WO2007094111A1 - アンテナ構造およびそれを用いた無線通信装置 - Google Patents
アンテナ構造およびそれを用いた無線通信装置 Download PDFInfo
- Publication number
- WO2007094111A1 WO2007094111A1 PCT/JP2006/323818 JP2006323818W WO2007094111A1 WO 2007094111 A1 WO2007094111 A1 WO 2007094111A1 JP 2006323818 W JP2006323818 W JP 2006323818W WO 2007094111 A1 WO2007094111 A1 WO 2007094111A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiation electrode
- electrode
- feed
- resonance frequency
- feed radiation
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 66
- 230000005855 radiation Effects 0.000 claims abstract description 437
- 230000003071 parasitic effect Effects 0.000 claims abstract description 92
- 239000003990 capacitor Substances 0.000 claims abstract description 62
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 22
- 238000005259 measurement Methods 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 10
- 238000009826 distribution Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- -1 greaves Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0442—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/342—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
- H01Q5/357—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
- H01Q5/364—Creating multiple current paths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/378—Combination of fed elements with parasitic elements
- H01Q5/392—Combination of fed elements with parasitic elements the parasitic elements having dual-band or multi-band characteristics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0421—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
Definitions
- the present invention relates to an antenna structure provided in a wireless communication device such as a mobile phone and a wireless communication device using the antenna structure.
- FIG. 13a shows a schematic perspective view of an example of an antenna structure (see, for example, Patent Document 1).
- the antenna structure 40 has a rectangular parallelepiped dielectric base 41, and a ground electrode 42 is formed on the bottom surface of the dielectric base 41.
- a feeding radiation electrode 43 and a parasitic radiation electrode 44 are disposed adjacent to each other through a slit si.
- a connection electrode 45 and a connection electrode 46 are formed on one side surface of the dielectric substrate 41 with a space therebetween.
- the connection electrode 45 is for electrically connecting the feed radiation electrode 43 and the ground electrode 42.
- the connection electrode 46 is for electrically connecting the parasitic radiation electrode 44 and the ground electrode 42.
- a feeding electrode 47 for feeding radiation electrode and a frequency control electrode 48 are formed on the side surface of the dielectric substrate 41 opposite to the formation surface of the connection electrodes 45, 46,
- the upper end side of the feeding electrode 47 is arranged with a gap from the feeding radiation electrode 43, and a capacitance is formed between the feeding radiation electrode 43.
- the lower end side of the feeding electrode 47 is formed so as to wrap around the bottom surface side of the dielectric substrate 41.
- the lower end side of the power supply electrode 47 is disposed with a gap from the ground electrode 42, and the lower end side of the power supply electrode 47 is electrically connected to, for example, a radio communication high frequency circuit 50 provided in the radio communication device.
- the The upper end side of the frequency control electrode 48 is arranged with a gap between each of the feed radiation electrode 43 and the parasitic radiation electrode 44, with a capacitance CI, between each of the feed radiation electrode 43 and the parasitic radiation electrode 44.
- Form C2 The lower end side of the frequency control electrode 48 is formed around the bottom surface side of the dielectric substrate 41! /.
- the lower end side of the frequency control electrode 48 is arranged with a space from the ground electrode 42. Further, the lower end side of the frequency control electrode 48 is grounded, for example, to the ground of the wireless communication device via the switching means 51.
- the capacitance between the feeding electrode 47 and the feeding radiation electrode 43 is increased.
- a transmission signal is transmitted from the feeding electrode 47 to the feeding radiation electrode 43, and the feeding radiation electrode 43 resonates based on the transmission signal.
- a transmission signal is transmitted to the parasitic radiation electrode 44 due to electromagnetic coupling between the feeding radiation electrode 43 and the parasitic radiation electrode 44, and the parasitic radiation electrode 44 also resonates.
- the interval si between the feed radiation electrode 43 and the parasitic radiation electrode 44 is set so that a double resonance state is created by the resonance of the feed radiation electrode 43 and the resonance of the parasitic radiation electrode 44. Have been.
- the switching means 51 when the switching means 51 is turned on and the frequency control electrode 48 is grounded, the power supply radiation electrode 43 and the frequency control electrode 48, and the non-feed radiation electrode Capacitance between ground and 44 is formed between 44 and frequency control electrode 48, respectively. Is done. As a result, the power supply radiation electrode 43 is loaded with the capacitance between the ground and the non-feeding radiation electrode 44 is loaded with the capacitance between the ground.
- FIG. 13c an equivalent circuit of the feed radiation electrode 43 is shown by a solid line. Since the resonance operation of the feed radiation electrode 43 is LC resonance between the inductance component L and the capacitance component C shown in FIG. 13c, the resonance frequency F of the feed radiation electrode 43 is 1 Z It is proportional to (LC) (Fc lZ (LC)). The same applies to the resonant frequency of the parasitic radiation electrode 44. Therefore, when the switching means 51 is turned on and the frequency control electrode 48 loads the capacitance with the ground to the feed radiation electrode 43 and the feed radiation electrode 44, respectively, the feed radiation electrode 43 and the feed radiation As the capacitance components C of the electrode 44 become larger, the resonance frequencies of the feed radiation electrode 43 and the parasitic radiation electrode 44 become lower.
- the frequency band for wireless communication by the antenna operation of the feeding radiation electrode 43 and the parasitic radiation electrode 44 is, for example, the frequency shown in FIG.
- the fm force is also in the frequency range up to the frequency fn.
- the frequency band for wireless communication by the antenna operation of the feeding radiation electrode 43 and the parasitic radiation electrode 44 is, for example, from the frequency fm ′ shown in FIG. 13b. Switch to the frequency range up to fn '.
- It has a base mounted on a ground area of a circuit board on which a circuit for wireless communication is formed, and the base is electrically connected to the circuit for wireless communication at a plurality of different resonance frequency bands.
- a feeding radiation electrode for performing an antenna operation is provided, and a non-feeding radiation electrode that is electromagnetically coupled to the feeding radiation electrode is provided via a gap from the feeding radiation electrode.
- the conduction mode between the capacitive loading means and the ground electrode of the circuit board, which is interposed in the ground ground conduction path, is switched on and off, and the higher-order mode zero of the feeding radiation electrode by the capacitive loading means
- It has a base mounted on a ground area of a circuit board on which a circuit for wireless communication is formed, and the base is electrically connected to the circuit for wireless communication at a plurality of different resonance frequency bands.
- a feeding radiation electrode for performing an antenna operation is provided, and a non-feeding radiation electrode that is electromagnetically coupled to the feeding radiation electrode is provided via a gap from the feeding radiation electrode.
- the current path between the feed end and the open end is arranged in a loop shape, and the parasitic radiation electrode performs at least a feed radiation by performing antenna operation together with the feed radiation electrode by electromagnetic coupling with the feed radiation electrode.
- Double electrode An antenna structure having a structure to produce a multiple resonance state at a high-order resonance frequency band than the lowest fundamental resonant frequency band of the resonance frequency band of,
- Optional capacity loading means for loading capacity to the high-order mode zero voltage region of the feed radiation electrode where the voltage is zero or in the vicinity thereof in the high-order mode, which is the antenna operation mode of the high-order resonance frequency band Is formed,
- a wireless communication apparatus which is another configuration of the present invention is characterized in that an antenna structure having a specific configuration in the present invention is provided.
- the substrate constituting the antenna structure is formed with the feed radiation electrode and the non-feed radiation electrode, and the parasitic radiation electrode performs the antenna operation together with the feed radiation electrode. It has a configuration that creates a double resonance state at least in the higher resonance frequency band of the feed radiation electrode. Due to the double resonance state of the feed radiation electrode in the higher-order resonance frequency band by the non-feed radiation electrode, a wide band in the higher-order resonance frequency band of the feed radiation electrode can be achieved.
- the capacitance is on.
- the basic resonance frequency of the feed radiation electrode can be switched to be lowered as the electrical length of the feed radiation electrode becomes longer according to the loaded capacity. By switching the basic resonance frequency of the power supply radiation electrode, a wide band in the basic resonance frequency band of the power supply radiation electrode can be achieved.
- the portion of the feed radiation electrode where the capacitance between the ground electrode is loaded by the capacitive loading means is the high-order mode zero voltage region of the feed radiation electrode. For this reason, only the fundamental resonance frequency of the feed radiation electrode can be switched without changing the higher order resonance frequency of the feed radiation electrode by the on / off operation of the switching means. In other words, the magnitude of the higher-order mode voltage in the higher-order mode zero-voltage region of the feed radiation electrode is zero or in the vicinity thereof.
- the switching means when viewed from the higher order mode, even if the switching means is turned on, the capacity loaded in the higher mode zero voltage region of the feed radiation electrode by the capacity loading means is very small, and the feed radiation This is equivalent to a state in which no capacitance is loaded in the high-order mode zero voltage region of the electrode.
- the higher-order resonance frequency of the feed radiation electrode does not fluctuate.
- the fundamental mode in the higher-order mode zero-voltage region of the feed radiation electrode The magnitude of the voltage is such that it is affected by the capacity loading by the capacity loading means. For this reason, the fundamental resonance frequency of the feed radiation electrode is switched by switching the capacitive loading on state and the capacitive loading off state by the on / off switching operation of the switching means.
- the higher-order resonance frequency band of the feed radiation electrode can be widened by a double resonance state with the non-feed radiation electrode, so that a desired frequency band can be obtained. It is preferable that the higher-order resonance frequency band of the feeding radiation electrode does not vary. Considering this, in the present invention, the higher-order resonance frequency band of the feed radiation electrode is not changed, and only the fundamental resonance frequency of the feed radiation electrode is changed by switching on / off the capacitive loading by the capacity loading means. By switching, it is possible to achieve a wide band in the fundamental resonance frequency band of the radiation electrode.
- the present invention it is possible to achieve a wide band in both frequency bands of the basic resonance frequency band and the higher-order resonance frequency band of the feed radiation electrode. Therefore, it is possible to provide an antenna structure that can easily cope with a plurality of wireless communication systems that use different frequency bands and a wireless communication device including the antenna structure.
- the substrate on which the power supply radiation electrode and the non-feed radiation electrode are formed is mounted on the ground region of the circuit board. For this reason, the electric field radiated from the feeding radiation electrode and the non-feeding radiation electrode is attracted to the ground electrode of the circuit board, and basically the bandwidth of one resonance is narrow and it is difficult to widen the frequency band. Nevertheless, the present invention is epoch-making that it is easy to achieve a wide band of a plurality of frequency bands as described above.
- the feed radiation electrode has a configuration in which the feed end side and the open end side are arranged adjacent to each other with a space therebetween, and the current path between the feed end and the open end is a loop. .
- the feed radiation electrode has a configuration in which the feed end side and the open end side are arranged adjacent to each other with a space therebetween, and the current path between the feed end and the open end has a loop shape.
- a capacitance is formed between the open end. The capacitance is more related to the higher order resonance frequency than the fundamental resonance frequency.
- the high-order resonance frequency of the power supply radiation electrode can be adjusted with almost no fluctuation in the fundamental resonance frequency by the capacitance between the power supply end and the open end. That is, for example, the electrical length (electric length) from the feed end to the open end of the feed radiation electrode is set to an electrical length that can obtain a predetermined basic resonance frequency, and The basic resonance frequency and the high-order resonance frequency can be adjusted independently by setting the capacitance between the open end and the capacitor so that a predetermined high-order resonance frequency can be obtained. Can do. As a result, it becomes easy to set the resonance frequencies of both the basic resonance frequency and the higher-order resonance frequency of the feeding radiation electrode to predetermined frequencies.
- the feed radiation electrode has a form in which the current path between the feed end and the open end is in a loop shape
- the electrical length of the feed radiation electrode without increasing the size of the feed radiation electrode can be reduced. Can be long.
- the substrate can be downsized, that is, the antenna structure can be downsized.
- FIG. La is a perspective view schematically showing the antenna structure of the first embodiment.
- FIG. Lb is a schematic exploded view of the antenna structure of Fig. La.
- FIG. 1c is a graph for explaining an example of return loss characteristics of the antenna structure of the first embodiment.
- FIG. 2a is a graph for explaining the voltage distribution of the feed radiation electrode constituting the antenna structure of the first embodiment.
- FIG. 3a is a model diagram showing an antenna structure of a comparative example with respect to the antenna structure of the first embodiment.
- FIG. 3b is a model diagram showing an image of an example of the relationship between the feed radiation electrode constituting the antenna structure of FIG. 3a and its voltage distribution.
- FIG. 5b is a graph showing the measurement results of the return loss characteristic and the maximum gain of the antenna structure of FIG. 3a having a frequency of 750 MHz to 1000 MHz obtained by the inventors' experiment.
- FIG. 6b is a graph showing the measurement results of the return loss characteristic and the maximum gain of the antenna structure of FIG. 3a having a frequency of 1700 MHz to 2200 MHz obtained by the inventors' experiment.
- FIG. 7b is a model diagram for explaining another example of another form of the capacity loading means.
- FIG. 7c is a model diagram for explaining another example of the capacity loading means.
- FIG. 7D is a model diagram for explaining another example of the capacity loading means.
- FIG. 7e is a model diagram for explaining another example of the capacity loading means.
- FIG. 8a A model diagram showing an example of the form of the antenna component constituting the antenna structure of the second embodiment.
- FIG. 8b This is a model diagram showing one of the antenna structures having the specific configuration of the second embodiment.
- ⁇ 8c A model showing one of the other antenna structures having the specific configuration of the second embodiment. It is a figure.
- FIG. 9b is a graph showing the return loss characteristics of the antenna structure of FIG. 9a.
- FIG. 10a is a model diagram showing an antenna structure of a fourth embodiment.
- FIG. 11a A model diagram showing one of the antenna structures having the unique configuration of the fifth embodiment.
- FIG. L ib is a model diagram showing one of the other antenna structures having the specific configuration of the fifth embodiment.
- FIG. 12a A model diagram showing one of the antenna structures having the specific configuration of the sixth embodiment.
- FIG. 12c is a model diagram showing one of the other antenna structures having the unique configuration of the sixth embodiment.
- FIG. 13a is a diagram for explaining a conventional example of an antenna structure.
- FIG. 13b is a graph for explaining an example of return loss characteristics of the antenna structure of FIG. 13a.
- FIG. 13c is an equivalent circuit diagram of the feed radiation electrode constituting the antenna structure of FIG. 13a. Explanation of symbols
- FIG. La shows a schematic perspective view of the antenna structure of the first embodiment
- FIG. Lb shows a schematic exploded view of the antenna structure of FIG. La
- the antenna structure 1 of the first embodiment has a rectangular parallelepiped base 2.
- the substrate 2 is made of a dielectric and is mounted on the ground region Zg of the circuit board 3 (that is, the region where the ground electrode 4 is formed).
- Examples of the dielectric that constitutes the substrate 2 include ceramics, greaves, and dielectric materials in which the dielectric constant is adjusted by mixing ceramic powder into the greave material.
- the substrate 2 may have a single layer structure or a multilayer structure! /.
- the feed radiation electrode 6 and the parasitic radiation electrode 7 are disposed adjacent to each other with a gap S on the upper surface of the base 2.
- the feeding radiation electrode 6 is provided with an L-shaped slit 8 formed by cutting from the edge of the electrode 6.
- the edge side of the feed radiation electrode 6 on the slit opening end side of the slit 8 forms the feed end with the slit 8 in between, and the other side K forms the open end.
- the feed end Q and the open end K force S are placed adjacent to each other via the slit 8, so that the current path between the feed end Q and the open end passes through the slit 8. It has a loop shape that bypasses the feed end Q and the open end K.
- a circuit (high frequency circuit) 10 for wireless communication is formed on the circuit board 3. Also, on the surface of the circuit board 3 on which the base 2 is mounted, a power supply electrode land 11 electrically connected to the wireless communication circuit 10 is electrically connected to the ground electrode 4 through a gap. Insulated It is provided in the state.
- a power supply electrode (not shown) for electrically connecting the power supply end Q of the power supply radiation electrode 6 and the power supply electrode land 11 of the circuit board 3 is formed on the side surface of the base 2.
- the feed end Q of the feed radiation electrode 6 is electrically connected to the radio communication circuit 10 on the circuit board 3 via the feed electrode and the feed electrode land 11.
- the feeding radiation electrode 6 functions as a radiation electrode that is electrically connected to the circuit 10 for wireless communication and performs antenna operation.
- the feed radiation electrode 6 performs an antenna operation in a plurality of different resonance frequency bands.
- the lowest resonance frequency band among the plurality of resonance frequency bands possessed by the feed radiation electrode 6 is referred to as a fundamental resonance frequency band
- an antenna operation mode in the fundamental resonance frequency band is referred to as a fundamental mode.
- a resonance frequency band higher than the fundamental resonance frequency band is referred to as a high-order resonance frequency band
- antenna operation in the high-order resonance frequency band is referred to as a high-order mode.
- FIG. 2a the voltage distribution in each of the fundamental mode and the higher-order mode of the feeding radiation electrode 6 is graphically shown.
- FIG. 2b shows an image diagram for facilitating the division of the positions of the voltage distributions of the fundamental mode and the higher-order mode at the feeding radiation electrode 6.
- FIG. 2a and FIG. 2b in this first embodiment, the voltage is zero in the higher order mode! /, And the region of the feeding radiation electrode 6 (higher order mode zero voltage region) in the vicinity thereof is This is the formation region (in other words, the return region of the current path around the slit) P at the end of the slit 8.
- a capacity loading electrode 12 is formed which is a capacity loading means for loading capacity to the higher-order mode zero voltage region P of the feed radiation electrode 6.
- an electrode land 13 electrically connected to the capacitor loading electrode 12 is formed in a state of being electrically insulated from the ground electrode 4 with a gap.
- a ground grounding conduction path 15 is formed in the circuit board 3 ! One end side of the ground-grounding conduction path 15 is electrically connected to the electrode land 13, and the other end side is electrically connected to the ground electrode 4. That is, the ground-grounding conduction path 15 is a conduction path for grounding the capacitor loading electrode 12 to the ground electrode 4 via the electrode land 13.
- the ground-grounding conduction path 15 is provided with switching means 16 for switching on / off of the conduction path 15.
- the switching means 16 When the switching means 16 is in the on state, the capacity loading electrode 12 is grounded to the ground electrode 4. As a result, a capacitance is formed between the higher-order mode zero voltage region P of the feed radiation electrode 6 and the capacitive loading electrode 12, and the higher-order mode zero voltage region P of the feed radiation electrode 6 is not connected to the ground. The capacity between is loaded.
- the capacitor loading electrode 12 is electrically disconnected from the ground electrode 4 and is in an electrically floating state.
- the antenna structure 1 of the first embodiment is configured as described above.
- This antenna structure 1 can switch the fundamental resonance frequency in the fundamental resonance frequency band of the feed radiation electrode 6 as shown below.
- the basic resonance frequency of the feed radiation electrode 6 is, for example, the frequency F shown in FIG.
- the resonance frequency of the parasitic radiation electrode 7 is F
- the resonance frequency of the parasitic radiation electrode 7 is F6.
- the antenna structure 1 has a good return loss characteristic.
- the switching means 16 is switched to the ON state, the capacitance between the capacitive loading electrode 12 and the ground is loaded in the higher-order mode zero voltage region ⁇ of the feeding radiation electrode 6.
- the higher-order resonance frequency of the feed radiation electrode 6 and the resonance frequency of the parasitic radiation electrode 7 do not change, and only the basic resonance frequency of the feed radiation electrode 6 is lowered.
- the fundamental resonance frequency of the feed radiation electrode 6 is switched to, for example, the frequency F ′.
- the switching fluctuation range of the fundamental resonance frequency of the feed radiation electrode 6 is the high-order mode zero voltage region P of the feed radiation electrode 6 and According to the size of the capacitance between the capacitive loading electrode 12 (that is, the capacitance between the capacitive loading electrode 12 and the ground loaded in the high-order mode zero voltage region P of the feeding radiation electrode 6 by the capacitive loading electrode 12) It becomes. For this reason, in this first embodiment, the capacitance for the basic resonance frequency of the feeding radiation electrode 6 when the switching means 16 is turned on to a predetermined frequency is higher than that of the feeding radiation electrode 6.
- the distance between the higher-order mode zero voltage region P of the feed radiation electrode 6 and the capacitive loading electrode 12 as defined between the mode zero voltage region P and the capacitive loading electrode 12 is the same as that for the capacitive loading.
- the electrode width of the electrode 12 is designed.
- wireless communication system A performs wireless communication using frequency band A shown in FIG. Lc
- another wireless communication system B performs wireless communication using frequency band B.
- the basic resonance frequency band of the feed radiation electrode 6 corresponds to the frequency band A for the radio communication system A by turning the switching means 16 on.
- the switching means 16 sets the switching means 16 to the OFF state
- the basic resonance frequency band of the feed radiation electrode 6 corresponds to the frequency band B for the radio communication system B.
- the fundamental resonance frequency band of the feeding radiation electrode 6 is the frequency Only one of band A and frequency band B can be supported.
- the basic resonance frequency of the feed radiation electrode 6 can be controlled by switching the on / off of the capacitive loading by the capacitive loading electrode 12 to the higher-order mode zero voltage region P of the feed radiation electrode 6.
- a band can correspond to both frequency band A and frequency band B. That is, a wide band of the basic frequency band of the feed radiation electrode 6 can be achieved.
- wireless communication system C performs wireless communication using frequency band C shown in Fig. Lc
- another wireless communication system D performs wireless communication using frequency band D
- yet another wireless communication system D performs wireless communication using frequency band E.
- the high-order resonance frequency band of the feed radiation electrode 6 is broadened by the double resonance state of the higher-order mode of the feed radiation electrode 6 and the parasitic radiation electrode 7, and the higher-order resonance frequency band of the feed radiation electrode 6 is increased.
- the resonance frequency band can correspond to all of the frequency bands C, D, and E when the switching means 16 is in the OFF state.
- the switching means 16 is switched from the off state to the on state, and the higher-order resonance frequency F of the feeding radiation electrode 6 is decreased (that is, h6
- the higher-order resonance frequency band of the radiation electrode 6 becomes narrower than when the switching means 16 is in the off state. For this reason, for example, there arises a problem that the higher-order resonance frequency band of the feeding radiation electrode 6 cannot correspond to the frequency band E.
- the higher-order resonance frequency band of the feed radiation electrode 6 does not change, so the occurrence of the above-described problems is avoided. can do.
- the higher-order resonance frequency of the feed radiation electrode 6 is not changed.
- the fundamental resonance frequency can be switched for the following reasons. That is, since the high-order mode zero voltage region P of the feed radiation electrode 6 is in the high-order mode and the voltage is zero or close to it, the switching means 16 is turned on and the capacitive loading electrode 12 and the feed radiation electrode 6 Even if a capacitance is formed between the two, the capacitance is equivalent to a state in which the feeding radiation electrode 6 is not loaded in the higher order mode of the feeding radiation electrode 6.
- the higher-order resonance frequency of the feed radiation electrode 6 does not change, and multiple resonances due to the higher-order mode of the feed radiation electrode 6 and the parasitic radiation electrode 7 occur.
- the fluctuation of the higher-order resonance frequency band of the feeding radiation electrode 6 in the state is suppressed.
- the higher-order mode zero voltage region P of the feed radiation electrode 6 is a voltage that is affected by capacitive loading by the capacitive loading electrode 12 in the basic mode, as shown in FIGS. 2a and 2b. This is the area. Therefore, the fundamental resonance frequency of the feed radiation electrode 6 can be switched by turning on / off the capacitive loading by the capacitive loading electrode 12.
- the capacity loading electrode 12 has a configuration capable of loading the capacity into the higher-order mode zero voltage region P of the feed radiation electrode 6, and the capacity loading is switched on and off.
- the capacity loading is switched on and off.
- the region is a region deviated from the higher-order mode zero voltage region P.
- the configuration of Sample B other than this configuration is the same as Sample A (that is, the antenna structure 1 of the first embodiment).
- Figure 4a shows the measurement result of the return loss characteristic of sample A
- Figure 4b shows the measurement result force of the return loss characteristic of sample B.
- the solid line A represents the measurement result when the switching means 16 is in the OFF state
- the chain line B represents the measurement result when the switching means 16 is in the ON state.
- Figure 5a shows the return loss characteristics and maximum gain of sample A in the frequency range of 750 MHz to 1000 MHz.
- Figure 5b shows the return loss characteristics and maximum gain of sample B in the frequency range of 750 MHz to 1000 MHz. Measurement results Force Each is shown.
- Figure 6a shows the return loss characteristics and maximum gain of sample A in the frequency range of 1700MHz to 2200MHz.
- Figure 6b shows the return loss characteristics and maximum gain of sample B in the frequency range of 1700MHz to 2200MHz. Measurement result forces are shown respectively.
- solid line A represents the measurement result of the return loss characteristic when the switching means 16 is in the off state
- chain line B represents the return loss characteristic when the switching means 16 is in the on state.
- the solid line a represents the measurement result of the maximum gain when the switching means 16 is in the off state
- the chain line B represents the measurement result of the maximum gain when the switching means 16 is in the on state.
- both samples A and B are turned on and off by the switching means 16 (that is, by the capacity loading electrode 12). (By switching on and off the loading of the capacity with the ground), feeding radiation
- the fundamental resonant frequency of electrode 6 is switched.
- the resonant frequency of the parasitic radiation electrode 7 does not fluctuate.
- sample A the higher order resonant frequency of the feed radiation electrode 6 is not changed in the sample A due to the on / off switching of the capacitive load, but in the sample B, the higher order resonant frequency of the feed radiation electrode 6 is not changed. Has switched.
- the higher-order resonance frequency band of the feed radiation electrode 6 in the double resonance state due to the higher-order mode of the feed radiation electrode 6 and the parasitic radiation electrode 7 is caused by the fluctuation of the higher-order resonance frequency of the feed radiation electrode 6.
- the bandwidth has fluctuated.
- the region in which the capacitance between the ground is loaded by the capacitor loading electrode 12 is defined as the higher order mode zero voltage region P of the feeding radiation electrode 6, and the higher order mode zero voltage region P It was confirmed that the fundamental resonance frequency of the feed radiation electrode 6 can be switched without changing the higher-order resonance frequency band of the feed radiation electrode 6 by switching the capacitive loading on and off. In other words, if the region for loading the capacitance between the capacitor loading electrode 12 and the ground is not the high-order mode zero voltage region P of the feeding radiation electrode 6, the capacitance loading is switched on and off. In addition, the fact that the higher-order resonance frequency band of the feed radiation electrode 6 is fluctuated is also divided from experiments.
- the capacity loading means is the force constituted by the capacity loading electrode 12, for example, the extension electrode 17 and the capacity loading electrode 12 as shown in Fig. 7a.
- a capacity loading means may be configured.
- the extension electrode 17 is formed to extend from the higher-order mode zero voltage region P of the power supply radiation electrode 6 toward the capacity loading electrode 12 on the side surface of the base body 2, and is used to form a capacitance between the extension electrode 17 and the capacity loading electrode 12. Electrode.
- the capacitance between the extension electrode 17 and the capacitance loading electrode 12 is loaded in the higher-order mode zero voltage region P of the feed radiation electrode 6 as a capacitance between the extension electrode 17 and the ground.
- the capacity loading electrode 12 is formed to extend from the edge of the bottom surface of the substrate 2 to the side surface of the substrate 2, but is shown in Fig. 7b.
- the upper end side of the capacitor loading electrode 12 is further extended and formed so as to wrap around the upper surface of the substrate 2 to form a capacitance with the higher-order mode zero voltage region P of the feed radiation electrode 6. It's okay.
- the capacitive loading electrode 12 is formed on the base body 2, but the capacitive loading electrode 12 may be formed on the circuit board 2, for example. Yes. In this case, for example, as shown in FIG.
- a stretched electrode 18 is formed that extends from the higher-order mode zero voltage region P of the feed radiation electrode 6 through the side surface of the substrate 2 to the bottom surface of the substrate 2. .
- an electrode land 19 that is electrically connected to the extended electrode 18 is formed in a state of being electrically insulated from the ground electrode 4.
- a capacitor loading electrode 12 is formed on the circuit board 2 so that a capacitor is formed between the electrode land 19.
- the extension electrode 18, the electrode land 19, and the capacity loading electrode 12 constitute a capacity loading means, and the capacity between the electrode land 19 and the capacity loading electrode 12 is the higher-order mode of the feeding radiation electrode 6. Loaded in the zero-voltage region P.
- the capacity loading electrode 12 is a force in which the edge edge force of the bottom surface of the substrate 2 is also stretched on the side surface of the substrate 2, for example, as shown in Fig. 7d.
- at least a part of the capacity loading electrode 12 may be formed inside the base 2.
- the electrode area of the capacitive loading electrode 12 facing the feeding radiation electrode 6 can be expanded. It becomes easy. Thereby, it is easy to increase the capacitance between the feeding radiation electrode 6 and the capacitor loading electrode 12 (that is, the capacitance between the feeding radiation electrode 6 and the ground electrode 4 loaded).
- variable adjustment range of the capacity between the capacitive loading electrode 12 and the ground electrode 4 loaded on the feeding radiation electrode 6 is expanded. That is, the variable range of the fluctuation range of the basic resonance frequency of the feeding radiation electrode 6 when the switching means 16 is switched to the on state can also be widened. In addition, the degree of freedom for the position where the capacitive loading electrode 12 is formed also increases. As a result, it is possible to obtain an effect that it becomes easier to meet the needs of various frequency bands.
- the capacity loading means is constituted by the capacity loading electrode 12.
- the capacity loading means may be constituted by a capacity loading capacitor component.
- the stretched electrode 20 extends from the high-order mode zero voltage region P of the feed radiation electrode 6 to the side surface of the base 2.
- an electrode 21 extending from the bottom surface side of the substrate 2 toward the extended electrode 20 is formed with a distance from the extended electrode 20.
- the electrode 21 is connected to the grounding conduction path 15 via the electrode land 22 formed on the circuit board 2. It is connected electrically.
- Capacitor-loaded capacitor part 23 is arranged so as to span between extended electrode 20 and electrode 21.
- the capacitance of the capacitor component for loading 23 is loaded in the higher-order mode zero voltage region P of the feed radiation electrode 6 as a capacitance between the higher-order mode zero voltage region P of the feed radiation electrode 6 and the ground.
- Capacitor loading capacitor part 23 may have a predetermined fixed capacity, or may be a variable capacity capacitor part capable of variably adjusting the size of the capacity. . Further, when the variable capacitor part is provided as the capacitor part 23 for capacity loading, a voltage applying means for setting the capacity of the variable capacitor part is provided.
- the capacity loading means is constituted by the capacity loading capacitor component 23, whereby the following effects can be obtained. That is, when the switching means 16 is switched from the off state to the on state, the fluctuation range of the fundamental resonance frequency of the feeding radiation electrode 6 is the capacitance between the feeding radiation electrode 6 loaded by the capacitive loading means and the ground electrode 4. Depending on For this reason, when the switching means 16 is switched to the ON state by switching the switching means 16 to the ON state by configuring the capacitor loading means with the capacitor part 23 for capacity loading, particularly the variable capacitor part capable of continuously changing the capacity. It is easy to accurately adjust the fluctuation range of the basic resonance frequency of the feeding radiation electrode 6 to a predetermined fluctuation range. For this reason, it becomes easy to provide the antenna structure 1 and the radio communication device having the frequency characteristics more suited to the needs.
- the size of the capacity that can be loaded on the feeding radiation electrode 6 by the capacity loading electrode 12 is limited due to, for example, the size or formation area regulation. End up.
- the capacitive loading means is loaded onto the feeding radiation electrode 6 as compared with the case of configuring the capacitive loading means with the capacitive loading electrode 12.
- the capacitance between the ground electrode 4 can be increased.
- the capacity loading means is constituted by the capacity loading electrode 12, it is not necessary to provide the capacity loading capacitor part 23 as described above. As a result, the increase in the number of parts can be suppressed, and the effect that the structure complexity can be prevented can be obtained.
- the substrate 2 is provided with a plurality (two in the example of FIG. 8a) of capacitive loading electrodes 12 (12a, 12b).
- a plurality of capacity loading electrodes 12 on the substrate 2, the plurality of capacity loading electrodes 12, the feed radiation electrode 6, the non-feed radiation electrode 7 and the like are formed.
- a plurality of types of antenna structures 1 can be configured using the base 2 (hereinafter, the base 2 is referred to as an antenna component).
- the plurality of capacitive loading electrodes 12 are formed so that different capacities can be loaded in the higher-order mode zero voltage region P of the feed radiation electrode 6, respectively. 12 may be appropriately set so that the same capacity can be loaded in the higher-order mode zero voltage region P of the feed radiation electrode 6.
- one of the plurality of capacitive loading electrodes 12 of the antenna component is used so that the basic resonance frequency of the feeding radiation electrode 6 in the capacitive loading on state becomes a preset frequency.
- the necessary capacity loading electrode 12 is electrically connected to the ground electrode 4 through the switching means 16 through the grounding conduction path 15.
- the configuration is as follows. In the configuration of the antenna structure 1, there are capacitive loading electrodes 12 that are not used. This unused capacitive loading electrode 12 (capacitive loading electrode 12 (12b) in the example of FIG. 8b) may be in an electrically floating state as shown in FIG. As shown, the unused capacitive loading electrode 12 (12b) force has a certain electrical impedance when looking at the electrode land 13 (13b) side. It may be configured to be connected to (12b)!
- FIG. 8c Another configuration example of the antenna structure 1 using the antenna component of Fig. 8a is given below.
- a plurality of capacitive loading electrodes 12 of the antenna component 1 are necessary because the basic resonance frequency of the feeding radiation electrode 6 becomes a preset frequency when the capacitive loading is on.
- FIG. 8e a plurality of necessary capacity loading electrodes 12 are connected to the ground electrode 4 by the ground grounding conduction path 15 through the common switching means 16!
- each capacity loading electrode 12 is electrically connected to the ground electrode 4 through the grounding conduction path 15 via the corresponding switching means 16 individually. It is good.
- all the switching means 16 corresponding to the plurality of capacitive loading electrodes 12 necessary for capacitive loading are simultaneously controlled to be turned on / off.
- each capacity loading electrode 12 of the antenna component is grounded to the ground electrode 4 by the ground grounding conduction path 15 via the corresponding switching means 16 respectively.
- the plurality of capacitive loading electrodes 12 are connected to the ground electrode 4 by the ground grounding conduction path 15 via the switching means 16 that individually correspond to each other, a plurality of switching operations are performed. ON / OFF switching control of any one of the pre-selected stages 16, ON / OFF switching control of all switching means 16 simultaneously, and ON of a plurality of pre-selected switching means 16 'When switching off (including multi-step control depending on the combination).
- the basic resonance frequency of the feed radiation electrode 6 when the capacitor is loaded can be varied.
- the antenna structure 1 having a configuration in which the plurality of capacitive loading electrodes 12 of the antenna component are connected to the ground electrode 4 via the switching means 16 that individually correspond to each other is incorporated into a plurality of types of wireless communication devices. Can be made possible.
- the capacity loading electrode 12 is of course formed in two, and the number of the capacity loading electrodes 12 is limited to a number as long as it is plural. However, three or more capacitive loading electrodes 12 may be formed as required. Further, the form of the capacity loading electrode 12 is not limited to the form shown in FIG. 8a or the like. For example, at least one of the plurality of capacity loading electrodes 12 is, for example, as shown in FIGS. 7b and 7d. Form It may be made. Further, at least one of the plurality of capacitive loading electrodes 12 is provided between the extended electrode 17 formed by extending from the higher-order mode zero voltage region P of the feeding radiation electrode 6 as shown in FIG.
- the capacity loading electrode 12 is provided as the capacity loading means.
- the capacity loading capacitor component 23 is used as the capacity loading means.
- a plurality of the substrate 2 may be provided.
- a plurality of types of antenna structures 1 can be obtained by using the plurality of capacitor parts 23 for capacity loading and using the antenna parts V.
- a plurality of capacity loading means are provided on the base body 2, and at least one of the plurality of capacity loading means is electrically connected to the ground electrode 4 through the switching means 16 through the ground grounding conduction path 15.
- the capacitive loading means for loading the capacitance between the ground electrode 4 for obtaining the required fluctuation range into the higher-order mode zero voltage region P of the feed radiation electrode 6 together with the feed radiation electrode 6 It is conceivable to manufacture the antenna parts provided for each type and model of wireless communication device. However, in this case, antenna components for each type and model of the wireless communication device must be manufactured, and many types of antenna components are required. On the other hand, a plurality of capacitive loading means for loading different capacities into the higher-order mode zero voltage region P of the feeding radiation electrode 6 is provided in the antenna component, and feeding is performed by switching between the capacitive loading off state and the capacitive loading on state.
- the same type of antenna component can be provided in a plurality of types of wireless communication devices. That is, the antenna parts can be shared. Thereby, it is possible to reduce the cost of the antenna structure 1 and the wireless communication apparatus provided with the antenna structure 1.
- the third embodiment will be described below. In the description of the third embodiment, the same components as those in the first and second embodiments are denoted by the same reference numerals, and overlapping description of the common portions is omitted.
- the parasitic radiation electrode 7 has a form having a loop current path.
- the non-feeding radiation electrode 7 is formed with a slit 26 cut out from the edge of the electrode 7.
- the electrode edge side of the slit opening end side of the slit 26 is a short end electrically connected to the ground electrode 4 with the slit 26 in between, and the other end M is an open end. It is made.
- the current path between the short end N and the open end M forms a loop-like path that bypasses the slit 26 and connects the power supply end N and the open end M.
- the parasitic radiation electrode 7 is configured to perform an antenna operation in a plurality of mutually different resonance frequency bands.
- the fundamental resonance frequency F of the fundamental resonance frequency band having the lowest frequency among the plurality of resonance frequency bands of the parasitic radiation electrode 7 is, for example,
- the antenna operation (fundamental mode) in the oscillation frequency band is configured to create a double resonance state together with the fundamental mode of the feed radiation electrode 6 as shown by a solid line ⁇ in FIG. 9b.
- the higher-order resonance frequency F in the higher-order resonance frequency band higher than the fundamental resonance frequency band of the parasitic radiation electrode 7 is a frequency close to the higher-order resonance frequency F of the feeder radiation electrode 6.
- the antenna operation (high-order mode) of the high-order resonance frequency band of the shooting electrode 7 is configured to create a double resonance state together with the high-order mode of the feeding radiation electrode 6.
- the non-feeding radiation electrode 7 creates a double resonance state in both the fundamental resonance frequency band and the high-order resonance frequency band of the feed radiation electrode 6, so that the higher resonance of the feed radiation electrode 6 is caused by the double resonance state. It is also possible to increase the bandwidth of the basic resonance frequency band that is not limited to the frequency band.
- the capacity loading means (capacitance loading electrode 12 in the example of Fig. 9a). It has a configuration that can switch on and off the capacitive loading to the higher-order mode zero-voltage region P of the radiation electrode 6. Therefore, for example, when the switching means 16 is in the off state and the capacity loading to the higher-order mode zero voltage region P of the feeding radiation electrode 6 by the capacity loading means is off. For example, suppose that the fundamental resonance frequency of the feeding radiation electrode 6 is a frequency F as indicated by a solid line ⁇ in FIG. On the other hand, the switching means 16 is switched on and the capacity loading b6
- the fundamental resonance frequency of the feed radiation electrode 6 is cut to the frequency F′b6, as shown by the chain line
- the capacity by the capacitive loading means is loaded in the higher-order mode zero voltage region P of the feed radiation electrode 6 as described above.
- the higher resonance frequency band of the feed radiation electrode 6 does not fluctuate so that the comparative force of the solid line ⁇ and the chain line
- the double resonance state is created by the parasitic radiation electrode 7 in both the fundamental resonance frequency band and the higher order resonance frequency band of the feed radiation electrode 6.
- the basic frequency band of the feed radiation electrode 6 can be changed by the double resonance state due to the parasitic radiation electrode 7 as well as the broadening of the fundamental frequency band of the feed radiation electrode 6 by switching the fundamental resonance frequency of the feed radiation electrode 6. You can make a habit. As a result, it is possible to further widen the fundamental frequency band of the feeding radiation electrode 6.
- the non-feeding radiation electrode 7 has a mode in which its current path is a loop shape, like the feeding radiation electrode 6. For this reason, as with the feed radiation electrode 6, the fundamental resonance frequency and the higher-order resonance frequency of the parasitic radiation electrode 7 can be adjusted almost independently. As a result, it becomes easy to adjust the fundamental resonance frequency and the higher-order resonance frequency of the parasitic radiation electrode 7 to predetermined frequencies.
- the parasitic radiation electrode 7 has a slit 26 formed in the electrode 7 in the same manner as the feeder radiation electrode 6 so that the current path is looped. Therefore, the electrical length of the parasitic radiation electrode 7 is increased without increasing the size. It is possible to obtain the effect that it can be achieved, and the effect that it is possible to achieve a wide band of frequency bands.
- the capacity loading means is the capacity loading electrode 12 as shown in Fig. La.
- the capacity loading means is, for example, as shown in Figs. 7a to 7e.
- Other configurations such as the configuration shown in FIG. 5 and the configuration described in the second embodiment can also be adopted.
- the voltage is zero in the higher-order mode of the parasitic radiation electrode 7! /
- the region of the parasitic radiation electrode 7 in the vicinity thereof A capacity loading means is provided for loading capacity in the higher-order mode zero voltage region.
- the parasitic radiation electrode 7 has a loop shape in which the current path between the short end N and the open end M connects the short end N and the open end M bypassing the slit 26.
- a detoured folded region U of the current path of the parasitic radiation electrode 7 is a high-order mode zero voltage region.
- a capacitive loading electrode 27 is formed as a capacitive loading means on the parasitic side for loading a capacitance to the higher-order mode zero voltage region U of the parasitic radiation electrode 7.
- electrode lands 28 electrically connected to the capacitor loading electrode 27 are formed with a gap from the ground electrode 4.
- the electrode land 28 and the electrode land 13 on the side of the feeding radiation electrode 6 are electrically connected to the ground electrode 4 via a common switching means 16 and a grounding conduction path 15.
- the capacitive loading of the power supply radiation electrode 6 to the higher-order mode zero voltage region P by the capacitive loading electrode 12 is off.
- the capacitive loading of the parasitic radiation electrode 7 to the higher-order mode zero voltage region U by the capacitive loading electrode 27 is also off.
- the fundamental resonance frequency of the feeding radiation electrode 6 is the frequency F shown in FIG. 10b
- the fundamental resonance frequency of the parasitic radiation electrode 7 is the frequency F, which is shown by the solid line ⁇ in FIG. 10b b6 b7.
- a double resonance state is created in the fundamental resonance frequency band of the feed radiation electrode 6 by the fundamental mode of the parasitic radiation electrode 7 and the fundamental mode of the feed radiation electrode 6.
- the switching means 16 is switched to the ON state, the capacitive loading to the higher-order mode zero voltage region ⁇ ⁇ of the feeding radiation electrode 6 by the capacitive loading electrode 12 is turned on, and the capacitive loading electrode Capacitance loading to the higher-order mode zero-voltage region U of the parasitic radiation electrode 7 by 27 is also turned on.
- the fundamental resonance frequency of the feed radiation electrode 6 is switched to the frequency F ′.
- the fundamental resonance frequency band of the feed radiation electrode 6 in the double resonance state by the fundamental mode of the feeding radiation electrode 6 and the fundamental mode of the parasitic radiation electrode 7 is switched as shown by a chain line
- the capacitive loading means on the feeding radiation electrode 6 side is constituted by the capacitive loading electrode 12 similar to the example of Fig. La, but the capacitive loading means on the feeding radiation electrode 6 side.
- the capacitive loading means on the non-feeding radiation electrode 7 side various configurations similar to the above may be adopted.
- the capacity loading electrodes 12, 27 are electrically connected to the ground electrode 4 via the common switching means 16 and the ground grounding conduction path 15, respectively.
- the capacity loading electrodes 12 and 27 may be configured to be electrically connected to the ground electrode 4 through the switching means 16 and the ground ground conduction path 15 that correspond to each other.
- the parasitic radiation electrode 7 is also provided with capacitive loading means (capacitor loading electrode 27) for loading a capacitor in its higher-order mode zero voltage region.
- capacitive loading means capacitor loading electrode 27
- the fundamental resonance frequency of the parasitic radiation electrode 7 can be switched without changing the higher order resonance frequency of the parasitic radiation electrode 7. Therefore, by switching the basic resonance frequency of the feeding radiation electrode 6 and the non-feeding radiation electrode 7, it is possible to further widen the fundamental resonance frequency band.
- the position where the capacitive loading means can be formed may be limited due to, for example, the wiring configuration of the circuit board 3.
- the position where the capacity loading means can be formed and the position where the capacity loading means can load the capacity in the higher-order mode zero voltage region P of the feeding radiation electrode 6 may be shifted.
- the fifth embodiment has a configuration that can avoid such a situation. That is, the fifth embodiment has the following configuration in addition to the configurations of the first to fourth embodiments.
- the antenna structure 1 of the fifth embodiment is designed as follows, for example.
- the formation position of the capacity loading means is determined based on the restriction condition of the formation position of the capacity loading means.
- the area of the feed radiation electrode 6 where the capacity is loaded by the capacity loading means is set as the arrangement position of the higher-order mode zero voltage area P.
- the dielectric constant of the substrate 2 is determined so that the higher-order mode zero voltage region P of the feed radiation electrode 6 is disposed at the set position.
- the substrate 2 is formed of a dielectric having the determined dielectric constant.
- the position where the capacitor loading electrode 12 is formed is the force that was the corner of the base body 2 as described above.
- the formation position of the electrode 12 for capacitive loading depends on the arrangement position of the high-order mode zero voltage region P of the feed radiation electrode 6. It can be set at the center of the 2 side.
- the entire base 2 is composed of the same dielectric, but the higher-order mode voltage distribution of the feed radiation electrode 6 is particularly the dielectric in the open end formation region of the feed radiation electrode 6. Sensitive to rate. From this, for example, only the base portion that becomes the open end formation region of the feed radiation electrode 6 is partly a dielectric constant for disposing the higher-order mode zero voltage region P of the feed radiation electrode 6 at the set position. It is good also as a structure formed with the dielectric material which has. In addition, for example, as shown in FIG. 1 ib, the dielectric member 30 having a dielectric constant for disposing the higher-order mode zero voltage region P of the feed radiation electrode 6 at the set position is opened. It may be provided on the base part that will be the edge forming area.
- the capacitive loading electrode 12 is provided as the capacitive loading means on the feeding radiation electrode 6 side.
- the capacity loading means one having another configuration as described above in each of the first to fourth embodiments may be provided.
- a capacitive loading means on the non-feeding side may be provided.
- the capacitive loading means on the parasitic side is provided, and the formation position of the higher-order mode zero voltage region U of the parasitic radiation electrode 7 is adjusted.
- Only the base portion that is the open end formation region of the parasitic radiation electrode 7 is partially a dielectric having a dielectric constant for disposing the higher-order mode zero voltage region U of the parasitic radiation electrode 7 at the set position. You may provide the structure currently formed by.
- the higher order of the parasitic radiation electrode 7 A dielectric member having a dielectric constant for disposing the mode zero voltage region u at the set position may be provided in the base portion that becomes the open end formation region of the parasitic radiation electrode 7.
- the dielectric constant of the substrate 2 is adjusted in whole or in part, or a dielectric is formed in the open end formation region of the feed radiation electrode 6 or the non-feed radiation electrode 7.
- a configuration is provided in which members are provided to adjust the arrangement positions of the higher-order mode zero voltage regions P and U of the feed radiation electrode 6 and the feed radiation electrode 7. For this reason, even if the formation position of the capacitive loading means of the feeding radiation electrode 6 and the parasitic radiation electrode 7 is limited, the higher order modes of the feeding radiation electrode 6 and the parasitic radiation electrode 7 are controlled by the capacitive loading means. Capacitors can be loaded in the zero voltage regions P and U, and the fundamental resonance frequency band of the feeding radiation electrode 6 and the parasitic radiation electrode 7 can be switched.
- a sixth embodiment will be described below.
- the same components as those in the first to fifth embodiments will be denoted by the same reference numerals, and overlapping description of the common portions will be omitted.
- the basic resonance frequency band of the feed radiation electrode 6 is a predetermined frequency band condition without switching the fundamental resonance frequency of the feed radiation electrode 6. May be satisfied.
- the antenna parts as shown in the first to fifth embodiments are provided, and the switching means 16 is omitted.
- the antenna structure 1 can be built. For this reason, the antenna structure 1 of the sixth embodiment has the following configuration.
- the capacity loading electrode 12 provided on the base body 2 constitutes an optional capacity loading means.
- the antenna structure 1 in the capacity-loading off state has a return loss characteristic as shown by the solid line in Fig. Lc, for example, the four frequency bands B, C, D, and E shown in Fig. Lc
- the capacitor loading electrode 12 may be fixed in an electrically open state.
- the capacitor loading electrode 12 is not grounded to the ground electrode 4.
- a load 32 having some predetermined impedance when the ground electrode 4 side is viewed from the capacitor load electrode 12 is connected to the capacitor load electrode 12.
- a load component 33 having some predetermined impedance in this case, U ⁇ is preferably open
- the electrode 12 for capacitive loading also looks at the ground electrode 4 side. Connect to capacitive loading electrode 12.
- the capacitor loading electrode 12 may be fixed in a short-circuited state. Thereby, for example, the capacitor loading electrode 12 is directly connected to the ground electrode 4 of the circuit board 3 and grounded as shown in FIG. 12c.
- the switching means 16 can be omitted, so that the antenna structure can be simplified.
- the capacitive loading electrode 12 shown in FIGS. 12a to 12c as an optional capacitive loading means, for example, other types as shown in FIGS. 7a, 7b, 7d, 7e, and 8a
- a capacity loading means of the configuration may be provided.
- an optional non-power-feeding side capacity loading means may be provided.
- the base body 2 is configured to be provided with optional capacity loading means.
- the antenna parts can be shared.
- the antenna component in which the optional capacity loading means is formed on the substrate 2 has a capacity between the ground electrode 4 and the higher-order mode zero voltage regions P and U of the feed radiation electrode 6 or the feed radiation electrode 7. It can be installed in antenna structure 1 that requires loading, in unnecessary antenna structure 1, and in antenna structure 1 that requires on / off switching of capacity loading. For this reason, the antenna components can be shared, and the cost of the antenna structure 1 can be reduced.
- the seventh embodiment relates to a wireless communication apparatus.
- the wireless communication apparatus of the seventh embodiment is provided with any one antenna structure 1 of the antenna structures 1 shown in the first to sixth embodiments.
- the radio communication device configuration other than the antenna structure is not particularly limited, and an appropriate configuration is provided.
- the present invention is not limited to the forms of the first to seventh embodiments, and can take various forms.
- the feeding radiation electrode 6 has a form in which the current path is looped by the slit 8, but for example, the loop-shaped current path is formed by a band-shaped electrode. It is also possible to provide a feeding radiation electrode 6 with it. The same applies to the case where the parasitic radiation electrode 7 has a form having a loop current path.
- only one slit is formed in the feeding radiation electrode 6.
- a plurality of slits are arranged in parallel, and the current path of the feeding radiation electrode 6 is
- the number of slits that can be formed is not limited, even if it is configured to form a loop-shaped current path connecting the feeding end Q and the open end K, bypassing the parallel group of slits. .
- the shape of the slit is not limited. When a slit is formed in the parasitic radiation electrode 7, the same applies to the slit.
- the base body 2 has a rectangular parallelepiped shape, but the base body 2 may have a shape other than a rectangular parallelepiped shape such as a columnar shape or a polygonal shape.
- the base 2 is provided with one feeding radiation electrode 6 and one parasitic radiation electrode 7, but for example, the feeding radiation electrode 6 and the parasitic radiation are provided. It is also possible to adopt a configuration in which at least one side of the electrode 7 is provided in plural on the base 2.
- the present invention is suitable, for example, for an antenna structure and a wireless communication apparatus that can support a plurality of wireless communication systems that use different frequency bands.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Details Of Aerials (AREA)
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Support Of Aerials (AREA)
Abstract
給電放射電極6と、給電放射電極6の少なくとも高次共振周波数帯で複共振状態を作り出す無給電放射電極7とが形成されている基体2を回路基板3のグランド領域Zgに搭載して成るアンテナ構造1において、給電放射電極6の高次モード零電圧領域Pに容量を装荷するための容量装荷手段12を設ける。容量装荷手段12はグランド接地用導通経路15と切り換え手段16を介して回路基板3のグランド領域のグランド電極4に電気的に接続する。切り換え手段16のオン・オフの切り換えによって、容量装荷手段12による給電放射電極6の高次モード零電圧領域Pへの容量装荷のオン・オフが切り換え制御されて給電放射電極6の基本共振周波数帯の基本共振周波数が切り換わる。
Description
明 細 書
アンテナ構造およびそれを用いた無線通信装置
技術分野
[0001] 本発明は、携帯型電話機等の無線通信装置に設けられるアンテナ構造およびそ れを用 V、た無線通信装置に関するものである。
背景技術
[0002] 図 13aにはアンテナ構造の一形態例が模式的な斜視図により示されている(例えば 特許文献 1参照)。このアンテナ構造 40は、直方体状の誘電体基体 41を有し、この 誘電体基体 41の底面には接地電極 42が形成されている。また、誘電体基体 41の上 面には、給電放射電極 43と、無給電放射電極 44とがスリット siを介して隣接配置さ れている。誘電体基体 41の側面の一つには、接続用電極 45と接続用電極 46が互 いに間隔を介して形成されて 、る。接続用電極 45は給電放射電極 43と接地電極 42 を電気的に接続させるためのものである。接続用電極 46は無給電放射電極 44と接 地電極 42を電気的に接続させるためのものである。
[0003] 誘電体基体 41における接続用電極 45, 46の形成面に対向する側面には、給電 放射電極用の給電電極 47が形成されていると共に、周波数制御用電極 48が形成さ れて 、る。給電電極 47の上端側は給電放射電極 43と間隔を介して配置され給電放 射電極 43との間に容量を形成している。また、給電電極 47の下端側は誘電体基体 4 1の底面側に回り込み形成されている。この給電電極 47の下端側は接地電極 42と 間隔を介して配置され、当該給電電極 47の下端側は例えば無線通信装置に設けら れている無線通信用の高周波回路 50と電気的に接続される。周波数制御用電極 48 の上端側は給電放射電極 43と無給電放射電極 44とのそれぞれに間隔を介して配 置され給電放射電極 43と無給電放射電極 44とのそれぞれとの間に容量 CI, C2を 形成する。周波数制御用電極 48の下端側は誘電体基体 41の底面側に回り込み形 成されて!/、る。この周波数制御用電極 48の下端側は接地電極 42と間隔を介して配 置されている。また、当該周波数制御用電極 48の下端側は切り換え手段 51を介して 例えば無線通信装置のグランドに接地される。
[0004] 図 13aに示されるアンテナ構造 40では、例えば、無線通信用の高周波回路 50から 送信用の信号が給電電極 47に供給されると、給電電極 47と給電放射電極 43との間 の容量結合によって、送信用の信号が給電電極 47から給電放射電極 43に伝達され 当該送信用の信号に基づいて給電放射電極 43が共振する。また、給電放射電極 4 3と無給電放射電極 44との間の電磁結合によって送信用の信号が無給電放射電極 44にも伝達されて無給電放射電極 44も共振する。このアンテナ構造 40では、給電 放射電極 43の共振と無給電放射電極 44の共振とによって複共振状態が作り出され るように給電放射電極 43と無給電放射電極 44との間の間隔 si等が設定されている 。このような給電放射電極 43と無給電放射電極 44の共振動作 (複共振動作)は、送 信用の信号を外部に向けて無線送信するアンテナ動作と成している。また、外部から 信号が給電放射電極 43および無給電放射電極 44に到達すると、この信号受信によ つて給電放射電極 43および無給電放射電極 44が共振して受信信号が給電放射電 極 43から給電電極 47に伝達され更に無線通信用の高周波回路 50に伝達される。 上記のような外部からの無線通信用の信号に基づいた給電放射電極 43および無給 電放射電極 44の共振動作は受信のアンテナ動作と成している。
[0005] このアンテナ構造 40では、給電放射電極 43と無給電放射電極 44とのそれぞれと の間に容量を形成する周波数制御用電極 48が設けられており、この周波数制御用 電極 48は、切り換え手段 51を介してグランドに接地される構成となっている。この構 成によって、アンテナ構造 40では、次に示すように給電放射電極 43および無給電放 射電極 44の共振周波数帯を切り換えることができる。例えば、切り換え手段 51がォ フ状態であり、周波数制御用電極 48がグランドに接地されていない場合に、給電放 射電極 43が例えば図 13bに示す共振周波数 flを持つ点線 Aに示されるような共振 周波数帯を有し、無給電放射電極 44が図 13bに示す共振周波数 f2を持つ鎖線 B〖こ 示されるような共振周波数帯を有し、これら給電放射電極 43と無給電放射電極 44に よって、図 13bの実線 αに示されるような複共振状態を作り出しているとする。
[0006] これに対して、切り換え手段 51がオン状態となり、周波数制御用電極 48がグランド に接地されると、給電放射電極 43と周波数制御用電極 48との間、および、無給電放 射電極 44と周波数制御用電極 48との間に、それぞれ、グランドとの間の容量が形成
される。これにより、給電放射電極 43にグランドとの間の容量が装荷されると共に、無 給電放射電極 44にもグランドとの間の容量が装荷される。
[0007] 図 13cには給電放射電極 43の等価回路が実線により示されている。給電放射電極 43の共振動作は、当該給電放射電極 43が持つ図 13cに示されるインダクタンス成 分 Lと容量成分 Cとの LC共振であることから、給電放射電極 43の共振周波数 Fは、 1 Z (LC)に比例したものとなる (Fc lZ (LC) )。無給電放射電極 44の共振周波 数に関しても同様である。このため、切り換え手段 51がオン状態となって周波数制御 用電極 48によりグランドとの間の容量が給電放射電極 43および無給電放射電極 44 にそれぞれ装荷されると、給電放射電極 43および無給電放射電極 44の各容量成分 Cが大きくなつて、給電放射電極 43および無給電放射電極 44の各共振周波数が低 くなる。これにより、切り換え手段 51がオフ状態力 オン状態に切り換えられると、給 電放射電極 43の共振周波数が周波数 flから例えば周波数 fl 'に切り換えられ、また 、無給電放射電極 44の共振周波数が周波数 f2カゝら例えば周波数 f 2'に切り換えられ る。これにより、給電放射電極 43と無給電放射電極 44の複共振状態は、図 13bの実 線 OCの状態から実線 βの状態に切り換わる。
[0008] アンテナ構造 40では、切り換え手段 51がオフ状態であるときには、給電放射電極 4 3および無給電放射電極 44のアンテナ動作による無線通信用の周波数帯は、例え ば、図 13bに示される周波数 fm力も周波数 fnまでの周波数領域である。これに対し て、切り換え手段 51がオン状態であるときには、給電放射電極 43および無給電放射 電極 44のアンテナ動作による無線通信用の周波数帯は、例えば、図 13bに示される 周波数 fm'から周波数帯 fn'までの周波数領域に切り換わる。
[0009] よって、例えば周波数制御用電極 48を有する周波数切り換え構成が設けられてい ない場合には、アンテナ構造 40の無線通信用の周波数帯は、例えば周波数 fmから 周波数 fnまでの周波数領域であるのに対して、上記したような周波数切り換え構成が 設けられること〖こよって、アンテナ構造 40は、例えば周波数 fm'から周波数 fnまでの 周波数領域の無線通信に対応することが可能となる。すなわち、アンテナ構造 40の 周波数帯域の広帯域ィ匕を図ることができる。
[0010] 特許文献 1 :特開 2001— 168634号公報
特許文献 2 :特開 2005— 150937号公報
発明の開示
発明が解決しょうとする課題
[0011] ところで、近年、互いに異なる周波数帯を利用する複数の無線通信システムに対応 できるマルチバンドのアンテナが要求されてきて 、る。上述したような広帯域ィ匕が図ら れているアンテナ構造 40でも、無線通信可能な周波数帯域の不足によって、そのマ ルチバンドィ匕の要求に満足に応えることが難し力つた。
課題を解決するための手段
[0012] この発明は次に示す構成をもって前記課題を解決するための手段としている。すな わち、この発明の一つの構成は、
無線通信用の回路が形成されている回路基板のグランド領域に搭載されている基 体を有し、基体には、無線通信用の回路に電気的に接続されて互いに異なる複数の 共振周波数帯でアンテナ動作を行う給電放射電極が設けられていると共に、この給 電放射電極と電磁結合する無給電放射電極が給電放射電極と間隔を介して設けら れており、給電放射電極は、一端側が無線通信用の回路に電気的に接続される給 電端と成し他端側が開放端と成している放射電極であり、この給電放射電極は、その 給電端側と開放端側が間隔を介し隣接配置されて給電端と開放端間の電流経路が ループ状となる形態を有しており、無給電放射電極は、給電放射電極との電磁結合 により給電放射電極と共にアンテナ動作を行って少なくとも給電放射電極が持つ複 数の共振周波数帯のうちの最も低い基本共振周波数帯よりも高い高次共振周波数 帯で複共振状態を作り出す構成を有するアンテナ構造であって、
高次共振周波数帯のアンテナ動作モードである高次モードで電圧が零あるいはそ の近傍となる給電放射電極の高次モード零電圧領域に容量を装荷するための容量 装荷手段と、
回路基板のグランド領域に形成されているグランド電極と、容量装荷手段との間を 電気的に接続するグランド接地用導通経路と、
グランド接地用導通経路に介設され容量装荷手段と回路基板のグランド電極との 間の導通オン'オフを切り換えて容量装荷手段による給電放射電極の高次モード零
電圧領域への容量装荷のオン'オフを切り換え制御して給電放射電極の基本共振 周波数帯の基本共振周波数を切り換える切り換え手段と、
を有して!/、ることを特徴として 、る。
[0013] また、この発明の別の構成の一つは、
無線通信用の回路が形成されている回路基板のグランド領域に搭載されている基 体を有し、基体には、無線通信用の回路に電気的に接続されて互いに異なる複数の 共振周波数帯でアンテナ動作を行う給電放射電極が設けられていると共に、この給 電放射電極と電磁結合する無給電放射電極が給電放射電極と間隔を介して設けら れており、給電放射電極は、一端側が無線通信用の回路に電気的に接続される給 電端と成し他端側が開放端と成している放射電極であり、この給電放射電極は、その 給電端側と開放端側が間隔を介し隣接配置されて給電端と開放端間の電流経路が ループ状となる形態を有しており、無給電放射電極は、給電放射電極との電磁結合 により給電放射電極と共にアンテナ動作を行って少なくとも給電放射電極が持つ複 数の共振周波数帯のうちの最も低い基本共振周波数帯よりも高い高次共振周波数 帯で複共振状態を作り出す構成を有するアンテナ構造であって、
基体には、高次共振周波数帯のアンテナ動作モードである高次モードで電圧が零 あるいはその近傍となる給電放射電極の高次モード零電圧領域に容量を装荷する ためのオプション用の容量装荷手段が形成されており、
オプション用の容量装荷手段は、給電放射電極の高次モード零電圧領域に容量を 装荷するときには、回路基板のグランド領域に形成されているグランド電極との間に グランド接地用導通経路が形成されて給電放射電極の高次モード零電圧領域に容 量を装荷し、給電放射電極の高次モード零電圧領域に容量を装荷しないときには、 グランド接地用導通経路が形成されて 、な 、ことをも特徴として 、る。
[0014] さらに、この発明の別の構成の一つである無線通信装置は、この発明において特 有な構成を持つアンテナ構造が設けられて 、ることを特徴として 、る。
発明の効果
[0015] この発明によれば、アンテナ構造を構成する基体には、給電放射電極および無給 電放射電極が形成され、無給電放射電極は、給電放射電極と共にアンテナ動作を
行って少なくとも給電放射電極の高次共振周波数帯で複共振状態を作り出す構成 を備えて!/、る。その無給電放射電極による給電放射電極の高次共振周波数帯での 複共振状態によって、給電放射電極の高次共振周波数帯における広帯域ィ匕を図る ことができる。
[0016] また、この発明では、給電放射電極の高次モード零電圧領域に容量を装荷するた めの容量装荷手段と、容量装荷手段を回路基板のグランド電極に接地させるための グランド接地用導通経路と、グランド接地用導通経路に介設され容量装荷手段とダラ ンド電極との間の導通オン'オフを切り換える切り換え手段とが設けられている。切り 換え手段がオン状態であるときには、容量装荷手段はグランド電極に接地されている 状態であることから、容量装荷手段によって給電放射電極の高次モード零電圧領域 にはグランド電極との間の容量が装荷されることとなる (容量装荷オン状態)。これに より、切り換え手段のオフ状態であって給電放射電極にグランド電極との間の容量が 装荷されていない状態 (容量装荷オフ状態)のときに比べて、容量装荷オン状態のと きには、装荷された容量の大きさに応じて給電放射電極の電気的な長さが長くなつ て給電放射電極の基本共振周波数を低くする方向に切り換えることができる。この給 電放射電極の基本共振周波数の切り換えにより、給電放射電極の基本共振周波数 帯における広帯域ィ匕を図ることができる。
[0017] ところで、この発明では、容量装荷手段によってグランド電極との間の容量が装荷さ れる給電放射電極の部位は、給電放射電極の高次モード零電圧領域である。このた め、切り換え手段のオン'オフ動作によって、給電放射電極の高次共振周波数を変 動させることなぐ給電放射電極の基本共振周波数だけを切り換えることができる。つ まり、給電放射電極の高次モード零電圧領域における高次モードの電圧の大きさは 零あるいはその近傍である。このため、高次モードから見た場合には、切り換え手段 をオン状態としても、容量装荷手段により給電放射電極の高次モード零電圧領域に 装荷される容量は非常に小さいものであり、給電放射電極の高次モード零電圧領域 には、容量装荷手段による容量が装荷されない状態と等価になる。これにより、切り 換え手段のオン'オフ動作を切り換えても、給電放射電極の高次共振周波数は変動 しない。これに対して、給電放射電極の高次モード零電圧領域における基本モード
の電圧の大きさは、容量装荷手段による容量装荷の影響を受ける大きさを有している 。このため、切り換え手段のオン'オフ切り換え動作により容量装荷オン状態と容量装 荷オフ状態を切り換えることによって、給電放射電極の基本共振周波数は切り換わる
[0018] つまり、この発明の構成では、給電放射電極の高次共振周波数帯は無給電放射電 極との複共振状態によって広帯域化が図られて要望の周波数帯域を得ることが可能 であるため、給電放射電極の高次共振周波数帯は変動しないことが好ましい。このこ とを考慮して、この発明では、給電放射電極の高次共振周波数帯は変動させず、容 量装荷手段による容量装荷のオン'オフの切り換えによって給電放射電極の基本共 振周波数だけを切り換えることによって、放射電極の基本共振周波数帯の広帯域ィ匕 を図ることができる。
[0019] このように、この発明では、給電放射電極の基本共振周波数帯および高次共振周 波数帯の両方の周波数帯域の広帯域ィ匕を図ることができる。このため、互いに異なる 周波数帯を利用する複数の無線通信システムに対応することが容易なアンテナ構造 およびそれを備えた無線通信装置を提供することができる。特に、この発明では、給 電放射電極および無給電放射電極が形成されて!ヽる基体は、回路基板のグランド領 域に搭載されているものである。このために、給電放射電極や無給電放射電極から 放射される電界が回路基板のグランド電極に引き寄せられて基本的に 1個の共振の 帯域幅は狭く周波数帯域の広帯域ィ匕が難しいものであるのにも拘わらず、この発明 は、上述のように複数の周波数帯域の広帯域ィ匕を図ることが容易になるという画期的 なものである。
[0020] また、この発明では、給電放射電極は、その給電端側と開放端側が間隔を介して 隣接配置されて給電端と開放端間の電流経路がループ状となる形態を有している。 このため、給電放射電極の基本共振周波数と高次共振周波数の調整が容易になる という効果を得ることができる。つまり、この発明では、給電放射電極は、給電端側と 開放端側が間隔を介して隣接配置されて給電端と開放端間の電流経路がループ状 となる形態を有しているので、給電端と開放端との間に容量が形成される。その容量 は基本共振周波数よりも高次共振周波数に大きく関与するものである。このため、そ
の給電端と開放端との間の容量によって、基本共振周波数を殆ど変動させずに、給 電放射電極の高次共振周波数を調整することができる。すなわち、例えば、給電放 射電極の給電端から開放端までの電気的な長さ (電気長)を、予め定められた設定 の基本共振周波数を得ることができる電気長とし、また、給電端と開放端との間の容 量は、予め定められた設定の高次共振周波数を得ることができる大きさとすることによ つて、基本共振周波数と、高次共振周波数とを独立的に調整することができる。これ により、給電放射電極の基本共振周波数と高次共振周波数の両方の共振周波数を それぞれ予め定められた設定の周波数とすることが容易となる。
[0021] また、給電放射電極は、給電端と開放端間の電流経路がループ状となる形態を有 しているので、給電放射電極の大きさを大きくすることなぐ給電放射電極の電気長 を長くすることができる。これにより、基体の小型化、つまり、アンテナ構造の小型化を 図ることができる。
図面の簡単な説明
[0022] [図 la]第 1実施例のアンテナ構造を模式的に表した斜視図である。
[図 lb]図 laのアンテナ構造の模式的な分解図である。
[図 lc]第 1実施例のアンテナ構造のリターンロス特性の一例を説明するためのグラフ である。
[図 2a]第 1実施例のアンテナ構造を構成する給電放射電極の電圧分布を説明する ためのグラフである。
[図 2b]給電放射電極とその電圧分布との関係例のイメージを表したモデル図である。
[図 3a]第 1実施例のアンテナ構造に対する比較例のアンテナ構造を表したモデル図 である。
[図 3b]図 3aのアンテナ構造を構成する給電放射電極とその電圧分布との関係例の イメージを表したモデル図である。
[図 4a]本発明者が行った実験により得られた第 1実施例のアンテナ構造のリターン口 ス特性を表したグラフである。
[図 4b]本発明者が行った実験により得られた図 3aのアンテナ構造のリターンロス特性 を表したグラフである。
[図 5a]本発明者の実験により得られた周波数 750MHz〜1000MHzの第 1実施例の アンテナ構造のリターンロス特性および最大利得の測定結果を示すグラフである。
[図 5b]本発明者の実験により得られた周波数 750MHz〜1000MHzの図 3aのアン テナ構造のリターンロス特性および最大利得の測定結果を示すグラフである。
[図 6a]本発明者の実験により得られた周波数 1700MHz〜2200MHzの第 1実施例 のアンテナ構造のリターンロス特性および最大利得の測定結果を示すグラフである。
[図 6b]本発明者の実験により得られた周波数 1700MHz〜2200MHzの図 3aのアン テナ構造のリターンロス特性および最大利得の測定結果を示すグラフである。
圆 7a]容量装荷用手段のその他の形態例を説明するためのモデル図である。
圆 7b]容量装荷用手段の別のその他の形態例を説明するためのモデル図である。
[図 7c]さらに、容量装荷用手段の別のその他の形態例を説明するためのモデル図で ある。
圆 7d]さらに、容量装荷用手段の別のその他の形態例を説明するためのモデル図で ある。
圆 7e]さらにまた、容量装荷用手段の別のその他の形態例を説明するためのモデル 図である。
圆 8a]第 2実施例のアンテナ構造を構成するアンテナ部品の形態例を表したモデル 図である。
[図 8b]第 2実施例の特有な構成を持つアンテナ構造の一つを表したモデル図である 圆 8c]第 2実施例の特有な構成を持つ別のアンテナ構造の一つを表したモデル図で ある。
圆 8d]さらに、第 2実施例の特有な構成を持つ別のアンテナ構造の一つを表したモ デル図である。
圆 8e]さらにまた、第 2実施例の特有な構成を持つ別のアンテナ構造の一つを表した モデル図である。
[図 9a]第 3実施例のアンテナ構造を表したモデル図である。
[図 9b]図 9aのアンテナ構造のリターンロス特性を表したグラフである。
[図 10a]第 4実施例のアンテナ構造を表したモデル図である。
[図 10b]図 10aのアンテナ構造のリターンロス特性を表したグラフである。
[図 11a]第 5実施例の特有な構成を持つアンテナ構造の一つを表したモデル図であ る。
[図 l ib]第 5実施例の特有な構成を持つ別のアンテナ構造の一つを表したモデル図 である。
[図 12a]第 6実施例の特有な構成を持つアンテナ構造の一つを表したモデル図であ る。
[図 12b]第 6実施例の特有な構成を持つ別のアンテナ構造の一つを表したモデル図 である。
[図 12c]さらに、第 6実施例の特有な構成を持つ別のアンテナ構造の一つを表したモ デル図である。
[図 13a]アンテナ構造の一従来例を説明するための図である。
[図 13b]図 13aのアンテナ構造のリターンロス特性例を説明するためのグラフである。
[図 13c]図 13aのアンテナ構造を構成する給電放射電極の等価回路図である。 符号の説明
1 アンテナ構造
2 基体
3 回路基板
4 グランド電極
6 給電放射電極
7 無給電放射電極
8, 26 スジッ卜
10 無線通信用の回路
12, 27 容量装荷用電極
15 グランド接地用導通経路
16 切り換え手段
23 容量装荷用コンデンサ部品
30 誘電体部材
P 給電放射電極の高次モード零電圧領域
u 無給電放射電極の高次モード零電圧領域
発明を実施するための最良の形態
[0024] 以下に、この発明に係る実施例を図面に基づいて説明する。
[0025] 図 laには第 1実施例のアンテナ構造が模式的な斜視図により示され、図 lbには図 laのアンテナ構造の模式的な分解図が示されている。この第 1実施例のアンテナ構 造 1は直方体状の基体 2を有して構成されている。その基体 2は誘電体により構成さ れており、回路基板 3のグランド領域 Zg (つまり、グランド電極 4が形成されている領域 )に搭載される。基体 2を構成する誘電体としては、例えば、セラミックスや、榭脂や、 榭脂材料にセラミックス粉を混合して誘電率を調整した誘電体材料等がある。なお、 基体 2は単層構造であってもよ 、し、多層構造であってもよ!/、。
[0026] この第 1実施例では、基体 2の上面には給電放射電極 6と、無給電放射電極 7とが 間隙 Sを介して隣接配置されている。給電放射電極 6には、当該電極 6の端縁から切 り込み形成された L字形状のスリット 8が設けられている。スリット 8の切り込み開口端 側の給電放射電極 6の端縁側は、スリット 8を間にしてその一方側 Qは給電端と成し、 他方側 Kは開放端と成している。このように、給電放射電極 6では、給電端 Qと開放 端 K力 Sスリット 8を介して隣接配置されて ヽるために、それら給電端 Qと開放端 との 間の電流経路はスリット 8を迂回して給電端 Qと開放端 Kを結ぶループ状となってい る。このように給電放射電極 6にスリット 8を形成して給電放射電極 6の電流経路をル ープ状とすることによって、給電放射電極 6の大きさを大型化することなぐ給電放射 電極 6の電気長を長くすることができる。また、線状の電極によってループ状の給電 放射電極を形成する場合に比べて、給電放射電極 6の電極面積を広くすることがで きる。この電極面積の拡大によって給電放射電極 6の電流損失を抑制することができ るし、給電放射電極 6の周波数帯域の広帯域ィ匕を図ることができる。
[0027] 回路基板 3には無線通信用の回路 (高周波回路) 10が形成されている。また、回路 基板 3における基体 2の搭載領域の表面には、無線通信用の回路 10に電気的に接 続されて!ヽる給電用の電極ランド 11がグランド電極 4と間隔を介して電気的に絶縁さ
れた状態で設けられている。基体 2の側面には、給電放射電極 6の給電端 Qと回路 基板 3の給電用の電極ランド 11との間を電気的に接続させるための給電電極 (図示 せず)が形成されている。給電放射電極 6の給電端 Qはその給電電極と給電用の電 極ランド 11を介して回路基板 3の無線通信用の回路 10に電気的に接続されている。 給電放射電極 6は、無線通信用の回路 10に電気的に接続されてアンテナ動作を行 う放射電極として機能する。
[0028] この第 1実施例では、給電放射電極 6は、互いに異なる複数の共振周波数帯でもつ てアンテナ動作を行うものである。ここでは、給電放射電極 6が持つ複数の共振周波 数帯のうちの最も低い共振周波数帯を基本共振周波数帯と記し、基本共振周波数 帯のアンテナ動作モードを基本モードと記す。また、基本共振周波数帯よりも高い共 振周波数帯を高次共振周波数帯と記し、高次共振周波数帯のアンテナ動作を高次 モードと記す。図 2aには、給電放射電極 6の基本モードと高次モードのそれぞれに おける電圧分布がグラフにより示されている。また、図 2bには、給電放射電極 6にお ける基本モードと高次モードの各電圧分布の位置を分力り易くするためのイメージ図 が示されている。図 2aや図 2bに示されるように、この第 1実施例では、高次モードで 電圧が零ある!/、はその近傍となる給電放射電極 6の領域 (高次モード零電圧領域) は、スリット 8の切り込み終端の形成領域 (換言すれば、電流経路のスリット迂回の折 り返し領域) Pとなっている。
[0029] 基体 2の側面には、給電放射電極 6の高次モード零電圧領域 Pに容量を装荷する ための容量装荷手段である容量装荷用電極 12が形成されている。また、回路基板 3 の表面には、その容量装荷用電極 12に電気的に接続される電極ランド 13がグランド 電極 4と間隔を介し電気的に絶縁された状態で形成されている。さら〖こ、回路基板3 にはグランド接地用導通経路 15が形成されて!、る。このグランド接地用導通経路 15 の一端側は電極ランド 13に電気的に接続され、他端側はグランド電極 4に電気的に 接続されている。つまり、グランド接地用導通経路 15は、容量装荷用電極 12を電極 ランド 13を介してグランド電極 4に接地させるための導通路である。このグランド接地 用導通経路 15には、当該導通経路 15の導通オン ·オフを切り換えるための切り換え 手段 16が設けられている。
[0030] 切り換え手段 16がオン状態である場合には、容量装荷用電極 12はグランド電極 4 に接地される。これにより、給電放射電極 6の高次モード零電圧領域 Pと容量装荷用 電極 12との間には容量が形成されて、給電放射電極 6の高次モード零電圧領域 Pに は、グランドとの間の容量が装荷される。これに対して、切り換え手段 16がオフ状態 である場合には、容量装荷用電極 12はグランド電極 4と電気的に切り離され電気的 に浮いた状態となる。このために、給電放射電極 6の高次モード零電圧領域 Pと容量 装荷用電極 12との間に容量は形成されず、給電放射電極 6の高次モード零電圧領 域 Pには、容量装荷用電極 12によるグランドとの間の容量は装荷されない。
[0031] 無給電放射電極 7は、その一端側 Mが開放端と成し、他端側 Nがショート端と成し て 、る。基体 2の側面には無給電放射電極 7のショート端側をグランド電極 4に電気 的に接続させるための接地用電極(図示せず)が形成されている。この第 1実施例で は、無給電放射電極 7は、給電放射電極 6と電磁結合して給電放射電極 6と共にアン テナ動作し給電放射電極 6の高次共振周波数帯で複共振状態を作り出すように設 計されている。
[0032] この第 1実施例のアンテナ構造 1は上記のように構成されている。このアンテナ構造 1は、次に示すように給電放射電極 6の基本共振周波数帯の基本共振周波数を切り 換えることができる。例えば、切り換え手段 16がオフ状態であるときに、給電放射電 極 6の基本共振周波数が例えば図 lcに示す周波数 F であり、給電放射電極 6の高 b6
次共振周波数が例えば周波数 F であり、無給電放射電極 7の共振周波数が F であ h6 b7 り、給電放射電極 6と無給電放射電極 7の各共振動作によって図 lcの実線 αに示さ れるようなリターンロス特性をアンテナ構造 1が有しているとする。これに対して、切り 換え手段 16がオン状態に切り換わると、容量装荷用電極 12によるグランドとの間の 容量が給電放射電極 6の高次モード零電圧領域 Ρに装荷される。これにより、図 lcの 鎖線 j8に示されるように、給電放射電極 6の高次共振周波数および無給電放射電極 7の共振周波数は変動せずに、給電放射電極 6の基本共振周波数だけが低くなる方 向に変動して給電放射電極 6の基本共振周波数は例えば周波数 F 'に切り換わる。
b6
[0033] 切り換え手段 16がオフ状態力 オン状態に切り換わったときの給電放射電極 6の 基本共振周波数の切り換え変動幅は、給電放射電極 6の高次モード零電圧領域 Pと
容量装荷用電極 12との間の容量 (つまり、容量装荷用電極 12によって給電放射電 極 6の高次モード零電圧領域 Pに装荷されるグランドとの間の容量)の大きさに応じた ものとなる。このため、この第 1実施例では、切り換え手段 16がオン状態となったとき の給電放射電極 6の基本共振周波数が予め定められた設定の周波数となるための 容量が給電放射電極 6の高次モード零電圧領域 Pと容量装荷用電極 12との間に形 成されるように、給電放射電極 6の高次モード零電圧領域 Pと容量装荷用電極 12と の間の間隔ゃ、容量装荷用電極 12の電極幅等が設計されて 、る。
[0034] 上記のように給電放射電極 6の基本共振周波数帯を切り換えることができることによ つて、次に示すような効果を得ることができる。例えば、無線通信システム Aでは図 lc に示す周波数帯域 Aを利用して無線通信を行 ヽ、別の無線通信システム Bでは周波 数帯域 Bを利用して無線通信を行うものとする。この場合には、切り換え手段 16をォ ン状態とすることにより、給電放射電極 6の基本共振周波数帯は無線通信システム A 用の周波数帯域 Aに対応したものとなる。また、切り換え手段 16をオフ状態とすること により、給電放射電極 6の基本共振周波数帯は無線通信システム B用の周波数帯域 Bに対応するものとなる。つまり、給電放射電極 6の高次モード零電圧領域 Pへの容 量装荷用電極 12による容量装荷のオン'オフが無い構成である場合には、給電放射 電極 6の基本共振周波数帯は、周波数帯域 Aと周波数帯域 Bとのうちの何れか一方 のみにしか対応することができない。これに対して、給電放射電極 6の高次モード零 電圧領域 Pへの容量装荷用電極 12による容量装荷のオン'オフを切り換え制御可能 な構成を備えることによって、給電放射電極 6の基本共振周波数帯は、周波数帯域 Aと周波数帯域 Bの両方共に対応することができる。すなわち、給電放射電極 6の基 本周波数帯の広帯域ィ匕を図ることができる。
[0035] また、この第 1実施例では、容量装荷用電極 12による容量は給電放射電極 6の高 次モード零電圧領域 Pに装荷するので、給電放射電極 6の高次モードと無給電放射 電極 7とによる複共振状態は、切り換え手段 16のオン'オフの影響を受けない。この ため、次に示すような問題の発生を回避することができる。例えば、無線通信システ ム Cでは図 lcに示す周波数帯域 Cを利用して無線通信を行い、また別の無線通信 システム Dでは周波数帯域 Dを利用して無線通信を行 、、さらにまた別の無線通信
システム Eでは周波数帯域 Eを利用して無線通信を行うものとする。この場合に、給 電放射電極 6の高次モードと無給電放射電極 7とによる複共振状態により給電放射 電極 6の高次共振周波数帯の広帯域化が図られて当該給電放射電極 6の高次共振 周波数帯は、切り換え手段 16のオフ状態で、周波数帯域 C, D, Eの全てに対応す ることが可能になっているとする。この場合に、切り換え手段 16がオフ状態からオン 状態に切り換わって給電放射電極 6の高次共振周波数 F が低くなる方向(つまり、 h6
無給電放射電極 7の共振周波数に近付く方向)に変動してしまうと、給電放射電極 6 の高次共振周波数帯は、切り換え手段 16のオフ状態のときよりも狭くなつてしまう。こ のため、例えば、給電放射電極 6の高次共振周波数帯は周波数帯域 Eに対応するこ とができなくなってしまうという問題が発生する。これに対して、この発明では、切り換 え手段 16のオン'オフ状態が切り換わっても給電放射電極 6の高次共振周波数帯は 変動しな ヽので、上記したような問題の発生を回避することができる。
[0036] 容量装荷用電極 12による容量を装荷する給電放射電極 6の部位を給電放射電極 6の高次モード零電圧領域 Pとすることによって、給電放射電極 6の高次共振周波数 を変動させずに基本共振周波数を切り換えることができることは次に示すような理由 による。つまり、給電放射電極 6の高次モード零電圧領域 Pは、高次モードで電圧が 零あるいはその近傍であることから、切り換え手段 16がオン状態となって容量装荷用 電極 12と給電放射電極 6との間に容量が形成されても、給電放射電極 6の高次モー ドでは、その容量は給電放射電極 6に装荷されない状態と等価になる。このため、切 り換え手段 16のオン'オフ状態が切り換わっても給電放射電極 6の高次共振周波数 は変動せず、給電放射電極 6の高次モードと無給電放射電極 7とによる複共振状態 の給電放射電極 6の高次共振周波数帯の変動が抑制される。これに対して、給電放 射電極 6の高次モード零電圧領域 Pは、図 2aや図 2bに示されるように、基本モードで は容量装荷用電極 12による容量装荷の影響を受ける程度の電圧となる領域である。 このため、容量装荷用電極 12による容量装荷のオン ·オフによって給電放射電極 6 の基本共振周波数を切り換えることができる。
[0037] すなわち、容量装荷用電極 12による容量を給電放射電極 6の高次モード零電圧領 域 Pに装荷可能な構成を備えると共に、その容量装荷のオン'オフを切り換える構成
を備えることによって、給電放射電極 6の高次共振周波数帯を変動させずに、給電放 射電極 6の基本共振周波数帯を切り換えることができるという効果を得ることができる 。このことは、本発明者の実験により確認されている。その実験では、この第 1実施例 のアンテナ構造 1の構成を持つサンプル Aを用意すると共に、図 3aに示されるような 比較例としてのサンプル Bを用意した。サンプル Bの構成では、容量装荷用電極 12 によってグランドとの間の容量が装荷される給電放射電極 6の部位は、図 3bに示され る領 である。領 は、高次モード零電圧領域 Pからずれた領域である。この構成 以外のサンプル Bの構成は、サンプル A (つまり、第 1実施例のアンテナ構造 1)と同 様である。本発明者の実験では、サンプル A, Bのそれぞれについて、切り換え手段 16のオン状態とオフ状態のそれぞれの状態のときのリターンロス特性および最大利 得をそれぞれ測定 (シミュレーション)した。図 4aにはサンプル Aのリターンロス特性の 測定結果が、また、図 4bにはサンプル Bのリターンロス特性の測定結果力 それぞれ 、示されている。図 4aおよび図 4bでは、実線 Aは切り換え手段 16がオフ状態のとき の測定結果を表し、鎖線 Bは切り換え手段 16がオン状態のときの測定結果を表して いる。また、図 5aには 750MHz〜1000MHzの周波数範囲におけるサンプル Aのリ ターンロス特性および最大利得の測定結果力 また、図 5bには 750MHz〜1000M Hzの周波数範囲におけるサンプル Bのリターンロス特性および最大利得の測定結果 力 それぞれ、示されている。さらに、図 6aには 1700MHz〜2200MHzの周波数範 囲におけるサンプル Aのリターンロス特性および最大利得の測定結果力 図 6bには 1700MHz〜2200MHzの周波数範囲におけるサンプル Bのリターンロス特性およ び最大利得の測定結果力 それぞれ、示されている。図 5a、図 5b、図 6a、図 6bでは 、実線 Aは切り換え手段 16がオフ状態のときのリターンロス特性の測定結果を表し、 鎖線 Bが切り換え手段 16がオン状態のときのリターンロス特性の測定結果を表し、実 線 aは切り換え手段 16がオフ状態のときの最大利得の測定結果を表し、鎖線 Bが切り 換え手段 16がオン状態のときの最大利得の測定結果を表して 、る。
図 4a〜図 6bのグラフに示されている測定結果に表されているように、サンプル A, Bの何れも、切り換え手段 16のオン'オフの切り換えによって(つまり、容量装荷用電 極 12によるグランドとの間の容量の装荷のオン'オフの切り換えによって)、給電放射
電極 6の基本共振周波数は切り換わっている。また、無給電放射電極 7の共振周波 数は変動していない。これに対して、容量装荷のオン'オフの切り換えによって、サン プル Aでは、給電放射電極 6の高次共振周波数は変動していないのに、サンプル B では、給電放射電極 6の高次共振周波数は切り換わっている。サンプル Bでは、その 給電放射電極 6の高次共振周波数の変動によって、給電放射電極 6の高次モードと 無給電放射電極 7とによる複共振状態の給電放射電極 6の高次共振周波数帯の帯 域幅が変動してしまって 、る。
[0039] すなわち、この実験により、容量装荷用電極 12によってグランドとの間の容量を装 荷する領域を給電放射電極 6の高次モード零電圧領域 Pとし、その高次モード零電 圧領域 Pへの容量装荷のオン'オフの切り換えを行うことによって、給電放射電極 6の 高次共振周波数帯を変動させることなぐ給電放射電極 6の基本共振周波数を切り 換えることができることを確認した。換言すれば、容量装荷用電極 12によってグランド との間の容量を装荷する領域を給電放射電極 6の高次モード零電圧領域 Pとしなけ れば、容量装荷のオン'オフの切り換えを行ったときに、給電放射電極 6の高次共振 周波数帯を変動させてしまうことが実験からも分力る。
[0040] なお、図 laおよび図 lbに示される例では、容量装荷手段は容量装荷用電極 12に より構成されていた力 例えば、図 7aに示されるような延伸電極 17および容量装荷 用電極 12によって容量装荷手段が構成されていてもよい。延伸電極 17は、給電放 射電極 6の高次モード零電圧領域 Pから基体 2の側面の容量装荷用電極 12に向け て伸張形成され容量装荷用電極 12との間に容量を形成するための電極である。当 該延伸電極 17と容量装荷用電極 12との間の容量がグランドとの間の容量として給電 放射電極 6の高次モード零電圧領域 Pに装荷される。
[0041] また、図 laおよび図 lbに示される例では、容量装荷用電極 12は基体 2の底面の 端縁部から基体 2の側面に伸張形成される態様であつたが、図 7bに示されるように、 容量装荷用電極 12の上端側をさらに伸長形成して基体 2の上面に回り込み形成さ れ給電放射電極 6の高次モード零電圧領域 Pとの間に容量を形成する態様であって もよい。さらに、図 laおよび図 lbに示される例では、容量装荷用電極 12は基体 2に 形成されていたが、例えば、容量装荷用電極 12は回路基板 2に形成されていてもよ
い。この場合には、例えば、図 7cに示されるように、給電放射電極 6の高次モード零 電圧領域 Pから基体 2の側面を通って基体 2の底面に伸張形成された延伸電極 18を 形成する。また、回路基板 2には、延伸電極 18に電気的に接続される電極ランド 19 をグランド電極 4と電気的に絶縁された状態で形成する。そして、電極ランド 19との間 に容量が形成されるように容量装荷用電極 12を回路基板 2に形成する。この場合に は、延伸電極 18と電極ランド 19と容量装荷用電極 12によって容量装荷手段が構成 され、電極ランド 19と容量装荷用電極 12との間の容量が給電放射電極 6の高次モ ード零電圧領域 Pに装荷される。
[0042] さらに、図 laおよび図 lbに示される例では、容量装荷用電極 12は、基体 2の底面 の端縁部力も基体 2の側面に伸張形成されていた力 例えば、図 7dに示されるように 、容量装荷用電極 12の少なくとも一部を基体 2の内部に形成してもよい。そのように 容量装荷用電極 12の少なくとも一部が基体 2の内部に形成されて!ヽる構成を備える ことによって、給電放射電極 6に対向する容量装荷用電極 12の電極面積を拡大する ことが容易となる。これにより、給電放射電極 6と、容量装荷用電極 12との間の容量( つまり、給電放射電極 6に装荷するグランド電極 4との間の容量)を大きくすることが容 易となる。このため、容量装荷用電極 12によって給電放射電極 6に装荷するグランド 電極 4との間の容量の可変調整範囲が拡大する。つまり、切り換え手段 16をオフ状 態力もオン状態に切り換えたときの給電放射電極 6の基本共振周波数の変動幅の可 変範囲を広げることができる。また、容量装荷用電極 12の形成位置についても自由 度が広がる。これにより、様々な周波数帯域のニーズに応えることがより容易になると いう効果を得ることができる。
[0043] さらに、図 laおよび図 lbに示される例では、容量装荷手段は容量装荷用電極 12 により構成されていたが、例えば、容量装荷手段は容量装荷用コンデンサ部品により 構成されていてもよい。その容量装荷用コンデンサ部品が基体 2に設けられる場合に は、例えば、図 7eに示されるように、給電放射電極 6の高次モード零電圧領域 Pから 基体 2の側面に延伸電極 20が伸張形成されると共に、基体 2の底面側から延伸電極 20に向けて伸張形成された電極 21が延伸電極 20と間隔を介して形成される。電極 21は、回路基板 2に形成された電極ランド 22を介してグランド接地用導通経路 15に
電気的に接続されて ヽる。容量装荷用コンデンサ部品 23は延伸電極 20と電極 21と の間を掛け渡して配設される。その容量装荷用コンデンサ部品 23の容量が給電放 射電極 6の高次モード零電圧領域 Pとグランドとの間の容量として給電放射電極 6の 高次モード零電圧領域 Pに装荷される。なお、容量装荷用コンデンサ部品 23は、予 め定められた固定の容量を有するものであってもよいし、容量の大きさを可変調整す ることが可能な可変容量コンデンサ部品であってもよい。また、可変容量コンデンサ 部品を容量装荷用コンデンサ部品 23として設ける場合には、可変容量コンデンサ部 品の容量を設定するための電圧印加手段が設けられることとなる。
[0044] 上記のように容量装荷手段が容量装荷用コンデンサ部品 23により構成されることに より、次に示すような効果を得ることができる。つまり、切り換え手段 16をオフ状態から オン状態に切り換えたときの給電放射電極 6の基本共振周波数の変動幅は、容量装 荷手段により装荷される給電放射電極 6とグランド電極 4との間の容量に応じたものと なる。このため、容量装荷手段を容量装荷用コンデンサ部品 23、特に、容量を連続 的に可変することができる可変容量コンデンサ部品により構成することによって、切り 換え手段 16をオフ状態力もオン状態に切り換えたときの給電放射電極 6の基本共振 周波数の変動幅を予め定められた変動幅に精度良く調整することが容易となる。この ため、よりニーズにあった周波数特性を持つアンテナ構造 1および無線通信装置を 提供することが容易となる。
[0045] また、容量装荷手段を容量装荷用電極 12により構成する場合には例えば大きさや 形成領域の規制等によって容量装荷用電極 12により給電放射電極 6に装荷できる 容量の大きさが限られてしまう。これに対して、容量装荷手段を容量装荷用コンデン サ部品 23により構成することにより、容量装荷手段を容量装荷用電極 12により構成 する場合に比べて、容量装荷手段により給電放射電極 6に装荷するグランド電極 4と の間の容量を大きくすることができる。これにより、切り換え手段 16をオフ状態からォ ン状態に切り換えたときの給電放射電極 6の基本共振周波数の変動幅の可変範囲 を広げることができる。これにより、様々な周波数帯域のニーズに応えることがより容 易になるという効果を得ることができる。なお、容量装荷手段を容量装荷用電極 12に より構成する場合には、上記のような容量装荷用コンデンサ部品 23を設けなくとも済
むので部品点数の増加を抑制することができたり、構造の複雑ィヒを防止することがで きるという効果を得ることができる。
[0046] 以下に、第 2実施例を説明する。なお、この第 2実施例の説明において、第 1実施 例と同一構成部分には同一符号を付し、その共通部分の重複説明は省略する。
[0047] この第 2実施例では、図 8aに示されるように、基体 2には複数(図 8aの例では 2個) の容量装荷用電極 12 (12a, 12b)が設けられている。このように、基体 2に複数の容 量装荷用電極 12を形成しておくことにより、その複数の容量装荷用電極 12と給電放 射電極 6と無給電放射電極 7等が形成されて ヽる基体 2 (以下、このような基体 2をァ ンテナ部品と呼ぶ)を用いて複数種のアンテナ構造 1を構成することができる。なお、 複数の容量装荷用電極 12は、それぞれ、互いに異なる容量を給電放射電極 6の高 次モード零電圧領域 Pに装荷できるように形成されて 、てもよ 、し、全ての容量装荷 用電極 12が同じ容量を給電放射電極 6の高次モード零電圧領域 Pに装荷できるよう に形成されていてもよぐ適宜設定される。
[0048] 図 8aに示されるアンテナ部品を用いたアンテナ構造 1の構成例を以下に述べる。
例えば、容量装荷オン状態の給電放射電極 6の基本共振周波数が予め設定された 周波数となるためにアンテナ部品の複数の容量装荷用電極 12のうちの何れか一つ の容量装荷用電極 12を用いるだけで済む場合には、図 8bに示されるように、その必 要な容量装荷用電極 12のみが、切り換え手段 16を介してグランド接地用導通経路 1 5によってグランド電極 4に電気的に接続されている構成とする。なお、このアンテナ 構造 1の構成では、使用しない容量装荷用電極 12がある。この不使用の容量装荷用 電極 12 (図 8bの例では容量装荷用電極 12 (12b) )は、図 8bに示されるように電気 的に浮いた状態となっていてもよいし、図 8dに示されるように、不使用の容量装荷用 電極 12 ( 12b)力も電極ランド 13 ( 13b)側を見たときに電気的に予め定めた何らかの インピーダンスを持つ負荷 25が不使用の容量装荷用電極 12 ( 12b)に接続されて!ヽ る構成としてちよい。
[0049] 以下に図 8aのアンテナ部品を用いたアンテナ構造 1の別の構成例を挙げる。例え ば、容量装荷オン状態のときの給電放射電極 6の基本共振周波数が予め設定され た周波数となるためにアンテナ部品 1の複数の容量装荷用電極 12が必要である場
合には、図 8cに示されるように、必要な複数の容量装荷用電極 12が、共通の切り換 え手段 16を介しグランド接地用導通経路 15によってグランド電極 4に接続されて!、る 構成とする。又は、図 8eに示されるように、各容量装荷用電極 12は、それぞれ、個別 に対応する切り換え手段 16を介してグランド接地用導通経路 15によってグランド電 極 4に電気的に接続されている構成としてもよい。この場合には、容量装荷に必要な 複数の容量装荷用電極 12に対応する全ての切り換え手段 16を同時にオン ·オフ切 り換え制御することになる。
[0050] ところで、図 8eのアンテナ構造 1の例では、アンテナ部品の各容量装荷用電極 12 は、それぞれ、個別に対応する切り換え手段 16を介してグランド接地用導通経路 15 によりグランド電極 4に接地されて 、る構成と成して 、る。このように複数の容量装荷 用電極 12が、それぞれ、個別に対応する切り換え手段 16を介してグランド接地用導 通経路 15によりグランド電極 4に接続されている構成の場合には、複数の切り換え手 段 16のうちの予め選択された何れか一つをオン'オフ切り換え制御する場合と、全て の切り換え手段 16を同時にオン'オフ切り換え制御する場合と、予め選択された複数 の切り換え手段 16をオン'オフ切り換え制御する場合 (組み合わせによっては多段階 の制御を含む)とが考えられる。つまり、オン'オフ切り換え動作を行う切り換え手段 1 6の選択や、使用する切り換え手段 16の数や組み合わせ等によって容量装荷手段 により給電放射電極 6の高次モード零電圧領域 Pに装荷するグランド電極 4との間の 容量の大きさを可変調整することができ、これにより、同じアンテナ構造 1であっても、 容量装荷オン状態のときの給電放射電極 6の基本共振周波数を可変することができ る。このため、アンテナ部品の複数の容量装荷用電極 12がそれぞれ個別に対応す る切り換え手段 16を介してグランド電極 4に接続されている構成を持つアンテナ構造 1は、複数種の無線通信装置に組み込み可能なものと成すことができる。
[0051] なお、図 8a〜図 8eの例では、容量装荷用電極 12は 2個形成されていた力 もちろ ん、容量装荷用電極 12の形成数は複数であれば数に限定されるものではなぐ必要 に応じた 3個以上の容量装荷用電極 12を形成してもよいものである。また、容量装荷 用電極 12の形態は図 8a等の形態に限定されるものではなぐ例えば、複数の容量 装荷用電極 12のうちの少なくとも一つは、例えば図 7bや図 7dに示されるような形態
と成していてもよい。また、複数の容量装荷用電極 12のうちの少なくとも一つは、例え ば図 7aに示されるように、給電放射電極 6の高次モード零電圧領域 Pから伸張形成 された延伸電極 17との間に容量を形成し当該容量をグランドとの間の容量として給 電放射電極 6の高次モード零電圧領域 Pに装荷する構成としてもよい。さらに、この 第 2実施例では、容量装荷手段として容量装荷用電極 12が設けられている例を示し たが、例えば、図 7eに示されるように、容量装荷手段として容量装荷用コンデンサ部 品 23を基体 2に複数設ける構成としてもよい。この場合にも、その複数の容量装荷用 コンデンサ部品 23が設けられて 、るアンテナ部品を用 V、て複数種のアンテナ構造 1 を得ることができる。
この第 2実施例では、容量装荷手段が基体 2に複数設けられ、複数の容量装荷手 段のうちの少なくとも一つが切り換え手段 16を介してグランド接地用導通経路 15によ りグランド電極 4に電気的に接続されている構成を備えることによって、次に示す理由 によりアンテナ構造 1の低コストィ匕を図ることができる。つまり、アンテナ構造 1が組み 込まれる無線通信装置の種類や機種等の違いによって、容量装荷オフ状態から容 量装荷オン状態に切り換えたときの給電放射電極 6の基本共振周波数の要求される 変動幅が異なる。このため、その要求の変動幅を得るためのグランド電極 4との間の 容量を給電放射電極 6の高次モード零電圧領域 Pに装荷するための容量装荷手段 を、給電放射電極 6と共に基体 2に設けて成るアンテナ部品を無線通信装置の種類 や機種毎に作製することが考えられる。しかしながら、この場合には、無線通信装置 の種類や機種毎のアンテナ部品を作製しなければならず、多数種のアンテナ部品が 必要となる。これに対して、互いに異なる容量を給電放射電極 6の高次モード零電圧 領域 Pに装荷する複数の容量装荷手段をアンテナ部品に設けておき、容量装荷オフ 状態と容量装荷オン状態の切り換えによる給電放射電極 6の基本共振周波数の予 め定められた設定の変動幅に応じた容量装荷手段を切り換え手段 16を介してグラン ド接地用導通経路 15により回路基板 3のグランド電極 4に接続する構成とすることに よって、同種のアンテナ部品を複数種の無線通信装置に設けることができる。つまり 、アンテナ部品の共通化を図ることができる。これにより、アンテナ構造 1およびそれ を設けた無線通信装置の低コストィ匕を図ることができる。
[0053] 以下に、第 3実施例を説明する。なお、この第 3実施例の説明において、第 1と第 2 の各実施例と同一構成部分には同一符号を付し、その共通部分の重複説明は省略 する。
[0054] この第 3実施例では、第 1又は第 2の実施例の構成に加えて、無給電放射電極 7が 、ループ状の電流経路を持つ形態を有している。例えば、図 9aの例では、無給電放 射電極 7には、当該電極 7の端縁から切り込み形成されたスリット 26が形成されてい る。そのスリット 26の切り込み開口端側の電極端縁側は、スリット 26を間にしてその一 方側 Nはグランド電極 4に電気的に接続されるショート端と成し、他端側 Mは開放端 と成している。そのショート端 Nと開放端 M間の電流経路は、スリット 26を迂回して給 電端 Nと開放端 Mを結ぶループ状経路と成して ヽる。
[0055] この第 3実施例では、無給電放射電極 7は複数の互いに異なる共振周波数帯でァ ンテナ動作を行う構成と成して!/、る。無給電放射電極 7の複数の共振周波数帯のう ちで最も周波数の低い基本共振周波数帯の基本共振周波数 F は、例えば給電放 b7
射電極 6の基本共振周波数 F の近傍の周波数と成し、無給電放射電極 7の基本共 b6
振周波数帯のアンテナ動作 (基本モード)は、例えば図 9bの実線 αに示されるように 、給電放射電極 6の基本モードと共に複共振状態を作り出す構成となっている。また 、無給電放射電極 7の基本共振周波数帯よりも高 ヽ高次共振周波数帯の高次共振 周波数 F は、給電放射電極 6の高次共振周波数 F に近い周波数と成し、無給電放 h7 h6
射電極 7の高次共振周波数帯のアンテナ動作 (高次モード)は、給電放射電極 6の 高次モードと共に複共振状態を作り出す構成となっている。このように、無給電放射 電極 7により給電放射電極 6の基本共振周波数帯と高次共振周波数帯の両方で複 共振状態が作り出されることによって、複共振状態によって、給電放射電極 6の高次 共振周波数帯だけでなぐ基本共振周波数帯の広帯域化をも図ることができる。
[0056] このような構成を備える場合においても、この第 3実施例では、第 1や第 2の各実施 例と同様に、容量装荷手段(図 9aの例では容量装荷用電極 12)による給電放射電 極 6の高次モード零電圧領域 Pへの容量装荷のオン'オフを切り換えることができる 構成を備えている。このため、例えば、切り換え手段 16がオフ状態で容量装荷手段 による給電放射電極 6の高次モード零電圧領域 Pへの容量装荷がオフである場合に
、例えば図 9bの実線 αに示されるように給電放射電極 6の基本共振周波数が周波 数 F であるとする。これに対して、切り換え手段 16をオン状態に切り換えて容量装荷 b6
手段による給電放射電極 6の高次モード零電圧領域 Pへの容量装荷がオンになると 、図 9bの鎖線 |8に示されるように、給電放射電極 6の基本共振周波数は周波数 F ' b6 に切り換わる。このように、給電放射電極 6の基本共振周波数の切り換えが行われて も、前述したように容量装荷手段による容量は給電放射電極 6の高次モード零電圧 領域 Pに装荷されるので、図 9bの実線 αと鎖線 |8の比較力らも分力るように、給電放 射電極 6の高次共振周波数帯は変動しな 、。
[0057] この第 3実施例では、無給電放射電極 7により給電放射電極 6の基本共振周波数 帯と高次共振周波数帯との両方で複共振状態が作り出される構成とした。このため、 給電放射電極 6の基本共振周波数の切り換えによる給電放射電極 6の基本周波数 帯の広帯域化だけでなぐ無給電放射電極 7による複共振状態によっても給電放射 電極 6の基本周波数帯の広帯域ィ匕を図ることができる。これにより、給電放射電極 6 の基本周波数帯のより一層の広帯域ィ匕を図ることができる。
[0058] また、この第 3実施例では、無給電放射電極 7が、給電放射電極 6と同様に、その 電流経路がループ状となる態様を有している。このため、給電放射電極 6と同様に、 無給電放射電極 7の基本共振周波数と高次共振周波数をそれぞれほぼ独立的に調 整することができる。これにより、無給電放射電極 7の基本共振周波数と高次共振周 波数をそれぞれ予め定められた設定の周波数に調整することが容易となる。また、無 給電放射電極 7も給電放射電極 6と同様に電極 7にスリット 26を形成して電流経路を ループ状として ヽるので、大型化することなく無給電放射電極 7の電気長を長くする ことができるという効果や、周波数帯域の広帯域ィ匕を図ることができるという効果を得 ることがでさる。
[0059] なお、図 9aの例では、容量装荷手段は図 laに示されるような容量装荷用電極 12 であったが、もちろん、容量装荷手段は、前述したような、例えば図 7a〜図 7eに示さ れる構成や、第 2実施例で述べた構成等の他の構成をも採り得るものである。
[0060] 以下に、第 4実施例を説明する。なお、この第 4実施例の説明では、第 1〜第 3の各 実施例と同一構成部分には同一符号を付し、その共通部分の重複説明は省略する
[0061] この第 4実施例では、第 3実施例の構成に加えて、無給電放射電極 7の高次モード で電圧が零ある!/、はその近傍となる無給電放射電極 7の領域 (高次モード零電圧領 域)に容量を装荷するための容量装荷手段が設けられている。例えば、図 10aの例 では、無給電放射電極 7は、そのショート端 Nと開放端 Mとの間の電流経路が、ショ ート端 Nと開放端 Mをスリット 26を迂回して結ぶループ状経路となる形態を有してい る。この無給電放射電極 7の電流経路の迂回の折り返し領域 Uが高次モード零電圧 領域となっている。基体 2には、その無給電放射電極 7の高次モード零電圧領域 Uに 容量を装荷するための無給電側の容量装荷手段である容量装荷用電極 27が形成 されている。また、回路基板 3には、容量装荷用電極 27に電気的に接続される電極 ランド 28がグランド電極 4と間隔を介して形成されている。その電極ランド 28と、給電 放射電極 6側の電極ランド 13とは、共通の切り換え手段 16とグランド接地用導通経 路 15を介してグランド電極 4に電気的に接続されている。
[0062] 例えば、切り換え手段 16がオフ状態の場合には、容量装荷用電極 12による給電 放射電極 6の高次モード零電圧領域 Pへの容量装荷はオフである。また、容量装荷 用電極 27による無給電放射電極 7の高次モード零電圧領域 Uへの容量装荷もオフ である。この場合、例えば、給電放射電極 6の基本共振周波数は図 10bに示す周波 数 F であり、また、無給電放射電極 7の基本共振周波数は周波数 F であり、図 10b b6 b7 の実線 αに示されるように、無給電放射電極 7の基本モードと給電放射電極 6の基本 モードとによって給電放射電極 6の基本共振周波数帯で複共振状態が作り出される 。これに対して、切り換え手段 16がオン状態に切り換わると、容量装荷用電極 12によ る給電放射電極 6の高次モード零電圧領域 Ρへの容量装荷はオンとなり、また、容量 装荷用電極 27による無給電放射電極 7の高次モード零電圧領域 Uへの容量装荷も オンとなる。これにより、給電放射電極 6の基本共振周波数は周波数 F 'に切り換わ b6
り、また、無給電放射電極 7の基本共振周波数は周波数 F に切り換わる。これにより b7
、給電放射電極 6の基本モードと無給電放射電極 7の基本モードによる複共振状態 の給電放射電極 6の基本共振周波数帯は図 10bの鎖線 |8に示されるように切り換わ る。
[0063] なお、図 10aの例では、給電放射電極 6側の容量装荷手段は、図 laの例と同様の 容量装荷用電極 12により構成されていたが、給電放射電極 6側の容量装荷手段は、 前述したような、例えば図 7a〜図 7eに示される構成や、第 2実施例で述べた構成等 の他の構成を採用してもよい。また、無給電放射電極 7側の容量装荷手段に関しても 、上記同様な様々な構成を採用してよいものである。
[0064] また、図 10aの例では、容量装荷用電極 12, 27は、それぞれ、共通の切り換え手 段 16とグランド接地用導通経路 15を介してグランド電極 4に電気的に接続される構 成であつたが、容量装荷用電極 12, 27は、それぞれ、個別に対応する切り換え手段 16とグランド接地用導通経路 15を介してグランド電極 4に電気的に接続される構成と してちよい。
[0065] この第 4実施例では、無給電放射電極 7にもその高次モード零電圧領域に容量を 装荷するための容量装荷手段 (容量装荷用電極 27)を設けたので、給電放射電極 6 と同様に、無給電放射電極 7の高次共振周波数を変動させることなく無給電放射電 極 7の基本共振周波数を切り換えることができる。このため、給電放射電極 6および 無給電放射電極 7の基本共振周波数の切り換えによって、基本共振周波数帯のより 一層の広帯域ィ匕を図ることができる。
[0066] 以下に、第 5実施例を説明する。なお、この第 5実施例の説明において、第 1〜第 4 の各実施例と同一構成部分には同一符号を付し、その共通部分の重複説明は省略 する。
[0067] ところで、アンテナ構造 1にお 、て、容量装荷手段の形成可能な位置が、例えば回 路基板 3の配線構成等に起因して制限されてしまう場合がある。この場合には、その 容量装荷手段の形成可能な位置と、容量装荷手段が給電放射電極 6の高次モード 零電圧領域 Pに容量を装荷することができる位置とがずれてしまう虞がある。この第 5 実施例では、そのような事態を回避できる構成を備えている。すなわち、この第 5実施 例では、第 1〜第 4の各実施例の構成に加えて、次に示すような構成を有している。
[0068] つまり、給電放射電極 6は誘電体の基体 2上に形成されて ヽるために、給電放射電 極 6における電圧分布は基体 2の誘電率の影響を受ける。このため、基体 2の誘電率 を調整することによって給電放射電極 6の高次モード零電圧領域 Pの位置を調整す
ることができる。このことを利用して第 5実施例のアンテナ構造 1は例えば次に示すよ うに設計されている。例えば、容量装荷手段の形成位置の制限条件等に基づいて容 量装荷手段の形成位置が定まる。その容量装荷手段により容量が装荷される給電放 射電極 6の領域が高次モード零電圧領域 Pの配置位置として設定される。その設定 の位置に給電放射電極 6の高次モード零電圧領域 Pが配設されるように基体 2の誘 電率が求められる。当該求めた誘電率を持つ誘電体により基体 2が形成される。
[0069] 例えば、第 1〜第 4の各実施例の説明で使用した図面のアンテナ構造 1の例では、 容量装荷用電極 12の形成位置は、基体 2の角部であった力 上記のような基体 2の 誘電率の調整により、例えば図 11aに示されるように、給電放射電極 6の高次モード 零電圧領域 Pの設定の配置位置に応じて、容量装荷用電極 12の形成位置は基体 2 の側面の中央寄りの位置とすることができる。
[0070] なお、上記例では、基体 2の全体が同じ誘電体により構成されていたが、給電放射 電極 6の高次モードの電圧分布は、特に、給電放射電極 6の開放端形成領域の誘電 率の影響を受け易い。このことから、例えば、給電放射電極 6の開放端形成領域とな る基体部分のみが、部分的に、給電放射電極 6の高次モード零電圧領域 Pを設定位 置に配置するための誘電率を持つ誘電体により形成されている構成としてもよい。ま た、例えば、図 l ibに示されるように、給電放射電極 6の高次モード零電圧領域 Pを 設定位置に配置するための誘電率を持つ誘電体部材 30を、給電放射電極 6の開放 端形成領域となる基体部分に設けてもょ ヽ。
[0071] なお、図 11aと図 l ibの例では、給電放射電極 6側の容量装荷手段として容量装 荷用電極 12が設けられている例を示したが、もちろん、給電放射電極 6側の容量装 荷手段として、第 1〜第 4の各実施例で前述したような他の構成のものを設けてもよい ものである。また、第 4実施例と同様に、無給電側の容量装荷手段を設けてもよい。 例えば、そのように無給電側の容量装荷手段が設けられ、さらに、無給電放射電極 7 の高次モード零電圧領域 Uの形成位置を調整した 、場合には、給電放射電極 6と同 様に、無給電放射電極 7の開放端形成領域となる基体部分のみが、部分的に、無給 電放射電極 7の高次モード零電圧領域 Uを設定位置に配置するための誘電率を持 つ誘電体により形成されている構成を備えてもよい。また、無給電放射電極 7の高次
モード零電圧領域 uを設定位置に配置するための誘電率を持つ誘電体部材を、無 給電放射電極 7の開放端形成領域となる基体部分に設けてもよい。
[0072] この第 5実施例では、上記のように、基体 2の誘電率を全体的に又は部分的に調整 したり、給電放射電極 6や無給電放射電極 7の開放端形成領域に誘電体部材を設け て給電放射電極 6や無給電放射電極 7の高次モード零電圧領域 P, Uの配置位置を 調整する構成を備えている。このため、給電放射電極 6や無給電放射電極 7の容量 装荷手段の形成位置が制限されてしまう場合であっても、容量装荷手段によって給 電放射電極 6や無給電放射電極 7の高次モード零電圧領域 P, Uに容量を装荷する ことができて、給電放射電極 6や無給電放射電極 7の基本共振周波数帯の切り換え を行うことができる。
[0073] 以下に、第 6実施例を説明する。なお、この第 6実施例の説明において、第 1〜第 5 の各実施例と同一構成部分には同一符号を付し、その共通部分の重複説明は省略 する。
[0074] ところで、アンテナ構造 1が組み込まれる無線通信装置の仕様によっては、給電放 射電極 6の基本共振周波数を切り換えなくとも給電放射電極 6の基本共振周波数帯 が予め定められた周波数帯域の条件を満たすことがある。このような場合には、給電 放射電極 6の基本共振周波数を切り換えなくとも済むので、第 1〜第 5の各実施例に 示したようなアンテナ部品を持ち、かつ、切り換え手段 16が省略されているアンテナ 構造 1を構築することができる。このことから、第 6実施例のアンテナ構造 1は、次に示 すような構成を備えている。
[0075] つまり、この第 6実施例では、図 12a〜図 12cに示されるように、基体 2に設けられる 容量装荷用電極 12は、オプション用の容量装荷手段と成す。例えば、容量装荷オフ 状態におけるアンテナ構造 1が例えば図 lcの実線ひに示されるようなリターンロス特 性を有する場合に、図 lcに示される周波数帯 B, C, D, Eの 4つの周波数帯で無線 通信が可能なアンテナ構造 1が要求されている場合には、容量装荷用電極 12による 容量装荷をオン状態として周波数帯 Aに対応させる必要がない。このことから、容量 装荷用電極 12を電気的にオープンな状態に固定してもよい。これにより、例えば、図 12aに示されるように、容量装荷用電極 12をグランド電極 4に接地させるのではなぐ
例えば容量装荷用電極 12からグランド電極 4側を見たときに予め定められた何らか のインピーダンス (この場合にはオープンが望ま 、)を持つ負荷 32を容量装荷用電 極 12に接続させる。あるいは、例えば、図 12bに示されるように、容量装荷用電極 12 力もグランド電極 4側を見たときに予め定められた何らかのインピーダンス (この場合 にはオープンが望ま Uヽ)を持つ負荷部品 33を容量装荷用電極 12に接続させる。
[0076] さらに、例えば、図 lcに示される周波数帯 A, C, D, Eの 4つの周波数帯で無線通 信が可能なアンテナ構造 1が要求されている場合には、容量装荷用電極 12による容 量装荷をオフ状態として周波数帯 Bに対応させる必要がない。このことから、容量装 荷用電極 12を短絡状態に固定してもよい。これにより、例えば、容量装荷用電極 12 を図 12cに示されるように直接的に回路基板 3のグランド電極 4に接続させて接地さ せる。
[0077] この第 6実施例のアンテナ構造の構成では、切り換え手段 16を省略することができ るので、アンテナ構造の簡素化を図ることができる。なお、図 12a〜図 12cに示される 容量装荷用電極 12に代えて、オプション用の容量装荷手段として、例えば、図 7aや 図 7bや図 7dや図 7eや図 8aに示されるような他の構成の容量装荷手段を設けてもよ い。また、オプション用の無給電側の容量装荷手段を設けてもよいものである。
[0078] この第 6実施例では、基体 2にはオプション用の容量装荷手段が設けられている構 成とした。このため、アンテナ部品の共通化を図ることができる。つまり、オプション用 の容量装荷手段が基体 2に形成されて成るアンテナ部品は、給電放射電極 6又は無 給電放射電極 7の高次モード零電圧領域 P, Uにグランド電極 4との間の容量の装荷 が必要なアンテナ構造 1にも、不必要なアンテナ構造 1にも、さらに、容量装荷のオン •オフの切り換えが必要なアンテナ構造 1にも設けることができる。このため、アンテナ 部品の共通化を図ることができて、アンテナ構造 1の低コストィ匕を図ることができる。
[0079] 以下に、第 7実施例を説明する。この第 7実施例は無線通信装置に関するものであ る。この第 7実施例の無線通信装置は、第 1〜第 6の各実施例に示したアンテナ構造 1のうちの何れか一つのアンテナ構造 1が設けられている。アンテナ構造以外の無線 通信装置の構成には様々な構成があり、ここでは、そのアンテナ構造以外の無線通 信装置構成は特に限定されるものではなぐ適宜な構成が設けられている。
[0080] なお、この発明は第 1〜第 7の各実施例の形態に限定されるものではなぐ様々な 実施の形態を採り得るものである。例えば、第 1〜第 7の各実施例では、給電放射電 極 6は、スリット 8により電流経路がループ状となる形態を有していたが、例えば、帯状 の電極によってループ状の電流経路を持つ給電放射電極 6を設けてもよ ヽ。無給電 放射電極 7がループ状電流経路を持つ形態を有する場合にも同様である。
[0081] また、第 1〜第 7の各実施例では、給電放射電極 6にはスリットが 1本のみ形成され ていたが、例えば、複数のスリットが並設され、給電放射電極 6の電流経路は、給電 端 Qと開放端 K間をそれらスリットの並設群を迂回して結ぶループ状の電流経路と成 している構成であってもよぐスリットの形成数は限定されるものではない。また、スリツ トの形状も限定されるものではない。無給電放射電極 7にスリットが形成される場合に は、そのスリットに関しても同様である。
[0082] さらに、第 1〜第 7の各実施例では、基体 2は直方体状であつたが、基体 2は、例え ば円柱状や多角形状等の直方体状以外の形状であってもよい。さらに、第 1〜第 7の 各実施例では、基体 2には、給電放射電極 6と無給電放射電極 7がそれぞれ 1つず つ設けられていたが、例えば、給電放射電極 6と無給電放射電極 7のうちの少なくと も一方側が基体 2に複数設けられて ヽる構成としてもよ!ヽ。
産業上の利用可能性
[0083] 本発明は、例えば、使用する周波数帯が互いに異なる複数の無線通信システムに 対応することが可能なアンテナ構造および無線通信装置に好適なものである。
Claims
[1] 無線通信用の回路が形成されている回路基板のグランド領域に搭載されている基 体を有し、基体には、無線通信用の回路に電気的に接続されて互いに異なる複数の 共振周波数帯でアンテナ動作を行う給電放射電極が設けられていると共に、この給 電放射電極と電磁結合する無給電放射電極が給電放射電極と間隔を介して設けら れており、給電放射電極は、一端側が無線通信用の回路に電気的に接続される給 電端と成し他端側が開放端と成している放射電極であり、この給電放射電極は、その 給電端側と開放端側が間隔を介し隣接配置されて給電端と開放端間の電流経路が ループ状となる形態を有しており、無給電放射電極は、給電放射電極との電磁結合 により給電放射電極と共にアンテナ動作を行って少なくとも給電放射電極が持つ複 数の共振周波数帯のうちの最も低い基本共振周波数帯よりも高い高次共振周波数 帯で複共振状態を作り出す構成を有するアンテナ構造であって、
高次共振周波数帯のアンテナ動作モードである高次モードで電圧が零あるいはそ の近傍となる給電放射電極の高次モード零電圧領域に容量を装荷するための容量 装荷手段と、
回路基板のグランド領域に形成されているグランド電極と、容量装荷手段との間を 電気的に接続するグランド接地用導通経路と、
グランド接地用導通経路に介設され容量装荷手段と回路基板のグランド電極との 間の導通オン'オフを切り換えて容量装荷手段による給電放射電極の高次モード零 電圧領域への容量装荷のオン'オフを切り換え制御して給電放射電極の基本共振 周波数帯の基本共振周波数を切り換える切り換え手段と、
を有して!/ヽることを特徴とするアンテナ構造。
[2] 給電放射電極には、当該電極の端縁から切り込み形成されたスリットが設けられ、 そのスリットの切り込み開口端側の電極端縁側は、スリットを間にしてその一方側は給 電端と成し他方側は開放端と成しており、給電放射電極の給電端と開放端間の電流 経路は、スリットを迂回して給電端と開放端を結ぶループ状経路と成し、この電流経 路の迂回の折り返し領域が給電放射電極の高次モード零電圧領域であり、容量装 荷手段は電流経路の折り返し領域に容量を装荷することを特徴とする請求項 1記載
のアンテナ構造。
[3] 無給電放射電極は、互いに異なる複数の共振周波数帯でアンテナ動作を行う放射 電極であり、無給電放射電極が持つ複数の共振周波数帯のうちの最も低い基本共 振周波数帯のアンテナ動作は給電放射電極の基本共振周波数帯のアンテナ動作と 共に複共振状態を作り出し、無給電放射電極の基本共振周波数帯よりも高!ヽ高次 共振周波数帯のアンテナ動作は給電放射電極の高次共振周波数帯のアンテナ動 作と共に複共振状態を作り出すことを特徴とする請求項 1記載のアンテナ構造。
[4] 無給電放射電極は、一端側が回路基板のグランド電極に接地されるショート端と成 し他端側が開放端と成している放射電極であり、この無給電放射電極は、そのショー ト端側と開放端側が間隔を介し隣接配置されてショート端と開放端との間の電流経路 がループ状となる態様を有していることを特徴とする請求項 3記載のアンテナ構造。
[5] 高次共振周波数帯のアンテナ動作モードである高次モードで電圧が零ある!、はそ の近傍となる無給電放射電極の高次モード零電圧領域に容量を装荷するための無 給電側の容量装荷手段と、
無給電側の容量装荷手段と、回路基板のグランド電極との間を電気的に接続する 無給電側のグランド接地用導通経路と、
無給電側のグランド接地用導通経路に介設され無給電側の容量装荷手段と回路 基板のグランド電極との間の導通オン'オフを切り換えて無給電側の容量装荷手段 による無給電放射電極の高次モード零電圧領域への容量装荷のオン'オフを切り換 え制御して無給電放射電極の基本共振周波数帯の基本共振周波数を切り換える切 り換え手段と、
を有していることを特徴とする請求項 3記載のアンテナ構造。
[6] 請求項 1乃至請求項 5の何れか一つに記載されている容量装荷手段、又は、請求 項 3乃至請求項 5の何れか一つに記載されて ヽる無給電側の容量装荷手段は、給 電放射電極あるいは無給電放射電極の高次モード零電圧領域との間に容量を形成 するための容量装荷用電極と、容量装荷用コンデンサ部品との何れかにより構成さ れて 、ることを特徴とするアンテナ構造。
[7] 請求項 1乃至請求項 5の何れか一つに記載されている容量装荷手段、又は、請求
項 3乃至請求項 5の何れか一つに記載されている無給電側の容量装荷手段は容量 装荷用コンデンサ部品により構成されており、その容量装荷用コンデンサ部品は、給 電放射電極あるいは無給電放射電極の高次モード零電圧領域に装荷する容量の大 きさを可変調整可能な可変容量コンデンサ部品であることを特徴とするアンテナ構造
[8] 請求項 1乃至請求項 5の何れか一つに記載されている容量装荷手段、又は、請求 項 3乃至請求項 5の何れか一つに記載されて ヽる無給電側の容量装荷手段は、給 電放射電極あるいは無給電放射電極の高次モード零電圧領域との間に容量を形成 するための容量装荷用電極により構成されており、その容量装荷用電極の少なくとも 一部は基体の内部に埋設されて!ヽることを特徴とするアンテナ構造。
[9] 請求項 1乃至請求項 5の何れか一つに記載されている容量装荷手段、又は、請求 項 3乃至請求項 5の何れか一つに記載されている無給電側の容量装荷手段が基体 に複数設けられており、それら容量装荷手段は、それぞれ、互いに異なる容量を給 電放射電極あるいは無給電放射電極の高次モード零電圧領域に装荷するものであ り、前記容量装荷手段のうちの何れか一つ、あるいは、前記無給電側の容量装荷手 段のうちの何れか一つが、切り換え手段を介してグランド接地用導通経路により回路 基板のグランド電極に電気的に接続されていることを特徴とするアンテナ構造。
[10] 請求項 1乃至請求項 5の何れか一つに記載されている容量装荷手段、又は、請求 項 3乃至請求項 5の何れか一つに記載されている無給電側の容量装荷手段が基体 に複数設けられ、各容量装荷手段は、それぞれ、個別に対応する切り換え手段を介 してグランド接地用導通経路により回路基板のグランド電極に電気的に接続されてい ることを特徴とするアンテナ構造。
[11] 基体は、高次モード零電圧領域の位置を予め定めた設定位置に調整するための 誘電率を有する誘電体により構成されていることを特徴とする請求項 1乃至請求項 5 の何れか一つに記載のアンテナ構造。
[12] 給電放射電極開放端形成領域となる基体部分は、給電放射電極の高次モード零 電圧領域の位置を予め定めた基体位置に配置させるための誘電率を持つ誘電体に より構成されていることを特徴とする請求項 1乃至請求項 5の何れか一つに記載のァ
ンテナ構造。
[13] 給電放射電極開放端形成領域となる基体部分には、給電放射電極の高次モード 零電圧領域の位置を予め定めた基体位置に配置させるための誘電率を持つ誘電体 部材が設けられていることを特徴とする請求項 1乃至請求項 5の何れか一つに記載 のアンテナ構造。
[14] 無線通信用の回路が形成されている回路基板のグランド領域に搭載されている基 体を有し、基体には、無線通信用の回路に電気的に接続されて互いに異なる複数の 共振周波数帯でアンテナ動作を行う給電放射電極が設けられていると共に、この給 電放射電極と電磁結合する無給電放射電極が給電放射電極と間隔を介して設けら れており、給電放射電極は、一端側が無線通信用の回路に電気的に接続される給 電端と成し他端側が開放端と成している放射電極であり、この給電放射電極は、その 給電端側と開放端側が間隔を介し隣接配置されて給電端と開放端間の電流経路が ループ状となる形態を有しており、無給電放射電極は、給電放射電極との電磁結合 により給電放射電極と共にアンテナ動作を行って少なくとも給電放射電極が持つ複 数の共振周波数帯のうちの最も低い基本共振周波数帯よりも高い高次共振周波数 帯で複共振状態を作り出す構成を有するアンテナ構造であって、
基体には、高次共振周波数帯のアンテナ動作モードである高次モードで電圧が零 あるいはその近傍となる給電放射電極の高次モード零電圧領域に容量を装荷する ためのオプション用の容量装荷手段が形成されており、
オプション用の容量装荷手段は、給電放射電極の高次モード零電圧領域に容量を 装荷するときには、回路基板のグランド領域に形成されているグランド電極との間に グランド接地用導通経路が形成されて給電放射電極の高次モード零電圧領域に容 量を装荷し、給電放射電極の高次モード零電圧領域に容量を装荷しないときには、 グランド接地用導通経路が形成されて ヽな ヽことを特徴とするアンテナ構造。
[15] 請求項 1乃至請求項 5の何れか一つ又は請求項 14に記載のアンテナ構造が設け られて ヽることを特徴とする無線通信装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007528118A JP4052359B2 (ja) | 2006-02-14 | 2006-11-29 | アンテナ構造およびそれを用いた無線通信装置 |
US12/188,550 US7808435B2 (en) | 2006-02-14 | 2008-08-08 | Antenna structure and wireless communication apparatus including same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006036830 | 2006-02-14 | ||
JP2006-036830 | 2006-02-14 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/188,550 Continuation US7808435B2 (en) | 2006-02-14 | 2008-08-08 | Antenna structure and wireless communication apparatus including same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007094111A1 true WO2007094111A1 (ja) | 2007-08-23 |
Family
ID=38371299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/323818 WO2007094111A1 (ja) | 2006-02-14 | 2006-11-29 | アンテナ構造およびそれを用いた無線通信装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US7808435B2 (ja) |
JP (1) | JP4052359B2 (ja) |
WO (1) | WO2007094111A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2081255A1 (en) | 2008-01-15 | 2009-07-22 | TDK Corporation | Surface mount antenna and antenna module |
EP2348574A1 (en) | 2009-12-28 | 2011-07-27 | Fujitsu Limited | Antenna device and communication device comprising the same |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100194654A1 (en) * | 2009-02-03 | 2010-08-05 | Chi-Ming Chiang | Antenna structure with an effect of capacitance in serial connecting |
US9136594B2 (en) * | 2009-08-20 | 2015-09-15 | Qualcomm Incorporated | Compact multi-band planar inverted F antenna |
US8872712B2 (en) * | 2011-06-08 | 2014-10-28 | Amazon Technologies, Inc. | Multi-band antenna |
US9893429B2 (en) * | 2013-03-11 | 2018-02-13 | Futurewei Technologies, Inc. | Wideband slot antenna for wireless communication devices |
US9979096B2 (en) * | 2013-08-20 | 2018-05-22 | Futurewei Technologies, Inc. | System and method for a mobile antenna with adjustable resonant frequencies and radiation pattern |
US10490905B2 (en) * | 2016-07-11 | 2019-11-26 | Waymo Llc | Radar antenna array with parasitic elements excited by surface waves |
TWI833143B (zh) * | 2021-01-06 | 2024-02-21 | 群創光電股份有限公司 | 電子裝置 |
EP4071930A1 (en) * | 2021-04-08 | 2022-10-12 | Continental Automotive Technologies GmbH | Antenna assembly and vehicle |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10224142A (ja) * | 1997-02-04 | 1998-08-21 | Kenwood Corp | 共振周波数切換え可能な逆f型アンテナ |
JPH11136025A (ja) * | 1997-08-26 | 1999-05-21 | Murata Mfg Co Ltd | 周波数切換型表面実装型アンテナおよびそれを用いたアンテナ装置およびそれを用いた通信機 |
JP3503556B2 (ja) * | 2000-02-04 | 2004-03-08 | 株式会社村田製作所 | 表面実装型アンテナおよびそのアンテナを装備した通信装置 |
JP3528737B2 (ja) * | 2000-02-04 | 2004-05-24 | 株式会社村田製作所 | 表面実装型アンテナおよびその調整方法および表面実装型アンテナを備えた通信装置 |
JP2004274223A (ja) * | 2003-03-06 | 2004-09-30 | Matsushita Electric Ind Co Ltd | アンテナとそれを用いた電子機器 |
JP2004312364A (ja) * | 2003-04-07 | 2004-11-04 | Murata Mfg Co Ltd | アンテナ構造およびそれを備えた通信機 |
JP3658639B2 (ja) * | 2000-04-11 | 2005-06-08 | 株式会社村田製作所 | 表面実装型アンテナおよびそのアンテナを備えた無線機 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1182598A (en) | 1966-03-09 | 1970-02-25 | Howson Ltd W H | Photographic Enlarger |
GB1151274A (en) | 1966-05-09 | 1969-05-07 | Copolymer Rubber & Chem Corp | Rubber Compositions |
US3503556A (en) | 1968-01-12 | 1970-03-31 | Thomas S Moulton | Sprinkler power mover unit |
JP3646782B2 (ja) | 1999-12-14 | 2005-05-11 | 株式会社村田製作所 | アンテナ装置およびそれを用いた通信機 |
DE10029733A1 (de) | 2000-06-23 | 2002-01-03 | Alcatel Sa | Antennenanordnung für Mobilfunktelefone |
FI113812B (fi) | 2000-10-27 | 2004-06-15 | Nokia Corp | Radiolaite ja antennirakenne |
FI113813B (fi) * | 2001-04-02 | 2004-06-15 | Nokia Corp | Sähköisesti viritettävä monikaistainen tasoantenni |
CN1778014B (zh) | 2003-06-04 | 2011-06-15 | 株式会社村田制作所 | 可变频率天线及包含该天线的设备 |
JP2005150937A (ja) | 2003-11-12 | 2005-06-09 | Murata Mfg Co Ltd | アンテナ構造およびそれを備えた通信機 |
-
2006
- 2006-11-29 WO PCT/JP2006/323818 patent/WO2007094111A1/ja active Application Filing
- 2006-11-29 JP JP2007528118A patent/JP4052359B2/ja not_active Expired - Fee Related
-
2008
- 2008-08-08 US US12/188,550 patent/US7808435B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10224142A (ja) * | 1997-02-04 | 1998-08-21 | Kenwood Corp | 共振周波数切換え可能な逆f型アンテナ |
JPH11136025A (ja) * | 1997-08-26 | 1999-05-21 | Murata Mfg Co Ltd | 周波数切換型表面実装型アンテナおよびそれを用いたアンテナ装置およびそれを用いた通信機 |
JP3503556B2 (ja) * | 2000-02-04 | 2004-03-08 | 株式会社村田製作所 | 表面実装型アンテナおよびそのアンテナを装備した通信装置 |
JP3528737B2 (ja) * | 2000-02-04 | 2004-05-24 | 株式会社村田製作所 | 表面実装型アンテナおよびその調整方法および表面実装型アンテナを備えた通信装置 |
JP3658639B2 (ja) * | 2000-04-11 | 2005-06-08 | 株式会社村田製作所 | 表面実装型アンテナおよびそのアンテナを備えた無線機 |
JP2004274223A (ja) * | 2003-03-06 | 2004-09-30 | Matsushita Electric Ind Co Ltd | アンテナとそれを用いた電子機器 |
JP2004312364A (ja) * | 2003-04-07 | 2004-11-04 | Murata Mfg Co Ltd | アンテナ構造およびそれを備えた通信機 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2081255A1 (en) | 2008-01-15 | 2009-07-22 | TDK Corporation | Surface mount antenna and antenna module |
US8013794B2 (en) | 2008-01-15 | 2011-09-06 | Tdk Corporation | Surface mount antenna and antenna module |
EP2348574A1 (en) | 2009-12-28 | 2011-07-27 | Fujitsu Limited | Antenna device and communication device comprising the same |
US8472907B2 (en) | 2009-12-28 | 2013-06-25 | Fujitsu Limited | Antenna device and communication device |
Also Published As
Publication number | Publication date |
---|---|
JP4052359B2 (ja) | 2008-02-27 |
US7808435B2 (en) | 2010-10-05 |
JPWO2007094111A1 (ja) | 2009-07-02 |
US20090015497A1 (en) | 2009-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007094111A1 (ja) | アンテナ構造およびそれを用いた無線通信装置 | |
US9793597B2 (en) | Antenna with active elements | |
JP3503556B2 (ja) | 表面実装型アンテナおよびそのアンテナを装備した通信装置 | |
KR100483110B1 (ko) | 안테나 장치와 그것을 포함하는 무선 장비 | |
US7119749B2 (en) | Antenna and radio communication apparatus | |
JP4389275B2 (ja) | アンテナ装置及び無線通信機 | |
US11245179B2 (en) | Antenna and method for steering antenna beam direction for WiFi applications | |
US8421702B2 (en) | Multi-layer reactively loaded isolated magnetic dipole antenna | |
WO2008013021A1 (fr) | Dispositif d'antenne et dispositif de communication radio | |
JP2002158529A (ja) | 表面実装型アンテナ構造およびそれを備えた通信機 | |
WO2008035526A1 (fr) | Structure d'antenne et dispositif de communication sans fil l'employant | |
JP2001284954A (ja) | 表面実装型アンテナおよびその複共振の周波数調整設定方法および表面実装型アンテナを備えた通信装置 | |
EP1787354A2 (en) | Multi-frequency conductive-strip antenna system | |
WO2009091323A1 (en) | Antenna device and portable radio communication device comprising such an antenna device | |
TW201347296A (zh) | 天線 | |
JP4752771B2 (ja) | アンテナ構造の不要波放射抑制方法およびアンテナ構造およびそれを備えた無線通信装置 | |
KR20140013278A (ko) | 안테나 장치 | |
KR101776263B1 (ko) | 메타머티리얼 안테나 | |
US20200388925A1 (en) | Antenna device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2007528118 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06833622 Country of ref document: EP Kind code of ref document: A1 |