Nothing Special   »   [go: up one dir, main page]

WO2007094422A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2007094422A1
WO2007094422A1 PCT/JP2007/052760 JP2007052760W WO2007094422A1 WO 2007094422 A1 WO2007094422 A1 WO 2007094422A1 JP 2007052760 W JP2007052760 W JP 2007052760W WO 2007094422 A1 WO2007094422 A1 WO 2007094422A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange medium
header
tubes
inlet header
Prior art date
Application number
PCT/JP2007/052760
Other languages
English (en)
French (fr)
Inventor
Toru Moriya
Takahide Maezawa
Tadashi Nakabou
Original Assignee
Gac Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gac Corporation filed Critical Gac Corporation
Priority to EP07714290A priority Critical patent/EP1985949A1/en
Priority to JP2008500546A priority patent/JP4866416B2/ja
Priority to US12/279,620 priority patent/US20100314090A1/en
Publication of WO2007094422A1 publication Critical patent/WO2007094422A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure

Definitions

  • the present invention relates to a heat exchanger used in a refrigeration or cooling device.
  • the heat exchange described in this document is provided with refrigerant distribution means using flat distribution pipes, and the flat distribution pipes are concentrated in a part of the header, particularly in the lower part of the header where liquid refrigerant is likely to accumulate. Thus, the liquid refrigerant is caused to flow into the heat exchange part.
  • Such a structure In the case of manufacturing, the refrigerant state at the inlets of multiple flat distribution pipes approaches uniform, but the difference in tube pressure loss due to the difference in tube length occurs, so the refrigerant distribution to multiple tubes is not necessarily uniform. I can not say.
  • it is difficult to provide heat exchange with a simple configuration because it has a structure in which multiple flat distribution pipes with bent parts are arranged.
  • Japanese Patent Publication No. 2000-249428 describes an inlet header, an outlet header, a plurality of tubes extending between both headers, and a meander interposed between adjacent tubes.
  • An evaporator with fins is disclosed.
  • a plurality of refrigerant injectors are provided at the inlet to the inlet header.
  • Each of the plurality of refrigerant injectors has an injection orifice.
  • One aspect of the present invention includes a plurality of tubes, an inlet header for distributing the heat exchange medium to the plurality of tubes, and an outlet header for recovering the heat exchange medium from the plurality of tubes. It has a heat exchanger.
  • the inlet header of the heat exchanger is a circulation pipe through which at least a part of the heat exchange medium flowing into the inlet header can circulate, and a plurality of tubes are connected to at least a part of the circulation pipe.
  • the difference between the generated circulation pipe and the heat exchange medium blown out in the axial direction of the circulation pipe to forcibly circulate at least part of the heat exchange medium flowing into the inlet header through the circulation pipe.
  • a mechanism for generating pressure (differential pressure generating mechanism).
  • the heat exchange medium that has already flowed in
  • the heat exchange medium existing in the inlet header is circulated by the circulation pipe by the differential pressure generation mechanism. It is blown out in the axial direction of the road and circulates forcibly in a circulation pipe line that communicates with multiple tubes. For this reason, the state of the heat exchange medium inside the circulation line constituting the inlet header is more uniform. Or it can be in a nearly uniform state. For example, even when a two-phase heat exchange medium including a gas phase and a liquid phase flows in, the heat exchange medium can be prevented from separating into a liquid phase component and a gas phase component in the inlet header. For this reason, even if a plurality of tubes are connected in an inlet header having a certain axial length and dispersed in the axial direction of the inlet header, a more uniform heat exchange medium is provided for each tube. Can be distributed.
  • this heat exchange ⁇ it is possible to omit a distribution pipe that requires three-dimensional bending. In addition, it is possible to omit bending the tube side in order to make the distribution of the heat exchange medium uniform. This does not exclude the fact that this heat exchange includes these three-dimensional pipes and bent pipes. However, this heat exchange makes it possible to make the phase state and flow rate of the heat exchange medium distributed to each tube uniform or close to that with a simpler configuration. For this reason, a heat exchanger with good heat exchange efficiency can be provided at a relatively low cost.
  • differential pressure generating mechanism is driven by external power such as a pump.
  • Some cooling systems depressurize or expand the heat exchange medium flowing into the heat exchanger in advance.
  • heat exchange applied to such a system it is possible to drive the differential pressure generating mechanism using the energy of the heat exchange medium. In this case, heat exchange
  • the differential pressure generating mechanism is preferably driven by a heat exchange medium flowing into the inlet header.
  • a turbocharger that rotates the turbine with the pressure of the drive part and forcibly sucks the heat exchange medium with the differential pressure generation part (pressurization part) of a coaxial compressor or the like ( A configuration similar to a supercharger can be applied.
  • the heat exchange medium flowing into the inlet header sucks at least a part of the heat exchange medium that has already flowed into the inlet header, and the heat exchange medium that flows into the inlet header and has already flowed into the inlet header.
  • a mechanism for mixing and blowing out at least a part of the heat exchange medium is more preferable as the differential pressure generating mechanism.
  • An example of such a mechanism is an ejector, and when the heat exchange medium is discharged from the ejector nozzle (orifice z constricted portion) at high speed (inflow into the inlet header), the inside of the nozzle is depressurized.
  • the ejector includes a type in which the heat exchange medium in the inlet header is sucked and mixed using the pressure drop caused by blowing the heat exchange medium.
  • At least a part of the circulation line of the inlet header can be constituted by a double pipe or a porous pipe (multiple pipe, multi-flow pipe). It is preferable that a differential pressure generating mechanism is provided at one end of the double tube or multiple tube, and that the other end of the double tube or multiple tube is communicated. By doing so, at least a part of the double pipe or the multiple pipe can be used as a circulation line.
  • another aspect of the present invention provides a plurality of tubes, an inlet header for distributing the heat exchange medium to the plurality of tubes, and an outlet header for recovering the plurality of tube force heat exchange media.
  • the inlet header is a circulation pipe through which at least a part of the heat exchange medium flowing into the inlet header can circulate, and a plurality of tubes are connected to at least a part of the circulation pipe. It is a heat exchanger including pipes.
  • Another aspect of the present invention is a header for distributing a heat exchange medium to a plurality of tubes.
  • This header includes a circulation conduit that allows at least a part of the heat exchange medium flowing into the header to circulate, and a circulation conduit in which a plurality of tubes are connected to at least a part of the circulation conduit.
  • This header can be provided with a differential pressure generating mechanism driven by the inflowing heat exchange medium.
  • the differential pressure generating mechanism preferably blows the heat exchange medium in the axial direction of the circulation pipe.
  • the differential pressure generating mechanism uses the heat exchange medium flowing into the header to suck and mix at least a part of the heat exchange medium that has flowed into the header (already flowed) and blow it out to the circulation pipe. It is desirable to use a projector.
  • the present invention includes a heat exchange system including the heat exchanger of one embodiment of the present invention and an apparatus (medium supply system) for supplying a heat exchange medium to the heat exchanger.
  • heat exchange systems or systems include refrigeration or refrigeration cycles and refrigeration equipment, refrigeration equipment, air conditioning equipment, storage, showcases, etc. including such cycles.
  • Cooling cycle A system suitable as a refrigeration cycle or a refrigeration cycle uses the heat exchanger of one embodiment of the present invention as an evaporator, pressurizes a heat exchange medium recovered from the evaporator, and cools the pressurized heat exchange medium. System with a condenser.
  • the ejector also functions as expansion means for reducing the pressure of the pressurized heat exchange medium and supplying it to the evaporator. Therefore, an inlet header force circulation pipe and an ejector for sucking and mixing at least a part of the heat exchange medium flowing into the inlet header and blowing out to the circulation pipe by the heat exchange medium flowing into the inlet header, and Heat exchange that includes is suitable for cycles and Z or systems that circulate refrigerant as a heat exchange medium.
  • the medium supply system may include expansion means for depressurizing the pressurized heat exchange medium and supplying it to the evaporator, or may be omitted.
  • FIG. 1 is a diagram showing an outline of a heat exchange system including a heat exchanger.
  • FIG. 2 is a diagram showing an outline of a heat exchanger that works on the first embodiment.
  • FIG. 3 is a diagram showing an outline of a heat exchanger that works on the second embodiment.
  • FIG. 4 is a diagram showing an outline of a part of a heat exchanger that works according to a third embodiment.
  • FIG. 5 is a diagram showing an outline of a part of a heat exchanger that works according to a fourth embodiment.
  • FIG. 6 is a diagram showing an outline of a heat exchanger that works on the fifth embodiment.
  • FIG. 7 is a diagram showing an example provided with different types of ejectors.
  • FIG. 8 is a diagram showing an outline of a heat exchanger that works on a sixth embodiment.
  • FIG. 9 is a diagram showing a cross section of the header.
  • FIG. 10 An expanded view of the header structure.
  • FIG. 1 shows a system 50 that includes heat exchangers.
  • This system (heat exchange system) 50 includes an air conditioner and a refrigeration apparatus, and includes other systems that have a heat exchange cycle and a heat exchange cycle called a cooling cycle or a refrigeration cycle.
  • the system 50 is an air conditioning system
  • the system (heat exchange system) 50 includes a liquid (liquid) heat exchange medium (hereinafter referred to as a refrigerant) R and an external fluid (for example, outdoor air) F. Exchange heat with.
  • a refrigerant liquid (liquid) heat exchange medium
  • F external fluid
  • System 50 uses heat exchange with refrigerant R It has an evaporator (evaporator) 100 that cools indoor air G, and a condenser (condenser) 200 that exchanges heat between the compressed gaseous refrigerant R and the external fluid F to make the refrigerant R liquid.
  • evaporator evaporator
  • condenser condenser
  • system 50 includes compressor 51 that pressurizes refrigerant R in addition to capacitor 200, and refrigerant R temporarily. It includes an accumulator 52 that stores energy and an expansion valve 53 that expands the refrigerant R supplied to the evaporator 100.
  • the refrigerant R force in the evaporator 100 also flows out the refrigerant outlet force of the evaporator 100, passes through the accumulator 52, the compressor 51, the condenser 200, and the expansion valve 53, and the refrigerant-filled loca of the evaporator 100 again It circulates so as to flow into the evaporator 100.
  • FIG. 2 shows a heat exchange 100 & which is useful for the first embodiment of the present invention.
  • This heat exchange 100 a can be used as the evaporator 100 of the system 50.
  • the heat exchanger 100 a includes an inlet header 1 including a refrigerant inlet 6, an outlet header 2 including a refrigerant outlet 5, and a heat exchange unit 20.
  • the inlet header 1 and the outlet header 2 extend in the vertical direction, and are arranged in parallel to each other.
  • the heat exchanging unit 20 is for exchanging heat between the refrigerant R and the air G to cool the air G and the like.
  • the heat exchanging unit 20 includes a plurality of tubes 4 arranged in parallel to each other in a horizontal direction so that the inlet header 1 and the outlet header 2 communicate with each other, and fins 3 extending in the vertical direction perpendicular to the tubes 4. It is equipped with.
  • a typical tube 4 may be a flat tube having a circular cross section, and a perforated tube (multiple tube) in which the inside of the tube is divided into a plurality of portions. It's okay.
  • a typical example of the fin 3 is a plurality of plate-like fins arranged parallel to each other and attached so that the tube 4 passes therethrough.
  • the fin 3 may be a corrugated fin that connects between the tubes 4 while meandering, or a fin or a pin protruding from the tube 4.
  • the inlet header 1 has a function as a distributor for distributing the refrigerant R to the plurality of tubes 4 of the heat exchange unit 20.
  • the outlet header 2 has a function of collecting the refrigerant R from each tube 4.
  • Each tube 4 is connected to the inlet header 1 at one end. Connected to the outlet header 2 at the other end.
  • multiple tubes 4 can increase the heat exchange area by the tube itself, and by providing fin 3, the heat exchange area (contact area) with air G etc. can be further increased. Heat exchange efficiency. In order to avoid the effects of icing, frosting, etc., fins may not be provided, and the area occupied by fins may be reduced.
  • the inlet header 1 includes a circulation line 10 and a differential pressure generating mechanism 11 for forcibly circulating at least a part of the refrigerant R flowing into the inlet header 1.
  • the circulation conduit 10 includes a straight tubular forward passage 10a and a substantially U-shaped return passage 10b in which one end force of the forward passage 10a is also connected to the other end.
  • the forward path 10a guides the refrigerant R from the refrigerant inlet 6 at one end to the opposite end.
  • the return path 10b conversely, guides the refrigerant from the opposite end of the forward path 10a to the refrigerant inlet 6. Therefore, at least a part of the refrigerant R flowing into the inlet header 1 can be circulated by the circulation line 10 including the forward path 10a and the return path 10b.
  • the differential pressure generating mechanism 11 is an ejector that includes a throttle portion 7 and a suction portion 8, and is provided in the vicinity of the refrigerant inlet 6 of the inlet header 1.
  • the return path 10b of the circulation line 10 connects the vicinity of the back end (upper end) 15 opposite to the refrigerant inlet 6 of the inlet header 1 and the suction part 8 of the differential pressure generating mechanism 11 Is provided. Therefore, the differential pressure generating mechanism 11 is driven by the refrigerant R flowing into the inlet header 1, and sucks and mixes at least a part of the refrigerant (existing refrigerant) R that has already flowed into the inlet header 1 through the return path 10b. , Blow out to outbound 10a.
  • a plurality of tubes 4 are connected to an outward path 10a which is a part of the circulation line 10. That is, a plurality of tubes 4 are connected at substantially equal intervals between the suction path 9 that is a branch of the return path 10b of the circulation pipe 10 and the differential pressure generating mechanism 11.
  • the refrigerant R in a two-phase state, in which gas and liquid are mixed, is generated by the action of the accumulator 52, compressor 51, expansion valve 53, etc.
  • the refrigerant is supplied from the refrigerant inlet 6 to the inlet header 1 and passes through the throttle portion 7 of the suction portion 8.
  • the pressure inside the throttle portion 7 is reduced. By this pressure reduction, at least a part of the existing refrigerant R that has flowed into the inlet header 1 through the suction portion 8 via the return path 10b is sucked.
  • the cold flowing into the inlet header 1 The medium R and at least a part of the refrigerant R flowing into the inlet header 1 are mixed, and as indicated by arrows in FIG. 2, the refrigerant R flows from the differential pressure generating mechanism 11 to the inside of the inlet header 1 to the circulation pipe. It is ejected in the direction of the axis L of the road 10. And a part of it returns to the suction part 8 through the forward path 10a and the return path 10b again. For this reason, at least a part of the refrigerant R is forcibly circulated in the header 1, so that the state of the refrigerant R in the pipe-like inlet header 1 having a long shaft length is uniform. Become. In other words, by giving a pressure difference in which the refrigerant R is forced to circulate in the header 1, it is possible to prevent the occurrence of a state where the liquid phase and the gas phase are separated due to the head difference in a static state. .
  • a plurality of tubes 4 are connected at substantially equal intervals in the middle of the forward path 10a through which the refrigerant R flows from the bottom to the top. Part of the refrigerant R from the inlet header 1 is distributed to each tube 4, and the state of the refrigerant R distributed to each tube 4 can be made uniform. Further, since the state of the refrigerant R in the forward path 10a is homogenized including the state of gas-liquid mixing, the amount of the refrigerant R distributed to each tube 4 can be made uniform.
  • Five forces are also drained into the system 50. Therefore, the heat exchange load in each tube 4 is made uniform.
  • a heat exchanger can be provided at a relatively low cost. Further, since the shape of each tube 4 can be made the same, the occurrence of a pressure loss difference in each tube 4 can be prevented, and in this respect, the heat exchange efficiency can be improved.
  • the heat exchanger 100a it is possible to prevent the phase separation at the inlet header 1 due to the head difference. For this reason, the arrangement direction (direction) of the inlet header 1 of the heat exchanger 100a can be freely set. Accordingly, the heat exchanger 100a may be used in a posture in which the inlet header 1 is arranged in the horizontal direction, or may be used in a posture in which the inlet header 1 is arranged in the vertical direction. Further, when the inlet header 1 is used in the vertical direction, the refrigerant R is added to the inlet. The refrigerant R that can flow from the lower side of the inlet 1 may flow into the upper force of the inlet header 1. Furthermore, unlike these postures, heat exchange 100 & can be used in various postures, including the placement of the inlet header 1 at an angle, and multiple heat exchanges 100 & Refrigerant R can be evenly distributed to tube 4.
  • the cooling system 50 including the heat exchanger 100a can be arranged in a compact manner. Furthermore, this heat exchange ⁇ 100a employs a differential pressure generation mechanism 11 that uses the ejector effect, so that in addition to the power source generally used for heat exchange ⁇ Does not require a new power source. Therefore, it is economical. Also, by assigning a part of the pressure loss due to the expansion valve 53 to the ejector 11, which is a differential pressure generating mechanism, the heat exchange efficiency can be improved without impairing the economic efficiency of the system 50. If the expansion (pressure loss) by the ejector 11 is sufficient, the expansion valve 53 can be omitted.
  • FIG. 3 shows a heat exchanger 100b that is useful for the second embodiment of the present invention.
  • This heat exchange lOOb can also be used as the evaporator 100 of the heat exchange system 50 as described above.
  • a plurality of tubes 4 are connected to the return path 10b of the circulation line 10 of the inlet header 1 at almost equal intervals.
  • the state of the refrigerant R is almost constant not only in the forward path 10a but also in the return path 10b. Therefore, even if each tube 4 is connected to the return path 10b, the refrigerant R can be distributed almost uniformly to each tube 4.
  • the position at which the ejector 11 is located slightly away from the throttle portion 7 than the position immediately after the throttle portion 7, for example, the return path 10 b, is cooled by suction mixing. Since each tube 4 is connected to the return path 10b, the ejector 11 having the throttle portion 7 and each tube 4 are separated from each other. Therefore, the refrigerant R having a stable phase state can be distributed to each tube 4.
  • Fig. 4 shows a heat exchanger 100c that is useful for the third embodiment of the present invention.
  • This heat exchange lOOc can also be used as the evaporator 100 of the heat exchange system 50 as described above.
  • the inlet header 1 includes a U-shaped pipe including two straight pipe portions, and the U-shaped open side is connected by a suction path 9. Shi Therefore, the inlet header 1 includes a circulation pipe (circulation circuit) 10, and a plurality of tubes 4 are connected to both the forward path 10 a and the return path 10 b of the circulation pipe 10. Therefore, it is almost uniform with respect to the multiple tubes 4 arranged in two rows in the forward path 10a and the return path 10b.
  • FIG. 5 shows a heat exchanger 100d that is useful in the fourth embodiment of the present invention.
  • This heat exchanger 100d includes two heat exchange portions 20a and 20b, and can be used as the evaporator 100 of the heat exchange system 50 as described above.
  • the heat exchange sections 20a and 20b are provided with a common inlet header 1, and a plurality of tubes 4 of one heat exchange section 20a are connected to the forward path 10a of the circulation pipe 10 of the header 1.
  • the plurality of tubes 4 of the other heat exchange section 20b are connected to the return path 10b. Therefore, the refrigerant R can be evenly distributed to each of the tubes 4 of the plurality of heat exchanging portions 20a and 20b by using one inlet header 1.
  • FIG. 6 shows a heat exchanger 100e that can be applied to the fifth embodiment of the present invention.
  • This heat exchanger 100e can also be used as the evaporator 100 of the heat exchange system 50 as described above.
  • the circulation pipe 10 is configured by them.
  • the plurality of tubes 4 are connected to the outer pipe 12b that is the return path.
  • the circulation line 10 can be constructed inside of one tube may further provide a compact heat ⁇ having a simple appearance.
  • FIG. 7 shows a different example of the differential pressure generating mechanism 11.
  • the differential pressure generating mechanism 11 of each of the above embodiments is an ejector in which a suction part 8 is provided in the throttle part 7 of the bench lily tube. against these The differential pressure generating mechanism 11 shown in FIG. 7 is a spray type ejector.
  • This differential pressure generating mechanism 11 includes a suction nozzle 17 for generating a differential pressure for suction in the vicinity of the refrigerant inlet 6 of the header 1, and reduces the refrigerant R flowing into the header 1 to reduce the circulation pipe. Blow out in the axial direction of the forward path 10a.
  • a suction arch I hole 18 for sucking the existing refrigerant R already flowing into the header 1 from the return path 10b is provided. For this reason, due to the pressure drop caused by the refrigerant R blown from the suction nozzle 17, the refrigerant R flowing into the header 1 from the return path 10b is sucked into the forward path 10a and blown out in the axial direction of the forward path 10a. For this reason, the refrigerant R is forcibly circulated through the circulation line 10 constituting the header 1 by the differential pressure generating mechanism 11.
  • FIG. 8, FIG. 9, and FIG. 10 show a configuration in the vicinity of the header 1 of the heat exchanger 100f that works according to the sixth embodiment of the present invention.
  • This heat exchange ⁇ f can also be used as the evaporator 100 of the heat exchange system 50 as described above.
  • the inlet header 1 of this heat exchange ⁇ 100f is composed of a double pipe 12 having an inner pipe 12a and an outer pipe 12b.
  • the inner pipe 12a and the outer pipe 12b communicate with each other at the upper part of the header 1.
  • the outer tube 12b is composed of two members 13a and 13b having a semicircular cross section formed by extrusion and cutting.
  • a plurality of flat tubes 14 are attached to the inner member 13b, and these flat tubes 14 are connected to an outlet header (not shown).
  • a member 15 having a semicircular cross section is attached to the outer member 13a to constitute an inner tube 12a. Both ends of the two members 13a and 13b constituting the outer tube 12b are closed by the cap 16.
  • a nozzle 17 is attached to the lower end of the inner pipe 12a, and the refrigerant R flowing into the header 1 is blown out into the inner pipe 12a. This nozzle 17 becomes a differential pressure generating mechanism 11, and the outer pipe lb force is applied to the inner pipe 12a by the suction force of the refrigerant R blown out with the lower force of the inner pipe 12a directed upward. It is sucked into the inner pipe 12a through the lower gap 18.
  • the header 1 includes the inner pipe 12a and the outer pipe 12b, and has the circulation path 10 communicating with the tube 14.
  • the refrigerant R is forced to circulate through the circulation path 10. It is done. For this reason, the state of the refrigerant R inside the header 1 can be made more uniform, high heat exchange efficiency and heat exchange can be provided.
  • the header is used in a posture arranged along the vertical direction.
  • the heat exchange described above is taken as an example, but heat exchange can also be used in a posture in which the headers are arranged along the horizontal direction.
  • the differential pressure generating mechanism driven by the heat exchange medium flowing into the header and at least a part of the heat exchange medium flowing into the header are circulated.
  • the circulation means is not limited to this.
  • the circulating means may be any means that forcibly circulates at least a part of the heat exchange medium (refrigerant) flowing into the header.
  • a differential pressure generating mechanism provided with an ejector nozzle is a preferred example of the present invention, and is provided in the vicinity of the refrigerant inlet of the header, whereby the refrigerant flowing into the inlet header is used. At least a part of the refrigerant flowing into the inlet header can be sucked and mixed, and the mixed refrigerant can be blown out to the header. Therefore, it is suitable for a system including a cycle and a cycle for circulating the refrigerant as described above, in which the internal pressure of the heat exchanger is set low.
  • One of the other examples of the differential pressure generating mechanism driven by the refrigerant flowing into the header is that the turbine is rotated by the pressure of the driving unit, and the differential pressure generating part (pressurizing part) such as a coaxial compressor is used.
  • a supercharger is configured to forcibly suck in the heat exchange medium.
  • the drive portion and the differential pressure generating portion (pressurizing portion) are separated and mechanically connected.
  • a differential pressure generating mechanism such as a pump that operates with separate power.
  • the differential pressure generating mechanism may be a mechanism that sends out the refrigerant circulating in the inlet header without mixing it with the refrigerant flowing into the inlet header.
  • a differential pressure generating mechanism such as a pump pressurizes the refrigerant in the inlet header and forcibly circulates it.
  • the differential pressure generating mechanism does not have to be provided near the refrigerant inlet of the header.
  • Such a differential pressure generating mechanism may be provided in the middle of the circulation pipeline, for example, a pipeline not connected to the header in the forward route or the return route, a connection route of these pipelines, or the like. It is also possible to adopt a configuration in which the differential pressure generating mechanism can be attached to and detached from the circulation line of the header.
  • a heat exchange included in the embodiment of the present invention is provided by additionally installing a pipe line functioning as a forward path or a return path and an appropriate differential pressure generating mechanism for a header of a type in which refrigerant does not circulate.
  • ⁇ and heat exchange system can also be configured.
  • a heat exchanger having a plate-like fin as a heat exchange unit is taken as an example.
  • the shape of the fin is not limited to a plate shape.
  • the shape and configuration of the heat exchanging unit are not limited to these as long as the heat exchanging unit can exchange heat between the refrigerant (heat exchanging medium) and an external fluid such as air. It is not something.
  • the system of the present invention is not limited to air conditioning, but includes devices and systems that include various types of heat exchange as part of their functions, such as radiators, various cooling devices, and various refrigeration devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

 熱交換器(100a)は、複数のチューブ(4)と、これらチューブ(4)に冷媒を分配するための入口ヘッダ(1)と、これらチューブ(4)から冷媒を回収するための出口ヘッダ(2)とを有する。入口ヘッダ(1)は、この入口ヘッダ(1)に流入された冷媒の少なくとも一部を循環可能な循環管路(10)を含み、循環管路(10)の往路(10a)の側に複数のチューブ(4)が接続されている。さらに、入口ヘッダ(1)は、入口ヘッダに流入する冷媒により、入口ヘッダに流入された冷媒の少なくとも一部を吸引混合して吹き出すエジェクタ11を含む。この入口ヘッダ(1)は、循環管路(10)に接続されたチューブ(4)に対して、より均一な状態の冷媒を供給できる。

Description

明 細 書
熱交換器
技術分野
[0001] 本発明は、冷凍あるいは冷却装置などに用いられる熱交換器に関するものである。
背景技術
[0002] 熱交^^にぉ 、て、熱交換効率を高くするためには、ヘッダに供給された熱交換 媒体を熱交換用の複数のチューブに均等に分配することが重要である。しかしながら 、熱交^^、特に蒸発器 (エバポレータ)などでは、一般に、流入してくる熱交換媒体 (冷媒)が気相および液相を含む二相の状態である。このため、ヘッダの内部におい て、比重が大きぐ重力の影響を受け易い液体成分と、比重が小さぐ重力の影響を 受け難い気体成分とが分離し、熱交換用の複数のチューブへの冷媒分配が不均一 となり易い。このような熱交換媒体の分配の不均一性は、ヘッダが鉛直方向となるよう な姿勢で熱交換器を使用する場合に顕著である。このため、冷媒などの熱交換媒体 のチューブに対する分配をより均一にすることができる熱交^^が求められている。
[0003] 冷媒分配の不均一を改善するため、熱交翻としては、日本特許公開公報 2004
- 317056号の従来技術として紹介されて 、るような複数の分配管をそれぞれ異な る形状に 3次元的に曲げてなるディストリビュータを備えたものが知られている。また、 この文献には、複数の分配管を液体冷媒が溜まる入口ヘッダの一部分に集中して配 置した熱交^^が開示されている。
[0004] この文献に開示されているようなディストリビュータを備えた熱交^^では、複数の 分配管を、それぞれ異なる形状であって、し力も、 3次元的に複雑な形状に曲げる必 要がある。このため、パーツの数が多ぐその製造コストも高くなり易い。さらに、三次 元的に曲がった形状の分配管を配置するためにはスペースが必要となるため、へッ ダおよび熱交換器が大型化し易 ヽ。
[0005] さらに、この文献に記載の熱交 は、偏平分配管を用いた冷媒分配手段を備え たものであり、ヘッダの一部分、特に、液状冷媒が溜まり易いヘッダ下部分に偏平分 配管を集中させて、液状冷媒を熱交換部に流入させるようにしている。このような構 造の場合、複数の偏平分配管の入口の冷媒状態は均一に近づくが、チューブの長 さの差によるチューブの圧力損失の差が生ずるので、複数のチューブへの冷媒分配 が必ずしも均一になるとは言えない。さらに、曲げ部を持った複数の偏平分配管を配 置する構造となるため、シンプルな構成の熱交翻を提供することは難しい。
[0006] 日本特許公開公報 2000— 249428号には、入口ヘッダと、出口ヘッダと、両へッ ダの間に延設された複数のチューブと、各隣接するチューブの間に介設された蛇行 フィンとを備えた蒸発器が開示されている。この蒸発器では、入口ヘッダへの入口に 、複数の冷媒噴射器が設けられている。複数の冷媒噴射器は、それぞれ、噴射オリ フィスを有している。この文献に記載の蒸発器のように、ヘッダへの入口に噴射オリフ イスを設けても、ヘッダ内の全体に均一に冷媒を分布するように噴射させることは困 難であり、さらに、噴射量および分布は流量の影響を受け易い。オリフィスの配置、向 き、さらに、ヘッダ内へのチューブの突き出し量などを調整することにより流量に応じ て適切な分配を行えるような構成をヘッダに組み込むことは困難である。さらに、流量 の多少、ヘッダの向き、チューブの内圧などの条件の変動に対して、適切な冷媒分 酉己を得ることち難しい。
発明の開示
[0007] 本発明の一態様は、複数のチューブと、これら複数のチューブに熱交換媒体を分 配するための入口ヘッダと、これら複数のチューブから熱交換媒体を回収するための 出口ヘッダとを有する熱交換器である。この熱交換器の入口ヘッダは、当該入口へッ ダに流入された熱交換媒体の少なくとも一部が循環可能な循環管路であって、その 循環管路の少なくとも一部に複数のチューブが接続された循環管路と、熱交換媒体 を循環管路の軸方向に吹き出して、入口ヘッダに流入された熱交換媒体の少なくと も一部を、循環管路に強制的に循環させるための差圧を発生する機構 (差圧発生機 構)とを含む。
[0008] この熱交換器によれば、入口ヘッダに流入された (流入済の)熱交換媒体 (入口へ ッダに既存の熱交換媒体)の少なくとも一部が、差圧発生機構によって循環管路の 軸方向に吹き出され、複数のチューブと連通した循環管路内を強制的に循環する。 このため、入口ヘッダを構成する循環管路の内部の熱交換媒体の状態を、より均一 または均一に近い状態にできる。例えば、気相および液相を含む 2相状態の熱交換 媒体が流入した場合でも、入口ヘッダ内で熱交換媒体が液相成分と、気相成分とに 分離することを抑止できる。このため、軸長がある程度長い入口ヘッダであって、この 入口ヘッダの軸方向に分散した状態で複数のチューブを接続しても、それぞれのチ ユーブに対し、より均一な状態の熱交換媒体を分配できる。
[0009] この熱交^^によれば、 3次元的な曲げを要する分配管を省くことが可能となる。ま た、熱交換媒体の分配を均一化するためにチューブ側を曲げ加工することを省くこと も可能となる。このことは、この熱交^^が、これらの 3次元的な配管、曲げ加工され た配管が含まれることを排除することではない。し力しながら、この熱交^^により、よ りシンプルな構成で各チューブに分配される熱交換媒体の相状態と流量とを均一ま たはそれに近いより状態にすることが可能となる。このため、熱交換効率の良好な熱 交換器を比較的安価にて提供できる。
[0010] 差圧発生機構の一例は、ポンプなどの外部の動力により駆動されるものである。冷 却システムなどにおいては、熱交換器に流入する熱交換媒体を事前に減圧あるいは 膨張するものがある。そのようなシステムに適用する熱交^^であると、熱交換媒体 のエネルギーを用いて差圧発生機構を駆動することが可能である。この場合、熱交
^^に一般に用いられている動力源の他、新たな動力源を必要としないため、経済 的である。すなわち、差圧発生機構は、入口ヘッダに流入する熱交換媒体により駆 動されるものであることが望ましい。差圧発生機構としては、例えば、駆動部分の圧 力でタービンを回し、同軸のコンプレッサなどの差圧発生部分 (加圧部分)で熱交換 媒体を強制的に吸い込む、過給器のような (過給器に近似した)構成を適用できる。
[0011] 入口ヘッダに流入する熱交換媒体により、すでに入口ヘッダに流入された熱交換 媒体の少なくとも一部を吸引し、入口ヘッダに流入する熱交換媒体と、すでに入口へ ッダに流入された熱交換媒体の少なくとも一部とを混合して吹き出すための機構は、 差圧発生機構としてより好ましい。このような機構の一例はェジェクタであり、ェジエタ タノズル (オリフィス z絞り部)から高速で熱交換媒体が吐き出される (入口ヘッダに流 入する)際に、ノズル内部が減圧される。この減圧により、入口ヘッダに流入された熱 交換媒体 (既存の熱交換媒体)の少なくとも一部が吸引され、入口ヘッダに流入する 熱交換媒体と入口ヘッダに流入された熱交換媒体の少なくとも一部とが混合し、循 環管路を介して、入口ヘッダに流入された熱交換媒体の少なくとも一部が強制的に 循環する。また、ェジ クタには、ノズル力も熱交換媒体を吹出すことによる圧力低下 を利用して、入口ヘッダにある熱交換媒体を吸引し、混合するタイプも含まれる。
[0012] 入口ヘッダの循環管路は、その少なくとも一部を 2重管または多孔管(多重管、多 流路管)により構成できる。 2重管または多重管の一端部に差圧発生機構を設け、こ の 2重管または多重管の他端部が連通して 、るように構成することが好ま 、。このよ うにすることにより、 2重管または多重管の少なくとも一部を循環管路とすることができ る。
[0013] 差圧発生機構を入口ヘッダおよび Zまたは熱交 力 分離して供給することは 可能である。したがって、本発明の他の態様は、複数のチューブと、これら複数のチ ユーブに熱交換媒体を分配するための入口ヘッダと、これら複数のチューブ力 熱 交換媒体を回収するための出口ヘッダとを有し、入口ヘッダは、この入口ヘッダに流 入された熱交換媒体の少なくとも一部が循環可能な循環管路であって、当該循環管 路の少なくとも一部に複数のチューブが接続された循環管路を含む、熱交換器であ る。また、本発明の他の態様は、複数のチューブに熱交換媒体を分配するためのへ ッダである。このヘッダは、当該ヘッダに流入された熱交換媒体の少なくとも一部が 循環可能な循環管路であって、当該循環管路の少なくとも一部に複数のチューブが 接続された循環管路を備えている。このヘッダに、流入する熱交換媒体により駆動さ れる差圧発生機構を設けておくことが可能である。差圧発生機構は、この差圧発生 機構力も熱交換媒体を循環管路の軸方向に吹き出すことが望ましい。また、差圧発 生機構は、当該ヘッダに流入する熱交換媒体により、当該ヘッダに流入された (流入 済の)熱交換媒体の少なくとも一部を吸引混合して循環管路に吹き出すためのェジ ェクタにすることが望ましい。
[0014] さらに、本発明は、本発明の一態様の熱交換器と、熱交換器に熱交換媒体を供給 する装置 (媒体供給システム)とを有する熱交換システムを含む。そのような熱交換シ ステムまたはシステムは、冷却サイクルまた冷凍サイクルおよびそのようなサイクルを 含む冷凍装置、冷却装置、空調装置、収納庫、ショーケースなどを含む。冷却サイク ルまたは冷凍サイクルとして好適なシステムは、本発明の一態様の熱交換器を蒸発 器とし、その蒸発器から回収された熱交換媒体を加圧する装置と、加圧された熱交 換媒体を冷却する凝縮器とを有するシステムである。
[0015] ェジヱクタは、加圧された熱交換媒体を減圧して蒸発器に供給する膨張手段として も機能する。したがって、入口ヘッダ力 循環管路と、入口ヘッダに流入する熱交換 媒体により、入口ヘッダに流入された熱交換媒体の少なくとも一部を吸引混合して循 環管路に吹き出すためのェジ クタとを含む熱交 は、冷媒を熱交換媒体として 循環するサイクルおよび Zまたはシステムに適して 、る。この熱交換器を含むシステ ムは、媒体供給システムに、加圧された熱交換媒体を減圧して蒸発器に供給する膨 張手段を含んでいても良ぐ省略することも可能である。
図面の簡単な説明
[0016] [図 1]熱交換器を含む熱交換システムの概略を示す図。
[図 2]第 1の実施形態に力かる熱交換器の概略を示す図。
[図 3]第 2の実施形態に力かる熱交換器の概略を示す図。
[図 4]第 3の実施形態に力かる熱交換器の一部の概略を示す図。
[図 5]第 4の実施形態に力かる熱交換器の一部の概略を示す図。
[図 6]第 5の実施形態に力かる熱交換器の概略を示す図。
[図 7]タイプの異なるェジェクタを備えた例を示す図である。
[図 8]第 6の実施形態に力かる熱交換器の概略を示す図である。
[図 9]ヘッダの断面を示す図である。
[図 10]ヘッダの構造を展開して示す図である。
発明を実施するための形態
[0017] 図 1に、熱交^^を含むシステム 50を示している。このシステム(熱交換システム) 5 0は、空気調和装置や、冷凍装置を含み、その他のシステムであって、冷却サイクル あるいは冷凍サイクルと呼ばれる熱交換サイクルおよび熱交換サイクルを有するシス テムを含む。たとえば、システム 50が、空調システムであるとすると、このシステム (熱 交換システム) 50は、液状 (液体)の熱交換媒体 (以下、冷媒という) Rと、外部流体( たとえば、室外の空気) Fとの熱交換を行う。システム 50は、冷媒 Rとの熱交換により 室内の空気 Gを冷却するエバポレータ (蒸発器) 100と、圧縮された気体状の冷媒 R と外部流体 Fとの熱交換を行い、冷媒 Rを液状にするコンデンサ (凝縮器) 200を有 する。
[0018] また、冷媒 Rを巡回させて、エバポレータ 100に冷媒 Rを供給する媒体供給システ ム 55として、システム 50は、コンデンサ 200に加え、冷媒 Rを加圧するコンプレッサ 5 1と、冷媒 Rを一時的に蓄えるアキュムレータ 52と、エバポレータ 100に供給する冷媒 Rを膨張させる膨張弁 53などの機器を備えている。このシステム 50では、エバポレー タ 100内の冷媒 R力 このエバポレータ 100の冷媒出口力も流出され、アキュムレー タ 52、コンプレッサ 51、コンデンサ 200、膨張弁 53を通って、エバポレータ 100の冷 媒入ロカも再びこのエバポレータ 100内に流入するように循環する。
[0019] 図 2に、本発明の第 1の実施形態に力かる熱交翻100&を示してある。この熱交 翻 100aは、システム 50のエバポレータ 100として用いることができる。この熱交換 器 100aは、冷媒入口 6を含む入口ヘッダ 1と、冷媒出口 5を含む出口ヘッダ 2と、熱 交換部 20とを有している。入口ヘッダ 1および出口ヘッダ 2は、それぞれ上下方向に 延びており、互いに平行となるように配置されている。熱交換部 20は、冷媒 Rと空気 Gなどとの間で熱交換を行い、空気 Gなどを冷却するためのものである。熱交換部 20 は、入口ヘッダ 1と出口ヘッダ 2とを連通させるように水平方向に互 、に平行に配置さ れた複数のチューブ 4と、チューブ 4と直交する上下方向に延びたフィン 3とを備えて いる。
[0020] チューブ 4の典型的なものは断面が円形のものである力 断面が扁平な扁平管で あっても良く、さらに、チューブの内部が複数に分割された多孔管(多重管)であって も良い。フィン 3の典型的なものは、互いに平行に配置され、チューブ 4が貫通するよ うに取り付けられた複数のプレート状のフィンである。フィン 3は、チューブ 4の間を蛇 行しながら接続するコルゲートタイプのフィン、チューブ 4から突き出たフィン状あるい はピン状であっても良い。
[0021] 入口ヘッダ 1は、熱交換部 20の複数のチューブ 4に冷媒 Rを分配するための分配 器としての機能を備えている。出口ヘッダ 2は、それぞれのチューブ 4から冷媒 Rを回 収する機能を備えている。各チューブ 4は、それぞれ、その一端が入口ヘッダ 1と接 続され、その他端が出口ヘッダ 2と接続されている。複数のチューブ 4は、偏平管を 採用することによりチューブ自体による熱交換面積も大きくすることができ、また、フィ ン 3を設けることにより空気 Gなどとの熱交換面積 (接触面積)をさらに高めて熱交換 効率を向上できる。着氷、着霜などの影響を避けるために、フィンを設けな力つたり、 フィンの占める面積を減らすこともある。
[0022] 入口ヘッダ 1は、この入口ヘッダ 1に流入された冷媒 Rの少なくとも一部を強制的に 循環させるための循環管路 10と差圧発生機構 11とを備えている。循環管路 10は、 直管状の往路 10aと、その往路 10aの一方の端力も他方の端に接続されたほぼ U字 型の復路 10bとを含む。往路 10aは、一方の端の冷媒入口 6から、反対側の端に冷 媒 Rを導く。復路 10bは、逆に、往路 10aの反対側の端から冷媒入口 6に冷媒を導く 。したがって、往路 10aおよび復路 10bを含む循環管路 10により、入口ヘッダ 1に流 入された冷媒 Rの少なくとも一部を循環させることができる。
[0023] 差圧発生機構 11は、絞り部 7と、吸引部 8とを備えたェジェクタであり、入口ヘッダ 1 の冷媒入口 6の近傍に設けられている。循環管路 10の復路 10bは、入口ヘッダ 1の 冷媒入口 6とは反対側である奥側の端部(上端部) 15の近傍と、差圧発生機構 11の 吸引部 8とを繋ぐように設けられている。したがって、差圧発生機構 11は、入口ヘッダ 1に流入する冷媒 Rにより駆動されて、復路 10bにより、入口ヘッダ 1にすでに流入さ れた冷媒 (既存の冷媒) Rの少なくとも一部を吸引混合し、往路 10aに吹き出す。この 熱交^^ 100aの入口ヘッダ 1にお 、ては、循環管路 10の一部である往路 10aに複 数のチューブ 4が接続されている。すなわち、循環管路 10の復路 10bの分岐となる 吸引経路 9と、差圧発生機構 11との間に、複数のチューブ 4がほぼ等間隔で接続さ れている。
[0024] 熱交換システム 50の蒸発器として適用された熱交^^ 100aにおいては、アキュム レータ 52、コンプレッサ 51、膨張弁 53などの作用により、気体と液体が混在する 2相 状態の冷媒 Rが冷媒入口 6から入口ヘッダ 1に供給され、吸引部 8の絞り部 7を通る。 冷媒 Rが絞り部 7を介して高速で入口ヘッダ 1内に流入する際、絞り部 7の内部が減 圧される。この減圧により、復路 10bを介して吸引部 8を通って入口ヘッダ 1に流入さ れた既存の冷媒 Rの少なくとも一部が吸引される。そして、入口ヘッダ 1に流入する冷 媒 Rと入口ヘッダ 1に流入された少なくとも一部の冷媒 Rとが混合され、図 2に矢印で 示したように、冷媒 Rは、差圧発生機構 11から入口ヘッダ 1の内部に、循環管路 10 の軸 Lの方向に噴出される。そして、その一部は、再び、往路 10aおよび復路 10bを 通って吸引部 8に戻る。このため、ヘッダ 1の内部を冷媒 Rの少なくとも一部が強制的 に循環され、それにより、軸長の長いパイプ状の入口ヘッダ 1であっても、その内部に おける冷媒 Rの状態が均質になる。すなわち、ヘッダ 1内に冷媒 Rが強制的に循環す るような圧力差を与えることにより、スタティックな状態でヘッド差により液相と気相とが 分離するような状態の発生を未然に防止する。
[0025] したがって、この熱交換器 100aにおいては、冷媒 Rが下方から上方に向かって流 れる往路 10aの途中にほぼ等間隔で複数のチューブ 4が接続されている。入口へッ ダ 1から冷媒 Rの一部が各チューブ 4に分配され、それぞれのチューブ 4に分配され る冷媒 Rの状態を均一にすることができる。また、往路 10aにおける冷媒 Rの状態が 気液混合の状態も含めて均質化されるので、各チューブ 4に分配される冷媒 Rの量 の均一化も図られる。
[0026] このように各チューブ 4に均一に分配された冷媒 Rは、複数のチューブ 4や複数の フィン 3を介して、空気 Gなどと熱交換を行い、出口ヘッダ 2に出力され、冷媒出口 5 力もシステム 50の系内に流出される。したがって、各チューブ 4における熱交換負荷 が均一化され、
Figure imgf000010_0001
さらに、各チューブ に対して冷媒を均一に分配するために複数の分配管をそれぞれ異なる形状に 2次元 あるいは 3次元的に曲げたりする必要はなぐシンプルでコンパクトな構成で、熱交換 効率の良好な熱交換器を比較的安価にて提供できる。また、各チューブ 4の形状を 同じにすることができるので、各チューブ 4における圧力損失差の発生を防止でき、こ の点でも、熱交換効率を向上できる。
[0027] また、この熱交換器 100aによれば、入口ヘッダ 1においてヘッド差により相分離が 発生するのを防止できる。このため、熱交換器 100aの入口ヘッダ 1の配置方向(向き )を自由に設定できる。したがって、熱交^^ 100aは、入口ヘッダ 1を水平方向に配 置した姿勢で使用しても良ぐ入口ヘッダ 1を鉛直方向に配置した姿勢で使用しても 良い。さらに入口ヘッダ 1を鉛直方向に配置して使用する場合に、冷媒 Rを入口へッ ダ 1の下側から流入しても良ぐ冷媒 Rを入口ヘッダ 1の上方力 流入しても良い。さ らに、これらの姿勢と異なり、入口ヘッダ 1を斜めに配置することを含む様々な姿勢で 熱交翻100&を使用でき、それらの姿勢で熱交翻100&を使用したときに複数の チューブ 4に冷媒 Rを均一に分配できる。
[0028] さらに、熱交^^ 100aの小型化が容易であるため、この熱交^^ 100aを備えた 冷却システム 50をコンパクトにアレンジできる。 さらに、この熱交^^ 100aは、ェジ ェクタ効果を用いた差圧発生機構 11を採用しているので、熱交^^に一般に用いら れている動力源、例えばコンプレッサ 51の動力の他、新たな動力源を必要としない。 したがって、経済的である。し力も、膨張弁 53による圧損の一部を差圧発生機構であ るェジェクタ 11に割り当てることにより、システム 50の経済性を損なうことなぐ熱交換 効率の向上を図ることができる。また、ェジェクタ 11による膨張 (圧力損失)が十分で あれば、膨張弁 53を省略することも可能である。
[0029] 図 3に、本発明の第 2の実施形態に力かる熱交^^ 100bを示している。この熱交 lOObも、上述のような熱交換システム 50のエバポレータ 100として使用できる。 この熱交^^ 100bにおいては、入口ヘッダ 1の循環管路 10の復路 10bに、ほぼ等 間隔で複数のチューブ 4が接続されている。少なくとも一部の冷媒 Rが強制的に循環 される循環管路 10においては、往路 10aに限らず復路 10bにおいて冷媒 Rの状態は ほぼ一定になる。したがって、復路 10bに各チューブ 4を接続しても、各チューブ 4に 冷媒 Rをほぼ均一に分配することができる。また、ェジェクタ 11の絞り部 7の直後の位 置よりも、絞り部 7から少し離れた位置、例えば復路 10bの方が、吸引混合された冷
Figure imgf000011_0001
復路 10bに各チュー ブ 4が接続されているため、絞り部 7を有するェジェクタ 11と、各チューブ 4との間が 離れている。したがって、各チューブ 4に、相状態の安定した冷媒 Rを分配することが できる。
[0030] 図 4に、本発明の第 3の実施形態に力かる熱交^^ 100cを示して 、る。この熱交 lOOcもまた、上述のような熱交換システム 50のエバポレータ 100として使用でき る。この熱交^^ 100cにおいては、入口ヘッダ 1は、 2本の直管部を含めて U字型 のパイプを含み、さらに、その U字型の開放側が吸引経路 9により接続されている。し たがって、入口ヘッダ 1は、循環管路 (循環回路) 10を含み、その循環管路 10の往 路 10aおよび復路 10bの両方に複数のチューブ 4を接続している。したがって、往路 10aおよび復路 10bの 2列に並んだ複数のチューブ 4に対して、ほぼ均一な状態で
Figure imgf000012_0001
面の面積 (投影面積)を変えることなぐ熱交換部 20における熱交換率をさらに高め ることがでさる。
[0031] 図 5に、本発明の第 4の実施形態に力かる熱交^^ 100dを示している。この熱交 換器 100dは、 2つ熱交換部 20aおよび 20bを備えており、上述のような熱交換システ ム 50のエバポレータ 100として使用できる。この熱交^^ 100dにおいては、熱交換 部 20aおよび 20bに共通の入口ヘッダ 1を備え、そのヘッダ 1の循環管路 10の往路 1 0aに一方の熱交換部 20aの複数のチューブ 4が接続され、復路 10bに他方の熱交 換部 20bの複数のチューブ 4が接続されている。したがって、複数の熱交換部 20aお よび 20bのチューブ 4のそれぞれに対して 1つの入口ヘッダ 1を用いて均等に冷媒 R を分配できる。 1つの入口ヘッダに接続可能な熱交換部は 3つ以上であっても良い。
[0032] 図 6に、本発明の第 5の実施形態に力かる熱交^^ 100eを示している。この熱交 換器 100eもまた、上述のような熱交換システム 50のエバポレータ 100として使用でき
Figure imgf000012_0002
タ) 11が 2重管 12の下端部に設けられている。また、 2重管 12の上端部は、内管 12a と外管 12bとが互いに連通している。この入口ヘッダ 1においては、 2重管 12の内側 の内管 12aの軸方向に冷媒 Rを吹き出すようにェジヱクタ 11が設置されている。した がって、 2重管 12の内管 12aが往路を構成し、外管 12bが復路を形成し、それらによ り循環管路 10が構成されている。そして、複数のチューブ 4は、復路である外管 12b に接続されている。この熱交 l00aでは、循環管路 10を 1つの管の内部に構成 できるので、さらにコンパクトでシンプルな外観を備えた熱交翻を提供できる。循環 管路 10を一体の管で実現するためには、 2重管に限らず、適当な数の隔壁を内部に 備えた多重管 (多孔管)を用いても良い。
[0033] 図 7に、差圧発生機構 11の異なる例を示している。上記の各実施形態の差圧発生 機構 11は、ベンチユリ管の絞り部 7に吸引部 8を設けたェジェクタである。これらに対 し、図 7に示した差圧発生機構 11は、霧吹きタイプのェジヱクタである。この差圧発 生機構 11は、ヘッダ 1の冷媒入口 6の近傍に、吸引用の差圧を発生するための吸引 ノズル 17を備えており、ヘッダ 1に流入する冷媒 Rを減圧して循環管路の往路 10aの 軸方向に吹き出す。往路 10aの吸引ノズル 17の近傍には、復路 10bから、ヘッダ 1に すでに流入された既存の冷媒 Rを吸弓 Iするための吸弓 I孔 18が設けられて 、る。この ため、吸引ノズル 17から吹出された冷媒 Rによる圧力低下により、復路 10bから、へッ ダ 1に流入された冷媒 Rが往路 10aへ吸込まれ、往路 10aの軸方向に吹出される。こ のため、差圧発生機構 11により、冷媒 Rは、ヘッダ 1を構成する循環管路 10に強制 的に循環される。
[0034] 図 8、図 9および図 10に、本発明の第 6の実施形態に力かる熱交換器 100fのへッ ダ 1の近傍の構成を示している。この熱交^^ 100fもまた、上述のような熱交換シス テム 50のエバポレータ 100として使用できる。この熱交^^ 100fの入口ヘッダ 1は、 内管 12aと外管 12bとを備えた 2重管 12により構成され、内管 12aと外管 12bとはへ ッダ 1の上部で連通している。さらに具体的には、外管 12bは、押し出しと切削とによ り形成された断面が半円状の 2つの部材 13aおよび 13bからなつている。内側の部材 13bに複数の扁平チューブ 14が取り付けられ、これらの扁平チューブ 14は、不図示 の出口ヘッダに繋がっている。外側の部材 13aには、断面が半円状の部材 15が取り 付けられ内管 12aを構成して 、る。外管 12bを構成する 2つの部材 13aおよび 13bの 両端はキャップ 16により塞がれている。内管 12aの下端にノズル 17が取り付けられ、 ヘッダ 1に流入する冷媒 Rを内管 12aの内部に吹き出す。このノズル 17は差圧発生 機構 11となり、内管 12aの下力も上に向力つて吹出された冷媒 Rの吸引力により、外 管 lb力 既存の (流入済の)冷媒 Rが内管 12aの下側の隙間 18を介して内管 12aに 吸引されるようになっている。
[0035] この熱交^^ 100fにおいても、ヘッダ 1が内管 12aおよび外管 12bを含み、チュー ブ 14と連通した循環経路 10を備えており、循環経路 10を冷媒 Rが強制的に循環さ れる。このため、ヘッダ 1の内部の冷媒 Rの状態を、いっそう均等にでき、熱交換効率 の高 、熱交翻を提供できる。
[0036] 上記第 1な!、し第 6の実施形態では、ヘッダを鉛直方向に沿って配置した姿勢で使 用した熱交翻を例にとって説明したが、熱交翻は、ヘッダを水平方向に沿って 配置した姿勢で使用することも可能である。
[0037] また、上記第 1ないし第 6の実施形態では、ヘッダに流入する熱交換媒体により駆 動される差圧発生機構と、ヘッダに流入された熱交換媒体の少なくとも一部を循環さ せるための循環管路とを備える循環手段を有して!/、るが、循環手段はこれに限定さ れるものではない。循環手段は、ヘッダに流入された熱交換媒体 (冷媒)の少なくとも 一部を強制的に循環させるものであればよい。
[0038] ェジェクタノズル (オリフィス ·絞り部)を備えた差圧発生機構は、本発明の好適な例 であり、ヘッダの冷媒入口近傍に設けることにより、入口ヘッダに流入する冷媒によつ て入口ヘッダに流入された冷媒の少なくとも一部を吸引混合し、混合した状態の冷 媒をヘッダに吹き出すことができる。したがって、熱交換器の内圧を低く設定する、上 記のような冷媒を循環するサイクルおよびサイクルを含むシステムに適している。
[0039] ヘッダに流入する冷媒により駆動される差圧発生機構の他の例の 1つは、駆動部 分の圧力でタービンを回し、同軸のコンプレッサなどの差圧発生部分 (加圧部分)で 熱交換媒体を強制的に吸い込む過給器のような構成である。この過給器に近似した 構成では、駆動部分と差圧発生部分 (加圧部分)とが分離され機械的に接続してい るものがある。さらに、別動力により稼動するポンプのような差圧発生機構を採用する ことも可能である。すなわち、差圧発生機構は、入口ヘッダ内を循環する冷媒を、入 口ヘッダに流入する冷媒と混合せずに送り出すような機構であっても良 、。ポンプの ような差圧発生機構は、入口ヘッダ内の冷媒を加圧して強制的に循環するものであ り、差圧発生機構はヘッダの冷媒入口近傍に設けなくてもよい。そのような差圧発生 機構は、循環管路の途中、例えば、往路あるいは復路のうちのヘッダが接続されて いない管路、これらの管路の接続経路などに設けてもよい。また、差圧発生機構をへ ッダの循環管路に対して着脱できるような構成を採用することも可能である。
[0040] さらに、冷媒が循環しないタイプのヘッダに対して、往路あるいは復路として機能す る管路と、適当な差圧発生機構を追設することにより、本発明の実施形態に含まれる 熱交^^および熱交換システムを構成することも可能である。
[0041] 本実施形態では、熱交換部がプレート状のフィンを備える熱交換器を例に挙げて 説明したが、フィンの形状はプレート状に限定されるものではない。また、熱交換部は 、冷媒 (熱交換媒体)と空気などの外部流体との間で熱交換を行うことが可能なもの であればよぐ熱交換部の形状や構成も、これらに限定されるものではない。
また、本発明のシステムは、空調に限らず、ラジェータ、各種冷却装置、各種冷凍 装置など、多種多様な熱交換を機能の一部として含む装置、システムを含む。

Claims

請求の範囲
[1] 複数のチューブと、
これら複数のチューブに熱交換媒体を分配するための入口ヘッダと、
これら複数のチューブから熱交換媒体を回収するための出口ヘッダとを有し、 前記入口ヘッダは、当該入口ヘッダに流入された熱交換媒体の少なくとも一部が 循環可能な循環管路であって、当該循環管路の少なくとも一部に前記複数のチュー ブが接続された循環管路と、
熱交換媒体を前記循環管路の軸方向に吹き出して、前記入口ヘッダに流入された 前記熱交換媒体の少なくとも一部を、前記循環管路に強制的に循環させるための差 圧発生機構とを含む、熱交換器。
[2] 請求項 1にお!、て、前記差圧発生機構は、前記入口ヘッダに流入する熱交換媒体 により駆動される、熱交換器。
[3] 請求項 1にお!、て、前記差圧発生機構は、前記入口ヘッダに流入する熱交換媒体 により、前記入口ヘッダに流入された熱交換媒体の少なくとも一部を吸引混合して吹 き出すための機構である、熱交換器。
[4] 請求項 1において、前記入口ヘッダは、前記循環管路の少なくとも一部を構成する 2重管または多重管を備えており、前記差圧発生機構は、前記 2重管または多重管 の一端部に設けられ、前記 2重管または多重管の他端部が連通している、熱交換器
[5] 請求項 1に記載の熱交換器と、前記熱交換器に熱交換媒体を供給する媒体供給 システムとを有する、システム。
[6] 請求項 5において、前記媒体供給システムは、前記熱交換器から回収された熱交 換媒体を加圧する装置と、加圧された熱交換媒体を冷却する凝縮器とを備えて ヽる 、システム。
[7] 複数のチューブと、
これら複数のチューブに熱交換媒体を分配するための入口ヘッダと、
これら複数のチューブから熱交換媒体を回収するための出口ヘッダとを有し、 前記入口ヘッダは、当該入口ヘッダに流入された熱交換媒体の少なくとも一部が 循環可能な循環管路であって、当該循環管路の少なくとも一部に前記複数のチュー ブが接続された循環管路を含む、熱交換器。
[8] 複数のチューブと、
これら複数のチューブに熱交換媒体を分配するための入口ヘッダと、
これら複数のチューブから熱交換媒体を回収するための出口ヘッダとを有し、 前記入口ヘッダは、当該入口ヘッダに流入された熱交換媒体の少なくとも一部が 循環可能な循環管路であって、当該循環管路の少なくとも一部に前記複数のチュー ブが接続された循環管路と、
前記入口ヘッダに流入する熱交換媒体により、前記入口ヘッダに流入された熱交 換媒体の少なくとも一部を吸引混合して前記循環管路に吹き出すためのェジヱクタと を含む、熱交^^。
[9] 請求項 8に記載の熱交換器と、前記熱交換器を蒸発器として熱交換媒体を供給す る媒体供給システムとを有し、
前記媒体供給システムは、前記蒸発器から回収された熱交換媒体を加圧する装置 と、加圧された熱交換媒体を冷却する凝縮器とを備えている、熱交換システム。
[10] 複数のチューブに熱交換媒体を分配するためのヘッダであって、
当該ヘッダに流入された熱交換媒体の少なくとも一部が循環可能な循環管路であ つて、当該循環管路の少なくとも一部に前記複数のチューブが接続された循環管路 を有する、ヘッダ。
[11] 請求項 10において、さらに、当該ヘッダに流入する熱交換媒体により、当該ヘッダ に流入された熱交換媒体の少なくとも一部を含む熱交換媒体を前記循環管路の軸 方向に吹き出すための差圧を発生させる機構をさらに有する、ヘッダ。
[12] 請求項 10において、さらに、当該ヘッダに流入する熱交換媒体により、当該ヘッダ に流入された熱交換媒体の少なくとも一部を吸引混合して前記循環管路に吹き出す ためのェジェクタをさらに有する、ヘッダ。
PCT/JP2007/052760 2006-02-15 2007-02-15 熱交換器 WO2007094422A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07714290A EP1985949A1 (en) 2006-02-15 2007-02-15 Heat exchanger
JP2008500546A JP4866416B2 (ja) 2006-02-15 2007-02-15 熱交換器
US12/279,620 US20100314090A1 (en) 2006-02-15 2007-02-15 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-037791 2006-02-15
JP2006037791 2006-02-15

Publications (1)

Publication Number Publication Date
WO2007094422A1 true WO2007094422A1 (ja) 2007-08-23

Family

ID=38371599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052760 WO2007094422A1 (ja) 2006-02-15 2007-02-15 熱交換器

Country Status (5)

Country Link
US (1) US20100314090A1 (ja)
EP (1) EP1985949A1 (ja)
JP (1) JP4866416B2 (ja)
CN (1) CN101384868A (ja)
WO (1) WO2007094422A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150574A (ja) * 2007-12-19 2009-07-09 Mitsubishi Electric Corp 分配器、およびそれを搭載した熱交換器並びに空気調和機
JP2012042121A (ja) * 2010-08-19 2012-03-01 Hitachi Appliances Inc 冷媒分配器及び冷凍サイクル装置
JP2013002775A (ja) * 2011-06-20 2013-01-07 Sharp Corp パラレルフロー型熱交換器及びそれを搭載した空気調和機
WO2015045564A1 (ja) * 2013-09-30 2015-04-02 ダイキン工業株式会社 熱交換器および空気調和装置
WO2015098860A1 (ja) * 2013-12-27 2015-07-02 ダイキン工業株式会社 熱交換器および空気調和装置
JP2015127620A (ja) * 2013-12-27 2015-07-09 ダイキン工業株式会社 熱交換器および空気調和装置
JP5850118B1 (ja) * 2014-09-30 2016-02-03 ダイキン工業株式会社 熱交換器および空気調和装置
WO2016017460A1 (ja) * 2014-07-31 2016-02-04 三菱電機株式会社 冷媒分配器、熱交換器および冷凍サイクル装置
JP2016125748A (ja) * 2014-12-26 2016-07-11 ダイキン工業株式会社 熱交換器および空気調和装置
JP2016148480A (ja) * 2015-02-12 2016-08-18 株式会社デンソー 熱交換器
EP3088833A4 (en) * 2013-12-27 2017-02-01 Daikin Industries, Ltd. Heat exchanger and air conditioning device
WO2018061359A1 (ja) * 2016-09-28 2018-04-05 東芝キヤリア株式会社 熱交換器および冷凍サイクル装置
CN110567196A (zh) * 2019-09-10 2019-12-13 江苏科菱库精工科技有限公司 一种微通道换热器的制冷剂分配装置及使用方法
WO2020089966A1 (ja) * 2018-10-29 2020-05-07 三菱電機株式会社 熱交換器及び冷凍サイクル装置
JP2022043207A (ja) * 2018-10-29 2022-03-15 三菱電機株式会社 熱交換器、室外機、及び冷凍サイクル装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201488380U (zh) * 2009-09-16 2010-05-26 倪军 用于制冷设备中的恒压衡功制冷系统装置
WO2011046099A1 (ja) * 2009-10-13 2011-04-21 昭和電工株式会社 中間熱交換器
CN103148729B (zh) * 2013-03-19 2015-01-21 丹佛斯微通道换热器(嘉兴)有限公司 集流管以及具有集流管的换热器
CN103206885B (zh) * 2013-03-27 2015-06-03 美的集团股份有限公司 集流管、平行流换热器及空调装置
US9670937B2 (en) * 2013-05-30 2017-06-06 Ingersoll-Rand Company Centrifugal compressor having cooling system
WO2015023347A1 (en) 2013-08-12 2015-02-19 Carrier Corporation Heat exchanger and flow distributor
JP5741658B2 (ja) * 2013-09-11 2015-07-01 ダイキン工業株式会社 熱交換器及び空気調和機
US10197312B2 (en) * 2014-08-26 2019-02-05 Mahle International Gmbh Heat exchanger with reduced length distributor tube
JP6458680B2 (ja) * 2015-02-02 2019-01-30 株式会社デンソー 熱交換器
WO2017072833A1 (ja) * 2015-10-26 2017-05-04 三菱電機株式会社 冷媒分配器、及びそれを用いた空気調和機
JP6369648B1 (ja) * 2017-03-27 2018-08-08 ダイキン工業株式会社 熱交換器および空気調和装置
CN110462332B (zh) 2017-03-27 2020-07-10 大金工业株式会社 热交换器和空调装置
CN110476035A (zh) * 2017-03-29 2019-11-19 大金工业株式会社 热交换器
FR3081985B1 (fr) * 2018-05-31 2020-10-09 Valeo Systemes Thermiques Distributeur de fluide, et echangeur thermique correspondant.
EP3855059B1 (en) * 2020-01-24 2023-11-15 Aptiv Technologies Limited Passive flow divider and liquid cooling system comprising the same
CN114623702B (zh) * 2020-12-11 2023-08-29 杭州三花微通道换热器有限公司 换热器
JPWO2022180823A1 (ja) * 2021-02-26 2022-09-01

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584508A (ja) * 1991-09-25 1993-04-06 Kawasaki Steel Corp スプレーヘツダ及びこれを用いた圧延油供給装置
JPH06127695A (ja) * 1991-07-15 1994-05-10 Kanebo Ltd カップ切出し装置
JPH0910817A (ja) * 1995-06-27 1997-01-14 Kawasaki Steel Corp 圧延油のスプレーヘッダおよびその使用方法
JPH11337293A (ja) * 1998-05-26 1999-12-10 Showa Alum Corp 蒸発器
JP2000249428A (ja) 1997-10-20 2000-09-14 Modine Mfg Co 蒸発器
JP2004317056A (ja) 2003-04-17 2004-11-11 Denso Corp 熱交換器
JP2005308384A (ja) * 2004-02-18 2005-11-04 Denso Corp エジェクタサイクル

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2097602A (en) * 1936-03-06 1937-11-02 Warren Webster & Co Radiator
US2088609A (en) * 1936-07-28 1937-08-03 Randel Bo Folke Method of and apparatus for refrigerating
US2766740A (en) * 1955-03-07 1956-10-16 Adolph A Tacchella Cooling system for internal combustion engines
US2825317A (en) * 1956-01-09 1958-03-04 Adolph A Tacchella Steam separator
DE3413931A1 (de) * 1984-04-13 1985-10-24 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co. KG, 7000 Stuttgart Verdampfer, insbesondere fuer klimaanlagen in kraftfahrzeugen
JP3265649B2 (ja) * 1992-10-22 2002-03-11 株式会社デンソー 冷凍サイクル
US6688137B1 (en) * 2002-10-23 2004-02-10 Carrier Corporation Plate heat exchanger with a two-phase flow distributor
JP2004232924A (ja) * 2003-01-29 2004-08-19 Denso Corp 冷凍サイクル装置
US20050262872A1 (en) * 2004-05-26 2005-12-01 Carrier Corporation Two-phase refrigerant distribution system for parallel tube evaporator coils
US7331195B2 (en) * 2004-10-01 2008-02-19 Advanced Heat Transfer Llc Refrigerant distribution device and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127695A (ja) * 1991-07-15 1994-05-10 Kanebo Ltd カップ切出し装置
JPH0584508A (ja) * 1991-09-25 1993-04-06 Kawasaki Steel Corp スプレーヘツダ及びこれを用いた圧延油供給装置
JPH0910817A (ja) * 1995-06-27 1997-01-14 Kawasaki Steel Corp 圧延油のスプレーヘッダおよびその使用方法
JP2000249428A (ja) 1997-10-20 2000-09-14 Modine Mfg Co 蒸発器
JPH11337293A (ja) * 1998-05-26 1999-12-10 Showa Alum Corp 蒸発器
JP2004317056A (ja) 2003-04-17 2004-11-11 Denso Corp 熱交換器
JP2005308384A (ja) * 2004-02-18 2005-11-04 Denso Corp エジェクタサイクル

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150574A (ja) * 2007-12-19 2009-07-09 Mitsubishi Electric Corp 分配器、およびそれを搭載した熱交換器並びに空気調和機
JP2012042121A (ja) * 2010-08-19 2012-03-01 Hitachi Appliances Inc 冷媒分配器及び冷凍サイクル装置
JP2013002775A (ja) * 2011-06-20 2013-01-07 Sharp Corp パラレルフロー型熱交換器及びそれを搭載した空気調和機
US10655917B2 (en) 2013-09-30 2020-05-19 Daikin Industries, Ltd. Heat exchanger and air conditioning device
WO2015045564A1 (ja) * 2013-09-30 2015-04-02 ダイキン工業株式会社 熱交換器および空気調和装置
JP2015068623A (ja) * 2013-09-30 2015-04-13 ダイキン工業株式会社 熱交換器および空気調和装置
AU2014325773B2 (en) * 2013-09-30 2017-03-09 Daikin Industries, Ltd. Heat exchanger and air conditioning device
JP2015127620A (ja) * 2013-12-27 2015-07-09 ダイキン工業株式会社 熱交換器および空気調和装置
AU2014371154B2 (en) * 2013-12-27 2017-02-16 Daikin Industries, Ltd. Heat exchanger and air conditioning apparatus
US10443944B2 (en) 2013-12-27 2019-10-15 Daikin Industries, Ltd. Heat exchanger and air conditioning device
CN105849498B (zh) * 2013-12-27 2018-11-09 大金工业株式会社 热交换器及空调装置
CN105849498A (zh) * 2013-12-27 2016-08-10 大金工业株式会社 热交换器及空调装置
WO2015098860A1 (ja) * 2013-12-27 2015-07-02 ダイキン工業株式会社 熱交換器および空気調和装置
EP3088833A4 (en) * 2013-12-27 2017-02-01 Daikin Industries, Ltd. Heat exchanger and air conditioning device
EP3088832A4 (en) * 2013-12-27 2017-02-01 Daikin Industries, Ltd. Heat exchanger and air conditioning device
WO2016017460A1 (ja) * 2014-07-31 2016-02-04 三菱電機株式会社 冷媒分配器、熱交換器および冷凍サイクル装置
JPWO2016017460A1 (ja) * 2014-07-31 2017-04-27 三菱電機株式会社 冷媒分配器、熱交換器および冷凍サイクル装置
US10465955B2 (en) 2014-09-30 2019-11-05 Daikin Industries, Ltd. Heat exchanger and air conditioning apparatus
WO2016052299A1 (ja) * 2014-09-30 2016-04-07 ダイキン工業株式会社 熱交換器および空気調和装置
CN106716045A (zh) * 2014-09-30 2017-05-24 大金工业株式会社 热交换器和空调装置
CN106716045B (zh) * 2014-09-30 2018-01-19 大金工业株式会社 热交换器和空调装置
AU2015325721B2 (en) * 2014-09-30 2017-05-11 Daikin Industries, Ltd. Heat exchanger and air conditioning apparatus
JP5850118B1 (ja) * 2014-09-30 2016-02-03 ダイキン工業株式会社 熱交換器および空気調和装置
JP2016125748A (ja) * 2014-12-26 2016-07-11 ダイキン工業株式会社 熱交換器および空気調和装置
JP2016148480A (ja) * 2015-02-12 2016-08-18 株式会社デンソー 熱交換器
WO2018061359A1 (ja) * 2016-09-28 2018-04-05 東芝キヤリア株式会社 熱交換器および冷凍サイクル装置
WO2020089966A1 (ja) * 2018-10-29 2020-05-07 三菱電機株式会社 熱交換器及び冷凍サイクル装置
JPWO2020089966A1 (ja) * 2018-10-29 2021-09-02 三菱電機株式会社 熱交換器及び冷凍サイクル装置
JP2022043207A (ja) * 2018-10-29 2022-03-15 三菱電機株式会社 熱交換器、室外機、及び冷凍サイクル装置
JP7086264B2 (ja) 2018-10-29 2022-06-17 三菱電機株式会社 熱交換器、室外機、及び冷凍サイクル装置
JP7097986B2 (ja) 2018-10-29 2022-07-08 三菱電機株式会社 熱交換器及び冷凍サイクル装置
CN110567196A (zh) * 2019-09-10 2019-12-13 江苏科菱库精工科技有限公司 一种微通道换热器的制冷剂分配装置及使用方法

Also Published As

Publication number Publication date
EP1985949A1 (en) 2008-10-29
JPWO2007094422A1 (ja) 2009-07-09
US20100314090A1 (en) 2010-12-16
JP4866416B2 (ja) 2012-02-01
CN101384868A (zh) 2009-03-11

Similar Documents

Publication Publication Date Title
JP4866416B2 (ja) 熱交換器
JP5097472B2 (ja) 熱交換器
US8272233B2 (en) Heat exchanger and refrigerating air conditioner
CN100416180C (zh) 具有喷射器的蒸汽压缩循环
US8276401B2 (en) Evaporator
CN100575813C (zh) 多部件热交换器
JP2008503705A (ja) 冷却システムで使用するための一体型の熱交換器
WO2018173356A1 (ja) 熱交換器、および、それを用いた空気調和機
EP4130637A1 (en) Heat exchanger
JP2008133796A (ja) エジェクタ及び冷凍サイクル装置
CN101600932A (zh) 改善冷凝水排出的多通道热交换器
JP6458680B2 (ja) 熱交換器
GB2366359A (en) Evaporators
CN113167512B (zh) 热交换器及制冷循环装置
JP2012026615A (ja) 室外機及びこの室外機を備えた冷凍サイクル装置
CN101149203B (zh) 冷却装置及冷却装置组装体
JP2006112756A (ja) 熱交換器
EP1736716A2 (en) air conditioning system for vehicles
EP2982924A1 (en) Heat exchanger
CN104303001A (zh) 热交换器和用于传热的方法
JP2005037054A (ja) 冷媒サイクル装置用熱交換器
CN111829385B (zh) 分配器、热交换器、室内机、室外机以及空气调节装置
JP2008292022A (ja) 冷媒蒸発器
WO2016125437A1 (ja) エジェクタ一体型熱交換器
JP2017141999A (ja) ヘッダー分配器、ヘッダー分配器を搭載した室外機、及び空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008500546

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780005179.8

Country of ref document: CN

Ref document number: 2007714290

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12279620

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)