Nothing Special   »   [go: up one dir, main page]

WO2007018592A1 - A method of separating non-metallic material using microwave radiation - Google Patents

A method of separating non-metallic material using microwave radiation Download PDF

Info

Publication number
WO2007018592A1
WO2007018592A1 PCT/US2006/003394 US2006003394W WO2007018592A1 WO 2007018592 A1 WO2007018592 A1 WO 2007018592A1 US 2006003394 W US2006003394 W US 2006003394W WO 2007018592 A1 WO2007018592 A1 WO 2007018592A1
Authority
WO
WIPO (PCT)
Prior art keywords
accordance
microwave
microwave radiation
separating
propagation path
Prior art date
Application number
PCT/US2006/003394
Other languages
French (fr)
Inventor
Vladislav Sklyarevich
Mykhaylo Shevelev
Original Assignee
Gyrotron Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2005/026739 external-priority patent/WO2006025994A2/en
Priority claimed from PCT/US2006/000742 external-priority patent/WO2007018586A1/en
Application filed by Gyrotron Technology, Inc. filed Critical Gyrotron Technology, Inc.
Priority to US10/594,935 priority Critical patent/US20080236199A1/en
Publication of WO2007018592A1 publication Critical patent/WO2007018592A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • C03B33/076Laminated glass comprising interlayers
    • C03B33/078Polymeric interlayers

Definitions

  • This invention generally relates to the physical separation of non-metallic materials into a plurality of smaller pieces.
  • the invention relates to a method for splitting of a glass body, including laminated glasses.
  • the first is cutting glass and other brittle substrates that includes abrasion or scribing by the use of mechanical cutting tools.
  • glass sheets have been cut by scribing the glass with a diamond-tipped scribe or a carbide wheel to weaken the molecular structure. After the scribe has been made, physical pressure is applied to create a force at the scribe line to hopefully break the glass along the scribe line.
  • Another way of splitting bodies of glass and like material into parts is to use the thermal shock process produced by intense local heating of the body. The use of different heat sources for said local heating is known from the art. The most common among them are laser (see, for example US Patent Nos. 6,420,678; 3,629,545; 4,468,534; 5,609,284), hot gas (5,394,505) or fuel (5,394,505) jets. .
  • One significant disadvantage is the inability to obtain smooth edges. This may be unacceptable for many products, for example displays or solar panels, because of the required quality of the edge faces. Accordingly, secondary steps such as grinding, edge seaming, and polishing may be performed. However, such secondary steps slow down the manufacturing process, can be expensive and still, very often do not meet the requirements of the edge quality.
  • edge defects on some of these rough edges may result in crack propagation during further processing or in the ultimate product.
  • the edge strength of the substrate is also reduced. Glass can contaminate the substrate being separated, and require that additional clean-up steps be performed to minimize their impact on the manufacturing process.
  • Cutting laminated glass is especially difficult and has many problems because of the interlayer that resists separation of the body.
  • the most common way to cut laminated glass is to score both sides of the laminate, and bend it first to one side and then to the other side, the two parts of the laminated glass being pulled apart while performing the second bending step.
  • the interlayer then is melted off simultaneously over the entire length of the parting line by a jet of heated air, flame, plasma etc. directed into the gap formed by the bending operation (see, for example, US Patents 5,944,244; 5,931 ,071 ; 5,704,959; 4,739,555; 4,558,622; 4,471 ,895 and 4,434,974). All known methods have the same problems as is described above for non laminated glass plus laminated glass requires more time and effort. It is impossible to cut laminated glass that contains more than two glass sheets by this approach.
  • This invention generally relates to the physical separation of bodies of a brittle non-metallic material, preferably glass sheets and pipes, by a thermal shock process in which a microwave radiation is used for rapid and selective heating of a local area of the body.
  • Materials which may be separated by the inventive method include ceramics, semi-conductor wafer materials, glass, fiberglass, quartz, and the like. Material treated by this method can be used in the production of automotive and aircraft glazings, of construction and architectural window glass and the like, of pharmaceutical glass products and the like, of semiconductor wafers and the like, and glass components of various household items and furniture, and the like, structural optical components, and the like, mobile device displays, solar panels, and also in other fields of production and technologies where precision cutting of non-metallic materials is conducted or desirable.
  • a method is provided for the separation of bodies of a brittle non-metallic material, preferably glass sheets, by a thermal shock.
  • the inventive method utilizes concentrated microwave radiation to rapidly and selectively heat the local area of the body to be thermally separated (e.g., a glass sheet, a glass pipe).
  • a concentrated microwave radiation with appropriate frequency and power density is chosen so as to accomplish heating of at least one selected area of the body at the required separating propagation path to the required temperature in a selected short time while insuring that this temperature is large enough to create a thermal stress through the thickness of the selected area which thereby results in the separating of the body material.
  • the inventive method avoids the use of existing mechanical and thermal tools that are slow and dusty and do not provide a high quality of cut.
  • the present invention includes making the process easily adaptable for many applications, achieving fast cutting speeds and total separation of the substrate, obtaining smooth edges, and eliminating the need for secondary operations. Any kind of brittle material including those having low thermal expansion can be separated by the inventive method.
  • the main advantages of this high-speed method are the ability to cut a wide range of thicknesses (from super thick, more than 20mm to ultra thin, less than 1mm), high quality (dustless, chip and stress-free) and accuracy, reducing manufacturing costs and increasing production rate. Many other specific advantages also exist including but not limited to cutting complex shapes, the elimination of the cost and issues of grinding, transporting and transferring cut parts for grinding, cleaning cuts.
  • Accuracy and cutting speed can be increased if an additional heat source with a power distribution that is significantly sharper than in the applied concentrated microwave radiation follows or is applied simultaneously or before the body's exposure to microwave.
  • this additional heat source creates a sharp maximum of thermal stress just on the propagation path that reduces the deviation of separating line along the propagation path. This allows also an increase in the cutting speed.
  • the said additional source is selected from the group consisting of laser, gas torch, microwave, and other sources of concentrated energy.
  • FIG. 1 schematically illustrates the temperature profile and compressive stresses that are produced inside a glass sheet when it is irradiated by concentrated microwave radiation.
  • FIG. 2 schematically illustrates a method for cutting, with simultaneous cooling in accordance with one embodiment of the invention .
  • FIG. 3 illustrates the compressive stresses that are produced inside a glass sheet when it is irradiated by an elongated microwave beam.
  • FIG. 4 illustrates a method in accordance with the teachings of the method of the present invention for cutting laminated glass with an elongated microwave beam that has different power density at its front and back.
  • the present invention relates to a method of thermally separating a brittle non- metallic material, preferably a glass sheet, by a thermal shock.
  • a microwave radiation with appropriate frequency and power density is used.
  • the frequency (wavelength) of the concentrated microwave and power density of the applied microwave radiation are important parameters of the inventive method which must be determined for each type of body material and thickness of bodies processed.
  • the process parameters are chosen so as to accomplish heating of selected area of a body at the required separating propagation path to required temperature in a selected time such that the difference in this temperature and the temperature of the rest of the body material is large enough to create a thermal stress that results in the separating of the body material in the heated area.
  • said stress is created not only on the surface but through the thickness as well.
  • Flat, non-flat, and pipe types of bodies can be separated using the inventive method.
  • These treatments include but are not limited to the glass sheet employed in the production of windshields, side windows, and rear windows for vehicles such as automobiles and the like, the production of architectural window glass and related materials, the production of pharmaceutical glass products such as vials, ampoules, pipettes, and the like, display glass for mobile devices, solar panels, and the like, glass components of various household items and furniture, and the like, fiberglass and the like, as well as, semiconductor materials employed in the production of semiconductor wafers and the like.
  • the cutting of glass under the action of thermal stresses, consists of the following.
  • concentrated microwave radiation microwave beam 1 (see Figure 1)
  • the concentrated microwave radiation 1 passes through the glass sheet and heats the area throughout the depth.
  • Curve 5 illustrates the temperature profile inside the glass sheet 4 that is created by this heating.
  • Compressive stresses 6 are produced in the material being heated because the surrounding areas remain under lower temperature, as well as, surface temperature reduction just after heating under cooling by cold ambient air. The splitting of the plate glass occurs when these thermally-induced stresses exceed glass tensile strength.
  • the compressive stresses can be increased because they mainly depend on the volume of the glass that is heated up, and the temperature gradients in and around the heated area.
  • the rate of thermal splitting (cutting speed) in turn is dependent on how rapidly appropriate compressive stresses are created. All this means that the selected area should be heated throughout the thickness and it should be heated rapidly and to a high enough temperature.
  • the particular frequency chosen should ensure the heating of the selected glass sheet area throughout the thickness of the glass sheet with maximum coupling of the incident microwave energy in the area.
  • the chosen frequency should be cost effective and microwave generators for the selected frequency should be readily available at the required power.
  • the frequency range of microwave energy that meets these requirements for most actual thicknesses and material properties where the inventive method can be applied is in the gigahertz range.
  • the necessary power density drastically rises if the microwave frequency is lower than 10 GHz, and creates many technical and economic problems. Therefore a higher microwave frequency is more preferable.
  • the current state-of-the-art level of microwave technique makes it very difficult and expensive to install a power system with a frequency higher than 1000 GHz.
  • the effective microwave frequency range for the present invention is between about 10 GHz and about 1000 GHz.
  • the preferable frequency is such that the skin layer for this frequency in the body material approximately equals its thickness. In this case, heating across the thickness is guarantied.
  • a microwave absorbent having a greater microwave absorption than the body material at a selected microwave irradiation frequency, is applied along the required separating propagation path. This allows increasing the cutting speed and accuracy because higher absorption increases the heating rate.
  • Heating rate increases more if microwave irradiation frequency is selected such that the skin layer for this frequency in the absorbent approximately equals its thickness.
  • the absorbent is selected from the group consisting of semi-metals, carbides, nitrides, oxides, sulfides, suicides, boron, carbon, graphite and metals.
  • Cutting speed increases also if selected heated area and its surrounds of the body of material are cooled during exposure to microwave, as well as, before and after exposure, because this increases compressive stresses.
  • a stream of cold gas 7 (see Figure 2), for example, liquid nitrogen steam that blows on the body, can be used for said cooling because gases are transparent to microwave.
  • the body can be cooled by placing it on a cooled metal support and/or by placing a cold correspondently shaped plate on the surface that is exposed to microwave.
  • the material of said plate is transparent to microwave and is selected from the group consisting of oxide ceramics, nitride ceramics, quartz and diamond. Accuracy and cutting speed can be increased if the exposure to concentrated microwave radiation is conducted through a metal mask with an opening along the required propagation path.
  • an applied concentrated microwave radiation (microwave beam) 1 (see Figure 3) is elongated in the direction of the required separating propagation path 3. This allows increasing the cutting speed and accuracy because it creates higher compressive stresses, 6.
  • the compressive stress increases also by moving the microwave beam during cutting along the separating propagation path from the beginning to the end and back at least two times. The beam power density and moving speed are selected sufficient to separate of the body material in the selected number of moves.
  • a microwave beam during the cutting of laminated glass moves at least two times along the separating propagation path from the beginning to the end and back.
  • the beam power density during at least the first time is selected sufficient to selectively eat polymer adhesive film to its delaminating temperature (around 80C-110C) along the separating propagation path before being followed by the step of separating of the glass body.
  • cutting laminated glass is provided by an elongated microwave beam, in the direction of the required separating propagation path 3 (see Figure 4), with different power density in the beam at the front 8a and the back 8b.
  • the beam length, power density at its front, and speed are selected to be sufficient to heat polymer adhesive film 9 to its delaminating temperature (around 80C-110C) before being followed by the step of separating of the glass body.
  • Concentrated microwave radiation with the necessary frequency and power density can be achieved using generators such as the gyrotron, klystron, traveling wave tube, and backward wave oscillator, and the like.
  • Accuracy and cutting speed can be increased if an additional heat source with a power distribution that is significantly sharper than in the applied concentrated microwave radiation follows or is applied simultaneously or before the body's exposure to microwave.
  • this additional heat source creates a sharp maximum of thermal stress just on the propagation path that reduces the deviation of separating line along the propagation path. This allows also an increase in the cutting speed.
  • the said additional source is selected from the group consisting of laser, gas torch, microwave, and other sources of concentrated energy.
  • the main distinctions of the inventive method are high cutting speed, quality of cut, and range of thicknesses that can be cut, as well as, eliminating the need for secondary operations. Any kind of brittle material including those having low thermal expansion can be separated by the inventive method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

A method of high speed cutting of non-metallic materials (14), preferably glass and laminated glass, is described. In the inventive method a concentrated microwave radiation (1) with appropriate frequency and power density is chosen so as to accomplish heating of at least one selected area (2) of the body at the required separating propagation path (3) to required temperature in a selected short time while ensuring that this temperature is large enough to create a thermal stress (6) through the thickness of the selected area that results in the separating of the body material. In one embodiment of the invention a method of high speed cutting laminated glass is described wherein concentrated microwave radiation is used for delaminating adhesive film before the step of separating the glass body.

Description

A METHOD OF SEPARATING NON-METALLIC MATERIAL USING MICROWAVE RADIATION
CROSS REFERENCE
This application, as permitted, is a continuation-in-part, a patent of addition or a certificate of addition, of International Application No. PCT/US2006/00742, filed 05
January 2006, which in turn, as permitted, is a continuation-in-part, a patent of addition or a certificate of addition, of International Application No. PCT/US 2005/026739, filed
18 July 2005.
TECHNICAL FIELD OF THE INVENTION This invention generally relates to the physical separation of non-metallic materials into a plurality of smaller pieces. In particular, the invention relates to a method for splitting of a glass body, including laminated glasses.
BACKGROUND OF THE INVENTION For manufacturing most products made of glass, laminated glass, semiconductor and other brittle non-metallic material, the separating of work stock into a number of smaller pieces of the desired size or sizes is required. For example, many glass products are formed by a large sheet of glass separated into smaller pieces of the desired size.
There are two main ways to cut glass and similar materials. The first is cutting glass and other brittle substrates that includes abrasion or scribing by the use of mechanical cutting tools. For example, glass sheets have been cut by scribing the glass with a diamond-tipped scribe or a carbide wheel to weaken the molecular structure. After the scribe has been made, physical pressure is applied to create a force at the scribe line to hopefully break the glass along the scribe line. Another way of splitting bodies of glass and like material into parts is to use the thermal shock process produced by intense local heating of the body. The use of different heat sources for said local heating is known from the art. The most common among them are laser (see, for example US Patent Nos. 6,420,678; 3,629,545; 4,468,534; 5,609,284), hot gas (5,394,505) or fuel (5,394,505) jets. .
Both ways have significant disadvantages. One significant disadvantage is the inability to obtain smooth edges. This may be unacceptable for many products, for example displays or solar panels, because of the required quality of the edge faces. Accordingly, secondary steps such as grinding, edge seaming, and polishing may be performed. However, such secondary steps slow down the manufacturing process, can be expensive and still, very often do not meet the requirements of the edge quality.
Another disadvantage is that edge defects on some of these rough edges may result in crack propagation during further processing or in the ultimate product. The edge strength of the substrate is also reduced. Glass can contaminate the substrate being separated, and require that additional clean-up steps be performed to minimize their impact on the manufacturing process.
The main reason for all these problems is that all known cutting methods from the art create weakness on the surface and then the glass breaks. In the case of using heat, this occurs because all the above-mentioned heat sources heat materials from the surface and do not penetrate inside. As a result, the compressive stress is produced only in the ultra thin heated layer of the surface. This also limits cutting speed. The use of mechanical tools in addition, involves the expenditure of much time and skill, because they are basically manual. Besides, mechanical tools are subject to wear, and worn tools result in inconsistent and unreliable cuts.
Cutting laminated glass is especially difficult and has many problems because of the interlayer that resists separation of the body. The most common way to cut laminated glass is to score both sides of the laminate, and bend it first to one side and then to the other side, the two parts of the laminated glass being pulled apart while performing the second bending step. The interlayer then is melted off simultaneously over the entire length of the parting line by a jet of heated air, flame, plasma etc. directed into the gap formed by the bending operation (see, for example, US Patents 5,944,244; 5,931 ,071 ; 5,704,959; 4,739,555; 4,558,622; 4,471 ,895 and 4,434,974). All known methods have the same problems as is described above for non laminated glass plus laminated glass requires more time and effort. It is impossible to cut laminated glass that contains more than two glass sheets by this approach.
Using a high pressure water jet (see US Patent 4,728,379) allows cutting thicker laminates, but it is very slow and messy and still results in poor quality edge faces.
Consequently, achieving very smooth cuts on brittle material, especially glass, is a significant challenge in industry. Therefore, there exists the need for a method of dividing or parting substrates of brittle non-metallic material that overcomes these and other problems. The main advantages of a high speed and high quality cutting method are increasing production rate and reducing manufacturing costs.
SUMMARY OF THE INVENTION
This invention generally relates to the physical separation of bodies of a brittle non-metallic material, preferably glass sheets and pipes, by a thermal shock process in which a microwave radiation is used for rapid and selective heating of a local area of the body. Materials which may be separated by the inventive method include ceramics, semi-conductor wafer materials, glass, fiberglass, quartz, and the like. Material treated by this method can be used in the production of automotive and aircraft glazings, of construction and architectural window glass and the like, of pharmaceutical glass products and the like, of semiconductor wafers and the like, and glass components of various household items and furniture, and the like, structural optical components, and the like, mobile device displays, solar panels, and also in other fields of production and technologies where precision cutting of non-metallic materials is conducted or desirable. According to the present invention, a method is provided for the separation of bodies of a brittle non-metallic material, preferably glass sheets, by a thermal shock.
The inventive method utilizes concentrated microwave radiation to rapidly and selectively heat the local area of the body to be thermally separated (e.g., a glass sheet, a glass pipe).
In the inventive method a concentrated microwave radiation with appropriate frequency and power density is chosen so as to accomplish heating of at least one selected area of the body at the required separating propagation path to the required temperature in a selected short time while insuring that this temperature is large enough to create a thermal stress through the thickness of the selected area which thereby results in the separating of the body material.
The inventive method avoids the use of existing mechanical and thermal tools that are slow and dusty and do not provide a high quality of cut. The present invention includes making the process easily adaptable for many applications, achieving fast cutting speeds and total separation of the substrate, obtaining smooth edges, and eliminating the need for secondary operations. Any kind of brittle material including those having low thermal expansion can be separated by the inventive method.
The main advantages of this high-speed method are the ability to cut a wide range of thicknesses (from super thick, more than 20mm to ultra thin, less than 1mm), high quality (dustless, chip and stress-free) and accuracy, reducing manufacturing costs and increasing production rate. Many other specific advantages also exist including but not limited to cutting complex shapes, the elimination of the cost and issues of grinding, transporting and transferring cut parts for grinding, cleaning cuts.
Accuracy and cutting speed can be increased if an additional heat source with a power distribution that is significantly sharper than in the applied concentrated microwave radiation follows or is applied simultaneously or before the body's exposure to microwave. In this case, this additional heat source creates a sharp maximum of thermal stress just on the propagation path that reduces the deviation of separating line along the propagation path. This allows also an increase in the cutting speed. The said additional source is selected from the group consisting of laser, gas torch, microwave, and other sources of concentrated energy.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 schematically illustrates the temperature profile and compressive stresses that are produced inside a glass sheet when it is irradiated by concentrated microwave radiation.
FIG. 2 schematically illustrates a method for cutting, with simultaneous cooling in accordance with one embodiment of the invention .
FIG. 3 illustrates the compressive stresses that are produced inside a glass sheet when it is irradiated by an elongated microwave beam.
FIG. 4 illustrates a method in accordance with the teachings of the method of the present invention for cutting laminated glass with an elongated microwave beam that has different power density at its front and back.
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a method of thermally separating a brittle non- metallic material, preferably a glass sheet, by a thermal shock. In the inventive method a microwave radiation with appropriate frequency and power density is used.
In all of the embodiments of the invention, the frequency (wavelength) of the concentrated microwave and power density of the applied microwave radiation are important parameters of the inventive method which must be determined for each type of body material and thickness of bodies processed. The process parameters are chosen so as to accomplish heating of selected area of a body at the required separating propagation path to required temperature in a selected time such that the difference in this temperature and the temperature of the rest of the body material is large enough to create a thermal stress that results in the separating of the body material in the heated area. In the inventive method said stress is created not only on the surface but through the thickness as well. Flat, non-flat, and pipe types of bodies can be separated using the inventive method.
These parameters and how they are chosen are generally described below for the embodiment of the invention in which a flat glass sheet is exposed to microwave radiation. However, it is understood that the same parameters and their choices are applicable to and must be considered in the alternative embodiments of the invention: cutting glass pipes, semiconductor materials, and like. The inventive method is generally applicable to the thermal separation of any type of brittle non-metallic material. These treatments include but are not limited to the glass sheet employed in the production of windshields, side windows, and rear windows for vehicles such as automobiles and the like, the production of architectural window glass and related materials, the production of pharmaceutical glass products such as vials, ampoules, pipettes, and the like, display glass for mobile devices, solar panels, and the like, glass components of various household items and furniture, and the like, fiberglass and the like, as well as, semiconductor materials employed in the production of semiconductor wafers and the like.
(The cutting of glass, under the action of thermal stresses, consists of the following. When concentrated microwave radiation (microwave beam) 1 (see Figure 1) is applied to a selected area 2 at the required separating propagation path 3 of the glass sheet 4, the concentrated microwave radiation 1 passes through the glass sheet and heats the area throughout the depth. Curve 5 illustrates the temperature profile inside the glass sheet 4 that is created by this heating. Compressive stresses 6 are produced in the material being heated because the surrounding areas remain under lower temperature, as well as, surface temperature reduction just after heating under cooling by cold ambient air. The splitting of the plate glass occurs when these thermally-induced stresses exceed glass tensile strength.
While the tensile strength is determined primarily by the characteristics of the glass being processed, the compressive stresses can be increased because they mainly depend on the volume of the glass that is heated up, and the temperature gradients in and around the heated area. The rate of thermal splitting (cutting speed) in turn is dependent on how rapidly appropriate compressive stresses are created. All this means that the selected area should be heated throughout the thickness and it should be heated rapidly and to a high enough temperature. These conditions can be satisfied by the selection of effective microwave frequency and sufficient power density. The particular frequency chosen should ensure the heating of the selected glass sheet area throughout the thickness of the glass sheet with maximum coupling of the incident microwave energy in the area. In addition, the chosen frequency should be cost effective and microwave generators for the selected frequency should be readily available at the required power.
We found that the frequency range of microwave energy that meets these requirements for most actual thicknesses and material properties where the inventive method can be applied is in the gigahertz range. However, the necessary power density drastically rises if the microwave frequency is lower than 10 GHz, and creates many technical and economic problems. Therefore a higher microwave frequency is more preferable. On the other side, the current state-of-the-art level of microwave technique makes it very difficult and expensive to install a power system with a frequency higher than 1000 GHz. Thus, the effective microwave frequency range for the present invention is between about 10 GHz and about 1000 GHz. The preferable frequency is such that the skin layer for this frequency in the body material approximately equals its thickness. In this case, heating across the thickness is guarantied.
In the embodiments of the invention discussed above, a microwave absorbent, having a greater microwave absorption than the body material at a selected microwave irradiation frequency, is applied along the required separating propagation path. This allows increasing the cutting speed and accuracy because higher absorption increases the heating rate.
Heating rate increases more if microwave irradiation frequency is selected such that the skin layer for this frequency in the absorbent approximately equals its thickness. The absorbent is selected from the group consisting of semi-metals, carbides, nitrides, oxides, sulfides, suicides, boron, carbon, graphite and metals.
Cutting speed increases also if selected heated area and its surrounds of the body of material are cooled during exposure to microwave, as well as, before and after exposure, because this increases compressive stresses. A stream of cold gas 7 (see Figure 2), for example, liquid nitrogen steam that blows on the body, can be used for said cooling because gases are transparent to microwave. The body can be cooled by placing it on a cooled metal support and/or by placing a cold correspondently shaped plate on the surface that is exposed to microwave. The material of said plate is transparent to microwave and is selected from the group consisting of oxide ceramics, nitride ceramics, quartz and diamond. Accuracy and cutting speed can be increased if the exposure to concentrated microwave radiation is conducted through a metal mask with an opening along the required propagation path.
It has been further found that maximal speed can be achieved by irradiating applied absorbent and/or irradiating through the mask, all at once.
Making a short scribing just at the edge on the glass surface makes the glass parting start more easily and more accurately, without losing the quality of cutting.
In the embodiments of the invention discussed above, an applied concentrated microwave radiation (microwave beam) 1 (see Figure 3) is elongated in the direction of the required separating propagation path 3. This allows increasing the cutting speed and accuracy because it creates higher compressive stresses, 6. The compressive stress increases also by moving the microwave beam during cutting along the separating propagation path from the beginning to the end and back at least two times. The beam power density and moving speed are selected sufficient to separate of the body material in the selected number of moves.
In the embodiments of the invention discussed above a microwave beam during the cutting of laminated glass moves at least two times along the separating propagation path from the beginning to the end and back. The beam power density during at least the first time, is selected sufficient to selectively eat polymer adhesive film to its delaminating temperature (around 80C-110C) along the separating propagation path before being followed by the step of separating of the glass body.
In the embodiments of the invention discussed above, cutting laminated glass is provided by an elongated microwave beam, in the direction of the required separating propagation path 3 (see Figure 4), with different power density in the beam at the front 8a and the back 8b. The beam length, power density at its front, and speed are selected to be sufficient to heat polymer adhesive film 9 to its delaminating temperature (around 80C-110C) before being followed by the step of separating of the glass body.
Concentrated microwave radiation with the necessary frequency and power density can be achieved using generators such as the gyrotron, klystron, traveling wave tube, and backward wave oscillator, and the like.
Accuracy and cutting speed can be increased if an additional heat source with a power distribution that is significantly sharper than in the applied concentrated microwave radiation follows or is applied simultaneously or before the body's exposure to microwave. In this case, this additional heat source creates a sharp maximum of thermal stress just on the propagation path that reduces the deviation of separating line along the propagation path. This allows also an increase in the cutting speed. The said additional source is selected from the group consisting of laser, gas torch, microwave, and other sources of concentrated energy. The main distinctions of the inventive method are high cutting speed, quality of cut, and range of thicknesses that can be cut, as well as, eliminating the need for secondary operations. Any kind of brittle material including those having low thermal expansion can be separated by the inventive method.
The present invention has been described in an illustrative manner. It is to be understood that the terminology that has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings. Therefore, within the scope of the appended claims, the present invention may be practiced other than as specifically described.

Claims

What is claimed is:
1. A method of separating a body of brittle non-metallic material by thermal shock comprising: exposing the body to concentrated microwave radiation of an effective frequency and sufficient power density to heat at least one selected area of the body at a required separating propagation path to a required temperature in a selected time whereby the selected power density, and exposure time are sufficient to ensure that the selected area is heated to said temperature which is higher than the rest of the body material temperature such that the difference in said temperatures is large enough to create a thermal stress through the thickness of the selected area that results in the separating of the body material.
2. The method in accordance with claim 1 wherein the microwave irradiation frequency is between about 10GHz to about 1000GHz.
3. The method in accordance with claim 1 wherein the preferable microwave irradiation frequency is selected such that the skin layer for this frequency in the body material is approximately equal to its thickness.
4. The method in accordance with claim 1 wherein the selected heated area and its surrounds of the body of material are cooled during, and optionally prior and after, exposure to microwave.
5. The method in accordance with claim 4 wherein cold gas is blown on and around the body.
6. The method in accordance with claim 4 wherein the body is placed on a cold metal.
7. The method in accordance with claim 4 wherein the microwave is exposed through a cold, and transparent to microwave, material that is lying upon the body's irradiated surface.
8. The method in accordance with claim 7 wherein the transparent material is selected from the group consisting of oxide ceramics, nitride ceramics, quartz and diamond.
9. The method in accordance with claims 1 wherein the exposure to microwave radiation is carried out through a metal mask with an opening along the required propagation path.
10. The method in accordance with claim 9 wherein the required propagation path is exposed to microwave all at once.
11. The method in accordance with claim 1 wherein a surface of the body is scribed at an edge area of the propagation path.
12. The method in accordance with claim 1 wherein the source of microwave radiation is selected from the group consisting of gyrotron, klystron, magnetron, traveling wave tube, and backward wave oscillator.
13. The method in accordance with claim 1 wherein a microwave absorbent having a greater microwave absorption than the body material at a selected microwave irradiation frequency is applied along the required separating propagation path.
14. The method in accordance with claim 13 wherein the microwave absorbent is selected from the group consisting of semi-metals, carbides, nitrides, oxides, sulfides, suicides, boron, carbon, graphite and metals.
15. The method in accordance with claim 13 wherein the microwave irradiation frequency is selected such that the skin layer for this frequency in the absorbent is approximately equal to its thickness.
16. The method in accordance with claim 13 wherein the entire applied absorbent is exposed to microwave all at once.
17. The method in accordance with claim 13 wherein the selected heated area and its surrounds of the body of material are cooled during, and optionally prior and after, exposure to microwave.
18. The method in accordance with claim 13, wherein the exposure to microwave radiation is carried out through a metal mask with an opening along the required propagation path.
19. The method in accordance with claim 13 wherein a surface of the body is scribed at an edge area of the propagation path.
20. The method in accordance with claim 13 wherein the source of microwave radiation is selected from the group consisting of gyrotron, klystron, magnetron, traveling wave tube, and backward wave oscillator.
21. The method in accordance with claim 1 wherein the applied concentrated microwave radiation is elongated in the direction of the required separating propagation path.
22. The method in accordance with claim 21 wherein the concentrated microwave radiation has a different power density at its front and back.
23. The method in accordance with claim 22 wherein the concentrated microwave radiation length, power density at its front, and speed are selected to be sufficient to heat adhesive film in a laminated glass body to delaminating temperature before being followed by the step of separating of the laminated glass body.
24. The method in accordance with claim 1 wherein the concentrated microwave radiation is moved at least two times along the separating propagation path from beginning to end and back.
25. The method in accordance with claim 24 wherein the brittle non-metallic material being separated is laminated glass having an intermediate adhered film and the concentrated microwave radiation power density during at least the first move is selected to be sufficient to selectively heat the polymer adhesive film along the separating propagation path to delaminating temperature before being followed by the step of separating the laminated glass body.
26. The method in accordance with claim 1 wherein an additional heat source with a power distribution that is sharper than the applied concentrated microwave radiation is applied to said at least one selected area at one of the times selected from the group consisting of following the application of the concentrated microwave radiation, simultaneously with the application of the concentrated microwave radiation, and before the application of the concentrated microwave radiation.
PCT/US2006/003394 2005-07-28 2006-01-30 A method of separating non-metallic material using microwave radiation WO2007018592A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/594,935 US20080236199A1 (en) 2005-07-28 2006-01-30 Method of Separating Non-Metallic Material Using Microwave Radiation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/US2005/026739 WO2006025994A2 (en) 2004-08-31 2005-07-28 A method of separating non-metallic material using microwave radiation
USPCT/US2005/026739 2005-07-28
USPCT/US2006/000742 2006-01-05
PCT/US2006/000742 WO2007018586A1 (en) 2005-07-28 2006-01-05 A method of separating non-metallic material using microwave radiation

Publications (1)

Publication Number Publication Date
WO2007018592A1 true WO2007018592A1 (en) 2007-02-15

Family

ID=37727624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/003394 WO2007018592A1 (en) 2005-07-28 2006-01-30 A method of separating non-metallic material using microwave radiation

Country Status (1)

Country Link
WO (1) WO2007018592A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3453097A (en) * 1964-10-19 1969-07-01 Gerhard Mensel Glasbearbeitung Method of working glass with absorbent by a laser beam
US3875766A (en) * 1973-12-20 1975-04-08 Fifth Res Method for the direct manufacture of discrete tempered glass sheets
US5609284A (en) * 1992-04-02 1997-03-11 Fonon Technology Limited Method of splitting non-metallic materials
US20040025539A1 (en) * 2000-09-27 2004-02-12 Erich Fischer Method and device for cutting glass tubes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3453097A (en) * 1964-10-19 1969-07-01 Gerhard Mensel Glasbearbeitung Method of working glass with absorbent by a laser beam
US3875766A (en) * 1973-12-20 1975-04-08 Fifth Res Method for the direct manufacture of discrete tempered glass sheets
US5609284A (en) * 1992-04-02 1997-03-11 Fonon Technology Limited Method of splitting non-metallic materials
US20040025539A1 (en) * 2000-09-27 2004-02-12 Erich Fischer Method and device for cutting glass tubes

Similar Documents

Publication Publication Date Title
US20090078370A1 (en) Method of separating non-metallic material using microwave radiation
US20080236199A1 (en) Method of Separating Non-Metallic Material Using Microwave Radiation
JP7313390B2 (en) Laser cutting and processing of display glass compositions
Nisar et al. Laser glass cutting techniques—A review
EP2507182B1 (en) Methods for laser scribing and separating glass substrates
US9533910B2 (en) Methods for laser cutting glass substrates
US10358374B2 (en) Methods for laser scribing and separating glass substrates
KR101358672B1 (en) Transparent material cutting method using ultrafast pulse laser and dicing apparatus for thereof
KR100302825B1 (en) Cutting method of brittle nonmetallic material
US8720228B2 (en) Methods of separating strengthened glass substrates
US6252197B1 (en) Method and apparatus for separating non-metallic substrates utilizing a supplemental mechanical force applicator
US8426767B2 (en) Methods for laser scribing and breaking thin glass
WO2015095088A1 (en) Laser cutting of display glass compositions
US20020170896A1 (en) Method and apparatus for cutting a non-metallic substrate using a laser beam
TW201043588A (en) Precision laser scoring
KR101258403B1 (en) Method for cutting tempered glass substrate
WO2010071128A1 (en) Splitting apparatus and cleavage method for brittle material
WO2007018586A1 (en) A method of separating non-metallic material using microwave radiation
WO2007018592A1 (en) A method of separating non-metallic material using microwave radiation
US20220259091A1 (en) Glass plate processing method, glass plate
JP2007261885A (en) Cleaving method of piled glass
CN114829311B (en) Method for manufacturing glass plate
Yamamoto et al. Influence of thermal expansion coefficient in laser scribing of glass
WO2017002656A1 (en) Glass plate cutting method, glass plate cutting device, and method for manufacturing cut glass plate
JP2008127224A (en) Method for fully cutting brittle material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10594935

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06719976

Country of ref document: EP

Kind code of ref document: A1