Nothing Special   »   [go: up one dir, main page]

WO2010071128A1 - Splitting apparatus and cleavage method for brittle material - Google Patents

Splitting apparatus and cleavage method for brittle material Download PDF

Info

Publication number
WO2010071128A1
WO2010071128A1 PCT/JP2009/070900 JP2009070900W WO2010071128A1 WO 2010071128 A1 WO2010071128 A1 WO 2010071128A1 JP 2009070900 W JP2009070900 W JP 2009070900W WO 2010071128 A1 WO2010071128 A1 WO 2010071128A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
beam irradiation
brittle material
laser
irradiation region
Prior art date
Application number
PCT/JP2009/070900
Other languages
French (fr)
Japanese (ja)
Inventor
人士 榎園
規夫 軽部
Original Assignee
株式会社レミ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レミ filed Critical 株式会社レミ
Priority to KR1020117016142A priority Critical patent/KR101404250B1/en
Priority to CN2009801489582A priority patent/CN102239034A/en
Priority to JP2010542973A priority patent/JP5562254B2/en
Publication of WO2010071128A1 publication Critical patent/WO2010071128A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/221Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/384Removing material by boring or cutting by boring of specially shaped holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/03Glass cutting tables; Apparatus for transporting or handling sheet glass during the cutting or breaking operations
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • C03B33/093Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam using two or more focussed radiation beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the present invention relates to a brittle material splitting apparatus and a splitting method for brittle material, particularly flat panel display glass for full-body splitting.
  • a brittle material splitting apparatus and a splitting method for brittle material, particularly flat panel display glass for full-body splitting.
  • glass will be described as an example of the brittle material, but the present invention can be applied to other brittle materials such as quartz, ceramics, and semiconductors in addition to glass.
  • a thermal stress scribing method (hereinafter abbreviated as laser scribing) using laser light irradiation has come to be used.
  • Laser scribing can eliminate defects inherent in the mechanical method, such as a decrease in glass strength due to the occurrence of microcracks, contamination due to the occurrence of cullet during cleaving, and the existence of a lower limit value of the applicable plate thickness.
  • the principle of laser scribing is as follows. Only glass is heated locally, and the laser beam is irradiated to such an extent that vaporization, melting and cracks do not occur. At this time, the glass heating section tries to expand thermally, but cannot sufficiently expand due to the reaction from the surrounding glass, and compressive stress is generated around the irradiation point. Even in the peripheral non-heated region, the peripheral portion is further distorted by the expansion from the heating portion, and as a result, compressive stress is generated. These compressive stresses are radial. By the way, when the object has a compressive stress, a tensile stress related to the Poisson's ratio is generated in the orthogonal direction. Here, the direction is a tangential direction. This is shown in FIG.
  • FIG. 9 shows changes in the radial stress component ⁇ x and the tangential stress component ⁇ y when there is a temperature increase in the Gaussian distribution centered at the origin.
  • the tensile stress is related to the cleaving.
  • the tensile stress exceeds the fracture toughness value that is a material specific value, fracture occurs everywhere and is uncontrollable.
  • the tensile stress is selected to be equal to or less than the fracture toughness value, so that no fracture occurs.
  • the crack can be extended by scanning the laser irradiation point.
  • FIG. 10A shows the principle of the laser cleaving method according to Patent Document 1.
  • the laser light CO 2 laser light is used, and 99% of the energy in the beam spot 1 of the CO 2 laser light is absorbed in the glass surface layer having a depth of 3.7 ⁇ m of the glass 2, over the entire thickness of the glass 2. Not transparent. This is due to the extremely large absorption coefficient of glass at the CO 2 laser wavelength.
  • the depth of the laser scribe is usually about 100 ⁇ m even if it is assisted by the heat conduction 4 in the glass 2.
  • Glass 2 is highly brittle and can be mechanically cleaved by applying stress in accordance with this scribe line. This process of breaking all by application of mechanical stress is called breaking. That is, when the laser scribing method is adopted, a subsequent process called “break” is indispensable for dividing the glass, and since the break process is necessary, the practicality is limited and the spread is not necessarily complete. There wasn't.
  • Patent Document 2 As another prior document relating to the laser scribing technique, in Patent Document 2, a laser beam is irradiated onto a glass substrate, and an elliptical laser spot LS1 that is elongated in the Y-axis direction along the scanning direction of the glass substrate; It is described that an elliptical laser spot LS2 that is elongated along the X-axis direction is formed at a predetermined distance away.
  • the object of the invention described in Patent Document 2 is not intended for full-body cleaving at all, and is intended only to perform stable laser scribing.
  • the transmitted light is cleaved with respect to the total thickness of the glass 2. 6 is generated, the glass 2 can be cleaved only in this step, and a break is not necessary. This cleaving is called full-body cleaving with a laser.
  • FIG. 11A consider a case where the glass plate 2 is cleaved with the widths W 1 and W 2 being large.
  • a tensile tension is generated on the glass plate 2 by the above-described principle due to heating by laser beam irradiation, and the glass plate 2 follows the scanning locus of the laser beam 5. It will be divided. In FIG. 11A, this deformation is exaggerated, and the actual movement of the glass after breaking is about several microns.
  • the scanning speed of the laser beam 5 is significantly reduced.
  • the tensile stresses F 0 and F 1 necessary for cleaving the glass plate 2 must overcome the resistance to deformation described above. This resistance acts on the area of the glass plate 2 and increases remarkably when the widths W 1 and W 2 of the glass plate 2 are large. Since the cleaving of the glass plate 2 must be performed against a large resistance, it is necessary to reduce the scanning speed of the laser beam 5 and relatively increase the amount of heating by the laser beam 5.
  • the scanning speed of the laser beam 5 has to be low, so the cleaving speed is naturally limited.
  • This tendency becomes more prominent as the distance between the position of the breaking line 7 and the end of the glass plate 2 is larger, that is, as the widths W 1 and W 2 of the broken glass plate 2 in FIG.
  • the widths W 1 and W 2 of the glass plate 2 after cleaving are a distance of 500 mm, full body cleaving cannot be performed unless the scanning speed of the laser light 5 is set to a remarkably low speed of about 10 mm / s. .
  • 11B shows that when the width W 3 is small, the resistance on the width W 3 side is small, so that it is greatly curved, and the fractured section after cleaving is curved in a bow shape. This tendency is remarkable when the widths W 1 and W 3 of the glass plate 2 after cleaving are imbalanced, particularly when one width W 3 is particularly small. Also in this case, as described above, the deformation of the workpiece is shown exaggerated more than the actual one of several microns.
  • the present invention solves these problems of the prior art. While realizing the high quality of thermal stress cleaving by laser, the cleaving speed is greatly increased, and the cleaved surface is curved with respect to the planned cleaving line. It is an object of the present invention to provide a brittle material splitting device and a splitting method that can split a full body in a straight line.
  • the brittle material splitting apparatus heats the brittle material along the planned fracture line from the side of the initial crack formed on the planned fracture line with respect to the planned fracture line assumed for the brittle material.
  • a brittle material splitting device that splits the brittle material by relatively moving a heating position along the planned cutting line, and irradiating the brittle material with a laser beam along the planned cutting line Laser beam irradiation means for generating a heated portion, and cooling means for locally cooling the brittle material at a position behind the heating portion with respect to the moving direction along the planned cutting line, and the laser beam irradiation.
  • the means includes a first beam irradiation unit that forms a first laser beam irradiation region positioned in front of the moving direction at the heating portion, and the transfer of the first laser beam irradiation region at the heating portion. Characterized in that it comprises a second beam irradiation unit for forming a second laser beam irradiation region elongated along the expected splitting line in the direction of the rear.
  • the laser power applied to the first laser beam irradiation region formed by the first beam irradiation unit is applied to the second laser beam irradiation region formed by the second beam irradiation unit. It is preferably greater than the laser power provided. According to this configuration, the thermal energy necessary for dividing the brittle material can be efficiently given to the brittle material.
  • the laser power density of the first laser beam irradiation region formed by the first beam irradiation unit may be the second laser beam irradiation formed by the second beam irradiation unit. It is preferably lower than the laser power density of the region. According to this configuration, it is possible to give thermal energy necessary for dividing the brittle material without melting the surface of the brittle material.
  • the position of the first laser beam irradiation region formed by the first beam irradiation unit may be a position away from the rear end of the second laser beam irradiation region.
  • a distance in a direction along the planned cutting line may be variable with respect to a cooling position formed by locally cooling by means. According to this configuration, the time-dependent state of thermal diffusion inside the brittle material can be changed.
  • the distance between the position of the first laser beam irradiation region and the cooling position may be set based on at least one of the cleaving speed and the thickness of the brittle material. According to this configuration, the time until the brittle material heated in the first laser beam irradiation region starts to cool and / or the time until the temperature conduction due to thermal diffusion reaches the back surface of the brittle material is adjusted and set. be able to.
  • the shape of the first laser beam irradiation region may be substantially circular. According to this configuration, the laser beam irradiated from the first beam irradiation unit can be used as it is or simply by changing the beam diameter.
  • the shape of the first laser beam irradiation region may be a shape obtained by dividing a substantially circular central portion with a predetermined width. According to this configuration, it is possible to improve the linearity of the fractured surface.
  • the first laser beam forming the first laser beam irradiation region may be generated by arranging a shield having a predetermined width in the center of the optical path of the laser beam from the first beam irradiation unit.
  • the shape of the irradiation region of the first laser beam can be made into a shape obtained by dividing the substantially circular central portion with a predetermined width by a very simple method.
  • the second laser beam forming the second laser beam irradiation region may be a diffractive optical element or a plano-convex cylindrical beam from the laser beam from the laser light source of the second beam irradiation unit. It may be generated by shaping through a lens. According to this configuration, the irradiation position shape of the second laser beam can be made non-circular by a very simple method.
  • the brittle material splitting device further includes initial crack forming means for forming an initial crack at an end portion of the fracture line of the brittle material, and the first beam irradiation unit and the second beam irradiation unit are provided with the first beam irradiation unit and the second beam irradiation unit, respectively. You may make it move along the said cutting planned line from the position of an initial crack. According to this configuration, the start of crack expansion for cleaving the brittle material can be performed with a low threshold.
  • the laser beam irradiation means distributes a laser power of 50% or more to the first beam irradiation unit, and a laser power of less than 50% to the second beam irradiation unit.
  • a beam splitter may be included. According to this configuration, one laser beam device is sufficient, and costs can be reduced.
  • the method for cleaving a brittle material comprises heating the brittle material along a planned fracture line, and relatively moving the brittle material and the heating position along the planned fracture line to cleave the brittle material.
  • a method for cleaving a brittle material wherein an initial crack is formed at an end portion of the brittle material on the planned fracture line, and the brittle material is heated with the first laser beam and the second laser beam starting from the initial crack.
  • the first laser beam is a beam positioned in front of the second laser beam in the movement direction along the planned cutting line, and the second laser beam is elongated along the planned cutting line.
  • the beam is shaped, and a position separated from the rear end of the second laser beam by a predetermined position is locally cooled.
  • first and second laser beams in the present invention for example, a CO 2 laser generally used for surface laser scribing can be used.
  • the thermal energy of the second laser beam is efficiently conducted in the thickness direction of the brittle material by heating the front of the cleaved position by the first laser beam.
  • a crack that reaches the back surface of the brittle material is generated immediately below the cooling position. Therefore, the brittle material is heated by the first and second laser beams and then cooled by moving the first beam irradiating unit, the second beam irradiating unit, and the cooling means relatively along the planned cutting position of the brittle material. Can be cut full body along the planned cutting position.
  • the full-body cleaving speed of the brittle material can be greatly increased as compared with the prior art while realizing the high quality of thermal stress cleaving by the laser. Moreover, since the brittle material can be separated over almost the entire length of the processing length only by the thermal stress due to the laser, the occurrence of cullet accompanying the breaking process can be greatly suppressed. Furthermore, the split section can be cut into a straight line without being bent with respect to the planned cutting line.
  • FIG. 1 is a conceptual diagram showing the positional relationship and temperature characteristics of a laser beam for explaining the principle of a brittle material cleaving method according to the present invention, where (a) shows the irradiation position of a first laser beam and the irradiation position of a second laser beam.
  • FIG. 2B is a conceptual plan view showing the positional relationship between the cooling positions and the cooling position.
  • FIG. 1B shows a temperature profile when heating by the first laser beam and the second laser beam in FIG.
  • FIG. 2C is a conceptual plan view for explaining a phenomenon caused by the positional deviation of the first laser beam and the second laser beam in FIG.
  • FIG. 3 is a conceptual cross-sectional view of a main part for explaining in detail the principle of the method for cleaving a brittle material according to the present invention, where (a) is a cross-sectional conceptual diagram, and (b) is a cross-sectional view taken along line AA ′ in FIG. FIG. It is a perspective view explaining the broken cross section of the glass substrate cut
  • FIG. 5 is a conceptual diagram showing the positional relationship and temperature characteristics of a laser beam in Embodiment 2 of the cleaving method for a brittle material according to the present invention, where (a) is the irradiation position of the first laser beam, the irradiation position of the second laser beam, and cooling.
  • FIG. 7B is a conceptual plan view showing the positional relationship between positions, and FIG. 7B is a diagram showing a temperature profile when heating by the first laser beam and the second laser beam in FIG. It is.
  • FIG. 6 is a characteristic diagram illustrating changes in radial stress component ⁇ x and tangential stress component ⁇ y when there is a temperature increase in a Gaussian distribution centered at the origin, for explaining the principle of thermal stress generation in the laser cleaving method. It is a conceptual perspective view explaining the conventional laser cleaving method of glass, (a) is a surface scribe, (b) is a schematic diagram in the case of full cut.
  • FIG. It is a conceptual perspective view explaining the size effect in the conventional laser cleaving method of glass, (a) shows the case where the cleaving width on both sides of the glass plate is large, (b) shows the case where the cleaving width on one side of the glass plate is small.
  • FIG. It is a figure which shows the processing experiment result of the full body cleaving which uses the non-alkali glass of thickness 0.7mmt.
  • FIG. 3 schematically shows a configuration of a glass substrate full-cut apparatus according to an embodiment of the present invention.
  • the glass substrate 11 is placed on a movable table 32, and the movable table 32 is moved in the XY plane by an XY driving device.
  • the servo motor 33 for driving the Y axis, which is the moving direction of the glass, and the shaft axis are shown, and the X axis driving system is not shown.
  • two laser oscillators for heating the glass that is, the CO 2 laser 21 and the CO 2 laser 25 are used.
  • the laser beam 22 emitted from the CO 2 laser 21 is reflected vertically downward by the reflecting mirror 23 and shaped so as to have a predetermined beam diameter through the condenser lens 24.
  • the beam that has passed through the condensing lens 24 is irradiated on the surface of the glass substrate 11 as it is, but in some cases, a beam shield 35 (see FIG. 6) as a beam attenuating unit is disposed on the beam transmission path. Accordingly, the shape of the beam is partially deformed. In any case, a first beam irradiation region by the first laser beam is formed on the glass substrate 11 by the laser beam 22.
  • the position at which the first beam irradiation region is formed on the glass substrate 11 is adjusted by changing the folding angle of the reflecting mirror 23.
  • the folding angle of the reflecting mirror 23 is set to be close to 90 °, but the first angle is set by shaking the same angle from about 80 ° to 110 ° and simultaneously aligning the position of the condenser lens 24.
  • the position of the beam irradiation area is adjusted.
  • the position of the first beam irradiation region can also be obtained by assembling one unit that fixes the relative position between the reflecting mirror 23 and the condenser lens 24 and moving the unit horizontally along the optical axis direction of the laser beam 22. Adjustment is possible.
  • a laser beam 26 emitted from the CO 2 laser 25 is reflected vertically downward by a reflecting mirror 28 via a beam expander 27.
  • the beam diameter is expanded by about four times to become a beam of ⁇ 16 mm.
  • the expanded beam passes through the diffractive optical element 29 and is shaped into an elongated beam, thereby forming a second beam irradiation region by the second laser beam on the glass substrate 11.
  • a cooling device 30 is installed behind the second beam irradiation area by the second laser beam.
  • a two-tube type cooling nozzle is used, and water is injected from the inner cylindrical tube and air is injected from the outer cylindrical tube.
  • a cooling point is formed on the glass substrate 11 by spraying the mixed medium of water and air toward the glass.
  • An initial crack forming device 31 is provided in front of the first laser beam.
  • the initial crack forming apparatus 31 includes a diamond cutter at a lower end portion, and has an elevating mechanism that moves the diamond cutter up and down. By interlocking the elevating mechanism and the servo motor 33 for driving the Y axis, an initial crack can be formed at the end of the glass substrate 11.
  • the energy distribution rate by the beam splitter is such that energy of 50% or more is distributed to the first laser beam side that irradiates the front side, and energy that is less than 50% is applied to the second laser beam side that irradiates the rear side. Should be distributed.
  • FIG. 1 (a) shows the mutual positional relationship between the irradiation position of the first laser beam, the irradiation position of the second laser beam, and the cooling position on the glass substrate surface for explaining the principle of the method of cleaving the brittle material according to the present invention.
  • FIG. 1B is a diagram showing a temperature profile when heating by the first laser beam and the second laser beam in FIG. 1A is superimposed on the surface of the glass substrate
  • FIG. FIG. 2C is a conceptual plan view for explaining a phenomenon caused by positional deviation of the first laser beam and the second laser beam in FIG.
  • FIG. 2 is a conceptual perspective view of the main part for explaining the principle of the brittle material cleaving method according to the present invention.
  • the basic principle of the method for cleaving a brittle material according to the present invention is that a first beam irradiation region 13 and a second beam irradiation are observed from the front of the cleaving along the planned cutting line 12 of the glass substrate 11.
  • the region 14 and the cooling point (or cooling position) 15 are arranged in order.
  • the first beam irradiation region 13 is generated by reflecting the laser beam 22 from the CO 2 laser 21 in a predetermined direction by the reflecting mirror 23 and adjusting the laser beam 22 to a predetermined beam diameter through the condenser lens 24.
  • the cross-sectional shape is a circle or an ellipse, and these are collectively referred to as a substantially circle throughout the specification and claims.
  • the first beam irradiation region 13 is a laser beam having such an intensity that only the glass substrate 11 is locally heated and no melting or cracking occurs.
  • the second beam irradiation region 14 is located behind the first beam irradiation region 13, and the cross-sectional shape thereof is shaped into an elongated shape in the direction along the planned cutting line 12 of the glass substrate 11. That is, in the second beam irradiation region 14, as shown in FIG. 1A, the length a in the direction along the planned cutting line 12 of the glass substrate 11 is longer than the length b in the width direction, which is the perpendicular direction. It is a circular beam.
  • the ratio a / b of the length a in the length direction along the planned cutting line 12 to the length b in the width direction of the elongated non-circular beam is preferably about 26 to 30.
  • Such an elongate non-circular beam is obtained by spreading the laser beam 26 from the CO 2 laser 25 to a diameter of a predetermined magnification by the beam expander 27 and reflecting the laser beam 26 in a predetermined direction by the reflecting mirror 28, and thereafter, It is generated by passing through a beam shaping means 29 such as a convex cylindrical lens and shaping it.
  • the second beam irradiation region 14 is also a laser beam having such an intensity that only heating locally occurs on the glass substrate 11 and melting and cracks do not occur.
  • the initial crack 16 is formed by the initial crack forming device 31 at the end of the planned cutting line 12 of the glass substrate 11. This initial crack 16 is the starting position for cleaving the glass substrate 11.
  • the glass substrate 11 placed on the table 32 is moved in the Y direction by the Y-axis drive servomotor 33, and the direction of the initial crack 16 corresponding to the starting position of the planned cutting line 12 of the glass substrate 11.
  • the direction of the first beam irradiation region 13, the second beam irradiation region 14, and the cooling point 15 is arranged in a straight line. It can be moved to match. At this time, as shown in FIG.
  • the center position of the first beam irradiation region 13 and the center position of the second beam irradiation region 14 with respect to the planned cutting line 12 of the glass substrate 11 are minute values ⁇ d. Since the surface quality of the divided glass cross section may be deteriorated if it is shifted by only a distance, the center position of the first beam irradiation region 13 and the center position of the second beam irradiation region 14 are not shifted from the planned cutting line 12. It is necessary to adjust the position accurately.
  • the basic principle of the method for cleaving a brittle material according to the present invention is that a first beam irradiation region 13 and a second beam irradiation are observed from the front of the cleaving along the planned cutting line 12 of the glass substrate 11. It is arranging the area
  • the first beam irradiation region 13 preheats the forefront part of the cleaving of the glass substrate 11 and heats the position by the subsequent second beam irradiation region 14 to a state immediately before the cleaving starts.
  • FIG. 1B is a temperature profile on the surface of the glass substrate 11 at this time.
  • the temperature profile 141 by the second beam irradiation region 14 is superimposed on the temperature profile 131 by the first beam irradiation region 13, and the position irradiated with the second beam irradiation region 14 on the surface of the glass substrate 11 is a high temperature just before the start of cleaving. To be heated. The heat due to this heating is conducted in the thickness direction of the glass substrate 11.
  • FIG. 4 is a conceptual cross-sectional view of the main part for explaining in detail the principle of the method of cleaving the brittle material according to the present invention in FIG. 2,
  • (a) is a cross-sectional conceptual diagram
  • (b) is a cross-sectional conceptual diagram of FIG. It is AA 'line sectional drawing.
  • the glass substrate 11 is first heated in the first beam irradiation region 13, and the heating is performed.
  • the heat due to the heat is conducted in the direction of the back surface of the glass substrate 11 to form a heating region 130 in the glass substrate 11.
  • the glass substrate 11 is heated in the second beam irradiation region 14, and the heat due to the heating is conducted in the back surface direction of the glass substrate 11 as scanning in the Y direction, and a heating region 140 is formed in the glass substrate 11.
  • the cooling by the cooling point 15 in the rear part of the second beam irradiation region 14 is conducted in the rear surface direction of the glass substrate 11 as the glass substrate 11 is scanned in the Y direction, so that a cooling region 150 is formed in the glass substrate 11. .
  • the heat distribution of the glass substrate 11 immediately below the cooling point 15 is as shown in FIG. 4B, and the glass substrate 11 continues to the heating region 130 heated to the vicinity of the back surface by the first beam irradiation region 13 and subsequent to it. Cooling by the cooling point 15 acts on the heating region 140 heated by the second beam irradiation region 14, and a crack advances in the depth direction of the glass substrate 11 immediately below the cooling point, and on the back surface of the glass substrate 11. To reach the entire thickness direction. This phenomenon proceeds along the planned cutting line 12 of the glass substrate 11 as the glass substrate 11 is scanned in the Y direction, and the cutting that reaches the back surface of the glass substrate 11 proceeds along the planned cutting line 12.
  • FIG. 8 is a graph showing the temperature distribution with respect to the thickness direction of the glass.
  • heat is simply propagated at a constant linear function from the front to the back of the glass. Explained as if to do.
  • the heat propagation inside the glass is actually to be calculated based on the thermal diffusion equation, one example of the result of applying the equation to the non-alkali glass is illustrated.
  • the graph of FIG. 8 shows the temperature distribution in the thickness direction when assuming that a uniform heat distribution of 20 J / cm 2 is applied to one side of an infinitely large non-alkali glass having a thickness of 0.7 mm. Is calculated, and the result is graphed.
  • the horizontal axis of the graph shows the depth of heat propagation, that is, the thickness (mm) of the glass, and the vertical axis shows the temperature rise, that is, how much the temperature of the glass rises from the initial state.
  • the reason why a plurality of curves are shown in the graph is that the graphs are displayed in an overlapping manner by changing the state using the elapsed time after the initial heating as a parameter.
  • the heated glass surface instantaneously exceeds 400 ° C., but then the surface temperature of the glass rapidly decreases. At the same time as the temperature of the heating surface decreases, heat from the surface is transmitted to the back surface without heating, so that the temperature rises and slightly exceeds 100 ° C.
  • the parameters of the elapsed time are calculated by sampling 10 samples from the time up to 1.0 second.
  • T1 30 msec
  • T2 40 msec
  • T3 50 msec
  • T4 75 msec
  • T5 100 msec
  • T6 200 msec
  • T7 300 msec
  • T8 400 msec
  • T9 700 msec
  • T10 1000 msec.
  • an energy source for full-body cleaving by propagation of thermal energy supplied by the first laser beam irradiated forward in the traveling direction to the back surface of the glass It is characterized by being used as In order to perform such full body cleaving, it is necessary that the thermal energy absorbed on the glass surface is diffused evenly in the glass to some extent. Then, how much distance L is provided between the cooling point and the irradiation region of the first laser beam along the planned cutting line is one important item.
  • the distance L between the cooling point and the irradiation region of the first laser beam needs to be at least 36 mm, preferably 54 mm or more.
  • how much distance L should be provided between the cooling point and the irradiation region of the first laser beam depends on the moving speed of the glass and the thickness of the glass. More specifically, it also relates to a physical constant related to the thermal diffusion rate inside the glass, that is, the thermal conductivity, specific heat, and density of the glass. It is also related to the boundary conditions on the back side of the glass. In other words, it is also affected by whether the back surface of the glass is fixed by means that comes into close contact with the metal table or by means that floats in the air.
  • the crack expanded from the initial crack 16 immediately below the cooling point essentially proceeds in the depth direction of the glass substrate 11, so that an imbalance occurs in the tensile stress acting in the creeping direction of the glass substrate 11.
  • the split section 17 is not curved with respect to the planned cutting line 12. Further, the cracked surface 17 formed by causing the crack to advance only by the thermal stress caused by the laser does not generate microcracks, and the mechanical strength of the divided glass substrate 11 is high.
  • the split 17 stops. At this time, as shown in FIG. 5, a region 18 in which the fractured surface 17 does not occur remains at the end of the glass substrate 15. In this region 18, the split section 17 does not occur, but a scribe groove 19 is formed on the surface. Therefore, if necessary, the glass can be completely divided by using a simple break means. In this case, since the glass substrate 11 has already been cleaved full body over almost the entire processing length, the occurrence of cullet associated with the breaking process can be greatly suppressed.
  • the laser beam 22 from the CO 2 laser 21 with an output of 165 W was reflected vertically downward by the reflecting mirror 23 and condensed through the condenser lens 24.
  • a circular beam irradiation region close to a Gaussian distribution with a beam diameter of 15 mm is formed on the glass substrate 11.
  • a laser beam 26 having an output of 98 W and a beam diameter of 4 mm from the CO2 laser 25 was used as the second beam irradiation region 14.
  • the laser beam 26 is expanded to a beam diameter of 16 mm via a beam expander 27 and further transmitted vertically downward by a reflecting mirror 28.
  • an elongated beam having a length a of 26 mm and a width b of 1 mm is formed on the glass substrate 11.
  • the thermal energy given to the first beam irradiation region 13 is set to be larger than the thermal energy given to the second beam irradiation region 14 even if the loss of beam transmission is taken into consideration on the glass substrate 11.
  • the laser power density of the first laser irradiation region 13 is 0.93 W / mm 2
  • the laser power density of the second laser irradiation region 13 is 3.77 W / mm 2 . That is, the laser power density of the first beam irradiation region 13 is set lower than the laser power density of the second laser irradiation region 13.
  • a non-alkali glass having a thickness of 0.7 mm and a total length of 580 mm was used.
  • the cooling device a two-tube type cooling nozzle was used, and water was injected from the inner cylindrical tube and air was injected from the outer cylindrical tube.
  • the distance between the rear end of the second beam irradiation region 14 and the cooling point 15 was set to 5 mm. Processing was performed at a relative movement distance between the glass substrate 11 and the first beam irradiation region 13, the second beam irradiation region 14, and the row of the cooling points 15, that is, the glass cutting processing speed was 180 mm / s.
  • FIG. 6 is a conceptual diagram showing a brittle material cleaving apparatus in Example 2.
  • FIG. 7 shows a beam profile for heating. This beam profile is obtained by shielding the central portion of the output beam from the condenser lens 24 in the first beam irradiation region 13 with a beam shield 35 having a predetermined width in the glass cutting apparatus shown in FIG. It is. For example, a metal rod having a diameter of 2 mm is disposed on the beam path through which the beam is transmitted. Then, since a part of the first laser beam is shielded by the metal rod, a so-called shadow part is projected on the glass substrate, and the part is not heated.
  • the shape of the first beam irradiation region 130 is a shape obtained by dividing a substantially circular central portion with a predetermined width w as shown in FIG.
  • the blocking portion 133 having a predetermined width w in the first beam irradiation region 130 is set to be slightly larger than the beam width e of the second beam irradiation region 14, the first beam irradiation region 130 is formed on the glass surface. There is no portion where the heating region and the heating region by the second laser beam overlap. Accordingly, the temperature profile on the glass substrate surface by the first beam irradiation region 13 and the second beam irradiation region 14 is as shown in FIG. 7B, and the thermal energy 141 used for heating the cleavage line and the cleavage The thermal energy 131 for heating the portions on both sides of the planned line can be separated.
  • Example 2 The cleaving process in Example 2 was essentially the same as in Example 1, and full-body cleaving was possible as in Example 1.
  • the thermal energy for heating the planned cutting line is the thermal energy obtained by superimposing the laser beam irradiated by the first laser beam on the planned cutting line and the second beam irradiation region 14. Supplied.
  • the thermal energy for heating the planned cutting line is supplied only by the first laser beam 14, the setting of the laser power to be irradiated becomes easy. As a result, there is an advantage that the linearity accuracy is improved, and full body cleaving can be performed with an accuracy within ⁇ 100 ⁇ m over a total length of 540 mm.
  • FIG. 12 summarizes the results of whether or not full-body cleaving is achieved when a glass cleaving experiment is performed in the configuration of the processing apparatus shown in FIG.
  • the glass used is a non-alkali glass with a thickness of 0.7 mm.
  • a processing procedure a method was adopted in which a glass having an outer width of 550 mm and a processing direction length of 290 mm was cut into strips from one end face at a constant interval (30 mm).
  • the laser power P1 is smaller than the laser power P2, it is not preferable that full-body cleaving is not achieved, the length of the glass end portion is increased, or the surface quality of the cleaved surface is deteriorated. Machining results were obtained (see machining conditions # 3, # 4, and # 8). In particular, in order to achieve a high processing speed (for example, 200 mm / s or more), it has been found effective to set the laser power P1 far larger than the laser power P2 (processing conditions # 9, # 10). , # 11). Further, when the processing speed V was set to 230 mm / s, the distance L between the cooling position and the first beam irradiation region was set to 95 mm.
  • the brittle material splitting apparatus and cleaving method according to the present invention can be used for cleaving glass used in flat panel displays such as liquid crystal displays and plasma displays, and cleaving various brittle materials such as quartz, ceramics, and semiconductors. If the brittle material splitting apparatus and cutting method according to the present invention are introduced into the manufacturing process of flat panel displays and the like, a great effect can be expected in improving processing speed, processing quality, economy, etc., and overcoming the weaknesses of the prior art. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Liquid Crystal (AREA)
  • Laser Beam Processing (AREA)

Abstract

Provided is a splitting apparatus for a brittle material wherein a highly versatile CO2 laser source is used as a laser source, a cleavage rate is widely increased, and full body cleavage in a straight line is possible so that a cleavage surface does not curve with respect to a planned cleavage line.  A row of a first beam radiation region (13), a second beam radiation region (14), and a cooling point (15) is relatively moved along a planned cleavage line (12) on a glass substrate (11).  The first beam radiation region (13) is located forward with respect to the second radiation region (14) in the cleavage direction, the second beam irradiation region (14) is an elongated beam along the planned cleavage line, and the cooling point (15) is located at a position away from the rear end of the second beam radiation region (14) by a predetermined distance.

Description

脆性材料の分割装置および割断方法Brittle material splitting apparatus and splitting method
 本発明は脆性材料、特にフラットパネルディスプレイ用ガラスをフルボディ割断する脆性材料の分割装置および割断方法に関する。以下、脆性材料としてガラスを例に説明するが、本発明はガラスの他にも石英、セラミック、半導体などの脆性材料一般に適用が可能である。 The present invention relates to a brittle material splitting apparatus and a splitting method for brittle material, particularly flat panel display glass for full-body splitting. Hereinafter, glass will be described as an example of the brittle material, but the present invention can be applied to other brittle materials such as quartz, ceramics, and semiconductors in addition to glass.
 最近ガラス割断において、過去1世紀にわたって使用されてきたダイアモンドチップによる機械的方法に代わって、レーザ光照射による熱応力スクライブ方法(以下レーザスクライブと略記する)が使用されるようになってきた。 Recently, instead of the mechanical method using a diamond chip that has been used for the past century in the cleaving of glass, a thermal stress scribing method (hereinafter abbreviated as laser scribing) using laser light irradiation has come to be used.
 レーザスクライブによれば、機械的方法に固有の欠点、すなわちマイクロクラック発生によるガラス強度の低下、割断時のカレット発生による汚染、適用板厚の下限値の存在などが一掃できる。 Laser scribing can eliminate defects inherent in the mechanical method, such as a decrease in glass strength due to the occurrence of microcracks, contamination due to the occurrence of cullet during cleaving, and the existence of a lower limit value of the applicable plate thickness.
 レーザスクライブの原理は次の通りである。ガラスに局所的に加熱だけが発生し、気化、溶融やクラックが発生しない程度のレーザ光照射を行なう。この時ガラス加熱部は熱膨張しようとするが周辺ガラスからの反作用にあい十分な膨張ができず、照射点を中心として圧縮応力が発生する。周辺の非加熱領域でも、加熱部からの膨張に押されてさらに周辺に対して歪みが発生し、その結果圧縮応力が発生する。こうした圧縮応力は半径方向のものである。ところで物体に圧縮応力がある場合には、その直交方向にはポアソン比が関係した引っ張り応力が発生する。ここでは、その方向は接線方向である。この様子を図9に示す。 The principle of laser scribing is as follows. Only glass is heated locally, and the laser beam is irradiated to such an extent that vaporization, melting and cracks do not occur. At this time, the glass heating section tries to expand thermally, but cannot sufficiently expand due to the reaction from the surrounding glass, and compressive stress is generated around the irradiation point. Even in the peripheral non-heated region, the peripheral portion is further distorted by the expansion from the heating portion, and as a result, compressive stress is generated. These compressive stresses are radial. By the way, when the object has a compressive stress, a tensile stress related to the Poisson's ratio is generated in the orthogonal direction. Here, the direction is a tangential direction. This is shown in FIG.
 図9は、原点に中心をおくガウシアン分布の温度上昇がある場合の、半径方向応力成分σxと接線方向応力成分σyの変化を示したものである。半径方向応力成分σxは終始圧縮応力(図9では負値)であるが、接線方向応力成分σyは加熱中心(距離r=0)では圧縮応力であるが、加熱中心から離れると引っ張り応力(図9で正値)に変化する。 FIG. 9 shows changes in the radial stress component σ x and the tangential stress component σ y when there is a temperature increase in the Gaussian distribution centered at the origin. The radial stress component σ x is a compressive stress from the beginning (negative value in FIG. 9), while the tangential stress component σ y is a compressive stress at the heating center (distance r = 0), but tensile stress when it is away from the heating center. It changes to (positive value in FIG. 9).
 これらの応力のうち、割断に関係するのは引っ張り応力である。引っ張り応力が材料固有値である破壊靱性値を超える時には、破壊が随所に発生し制御不能である。レーザ割断方法の場合には、引張り応力をこの破壊靱性値以下に選定しておくので破壊は発生しない。 Of these stresses, the tensile stress is related to the cleaving. When the tensile stress exceeds the fracture toughness value that is a material specific value, fracture occurs everywhere and is uncontrollable. In the case of the laser cleaving method, the tensile stress is selected to be equal to or less than the fracture toughness value, so that no fracture occurs.
 ところが、引張り応力存在位置に亀裂がある場合にはこの亀裂先端では応力拡大が発生し、この応力による応力拡大係数が材料の破壊靱性値を超えると亀裂が拡大する。すなわち、制御された割断が生じることになる。したがって、レーザ照射点を走査することで、亀裂を延長させていくことができる。 However, if there is a crack at the location where the tensile stress is present, stress expansion occurs at the tip of the crack, and the crack expands when the stress intensity factor due to this stress exceeds the fracture toughness value of the material. That is, controlled cleaving occurs. Therefore, the crack can be extended by scanning the laser irradiation point.
 このガラスのレーザスクライブ方法はコンドラテンコ氏によって初めて開発され、特許文献1の日本特許が成立している。図10(a)に特許文献1によるレーザ割断方法の原理を示す。レーザ光としてはCO2レーザ光が使用され、CO2レーザ光のビームスポット1におけるエネルギーの99%は、ガラス2の深さ3.7μmのガラス表面層において吸収され、ガラス2の全厚さにわたって透過しない。これは、CO2レーザ波長におけるガラスの吸収係数が著しく大きいことによる。レーザスクライブによる深さはガラス2中の熱伝導4によって助けられても、通常100μm程度である。 This glass laser scribing method was first developed by Mr. Kondratenko, and the Japanese Patent of Patent Document 1 was established. FIG. 10A shows the principle of the laser cleaving method according to Patent Document 1. As the laser light, CO 2 laser light is used, and 99% of the energy in the beam spot 1 of the CO 2 laser light is absorbed in the glass surface layer having a depth of 3.7 μm of the glass 2, over the entire thickness of the glass 2. Not transparent. This is due to the extremely large absorption coefficient of glass at the CO 2 laser wavelength. The depth of the laser scribe is usually about 100 μm even if it is assisted by the heat conduction 4 in the glass 2.
 ガラス2は脆性が強く、このスクライブ線にあわせて応力を印加することで機械的に割断することができる。この機械的応力の印加によって全割断するプロセスをブレイクと称する。すなわち、レーザスクライブ法を採用する場合には、ガラスを分断するためにブレイクという後行程が必要不可欠となっており、ブレイク工程が必要であるために実用性が限られて、必ずしも普及が完全ではなかった。 Glass 2 is highly brittle and can be mechanically cleaved by applying stress in accordance with this scribe line. This process of breaking all by application of mechanical stress is called breaking. That is, when the laser scribing method is adopted, a subsequent process called “break” is indispensable for dividing the glass, and since the break process is necessary, the practicality is limited and the spread is not necessarily complete. There wasn't.
 レーザビームを用いてガラスを完全に分断するという要望から考えると、レーザスクライブにはブレイクという後工程が付加されるので、必ずしもレーザスクライブだけで十分というわけではない。そこで必要とされ期待されているのがレーザビームを用いたフルボディ割断の技術である。しかし、特許文献1においては、フルボディ割断には後述するようないくつかの欠点があるのでレーザスクライブ技術の方が優れているとの主張がなされており、フルボディ割断の実効性に否定的な立場を示している。 Considering the desire to completely sever the glass using a laser beam, laser scribing is not necessarily sufficient because laser scribing adds a post-process called break. Therefore, a full-body cleaving technique using a laser beam is needed and expected. However, in Patent Document 1, it is claimed that the laser scribing technique is superior because full-body cleaving has some drawbacks as described later, and the effectiveness of full-body cleaving is negative. Shows a strong position.
 レーザスクライブの技術に関する他の先行文献として、特許文献2においては、レーザビームをガラス基板上に照射し、ガラス基板の走査方向に沿ってY軸方向に長くなった楕円形状のレーザスポットLS1と、X軸方向に沿って長くなった楕円形状のレーザスポットLS2とを、予め設定された所定の距離だけ離れて形成することが記されている。しかし、特許文献2に記載の発明の目的もフルボディ割断を目的としたものでは全くなく、あくまでも安定したレーザスクライブを行うことを目的としている。 As another prior document relating to the laser scribing technique, in Patent Document 2, a laser beam is irradiated onto a glass substrate, and an elliptical laser spot LS1 that is elongated in the Y-axis direction along the scanning direction of the glass substrate; It is described that an elliptical laser spot LS2 that is elongated along the X-axis direction is formed at a predetermined distance away. However, the object of the invention described in Patent Document 2 is not intended for full-body cleaving at all, and is intended only to perform stable laser scribing.
 これに対して、図10(b)に示すようなガラス2に透過していきその一部が吸収されるようなレーザ光5を照射すると、透過光がガラス2の全板厚に対して割断6を発生させるので、ガラス2はこの工程のみで割断ができてブレイクが不要になる。この割断を、レーザによるフルボディ割断と称する。 On the other hand, when the laser beam 5 that is transmitted through the glass 2 as shown in FIG. 10B and is partially absorbed is irradiated, the transmitted light is cleaved with respect to the total thickness of the glass 2. 6 is generated, the glass 2 can be cleaved only in this step, and a break is not necessary. This cleaving is called full-body cleaving with a laser.
 フルボディ割断の採用により、前記したレーザ割断方法の有する技術特徴に加えて、ブレイクが不要になる、自由曲線割断が可能になるなどのフルボディ割断特有のメリットが生じ、フラットパネル製造工程において大きな改善ができるようになる。本願出願人は、このフルボディ割断技術に対して特許文献3,4等の提案をしている。 In addition to the technical features of the laser cleaving method described above, the adoption of full body cleaving has the benefits of full body cleaving, such as eliminating the need for breaks and enabling free-curve cleaving. You will be able to improve. The applicant of the present application has proposed Patent Documents 3 and 4 for this full-body cleaving technique.
特許第3027768号公報Japanese Patent No. 3027768 国際公開第03/008168号パンフレットInternational Publication No. 03/008168 Pamphlet 特開2007-76077号公報JP 2007-76077 A 特開2007-261885号公報Japanese Patent Application Laid-Open No. 2007-261885
 特許文献1による割断はフルボディ割断でないのでブレイク工程が必要であり実用性が限られていることは前述したとおりである。特許文献3,4に提案されているレーザによるフルボディ割断技術において、レーザ光源として汎用性の高いCO2レーザ光を用いた場合は、ガラスの表面で大部分が吸収されてしまうのでそのまま適用することはできない。また、フルボディ割断技術には特許文献1で指摘されているように、いわゆるサイズ効果により割断位置がワーク端部から離れていると割断速度が著しく低下し、割断位置がガラスの端部に近いと割断面が曲がるという欠点がある。このサイズ効果による欠点を図11により説明する。 Since the cleaving according to Patent Document 1 is not a full-body cleaving, the breaking process is necessary and the practicality is limited as described above. In the full-body cleaving technique using laser proposed in Patent Documents 3 and 4, when a highly versatile CO 2 laser beam is used as a laser light source, most of it is absorbed on the surface of the glass, so that it is applied as it is. It is not possible. In addition, as pointed out in Patent Document 1 in the full-body cleaving technique, when the cleaving position is separated from the workpiece end due to the so-called size effect, the cleaving speed is remarkably reduced, and the cleaving position is close to the end of the glass. There is a disadvantage that the split section is bent. The disadvantage due to the size effect will be described with reference to FIG.
 まずガラスのフルボディ割断の第1の欠点である低速性について説明する。図11(a)において、ガラス板2を幅W1およびW2が大きい状態で割断する場合を考える。割断線7に沿って割断方向3にレーザ光5を走査すると、ガラス板2にはレーザ光照射による加熱によって前記した原理により引張り張力が発生し、ガラス板2はレーザ光5の走査軌跡に沿って割断されていく。図11(a)ではこの変形を誇張して示しており、割断後のガラスの実際の移動は数ミクロン程度である。 First, the low speed property, which is the first drawback of full body breaking of glass, will be described. In FIG. 11A, consider a case where the glass plate 2 is cleaved with the widths W 1 and W 2 being large. When the laser beam 5 is scanned along the cleaving line 7 in the cleaving direction 3, a tensile tension is generated on the glass plate 2 by the above-described principle due to heating by laser beam irradiation, and the glass plate 2 follows the scanning locus of the laser beam 5. It will be divided. In FIG. 11A, this deformation is exaggerated, and the actual movement of the glass after breaking is about several microns.
 このとき、割断線7の両側におけるガラス板2の幅W1およびW2が大きいと、レーザ光5の走査速度が著しく低下してしまう。まずガラス板2を割断させるために必要な引張り応力F0およびF1は上記した変形に対する抵抗力に打ち勝たねばならない。この抵抗力はガラス板2の面積で作用し、ガラス板2の幅W1およびW2が大きい場合には著しく増大する。ガラス板2の割断は大きな抵抗力に抗して行わなければならないので、レーザ光5の走査速度を小さくしてレーザ光5による加熱量を相対的に大きくする必要があるのである。 At this time, if the widths W 1 and W 2 of the glass plate 2 on both sides of the breaking line 7 are large, the scanning speed of the laser beam 5 is significantly reduced. First, the tensile stresses F 0 and F 1 necessary for cleaving the glass plate 2 must overcome the resistance to deformation described above. This resistance acts on the area of the glass plate 2 and increases remarkably when the widths W 1 and W 2 of the glass plate 2 are large. Since the cleaving of the glass plate 2 must be performed against a large resistance, it is necessary to reduce the scanning speed of the laser beam 5 and relatively increase the amount of heating by the laser beam 5.
 この結果、レーザ光5の走査速度は低速にせざるを得ないので、割断速度にはおのずと限界がある。この傾向は割断線7の位置とガラス板2の端部との距離が大きいほど、すなわち、図11(a)における割断後のガラス板2の幅W1およびW2が大きいほど顕著である。たとえば、割断後のガラス板2の幅W1およびW2が500mmの距離である場合には、レーザ光5の走査速度を10mm/s程度と著しく小さい速度にしないとフルボディ割断することはできない。 As a result, the scanning speed of the laser beam 5 has to be low, so the cleaving speed is naturally limited. This tendency becomes more prominent as the distance between the position of the breaking line 7 and the end of the glass plate 2 is larger, that is, as the widths W 1 and W 2 of the broken glass plate 2 in FIG. For example, when the widths W 1 and W 2 of the glass plate 2 after cleaving are a distance of 500 mm, full body cleaving cannot be performed unless the scanning speed of the laser light 5 is set to a remarkably low speed of about 10 mm / s. .
 次に、脆性材料のフルボディ割断のもうひとつの欠点である脆性材料の割断面が割断予定位置に対して湾曲する事実について説明する。図11(a)で説明したように、割断線7に沿って割断方向3にレーザ光5を走査したときの割断はガラス板2に作用する引張り応力F0およびF1により沿面方向に行われる。その際に両側に対する上記した抵抗力に不均衡がある場合には割断面が割断予定線に対して湾曲しようとする力が働く。この様子を図11(b)に示す。図11(b)において、幅W3が小さい場合に、幅W3側の抵抗力が小さいので大きく湾曲し、割断後の割断面が弓状に反って湾曲してしまうことを示している。この傾向は割断後のガラス板2の幅W1およびW3が不均衡、特に一方の幅W3が特に小さい場合に著しい。この場合にも前記したように、ワークの変形は実際の数ミクロン程度のものより著しく誇張して示されている。 Next, the fact that the fractured surface of the brittle material is curved with respect to the planned fracture position, which is another drawback of full body cleavage of the brittle material, will be described. As described with reference to FIG. 11A, the cleaving when the laser beam 5 is scanned along the cleaving line 7 in the cleaving direction 3 is performed in the creeping direction by the tensile stresses F 0 and F 1 acting on the glass plate 2. . At that time, when there is an imbalance in the above-described resistance force on both sides, a force is exerted on the split section to bend with respect to the planned cutting line. This is shown in FIG. FIG. 11B shows that when the width W 3 is small, the resistance on the width W 3 side is small, so that it is greatly curved, and the fractured section after cleaving is curved in a bow shape. This tendency is remarkable when the widths W 1 and W 3 of the glass plate 2 after cleaving are imbalanced, particularly when one width W 3 is particularly small. Also in this case, as described above, the deformation of the workpiece is shown exaggerated more than the actual one of several microns.
 本発明はこれらの従来技術の課題を解決するもので、レーザによる熱応力割断の有する高品質を実現しながら、割断速度を大幅に増加させるとともに、割断面が割断予定線に対して湾曲することがなく真直線状にフルボディ割断させることができる脆性材料の分割装置および割断方法を提供することを目的とするものである。 The present invention solves these problems of the prior art. While realizing the high quality of thermal stress cleaving by laser, the cleaving speed is greatly increased, and the cleaved surface is curved with respect to the planned cleaving line. It is an object of the present invention to provide a brittle material splitting device and a splitting method that can split a full body in a straight line.
 本発明に係る脆性材料の分割装置は、脆性材料に想定された割断予定線に対して、その割断予定線上に形成された初亀裂の側から前記割断予定線に沿って前記脆性材料を加熱し、前記割断予定線に沿って加熱する位置を相対的に移動させることで前記脆性材料を分割する脆性材料の分割装置であって、前記割断予定線に沿って、前記脆性材料にレーザビームを照射して加熱部分を生成するレーザビーム照射手段と、前記割断予定線に沿った移動方向に関し前記加熱部分の後方の位置で前記脆性材料を局所的に冷却する冷却手段とを備え、前記レーザビーム照射手段は、前記加熱部分にて、前記移動方向の前方に位置する第1レーザビーム照射領域を形成する第1ビーム照射部と、前記加熱部分にて、前記第1レーザビーム照射領域の前記移動方向の後方において前記割断予定線に沿って細長い形状の第2レーザビーム照射領域を形成する第2ビーム照射部とを含むことを特徴とする。 The brittle material splitting apparatus according to the present invention heats the brittle material along the planned fracture line from the side of the initial crack formed on the planned fracture line with respect to the planned fracture line assumed for the brittle material. A brittle material splitting device that splits the brittle material by relatively moving a heating position along the planned cutting line, and irradiating the brittle material with a laser beam along the planned cutting line Laser beam irradiation means for generating a heated portion, and cooling means for locally cooling the brittle material at a position behind the heating portion with respect to the moving direction along the planned cutting line, and the laser beam irradiation. The means includes a first beam irradiation unit that forms a first laser beam irradiation region positioned in front of the moving direction at the heating portion, and the transfer of the first laser beam irradiation region at the heating portion. Characterized in that it comprises a second beam irradiation unit for forming a second laser beam irradiation region elongated along the expected splitting line in the direction of the rear.
 本発明に係る脆性材料の分割装置において、前記第1ビーム照射部によって形成される第1レーザビーム照射領域に与えるレーザパワーは、前記第2ビーム照射部によって形成される第2レーザビーム照射領域に与えられるレーザパワーよりも大きいことが好ましい。この構成によれば、脆性材料を分断するために必要な熱エネルギーを、脆性材料に対して効率よく与えることができる。 In the brittle material dividing apparatus according to the present invention, the laser power applied to the first laser beam irradiation region formed by the first beam irradiation unit is applied to the second laser beam irradiation region formed by the second beam irradiation unit. It is preferably greater than the laser power provided. According to this configuration, the thermal energy necessary for dividing the brittle material can be efficiently given to the brittle material.
 また、本発明に係る脆性材料の分割装置において、前記第1ビーム照射部によって形成される第1レーザビーム照射領域のレーザパワー密度は、前記第2ビーム照射部によって形成される第2レーザビーム照射領域のレーザパワー密度よりも低いことが好ましい。この構成によれば、脆性材料の表面が溶融することなく、脆性材料を分断するために必要な熱エネルギーを与えることができる。 In the brittle material splitting device according to the present invention, the laser power density of the first laser beam irradiation region formed by the first beam irradiation unit may be the second laser beam irradiation formed by the second beam irradiation unit. It is preferably lower than the laser power density of the region. According to this configuration, it is possible to give thermal energy necessary for dividing the brittle material without melting the surface of the brittle material.
 また、本発明に係る脆性材料の分割装置において、前記第1ビーム照射部によって形成される第1レーザビーム照射領域の位置は、前記第2レーザビーム照射領域の後端から離れた位置を前記冷却手段により局所的に冷却して形成される冷却位置に対して、前記割断予定線に沿った方向の距離が可変であってもよい。この構成によれば、脆性材料内部の熱拡散の経時状態を変化させることができる。 In the brittle material splitting device according to the present invention, the position of the first laser beam irradiation region formed by the first beam irradiation unit may be a position away from the rear end of the second laser beam irradiation region. A distance in a direction along the planned cutting line may be variable with respect to a cooling position formed by locally cooling by means. According to this configuration, the time-dependent state of thermal diffusion inside the brittle material can be changed.
 この場合、前記第1レーザビーム照射領域の位置と前記冷却位置との距離は、前記脆性材料の割断速度および厚さの少なくとも一方に基づいて設定されてもよい。この構成によれば、第1レーザビーム照射領域で加熱された脆性材料が冷却開始されるまでの時間、および/または、熱拡散による温度伝導が脆性材料の裏面に至るまでの時間を調整設定することができる。 In this case, the distance between the position of the first laser beam irradiation region and the cooling position may be set based on at least one of the cleaving speed and the thickness of the brittle material. According to this configuration, the time until the brittle material heated in the first laser beam irradiation region starts to cool and / or the time until the temperature conduction due to thermal diffusion reaches the back surface of the brittle material is adjusted and set. be able to.
 また、本発明に係る脆性材料の分割装置において、前記第1レーザビーム照射領域の形状が略円形であってもよい。この構成によれば、第1ビーム照射部から照射されたレーザ光をそのまままたはビーム径を変えるだけで使用することができる。 Further, in the brittle material splitting device according to the present invention, the shape of the first laser beam irradiation region may be substantially circular. According to this configuration, the laser beam irradiated from the first beam irradiation unit can be used as it is or simply by changing the beam diameter.
 また、本発明に係る脆性材料の分割装置において、前記第1レーザビーム照射領域の形状が略円形の中央部を所定の幅で分断した形状であってもよい。この構成によれば、割断面の直線性を向上させることができる。 In the brittle material dividing apparatus according to the present invention, the shape of the first laser beam irradiation region may be a shape obtained by dividing a substantially circular central portion with a predetermined width. According to this configuration, it is possible to improve the linearity of the fractured surface.
 この場合、前記第1レーザビーム照射領域を形成する第1レーザビームは、前記第1ビーム照射部からのレーザ光の光路の中央部に所定の幅の遮蔽物を配して生成されてもよい。この構成によれば、きわめて簡単な方法で第1のレーザビームの照射領域形状を略円形の中央部を所定の幅で分断した形状にすることができる。 In this case, the first laser beam forming the first laser beam irradiation region may be generated by arranging a shield having a predetermined width in the center of the optical path of the laser beam from the first beam irradiation unit. . According to this configuration, the shape of the irradiation region of the first laser beam can be made into a shape obtained by dividing the substantially circular central portion with a predetermined width by a very simple method.
 また、本発明に係る脆性材料の分割装置において、前記第2レーザビーム照射領域を形成する第2レーザビームは、前記第2ビーム照射部のレーザ光源からのレーザ光を回折光学素子または平凸シリンドリカルレンズに通過させて整形して生成されてもよい。この構成によれば、きわめて簡単な方法で第2のレーザビームの照射位置形状を非円形にすることができる。 In the brittle material splitting apparatus according to the present invention, the second laser beam forming the second laser beam irradiation region may be a diffractive optical element or a plano-convex cylindrical beam from the laser beam from the laser light source of the second beam irradiation unit. It may be generated by shaping through a lens. According to this configuration, the irradiation position shape of the second laser beam can be made non-circular by a very simple method.
 また、本発明に係る脆性材料の分割装置において、脆性材料の割断予定線の端部に初亀裂を形成する初亀裂形成手段をさらに備え、前記第1ビーム照射部および第2ビーム照射部を前記初亀裂の位置から前記割断予定線に沿って移動させてもよい。この構成によれば、脆性材料の割断を行なうための亀裂拡大の出発を低閾値で行なうことができる。 The brittle material splitting device according to the present invention further includes initial crack forming means for forming an initial crack at an end portion of the fracture line of the brittle material, and the first beam irradiation unit and the second beam irradiation unit are provided with the first beam irradiation unit and the second beam irradiation unit, respectively. You may make it move along the said cutting planned line from the position of an initial crack. According to this configuration, the start of crack expansion for cleaving the brittle material can be performed with a low threshold.
 さらに、本発明に係る脆性材料の分割装置において、前記レーザビーム照射手段は、前記第1ビーム照射部に50%以上のレーザパワーを分配し、前記第2ビーム照射部に50%未満のレーザパワーを分配する、ビームスプリッタを含んでもよい。この構成によれば、1台のレーザビーム装置で足り、コストを低減できる。 Further, in the brittle material splitting device according to the present invention, the laser beam irradiation means distributes a laser power of 50% or more to the first beam irradiation unit, and a laser power of less than 50% to the second beam irradiation unit. A beam splitter may be included. According to this configuration, one laser beam device is sufficient, and costs can be reduced.
 本発明に係る脆性材料の割断方法は、脆性材料の割断予定線に沿って加熱し、前記脆性材料と前記加熱する位置を前記割断予定線に沿って相対的に移動させて前記脆性材料を割断する脆性材料の割断方法であって、前記割断予定線上の脆性材料端部に初亀裂を形成し、前記初亀裂を始点として前記脆性材料の加熱を第1のレーザビームおよび第2のレーザビームで行い、前記第1のレーザビームは前記第2のレーザビームに対し前記割断予定線に沿った移動方向の前方に位置するビームであり、前記第2のレーザビームは前記割断予定線に沿って細長い形状のビームであり、前記第2のレーザビームの後端から所定位置だけ離れた位置を局所的に冷却することを特徴とする。 The method for cleaving a brittle material according to the present invention comprises heating the brittle material along a planned fracture line, and relatively moving the brittle material and the heating position along the planned fracture line to cleave the brittle material. A method for cleaving a brittle material, wherein an initial crack is formed at an end portion of the brittle material on the planned fracture line, and the brittle material is heated with the first laser beam and the second laser beam starting from the initial crack. The first laser beam is a beam positioned in front of the second laser beam in the movement direction along the planned cutting line, and the second laser beam is elongated along the planned cutting line. The beam is shaped, and a position separated from the rear end of the second laser beam by a predetermined position is locally cooled.
 本発明における第1および第2レーザビームには、例えば、一般に表面レーザスクライブに使用されるCO2レーザを使用することができる。第2レーザビームによる脆性材料の割断の際に第1レーザビームにより割断予定位置の前方を加熱することにより第2レーザビームによる熱エネルギーが脆性材料の厚さ方向へ効率的に熱伝導し、その後所定位置を冷却することにより冷却位置直下で脆性材料の裏面にまで達する割れが発生する。したがって、第1ビーム照射部、第2ビーム照射部および冷却手段を脆性材料の割断予定位置に沿って相対的に移動させることにより、第1および第2レーザビームによる加熱、それに続く冷却によって脆性材料を割断予定位置に沿ってフルボディ割断させることができる。 For the first and second laser beams in the present invention, for example, a CO 2 laser generally used for surface laser scribing can be used. When the brittle material is cleaved by the second laser beam, the thermal energy of the second laser beam is efficiently conducted in the thickness direction of the brittle material by heating the front of the cleaved position by the first laser beam. By cooling the predetermined position, a crack that reaches the back surface of the brittle material is generated immediately below the cooling position. Therefore, the brittle material is heated by the first and second laser beams and then cooled by moving the first beam irradiating unit, the second beam irradiating unit, and the cooling means relatively along the planned cutting position of the brittle material. Can be cut full body along the planned cutting position.
 このようにして本発明によれば、レーザによる熱応力割断の有する高品質を実現しながら、脆性材料のフルボディ割断速度を従来技術に比較して大幅に増加させることができる。また、レーザによる熱応力のみで脆性材料を加工長さのほぼ全長にわたって分離させることができるので、ブレイク工程に伴うカレット発生を大幅に抑制することができる。さらに、割断面が割断予定線に対して湾曲することがなく真直線状に割断させることができる。 Thus, according to the present invention, the full-body cleaving speed of the brittle material can be greatly increased as compared with the prior art while realizing the high quality of thermal stress cleaving by the laser. Moreover, since the brittle material can be separated over almost the entire length of the processing length only by the thermal stress due to the laser, the occurrence of cullet accompanying the breaking process can be greatly suppressed. Furthermore, the split section can be cut into a straight line without being bent with respect to the planned cutting line.
本発明による脆性材料の割断方法の原理を説明するためのレーザビームの位置関係および温度特性を示す概念図で、(a)は第1のレーザビームの照射位置、第2のレーザビームの照射位置および冷却位置の相互の位置関係を示す概念的平面図、(b)は図1(a)における第1のレーザビームおよび第2のレーザビームによる加熱をガラス基板表面において重畳したときの温度プロファイルを示す図、(c)は図1(a)における第1のレーザビームおよび第2のレーザビームの位置ずれによる現象を説明する概念的平面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram showing the positional relationship and temperature characteristics of a laser beam for explaining the principle of a brittle material cleaving method according to the present invention, where (a) shows the irradiation position of a first laser beam and the irradiation position of a second laser beam. FIG. 2B is a conceptual plan view showing the positional relationship between the cooling positions and the cooling position. FIG. 1B shows a temperature profile when heating by the first laser beam and the second laser beam in FIG. FIG. 2C is a conceptual plan view for explaining a phenomenon caused by the positional deviation of the first laser beam and the second laser beam in FIG. 本発明による脆性材料の割断方法の原理を説明するための主要部の概念的斜視図である。It is a conceptual perspective view of the principal part for demonstrating the principle of the brittle material cleaving method by this invention. 本発明による脆性材料の割断方法の実施例1における割断装置の構成を示す概念図である。It is a conceptual diagram which shows the structure of the cleaving apparatus in Example 1 of the cleaving method of a brittle material by this invention. 本発明による脆性材料の割断方法の原理を詳細に説明するための主要部の断面概念図で、(a)は横断面概念図、(b)は図4(a)のA-A'線断面図である。FIG. 3 is a conceptual cross-sectional view of a main part for explaining in detail the principle of the method for cleaving a brittle material according to the present invention, where (a) is a cross-sectional conceptual diagram, and (b) is a cross-sectional view taken along line AA ′ in FIG. FIG. 本発明による脆性材料の割断方法により割断されたガラス基板の割断面を説明する斜視図である。It is a perspective view explaining the broken cross section of the glass substrate cut | disconnected by the cleaving method of the brittle material by this invention. 本発明による脆性材料の割断方法の実施例2における割断装置の構成を示す概念図である。It is a conceptual diagram which shows the structure of the cleaving apparatus in Example 2 of the cleaving method of a brittle material by this invention. 本発明による脆性材料の割断方法の実施例2におけるレーザビームの位置関係および温度特性を示す概念図で、(a)は第1のレーザビームの照射位置、第2のレーザビームの照射位置および冷却位置の相互の位置関係を示す概念的平面図、(b)は図7(a)における第1のレーザビームおよび第2のレーザビームによる加熱をガラス基板表面において重畳したときの温度プロファイルを示す図である。FIG. 5 is a conceptual diagram showing the positional relationship and temperature characteristics of a laser beam in Embodiment 2 of the cleaving method for a brittle material according to the present invention, where (a) is the irradiation position of the first laser beam, the irradiation position of the second laser beam, and cooling. FIG. 7B is a conceptual plan view showing the positional relationship between positions, and FIG. 7B is a diagram showing a temperature profile when heating by the first laser beam and the second laser beam in FIG. It is. 本発明による脆性材料の割断方法の実施例における、厚さ0.7mmのノンアルカリガラスの片面に初期熱量を加えた場合に、ガラス内部の温度変化の様子を経時的にプロットした温度分布グラフである。In the embodiment of the method for cleaving brittle material according to the present invention, when initial heat is applied to one side of a non-alkali glass having a thickness of 0.7 mm, the temperature distribution graph plots the state of temperature change inside the glass over time. is there. レーザ割断方法の熱応力発生原理を説明するための、原点に中心をおくガウシアン分布の温度上昇がある場合における半径方向応力成分σxと接線方向応力成分σyの変化を示す特性図である。FIG. 6 is a characteristic diagram illustrating changes in radial stress component σ x and tangential stress component σ y when there is a temperature increase in a Gaussian distribution centered at the origin, for explaining the principle of thermal stress generation in the laser cleaving method. 従来のガラスのレーザ割断方法を説明する概念的斜視図で、(a)は表面スクライブ、(b)はフルカットの場合の模式図である。It is a conceptual perspective view explaining the conventional laser cleaving method of glass, (a) is a surface scribe, (b) is a schematic diagram in the case of full cut. 従来のガラスのレーザ割断方法におけるサイズ効果を説明する概念的斜視図で、(a)はガラス板の両側の割断幅が大きい場合、(b)はガラス板の片側の割断幅が小さい場合を示す図である。It is a conceptual perspective view explaining the size effect in the conventional laser cleaving method of glass, (a) shows the case where the cleaving width on both sides of the glass plate is large, (b) shows the case where the cleaving width on one side of the glass plate is small. FIG. 厚さ0.7mmtのノンアルカリガラスを使用した、フルボディ割断の加工実験結果を示す図である。It is a figure which shows the processing experiment result of the full body cleaving which uses the non-alkali glass of thickness 0.7mmt.
 以下、図面とともに本発明の原理および実施形態について詳細に説明する。以下の説明では脆性材料としてガラス基板を例に説明する。 Hereinafter, the principle and embodiments of the present invention will be described in detail with reference to the drawings. In the following description, a glass substrate will be described as an example of the brittle material.
 図3は、本発明の一実施形態であるガラス基板フルカット装置の構成を模式的に示したものである。ガラス基板11は可動式テーブル32上に載置され、可動式テーブル32はX-Y駆動装置によりX-Y平面において移動する。図においては、ガラスの移動方向であるY軸駆動用のサーボモータ33とシャフト軸のみが示されており、X軸駆動系は図示省略されている。 FIG. 3 schematically shows a configuration of a glass substrate full-cut apparatus according to an embodiment of the present invention. The glass substrate 11 is placed on a movable table 32, and the movable table 32 is moved in the XY plane by an XY driving device. In the figure, only the servo motor 33 for driving the Y axis, which is the moving direction of the glass, and the shaft axis are shown, and the X axis driving system is not shown.
 ガラスを加熱するためのレーザ発振器は、本実施形態においてはCO2レーザ21とCO2レーザ25の2台が用いられている。CO2レーザ21から出射されるレーザビーム22は、反射鏡23により鉛直下方に反射され、集光レンズ24を通して所定のビーム径になるように整形される。なお、集光レンズ24を通過したビームは、そのままガラス基板11の表面に照射されるが、場合によっては、ビーム減衰部としてのビーム遮蔽物35(図6参照)をビーム伝送経路上に配置することによりビームの形状を部分的に変形させることも行われる。いずれにせよ、レーザビーム22によって、ガラス基板11上に第1レーザビームによる第1ビーム照射領域が形成される。ガラス基板11上における第1ビーム照射領域がどの位置に形成されるのかは、反射鏡23の折り返し角度を振って位置調整される。図3においては、反射鏡23の折り返し角度が90°近くに設定されているが、同角度を約80°から110°にまで振って、同時に集光レンズ24の位置をアライメントすることで第1ビーム照射領域の位置調整が行われる。あるいは、反射鏡23と集光レンズ24との相対位置を固定する1つのユニットを組み上げ、そのユニットをレーザビーム22の光軸方向に沿って水平に移動することによっても第1ビーム照射領域の位置調整が可能となる。 In the present embodiment, two laser oscillators for heating the glass, that is, the CO 2 laser 21 and the CO 2 laser 25 are used. The laser beam 22 emitted from the CO 2 laser 21 is reflected vertically downward by the reflecting mirror 23 and shaped so as to have a predetermined beam diameter through the condenser lens 24. The beam that has passed through the condensing lens 24 is irradiated on the surface of the glass substrate 11 as it is, but in some cases, a beam shield 35 (see FIG. 6) as a beam attenuating unit is disposed on the beam transmission path. Accordingly, the shape of the beam is partially deformed. In any case, a first beam irradiation region by the first laser beam is formed on the glass substrate 11 by the laser beam 22. The position at which the first beam irradiation region is formed on the glass substrate 11 is adjusted by changing the folding angle of the reflecting mirror 23. In FIG. 3, the folding angle of the reflecting mirror 23 is set to be close to 90 °, but the first angle is set by shaking the same angle from about 80 ° to 110 ° and simultaneously aligning the position of the condenser lens 24. The position of the beam irradiation area is adjusted. Alternatively, the position of the first beam irradiation region can also be obtained by assembling one unit that fixes the relative position between the reflecting mirror 23 and the condenser lens 24 and moving the unit horizontally along the optical axis direction of the laser beam 22. Adjustment is possible.
 CO2レーザ25から出射されるレーザビーム26は、ビームエキスパンダ27を経由して、反射鏡28により鉛直下方に反射される。ビーム径φ4mmのレーザビーム26が、ビームエキスパンダ27を通過することで、ビーム径が約4倍に拡大され、φ16mmのビームとなる。拡大されたビームは、回折光学素子29を通過することで、細長いビームに整形され、ガラス基板11上で第2のレーザビームによる第2ビーム照射領域を形成する。 A laser beam 26 emitted from the CO 2 laser 25 is reflected vertically downward by a reflecting mirror 28 via a beam expander 27. When the laser beam 26 having a beam diameter of φ4 mm passes through the beam expander 27, the beam diameter is expanded by about four times to become a beam of φ16 mm. The expanded beam passes through the diffractive optical element 29 and is shaped into an elongated beam, thereby forming a second beam irradiation region by the second laser beam on the glass substrate 11.
 第2のレーザビームによる第2ビーム照射領域の後方には、冷却装置30が設置される。冷却装置30としては、2筒管式の冷却ノズルを使用し、内円筒管から水を、外円筒管から空気を噴射させる。水と空気の混合媒体がガラスに向かって噴射されることにより、ガラス基板11上に冷却点が形成される。第1のレーザビームの前方には、初亀裂形成装置31が設けられる。初亀裂形成装置31は、下端部にダイヤモンドカッタを備え、そのダイヤモンドカッタを上下に動かす昇降機構を有している。昇降機構とY軸駆動用のサーボモータ33との連動により、ガラス基板11の端部に初亀裂を形成することができる。 A cooling device 30 is installed behind the second beam irradiation area by the second laser beam. As the cooling device 30, a two-tube type cooling nozzle is used, and water is injected from the inner cylindrical tube and air is injected from the outer cylindrical tube. A cooling point is formed on the glass substrate 11 by spraying the mixed medium of water and air toward the glass. An initial crack forming device 31 is provided in front of the first laser beam. The initial crack forming apparatus 31 includes a diamond cutter at a lower end portion, and has an elevating mechanism that moves the diamond cutter up and down. By interlocking the elevating mechanism and the servo motor 33 for driving the Y axis, an initial crack can be formed at the end of the glass substrate 11.
 なお、本実施形態においては、2台のCO2レーザを使用しているが、1台のCO2レーザのみを使用して、ビーム伝送経路上にビームスプリッタを配置して、2経路に分かれるビーム伝送を行ってもよい。この場合に、ビームスプリッタによるエネルギーの分配率は、前方を照射する第1のレーザビーム側に50%以上のエネルギーを分配し、後方を照射する第2のレーザビーム側には50%未満のエネルギーが分配されるようにした方が望ましい。 In this embodiment, two CO 2 lasers are used, but only one CO 2 laser is used, a beam splitter is arranged on the beam transmission path, and the beam is divided into two paths. Transmission may be performed. In this case, the energy distribution rate by the beam splitter is such that energy of 50% or more is distributed to the first laser beam side that irradiates the front side, and energy that is less than 50% is applied to the second laser beam side that irradiates the rear side. Should be distributed.
 図1(a)は本発明による脆性材料の割断方法の原理を説明するためのガラス基板表面における第1のレーザビームの照射位置、第2のレーザビームの照射位置および冷却位置の相互の位置関係を示す概念的平面図、図1(b)は図1(a)における第1のレーザビームおよび第2のレーザビームによる加熱をガラス基板表面において重畳したときの温度プロファイルを示す図、図1(c)は図1(a)における第1のレーザビームおよび第2のレーザビームの位置ずれによる現象を説明する概念的平面図である。図2は本発明による脆性材料の割断方法の原理を説明するための主要部の概念的斜視図である。 FIG. 1 (a) shows the mutual positional relationship between the irradiation position of the first laser beam, the irradiation position of the second laser beam, and the cooling position on the glass substrate surface for explaining the principle of the method of cleaving the brittle material according to the present invention. FIG. 1B is a diagram showing a temperature profile when heating by the first laser beam and the second laser beam in FIG. 1A is superimposed on the surface of the glass substrate, and FIG. FIG. 2C is a conceptual plan view for explaining a phenomenon caused by positional deviation of the first laser beam and the second laser beam in FIG. FIG. 2 is a conceptual perspective view of the main part for explaining the principle of the brittle material cleaving method according to the present invention.
 本発明による脆性材料の割断方法の基本原理は、図1(a)に示すように、ガラス基板11の割断予定線12に沿って、割断の前方から第1ビーム照射領域13、第2ビーム照射領域14および冷却点(または冷却位置)15を順に配置することである。 As shown in FIG. 1A, the basic principle of the method for cleaving a brittle material according to the present invention is that a first beam irradiation region 13 and a second beam irradiation are observed from the front of the cleaving along the planned cutting line 12 of the glass substrate 11. The region 14 and the cooling point (or cooling position) 15 are arranged in order.
 図3に示すように、第1ビーム照射領域13はCO2レーザ21からのレーザビーム22を反射鏡23で所定方向に反射させ、集光レンズ24を通して所定のビーム径に調整して生成し、その断面形状は円形または楕円形であり、本明細書および特許請求の範囲を通じてこれらを略円形と総称する。第1ビーム照射領域13はガラス基板11に局所的に加熱だけが発生し、溶融やクラックが発生しない程度の強さのレーザビームである。 As shown in FIG. 3, the first beam irradiation region 13 is generated by reflecting the laser beam 22 from the CO 2 laser 21 in a predetermined direction by the reflecting mirror 23 and adjusting the laser beam 22 to a predetermined beam diameter through the condenser lens 24. The cross-sectional shape is a circle or an ellipse, and these are collectively referred to as a substantially circle throughout the specification and claims. The first beam irradiation region 13 is a laser beam having such an intensity that only the glass substrate 11 is locally heated and no melting or cracking occurs.
 第2ビーム照射領域14は第1ビーム照射領域13の後方に位置し、その断面形状はガラス基板11の割断予定線12に沿った方向に細長い形状に整形される。すなわち、第2ビーム照射領域14は図1(a)に示すようにガラス基板11の割断予定線12に沿った方向の長さaがその直角方向である幅方向の長さbよりも長い非円形のビームである。細長い非円形のビームにおける割断予定線12に沿った長さ方向の長さaの幅方向の長さbに対する比a/bは26~30程度であることが好ましい。 The second beam irradiation region 14 is located behind the first beam irradiation region 13, and the cross-sectional shape thereof is shaped into an elongated shape in the direction along the planned cutting line 12 of the glass substrate 11. That is, in the second beam irradiation region 14, as shown in FIG. 1A, the length a in the direction along the planned cutting line 12 of the glass substrate 11 is longer than the length b in the width direction, which is the perpendicular direction. It is a circular beam. The ratio a / b of the length a in the length direction along the planned cutting line 12 to the length b in the width direction of the elongated non-circular beam is preferably about 26 to 30.
 このような細長い非円形のビームは、CO2レーザ25からのレーザビーム26をビームエキスパンダ27で所定の倍率の径に広げ、反射鏡28で所定方向に反射させた後、回折光学素子または平凸シリンドリカルレンズのようなビーム整形手段29に通過させて整形することにより生成される。第2ビーム照射領域14もガラス基板11に局所的に加熱だけが発生し、溶融やクラックが発生しない程度の強さのレーザビームである。 Such an elongate non-circular beam is obtained by spreading the laser beam 26 from the CO 2 laser 25 to a diameter of a predetermined magnification by the beam expander 27 and reflecting the laser beam 26 in a predetermined direction by the reflecting mirror 28, and thereafter, It is generated by passing through a beam shaping means 29 such as a convex cylindrical lens and shaping it. The second beam irradiation region 14 is also a laser beam having such an intensity that only heating locally occurs on the glass substrate 11 and melting and cracks do not occur.
 次に動作を説明する。図2において、まず、ガラス基板11の割断予定線12の端部に初亀裂形成装置31により初亀裂16を形成する。この初亀裂16がガラス基板11の割断の出発位置である。次に、テーブル32上に載置されたガラス基板11をY軸駆動用のサーボモータ33によりY方向に移動させて、ガラス基板11の割断予定線12の出発位置に相当する初亀裂16の方向からガラスの加熱を開始する。図1(a)に示したように、第1ビーム照射領域13、第2ビーム照射領域14および冷却点15の列の方向は一直線上に並んで配置されているので、割断予定線12の方向に一致して移動可能になっている。このとき、図1(c)のように、調整不足により、ガラス基板11の割断予定線12に対して第1ビーム照射領域13の中心位置と第2ビーム照射領域14の中心位置が微小値Δdだけずれていると、分割したガラス断面の面品質が劣化することがあるので、第1ビーム照射領域13の中心位置と第2ビーム照射領域14の中心位置が割断予定線12に対してずれないように正確に位置調整されることが必要である。 Next, the operation will be described. In FIG. 2, first, the initial crack 16 is formed by the initial crack forming device 31 at the end of the planned cutting line 12 of the glass substrate 11. This initial crack 16 is the starting position for cleaving the glass substrate 11. Next, the glass substrate 11 placed on the table 32 is moved in the Y direction by the Y-axis drive servomotor 33, and the direction of the initial crack 16 corresponding to the starting position of the planned cutting line 12 of the glass substrate 11. Begin heating the glass. As shown in FIG. 1A, the direction of the first beam irradiation region 13, the second beam irradiation region 14, and the cooling point 15 is arranged in a straight line. It can be moved to match. At this time, as shown in FIG. 1C, due to insufficient adjustment, the center position of the first beam irradiation region 13 and the center position of the second beam irradiation region 14 with respect to the planned cutting line 12 of the glass substrate 11 are minute values Δd. Since the surface quality of the divided glass cross section may be deteriorated if it is shifted by only a distance, the center position of the first beam irradiation region 13 and the center position of the second beam irradiation region 14 are not shifted from the planned cutting line 12. It is necessary to adjust the position accurately.
 次に、ガラス基板11に形成された初亀裂16の位置と第1ビーム照射領域13、第2ビーム照射領域14および冷却点15の列の方向が一致した状態から第1のレーザビームおよび第2のレーザビームを照射させながら冷却装置30から冷媒を噴射させ、テーブル32上に載置されたガラス基板11をサーボモータ33によりY方向に移動させると、テーブル32上に載置されたガラス基板11の割断予定線12に沿って第1ビーム照射領域13、第2ビーム照射領域14および冷媒による冷却点15の列が相対的に移動し割断作用が開始する。 Next, from the state in which the position of the initial crack 16 formed in the glass substrate 11 and the direction of the first beam irradiation region 13, the second beam irradiation region 14, and the column of the cooling point 15 coincide, When the glass substrate 11 placed on the table 32 is moved in the Y direction by the servo motor 33 while jetting the coolant from the cooling device 30 while irradiating the laser beam, the glass substrate 11 placed on the table 32 is moved. The row of the first beam irradiation region 13, the second beam irradiation region 14, and the cooling point 15 by the refrigerant moves relatively along the planned cutting line 12, and the cleaving action starts.
 本発明による脆性材料の割断方法の基本原理は、図1(a)に示すように、ガラス基板11の割断予定線12に沿って、割断の前方から第1ビーム照射領域13、第2ビーム照射領域14および冷却点15を順に配置することである。第1ビーム照射領域13はガラス基板11の割断の最前部を予熱し、その位置を後続する第2ビーム照射領域14により加熱して割断開始直前の状態にする。図1(b)はこのときのガラス基板11表面における温度プロファイルである。すなわち、第1ビーム照射領域13による温度プロファイル131に第2ビーム照射領域14による温度プロファイル141が重畳し、ガラス基板11の表面における第2ビーム照射領域14が照射された位置が割断開始直前の高温に加熱される。この加熱による熱はガラス基板11の厚さ方向に熱伝導する。 As shown in FIG. 1A, the basic principle of the method for cleaving a brittle material according to the present invention is that a first beam irradiation region 13 and a second beam irradiation are observed from the front of the cleaving along the planned cutting line 12 of the glass substrate 11. It is arranging the area | region 14 and the cooling point 15 in order. The first beam irradiation region 13 preheats the forefront part of the cleaving of the glass substrate 11 and heats the position by the subsequent second beam irradiation region 14 to a state immediately before the cleaving starts. FIG. 1B is a temperature profile on the surface of the glass substrate 11 at this time. That is, the temperature profile 141 by the second beam irradiation region 14 is superimposed on the temperature profile 131 by the first beam irradiation region 13, and the position irradiated with the second beam irradiation region 14 on the surface of the glass substrate 11 is a high temperature just before the start of cleaving. To be heated. The heat due to this heating is conducted in the thickness direction of the glass substrate 11.
 略円形の第1ビーム照射領域13で予熱され、細長い第2ビーム照射領域14で加熱された状態のガラス基板11に冷却装置30から冷媒が噴射されると、図2に示すように、冷却点直下で初亀裂16から拡大した亀裂がガラス基板11の深さ方向に進行し、その亀裂がガラス基板11と第1ビーム照射領域13、第2ビーム照射領域14および冷却点15の列のY方向への相対移動に従ってさらにガラス基板11の割断予定線12に沿って進行する。この結果、ガラス基板11の全板厚に亘って割断面17が発生する。 When the coolant is jetted from the cooling device 30 onto the glass substrate 11 preheated in the substantially circular first beam irradiation region 13 and heated in the elongated second beam irradiation region 14, as shown in FIG. A crack expanded directly from the initial crack 16 directly proceeds in the depth direction of the glass substrate 11, and the crack is in the Y direction of the row of the glass substrate 11, the first beam irradiation region 13, the second beam irradiation region 14, and the cooling point 15. In accordance with the relative movement, the glass substrate 11 further proceeds along the planned cutting line 12. As a result, a split section 17 is generated over the entire thickness of the glass substrate 11.
 この様子を図4によりさらに詳細に説明する。図4は図2における本発明による脆性材料の割断方法の原理を詳細に説明するための主要部の断面概念図で、(a)は横断面概念図、(b)は図4(a)のA-A'線断面図である。 This situation will be described in more detail with reference to FIG. FIG. 4 is a conceptual cross-sectional view of the main part for explaining in detail the principle of the method of cleaving the brittle material according to the present invention in FIG. 2, (a) is a cross-sectional conceptual diagram, (b) is a cross-sectional conceptual diagram of FIG. It is AA 'line sectional drawing.
 第1ビーム照射領域13、第2ビーム照射領域14および冷却点15の列をガラス基板11に対してY方向に走査させると、ガラス基板11はまず第1ビーム照射領域13で加熱され、その加熱による熱はY方向への走査につれてガラス基板11の裏面方向に熱伝導してガラス基板11内に加熱領域130が形成される。つぎに、ガラス基板11は第2ビーム照射領域14で加熱され、その加熱による熱はY方向への走査につれてガラス基板11の裏面方向に熱伝導してガラス基板11内に加熱領域140が形成される。第2ビーム照射領域14の後部における冷却点15による冷却は同様にガラス基板11のY方向への走査につれてガラス基板11の裏面方向に熱伝導してガラス基板11内に冷却領域150が形成される。 When the row of the first beam irradiation region 13, the second beam irradiation region 14, and the cooling point 15 is scanned in the Y direction with respect to the glass substrate 11, the glass substrate 11 is first heated in the first beam irradiation region 13, and the heating is performed. As a result of the scanning in the Y direction, the heat due to the heat is conducted in the direction of the back surface of the glass substrate 11 to form a heating region 130 in the glass substrate 11. Next, the glass substrate 11 is heated in the second beam irradiation region 14, and the heat due to the heating is conducted in the back surface direction of the glass substrate 11 as scanning in the Y direction, and a heating region 140 is formed in the glass substrate 11. The Similarly, the cooling by the cooling point 15 in the rear part of the second beam irradiation region 14 is conducted in the rear surface direction of the glass substrate 11 as the glass substrate 11 is scanned in the Y direction, so that a cooling region 150 is formed in the glass substrate 11. .
 この結果、冷却点15の直下におけるガラス基板11の熱分布は図4(b)のようになり、ガラス基板11は第1ビーム照射領域13により裏面近辺まで加熱されている加熱領域130とそれに続く第2ビーム照射領域14により加熱されている加熱領域140に対して冷却点15による冷却が作用して、冷却点直下で亀裂がガラス基板11の深さ方向に進行し、ガラス基板11の裏面にまで達して全板厚方向に亘って割断される。この現象がガラス基板11のY方向への走査につれてガラス基板11の割断予定線12に沿って進行し、割断予定線12に沿ってガラス基板11の裏面にまで達した割断が進行する。 As a result, the heat distribution of the glass substrate 11 immediately below the cooling point 15 is as shown in FIG. 4B, and the glass substrate 11 continues to the heating region 130 heated to the vicinity of the back surface by the first beam irradiation region 13 and subsequent to it. Cooling by the cooling point 15 acts on the heating region 140 heated by the second beam irradiation region 14, and a crack advances in the depth direction of the glass substrate 11 immediately below the cooling point, and on the back surface of the glass substrate 11. To reach the entire thickness direction. This phenomenon proceeds along the planned cutting line 12 of the glass substrate 11 as the glass substrate 11 is scanned in the Y direction, and the cutting that reaches the back surface of the glass substrate 11 proceeds along the planned cutting line 12.
 図8は、ガラスの厚み方向に対する温度分布を示したグラフである。前述の図4(a)を用いた説明においては、ガラスの厚み方向への熱伝播の様子について、ガラスの表から裏の面に向かって、熱が一次関数的に一定の速度で単純に伝播するかのような説明した。しかし、ガラス内部の熱の伝播は、実際には、熱拡散方程式に基づいて計算されるべきものであるので、同方程式をノンアルカリガラスに適用して計算した結果を一つ例示する。 FIG. 8 is a graph showing the temperature distribution with respect to the thickness direction of the glass. In the description using FIG. 4A described above, regarding the state of heat propagation in the thickness direction of the glass, heat is simply propagated at a constant linear function from the front to the back of the glass. Explained as if to do. However, since the heat propagation inside the glass is actually to be calculated based on the thermal diffusion equation, one example of the result of applying the equation to the non-alkali glass is illustrated.
 図8のグラフは、厚さ0.7mmで、無限大の大きさのノンアルカリガラスの片面に20J/cm2の均一な熱分布を加えたと想定した場合に、厚み方向の温度分布がどのように変化するのかを計算し、その結果をグラフにしたものである。グラフの横軸は熱伝播の深さ、つまりガラスの厚み(mm)を示しており、縦軸は温度上昇、つまりガラスが初期状態からどれくらい温度が上昇するのかを示している。グラフ内に複数の曲線が記されているのは、初期加熱された後の経過時間をパラメータとして状態変化させて、複数のグラフを重ねて表示しているためである。 The graph of FIG. 8 shows the temperature distribution in the thickness direction when assuming that a uniform heat distribution of 20 J / cm 2 is applied to one side of an infinitely large non-alkali glass having a thickness of 0.7 mm. Is calculated, and the result is graphed. The horizontal axis of the graph shows the depth of heat propagation, that is, the thickness (mm) of the glass, and the vertical axis shows the temperature rise, that is, how much the temperature of the glass rises from the initial state. The reason why a plurality of curves are shown in the graph is that the graphs are displayed in an overlapping manner by changing the state using the elapsed time after the initial heating as a parameter.
 ガラスの片面に20J/cm2の熱量を初期的に加えるだけで、加熱されたガラス面は瞬間的に400℃を超えるが、その後急激にガラスの表面温度は低下する。加熱面側が温度低下するのと同時に、加熱のない裏面側には表面からの熱が伝わってくるので温度上昇が起こり、100℃を少し超える程度になる。経過時間のパラメータは、1.0秒までの時間の中から10個をサンプリングして計算してあり、経過時間の短い方から、T1=30msec、T2=40msec、T3=50msec、T4=75msec、T5=100msec、T6=200msec、T7=300msec,T8=400msec,T9=700msec,T10=1000 msecである。このグラフから判ることは、T1すなわち30msec後には、厚さ0.7mmのガラスの表と裏とで400℃もの大きな温度差があるが、T6すなわち200msec後には温度差50℃程度に緩和されていることである。更に、T7すなわち300msec後には温度差30℃弱となり、表面と裏面とは概ね同じ温度になっているといえる。 By simply applying an initial amount of heat of 20 J / cm 2 to one side of the glass, the heated glass surface instantaneously exceeds 400 ° C., but then the surface temperature of the glass rapidly decreases. At the same time as the temperature of the heating surface decreases, heat from the surface is transmitted to the back surface without heating, so that the temperature rises and slightly exceeds 100 ° C. The parameters of the elapsed time are calculated by sampling 10 samples from the time up to 1.0 second. From the shorter elapsed time, T1 = 30 msec, T2 = 40 msec, T3 = 50 msec, T4 = 75 msec, T5 = 100 msec, T6 = 200 msec, T7 = 300 msec, T8 = 400 msec, T9 = 700 msec, T10 = 1000 msec. It can be seen from this graph that there is a large temperature difference of 400 ° C between the front and back of the 0.7 mm thick glass after T1, ie 30 msec, but the temperature difference is relaxed to about 50 ° C after T6, ie 200 msec. It is that you are. Further, after T7, that is, 300 msec, the temperature difference is slightly less than 30 ° C., and it can be said that the front surface and the back surface are at substantially the same temperature.
 CO2レーザを用いた本実施形態においては、進行方向の前方に照射される第1のレーザビームによって供給される熱エネルギーがガラスの裏面まで伝播することによって、フルボディ割断をするためのエネルギー源として活用されることに特徴がある。そのようなフルボディ割断が行われるためには、ガラス表面で吸収された熱エネルギーが、ある程度ガラス内で均等に熱拡散することが必要となる。そうすると、割断予定線に沿って、冷却点と第1のレーザビームの照射領域との間に、どの程度の距離Lを設けるのかがひとつの重要項目となる。ここで、ガラスの移動速度をVとし、第1のレーザビームによって照射されたガラス表面が冷却点の下まで移動するのにかかる移動時間をτとすると、L=V・τの関係が成り立つ。前述したように、ガラスの表と裏との温度が概ね同じになるには、200から300msecの時間が必要である。つまり、ガラスの移動速度が180mm/sであれば、200msecの経過時間には36mm、そして300msecの経過時間には54mmの距離を移動する。従って、冷却点と第1のレーザビームの照射領域との間の距離Lとしては、少なくとも36mm、望ましくは54mm以上の距離を設ける必要がある。 In this embodiment using a CO 2 laser, an energy source for full-body cleaving by propagation of thermal energy supplied by the first laser beam irradiated forward in the traveling direction to the back surface of the glass. It is characterized by being used as In order to perform such full body cleaving, it is necessary that the thermal energy absorbed on the glass surface is diffused evenly in the glass to some extent. Then, how much distance L is provided between the cooling point and the irradiation region of the first laser beam along the planned cutting line is one important item. Here, if the moving speed of the glass is V and the moving time required for the glass surface irradiated with the first laser beam to move below the cooling point is τ, the relationship of L = V · τ holds. As described above, a time of 200 to 300 msec is required for the temperatures of the front and back of the glass to be substantially the same. In other words, if the moving speed of the glass is 180 mm / s, it moves a distance of 36 mm for an elapsed time of 200 msec and 54 mm for an elapsed time of 300 msec. Accordingly, the distance L between the cooling point and the irradiation region of the first laser beam needs to be at least 36 mm, preferably 54 mm or more.
 このように、冷却点と第1のレーザビームの照射領域との間にどの程度の距離Lを設ければ良いのかは、ガラスの移動速度やガラスの厚みに依存している。さらに詳細には、ガラス内部の熱拡散速度に関係する物理定数、つまり、ガラスの熱伝導率、比熱、密度にも関係する。また、ガラスの裏面における境界条件にも関係する。つまり、ガラスの裏面が金属テーブルに密着するような手段で固定されているのか、それとも空気中に浮かせるような手段で固定してあるのかにも影響される。 Thus, how much distance L should be provided between the cooling point and the irradiation region of the first laser beam depends on the moving speed of the glass and the thickness of the glass. More specifically, it also relates to a physical constant related to the thermal diffusion rate inside the glass, that is, the thermal conductivity, specific heat, and density of the glass. It is also related to the boundary conditions on the back side of the glass. In other words, it is also affected by whether the back surface of the glass is fixed by means that comes into close contact with the metal table or by means that floats in the air.
 本実施形態においては、冷却点直下で初亀裂16から拡大した亀裂は本質的にガラス基板11の深さ方向に進行するので、ガラス基板11の沿面方向に作用する引張り応力に不均衡を生じることがなく、割断面17が割断予定線12に対して湾曲することはない。また、レーザによる熱応力のみで亀裂を進行させて形成される割断面17にはマイクロクラック発生がなく、分断後のガラス基板11の機械強度も高い。 In the present embodiment, the crack expanded from the initial crack 16 immediately below the cooling point essentially proceeds in the depth direction of the glass substrate 11, so that an imbalance occurs in the tensile stress acting in the creeping direction of the glass substrate 11. The split section 17 is not curved with respect to the planned cutting line 12. Further, the cracked surface 17 formed by causing the crack to advance only by the thermal stress caused by the laser does not generate microcracks, and the mechanical strength of the divided glass substrate 11 is high.
 初亀裂16とは反対側の割断予定線12上の端部においては、ガラスをフルボディ割断するのに十分な引張り応力が失われてしまうため、フルボディの割断面が反対側の端部に近づくと割断17は停止する。このとき、図5に示すように、ガラス基板15の端部に割断面17が生じていない領域18が残る。この領域18には割断面17は生じないが、表面にはスクライブ溝19が形成される。従って、必要であれば簡易なブレイク手段を用いることでガラスを完全に分断することができる。この場合、ガラス基板11は加工長さのほぼ全長にわたって既にフルボディ割断されているため、ブレイク工程に伴うカレット発生を大幅に抑制することができる。 At the end portion on the planned cutting line 12 on the side opposite to the initial crack 16, the tensile stress sufficient to break the full body is lost. When approaching, the split 17 stops. At this time, as shown in FIG. 5, a region 18 in which the fractured surface 17 does not occur remains at the end of the glass substrate 15. In this region 18, the split section 17 does not occur, but a scribe groove 19 is formed on the surface. Therefore, if necessary, the glass can be completely divided by using a simple break means. In this case, since the glass substrate 11 has already been cleaved full body over almost the entire processing length, the occurrence of cullet associated with the breaking process can be greatly suppressed.
 図3に示すガラス分断装置において、第1ビーム照射領域13としては、出力165WのCO2レーザ21からのレーザビーム22を反射鏡23で鉛直下方に反射させ、集光レンズ24を通して集光した。その結果、ガラス基板11上には、ビーム径15mmのガウシアン分布に近い円形ビーム照射領域が形成される。第2ビーム照射領域14としては、CO2レーザ25から出力98W、ビーム径4mmのレーザビーム26を利用した。そのレーザビーム26は、ビームエキスパンダ27を経由することで、ビーム径16mmに拡大され、さらに反射鏡28により鉛直下方に伝送される。ビーム径16mmのレーザビームが回折光学素子29を通過すると、ガラス基板11上において、長さaが26mm、幅bが1mmの細長いビームが形成される。 In the glass cutting apparatus shown in FIG. 3, as the first beam irradiation region 13, the laser beam 22 from the CO 2 laser 21 with an output of 165 W was reflected vertically downward by the reflecting mirror 23 and condensed through the condenser lens 24. As a result, a circular beam irradiation region close to a Gaussian distribution with a beam diameter of 15 mm is formed on the glass substrate 11. As the second beam irradiation region 14, a laser beam 26 having an output of 98 W and a beam diameter of 4 mm from the CO2 laser 25 was used. The laser beam 26 is expanded to a beam diameter of 16 mm via a beam expander 27 and further transmitted vertically downward by a reflecting mirror 28. When a laser beam having a beam diameter of 16 mm passes through the diffractive optical element 29, an elongated beam having a length a of 26 mm and a width b of 1 mm is formed on the glass substrate 11.
 このように、第1ビーム照射領域13には第1のレーザビームによって165Wが与えられ、第2ビーム照射領域14には第2のレーザビームによって98Wが与えられる。つまり、ガラス基板11の上においてビーム伝送の損失を考慮しても、第1ビーム照射領域13に与えられる熱ネルギーは第2ビーム照射領域14に与えられる熱エネルギーよりも大きく設定される。 Thus, 165 W is applied to the first beam irradiation region 13 by the first laser beam, and 98 W is applied to the second beam irradiation region 14 by the second laser beam. That is, the thermal energy given to the first beam irradiation region 13 is set to be larger than the thermal energy given to the second beam irradiation region 14 even if the loss of beam transmission is taken into consideration on the glass substrate 11.
 また、レーザパワー密度に関して、第1レーザ照射領域13のレーザパワー密度は0.93W/mm2であり、第2レーザ照射領域13のレーザパワー密度は3.77W/mm2である。つまり、第1ビーム照射領域13のレーザパワー密度は第2レーザ照射領域13のレーザパワー密度よりも低く設定される。 Regarding the laser power density, the laser power density of the first laser irradiation region 13 is 0.93 W / mm 2, and the laser power density of the second laser irradiation region 13 is 3.77 W / mm 2 . That is, the laser power density of the first beam irradiation region 13 is set lower than the laser power density of the second laser irradiation region 13.
 ガラス基板11としては、厚さ0.7mm、全長580mmのノンアルカリガラスを使用した。冷却装置としては、2筒管式の冷却ノズルを使用し、内円筒管から水を、外円筒管から空気を噴射させた。第2ビーム照射領域14の後端と冷却点15との距離は5mmに設定した。ガラス基板11と第1ビーム照射領域13、第2ビーム照射領域14および冷却点15の列との相対移動距離、すなわちガラスの割断加工速度を180mm/sとして加工を行った。この結果、ガラス基板11の終端部約40mmを除いた540mmの長さに亘ってフルボディ割断が可能となった。このときの割断の直線性精度は±250μm以内であった。同様の条件で、幅290mm、長さ580mmの同ガラスを端面から15mm離れた位置を割断する場合においても、直線性精度は±250μmであり、いわゆるサイズ効果による湾曲の影響はなかった。 As the glass substrate 11, a non-alkali glass having a thickness of 0.7 mm and a total length of 580 mm was used. As the cooling device, a two-tube type cooling nozzle was used, and water was injected from the inner cylindrical tube and air was injected from the outer cylindrical tube. The distance between the rear end of the second beam irradiation region 14 and the cooling point 15 was set to 5 mm. Processing was performed at a relative movement distance between the glass substrate 11 and the first beam irradiation region 13, the second beam irradiation region 14, and the row of the cooling points 15, that is, the glass cutting processing speed was 180 mm / s. As a result, full body cleaving was possible over a length of 540 mm excluding the terminal portion of the glass substrate 11 of about 40 mm. The linearity accuracy of the cleaving at this time was within ± 250 μm. Under the same conditions, even when the glass having a width of 290 mm and a length of 580 mm was cleaved at a position 15 mm away from the end surface, the linearity accuracy was ± 250 μm, and there was no influence of bending due to the so-called size effect.
 第1ビーム照射領域13のビーム径を10mm~16mm、第2ビーム照射領域14の後端と冷却点15との距離を3~7mmで変化させたところ、ほぼ同一の割断結果が得られた。なお、走査速度は、CO2レーザ21、25のパワーを上げるのと同時に、冷却点と第2ビーム照射領域14の距離および、第2ビーム照射領域14と第1ビーム照射領域13の距離を増やすことにより、さらに速度増加が可能であることが確認された。また、細長い非円形の第2ビーム照射領域14の長さaと幅bに対する比率a/bを26~30の範囲で変化させても、ほぼ同様の割断結果が得られた。 When the beam diameter of the first beam irradiation region 13 was changed from 10 mm to 16 mm and the distance between the rear end of the second beam irradiation region 14 and the cooling point 15 was changed from 3 to 7 mm, almost the same cleaving result was obtained. The scanning speed increases the distance between the cooling point and the second beam irradiation region 14 and the distance between the second beam irradiation region 14 and the first beam irradiation region 13 simultaneously with increasing the power of the CO 2 lasers 21 and 25. Thus, it was confirmed that the speed could be further increased. Further, even when the ratio a / b to the length a and the width b of the elongated non-circular second beam irradiation region 14 was changed in the range of 26 to 30, almost the same cleaving result was obtained.
 図6は、実施例2における脆性材料の割断装置を示す概念図である。図7には加熱のためのビームプロファイルが示されている。このビームプロファイルは、図7に示すガラス分断装置において、第1ビーム照射領域13の集光レンズ24からの出力ビームの中央部を所定の幅のビーム遮蔽物35で遮蔽することで得られるビームプロファイルである。例えば、ビームが伝送されるビーム経路上に直径φ2mmの金属棒を配置する。すると第1のレーザビームの一部分は、金属棒に遮光されるので、ガラス基板上にはいわゆる影の部分が投影されるため、その部分は加熱されない。実施例2においては、第1ビーム照射領域130の形状が図7(a)のように略円形の中央部を所定の幅wで分断した形状になる。第1ビーム照射領域130における所定幅wの遮断部分133が、第2ビーム照射領域14のビーム幅eよりもわずかに大きくなるように設定すると、ガラスの表面においては、第1ビーム照射領域130による加熱領域と、第2のレーザビームによる加熱領域とが重なる部分が存在しなくなる。従って、第1ビーム照射領域13および第2ビーム照射領域14によるガラス基板表面における温度プロファイルは、図7(b)のようになり、割断予定線上を加熱するのに用いられる熱エネルギー141と、割断予定線を挟む両側の部分を加熱する熱エネルギー131とが分別できる。 FIG. 6 is a conceptual diagram showing a brittle material cleaving apparatus in Example 2. FIG. 7 shows a beam profile for heating. This beam profile is obtained by shielding the central portion of the output beam from the condenser lens 24 in the first beam irradiation region 13 with a beam shield 35 having a predetermined width in the glass cutting apparatus shown in FIG. It is. For example, a metal rod having a diameter of 2 mm is disposed on the beam path through which the beam is transmitted. Then, since a part of the first laser beam is shielded by the metal rod, a so-called shadow part is projected on the glass substrate, and the part is not heated. In the second embodiment, the shape of the first beam irradiation region 130 is a shape obtained by dividing a substantially circular central portion with a predetermined width w as shown in FIG. When the blocking portion 133 having a predetermined width w in the first beam irradiation region 130 is set to be slightly larger than the beam width e of the second beam irradiation region 14, the first beam irradiation region 130 is formed on the glass surface. There is no portion where the heating region and the heating region by the second laser beam overlap. Accordingly, the temperature profile on the glass substrate surface by the first beam irradiation region 13 and the second beam irradiation region 14 is as shown in FIG. 7B, and the thermal energy 141 used for heating the cleavage line and the cleavage The thermal energy 131 for heating the portions on both sides of the planned line can be separated.
 本実施例2における割断のプロセスは本質的に実施例1の場合と同様であり、実施例1と同様にフルボディ割断が可能であった。なお、実施例1においては、割断予定線上を加熱するための熱エネルギーが、第1のレーザビームが割断予定線上を照射するレーザビームと、第2ビーム照射領域14とが重畳された熱エネルギーとして供給される。しかし、この実施例2によれば、割断予定線上を加熱するための熱エネルギーが第1のレーザビーム14のみで供給されるので、照射するレーザパワーの設定が容易となる。その結果として直線性精度が向上するという利点があり、全長540mmに亘って±100μm以内の精度でフルボディ割断が可能となった。 The cleaving process in Example 2 was essentially the same as in Example 1, and full-body cleaving was possible as in Example 1. In the first embodiment, the thermal energy for heating the planned cutting line is the thermal energy obtained by superimposing the laser beam irradiated by the first laser beam on the planned cutting line and the second beam irradiation region 14. Supplied. However, according to the second embodiment, since the thermal energy for heating the planned cutting line is supplied only by the first laser beam 14, the setting of the laser power to be irradiated becomes easy. As a result, there is an advantage that the linearity accuracy is improved, and full body cleaving can be performed with an accuracy within ± 100 μm over a total length of 540 mm.
 図12には、図3に示す加工装置の構成においてガラス割断実験した場合に、フルボディ割断が達成されるかどうかの結果をまとめたものである。ビームプロファイルとしては、図1(a)に示す略円形の第1ビーム照射の方法を用いた。使用したガラスは、厚さ0.7mmtのノンアルカリガラスである。加工の手順として、外形の幅550mmで加工方向長さ290mmのガラスを一方の端面から一定の間隔(30mm)で、短冊形状に切り分けるという手法を採った。 FIG. 12 summarizes the results of whether or not full-body cleaving is achieved when a glass cleaving experiment is performed in the configuration of the processing apparatus shown in FIG. As the beam profile, the substantially circular first beam irradiation method shown in FIG. The glass used is a non-alkali glass with a thickness of 0.7 mm. As a processing procedure, a method was adopted in which a glass having an outer width of 550 mm and a processing direction length of 290 mm was cut into strips from one end face at a constant interval (30 mm).
 図12の表中の記載から判るように、第1ビーム照射領域に照射されるレーザパワーP1を、第2ビーム照射領域に照射されるレーザパワーP2よりも大きく設定した場合には、フルボディ割断が良好な状態で達成される(加工条件#1,#5,#6,#9,#10,#11参照)。レーザパワーP1をレーザパワーP2と実質的に同じに設定した場合には、ガラス終端部の切れ残りの長さがやや長くなる傾向があった(加工条件#2,#7参照)。一方、レーザパワーP1がレーザパワーP2よりも小さい場合には、フルボディ割断が達成されない、またはガラス終端部の切れ残りの長さが長くなる、または割断面の面品質が劣化するなど、好ましくない加工結果が得られた(加工条件#3,#4,#8参照)。特に、速い加工速度(例えば200mm/s以上)を達成するためには、レーザパワーP1をレーザパワーP2よりも、遥かに大きく設定することが有効であると判明した(加工条件#9,#10,#11参照)。また、加工速度Vを230mm/sにした場合において、冷却位置と第1ビーム照射領域との距離Lは95mmに設定した。これらの数値をL=V・τの関係式に代入すると、τ=413(msec)の値が得られる。この値τは、第1のレーザビームの照射によって加熱されたガラス表面が冷却位置まで移動するのにかかる経過時間を示す。一方において、前述の図8で示したシミュレーション結果のグラフからは、グラフが平坦な状態となり、熱平衡に達するまでの時間として、200msecあるいは300msec以上の経過時間が必要という考察結果が得られている。この経過時間τ=413(msec)という値は300msec以上の値であるので、図8に基づく考察結果と矛盾しない。つまり、冷却位置と第1ビーム照射領域との距離Lは、加工速度Vがより速くなれば、それに応じて距離Lをより長く設定した方が良いことが判明した。 As can be seen from the description in the table of FIG. 12, when the laser power P1 applied to the first beam irradiation region is set larger than the laser power P2 applied to the second beam irradiation region, the full body cleaving is performed. Is achieved in good condition (see machining conditions # 1, # 5, # 6, # 9, # 10, # 11). When the laser power P1 was set to be substantially the same as the laser power P2, the length of the uncut glass end portion tended to be slightly longer (see processing conditions # 2 and # 7). On the other hand, when the laser power P1 is smaller than the laser power P2, it is not preferable that full-body cleaving is not achieved, the length of the glass end portion is increased, or the surface quality of the cleaved surface is deteriorated. Machining results were obtained (see machining conditions # 3, # 4, and # 8). In particular, in order to achieve a high processing speed (for example, 200 mm / s or more), it has been found effective to set the laser power P1 far larger than the laser power P2 (processing conditions # 9, # 10). , # 11). Further, when the processing speed V was set to 230 mm / s, the distance L between the cooling position and the first beam irradiation region was set to 95 mm. By substituting these numerical values into the relational expression of L = V · τ, a value of τ = 413 (msec) is obtained. This value τ indicates the elapsed time required for the glass surface heated by the irradiation of the first laser beam to move to the cooling position. On the other hand, from the graph of the simulation result shown in FIG. 8 described above, a consideration result that an elapsed time of 200 msec or 300 msec or more is required as the time until the graph becomes flat and reaches thermal equilibrium is obtained. Since the value of this elapsed time τ = 413 (msec) is a value of 300 msec or more, it does not contradict the result of consideration based on FIG. In other words, it has been found that the distance L between the cooling position and the first beam irradiation region should be set longer as the processing speed V increases.
 液晶ディスプレイ、プラズマディスプレイなどのフラットパネルディスプレイに用いるガラスの切断が、現在はダイアモンドカッターで行われており、カレット発生のための切断後の洗浄工程の必要性や、マイクロクラックの存在による強度低下などの問題を呈している。本発明による脆性材料の分割装置および割断方法は、液晶ディスプレイ、プラズマディスプレイなどのフラットパネルディスプレイに用いるガラスの割断、石英、セラミック、半導体などの各種の脆性材料の割断に使用することができる。本発明に係る脆性材料の分割装置および割断方法がフラットパネルディスプレイ等の製造過程に導入されれば、加工速度、加工品質、経済性などの向上、従来技術の弱点克服などにおいて大きな効果が期待できる。 Cutting of glass used for flat panel displays such as liquid crystal displays and plasma displays is currently performed with a diamond cutter, and the necessity of a cleaning process after cutting to generate cullet, and the strength reduction due to the presence of microcracks, etc. Presents the problem. The brittle material splitting apparatus and cleaving method according to the present invention can be used for cleaving glass used in flat panel displays such as liquid crystal displays and plasma displays, and cleaving various brittle materials such as quartz, ceramics, and semiconductors. If the brittle material splitting apparatus and cutting method according to the present invention are introduced into the manufacturing process of flat panel displays and the like, a great effect can be expected in improving processing speed, processing quality, economy, etc., and overcoming the weaknesses of the prior art. .
 11 ガラス基板、12 割断予定線、13 第1のレーザビーム、14 第2のレーザビーム、15 冷却点または冷却位置、16 初亀裂、17 割断面、18 割断面が生じていない領域、19 スクライブ溝、21 CO2レーザ、22 レーザビーム、23 反射鏡、24 集光レンズ、25 CO2レーザ、26 レーザビーム、27 ビームエキスパンダ、28 反射鏡、29 ビーム整形手段、31 冷却装置、31 初亀裂形成装置、32 テーブル、33 X-Y駆動装置、131 第1のレーザビームによる温度プロファイル、133 遮蔽部分、141 第2のレーザビームによる温度プロファイル。 DESCRIPTION OF SYMBOLS 11 Glass substrate, 12 Planned cutting line, 13 1st laser beam, 14 2nd laser beam, 15 Cooling point or cooling position, 16 Initial crack, 17 Split section, 18 No section area, 19 Scribing groove , 21 CO2 laser, 22 laser beam, 23 reflector, 24 condenser lens, 25 CO2 laser, 26 laser beam, 27 beam expander, 28 reflector, 29 beam shaping means, 31 cooling device, 31 initial crack forming device, 32 table, 33 XY drive unit, 131 temperature profile by first laser beam, 133 shielding part, 141 temperature profile by second laser beam.

Claims (17)

  1.  脆性材料に想定された割断予定線に対して、その割断予定線上に形成された初亀裂の側から前記割断予定線に沿って前記脆性材料を加熱し、前記割断予定線に沿って加熱する位置を相対的に移動させることで前記脆性材料を分割する脆性材料の分割装置であって、
     前記割断予定線に沿って、前記脆性材料にレーザビームを照射して加熱部分を生成するレーザビーム照射手段と、
     前記割断予定線に沿った移動方向に関し前記加熱部分の後方の位置で前記脆性材料を局所的に冷却する冷却手段と、
     を備え、
     前記レーザビーム照射手段は、
     前記加熱部分にて、前記移動方向の前方に位置する第1レーザビーム照射領域を形成する第1ビーム照射部と、
     前記加熱部分にて、前記第1レーザビーム照射領域の前記移動方向の後方において前記割断予定線に沿って細長い形状の第2レーザビーム照射領域を形成する第2ビーム照射部と、を含む
     ことを特徴とする脆性材料分割装置。
    A position where the brittle material is heated along the planned cutting line from the side of the initial crack formed on the planned cutting line, and heated along the planned cutting line, with respect to the planned cutting line assumed for the brittle material A brittle material splitting device for splitting the brittle material by relatively moving,
    Laser beam irradiation means for generating a heated portion by irradiating the brittle material with a laser beam along the planned cutting line;
    A cooling means for locally cooling the brittle material at a position behind the heating portion with respect to a moving direction along the planned cutting line;
    With
    The laser beam irradiation means includes
    A first beam irradiation unit that forms a first laser beam irradiation region located in front of the moving direction in the heating portion;
    A second beam irradiation unit that forms a second laser beam irradiation region having an elongated shape along the planned cutting line behind the first laser beam irradiation region in the moving direction at the heating portion. A brittle material splitting device.
  2.  前記第1ビーム照射部によって形成される第1レーザビーム照射領域に与えるレーザパワーは、前記第2ビーム照射部によって形成される第2レーザビーム照射領域に与えられるレーザパワーよりも大きいことを特徴とする請求項1に記載の脆性材料の分割装置。 The laser power applied to the first laser beam irradiation region formed by the first beam irradiation unit is larger than the laser power applied to the second laser beam irradiation region formed by the second beam irradiation unit. The brittle material dividing device according to claim 1.
  3.  前記第1ビーム照射部によって形成される第1レーザビーム照射領域のレーザパワー密度は、前記第2ビーム照射部によって形成される第2レーザビーム照射領域のレーザパワー密度よりも低いことを特徴とする請求項1または2に記載の脆性材料の分割装置。 The laser power density of the first laser beam irradiation region formed by the first beam irradiation unit is lower than the laser power density of the second laser beam irradiation region formed by the second beam irradiation unit. The brittle material dividing device according to claim 1 or 2.
  4.  前記第1ビーム照射部によって形成される第1レーザビーム照射領域の位置は、前記第2レーザビーム照射領域の後端から離れた位置を前記冷却手段により局所的に冷却して形成される冷却位置に対して、前記割断予定線に沿った方向の距離が可変であることを特徴とする請求項1に記載の脆性材料の分割装置。 The position of the first laser beam irradiation region formed by the first beam irradiation unit is a cooling position formed by locally cooling a position away from the rear end of the second laser beam irradiation region by the cooling means. In contrast, the brittle material dividing device according to claim 1, wherein a distance in a direction along the planned cutting line is variable.
  5.  前記第1レーザビーム照射領域の位置と前記冷却位置との距離は、前記脆性材料の割断速度および厚さの少なくとも一方に基づいて設定されることを特徴とする請求項4に記載の脆性材料の分割装置。 The distance between the position of the first laser beam irradiation region and the cooling position is set based on at least one of the breaking speed and the thickness of the brittle material. Splitting device.
  6.  前記第1レーザビーム照射領域の形状が略円形であることを特徴とする請求項1に記載の脆性材料の分割装置。 2. The brittle material dividing device according to claim 1, wherein the first laser beam irradiation region has a substantially circular shape.
  7.  前記第1レーザビーム照射領域の形状が略円形の中央部を所定の幅で分断した形状であることを特徴とする請求項1に記載の脆性材料の分割装置。 2. The brittle material dividing device according to claim 1, wherein the first laser beam irradiation region has a shape obtained by dividing a substantially circular central portion with a predetermined width.
  8.  前記第1レーザビーム照射領域を形成する第1レーザビームは、前記第1ビーム照射部からのレーザ光の光路の中央部に所定の幅の遮蔽物を配して生成されることを特徴とする請求項7に記載の脆性材料の分割装置。 The first laser beam forming the first laser beam irradiation region is generated by arranging a shield having a predetermined width in the center of the optical path of the laser beam from the first beam irradiation unit. The brittle material dividing apparatus according to claim 7.
  9.  前記第2レーザビーム照射領域を形成する第2レーザビームは、前記第2ビーム照射部のレーザ光源からのレーザ光を回折光学素子または平凸シリンドリカルレンズに通過させて整形して生成されることを特徴とする請求項1に記載の脆性材料の分割装置。 The second laser beam forming the second laser beam irradiation region is generated by shaping the laser light from the laser light source of the second beam irradiation unit through a diffractive optical element or a plano-convex cylindrical lens. The brittle material dividing device according to claim 1, wherein
  10.  脆性材料の割断予定線の端部に初亀裂を形成する初亀裂形成手段をさらに備え、前記第1ビーム照射部および第2ビーム照射部を前記初亀裂の位置から前記割断予定線に沿って移動させることを特徴とする請求項1に記載の脆性材料の分割装置。 An initial crack forming means for forming an initial crack at an end portion of the fracture line of the brittle material is further provided, and the first beam irradiation unit and the second beam irradiation unit are moved from the position of the initial crack along the schedule line. The brittle material dividing apparatus according to claim 1, wherein:
  11.  前記レーザビーム照射手段は、前記第1ビーム照射部に50%以上のレーザパワーを分配し、前記第2ビーム照射部に50%未満のレーザパワーを分配する、ビームスプリッタを含むことを特徴とする請求項1に記載の脆性材料の分割装置。 The laser beam irradiation unit includes a beam splitter that distributes a laser power of 50% or more to the first beam irradiation unit and distributes a laser power of less than 50% to the second beam irradiation unit. The brittle material dividing device according to claim 1.
  12.  脆性材料の割断予定線に沿って加熱し、前記脆性材料と前記加熱する位置を前記割断予定線に沿って相対的に移動させて前記脆性材料を割断する脆性材料の割断方法であって、
     前記割断予定線上の脆性材料端部に初亀裂を形成し、前記初亀裂を始点として前記脆性材料の加熱を第1のレーザビームおよび第2のレーザビームで行い、前記第1のレーザビームは前記第2のレーザビームに対し前記割断予定線に沿った移動方向の前方に位置するビームであり、前記第2のレーザビームは前記割断予定線に沿って細長い形状のビームであり、前記第2のレーザビームの後端から所定位置だけ離れた位置を局所的に冷却することを特徴とする脆性材料の割断方法。
    A brittle material cleaving method that heats along a fracturing line of a brittle material, cleaves the brittle material by relatively moving the brittle material and the heating position along the fracturing line,
    An initial crack is formed at an edge of the brittle material on the planned cutting line, and the brittle material is heated with the first laser beam and the second laser beam starting from the initial crack, and the first laser beam is The second laser beam is a beam positioned forward in the movement direction along the planned cutting line, and the second laser beam is a beam having an elongated shape along the planned cutting line. A method for cleaving a brittle material, wherein a position separated from a rear end of a laser beam by a predetermined position is locally cooled.
  13.  前記第1のレーザビームによって形成される第1レーザビーム照射領域に与えるレーザパワーは、前記第2のレーザビームによって形成される第2レーザビーム照射領域に与えるレーザパワーよりも大きいことを特徴とする請求項12に記載の脆性材料の割断方法。 The laser power given to the first laser beam irradiation region formed by the first laser beam is larger than the laser power given to the second laser beam irradiation region formed by the second laser beam. The method for cleaving a brittle material according to claim 12.
  14.  前記第1のレーザビームによって形成される第1レーザビーム照射領域のレーザパワー密度は、前記第2のレーザビームによって形成される第2レーザビーム照射領域のレーザパワー密度よりも低いことを特徴とする請求項12または13に記載の脆性材料の割断方法。 The laser power density of the first laser beam irradiation region formed by the first laser beam is lower than the laser power density of the second laser beam irradiation region formed by the second laser beam. The method for cleaving a brittle material according to claim 12 or 13.
  15.  前記第1のレーザビームによって形成される第1レーザビーム照射領域の位置は、前記第2のレーザビームの後端から離れた位置を局所的に冷却して形成される冷却位置に対して、前記割断予定線に沿った方向の距離が可変であることを特徴とする請求項12に記載の脆性材料の割断方法。 The position of the first laser beam irradiation region formed by the first laser beam is compared with the cooling position formed by locally cooling the position away from the rear end of the second laser beam. The method for cleaving a brittle material according to claim 12, wherein the distance in the direction along the planned cleaving line is variable.
  16.  前記第1レーザビーム照射領域の位置と前記冷却位置との距離は、前記脆性材料の割断速度および厚さの少なくとも一方に基づいて設定されることを特徴とする請求項15に記載の脆性材料の割断方法。 The distance between the position of the first laser beam irradiation region and the cooling position is set based on at least one of the cleaving speed and the thickness of the brittle material. Cleaving method.
  17.  脆性材料の割断予定線の端部に初亀裂が形成され、第1のレーザビームおよび第2のレーザビームを前記初亀裂の位置から前記割断予定線に沿って移動させることを特徴とする請求項12に記載の脆性材料の割断方法。 An initial crack is formed at an end portion of a planned fracture line of the brittle material, and the first laser beam and the second laser beam are moved from the position of the initial crack along the planned fracture line. 12. A method for cleaving a brittle material according to 12.
PCT/JP2009/070900 2008-12-16 2009-12-15 Splitting apparatus and cleavage method for brittle material WO2010071128A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117016142A KR101404250B1 (en) 2008-12-16 2009-12-15 Splitting apparatus and cleavage method for brittle material
CN2009801489582A CN102239034A (en) 2008-12-16 2009-12-15 Splitting apparatus and cleavage method for brittle material
JP2010542973A JP5562254B2 (en) 2008-12-16 2009-12-15 Brittle material splitting apparatus and splitting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-320251 2008-12-16
JP2008320251 2008-12-16

Publications (1)

Publication Number Publication Date
WO2010071128A1 true WO2010071128A1 (en) 2010-06-24

Family

ID=42268799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070900 WO2010071128A1 (en) 2008-12-16 2009-12-15 Splitting apparatus and cleavage method for brittle material

Country Status (4)

Country Link
JP (1) JP5562254B2 (en)
KR (1) KR101404250B1 (en)
CN (1) CN102239034A (en)
WO (1) WO2010071128A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018537389A (en) * 2015-11-25 2018-12-20 コーニング インコーポレイテッド How to separate a glass web
US10620444B2 (en) 2014-11-19 2020-04-14 Trumpf Laser- Und Systemtechnik Gmbh Diffractive optical beam shaping element
US10661384B2 (en) 2014-11-19 2020-05-26 Trumpf Laser—und Systemtechnik GmbH Optical system for beam shaping
US10882143B2 (en) 2014-11-19 2021-01-05 Trumpf Laser- Und Systemtechnik Gmbh System for asymmetric optical beam shaping
JP7564537B2 (en) 2020-12-18 2024-10-09 株式会社M―Sfc Laser processing method and laser processing device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515494B (en) * 2011-12-05 2014-04-09 深圳市华星光电技术有限公司 Cutting device and method of glass substrate
TWI658015B (en) 2014-02-20 2019-05-01 Corning Incorporated Methods and apparatus for cutting radii in flexible thin glass and glass substrate produced thereby
JP6700581B2 (en) * 2015-06-25 2020-05-27 日本電気硝子株式会社 Method and apparatus for cutting tube glass, and method for manufacturing tube glass product
WO2019188518A1 (en) * 2018-03-30 2019-10-03 東京エレクトロン株式会社 Laser processing device and laser processing method
JP7466829B2 (en) * 2020-02-06 2024-04-15 日本電気硝子株式会社 Glass plate manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08197271A (en) * 1995-01-27 1996-08-06 Ricoh Co Ltd Method for cracking brittle material and device for cracking brittle material
JP2005212364A (en) * 2004-01-30 2005-08-11 Shibaura Mechatronics Corp Fracturing system of brittle material and method thereof
JP2008246808A (en) * 2007-03-30 2008-10-16 Japan Steel Works Ltd:The Processing method for workpiece made of high brittle non-metal material and device thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100583889B1 (en) * 2001-07-16 2006-05-26 미쓰보시 다이야몬도 고교 가부시키가이샤 Scribing device for fragile material substrate
BR0211288A (en) * 2001-07-19 2004-08-10 Univation Tech Llc Mixed metallocene catalyst systems containing a weak comonomer incorporator and a good comonomer incorporator
WO2006038565A1 (en) * 2004-10-01 2006-04-13 Mitsuboshi Diamond Industrial Co., Ltd. Brittle material scribing method and scribing apparatus
JP2006137169A (en) * 2004-11-12 2006-06-01 Lemi Ltd Method and apparatus for breaking and cutting fragile material
JP2007076930A (en) * 2005-09-12 2007-03-29 Joyo Kogaku Kk Method of cutting glass
WO2007094348A1 (en) * 2006-02-15 2007-08-23 Toray Engineering Co., Ltd. Laser scribing method, laser scribing apparatus and cut substrate cut by using such method or apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08197271A (en) * 1995-01-27 1996-08-06 Ricoh Co Ltd Method for cracking brittle material and device for cracking brittle material
JP2005212364A (en) * 2004-01-30 2005-08-11 Shibaura Mechatronics Corp Fracturing system of brittle material and method thereof
JP2008246808A (en) * 2007-03-30 2008-10-16 Japan Steel Works Ltd:The Processing method for workpiece made of high brittle non-metal material and device thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10620444B2 (en) 2014-11-19 2020-04-14 Trumpf Laser- Und Systemtechnik Gmbh Diffractive optical beam shaping element
US10661384B2 (en) 2014-11-19 2020-05-26 Trumpf Laser—und Systemtechnik GmbH Optical system for beam shaping
US10882143B2 (en) 2014-11-19 2021-01-05 Trumpf Laser- Und Systemtechnik Gmbh System for asymmetric optical beam shaping
US11150483B2 (en) 2014-11-19 2021-10-19 Trumpf Laser- Und Systemtechnik Gmbh Diffractive optical beam shaping element
US11780033B2 (en) 2014-11-19 2023-10-10 Trumpf Laser- Und Systemtechnik Gmbh System for asymmetric optical beam shaping
JP2018537389A (en) * 2015-11-25 2018-12-20 コーニング インコーポレイテッド How to separate a glass web
JP7564537B2 (en) 2020-12-18 2024-10-09 株式会社M―Sfc Laser processing method and laser processing device

Also Published As

Publication number Publication date
KR20110106360A (en) 2011-09-28
JP5562254B2 (en) 2014-07-30
CN102239034A (en) 2011-11-09
JPWO2010071128A1 (en) 2012-05-31
KR101404250B1 (en) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5562254B2 (en) Brittle material splitting apparatus and splitting method
US10358374B2 (en) Methods for laser scribing and separating glass substrates
US8720228B2 (en) Methods of separating strengthened glass substrates
US7982162B2 (en) Method and apparatus for scoring and separating a brittle material with a single beam of radiation
EP2724993B1 (en) Methods for laser scribing and separating glass substrates
KR100849696B1 (en) Brittle material scribing method and scribing apparatus
JP5113462B2 (en) Method for chamfering a brittle material substrate
JP5345334B2 (en) Thermal stress cleaving method for brittle materials
JP5325209B2 (en) Processing method of brittle material substrate
TWI488703B (en) Scribing method and scribing apparatus for substrate of brittle material
KR20040007251A (en) A scribing apparatus
JP5590642B2 (en) Scribing apparatus and scribing method
JP2007055000A (en) Method and device for cutting article to be processed made of nonmetal material
CN113453902B (en) Apparatus and method for separating composite safety glass sheets
JP2011057494A (en) Cleavage method and device for brittle material
JP2010253752A (en) Device and method of cutting brittle material
JP2009262408A (en) Method for scribing brittle material substrate and device therefor
KR20190083459A (en) Cutting Apparatus using Laser Spot Beam
KR100408534B1 (en) Cutting method of non-metal material and cutting apparatus
JP2009084133A (en) Full body cleaving method of brittle material
WO2014175145A1 (en) Method for cutting glass plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980148958.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833431

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2010542973

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117016142

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09833431

Country of ref document: EP

Kind code of ref document: A1