closest Relatives, Editor in Chief: A.L. Sonenshein, ASM
Press, Washington D.C., 2002。 Genbank Accession No.NC— 000964)、およびェシェ リヒア.コリの purレギュロンの遺伝子(Escherichia and Salmonella, Second Edition, Ed itor in Chief: F.C. Neidhardt, ASM Press, Washington D.C., 1996)が例示される。
[0026] したがって、これらの遺伝子の発現を増強することにより、プリン系物質生産能を付 与又は増強することもできる。なお、本発明に用いることが出来るプリンオペロン遺伝 子はこれらのものには限定されず、他の微生物や動植物由来の遺伝子も利用するこ とも出来る。
[0027] プリンオペロンの発現量を増大させる方法としては、プラスミドを用いる方法や染色 体上に組込む方法などにより、プリンオペロン遺伝子をバチルス属細菌で高発現さ せる方法が挙げられる。
[0028] プリンオペロンの発現量を増大させる第 2の方法として、プリンオペロン固有のプロ モーターをより強力なプロモーターに置換することや、固有のプロモーターの 35、 — 10領域をコンセンサス配列に置換することが挙げられる。
[0029] 例えば、バチルス'ズブチリス(B. subtilis 168 Marburg株; ATCC6051)では、プリン オペロンの 35配列はコンセンサス配列(TTGACA)であるが、 10配列は TAAG ATであり、コンセンサス配列 TATAATとは異なっている(Ebbole, D. J. and H. Zalik n, J. Biol. Chem., 1987, 262, 8274-8287) 0したがって、 10配列(TAAG AT)を コンセンサス配列あるいはコンセンサス配列に近づけることにより、 TATAAT,また は TATGAT、もしくは TAAAATとなるように改変することで、プリンオペロンの転写 活性を上昇させることができる。なお、プロモーター配列の置換は、下記の遺伝子置 換と同様の方法で行うことが出来る。
[0030] プリンオペロンの発現量を増大させる第 3の方法として、プリンオペロンのリプレッサ 一の発現量を低下させる方法も挙げられる(USP6, 284, 495号)。「プリンオペロン のリブレッサーの発現」とは、プリンオペロン遺伝子の転写、及び転写産物の翻訳の 両方を含む。また、「発現量を低下させる」とは、発現量が、非改変株、例えば野生型 のバチルス属細菌における発現量よりも低いこと、及び、発現が実質的に消失してい ることを含む。
[0031] プリンべオペロンのリプレッサー(プリンリプレッサー)の発現量を低下させるために は、例えば、バチルス属細菌を紫外線照射または NTGもしくは EMS等の通常変異 処理に用いられている変異剤によって処理し、プリンリプレッサーの発現量が低下し た変異株を選択する方法を採用することができる。
[0032] また、プリンリブレッサーの発現量が低下したバチルス属細菌は、変異処理の他に 、例えば、遺伝子組換え法を用いた相同組換え法(Experiments in Molecular Geneti cs, し old Spring Harbor Laboratory press (1972); Matsuyama, b. ana izushima, S., J. BacterioL, 1985, 162, 1196-1202)により、染色体上のプリンリプレッサーをコード する遺伝子(purR;GenBank Accession NC— 000964 (コード領域は塩基番号 54439〜5 5293 ;配列番号 5)を、正常に機能しない遺伝子 (以下、「破壊型遺伝子」ということが ある)で置換すること〖こよって得ることができる。
[0033] 破壊型遺伝子で、宿主染色体上の正常遺伝子を置換するには、例えば以下のよう にすればよい。なお、以下の例では、 purR遺伝子を例として説明する力 他の遺伝 子、例えば後述の purA、 deoD、 guaB、 fbp又は ywjH遺伝子についても、同様にし て遺伝子破壊を行うことができる。
[0034] 染色体上の配列と相同性を有する配列を持ち、バチルス属細菌内で複製できな 、 プラスミド等が菌体内に導入されると、ある頻度で染色体上の相同性を有する配列の 箇所で組換えを起こし、導入されたプラスミド全体が染色体上に組み込まれる。この 後さらに染色体上の相同性を有する配列の箇所で組換えを起こすと、再びプラスミド が染色体上から抜け落ちるが、この時組換えを起こす位置により破壊された遺伝子 の方が染色体上に固定され、元の正常な遺伝子がプラスミドと一緒に染色体上から 抜け落ちることがある。このような菌株を選択することにより、染色体上の正常な purR 遺伝子が破壊型 purR遺伝子に置換された菌株を取得することができる。
[0035] このような相同組換えによる遺伝子破壊技術は既に確立しており、直鎖 DNAを用 いる方法、温度感受性プラスミドを用いる方法等が利用できる。また、薬剤耐性等の マーカー遺伝子が内部に挿入された purR遺伝子を含み、かつ、目的とする微生物 細胞内で複製できな 、プラスミドを用いることによつても、 purR遺伝子の破壊を行うこ とができる。すなわち、前記プラスミドで形質転換され、薬剤耐性を獲得した形質転 換体は、染色体 DNA中にマーカー遺伝子が組み込まれている。このマーカー遺伝 子は、その両端の purR遺伝子配列と染色体上の purR遺伝子との相同組換えによつ て組み込まれる可能性が高いため、効率よく遺伝子破壊株を選択することができる。
[0036] 遺伝子破壊に用いる破壊型 purR遺伝子は、具体的には、制限酵素消化及び再結 合により purR遺伝子の一定領域を欠失させたり、 purR遺伝子へ他の DNA断片(マ 一力一遺伝子等)を挿入したり、部位特異的変異法(Kramer, W. and Fritz, H. J., M ethods EnzymoL, 1987, 154, 350- 367)またはリコンビナント PCR法(PCR Technology , Stockton Press (1989))や次亜硫酸ナトリウム、ヒドロキシルァミン等の化学薬剤によ る処理(Shortle, D. and Nathans, D., Proc. Natl. Acad. Sci. USA, 1978, 75, 2170—21 74)によって、 purR遺伝子のコーディング領域またはプロモーター領域等の塩基配 列の中に 1つまたは複数個の塩基の置換、欠失、挿入、付加または逆位を起こさたり して、コードされるリブレッサーの活性が低下した力、又は purR遺伝子の転写が低下 したものを選択することにより、取得することができる。これらの態様の中では、制限酵 素消化及び再結合により purR遺伝子の一定領域を欠失させる方法、又は purR遺 伝子へ他の DNA断片を挿入する方法が、確実性及び安定性の点から好ましい。欠 失させる purR遺伝子の一定領域は、 purR遺伝子の 5'末端側、内部、 3'末端側の いずれであってもよいが、 purR遺伝子の全長の 90%以上、より好ましくは 95%以上 、特に好ましくは 97%以上であると、リブレッサーの活性が低下する確実性が高くな る。また、 purR遺伝子のコード領域中に塩基を欠失又は挿入させ、フレームシフト変 異を起こさせる場合は、複数箇所で塩基の欠失又は挿入を起こさせること、及び、 3' 末端側で塩基の欠失又は挿入を起こさせることが、リブレッサーの活性を確実に低下 させ得る点で好ましい。
[0037] また、プリンリブレッサーの活性の低下は、上記の遺伝子破壊による以外に、通常 の変異処理法によって、染色体上の purR遺伝子に、細胞中のプリンリプレッサーの 活性が低下するような変異を導入すればよい。例えば、染色体上の酵素をコードする 領域にアミノ酸置換 (ミスセンス変異)を導入すること、また終始コドンを導入すること( ナンセンス変異)、一〜二塩基付加'欠失するフレームシフト変異を導入すること、遺 伝子の一部分あるいは全領域を欠失させることによつても達成出来る。また、染色体 上の purR遺伝子にトランスポゾンを挿入することによつても、リブレッサーの活性を低 下させることができる。
[0038] また、プリンリプレッサーの活性の低下は、染色体 DNA上の purR遺伝子のプロモ 一ター等の発現調節配列を微弱なものに置換することによつても達成される。プロモ 一ターの強度は、 RNA合成開始の頻度により定義される。プロモーターの強度の評 価法および強力なプロモーターの例は、 Goldsteinらの餘文(Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev., 1995, 1, 105- 128)等に記載されている。 また、国際公開 W000Z18935に開示されているように、 目的遺伝子のプロモータ 一領域に数塩基の塩基置換を導入し、より微弱なものに改変することも可能である。 さらに、リボソーム結合部位 (RBS)と開始コドンとの間のスぺーサ、特に開始コドンの すぐ上流の配列における数個のヌクレオチドの置換が mRNAの翻訳効率に非常に 影響を及ぼすことが知られている。この RBSの改変は、 目的遺伝子の転写を減少させ ることと糸且み合わせてもよ 、。
[0039] 更に、 purR遺伝子より転写されたメッセンジャー RNAを不安定ィ匕するような変異を 導入した組換え DNAを作製し、これをバチルス属細菌宿主に導入して形質転換し てもよい。
後述の purA、 deoD、 guaB、 fbp又は ywjH遺伝子についても、上記と同様にして コードされる酵素の活性を低下させることができる。
[0040] なお、 purR遺伝子は、プリンオペロンを持つ微生物の染色体 DNAから、公知の pu rR遺伝子の塩基配列に基づいて作製したオリゴヌクレオチドをプライマーとする PCR 法によって取得することができる。また、プリンオペロンを持つ微生物の染色体 DNA ライブラリーから、公知の purR遺伝子の塩基配列に基づ ヽて作製したオリゴヌクレオ チドをプローブとするハイブリダィゼーシヨン法によって、 purR遺伝子を取得すること ができる。バチルス'ズブチリス 168 Marburg株では、 purR遺伝子の塩基配列が 報告されている(GenBank accession No.D26185 (コード領域は塩基番号 118041〜11 8898)、 NC_000964(コード領域は塩基番号 54439〜55296))。 purR遺伝子の塩基配 列及び同遺伝子によってコードされるアミノ酸配列を、配列表の配列番号 5及び 6に 示す (特開 2004 - 242610号参照)。
[0041] purR遺伝子を得るための PCRに用いるプライマーとしては、 purR遺伝子の一部あ るいは全長を増幅することができるものであればよぐ具体的には配列番号 17 (GAA GTTGATGATCAAAA)及び配列番号 18 (ACATATTGTTGACGATAAT)に示す塩 基配列を有するオリゴヌクレオチドなどが挙げられる。
[0042] 破壊型遺伝子の作製に用いる purR遺伝子は、必ずしも全長を含む必要はなぐ遺 伝子破壊を起こすのに必要な長さを有していればよい。また、各遺伝子の取得に用 いる微生物は、同遺伝子が、遺伝子破壊株の創製に用いるバチルス属細菌の purR 遺伝子と相同組換えを起こす程度の相同性を有して ヽれば特に制限されな ヽ。しか し、通常は、 目的とするバチルス属細菌と同じ細菌に由来する遺伝子を用いることが 好ましい。
[0043] 前記マーカー遺伝子としては、スぺクチノマイシン耐性遺伝子、カナマイシン耐性 遺伝子、テトラサイクリン耐性遺伝子等の薬剤耐性遺伝子が挙げられる。ェンテロコ ッカス'フエカリス(Enterococcus faecalis)由来のスぺクチノマイシン而性遺伝子は、 バチルス ジエネチック ストック センター(BGSC)より市販されているェシエリヒア'コ リ ECE101株力も、プラスミド pDG1726を調製し、該プラスミド力もカセットとして取り 出すことにより、取得することができる。スタフイロコッカス 'ァウレウス(Staphylococcus aureus)のエリスロマイシン而性遺伝子は、バチルス ジエネチック ストック センター (BGSC)より市販されているェシエリヒア'コリ ECE91株から、プラスミド pDG646を調 製し、該プラスミドからカセットとして取り出すことにより、取得することができる。カナマ イシン而性遺伝子は、ストレプトコッカス'フエカリス(Streptococcus faecalis)由来カナ マイシン耐性遺伝子は、バチルス ジエネチック ストック センター(BGSC)より巿販 されているェシエリヒア'コリ ECE94株から、プラスミド pDG783を調製し、該プラスミ ドカもカセットとして取り出すことにより、取得することができる。さらに、スタフイロコッカ ス 'ァウレウス(Staphylococcus aureus)のクロラムフエ-コール而性遺伝子は、バチル ス ジエネチック ストック センター(BGSC)より市販されているバチルス'ズブチリス 1 E17株から、プラスミド pC 194を調製し、該プラスミドを铸型として PCRにより増幅す ることで、取得することができる。ストレプトコッカス 'ァガラタティア由来のテトラサイタリ ン耐性遺伝子は、ェシエリヒア'コリ ECE99株力もプラスミド pDG1513を調製し、該プラ スミド力 カセットとして取り出すことにより、取得することができる (Gene 1995 167:335 -336)。
[0044] マーカー遺伝子として薬剤耐性遺伝子を用いる場合は、該遺伝子をプラスミド中の purR遺伝子の適当な部位に挿入し、得られるプラスミドで微生物を形質転換し、薬 剤耐性となった形質転換体を選択すれば、 purR遺伝子破壊株が得られる。染色体 上の purR遺伝子が破壊されたことは、サザンブロッテイングや PCR法により、染色体 上の purR遺伝子又はマーカー遺伝子を解析することによって、確認することができ る。前記スぺクチノマイシン耐性遺伝子、エリスロマイシン耐性遺伝子又はカナマイシ ン耐性遺伝子が染色体 DNAに組み込まれたことの確認は、これらの遺伝子を増幅 することができるプライマーを用いた PCRにより、行うことができる。
[0045] また、プリンオペロンの発現は、プロモーター下流に位置する terminator— antite rminator配列(以下、ァテ-ユエ一ター配列と称する)により制御されていることが知 られている(Ebbole, D. J. and Zalkin, H" J. Biol. Chem., 1987, 262, 8274—8287、 E bbole, D. J. and Zalkin, H., J. Biol. Chem., 1988, 263, 10894—10902、 Ebbole, D. J. and Zalkin, H" J. BacterioL, 1989, 171, 2136— 2141)。したがって、ァテニユエ一タ 一配列を欠損させることで、プリンオペロンの発現量を上昇させることができる。ァテ 二ユエ一ター配列の欠損は purR破壊と同様の方法で行うことが出来る。
[0046] なお、プリンオペロン転写をさらに増大させるためには、上記方法を組み合わせて もよぐ例えば、 purR遺伝子を破壊し、さらに、ァテ-ユエ一ター配列を欠損させたプ リンオペロンをプラスミドで増幅する力、あるいは、このようなプリンオペロンを染色体 上で多コピー化させてもよ 、。
[0047] また、プリン生合成に関与する酵素の活性増強は、プリン生合成に関与する酵素の 調節を解除すること、例えば、前記酵素のフィードバック阻害を解除する方法によつ ても行うことができる(WO99/03988)。
[0048] さらに、プリン系物質の細胞内への取り込みを弱化することによつても、プリン系物 質生産能を強化することができる。例えば、プリンヌクレオシドの細胞内へ取り込みは 、プリンヌクレオシドの細胞内への取り込みに関与する反応を遮断することによって弱 ィ匕することができる。上記プリンヌクレオシドの細胞内への取り込みに関与する反応 は、たとえばヌクレオシドパーミアーゼに触媒される反応である。
[0049] さらに、プリンヌクレオシドを製造する場合には、プリンヌクレオシド生産能を増強さ せるためにプリン系物質を分解する酵素の活性を低下させてもょ 、。このような酵素 として、例えば、プリンヌクレオシドホスホリラーゼが挙げられる。
[0050] PRPP力ら、プリン生合成に関与する酵素群により生合成されたプリンヌクレオチド は、脱リン酸ィ匕されて、プリンヌクレオシドに変換される。プリンヌクレオシドを効率的 に蓄積せしめるためには、プリンヌクレオシドを更に分解してヒポキサンチン等とする プリンヌクレオシドホスホリラーゼの活性を低下させることが好ましい。すなわち、イノ シンをはじめとするプリンヌクレオシドを基質とするプリンヌクレオシドホスホリラーゼを 弱化、あるいは欠損させるように改変することが望ま U、。
[0051] プリンヌクレオシドホスホリラーゼ活性の低下は、具体的には、バチルス属細菌でプ リンヌクレオシドホスホリラーゼをコードする deoD遺伝子と pupG遺伝子を破壊するこ とによって達成することができる。本発明のバチルス属細菌は、上記のような deoD遺 伝子と pupG遺伝子を単独、または同時に破壊するように改変されたものであっても よい。 deoD遺伝子、 pupG遺伝子は、例えばバチルス属由来の遺伝子(deoD;Genba nk Accession No. NC— 000964 (配列番号 7) , pupG;Genbank Accession No. NC— 0009 64 (配列番号 9) )が利用でき、上記 purR遺伝子破壊と同様の方法で遺伝子破壊株 を取得出来る。
[0052] また、プリン系物質生産能を増強させるために、サクシ-ルー AMPシンターゼの活 性を低下させてもよい。サクシ-ルー AMPシンターゼをコードする遺伝子としては、 pu rA遺伝子が挙げられる。 purA遺伝子としては、例えば、 GenBank Accession No. NC_ 000964 (コード領域は相補鎖の塩基番号 4153460-4155749) (配列番号 11)で登録さ れて 、る塩基配列を有するものが挙げられる。
[0053] さらに、プリン系物質生産能を増強させるために、イノシンモノリン酸 (IMP)脱水素 酵素の活性を低下させてもよい。 IMP脱水素酵素をコードする遺伝子としては、 guaB 遺伝子が挙げられる。 guaB遺伝子としては、例えば、 GenBank Accession No.NC— 000 964(コード領域は 15913-17376) (配列番号 13)で登録されている塩基配列を有する ものが挙げられる。
[0054] また、プリン系物質生産能を増強させるために、フルクトースービスフォスファターゼ の活性を低下させてもよい。フルクトースービスフォスファターゼをコードする遺伝子と しては、 i p遺伝子が挙げられる。 fcp遺伝子としては、例えば、 GenBank Accession N o.NC_000964(コード領域は 4127053-4129065) (配列番号 15)で登録されている塩基 配列を有するものが挙げられる。
[0055] また、プリン系物質生産能を増強させる方法として、プリン系物質を排出する活性を 有するタンパク質をコードする遺伝子を増幅することが考えられる。このような遺伝子 が増幅された細菌としては、例えば、 rhtA遺伝子を増幅したバチルス属細菌が挙げ られる(特開 2003— 219876)。
[0056] 上記のようにして破壊される purR、 deoD、 pupG、 purA、 guaB、もしくは fcp遺伝子、 又は発現が増強される prs遺伝子は、各々保存的ノリアントであってよぐ例えば各々 配列番号 6、 8、 10、 12、 14、 16又は 4に示すアミノ酸配列において、 1若しくは数個 のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、かつ、それぞれプリンリブレツ サー、プリンヌクレオシドホスホリラーゼ、サクシ-ルー AMPシンターゼ、 IMP脱水素酵 素、又はフルクトースービスフォスファターゼ、ホスホリボシルピロリン酸シンセターゼ の活性を有するタンパク質をコードする DNAであってもよい。前記「数個」は、例えば 2〜50個、好ましくは、 2〜30個、より好ましくは 2〜10個である。
[0057] 上記のようなアミノ酸配列に対する変更は、通常、タンパク質の活性を維持するよう な保存的変更である。保存的なアミノ酸置換としては、 serまたは thrによる Alaの置 換; gln、 hisまには lysによる argの 換; glu、 gln、 lys、 his、 aspによる asnの 換; as n、 gluまたは ginによる aspの置 ; serまたは alaによる cysの置 ;asn、 glu、 lys、 hi s、 aspまたは argによる ginの置換; asn、 gln、 lysまたは aspによる gluの置換; proに よる glyの置換; asn、 lys、 gln、 arg、 tyrによる hisの置換; leu、 metゝ val、 pheによる i leの置換; ile、 metゝ val、 pheによる leuの置換; asn、 glu、 gln、 his、 argによる lysの 置換; ile、 leu、 val、 pheによる metの置換; trp、 tyr、 met、 ileまたは leuによる phe の置換; thr、 alaによる serの置換; serまたは alaによる thrの置換; phe、 tyrによる trp の置換; his、 pheまたは trpによる tyrの置換;および met、 ile、 leuによる valが挙げら れる。
[0058] 上記 purR、 deoD、 pupG、 purA、 guaB、 fcp遺伝子、又は prs遺伝子の保存的バリアン トとしては具体的には、各々配列番号 5、 7、 9、 11、 13、 15又は 3に示す塩基配列を 有する DNAと、例えば 70%以上、好ましくは 80%以上、より好ましくは 90%以上、 特に好ましくは 95%以上の相同性を有する DNAが挙げられる。より具体的には、配 列番号 5、 7、 9、 11、 13、 15又は 3に示す塩基配列に相補的な塩基配列を有する D NAと、ストリンジェントな条件下でハイブリダィズする DNAが挙げられる。ストリンジェ ントな条件としては、 60°C、 1 X SSC, 0. 1%SDS、好ましくは、 0. 1 X SSC、 0. 1% SDSに相当する塩濃度で洗浄が行われる条件が挙げられる。洗浄の回数は、 1回又 はそれ以上、好ましくは 2回又は 3回である。
[0059] DNAの相同性の評価は、 BLAST検索、 FASTA検索および CrustalW等の計算 方法によって行うことができる。
BLAST (ベーシックローカルアラインメント検索ツール)は、プログラム blastp、 bias tn、 blastx、 megablast、 tblastn、および tblastxにより使用されるヒューリスティック 検索アルゴリズムであり、これらのプログラムは、 Karlin、 Samuelおよび Stephen F. Alts chulの統計学的方法(「一般的なスコアリングスキームを使用することにより、分子配 列の特徴の統計学的有意'性を評価する方法(Methods for assessing the statistical s ignificance of molecular sequence features by using general scoring schemes)」、 Proc . Natl. Acad. Sci. USA, 1990, 87:2264-68、「分子配列における多重ハイスコアリング セグメントに関する用途および統計学(Applications and statistics for multiple high- s coring segments in molecular sequences)」、 Proc. Natl. Acad. Sci. USA, 1993, 90:58 73-7)を用いて、得られた結果が有意であると見なす。 FASTA検索方法は、 W.R. P earsonにより記載されて!、る (「FASTPおよび FASTAによる迅速かつ高感度な配列 匕較 (Rapid and sensitive Sequence Comparison with FAb Ρ and FASTA」、 Metho ds in Enzymology, 1990 183:63-98)。 ClustalW方法は、 Thompson J.D.ゝ Higgins D. G.および Gibson T.J.により記載されている(「CLUSTAL W:配列重み付け、位置 特異的ギャップペナルティおよび重み行列法選択による漸進的多重配列ァラインメ ントの感度の改善 (CLUSTAL W: improving the sensitivity of progressive multiple se quence alignment through sequence weighting, position-specific gap penalties and w eight matrix choice)」、 Nucleic Acids Res. 1994, 22:4673—4680)。
[0060] また、破壊型遺伝子の作製に用いられる DNAも、 purR、 deoD、 pupG、 purA又は gu aB遺伝子の保存的ノ リアントであってもよ ヽ。
[0061] バチルス属細菌の染色体 DNAに目的遺伝子を組み込むには、後述するトランスァ ルドラーゼをコードする遺伝子と同様にして行えばよい。
[0062] < 2 >トランスアルドラーゼの酵素活性を低下させるための改変
本発明のバチルス属細菌は、上述のようなプリン系物質生産能を有する菌株をトラ ンスアルドラーゼの酵素活性が低下するように改変することによって取得することが出 来る。ただし、改変の順は問わず、トランスアルドラーゼの酵素活性が低下するように 改変したのちにプリンヌクレオチド生産能を付与してもよい。
[0063] ここでトランスアルドラーゼとは、セドヘプッロース 7-リン酸と D-グリセ口アルデヒド 3- リン酸から D-エリスロース 4 リン酸と D フルクトース 6-リン酸を可逆的に生成する反 応を触媒する酵素であり、この反応はペントースリン酸経路の反応の一部である。「ぺ ントースリン酸経路」とは、細胞内にとりこまれたグルコース力 グルコースキナーゼに よりリン酸化され、グルコースー6—リン酸が生合成され、グルコースー6—リン酸は、 酸ィ匕的にリボース 5—リン酸へ転換される経路とェピメラーゼ、トランスケトラーゼ (E C : 2.2.1.1)、トランスァノレドラーゼ(EC : 2.2.1.2)の作用により、トリオース、テトロロース 、ペントース、へキソース、ヘプトースのリン酸エステルが相互変換する可逆過程から なる経路を意味する。
[0064] トランスアルドラーゼの酵素活性は、以下のような方法で測定出来る。例えば、生成 した D—ダリセルアルデヒド 3—リン酸をトリオースリン酸イソメラーゼによりヒドロキシァ セトンリン酸とし、これをグリセロール 3—リン酸デヒドロゲナーゼと NADHを用いて 測定する方法(Ochoa, T" and Horecker, B. L" 1966, Methods EnzymoL, 9, 499-5 05)で測定出来る。
[0065] トランスアルドラーゼの酵素活性が低下するように改変するには、例えば、上記の p urR遺伝子の破壊で示したように、相同組換え法により、染色体上のトランスアルドラ ーゼをコードする遺伝子を、正常に機能しな 、遺伝子 (例えば薬剤耐性等のマーカ 一遺伝子をトランスアルドラーゼをコードする遺伝子内部に挿入した破壊型遺伝子) で置換することにより、達成できる。また、 purR遺伝子について述べたように、通常の 変異処理法によって、染色体上のトランスアルドラーゼ遺伝子に、細胞中のトランスァ ルドラーゼの酵素活性が低下するような変異を導入してもよい。
[0066] バチルス.ズブチリスのトランスアルドラーゼは、配列番号 2に示す 212個のアミノ酸 から構成されるタンパク質が挙げられ、該タンパク質をコードする遺伝子、好ましくは 配列番号 1 (ywjH遺伝子; Genbank Accession No. NC_000964)の塩基配列を有する 遺伝子を改変に用いることができる。なお、 ywjH遺伝子は、バチルス'ズブチリス染 色体上 325度近傍に存在する。
[0067] トランスアルドラーゼをコードする遺伝子も、前述の各遺伝子と同様に、 ywjH遺伝子 の保存的バリアントであってもよい。具体的には、配列番号 1に示すアミノ酸配列にお いて、 1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、かつ、ト ランスアルドラーゼの酵素活性を有するタンパク質をコードする DNAが挙げられる。 あるいは、配列番号 2に示すアミノ酸配列と、好ましくは 50%以上、より好ましくは 70 %以上、さらに好ましくは 80%、特に好ましくは 90%以上、最も好ましくは 95%以上 の相同性を有し、かつトランスアルドラーゼの酵素活性を有するタンパク質をコードす る DNAが挙げられる。より具体的には、配列番号 1に示す塩基配列を有する DNAと 、ストリンジェントな条件下でハイブリダィズする DNAが挙げられる。ストリンジェントな 条件としては、 60°C、 1 X SSC, 0. 1%SDS、好ましくは、 0. 1 X SSC、 0. 1%SDS に相当する塩濃度で洗浄が行われる条件が挙げられる。洗浄の回数は、 1回又はそ れ以上、好ましくは 2回又は 3回である。
[0068] 上記のようなトランスアルドラーゼと実質的に同一のタンパク質をコードする DNAは 、例えば部位特異的変異法によって、特定の部位のアミノ酸残基が置換、欠失、挿 入、付加、又は逆位を含むように、これら酵素をコードする塩基配列を改変することに よって得られる。また、上記のような改変された DNAは、従来知られている変異処理 によっても取得され得る。変異処理としては、変異処理前の DNAをヒドロキシルアミ ン等でインビトロ処理する方法、及び変異処理前の DNAを保持する微生物、例えば ェシエリヒア属細菌を、紫外線照射または N—メチル— N'— -トロ— N— -トロソグァ 二ジン (NTG)もしくは亜硝酸等の通常変異処理に用いられて 、る変異剤によって処 理する方法が挙げられる。
[0069] 目的とする遺伝子は、例えば、バチルス属細菌の染色体 DNAを铸型とし、目的と する遺伝子の塩基配列に基づいて作製したオリゴヌクレオチドをプライマーとする PC R法 (PCR: polymerase chain reaction ; White, T.J. et al., Trends Genet., 1989, 5, 18 5-189参照)によって、取得することができる。染色体 DNAは、 DNA供与体である細 菌カら、例えば、斎藤、三浦の方法(H. Saito and K.Miura, Biochem.B iophys. Acta, 1963, 72, 619-629、生物工学実験書、日本生物工学会編、 97〜98頁、培風館、 199 2年参照)等により調製することができる。 PCR用プライマーは、バチルス属細菌の公 知の遺伝子配列に基づ 、て、又は他の細菌等で配列が公知の遺伝子間で保存され て 、る領域の情報に基づ 、て、調製することができる。
[0070] バチルス属細菌の染色体 DNAに目的遺伝子を組み込むためのベクターとしては 、 pHV1248 (Prtit, M.-A., et. al., J. BacterioL, 1990, 172, 6736— 6740)等の温度感 受性複製起点をもつベクターや PHSG398 (宝酒造 (株) )、 pBluescript SK— (Str atagene)等の E. coli用ベクター等が挙げられる。
[0071] 目的遺伝子とバチルス属細菌で機能するマーカーを搭載したベクターを連結して 組換え DNAを調製するには、目的遺伝子の末端に合うような制限酵素でベクターを 切断する。連結は T4DNAリガーゼ等のリガーゼを用いて行うのが普通である。
[0072] 上記のように調製した組換え DNAをバチルス属細菌に導入するには、これまでに 報告されている形質転換法に従って行えばよい。例えば、増殖段階の細胞からコン ピテントセルを調製して DNAを導入する方法(Dubnau, D., and Davidoff- Abelson, R ., J. Mol. Biol, 1971, 56, 209-221)、又は、宿主細胞を、組換え DNAを容易に取り 込むプロトプラストまたはスフエロプラストの状態にして糸且換え DNAを DNA受容菌に 導入する方法(Chang, S. and Cohen, S.N., Molec. Gen. Genet., 1979, 168, 111-11 5)が挙げられる。
[0073] < 2 >プリン系物質の製造法
本発明のバチルス属細菌はプリン系物質を効率よく生産する。したがって、本発明 のバチルス属細菌を好適な培地で培養することによって、細菌の細胞内又は培地中 にプリンヌクレオシド及びプリンヌクレオチドなどのプリン系物質を生成蓄積せしめるこ とがでさる。
[0074] 本発明に用いる培地としては、炭素源、窒素源、無機塩類、その他必要に応じてァ ミノ酸、ビタミン等の有機微量栄養素を含有する通常の栄養培地を用いて常法により 行うことができる。合成培地または天然培地のいずれも使用可能である。培地に使用 される炭素源および窒素源は培養する菌株の利用可能なものならばよい。
[0075] 炭素源としてはグルコース、フラクトース、シユークロース、マルトース、マンノース、 ガラクトース、ァラビノース、キシロース、トレハロース、リボース、でんぷん加水分解物 、糖蜜等の糖類、グリセロールやマン-トールなどのアルコール類が使用され、その 他、ダルコン酸、酢酸、クェン酸、マレイン酸、フマール酸、コハク酸等の有機酸等も 単独あるいは他の炭素源と併用して用いられる。
[0076] 窒素源としてはアンモニア、硫酸アンモ-ゥム、炭酸アンモ-ゥム、塩化アンモ-ゥ ム、リン酸アンモ-ゥム、酢酸アンモ-ゥム等のアンモ-ゥム塩、硝酸塩または大豆加 水分解物などの有機窒素等が使用される。
[0077] 有機微量栄養素としては、アミノ酸、ビタミン、脂肪酸、核酸、さらにこれらのものを 含有するペプトン、カザミノ酸、酵母エキス、大豆蛋白分解物等が使用され、生育に アミノ酸等を要求する栄養要求性変異株を使用する場合には要求される栄養素を補 添する事が必要である。
[0078] 無機塩類としてはリン酸塩、マグネシウム塩、カルシウム塩、鉄塩、マンガン塩等が 使用される。
[0079] 培養条件は、用いるバチルス属細菌の種類による力 例えばバチルス'ズブチリス では、発酵温度 20〜50°C、 pHを 4〜9に制御しつつ通気培養を行う。培養中に PH が低下する場合にはアンモニアガス等のアルカリで中和する。力べして 40時間〜 3日 間程度培養することにより、培養液中にプリンヌクレオシドが蓄積される。
[0080] 培養終了後、培養液中に蓄積されたイノシンを採取する方法としては公知の方法 に従って行えばよい。例えば、沈殿法、またはイオン交換クロマトグラフィー等によつ て単離することができる。
[0081] また、本発明に用いる微生物は、さらにヌクレオシダーゼゃヌクレオチダーゼをコ一 ドする遺伝子を欠損させれば、各々に対応するヌクレオシド又はヌクレオチドを蓄積 させることができ、又イノシンの要求性を付与すれば、これらの生合成系経路上の前 駆体及びその関連物質を蓄積させることができる。
[0082] さらに、本発明の方法により製造されたイノシン又はグアノシンに、プリンヌクレオシ ドホスホリラ一ゼおよびホスホリボシルトランスフェラーゼを作用させることにより、 5 ' イノシン酸あるいは 5 '—グァニル酸が得られる。
[0083] また、本発明の微生物を用いて生産されたプリンヌクレオシドに、ホスホトランスフエ ラーゼを作用させることによってリン酸ィ匕し、プリンヌクレオチド (ヌクレオシド一 5,一燐 酸エステル)を生産することも可能である(特開 2000-295996)。例えば、ェシエリヒア' コリのイノシングアノシンキナーゼをコードする遺伝子を導入したェシエリヒア属細菌 を用いるプリンヌクレオチドの製造法 (WO91/08286号パンフレット)、エキシグォバタ テリゥム ·ァセチリカムのイノシングアノシンキナーゼをコードする遺伝子を導入したコ リネバタテリゥム.アンモニアゲネスを用いたプリンヌクレオチドの製造法 (WO96/3050 1号パンフレット)を採用することができる。
[0084] また、本発明の微生物を用いて生産されたプリンヌクレオシドに、ポリ燐酸、フエ二 ル燐酸、力ルバミル燐酸からなる群より選択された燐酸供与体と、ヌクレオシドー 5 '— 燐酸エステルを生成する能力を有する微生物や、酸性フォスファターゼ (EC 3.1.3.2) を作用させることによって、プリンヌクレオチド (ヌクレオシド一 5 '—燐酸エステル)を 生産することも可能である。ヌクレオシドー 5 '—燐酸エステルを生成する能力を有す る微生物は、プリンヌクレオシドをプリンヌクレオチドに変換する能力を有するものであ れば特に制限されないが、例えば、国際公開パンフレット WO9637603号に記載さ れたような微生物が挙げられる。
[0085] また、特開平 07— 231793に開示されているようなェシエリヒア'ブラッタエ(Escheri chia blattae) jCM 1650、セラチア'フイカリア(Serratia ficaria) ATCC 33105、クレブシ エラ'プランティコラ(Klebsiella planticola) IFO 14939 (ATCC 33531)、クレブシエラ' ニューモニエ(Klebsiella pneumoniae) IFO 3318 (ATCC 8724)、クレブシエラ'テリゲ ナ(Klebsiella terrigena) IFO 14941 (ATCC 33257)、モルガネラ ·モルガ- (Morganell a morganii) IFO 3168、ェンテロノくクタ一 'ァエロゲネス (Enterobacter aerogenes) IFO 12010、ェンテロバクタ一'ァエロゲネス IFO 13534 (ATCC 13048)、クロモバクテリウ ム 'フルヴィァティレ(Chromobacterium fluviatile) IAM 13652、クロモバクテリゥム 'ヴィ オラセゥム (Chromobacterium violaceum) IFO 12614、セテセァ'ラノ ゲイ (Cedecea la pagei) jCM 1684、セデセァ 'ダヴイシェ(Cedecea davisiae) jCM 1685、セデセァ 'ネ テリ(Cedecea neteri) jCM 5909などを用いることもできる。
[0086] 酸性フォスファターゼとしては、例えば、特開 2002— 000289に開示されているよ うなものを用いることができ、より好ましくはヌクレオシドに対する親和性が上昇した酸 性フォスファターゼ (特開平 10— 201481参照)ゃヌクレオチダーゼ活性が低下した 変異型酸性フォスファターゼ (WO9637603参照)、燐酸エステル加水分解活性が 低下した変異型酸性フォスファターゼ (特開 2001— 245676)などを用いることがで きる。
[0087] 本発明の微生物を用いて生産されたプリンヌクレオシドをィ匕学的にリン酸ィ匕すること により、プリンヌクレオチドを得ることも可能である(Bulletin of the Chemical Society of Japan 42,3505)。また、微生物が有している ATP再生系を利用して、本発明の XMP 生産能を有する微生物と XMPアミナーゼ活性を共役させることによって GMPを得る方 法、イノシンキナーゼを共役させることによって IMPを得る方法も採用できる(Biosd.Bi otech.Biochem. ,51 ,840(1997) 特開昭 63— 230094)。
[0088] 上記プリンヌクレオチドの製造に用いる、本発明の方法により製造されたイノシン又 はグアノシン、又はプリンヌクレオシドは、精製されたものであってもよいが、プリンヌク レオシドの発酵液又はプリンヌクレオシドを含む粗精製物であってもよい。
[0089] [実施例]
以下、本発明を実施例によりさらに具体的に説明する。
実施例 1
[0090] <プリンヌクレオシドホスホリラーゼをコードする pupG遺伝子および deoD遺伝子を欠 損した菌株の作製 >
バチノレス'ズブチリス(B. subtilis 168 Marburg株; ATCC6051)由来で、プリンオペ口 ンリプレッサー遺伝子(purR)、サクシ-ルー AMPシンターゼ遺伝子(purA)、プリンヌ クレオシドホスホリラーゼ遺伝子 (pupG)を欠損し、かつ IMP脱水素酵素遺伝子 (guaB )が弱化され、かつプリンオペロンプロモーター領域、 PRPPシンセターゼ遺伝子(prs) の SD配列を改変した組換え体 KMBS310 (特願 2005— 280186号)を用いて、プリン ヌクレオシドホスホリラーゼ遺伝子 (deoD)を欠損した菌株の作製を、以下のようにし て行った。尚、前記プリンオペロン及び PRPPシンセターゼ遺伝子は、各々プロモータ 一領域及び SD配列の改変により発現が強化されている。
[0091] KMBS16 (purR::spc purA::erm deoD::kan ;特開 2004— 242610号公報)より、 Fou etと Sonensheinの方法(J. BacterioL, 1990, 172, 835- 844)により調製したゲノム DNA を用いて、 Dubnauと Davidoff- Abelsonの方法(J. Mol. Biol, 1971, 56, 209- 221)によ り調製した B. subtilis 168 Marburg株のコンビテントセルを形質転換し、 5 μ g/mlの力 ナマイシンを含む LB寒天プレート上で生育するコロニーを取得した。このようにして 得られた 、くつかのコロニーの中でスぺクチノマイシン而ォ性又はエリスロマイシン而ォ性 となっていないコロニーを選択し、それらの内の一株を、 KMBS5 (deoD::kan)と名づ けた。
[0092] KMBS5より、 Fouetと Sonensheinの方法(J. BacterioL, 1990, 172, 835-844)により調 製したゲノム DNAを用いて、 Dubnauと Davidoff-Abelsonの方法(J. Mol. Biol, 1971, 5 6, 209-221)により調製した KMBS310株のコンビテントセルを形質転換し、 5 μ g/mlの カナマイシンと 20 μ g/mlのグァニンを含む LB寒天プレート上で生育するコロニーを取 得した。このようにして得られたいくつかのコロニーを選択し、野生型 deoD遺伝子が d eoD::kanで置換されており、かつ KMBS310由来のすべての変異が野生型配列と置 換されて ヽな 、ことが確認できた形質転換体の内の一株を、 KMBS321と名づけた。 実施例 2
[0093] くフルクトースービスフォスファターゼをコードする fcp遺伝子、トランスアルドラーゼを コードする ywjH遺伝子、又は両遺伝子を欠損した菌株の作製と培養評価 >
(l) i p遺伝子欠損株の作製
上述のバチルス'ズブチリス(B. subtilis 168 Marburg株; ATCC6051)由来で、プリ ンォペロンリプレッサー遺伝子(pUrR)、サクシ-ルー AMPシンターゼ遺伝子(purA)、 プリンヌクレオシドホスホリラーゼ遺伝子 (pupG)を欠損し、かつ IMP脱水素酵素遺伝 子(guaB)が弱化され、かつプリンオペロンプロモーター領域、 PRPP synthetase遺伝 子(prs)の SD配列が改変され、かつプリンヌクレオシドホスホリラーゼ遺伝子(deoD) を欠損した組換え体 KMBS321を用いて、フルクトース一ビスフォスファターゼ遺伝子( i p)を欠損させた菌株の作製を、以下のようにして行った。
[0094] (i) ibp上流域の PCR法による増幅
遺伝子データバンク(GenBank Accession NC_000964および V01277)の情報に基 づき、以下の塩基配列を有するそれぞれ 28 mer、 50 merの PCR用プライマーを作製 した。
[0095] TTCCCTTAGGGTTATTTTCGTTTCAAAA (配列番号 19)
cgtttgttgaactaatgggtgctTTTATGAGCATGTGCATGATAAGGTGA (配列番号 20;小 文字の塩基は PC194上にクローユングされて!/、るクロラムフエ-コール耐性遺伝子(c at)のプロモーター上流域の配列)
[0096] B. subtilis 168 Marburg株の染色体 DNAを铸型とし、上記プライマーを用いて PCR
(98°C, 10秒; 55°C, 30秒; 72°C, 1.5分; 30サイクル; Gene Amp PCR System Model 9
600 (パーキンエルマ一社製))を行い、 ibp遺伝子 5,末端領域と上流の約 1350 bpを 含む増幅断片を得た。
[0097] (ii)lbp下流域の PCR法による増幅
遺伝子データバンク(GenBank Accession NC_000964および V01277)の情報に基 づき、以下の塩基配列を有するそれぞれ 50 mer、 27 merの PCR用プライマーを作製 した。
[0098] acagctccagatccatatccttcttTTTTAGAGAGTTTGCGGGAGTATCG (配列番号 21;小 文字の塩基は PC194上にクローユングされて!/、るクロラムフエ-コール耐性遺伝子(c at)の構造遺伝子下流域の配列)
TAAAGGTTTTTCGGGATAAGATTGAAA (配列番号 22)
[0099] バチルス'ズブチリス 168 Marburg株の染色体 DNAを铸型とし、上記プライマーを用 いて PCR(98°C, 10秒; 55°C, 30秒; 72°C, 1.5分; 30サイクル; Gene Amp PCR System
Model 9600 (パーキンエルマ一社製))を行い、 ibp遺伝子 3'末端領域と下流の約 17
70 bp含む増幅断片を得た。
[0100] (iii) cat遺伝子の PCR法による増幅 遺伝子データバンク(GenBank Accession No.V01277および NC_000964)の情報に 基づき、以下の塩基配列を有するそれぞれ 50 merの PCR用プライマーを作製した。
[0101] tcaccttatcatgcacatgctcataaaAGCACCCATTAGTTCAACAAACG (配列番号 23;小 文字の塩基は f p遺伝子 5 '末端領域の配列で配列番号 20の 3 '末端領域と相補する ようにデザインされている)
cgatactcccgcaaactctctaaaaAAGAAGGATATGGATCTGGAGCTGT (配列番号 24; 小文字の塩基は ibp遺伝子 3'末端領域の配列で配列番号 21の 3'末端領域と相補す るようにデザインされて 、る)
[0102] クロラムフエ-コール耐性遺伝子 (cat)が搭載されて ヽるプラスミド pC194を铸型とし 、上記プライマーを用いて PCR(98°C, 10秒; 55°C, 30秒; 72°C, 1.5分; 30サイクル; G ene Amp PCR System Model 9600 (パーキンエルマ一社製))を行い、 cat遺伝子を含 む約 980 bpの増幅断片を得た。
[0103] (iv) cat遺伝子力 ¾p領域に挿入された断片のリコンビナント PCR法による増幅
(i)から(iii)で増幅した DNA断片を MicroSpin Column S- 400 (Amersham Pharmacia B iotech)で精製後、適量を混合したものをテンプレートとし、配列番号 19および 22を 用いて、 PCR(98°C, 10秒; 55°C, 30秒; 72°C, 4.5分; 30サイクル; Gene Amp PCR Sy stem Model 9600 (パーキンエルマ一社製))を行い、 cat遺伝子が ibp領域に挿入され た増幅断片を得た。
[0104] (V) ibpを破壊したイノシン生産菌株の作製
(iv)で取得した cat遺伝子を挿入した ibp領域 (ibp: :cat)の DNA断片をァガロースゲル 電気泳動後、目的とする断片をゲルより抽出した。このようにして精製した DNA断片 を用いて、 Dubnauと Davidoff- Abelsonの方法(J. Mol. Biol, 1971, 56, 209- 221)によ り調製した B. subtilis KMBS321株のコンビテントセルを形質転換し、 2.5 μ g/mlのクロ ラムフエ-コールと 20 μ g/mlのグァニンを含む LB寒天プレート上で生育するコ口- 一を取得した。これらのコロニー力も染色体 DNAを調製し、 (iv)に示した PCR法により 、染色体上の ibp領域力 内部がクロラムフエ-コール耐性遺伝子で置換された ibp領 域 (l p::cat)と 2回組換えにより置換した菌株を同定し、これらの内の一株を TABS133 と名づけた。 [0105] (2)ywjH遺伝子欠損株の作製
上述のバチルス'ズブチリス(B. subtilis 168 Marburg株; ATCC6051)由来で、プリ ンォペロンリプレッサー遺伝子(pUrR)、サクシ-ルー AMPシンターゼ遺伝子(purA)、 プリンヌクレオシドホスホリラーゼ遺伝子 (pupG)を欠損し、かつ IMP脱水素酵素遺伝 子(guaB)が弱化され、かつプリンオペロンプロモーター領域、 PRPP synthetase遺伝 子(prs)の SD配列が改変され、かつプリンヌクレオシドホスホリラーゼ遺伝子(deoD) を欠損した組換え体 KMBS321を用いて、トランスアルドラーゼ遺伝子 (ywjH)を欠損さ せた菌株の作製を、以下のようにして行った。
[0106] (i) ywjH上流域の PCR法による増幅
遺伝子データバンク(GenBank Accession NC_000964および V01277)の情報に基 づき、以下の塩基配列を有するそれぞれ 28 mer、 50 merの PCR用プライマーを作製 した。
[0107] ATGGACGGAATCGAAATCTTAAAACGGA (配列番号 25)
cgtttgttgaactaatgggtgctttAGAATTCCTAATTCATTCGCTTCTC (配列番号 26;小 文字の塩基は PC194上にクローユングされて!/、るクロラムフエ-コール耐性遺伝子(c at)のプロモーター上流域の配列)
[0108] B. subtilis 168 Marburg株の染色体 DNAを铸型とし、上記プライマーを用いて PCR
(98°C, 10秒; 55°C, 30秒; 72°C, 1.5分; 30サイクル; Gene Amp PCR System Model 9 600 (パーキンエルマ一社製))を行い、 ywjH遺伝子 5'末端領域と上流の約 1420 bpを 含む増幅断片を得た。
[0109] (ii)ywjH下流域の PCR法による増幅
遺伝子データバンク(GenBank Accession NC_000964および V01277)の情報に基 づき、以下の塩基配列を有するそれぞれ 50 mer、 28 merの PCR用プライマーを作製 した。
[0110] acagctccagatccatatccttctTTGACCTGATTTCAGAAGTTAAACAG (配列番号 27;小 文字の塩基は PC194上にクローユングされて!/、るクロラムフエ-コール耐性遺伝子(c at)の構造遺伝子下流域の配列)
[0111] GGATGACGTTATCGATAATGACTTCCTT (配列番号 28) B. subtilis 168 Marburg株の染色体 DNAを铸型とし、上記プライマーを用いて PCR (98°C, 10秒; 55°C, 30秒; 72°C, 1.5分; 30サイクル; Gene Amp PCR System Model 9 600 (パーキンエルマ一社製))を行い、 ywjH遺伝子 3,末端領域と下流の約 1370 bp 含む増幅断片を得た。
[0112] (iii) cat遺伝子の PCR法による増幅
遺伝子データバンク(GenBank Accession No.V01277および NC_000964)の情報に 基づき、以下の塩基配列を有するそれぞれ 50 merの PCR用プライマーを作製した。
[0113] gagaagcgaatgaattaggaattctAAAGCACCCATTAGTTCAACAAACG (配列番号 29;小 文字の塩基は ywjH遺伝子 5 '末端領域の配列で配列番号 26の 3 '末端領域と相補す るようにデザインされて 、る)
[0114] ctgtttaacttctgaaatcaggtcaaAGAAGGATATGGATCTGGAGCTGT (配列番号 30;小 文字の塩基は ywjH遺伝子 3 '末端領域の配列で配列番号 27の 3 '末端領域と相補す るようにデザインされて 、る)
クロラムフエ-コール耐性遺伝子 (cat)が搭載されて 、るプラスミド pC194を铸型とし 、上記プライマーを用いて PCR(98°C, 10秒; 55°C, 30秒; 72°C, 1.5分; 30サイクル; G ene Amp PCR System Model 9600 (パーキンエルマ一社製))を行い、 cat遺伝子を含 む約 980 bpの増幅断片を得た。
[0115] (iv) cat遺伝子が ywjH領域に挿入された断片のリコンビナント PCR法による増幅
(i)から(iii)で増幅した DNA断片を MicroSpin Column S- 400 (Amersham Pharmacia B iotech)で精製後、適量を混合したものをテンプレートとし、配列番号 25および 28を 用いて、 PCR(98°C, 10秒; 55°C, 30秒; 72°C, 4分; 30サイクル; Gene Amp PCR Syst em Model 9600 (パーキンエルマ一社製))を行い、 cat遺伝子が ywjH領域に挿入され た増幅断片を得た。
[0116] (V) ywjHを破壊したイノシン生産菌株の作製
(iv)で取得した cat遺伝子を挿入した ywjH領域 (ywjH::cat)の DNA断片をァガロースゲ ル電気泳動後、目的とする断片をゲルより抽出した。このようにして精製した DNA断 片を用いて、 Dubnauと Davidoff- Abelsonの方法(J. Mol. Biol, 1971, 56, 209- 221)に より調製した B. subtilis KMBS321株のコンビテントセルを形質転換し、 2.5 μ g/mlのク 口ラムフエ-コールと 20 μ g/mlのグァニンを含む LB寒天プレート上で生育するコ口- 一を取得した。これらのコロニー力も染色体 DNAを調製し、 (iv)に示した PCR法により 、染色体上の ywjH領域力 内部がクロラムフエ-コール耐性遺伝子で置換された ywj H領域 (ywjH::cat)と 2回組換えにより置換した菌株を同定し、これらの内の一株を TA BS135と名づけた。
[0117] (3)l p ywjH二重欠損株の作製
バチノレス'ズブチリス(B. subtilis 168 Marburg株; ATCC6051)由来で、プリンオペ口 ンリプレッサー遺伝子(purR)、サクシ-ルー AMPシンターゼ遺伝子(purA)、プリンヌ クレオシドホスホリラーゼ遺伝子(pupG)、フルクトース一ビスフォスファターゼ遺伝子( i p)を欠損し、かつ IMP脱水素酵素遺伝子 (guaB)が弱化され、かつプリンオペロンブ 口モーター領域、 pRpp synthetase遺伝子(prs)の SD配列を改変した組換え体 TABS1 33を用いて、トランスアルドラーゼ遺伝子 (ywjH)を欠損した菌株の作製を、以下のよ うにして行った。
[0118] (i)ywjH上流域の PCR法による増幅
遺伝子データバンク(GenBank Accession NC_000964および M29725)の情報に基 づき、以下の塩基配列を有するそれぞれ 26 mer、 50 merの PCR用プライマーを作製 した。
[0119] TAAAGCGTGATAGACATACAGTGCTG (配列番号 31)
cattgcaagacttttttcaccaagcAGAATTCCTAATTCATTCGCTTCTC (配列番号 32;小 文字の塩基は PDG1513上にクローユングされているテトラサイクリン耐性遺伝子 (tet) のプロモーター上流域の配列)
[0120] B. subtilis 168 Marburg株の染色体 DNAを铸型とし、上記プライマーを用いて PCR
(98°C, 10秒; 55°C, 30秒; 72°C, 2.5分; 30サイクル; Gene Amp PCR System Model 9 600 (パーキンエルマ一社製) )を行 ヽ、 ywjH遺伝子 5,末端領域と上流の約 2250 bpを 含む増幅断片を得た。
[0121] (ii)ywjH下流域の PCR法による増幅
遺伝子データバンク(GenBank Accession NC_000964および M29725)の情報に基 づき、以下の塩基配列を有するそれぞれ 50 mer、 26 merの PCR用プライマーを作製 した。
[0122] gagagagttcaaaattgatcctttTTGACCTGATTTCAGAAGTTAAACAG (配列番号 33;小 文字の塩基は PDG1513上にクローユングされているテトラサイクリン耐性遺伝子 (tet) の構造遺伝子下流域の配列)
TTGCATATACATGTCAGGAGCATTCA (配列番号 34)
[0123] B. subtilis 168 Marburg株の染色体 DNAを铸型とし、上記プライマーを用いて PCR
(98°C, 10秒; 55°C, 30秒; 72°C, 2.5分; 30サイクル; Gene Amp PCR System Model 9
600 (パーキンエルマ一社製) )を行 ヽ、 ywjH遺伝子 3,末端領域と下流の約 2280 bp 含む増幅断片を得た。
[0124] (iii)tet遺伝子の PCR法による増幅
遺伝子データバンク(GenBank Accession No.M29725および NC_000964)の情報に 基づき、以下の塩基配列を有するそれぞれ 50 merの PCR用プライマーを作製した。
[0125] gagaagcgaatgaattaggaattctGCTTGGTGAAAAAAGTCTTGCAATG (配列番号 35;小 文字の塩基は ywjH遺伝子 5 '末端領域の配列で配列番号 32の 3 '末端領域と相補す るようにデザインされて 、る)
ctgtttaacttctgaaatcaggtcaaAAAGGATCAATTTTGAACTCTCTC (配列番号 36;小 文字の塩基は ywjH遺伝子 3 '末端領域の配列で配列番号 33の 3 '末端領域と相補す るようにデザインされて 、る)
[0126] テトラサイクリン耐性遺伝子 (tet)が搭載されている pDG1513を铸型とし、上記プライ マーを用いて PCR(98°C, 10秒; 55°C, 30秒; 72°C, 2.5分; 30サイクル; Gene Amp PC R System Model 9600 (パーキンエルマ一社製))を行い、 cat遺伝子を含む約 2070 bp の増幅断片を得た。
[0127] (iv) tet遺伝子が ywjH領域に挿入された断片のリコンビナント PCR法による増幅
(i)から(iii)で増幅した DNA断片を MicroSpin Column S- 400 (Amersham Pharmacia B iotech)で精製後、適量を混合したものをテンプレートとし、配列番号 31および 34を 用いて、 PCR(98°C, 10秒; 55°C, 30秒; 72°C, 7分; 30サイクル; Gene Amp PCR Syst em Model 9600 (パーキンエルマ一社製))を行い、 tet遺伝子が ywjH領域に挿入され た増幅断片を得た。 [0128] (v) fcpおよび ywjHを破壊したイノシン生産菌株の作製
(iv)で取得した tet遺伝子を挿入した ywjH領域 (ywjH::tet)の DNA断片をァガロースゲ ル電気泳動後、 目的とする断片をゲルより抽出した。このようにして精製した DNA断 片を用いて、 Dubnauと Davidoff- Abelsonの方法(J. Mol. Biol, 1971, 56, 209- 221)に より調製した B. subtilis TABS 133株のコンビテントセルを形質転換し、 12.5 μ g/mlの テトラサイクリンと 20 μ g/mlのグァニンを含む LB寒天プレート上で生育するコロニー を取得した。これらのコロニー力も染色体 DNAを調製し、(iv)に示した PCR法により、 染色体上の ywjH領域が、内部がテトラサイクリン耐性遺伝子で置換された ywjH領域 ( ywjH::tet)と 2回組換えにより置換した菌株を同定し、これらの内の一株を TABS 174と 名づけた。
[0129] (4)l p遺伝子、 ywjH遺伝子、あるいは両遺伝子を欠損したイノシン生産菌株のプリ ンヌクレオシド生産
fcp遺伝子欠損株 TABS133、 ywjH遺伝子欠損株 TABS135、両遺伝子を欠損した株 TABS174およびコントロール株である KMBS321を、グァニン 20 mg/Lを含む LB培地 プレート上にまんべんなく塗布し、 34°Cでー晚培養した。 1/8プレート分の菌体を、 50 0 ml容の坂口フラスコ中の発酵培地 20 mlに接種し、その後、炭酸カルシウムを 50 g/ Lとなるようにカ卩えて、 34°Cで振とう培養した。培養開始後 72時間目にサンプリングし、 培養液中に含まれるイノシンおよびヒポキサンチン量を公知の方法で測定した。 fcp 遺伝子欠損株 TABS 133、 ywjH遺伝子欠損株 TABS135のイノシンの蓄積は、コント口 ール株である KMBS321株のそれよりも高力つた。また、両遺伝子を欠損させた株のィ ノシン蓄積は、 TABS133株あるいは TABS135株のそれよりも高かった。
[0130] [発酵培地組成]
グルコース 30 g/L
KH PO 1 g/L
2 4
NH CI 32 g/L
4
豆濃 (T- N) * 1.35 g/L
DL-メチォニン 0.4 g/L
L-トリプトファン 0.02 g/L アデニン 0.1 g/L
グアノシン 0.075 g/L
MgSO 0.4 g/L
4
FeSO 0.01 g/L
4
MnSO 0.01 g/L
4
アデ力ノール(消泡剤) 0.5 ml/L
(K〇Hで pH 7.0に調整)
炭酸カルシウム 50 g/L
*:大豆蛋白加水分解物
[表 1] 表 1
Figure imgf000033_0001
TABS 133 5. 8
TABS135 6. 0
TABS174 6. 5 ほ己列表の説明〕
配列番号 1: ywjH遺伝子の塩基配列
配列番号 2:トランスアルドラーゼのアミノ酸配列
配列番号 3: prs遺伝子の塩基配列
配列番号 4:ホスホリボシノレピロリン酸シンセターゼのアミノ酸配列
配列番号 5: purR遺伝子の塩基配列
配列番号 6:プリンリプレッサーのアミノ酸配列
配列番号 7: deoD遺伝子の塩基配列
配列番号 8: deoD遺伝子産物(プリンヌクレオシドホスホリラーゼ)のアミノ酸配列 配列番号 9: pupG遺伝子の塩基配列
配列番号 10 :pupG遺伝子産物(プリンヌクレオシドホスホリラーゼ)のアミノ酸配列 配列番号 11 pur A遺伝子の塩基配列
配列番号 12 サクシ-ルー AMPシンターゼのアミノ酸配列
配列番号 13 guaB遺伝子の塩基配列
配列番号 14 IMP脱水素酵素のアミノ酸配列
配列番号 15 f p遺伝子の塩基配列
配列番号 16 フルクトース ビスフォスファターゼのアミノ酸配列
配列番号 17 purR遺伝子増幅用プライマー
配列番号 18 purR遺伝子増幅用プライマー
配列番号 19 fbp遺伝子上流域増幅用プライマー
配列番号 20 fbp遺伝子上流域増幅用プライマー
配列番号 21 fbp遺伝子下流域増幅用プライマー
配列番号 22 fbp遺伝子下流域増幅用プライマー
配列番号 23 cat遺伝子増幅用プライマー
配列番号 24 cat遺伝子増幅用プライマー
配列番号 25 ywjH遺伝子上流域増幅用プライマー
配列番号 26 ywjH遺伝子上流域増幅用プライマー
配列番号 27 ywjH遺伝子下流域増幅用プライマー
配列番号 28 ywjH遺伝子下流域増幅用プライマー
配列番号 29 cat遺伝子増幅用プライマー
配列番号 30 cat遺伝子増幅用プライマー
配列番号 31 ywjH遺伝子上流域増幅用プライマー
配列番号 32 ywjH遺伝子上流域増幅用プライマー
配列番号 33 ywjH遺伝子下流域増幅用プライマー
配列番号 34 ywjH遺伝子下流域増幅用プライマー
配列番号 35 tet遺伝子増幅用プライマー
配列番号 36 tet遺伝子増幅用プライマー
産業上の利用可能性
本発明のバチルス属細菌を用いることにより、プリンヌクレオシド及び/又はプリンヌ クレオチドの生産効率を向上させることが出来る。

Claims

請求の範囲
[I] プリン系物質生産能を有し、トランスアルドラーゼの酵素活性が低下するように改変 されたバチルス属細菌。
[2] 前記プリン系物質がイノシン、キサントシン、グアノシン、及びアデノシンからなる群 より選択されるプリンヌクレオシドである請求項 1に記載のバチルス属細菌。
[3] 前記プリン系物質がイノシン酸、キサンチル酸、グァニル酸、及びアデニル酸から なる群より選択されるプリンヌクレオチドである請求項 1に記載のバチルス属細菌。
[4] 前記トランスアルドラーゼをコードする遺伝子を破壊すること、または、トランスアルド ラーゼをコードする遺伝子の発現量を低下させることにより、トランスアルドラーゼ活 性が低下した請求項 1〜3のいずれか一項に記載のバチルス属細菌。
[5] 前記トランスアルドラーゼをコードする遺伝子が下記 (A)又は(B)に示すタンパク質 をコードする遺伝子である請求項 4に記載のバチルス属細菌。
(A)配列番号 1に記載のアミノ酸配列を有するタンパク質。
(B)配列番号 1に記載のアミノ酸配列にぉ 、て、 1若しくは数個のアミノ酸残基の置 換、欠失、挿入、付加、又は逆位を含むアミノ酸配列を有し、かつ、トランスアルドラ ーゼ活性を有するタンパク質。
[6] さらにフルクトース一ビスフォスファターゼ活性が低下するように改変されたことを特 徴とする請求項 1〜5のいずれ力 1項に記載のバチルス属細菌。
[7] さらにホスホリボシルピロリン酸シンセターゼ活性が上昇するように改変されたことを 特徴とする請求項 1〜6のいずれ力 1項に記載のバチルス属細菌。
[8] さらに、プリンオペロンの発現量が上昇するように改変されたことを特徴とする請求 項 1〜7のいずれか一項に記載のバチルス属細菌。
[9] プリンオペロンのリブレッサーをコードする遺伝子である purR遺伝子が破壊された ことにより、プリンオペロンの発現量が上昇したことを特徴とする請求項 8に記載のバ チルス属細菌。
[10] さらに、プリンヌクレオシドホスホリラーゼ活性が低下するように改変されたことを特 徴とする請求項 1〜9のいずれ力 1項に記載のバチルス属細菌。
[II] さらに、 IMP脱水素酵素活性が低下するように改変されたことを特徴とする請求項 1〜 10に記載のバチルス属細菌。
[12] バチルス属細菌がバチルス ·ズブチリスである請求項 1〜: L 1のいずれか一項に記 載のバチルス属細菌。
[13] 請求項 1〜12のいずれか 1項に記載のバチルス属細菌を培地に培養して、同細菌 の細胞内又は培地中にプリン系物質を蓄積せしめ、同細胞又は培地力 プリン系物 質を回収することを特徴とするプリン系物質の製造法。
[14] プリン系物質がプリンヌクレオシド又はプリンヌクレオチドである、請求項 13に記載 の方法。
[15] 前記プリン系物質がイノシン、キサントシン、グアノシン、及びアデノシンからなる群 より選択されるプリンヌクレオシドである請求項 14に記載の方法。
[16] 前記プリン系物質がイノシン酸、キサンチル酸、グァニル酸、及びアデニル酸から なる群より選択されるプリンヌクレオチドである請求項 14に記載の方法。
[17] 請求項 15に記載の方法によりプリンヌクレオシドを製造し、該プリンヌクレオシドに、 ポリ燐酸、フエニル燐酸、及び力ルバミル燐酸からなる群より選択される燐酸供与体と 、ヌクレオシドー 5'—燐酸エステルを生成する能力を有する微生物又は酸性フォスフ ァターゼを作用させて、プリンヌクレオチドを生成せしめ、該プリンヌクレオチドを採取 することを特徴とするプリンヌクレオチドの製造法。
PCT/JP2007/058357 2006-04-24 2007-04-17 プリン系物質生産菌及びプリン系物質の製造法 WO2007125783A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020087028621A KR101173533B1 (ko) 2006-04-24 2007-04-17 퓨린계 물질 생산균 및 퓨린계 물질의 제조법
EP07741793A EP2011861A1 (en) 2006-04-24 2007-04-17 Bacterium capable of producing purine substance, and process for production of purine substance
JP2008513147A JP5251505B2 (ja) 2006-04-24 2007-04-17 プリン系物質生産菌及びプリン系物質の製造法
CN200780014925XA CN101432418B (zh) 2006-04-24 2007-04-17 能够产生嘌呤物质的细菌和用于产生嘌呤物质的方法
BRPI0709635-6A BRPI0709635A2 (pt) 2006-04-24 2007-04-17 bactéria pertencendo ao gênero bacillus, e, métodos para produzir uma substáncia derivada de purina, e um nucleotìdeo de purina
US12/255,031 US8236531B2 (en) 2006-04-24 2008-10-21 Purine-derived substance-producing bacterium and a method for producing a purine-derived substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-119324 2006-04-24
JP2006119324 2006-04-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/255,031 Continuation US8236531B2 (en) 2006-04-24 2008-10-21 Purine-derived substance-producing bacterium and a method for producing a purine-derived substance

Publications (1)

Publication Number Publication Date
WO2007125783A1 true WO2007125783A1 (ja) 2007-11-08

Family

ID=38655313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058357 WO2007125783A1 (ja) 2006-04-24 2007-04-17 プリン系物質生産菌及びプリン系物質の製造法

Country Status (7)

Country Link
US (1) US8236531B2 (ja)
EP (1) EP2011861A1 (ja)
JP (1) JP5251505B2 (ja)
KR (1) KR101173533B1 (ja)
CN (1) CN101432418B (ja)
BR (1) BRPI0709635A2 (ja)
WO (1) WO2007125783A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329836A (zh) * 2011-09-19 2012-01-25 南通香地生物有限公司 采用芽孢杆菌生产5’-腺苷酸的方法
WO2017104637A1 (ja) * 2015-12-15 2017-06-22 株式会社Mizkan Holdings 加熱殺菌が可能な納豆
JP7552774B2 (ja) 2017-09-29 2024-09-18 三菱ケミカル株式会社 ニコチンアミドモノヌクレオチドの製造方法およびその方法に用いる形質転換体

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5104754B2 (ja) 2006-04-24 2012-12-19 味の素株式会社 プリン系物質生産菌及びプリン系物質の製造法
CN101960005B (zh) * 2008-02-25 2016-02-24 味之素株式会社 5’-鸟苷酸的生产方法
US8647642B2 (en) 2008-09-18 2014-02-11 Aviex Technologies, Llc Live bacterial vaccines resistant to carbon dioxide (CO2), acidic PH and/or osmolarity for viral infection prophylaxis or treatment
JP5636648B2 (ja) 2009-08-10 2014-12-10 味の素株式会社 5’−グアニル酸の製造法
US11180535B1 (en) 2016-12-07 2021-11-23 David Gordon Bermudes Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
CN111411134B (zh) * 2019-09-18 2023-05-12 大连民族大学 一种海洋芽孢杆菌Bacillus sp.JIN118发酵生产嘌呤的制备方法
CN110863022A (zh) * 2019-09-30 2020-03-06 大连民族大学 嘌呤的发酵生产工艺
KR102185850B1 (ko) * 2020-02-21 2020-12-02 씨제이제일제당 주식회사 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
CN113583929B (zh) * 2021-07-26 2024-04-05 中国科学院微生物研究所 发酵生产嘌呤核苷的重组菌及其构建方法与应用

Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616206A (en) 1965-09-04 1971-10-26 Takeda Chemical Industries Ltd Method for the production of inosine
JPS515075A (ja) 1975-03-06 1976-01-16 Citizen Watch Co Ltd
JPS5417033A (en) 1977-07-07 1979-02-08 Canon Inc Fixing roller for zerography
JPS552956A (en) 1978-06-22 1980-01-10 Nec Corp Automatic wiring tester
JPS5545199A (en) 1978-09-22 1980-03-29 Rockwell International Corp Self bias structure for magnetic bubble domain
JPS5612438A (en) 1979-07-13 1981-02-06 Mitsubishi Heavy Ind Ltd Drag suction-head for sludge dredging
JPS5714160A (en) 1980-06-27 1982-01-25 Matsushita Electric Ind Co Ltd Airconditioner
JPS5741915A (en) 1980-08-27 1982-03-09 Makoto Mori Manufacture of knife handle having sealed object inside thereof
JPS5817592A (ja) 1981-07-24 1983-02-01 Hitachi Ltd 磁気バブル拡大器
JPS58158197A (ja) 1982-03-16 1983-09-20 Ajinomoto Co Inc 発酵法によるイノシンの製造法
JPS58175493A (ja) 1982-04-08 1983-10-14 Ajinomoto Co Inc 発酵法によるグアノシンの製造法
JPS5928470A (ja) 1982-08-11 1984-02-15 Ajinomoto Co Inc バチルス・ズブチリス
JPS5942895A (ja) 1982-07-27 1984-03-09 Takeda Chem Ind Ltd イノシンおよびグアノシンの製造法
JPS60156388A (ja) 1984-01-27 1985-08-16 Takeda Chem Ind Ltd Dνaおよびその用途
JPS6214794A (ja) 1985-07-09 1987-01-23 Ajinomoto Co Inc 発酵法によるグアノシン及び/またはイノシンの製造法
JPS63230094A (ja) 1987-03-18 1988-09-26 Kyowa Hakko Kogyo Co Ltd 5′−イノシン酸の製造法
JPS63248394A (ja) 1987-04-06 1988-10-14 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
JPS6427477A (en) 1987-04-01 1989-01-30 Takeda Chemical Industries Ltd Dna and use thereof
JPH01174385A (ja) 1986-12-26 1989-07-10 Takeda Chem Ind Ltd Dnaおよびその用途
JPH0358787A (ja) 1989-04-19 1991-03-13 Takeda Chem Ind Ltd Dnaおよびその用途
WO1991008286A1 (en) 1989-12-05 1991-06-13 Kyowa Hakko Kogyo Co., Ltd. Inosine guanosine kinase
JPH03164185A (ja) 1989-08-04 1991-07-16 Takeda Chem Ind Ltd 改変されたdnaおよびその用途
JPH0428357A (ja) 1990-05-24 1992-01-30 Topcon Corp レーザ装置
JPH04262790A (ja) 1991-02-19 1992-09-18 Kyowa Hakko Kogyo Co Ltd 発酵法による5’−キサンチル酸の製造法
JPH0584067A (ja) 1991-09-27 1993-04-06 Takeda Chem Ind Ltd 発酵法によるイノシンの製造法
JPH05192164A (ja) 1990-07-03 1993-08-03 Takeda Chem Ind Ltd 組換えdnaおよびその用途
JPH07231793A (ja) 1993-12-27 1995-09-05 Ajinomoto Co Inc ヌクレオシド−5’−燐酸エステルの製造法
JPH08168383A (ja) 1995-09-11 1996-07-02 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
WO1996030501A1 (fr) 1995-03-24 1996-10-03 Ajinomoto Co., Inc. Procede de production d'acides nucleiques
WO1996037603A1 (fr) 1995-05-25 1996-11-28 Ajinomoto Co., Inc. Procede de production du nucleoside-5'-phosphate
JPH10201481A (ja) 1996-11-21 1998-08-04 Ajinomoto Co Inc ヌクレオシド−5’−燐酸エステルの製造法
WO1999003988A1 (fr) 1997-07-18 1999-01-28 Ajinomoto Co., Inc. Procede de production de nucleosides de purine par fermentation
WO2000018935A1 (fr) 1998-09-25 2000-04-06 Ajinomoto Co.,Inc. Procede de construction d'une bacterie produisant des acides amines, et procede de production d'acides amines par une technique de fermentation utilisant ladite bacterie
JP2000295996A (ja) 1999-02-08 2000-10-24 Kyowa Hakko Kogyo Co Ltd プリンヌクレオチドの製造法
US6284495B1 (en) 1998-06-12 2001-09-04 Ajinomoto Co., Inc. Method for producing nucleic acid substances
JP2001245676A (ja) 1995-05-25 2001-09-11 Ajinomoto Co Inc 変異型酸性フォスファターゼ
JP2002000289A (ja) 2000-06-23 2002-01-08 Ajinomoto Co Inc ヌクレオシド−5’−燐酸エステルの製造法
KR20030056490A (ko) 2001-12-28 2003-07-04 씨제이 주식회사 5'-크산틸산을 생산하는 미생물
JP2003219876A (ja) 2002-01-24 2003-08-05 Ajinomoto Co Inc プリンヌクレオシドおよびプリンヌクレオチドの製造方法
US20040166575A1 (en) 2003-02-17 2004-08-26 Misa Tominaga Inosine producing bacterium belonging to the genus Bacillus and method for producing inosine
JP2005280186A (ja) 2004-03-30 2005-10-13 Canon Chemicals Inc 発泡ゴムローラの製造方法
JP3823099B2 (ja) 2003-06-26 2006-09-20 中日産業株式会社 キャリーカート

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515075B1 (ja) * 1970-02-05 1976-02-17
JPS5417033B2 (ja) * 1973-06-14 1979-06-27
JPS5545199B2 (ja) * 1974-03-30 1980-11-17
JPS552956B2 (ja) * 1974-03-30 1980-01-23
KR920002774A (ko) 1990-07-03 1992-02-28 우메모또 요시마사 Dna 및 그의 용도
RU2144564C1 (ru) * 1998-10-13 2000-01-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" ФРАГМЕНТ ДНК rhtB, КОДИРУЮЩИЙ СИНТЕЗ БЕЛКА RhtB, ПРИДАЮЩЕГО УСТОЙЧИВОСТЬ К L-ГОМОСЕРИНУ БАКТЕРИЯМ ESCHERICHIA COLI, И СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ
US20060014259A9 (en) 1999-07-09 2006-01-19 Kevin Burke Process for the preparation of L-amino acids with amplification of the zwf gene
US7005284B1 (en) * 1999-09-21 2006-02-28 Kyowa Hakko Kogyo Co., Ltd. Transaldolase gene
DE102004001674B4 (de) * 2003-01-29 2019-01-24 Ajinomoto Co., Inc. Verfahren zur Herstellung von L-Lysin unter Einsatz von Methanol verwertenden Bakterien
DE602004000428T2 (de) * 2003-05-26 2006-10-19 Ajinomoto Co., Inc. Verfahren zur Herstellung von Cadaverindicarboxylat und dessen Verwendung zur Herstellung von Nylon
US7326546B2 (en) * 2005-03-10 2008-02-05 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing purine-derived substance
JP5104754B2 (ja) * 2006-04-24 2012-12-19 味の素株式会社 プリン系物質生産菌及びプリン系物質の製造法

Patent Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616206A (en) 1965-09-04 1971-10-26 Takeda Chemical Industries Ltd Method for the production of inosine
JPS515075A (ja) 1975-03-06 1976-01-16 Citizen Watch Co Ltd
JPS5417033A (en) 1977-07-07 1979-02-08 Canon Inc Fixing roller for zerography
JPS552956A (en) 1978-06-22 1980-01-10 Nec Corp Automatic wiring tester
JPS5545199A (en) 1978-09-22 1980-03-29 Rockwell International Corp Self bias structure for magnetic bubble domain
JPS5612438A (en) 1979-07-13 1981-02-06 Mitsubishi Heavy Ind Ltd Drag suction-head for sludge dredging
JPS5714160A (en) 1980-06-27 1982-01-25 Matsushita Electric Ind Co Ltd Airconditioner
JPS5741915A (en) 1980-08-27 1982-03-09 Makoto Mori Manufacture of knife handle having sealed object inside thereof
JPS5817592A (ja) 1981-07-24 1983-02-01 Hitachi Ltd 磁気バブル拡大器
JPS58158197A (ja) 1982-03-16 1983-09-20 Ajinomoto Co Inc 発酵法によるイノシンの製造法
JPS58175493A (ja) 1982-04-08 1983-10-14 Ajinomoto Co Inc 発酵法によるグアノシンの製造法
JPS5942895A (ja) 1982-07-27 1984-03-09 Takeda Chem Ind Ltd イノシンおよびグアノシンの製造法
JPS5928470A (ja) 1982-08-11 1984-02-15 Ajinomoto Co Inc バチルス・ズブチリス
JPS60156388A (ja) 1984-01-27 1985-08-16 Takeda Chem Ind Ltd Dνaおよびその用途
JPS6214794A (ja) 1985-07-09 1987-01-23 Ajinomoto Co Inc 発酵法によるグアノシン及び/またはイノシンの製造法
JPH01174385A (ja) 1986-12-26 1989-07-10 Takeda Chem Ind Ltd Dnaおよびその用途
JPS63230094A (ja) 1987-03-18 1988-09-26 Kyowa Hakko Kogyo Co Ltd 5′−イノシン酸の製造法
JPS6427477A (en) 1987-04-01 1989-01-30 Takeda Chemical Industries Ltd Dna and use thereof
JPS63248394A (ja) 1987-04-06 1988-10-14 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
JPH0358787A (ja) 1989-04-19 1991-03-13 Takeda Chem Ind Ltd Dnaおよびその用途
JPH03164185A (ja) 1989-08-04 1991-07-16 Takeda Chem Ind Ltd 改変されたdnaおよびその用途
WO1991008286A1 (en) 1989-12-05 1991-06-13 Kyowa Hakko Kogyo Co., Ltd. Inosine guanosine kinase
JPH0428357A (ja) 1990-05-24 1992-01-30 Topcon Corp レーザ装置
JPH05192164A (ja) 1990-07-03 1993-08-03 Takeda Chem Ind Ltd 組換えdnaおよびその用途
JPH04262790A (ja) 1991-02-19 1992-09-18 Kyowa Hakko Kogyo Co Ltd 発酵法による5’−キサンチル酸の製造法
JPH0584067A (ja) 1991-09-27 1993-04-06 Takeda Chem Ind Ltd 発酵法によるイノシンの製造法
JPH07231793A (ja) 1993-12-27 1995-09-05 Ajinomoto Co Inc ヌクレオシド−5’−燐酸エステルの製造法
WO1996030501A1 (fr) 1995-03-24 1996-10-03 Ajinomoto Co., Inc. Procede de production d'acides nucleiques
WO1996037603A1 (fr) 1995-05-25 1996-11-28 Ajinomoto Co., Inc. Procede de production du nucleoside-5'-phosphate
JP2001245676A (ja) 1995-05-25 2001-09-11 Ajinomoto Co Inc 変異型酸性フォスファターゼ
JPH08168383A (ja) 1995-09-11 1996-07-02 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
JPH10201481A (ja) 1996-11-21 1998-08-04 Ajinomoto Co Inc ヌクレオシド−5’−燐酸エステルの製造法
WO1999003988A1 (fr) 1997-07-18 1999-01-28 Ajinomoto Co., Inc. Procede de production de nucleosides de purine par fermentation
US6284495B1 (en) 1998-06-12 2001-09-04 Ajinomoto Co., Inc. Method for producing nucleic acid substances
WO2000018935A1 (fr) 1998-09-25 2000-04-06 Ajinomoto Co.,Inc. Procede de construction d'une bacterie produisant des acides amines, et procede de production d'acides amines par une technique de fermentation utilisant ladite bacterie
JP2000295996A (ja) 1999-02-08 2000-10-24 Kyowa Hakko Kogyo Co Ltd プリンヌクレオチドの製造法
JP2002000289A (ja) 2000-06-23 2002-01-08 Ajinomoto Co Inc ヌクレオシド−5’−燐酸エステルの製造法
KR20030056490A (ko) 2001-12-28 2003-07-04 씨제이 주식회사 5'-크산틸산을 생산하는 미생물
JP2003219876A (ja) 2002-01-24 2003-08-05 Ajinomoto Co Inc プリンヌクレオシドおよびプリンヌクレオチドの製造方法
US20040166575A1 (en) 2003-02-17 2004-08-26 Misa Tominaga Inosine producing bacterium belonging to the genus Bacillus and method for producing inosine
JP2004242610A (ja) 2003-02-17 2004-09-02 Ajinomoto Co Inc バチルス属に属するイノシン生産菌及びイノシンの製造法
JP3823099B2 (ja) 2003-06-26 2006-09-20 中日産業株式会社 キャリーカート
JP2005280186A (ja) 2004-03-30 2005-10-13 Canon Chemicals Inc 発泡ゴムローラの製造方法

Non-Patent Citations (38)

* Cited by examiner, † Cited by third party
Title
"Applications and statistics for multiple high-scoring segments in molecular sequences", PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 7
"Bioengineering Experiments", 1992, SOCIETY FOR BIOSCIENCE AND BIOENGINEERING, pages: 97 - 98
"Experiments in Molecular Genetics", 1972, COLD SPRING HARBOR LABORATORY PRESS
"PCR Technology", 1989, STOCKTON PRESS
AGRIC. BIOL. CHEM., vol. 42, 1978, pages 399 - 405
BIOSCI. BIOTECH. BIOCHEM., vol. 51, 1997, pages 840
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 42, pages 3505
CHANG, S.; CHOEN, S.N., MOLEC. GEN. GENET., vol. 168, 1979, pages 111 - 115
COLBY J. ET AL.: "Enzymological aspects of the pathways for trimethylamine oxidation and C1 assimilation of obligate methylamine and restricted facultative methylotrophs", BIOCHEM. J., vol. 148, no. 3, 1975, pages 513 - 520, XP003019127 *
DUBNAU; DAVIDOFF-ABELSON, J. MOL. BIOL., vol. 56, 1971, pages 209 - 221
DUBUNAU D.; DAVIDOFF-ABELSON, R., J. MOL. BIOL., vol. 56, 1971, pages 209 - 221
EBBOLE D.J.; ZALKIN H., J. BIOL. CHEM., vol. 262, no. 17, 1987, pages 8274 - 87
EBBOLE D.J.; ZALKIN H., J. BIOL. CHEM., vol. 263, 1988, pages 10894 - 10902
EBBOLE, D.J.; H. ZALIKN, J. BIOL. CHEM., vol. 262, 1987, pages 8274 - 8287
EBBOLE, D.J.; ZALKIN, H., J. BACTERIOL., vol. 171, 1989, pages 2136 - 2141
EBBOLE, D.J.; ZALKIN, H., J. BIOL. CHEM., vol. 262, 1987, pages 8274 - 8287
FOUET; SONENSHEIN, J. BACTERIOL., vol. 172, 1990, pages 835 - 844
FUJIMOTO, M.; UCHIDA, K., AGR. BIOL. CHEM., vol. 29, 1965, pages 249 - 259
GENE, vol. 167, 1995, pages 335 - 336
GOLDSTEIN ET AL.: "Prokaryotic promoters in biotechnology", BIOTECHNOL. ANNU. REV., vol. 1, 1995, pages 105 - 128
H. SAITO; K. MIURA, BIOCHEM. BIOPHYS. ACTA, vol. 72, 1963, pages 619 - 629
J. BACTERIOL., vol. 183, 2001, pages 6175 - 6183
J. BACTERIOL., vol. 185, 2003, pages 5200 - 5209
KARLIN, SAMUEL; STEPHEN F. ALTSCHUL: "Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes", PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 2264 - 68
KRAMER, W.; FRITS, H.J., METHODS IN ENZYMOLOGY, vol. 154, 1987, pages 350 - 367
MATSUYAMA, S.; MIZUSHIMA, S., J. BACTERIOL., vol. 162, 1985, pages 1196 - 1202
OCHOA, T.; HORECKER, B.L., METHODS ENZYMOL., vol. 9, 1966, pages 499 - 505
PROC. NATL. ACAD. SCI. USA, vol. 92, 1995, pages 7455 - 7459
PRTIT, M.-A., J. BACTERIOL., vol. 172, 1990, pages 6736 - 6740
ROTH ET AL., METHODS ENZYMOL., vol. 51, 1978, pages 12 - 17
SCHURMANN M. ET AL.: "Fructose-6-phosphate aldolase is a novel class I aldolase from Escherichia coli and is related to a novel group of bacterial transaldolases", J. BIOL. CHEM., vol. 276, no. 14, 2001, pages 11055 - 11061, XP003019128 *
See also references of EP2011861A4 *
SHORTLE, D.; NATHANS, D., PROC. NATL. ACAD. SCI. U.S.A., vol. 75, 1978, pages 2170 - 2174
SWITZER ET AL., METHODS ENZYMOL., vol. 51, 1978, pages 3 - 11
THOMPSON J.D.; HIGGINS D.G.; GIBSON T.J.: "CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice", NUCLEIC ACIDS RES., vol. 22, 1994, pages 4673 - 4680
UCHIDA, K. ET AL., AGR. BIOL. CHEM., vol. 25, 1961, pages 804 - 805
W.R. PEARSON: "Rapid and Sensitive Sequence Comparison with FASTP and FASTA", METHODS IN ENZYMOLOGY, vol. 183, 1990, pages 63 - 98
WHITE, T.J. ET AL., TRENDS GENET., vol. 5, 1989, pages 185 - 189

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329836A (zh) * 2011-09-19 2012-01-25 南通香地生物有限公司 采用芽孢杆菌生产5’-腺苷酸的方法
WO2017104637A1 (ja) * 2015-12-15 2017-06-22 株式会社Mizkan Holdings 加熱殺菌が可能な納豆
JP7552774B2 (ja) 2017-09-29 2024-09-18 三菱ケミカル株式会社 ニコチンアミドモノヌクレオチドの製造方法およびその方法に用いる形質転換体

Also Published As

Publication number Publication date
KR20090005392A (ko) 2009-01-13
US8236531B2 (en) 2012-08-07
EP2011861A8 (en) 2009-04-08
CN101432418B (zh) 2012-11-14
JP5251505B2 (ja) 2013-07-31
EP2011861A4 (en) 2009-01-07
CN101432418A (zh) 2009-05-13
JPWO2007125783A1 (ja) 2009-09-10
US20100047874A1 (en) 2010-02-25
EP2011861A1 (en) 2009-01-07
KR101173533B1 (ko) 2012-08-13
BRPI0709635A2 (pt) 2011-07-19

Similar Documents

Publication Publication Date Title
JP5104754B2 (ja) プリン系物質生産菌及びプリン系物質の製造法
JP5251505B2 (ja) プリン系物質生産菌及びプリン系物質の製造法
US7326546B2 (en) Purine-derived substance-producing bacterium and a method for producing purine-derived substance
EP1004663B1 (en) Process and microorganism for producing purine nucleosides via fermentation
JP5488594B2 (ja) プリンリボヌクレオシド及びリボヌクレオチドの製造方法
JP4760711B2 (ja) バチルス属又はエシェリヒア属に属する細菌を使用した発酵によるプリンヌクレオシド及びヌクレオチドの製造方法
JP4352716B2 (ja) バチルス属に属するイノシン生産菌及びイノシンの製造法
JP5583311B2 (ja) プリン系物質生産菌及びプリン系物質の製造法
JP2007075108A (ja) プリンヌクレオシド生産菌及びプリンヌクレオシド製造法
JP2007075108A6 (ja) プリンヌクレオシド生産菌及びプリンヌクレオシド製造法
JP3965804B2 (ja) 発酵法によるキサントシンの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741793

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008513147

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007741793

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780014925.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087028621

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0709635

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081023