Nothing Special   »   [go: up one dir, main page]

WO2007043553A1 - 多孔性多層中空糸膜及びその製造方法 - Google Patents

多孔性多層中空糸膜及びその製造方法 Download PDF

Info

Publication number
WO2007043553A1
WO2007043553A1 PCT/JP2006/320251 JP2006320251W WO2007043553A1 WO 2007043553 A1 WO2007043553 A1 WO 2007043553A1 JP 2006320251 W JP2006320251 W JP 2006320251W WO 2007043553 A1 WO2007043553 A1 WO 2007043553A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
layer
porous
multilayer hollow
Prior art date
Application number
PCT/JP2006/320251
Other languages
English (en)
French (fr)
Inventor
Hirokazu Fujimura
Noboru Kubota
Masatoshi Hashino
Tetsuo Shimizu
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to AU2006300331A priority Critical patent/AU2006300331C1/en
Priority to JP2007539955A priority patent/JP4563457B2/ja
Priority to US12/089,729 priority patent/US8137800B2/en
Priority to EP10009719.5A priority patent/EP2260931B1/en
Priority to ES06811558T priority patent/ES2402577T3/es
Priority to CA 2625523 priority patent/CA2625523C/en
Priority to CN2006800378502A priority patent/CN101282780B/zh
Priority to EP20060811558 priority patent/EP1935480B1/en
Publication of WO2007043553A1 publication Critical patent/WO2007043553A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/085Details relating to the spinneret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • B01D69/0871Fibre guidance after spinning through the manufacturing apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • B01D69/088Co-extrusion; Co-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1212Coextruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/08Addition of substances to the spinning solution or to the melt for forming hollow filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/08Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons
    • D01F6/12Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons from polymers of fluorinated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249975Void shape specified [e.g., crushed, flat, round, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249986Void-containing component contains also a solid fiber or solid particle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]

Definitions

  • Porous multilayer hollow fiber membrane and method for producing the same are Porous multilayer hollow fiber membrane and method for producing the same
  • the present invention relates to a porous hollow fiber membrane made of a thermoplastic resin having both fine pores and high water permeability, suitable for filtration, and excellent strength, and a stable production method thereof. .
  • porous hollow fiber membrane has a wide range of properties including high blocking performance that can reliably remove bacteria such as Cryptosporidium and turbid components, high water permeability for treating large amounts of water, chemical cleaning and high operating pressure. Three performances are required: high strength that can be used for long periods under operating conditions.
  • Patent Document 1 An idea of obtaining a porous multilayer hollow fiber membrane having both high blocking performance, high V, and water permeability by bonding a small pore blocking layer and a large pore strength support layer is disclosed in Patent Document 1, for example. It is disclosed. Specifically, a production method is disclosed in which a hollow thermoplastic extrudate is made into a porous multi-layer hollow fiber membrane by melt extrusion without adding a solvent to a crystalline thermoplastic resin such as polyethylene and adding a hollow fiber extrudate.
  • the stretch opening method is a method for producing a porous film by cleaving a lamellar crystal stack by stretching at a high magnification in the longitudinal direction of a hollow fiber extrudate (Non-patent Document 1).
  • Patent Document 1 crystalline thermoplastic resins having different Ml (melt index) values are melt-extruded separately from two annular nozzles arranged concentrically.
  • Ml melt index
  • the reason for this is to use the property that different Ml values, that is, usually different molecular weights, have different pore diameters when stretched and opened.
  • a porous two-layer hollow fiber membrane in which the pore diameters of the outer layer and the inner layer of the hollow fiber membrane are different is obtained.
  • this production method has the following drawbacks, and a high-strength porous multilayer hollow fiber membrane could not be obtained.
  • the molecular weight and polymer type must be changed between the outer layer and the inner layer.
  • the required physical properties such as chemical resistance and mechanical strength usually differ depending on the molecular weight and polymer type. Therefore, the strength of the entire film is reduced when a low-strength resin is used.
  • the structure of the membrane obtained by this manufacturing method is a structure in which the hole diameter in the longitudinal direction of the hollow fiber is larger than the hole diameter in the film thickness direction, so that the film has low burst strength and compressive strength. .
  • thermoplastic resin and organic liquid are used.
  • a solvent that does not dissolve the thermoplastic resin at room temperature but dissolves at high temperature that is, a latent solvent is used. Kneading thermoplastic resin and organic liquid at high temperature, dissolving thermoplastic resin in organic liquid and then cooling to room temperature induces phase separation, and then removes organic liquid to produce porous material.
  • the method thermalally induced phase separation method
  • thermoplastic resin Since it is melted at a high temperature and then cooled and solidified to form a film, especially when the thermoplastic resin is a crystalline resin, crystallization is promoted during film formation and a high-strength film is easily obtained.
  • Patent Document 1 Japanese Patent Laid-Open No. 60 139815
  • Patent Document 2 JP-A-3-215535
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-56979
  • Patent Document 4 JP-A-4 065505
  • Non-Patent Document 1 Plastics ⁇ Functional Polymer Materials Encyclopedia Editorial Committee, “Plastics, Encyclopedia of Functional Polymer Materials”, Industry Research Committee, February 2004, pages 672–679
  • Non-patent document 2 Hideto Matsuyama, “Production of polymer porous membranes by thermally induced phase separation (TIPS)”, Chemical 'Engineering Journal, June 1998, pages 45-56, Chemical Industries, Ltd.
  • Non-patent literature 3 Akira Takizawa, “Membrane”, published in January, 1992, 404-406, Non-patent literature published by IPC Co., Ltd. 4: DR ⁇ loyd, et.al., Jounal of Membrane Science, 64 (1991) 1-11 Disclosure of the Invention
  • the present invention relates to a porous multilayer hollow fiber membrane made of thermoplastic resin having both fine pores and high water permeability suitable for filtration, and excellent strength, and stable production thereof.
  • the goal is to provide a method.
  • Non-Patent Documents 1 to 4 a heat-induced phase separation method that is considered advantageous for obtaining a high-strength membrane.
  • a porous multi-layer hollow fiber membrane that is advantageous for having a stable structure and a technology for stably producing the same.
  • porous multilayer hollow fiber membrane composed of at least two layers inside and outside, and is composed of thermoplastic resin, and at least one of the two layers (A) has an isotropic three-dimensional network structure. And the surface pore diameter is 0.6 to 1.4 times the cross-sectional pore diameter, and the other one layer (B) of the two layers has a surface pore diameter of less than half the cross-sectional pore diameter.
  • the present inventors have found that a multilayer hollow fiber membrane is effective for balancing the blocking performance, water permeability performance and strength at a high level, and have reached the present invention.
  • the present invention is as follows.
  • the hollow fiber molding nozzle having an annular discharge port, a molten kneaded material containing a thermoplastic resin and an organic liquid is discharged from the annular discharge port, and the organic liquid is extracted and removed from the obtained multilayer hollow fiber.
  • the hollow fiber molding nozzle Has two or more annular discharge ports arranged concentrically, melt melt kneaded materials of different compositions are discharged from adjacent discharge ports, and melt kneading discharged from at least one annular discharge port
  • melt-kneaded material to be discharged contains not less than 5% by mass and not more than 40% by mass of inorganic fine powder.
  • the mass ratio D of the organic liquid to the melt-kneaded product, the mass ratio S of the inorganic fine powder, and the maximum mass M that the inorganic fine powder absorbs the organic liquid per unit mass are 0.2 ⁇ (D / S) / M ⁇ 2.
  • porous material according to any one of (1) to (5), wherein at least one of the organic liquids contained in the melt-kneaded material discharged from adjacent annular discharge ports is common
  • a method for producing a multilayer hollow fiber membrane A method for producing a multilayer hollow fiber membrane.
  • At least one of the spinneret parameters R (l / sec) obtained by dividing the linear velocity V (m / sec) at the time of spinneret discharge of the melt-kneaded product by the slit width d (m) of the spinneret discharge port is 10 or more and 1000.
  • the multilayer hollow fiber Before or after extraction and removal of organic liquid and Z or inorganic fine powder, the multilayer hollow fiber is stretched in the longitudinal direction of the hollow fiber at a draw ratio of 1.1 to 3 times, and any of (1) to (8) A method for producing a porous multilayer hollow fiber membrane according to claim 1.
  • thermoplastic resin selected from polyolefin and polyvinylidene fluoride.
  • a porous multilayer hollow fiber membrane having at least two layers of inner and outer layers, made of thermoplastic resin, and at least one of the two layers (A) has an isotropic three-dimensional network structure, And the surface pore diameter is 0.6 to 1.4 times the central pore diameter of the cross section, and the other one layer (B) of the two layers is a porous multilayer having a surface pore diameter of less than 1/2 of the central pore diameter of the cross section Hollow fiber membrane.
  • porous multilayer hollow fiber membrane according to any one of (11) to (13), wherein the cross-sectional central pore diameter is 0.1 m or more and 10 m or less.
  • the porous multilayer hollow fiber membrane according to any one of 14).
  • Thickness force of the one layer (B) The porous multilayer hollow fiber membrane according to any one of (11) to (15), wherein the thickness is 1/100 or more and 40/100 or less of the film thickness.
  • porous multilayer hollow fiber membrane according to any one of 16).
  • the parameter Q which is the value representing the rate of change of the hole diameter to the inner surface, is equal to or greater than 80% of the total number of measured values of the Q force Q where 0.2 ⁇ Q ⁇ 0.2 ( From 11) (
  • porous multilayer hollow fiber membrane according to any one of 17).
  • thermoplastic resin is also selected from polyolefin and polyvinylidene fluoride.
  • porous multilayer hollow fiber membrane according to any one of (11) to (19), wherein the inner diameter force S is 0.4 mm to 5 mm and the film thickness is 0.2 mm to 1 mm.
  • a porous hollow fiber membrane made of a thermoplastic resin having both fine pores and high water permeability suitable for filtration, and excellent strength, and the porous hollow fiber membrane are stabilized. Can be manufactured.
  • FIG. 1 is a diagram showing an example of a two-layer hollow fiber molding nozzle, (a) cut along a plane parallel to the discharge direction
  • FIG. 2 is a cross-sectional view, (b) a front view of a nozzle discharge port, and (c) a cross-sectional view of a two-layer hollow fiber extrudate cut along a plane perpendicular to the extrusion direction.
  • FIG. 2 is a view showing another example of a two-layer hollow fiber molding nozzle.
  • FIG. 3 is a schematic diagram of an isotropic three-dimensional network structure.
  • FIG. 4 is a schematic diagram of a spherulite structure.
  • Porous is a schematic diagram showing an example of a change in pore diameter in the film thickness direction of a two-layer hollow fiber membrane. 6] An electron micrograph of the outer surface of the porous double-layer hollow fiber membrane obtained in Example 1 at a magnification of 5000 times.
  • FIG. 10 is an electron micrograph at a magnification of 5000 of a cross section near the inner surface of the porous two-layer hollow fiber membrane obtained in Example 1.
  • FIG. 16 is an electron micrograph at a magnification of 5000 of the central portion of the cross section of the porous two-layer hollow fiber membrane obtained in Example 2.
  • FIG. 17 is an electron micrograph at a magnification of 5000 of a cross section near the inner surface of the porous two-layer hollow fiber membrane obtained in Example 2.
  • FIG. 24 is an electron micrograph at a magnification of 5000 of the central portion of the cross section of the porous two-layer hollow fiber membrane obtained in Comparative Example 2.
  • FIG. 25 is an electron micrograph at a magnification of 5000 of a cross section near the inner surface of the porous two-layer hollow fiber membrane obtained in Comparative Example 2.
  • FIG. 26 is an electron micrograph of the inner surface of the porous two-layer hollow fiber membrane obtained in Comparative Example 2 at a magnification of 5000 times.
  • FIG. 32 is an electron micrograph at a magnification of 1000 of the central part of the cross section of the porous hollow fiber membrane having a spherulite structure obtained in Reference Example.
  • FIG. 33 is a graph showing the variation of parameter Q depending on the film thickness position of the porous two-layer hollow fiber membrane obtained in Example 2.
  • the horizontal axis shows the film thickness position when the total film thickness is 1, and the vertical axis shows Q.
  • Thermoplastic resin is an elastic resin that has elasticity at room temperature and does not exhibit plasticity, but exhibits plasticity by appropriate heating and can be molded. When it cools and cools down, it returns to its original elastic body, and during that time it does not cause chemical changes such as molecular structure (edited by the Chemical Dictionary Dictionary Editorial Committee, Chemical Dictionary 6 Miniature Edition, Kyoritsu Shuppan, 860 And 867, 1963).
  • thermoplastic resin examples include the resin described in the section of thermoplastics (pages 829 to 882) of 12695 chemical products (Chemical Industry Daily, 1995), and revision of the Chemical Handbook Application 3 Mention may be made of edible resin described on pages 809-810 of the edition (Japan Chemical Society, Maruzen, 1980).
  • Specific examples include polyolefins such as polyethylene and polypropylene, polyvinylidene fluoride, ethylene monobutyl alcohol copolymer, polyamide, polyetherimide, polystyrene, polysanolone, polyvinyl alcohol, polyphenylene ether, polyphenylene. Dilen sulfide, cellulose acetate, polyacrylonitrile and the like.
  • crystalline thermoplastic resins having crystallinity such as polyethylene, polypropylene, polyvinylidene fluoride, ethylene monobutyl alcohol copolymer, and polyvinyl alcohol can be suitably used in terms of strength. More preferably, polyolefin, polyvinylidene fluoride, etc., which can be expected to be durable in the filtration of ordinary aqueous liquids having high water resistance due to hydrophobicity, can be used. Particularly preferably, polyvinylidene fluoride having excellent chemical durability such as chemical resistance can be used.
  • polyvinylidene fluoride examples include a homopolymer of vinylidene fluoride and a vinylidene fluoride copolymer having a vinylidene fluoride ratio of 50 mol% or more.
  • vinylidene fluoride copolymer a copolymer of vinylidene fluoride and one or more selected from tetrafluorinated styrene, hexafluoropropylene, trifluoride salt ethylene or ethylene power Can be mentioned.
  • the polyvinylidene fluoride is most preferably a vinylidene fluoride homopolymer.
  • the organic liquid used is a latent solvent for the thermoplastic resin used in the present application.
  • the latent solvent refers to a solvent that hardly dissolves the thermoplastic resin at room temperature (25 ° C.), but can dissolve the thermoplastic resin at a temperature higher than room temperature. It only needs to be liquid at the melt-kneading temperature with the thermoplastic resin, and is not necessarily liquid at room temperature.
  • thermoplastic resin is polyethylene, as an example of an organic liquid Phthalic acid esters such as dibutyl phthalate, diheptyl phthalate, dioctyl phthalate, di (2-ethylhexyl) phthalate, diisodecyl phthalate and ditridecyl phthalate; sebacic acid esters such as dibutyl sebacate;
  • Adipates such as dioctyl adipate
  • Trimellitic esters such as trioctyl trimellitic acid
  • Phosphate esters such as tryptyl phosphate and trioctyl phosphate
  • Glycerin esters such as propylene glycol dicaprate and propylene glycol dioleate
  • Paraffins such as liquid paraffin
  • thermoplastic resin is polyvinylidene fluoride, as an example of the organic liquid
  • Phthalic acid esters such as dimethyl phthalate, jetyl phthalate, dibutyl phthalate, dicyclohexyl phthalate, diheptyl phthalate, dioctyl phthalate, and di (2-ethylhexyl) phthalate;
  • Benzoic acid esters such as methyl benzoate and ethyl benzoate
  • Phosphate esters such as triphenyl phosphate, tributyl phosphate and tricresyl phosphate; Ketones such as ⁇ -butyrolatatane, ethylene carbonate, propylene carbonate, cyclohexanone, acetophenone and isophorone;
  • Examples of the inorganic fine powder include silica, alumina, titanium oxide, acid zirconium oxide, calcium carbonate, and the like.
  • fine silica having an average primary particle size of 3 to 500 nm is preferable. More preferably, it is 5 nm or more and lOOnm or less.
  • Hydrophobic silica fine powder with good dispersibility is more preferred for agglomeration, more preferably hydrophobic silica having a MW (methanol wettability) value of 30% by volume or more.
  • the MW value here is the value of the volume% of methanol at which the powder is completely wetted. Specifically, when silica is added to pure water and methanol is added below the surface with stirring, the volume percentage of methanol in the aqueous solution when 50% by mass of silica settles is obtained. It is determined.
  • the amount of the inorganic fine powder added is such that the mass ratio of the inorganic fine powder in the melt-kneaded product is 5% by mass.
  • the content is preferably 40% by mass or less. If the proportion of the inorganic fine powder is 5% by mass or more, the effect of the inorganic fine powder kneading can be sufficiently exhibited, and if it is 40% by mass or less, stable spinning can be achieved.
  • the mixing ratio in the melt-kneading is such that the volume ratio obtained by dividing the mass by the specific gravity is 15% to 50% by volume of the thermoplastic resin, and the total of both the organic liquid and the inorganic fine powder is 50% by volume.
  • the range of 85% by volume is preferable in terms of the balance between the water permeability and strength of the hollow fiber obtained and the stability of the spinning operation which is a melt extrusion operation.
  • the thermoplastic resin is preferably 15% by volume or more from the viewpoint of the strength and spinning stability of the resulting porous multilayer hollow fiber membrane. Further, the water permeability and the spinning stability of the porous multilayer hollow fiber membrane to be obtained are preferably 85% by volume or less.
  • the melt kneading of the thermoplastic resin, the organic liquid, and the inorganic fine powder can be performed using a normal melt kneading means, for example, a twin screw extruder.
  • a hollow fiber molding nozzle having two or more annular discharge ports arranged concentrically is attached to the tip of the extruder, and melted and kneaded products can be fed and extruded from different extruders to each annular discharge port.
  • a hollow fiber-like extrudate having a multilayer structure can be obtained by joining the melt-kneaded materials supplied from different extruders at the discharge port and superimposing them.
  • Fig. 1 and Fig. 2 show a conceptual diagram of the procedure for producing a multilayer hollow fiber extrudate by multilayer melt extrusion when the number of layers is two.
  • the joining position of the melt-kneaded materials having different compositions may be the lower end surface of the hollow fiber molding nozzle (FIG. 1) or may be different from the lower end surface of the hollow fiber molding nozzle (FIG. 2). It is more preferable from the viewpoint of adhesion between the layers to use the nozzle of FIG. 2 that is merged before passing through the lower end surface of the nozzle, that is, before cooling and phase separation starts.
  • FIG. 1 and FIG. 2 By using a hollow fiber molding nozzle having two or more annular discharge ports arranged concentrically as illustrated in FIG. 1 and FIG. 2, from at least one annular discharge port, it is possible to extrude a melt-kneaded product in which inorganic fine powder is kneaded in addition to the thermoplastic resin and the organic liquid. As a result, the balance of blocking performance, water permeability performance and strength is high. A porous multilayer hollow fiber membrane can be easily obtained.
  • the extrusion stability (spinning stability) of the hollow fiber extrudate having a multilayer structure is remarkably improved. This is because the viscosity of the melt-kneaded material is greatly increased by adding inorganic fine powder.
  • Multi-layer extrusion tends to be unstable compared to single-layer extrusion, but in the present invention, at least one of the layers to be bonded becomes a “hard” layer having a high viscosity, so that stability is imparted. Specifically, it becomes possible to easily obtain a multilayer hollow fiber-like extrudate in which the roundness is maintained and at the same time, the disturbance of the layer interface is suppressed. Suppressing layer interface turbulence such as layer interface undulations is important for multilayer extrusion.
  • the above-mentioned three effects are preferable because the effect is further enhanced when inorganic fine powder is contained in the melt-kneaded material having the largest discharge amount among the plurality of melt-kneaded materials to be discharged. More preferably, all the melt-kneaded material discharged contains inorganic fine powder.
  • the composition of the melt-kneaded material containing the inorganic fine powder is obtained by dividing the organic liquid mass ratio D by the inorganic fine powder mass ratio S, and the inorganic fine powder per unit mass absorbs the organic liquid.
  • a composition in which the value divided by M is in the range of 0.2 or more and 2 or less is more preferable because the effect of suppressing the movement of the organic liquid between the melt-kneaded materials can be further enhanced.
  • the organic liquid referred to here has the same composition as that contained in the melt-kneaded product, i.e., simple.
  • One or a mixed organic liquid has the same mixing ratio.
  • the movement of the organic liquid from the adjacent layers near the layer interface is suppressed, a dense layer is not formed, and a high pure water permeability is maintained. If it is 2 or less, the organic liquid does not easily move near the interface where the organic liquid not absorbed by the inorganic fine powder is sufficiently small. This leads to mitigation of changes in the membrane structure, and as a result, the blocking performance is maintained. More preferably, it is 0.3 or more and 1.5 or less, and more preferably 0.4 or more and 1.0 or less. This effect is also preferable because the effect is further enhanced when the inorganic kneaded material is contained in the melt-kneaded material having the largest discharge amount among the plurality of melt-kneaded materials to be discharged.
  • all the melt-kneaded materials to be discharged contain inorganic fine powder.
  • the maximum mass M at which the inorganic fine powder absorbs the organic liquid per unit mass means that the organic liquid is dropped while the inorganic fine powder is kneaded, and the torque during kneading first becomes 70% of the maximum torque. It can be determined by dividing the added mass of the organic liquid by the added mass of the inorganic fine powder.
  • At least one kind of organic liquid kneaded between two adjacent melt-kneaded materials is common, which is also affected by the structural change when the organic liquid moves between the melt-kneaded materials. Since it becomes small, it is preferable. Furthermore, it is more preferable that the types of organic liquids used in adjacent melt-kneaded materials are the same and the mixing ratio is different. If all organic liquids are common, it is even better because the extracted organic liquid can be easily recovered!
  • the difference in the resin temperature when the adjacent melt-kneaded materials are joined is preferably 20 ° C or less. If the temperature is 20 ° C or lower, void formation hardly occurs at the interface of the melt-kneaded product. As a result, a film having high water permeability and strength can be obtained.
  • the difference in the resin temperature at the time of merging is more preferably 10 ° C or less, and further preferably 0 ° C.
  • the spinneret discharge parameter R (l / sec) is discharged to a value of 10 or more and 1000 or less, high productivity and spinning stability can be obtained. This is preferable because a high-strength film can be obtained.
  • the nozzle discharge parameter R is a value obtained by dividing the discharge linear velocity V (m / second) by the slit width d (m) of the discharge port.
  • the discharge linear velocity V (m / sec) is a value obtained by dividing the discharge capacity (m 3 / sec) per time of the melt-kneaded product by the cross-sectional area (m 2 ) of the discharge port.
  • R is 10 or more, there is no problem such as pulsation of the yarn diameter of the hollow extrudate, and stable spinning with good productivity can be achieved. Also, if R is 1000 or less, important strength of the resulting porous multilayer hollow fiber membrane Can be maintained at a sufficiently high elongation at break.
  • the elongation at break is the elongation relative to the original length when pulled in the longitudinal direction of the film.
  • each d, at the annular discharge ports 11 and 12 on the lower end surface 9 in FIG. Calculate spinneret parameters R and R for d. If this is the case,
  • At least one spinneret parameter R is 10 or more and 1000 or less. More preferably, the spinneret parameter R having the largest discharge amount is 10 or more and 1000 or less, and more preferably, the spinneret parameter R in all the annular discharge ports is 10 or more and 1000 or less.
  • the range of R is more preferably 50 or more and 800 or less, and still more preferably 100 or more and 500 or less.
  • the number of layers forming the multilayer, the pore diameter of each layer, and the ratio of the thickness of each layer can be appropriately set depending on the purpose. For example, when a two-layer filtration membrane is intended, (i) a small pore diameter is thin, a combination of an outer layer and a large pore diameter and a thick inner layer, or (ii) a large pore diameter and a thickness, and an outer layer and a small pore diameter are thin. Combined strength of inner layer Effective for combining fine pores with high and water permeability.
  • Discharge roller The hollow fiber-shaped melt-kneaded product extruded in a multilayer structure is cooled and solidified by passing through a refrigerant such as air or water, and wound around a skein or the like as necessary. Thermally induced phase separation is induced during cooling. In the hollow fiber-like material after cooling and solidification, a polymer-rich partial phase and an organic liquid-rich partial phase are finely separated. When the inorganic fine powder is fine powder silica, the fine powder silica is unevenly distributed in the organic liquid concentrated partial phase. This cooled and solidified hollow fiber-like force The organic liquid and the inorganic fine powder are extracted and removed, whereby the organic liquid concentrated phase portion becomes a void. Therefore, a porous multilayer hollow fiber membrane can be obtained.
  • a refrigerant such as air or water
  • the extraction and removal of the organic liquid and the inorganic fine powder can be simultaneously performed as long as they can be extracted and removed with the same solvent. Usually extracted and removed separately.
  • a liquid suitable for extraction that is miscible with the organic liquid without dissolving or denaturing the used thermoplastic resin is used. Specifically, it can be carried out by contacting with a technique such as immersion.
  • the liquid is preferably volatile so that it can be easily removed from the hollow fiber membrane after extraction. Examples of the liquid include alcohols and methylene chloride. If the organic liquid is water-soluble, water can also be used as the extraction liquid.
  • the inorganic fine powder is usually extracted and removed using an aqueous liquid.
  • an aqueous liquid For example, when the inorganic fine powder has a sili- cal power, it can be carried out by first contacting silica with an alkaline solution to convert silica into a silicate, and then contacting with water to extract and remove the silicate.
  • organic liquid When the organic liquid is immiscible with water, it is preferable to extract and remove the organic liquid first, and then extract and remove the organic fine powder.
  • organic liquid and inorganic fine powder are mixed and coexist in the organic liquid-rich partial phase, and therefore, extraction and removal of inorganic fine powder can be smoothly performed, which is advantageous.
  • a porous multilayer hollow fiber membrane can be obtained by extracting and removing organic liquid and inorganic fine powder from the cooled and solidified multilayer hollow fiber.
  • the multilayer hollow fiber After extraction and removal of organic liquid and inorganic fine powder, after extraction and removal of GO organic liquid and before extraction and removal of inorganic fine powder, (m) extraction and removal of inorganic fine powder Later, before extraction and removal of the organic liquid, Gv) After extraction and removal of the organic liquid and inorganic fine powder, the multilayer hollow fiber is stretched in the longitudinal direction within one of the stretching ratios within 3 times. I can. Generally, when a multilayer hollow fiber membrane is stretched in the longitudinal direction, the water permeability performance is improved. The pressure resistance performance (rupture strength and compressive strength) decreases, so that a membrane having a practical strength is often not obtained after stretching.
  • the porous multilayer hollow fiber membrane obtained by the production method of the present application has high mechanical strength. Therefore, stretching at a draw ratio of 1.1 times to 3 times can be performed. By stretching, the water permeability of the porous multilayer hollow fiber membrane is improved.
  • the draw ratio here refers to a value obtained by dividing the hollow fiber length after drawing by the hollow fiber length before drawing. For example, when a multi-layer hollow fiber having a hollow fiber length of 10 cm is stretched and the hollow fiber length is extended to 20 cm,
  • the draw ratio is 2 times.
  • the stretched film may be heat-treated to increase the compressive strength.
  • the heat treatment temperature is usually preferably below the melting point of the thermoplastic resin.
  • the porous multilayer hollow fiber membrane of the present invention having a balanced balance of blocking performance, water permeability performance, and strength at a high level is a multilayer membrane made of thermoplastic resin having at least two layers.
  • porous multilayer hollow fiber membrane of the present application will be described below using a schematic diagram of a porous two-layer hollow fiber membrane (see Fig. 5) as an example.
  • one layer (A) has a large pore size
  • one layer (B) has a small pore size.
  • the first layer (A) is the inner layer
  • the first layer (B) is the outer layer.
  • another layer may exist between one layer (A) and one layer (B), and another layer may be laminated on one layer (A) or one layer (B).
  • Fig. 5 (1) is a diagram showing the change in the pore diameter in the film thickness direction when both the first layer (A) and the first layer (B) have an isotropic three-dimensional network structure. 2) is a diagram showing the change in pore diameter when one layer (B) has an anisotropic three-dimensional network structure.
  • FIG. 5 (3) is a layer with a small pore diameter on the outer surface side of FIG. 5 (1). That is, it is a figure which shows the hole diameter change in case the skin layer is formed.
  • Figures 5 (1) to (3) show graphs showing the relationship between the thickness of each hollow fiber membrane cross-section and the cross-sectional pore diameter.
  • the vertical axis of the graph shows the ratio of the hole diameter in each cross section to the central hole diameter of the cross section
  • the horizontal axis shows the distance between the positions where the outer surface force has advanced in the film thickness direction, with the total film thickness being 1. Since the blocking performance hardly changes even if surface wear occurs, it is preferable that both layers (A) and (B) have an isotropic three-dimensional network structure.
  • One of the two layers (A) is a so-called support layer.
  • This support layer has a high mechanical strength such as pressure resistance, and has a function to reduce water permeability as much as possible!
  • This one layer (A) has an isotropic three-dimensional network structure.
  • isotropic as used herein means an almost homogeneous structure in which the change in pore diameter is small in any of the film thickness direction, the film circumferential direction, and the film longitudinal direction.
  • An isotropic structure is a structure that is weak in strength, such as a macrovoid, and is difficult to produce a part. Therefore, it is possible to increase the mechanical strength such as the pressure resistance performance while maintaining the water permeability of the porous multilayer hollow fiber membrane.
  • the three-dimensional network structure referred to in the present application schematically indicates the structure shown in FIG.
  • FIG. 9 shows an example of a micrograph of an isotropic three-dimensional network structure in the actual porous two-layer hollow fiber membrane obtained in Example 1.
  • the thickness of the thermoplastic resin that forms the mesh is almost constant.
  • the void portion of the three-dimensional network structure is surrounded by a thermoplastic resin, and each portion of the void portion communicates with each other. Since most of the thermoplastic resin used has a three-dimensional network structure that can contribute to the strength of the hollow fiber membrane, a high-strength support layer can be formed. In addition, chemical resistance is improved.
  • thermoplastic resin that forms a network that can contribute to the strength is large. It is thought that this is because there is no significant impact.
  • the amount of thermoplastic resin contributing to the strength is relatively small because the resin is gathered in the lump, and some of the chemicals are chemicals. It is thought that the strength of the entire layer is likely to be affected when it is attacked.
  • a schematic diagram of the spherulite structure is shown in Fig. 4. In FIG. 4, it can be seen that spherulites c are partially dense, and the gaps between the dense parts of spherulites c are voids d.
  • Fig. 23 shows a micrograph of the spherulite structure obtained in Reference Example 1 described later.
  • the surface pore diameter of one layer (A) is not less than 0.6 times and not more than 1.4 times the central hole diameter of the cross section.
  • the fact that the surface hole diameter of one layer (A) is not less than 0.6 times and not more than 1.4 times the central hole diameter of the cross section is consistent with the fact that one layer (A) has an isotropic three-dimensional network structure. If it is 0.6 times or more, the filtration resistance on the surface of the support layer does not become too large, and the membrane as a whole can exhibit practically sufficient high water permeability. Moreover, if it is 1.4 times or less, it is high! And mechanical strength can be expressed.
  • the hollow fiber membrane Unlike a flat membrane, which is generally used by placing it on a mesh-like metal or plastic support, the hollow fiber membrane needs to exhibit strength that can withstand the filtration pressure itself. The Therefore, it is particularly important to design a membrane structure that can exhibit strength in the filtration direction, that is, burst strength and compressive strength. By suppressing the increase in the hole diameter toward the inner surface of the hollow fiber, the force near the center of the cross section can achieve both low filtration resistance and high compressive strength. By controlling the pore diameter in the direction of the membrane cross-section in this way, it becomes possible to balance the blocking performance, mechanical strength, and water permeability at a high level.
  • the surface pore diameter of one layer (A) is preferably the center of the cross section
  • the pore size is 0.7 to 1.3 times, more preferably 0.8 to 1.2 times.
  • the surface pore diameter of one layer (A) referred to here is the average pore diameter of pores observed on the surface where one layer (A) is exposed when the hollow fiber membrane is observed from the outside.
  • the average pore diameter is measured as follows. First, a scanning electron microscope is used to photograph the surface of the porous multilayer hollow fiber membrane on which one layer (A) is exposed at a magnification that allows the shape of many pores to be clearly confirmed as much as possible. Next, on the photograph, draw five lines at approximately equal intervals so as to be orthogonal to the vertical and horizontal directions, and measure the length of the lines across the holes in the photograph. Then, the arithmetic average value of these measured values is obtained and used as the average pore diameter.
  • the number of hole diameters traversed by 10 lines in all directions is 20 or more. If the pore force is about .1 ⁇ m to 1 ⁇ m, it is appropriate to use an electron microscope image with a magnification of about 5000 times.
  • the cross-sectional central pore diameter referred to here is 10% of the total film thickness from the central position of the film thickness in the cross section when the porous multilayer hollow fiber membrane is cut in a cross section perpendicular to the length direction.
  • a scanning electron micrograph was taken at an arbitrary magnification within the range, and the arithmetic average value of the pore diameter was obtained using this photograph in the same manner as the above average pore diameter.
  • the cross-sectional central hole diameter is preferably 0.1 ⁇ m or more and 10 ⁇ m or less. Within this range, a good balance between desirable water permeability and mechanical strength can be achieved. More preferably, they are 0.3 m or more and 8 m or less, More preferably, they are 0.6 micrometer or more and 6 micrometers or less, More preferably, they are 0.8 micrometer or more and 4 micrometers or less.
  • the porosity on the surface of one layer (B) may be determined as appropriate according to the purpose, and is not particularly limited. From the viewpoint of filtration stability of the liquid to be treated containing suspended solids, it is 20% or more. Is more preferably 23% or more, and still more preferably 25% or more. From the viewpoint of increasing the mechanical strength of the surface portion, the porosity is preferably 80% or less. More preferably it is 60% or less, and still more preferably 50% or less. As described in, for example, International Publication No.
  • the open area ratio is obtained by overlaying a transparent sheet on a copy of an electron microscope image, and painting the hole portion black using a black pen or the like, After that, by copying the transparent sheet onto a white paper, the hole portion is clearly distinguished from black and the non-hole portion is clearly distinguished from white, and then it can be obtained using commercially available image analysis software.
  • the other one of the two layers (B) is a so-called blocking layer.
  • Small surface pore size It functions to prevent foreign substances contained in the liquid to be treated from permeating through the membrane.
  • the surface pore diameter of the single layer (B) referred to here means the average pore diameter of the pores observed on the surface where the single layer (B) is exposed when the hollow fiber membrane is observed from the outside.
  • the measurement of the surface pore diameter of one layer (B) may be performed using a scanning electron micrograph in the same manner as the measurement of the surface pore diameter of one layer (A).
  • the specific surface pore diameter of one layer (B) is preferably 0.01 ⁇ m or more and less than 5 ⁇ m.
  • V is easy to express practically sufficient water permeability with low filtration resistance on the dense surface. If it is 5 ⁇ m or less, turbidity, which is an important required function of filtration membranes, can be expressed. More preferably, it is 0.05 ⁇ m or more and 2 ⁇ m or less, more preferably 0.05 ⁇ m or more and 0.5 ⁇ m or less, and most preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the surface layer diameter of this one layer (B) is less than half of the cross-sectional central hole diameter.
  • one layer (B) functions as a desirable blocking layer.
  • the lower limit of the surface pore diameter may be appropriately selected according to the size of the object to be blocked.
  • the viewpoint power to ensure water permeability is preferably 1/1000 or more of the cross-sectional central hole diameter. More preferably, it is 1/3 or less and 1/500 or more, more preferably 1/4 or less and 1/100 or more of the central hole diameter of the cross section.
  • the thickness of one layer (B) is preferably 1/100 or more and less than 40/100 of the film thickness! /.
  • the thickness of one layer (B) is preferably relatively thick, it can be used even if the liquid to be treated contains insoluble substances such as sand and aggregates. This is because the surface pore diameter does not change even when worn slightly.
  • the desired blocking performance and high water permeability can be balanced.
  • the film thickness is 3/100 or more and 20/100 or less, and further preferably 5/100 or more and 15/100 or less.
  • the first layer (B) may have an anisotropic structure in which the diameter of each hole gradually increases toward the inside of the membrane.
  • an isotropic structure in which the diameter of each hole is uniform regardless of the distance from the surface may be employed.
  • the preferred structure of layer 1 (B) is an isotropic three-dimensional network structure similar to layer 1 (A).
  • the thicknesses of the first layer (A) and the first layer (B) are obtained as follows. About each film thickness part, the cross-sectional hole diameter of each film thickness part is calculated
  • the isotropic rate of the first layer (A) is preferably 80% or more. This means that one layer (A) has a very isotropic structure. If it is 80% or more, high strength can be expressed while maintaining high water permeability.
  • the isotropic ratio of one layer (A) is more preferably 90% or more, and still more preferably 95% or more.
  • the isotropic ratio of one layer (A) is a cross-sectional hole diameter of 0.8 to 1.2 times the central hole diameter of the cross section of each film thickness portion included in one layer (A) measured above. This is the ratio of the number of film thickness parts divided by the total number of film thickness parts contained in one layer (A).
  • the isotropic rate of one layer (B) is 80% or more. This also means that one layer (B) has a very isotropic structure. If it is 80% or more, high blocking performance can be exhibited, and even if the surface of layer 1 (B) is abraded by insoluble materials such as sand and agglomerates in the liquid to be treated, the decrease in blocking performance is minimized. Can do.
  • the isotropic ratio of one layer (B) is determined by taking the cross-sectional hole diameter at the film thickness portion corresponding to 1/2 of the thickness of one layer (B) as the cross-sectional central hole diameter (B), and each film thickness portion included in one layer (B).
  • the ratio is obtained by dividing the number of film-thickness parts having a cross-sectional hole diameter of 0.8 to 1.2 times the central hole diameter (B) by the total number of film-thickness parts contained in one layer (B).
  • the isotropic ratio of one layer (B) is more preferably 90% or more, and still more preferably 95% or more. If one layer (B) is extremely thin relative to the total film thickness, increase the number of cross-sectional hole diameters for one layer (B) and perform this measurement. It is appropriate to measure the cross-sectional pore diameter of 20 points or more in both layers.
  • the isotropic rates of the first layer (A) and the first layer (B) are both 80% or more.
  • the membrane structure is composed of the blocking layer and the strength support layer without waste, and therefore a membrane having a high balance of blocking performance, water permeability and strength can be most suitably obtained.
  • the isotropic ratio of both layers is more preferably 90% or more, and still more preferably 95% or more.
  • the isotropy referred to in the present application can also be expressed by the parameter Q shown below.
  • the meter Q is the change in the pore diameter at each position of the film thickness from the outer surface to the inner surface. It is a value representing the rate. Specifically, it is obtained as follows.
  • the cross-sectional hole diameters at each position of the film thickness are arranged in the order of the position from the outer surface to the inner surface.
  • the outer surface hole diameter is D
  • the cross-sectional hole diameter is D, D, ... 'D, inner surface hole in order from the outer surface side.
  • the number of Q satisfying 0.2 ⁇ Q ⁇ 0.2 is preferably 80% or more with respect to the total number of measured values of Q. More preferably, it is 85% or more, and more preferably 90% or more. Within this range, the portion with the same pore diameter occupies most of the membrane, so a membrane with a high balance of blocking performance, water permeability and strength can be obtained.
  • the number of Q satisfying 0.1 ⁇ Q ⁇ 0.1 is 50% or more with respect to the total number of measured values of Q. More preferably, it is 60% or more, and further preferably 70% or more.
  • the portion where the parameter Q is less than 0.2 or greater than 0.2 indicates that the change in the hole diameter depending on the film thickness position is particularly large.
  • the outer surface hole diameter and the inner surface hole diameter at this time are measured by the above-described method, and the cross-sectional hole diameter is measured by the measuring method (7) of the example.
  • first layer (A) and the first layer (B) may be appropriately arranged depending on the purpose, whichever is outside the hollow fiber membrane.
  • the blocking layer outside the hollow fiber membrane from the viewpoint of maintaining stable operation for a long period of time.
  • the inner diameter of the hollow fiber membrane is preferably 0.4 mm or more and 5 mm or less. If it is 0.4 mm or more, the pressure loss of the liquid flowing in the hollow fiber membrane does not become too large, and if it is 5 mm or less, it is relatively thin, and sufficient compressive strength and bursting strength are easily developed with the film thickness! / ⁇ . More preferably, it is 0.5mm or more and 3mm or less More preferably, it is 0.6 mm or more and lmm or less.
  • the film thickness is preferably 0.1 mm or more and lmm or less. If it is 0.1 mm or more, sufficient compressive strength and burst strength will be exhibited, and if it is immediately less than lmm, sufficient water permeability will be easily developed. More preferably, it is 0.15 mm or more and 0.8 mm or less, and more preferably 0.2 mm or more and 0.6 mm or less.
  • the hollow fiber membrane having such a structure has a high balance of water permeability performance, blocking performance and mechanical strength, and exhibits high performance while accommodating a wide range of operating conditions.
  • the liquid to be treated contains insoluble substances such as sand and aggregates, the blocking performance hardly changes and has high wear resistance.
  • Particularly preferable film properties for the purpose of the present invention are: the blocking rate of 0.2 ⁇ m uniform latex spheres is 95% or more, and the pure water permeability is 5000 L / m 2 /hr/0.1 MPa or more.
  • the film has a compressive strength of 0.3 MPa or more.
  • the hollow fiber membrane was thinly cut with a force razor in a direction perpendicular to the longitudinal direction of the membrane, and the cross section was observed with a microscope.
  • the major and minor diameters of the inner diameter of the hollow fiber and the major and minor diameters of the outer diameter were measured, and the inner diameter and the outer diameter were determined by the following equations.
  • the hollow fiber membrane was immersed in a 50% by mass ethanol aqueous solution for 30 minutes and then immersed in water for 30 minutes to wet the hollow fiber membrane.
  • One end of a 10 cm long wet hollow fiber membrane was sealed, and an injection needle was inserted into the hollow part at the other end. Pure water was injected into the hollow portion at a pressure of injection needle force O. lMPa, and the amount of pure water permeated to the outer surface was measured. Pure water permeability was determined by the following formula.
  • the effective length of the capsule refers to the net film length excluding the portion where the injection needle is inserted.
  • Measuring instrument Instron type tensile tester (AGS-5D manufactured by Shimadzu Corporation) Distance between chucks: 5cm Pulling speed: 20cm / min
  • the breaking strength and breaking elongation were determined by the following equations.
  • the film cross-sectional area is obtained by the following equation.
  • a latex with a monodisperse particle size of 0.208 m (manufactured by JSR Co., Ltd., trade name: STADEX, solid content of 1% by mass) is diluted with a 0.5% by mass aqueous solution of SDS (sodium dodecyl sulfonate) to obtain a latex.
  • a suspension having a concentration of 0.01% by mass was prepared.
  • lOOmL latex suspension is put in a beaker and supplied to a wet hollow fiber membrane with an effective length of about 12cm with a tube pump at a linear velocity of 0.1m / sec. from the outer surface at a pressure of 0.03MPa.
  • the latex suspension was filtered by discharging the permeate from both ends of the membrane (open to the atmosphere). The filtrate was returned to the beaker and filtered in a liquid closed system. Ten minutes after filtration, the permeate from both ends of the hollow fiber membrane and the feed solution from the beaker were sampled, the absorbance at 600 nm was measured using an absorptiometer, and the latex rejection was determined by the following equation.
  • the inner and outer surface pore diameters of the porous hollow fiber membrane and the central pore diameter of the cross section were measured using photographs capable of confirming the shape of 20 or more pores.
  • draw 5 lines perpendicular to the vertical and horizontal directions at equal intervals and measure the length of the line across the hole in the photo.
  • the average value was calculated by arithmetic average, and the inner and outer surface hole diameters and the cross-sectional center hole diameter were used. If the pore diameter is about 0.1 ⁇ m to 1 ⁇ m, a scanning microscope image with a magnification of about 5000 times is appropriate.
  • the central hole diameter of the cross section the central position force of the film thickness was also measured in the range of 10% of the total film thickness.
  • a cross-section of the hollow fiber membrane was photographed with a scanning electron microscope, and a photograph in which the shape of 20 or more holes could be confirmed was used.
  • draw 100 lines with equal distance from the outer surface force that is, a line connecting points with the same film thickness
  • the length across the pores was measured.
  • the average value of the length was calculated by arithmetic average, and the cross-sectional pore diameter in each film thickness part was obtained. If the magnification of the scanning electron micrograph is sufficiently high, lines with the same distance from the outer surface force may be approximated by straight lines.
  • the point closest to 0.7 times the center hole diameter of the cross section is the boundary line of both layers, and the surface force of layer 1 (A) is the distance to the boundary line by one layer.
  • the thickness of (A) and the distance from the surface of the first layer (B) to the boundary line were defined as the thickness of the first layer (B). If the pore diameter is about 0.1 ⁇ m to 1 ⁇ m, a scanning microscope image with a magnification of about 500,000 times is appropriate. In this application, the total film thickness was divided into 14 images. That is, the above-mentioned measurement was performed using 14 electron micrographs of 5000 times the cross section of the hollow fiber membrane. In addition, since the magnification was sufficiently high, the lines with the same distance from the outer surface force were approximated by straight lines.
  • the number of film thickness parts that are 0.8 times or more and 1.2 times or less the cross-sectional center hole diameter is the film included in one layer (A)
  • the ratio divided by the total number of thick parts was defined as the isotropic ratio of one layer (A).
  • Concentric with the circle indicated by the cross-section of the hollow fiber at an interval of dividing the thickness of one layer (B) measured in (7) into 20 equal parts Draw a line in a circle, measure the length of the line across the hole in the photo, calculate the average value of the length by arithmetic average, and cross-sectional hole diameter in each film thickness part of one layer (B) Asked.
  • the cross-sectional hole diameter in the thickness part that is 1/2 of the thickness of one layer (B) is defined as the cross-sectional central hole diameter (B), and among the measured film thickness parts of one layer (B), the cross-sectional central hole diameter (B).
  • the ratio of the number of film thickness parts that is 0.8 times or more and 1.2 times or less of ()) divided by the total number of film thickness parts 20 contained in one layer (B) was taken as the isotropic ratio of one layer (B).
  • the oil absorption was measured using an oil absorption measuring device (S410, manufactured by FRONTEX). 5 g of fine silica was put into the sample chamber, and the organic liquid was dropped at a rate of 4 mL / min while rotating the rotor at 125 rpm. As fine-powder silica absorbs organic liquid, torque increases, reaches a maximum value, and then decreases. First, the maximum oil absorption mass M per unit mass of the inorganic fine powder was obtained from the total drop mass of the organic liquid when the torque reached 70% of the maximum value.
  • S410 oil absorption measuring device
  • Equation 8 Total amount of dripping organic liquid when inorganic fine powder is 70% of maximum torque per unit mass [g] Maximum mass to absorb oil [1]
  • the maximum pore size of the membrane was measured according to ASTM F316-03.
  • the hollow fiber membrane was spun continuously for 8 hours, and the melt-kneaded product was extruded and cooled to form a multilayer hollow fiber. If the hollow fiber diameter did not fluctuate, the interface was not disturbed, and the roundness was maintained, it was excellent. The interface is not disturbed, but (a) when the roundness is not maintained a little, (b) when the yarn diameter fluctuates to the extent that does not interfere with production, etc. are all good. Those whose interface was disturbed and whose roundness was not maintained were made impossible.
  • Fine silica made by Nippon Aerosil Co., Ltd., trade name: AEROSIL—R972, primary particle size is about 16 nm
  • Table 1 shows the formulation and manufacturing conditions in each example.
  • the outer diameter of the nozzle here refers to the outermost diameter of the discharge port in FIG.
  • the inner diameter of the nozzle refers to the maximum diameter of the lower end of the partition wall between the inner layer melt-kneaded product discharge port and the hollow portion forming fluid discharge port.
  • Extruded hollow fiber extrudates are introduced into a 40 ° C water bath after 60cm in air. Then, it was cooled and solidified, and wound up with force at a speed of 40 mZ.
  • the obtained two-layer hollow fiber was immersed in methylene chloride to extract and remove di (2-ethylhexyl) phthalate and dibutyl phthalate, and then dried. Next, after being immersed in a 50% by mass ethanol aqueous solution for 30 minutes, then immersed in water for 30 minutes, then immersed in a 20% by mass sodium hydroxide aqueous solution at 70 ° C. for 1 hour, and then repeatedly washed with water. The fine silica was extracted and removed.
  • both the blocking layer and the support layer had an isotropic three-dimensional network structure with no macrovoids.
  • the pure water permeability, latex rejection, and various mechanical strengths all showed excellent values.
  • the obtained porous two-layer hollow fiber membrane was wetted by the method of (2), and added to a 4% by mass aqueous sodium hydroxide solution containing sodium hypochlorite having a free chlorine concentration of 0.5% by mass. After immersing at room temperature for 10 days and measuring the elongation at break before and after immersion, the elongation after rupture retained 90% of the elongation before immersing and had good chemical resistance. I have it!
  • FIG. 6 An electron microscope image of the outer surface of the obtained porous double-layer hollow fiber membrane at a magnification of 5000 is shown in Fig. 6, and an electron microscope image at a magnification of 5000 near the outer surface of the cross section is shown in Fig. 7.
  • Fig. 8 shows an electron microscope image at a magnification of 1000x near the outer surface of Fig. 8
  • Fig. 9 shows an electron microscope image at a magnification of 5000x at the center of the cross section
  • Fig. 10 shows an electron microscope image at a magnification of 5000x near the inner surface of the cross section.
  • Figure 11 shows electron microscope images of the inner surface at a magnification of 5000 times.
  • FIG. 6- L 1 electron microscope images show that a small pore outer layer and a large pore inner layer are formed. Further, the surface porosity of one layer (B) was 25%.
  • melt kneaded material (a) for outer layer with a composition of vinylidene fluoride homopolymer: di- (2-ethylhexyl) phthalate: dibutyl phthalate: finely divided silica 34: 33.8: 6.8: 25.4 (mass ratio)
  • the kneaded material is used as a melt-kneaded material (b) for the inner layer.
  • a porous two-layer hollow fiber membrane was obtained in the same manner as in Example 1 except that the melt kneaded product was used.
  • FIG. 13 An electron microscopic image of the outer surface of the obtained porous two-layer hollow fiber membrane at a magnification of 5000 is shown in Fig. 13, and an electron microscopic image at a magnification of 5000 near the outer surface of the cross section is shown in Fig. 14.
  • Fig. 15 shows an electron microscope image at a magnification of 1000x near the outer surface of the cross section
  • Fig. 16 shows an electron microscope image at a magnification of 5000x at the center of the cross section
  • Fig. 16 shows an electron microscope image at a magnification of 5000x near the inner surface of the cross section.
  • Figure 17 shows an electron microscope image of the inner surface with a magnification of 5000 times, Fig.
  • FIGS. 13 to 20 show an electron micrograph with a cross section of 70 times
  • Fig. 19 shows an electron micrograph with a cross section of 300 times. From these electron microscopic images in FIGS. 13 to 20, it can be seen that an outer layer having a small pore diameter and an inner layer having a large pore diameter are formed. Further, the surface porosity of one layer (B) was 30%.
  • the obtained porous two-layer hollow fiber membrane was highly round with no interface disturbance. According to cross-sectional observation with an electron microscope, both the blocking layer and the support layer had an isotropic three-dimensional network structure with no macrovoids. Table 2 shows the physical property evaluation results of the obtained film. The pure water permeability, latus status rejection, and various mechanical strengths all showed excellent values.
  • FIG. 21 shows the results of measuring the cross-sectional pore diameter by dividing the cross section of the obtained porous double-layer hollow fiber membrane into 100 equal parts. It can be seen that the film has a structure very close to that shown in Fig. 5 (3). The measured value of parameter Q is shown in Fig. 33.
  • the melt-kneaded material (a) for the outer layer has a composition of vinylidene fluoride homopolymer: phthalic acid (2— Ethylhexyl):
  • the obtained porous two-layer hollow fiber membrane had an isotropic three-dimensional network structure with no macrovoids in both the blocking layer and the support layer, according to cross-sectional observation with an electron microscope.
  • Table 2 shows the physical property evaluation results of the film obtained. As in Example 1, the pure water permeability, latex rejection, and various mechanical strengths all showed excellent values.
  • the composition of the melt-kneaded material (a) for the outer layer is made of high-density polyethylene resin as thermoplastic resin, di (2-ethylhexyl) phthalate as organic liquid, and fine silica as inorganic fine powder.
  • Porous two layers as in Example 1 except that di (2-ethylhexyl) phthalate: finely divided silica 20.0: 56.0: 24.0 (mass ratio) (volume ratio 23.5: 64.2: 12.3)
  • a hollow fiber membrane was obtained.
  • the obtained porous two-layer hollow fiber membrane had an isotropic three-dimensional network structure with no macrovoids in both the blocking layer and the support layer, according to cross-sectional observation with an electron microscope.
  • Table 2 shows the physical property evaluation results of the film obtained.
  • the obtained porous two-layer hollow fiber membrane was wetted by the method of (2), and was added to a 4% by mass sodium hydroxide / aqueous sodium hydroxide solution containing sodium hypochlorite having a free chlorine concentration of 0.5% by mass. After immersing for 10 days at room temperature and measuring the elongation before and after immersion, the elongation after immersion was It was found that it had a value of 60% of the elongation at break and had good chemical resistance! / [Example 6]
  • Example 2 Effective removal after removal of organic liquid and inorganic fine powder obtained in Example 2 10cm porous 2 layers Hold the both ends of the hollow fiber membrane by hand and stretch it twice to 20cm yarn length, then let go of both ends force It was. By releasing the hand, the yarn length shrunk, and the final yarn length became 13 cm. Table 2 shows the physical property evaluation results of the obtained film.
  • a layer hollow fiber membrane was obtained.
  • Table 2 shows the physical property evaluation results of the obtained film.
  • Example 1 except that a hollow fiber molding nozzle with an outer diameter of 1.75mm and an inner diameter of 0.92mm was used, and the discharge linear velocity was 20.2m / min, that is, the nozzle discharge parameter R was 814 / sec. Thus, a porous multilayer hollow fiber membrane was obtained. Table 2 shows the physical property evaluation results of the obtained film.
  • the discharge linear speed is 10.1 m / min.
  • the nozzle discharge parameter R is discharged to 407 / sec.After passing through the air of 30cm, it is cooled and solidified by being introduced into a 40 ° C water bath, and it is fed into the force sensor at a speed of 20m / min.
  • a porous two-layer hollow fiber membrane was obtained in the same manner as in Example 1 except for scraping. Table 2 shows the physical property evaluation results of the obtained film.
  • the discharge speed is 0.20 m / min, that is, the discharge parameter R is 8 / sec.
  • a porous two-layer hollow fiber membrane was obtained in the same manner as in Example 1 except that it was cooled and solidified by being introduced into a water bath at 40 ° C, and was wound on force at a speed of 0.4 m / min. .
  • Table 2 shows the physical property evaluation results of the obtained film.
  • Example 2 Using a hollow fiber molding nozzle with an outer diameter of 1.75 mm and an inner diameter of 0.92 mm, the discharge was discharged so that the discharge linear velocity was 25.3 m / min, that is, the nozzle discharge parameter R was 1017 / sec. After that, a porous two-layer hollow fiber membrane was obtained in the same manner as in Example 1 except that it was cooled and solidified by being introduced into a water bath at 40 ° C., and wound on a force force at a speed of 50 m / min. Table 2 shows the physical property evaluation results of the obtained film.
  • Example 2 shows the physical property evaluation results of the obtained film.
  • the obtained porous two-layer hollow fiber membrane was wetted by the method of (2), and was added to a 4% by mass sodium hydroxide / aqueous sodium hydroxide solution containing sodium hypochlorite having a free chlorine concentration of 0.5% by mass. After immersing at room temperature for 10 days and measuring the breaking elongation before and after immersion, the breaking elongation after immersion decreased to a value of 20% of the breaking elongation before immersion.
  • the interface between the layer (a) (black layer, outer layer) and the melt-kneaded product (b) (white layer, inner layer) is wavy, part of the outer layer is cut off and the inner layer is exposed on the outer surface. I was able to see.
  • the outer layer melt-kneaded product (a) is not extruded
  • the inner layer melt-kneaded product (b) is composed of polyvinylidene fluoride homopolymer: di (2-ethylhexyl phthalate): dibutyl phthalate: fine powder
  • the obtained porous hollow fiber membrane had an isotropic three-dimensional network structure with no macrovoids, as observed by a cross section with an electron microscope.
  • Table 2 shows the physical property evaluation results of the obtained film. The latex blocking rate was high and the mechanical strength was high, but the pure water permeability was extremely low.
  • Fig. 22 shows an electron microscope image of the outer surface of the obtained porous hollow fiber membrane at a magnification of 5000
  • Fig. 22 shows an electron microscope image at a magnification of 5000 near the outer surface of the cross section
  • Fig. 23 shows the magnification at the center of the cross section.
  • Fig. 24 shows a 5000x electron microscope image
  • Fig. 25 shows a 5000x electron microscope image near the inner surface of the cross section
  • Fig. 26 shows a 5000x electron microscope image of the inner surface.
  • the obtained porous hollow fiber membrane was wetted by the method of (2), and a 4% by mass sodium hydroxide / sodium hydroxide aqueous solution containing sodium hypochlorite having a free chlorine concentration of 0.5 mass%. After immersing at room temperature for 10 days and measuring the elongation at break before and after immersion, A value of 90% of the previous elongation at break was retained.
  • a porous hollow fiber membrane was obtained in the same manner as in Example 1, except that the outer layer melt-kneaded product (a) was not extruded and only the inner layer melt-kneaded product (b) was extruded.
  • the obtained porous hollow fiber membrane had an isotropic three-dimensional network structure with no voids, as observed by a cross section with an electron microscope.
  • Table 2 shows the physical property evaluation results of the obtained film. The pure water permeability was high and the mechanical strength was high, but the rejection rate was extremely low.
  • FIG. 27 shows an electron microscope image
  • FIG. 30 shows an electron microscope image at a magnification of 5000 times near the inner surface of the cross section
  • FIG. 31 shows an electron microscope image at a magnification of 5000 times on the inner surface.
  • the obtained porous hollow fiber membrane was wetted by the method (2), and was added to a 4% by mass sodium hydroxide aqueous solution containing sodium hypochlorite having a free chlorine concentration of 0.5% by mass at room temperature. After immersing for 10 days and measuring the breaking elongation before and after immersion, the breaking elongation after immersion retained 90% of the elongation before breaking.
  • the outer layer melt-kneaded product (a) was not extruded, the inner layer melt-kneaded product (b) was extruded only, and the composition of the melt-kneaded product (b) was changed to polyethylene resin: di (2-ethyl) phthalate.
  • Hexyl): fine silica 20.0: 56.0: 24.0 (mass ratio) (volume ratio: 23.5: 64.2: 12.3)
  • a porous hollow fiber membrane was obtained in the same manner as in Example 1. Table 2 shows the physical property evaluation results of the obtained film.
  • the obtained hollow fiber membrane was a membrane having a structure in which spherulites were connected in a three-dimensional network structure.
  • FIG. 32 shows an electron microscope image at a magnification of 1000 times at the center of the cross section of the obtained porous hollow fiber membrane.
  • the obtained wet porous hollow fiber membrane was immersed in a 4% by mass aqueous sodium hydroxide solution containing sodium hypochlorite having a free chlorine concentration of 0.5% by mass at room temperature for 10 days.
  • the breaking elongation was measured, the breaking elongation after immersion decreased to a value of 10% of the breaking elongation before immersion.
  • composition ratio of the outer layer and inner layer is all parts by mass.
  • the porous multilayer hollow fiber membrane having both fine pores suitable for filtration and high water permeability and excellent strength.
  • the porous multilayer hollow fiber membrane can be stably produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

 濾過用途等に好適な、高い阻止能と透水性能を併せ持ち、かつ機械的強度に優れた多孔性中空糸膜、およびこれを安定して製造する方法を提供する。 具体的には、同心円状に配置された2つ以上の円環状吐出口を有する中空糸成型用ノズルを用い、該円環状吐出口から、互いに隣り合う円環状吐出口からは互いに異なる組成の熱可塑性樹脂と有機液体との溶融混練物をそれぞれ円環状に吐出して円環状多層溶融押し出しを行い、冷却固化して中空糸状に成型し、しかる後に該冷却固化中空糸状物から有機液体を抽出除去して多孔性多層中空糸膜を製造する方法において、少なくとも一つの円環状吐出口から吐出される溶融混練物が、熱可塑性樹脂と有機液体に加えて無機微粉が混練されており、かつ冷却固化後に有機液体に加えて無機微粉をも抽出除去することを特徴とする、多孔性多層中空糸膜の製造方法。

Description

明 細 書
多孔性多層中空糸膜及びその製造方法
技術分野
[0001] 本発明は、濾過用途に好適な、緻密な細孔と高い透水性能とを併せ持ち、かつ強 度に優れた、熱可塑性榭脂より成る多孔性中空糸膜およびその安定した製造方法 に関する。
背景技術
[0002] 近年、河川水を除濁して上水等に用いる方法として、処理水の安全性向上や設備 の省スペース化という利点を持つ多孔性中空糸膜による濾過方法が広く普及しつつ ある。多孔性中空糸膜には、クリプトスポリジゥムなどのバクテリアや濁質成分を確実 に除去できる高い阻止性能、大量の水を処理するための高い透水性能、薬品洗浄 や高い運転圧力を含む幅広い運転条件で長期間使用できる高い強度、の 3つの性 能が要求される。
[0003] 小孔径の阻止層と大孔径の強度支持層とを貼り合わせることで、高い阻止性能と高 V、透水性能とを併せ持つ多孔性多層中空糸膜を得るアイデアは、例えば特許文献 1 に開示されている。具体的にはポリエチレン等の結晶性熱可塑性榭脂に溶剤は加え ずに溶融押出しを行い中空糸状押出物を延伸開孔法により多孔性多層中空糸膜と する製法が開示されている。延伸開孔法とは中空糸状押出物の長手方向に高倍率 延伸を行うことでラメラ結晶スタックを開裂させて開孔させて多孔膜を作製する方法で ある(非特許文献 1)。特許文献 1では、同心円状に配置された 2つの円環状ノズルか ら別々に相異なる Ml (メルトインデックス)値を持つ結晶性熱可塑性榭脂を溶融押出 しを行っている。その理由は、 Ml値が異なる即ち通常は分子量が異なる榭脂は延伸 開孔させると異なる孔径になる性質を利用するためである。この結果、中空糸膜の外 層と内層との孔径が異なる多孔性 2層中空糸膜が得られる。し力しながら、この製法 は、以下のような難点があり、高強度の多孔性多層中空糸膜を得ることができなかつ た。
(1) 高倍率延伸により延伸軸方向の強度は強くなる。しかし濾過を行う上で肝心の 、延伸軸とは垂直方向の強度である破裂強度および圧縮強度はむしろ低下しやす い
(2)原理上、外層と内層とでは分子量やポリマー種を変えざるを得ない。しかし分子 量やポリマー種によって通常耐薬品性や機械的強度等の必要物性は異なる。その ため強度の低 ヽ榭脂を用いた場合、膜全体の強度が低下する
等の難点があり、高強度の膜を得ることができな力つた。また、この製法で得られる膜 の構造は、膜厚方向の孔径と比べて中空糸長手方向の孔径が大孔径ィ匕した構造で あるために、破裂強度および圧縮強度が低い膜になってしまう。
[0004] したがって、今まで、高阻止性能、高透水量かつ高強度の 3つの性能を併せ持つ 多孔性多層中空糸膜およびその安定した製造方法は得られて 、なかった。
[0005] 一方、多孔性膜の製法として、上述の延伸開孔法とは異なる製法である熱誘起相 分離法が知られている。この製法では熱可塑性榭脂と有機液体を用いる。この有機 液体は、該熱可塑性榭脂を室温では溶解しないが、高温では溶解する溶剤、即ち潜 在的溶剤となるものを用いる。熱可塑性榭脂と有機液体を高温で混練し、熱可塑性 榭脂を有機液体に溶解させた後、室温まで冷却することで相分離を誘発させ、さらに 有機液体を除去して多孔体を製造する方法 (熱誘起相分離法)は、以下の利点を持 つ。(a)室温で溶解できる適当な溶剤のな 、ポリエチレン等のポリマーでも製膜が可 會 になる
(b)高温で溶解したのち冷却固化させて製膜するので、特に熱可塑性榭脂が結晶性 榭脂である場合、製膜時に結晶化が促進され高強度膜が得られやす ヽ、
上記の利点から、多孔性膜の製造方法として多用されている (例えば非特許文献 1 〜4参照)。
[0006] 特許文献 1:特開昭 60 139815号公報
特許文献 2 :特開平 3— 215535号公報
特許文献 3:特開 2002— 56979号公報
特許文献 4 :特開 4 065505号公報
非特許文献 1:プラスチック ·機能性高分子材料事典編集委員会、「プラスチック,機 能性高分子材料事典」、産業調査会、 2004年 2月、 672— 679頁 非特許文献 2 :松山秀人著、「熱誘起相分離法 (TIPS法)による高分子系多孔膜の作 製」、ケミカル'エンジニアリング誌、 1998年 6月号、 45-56頁、化学工業社刊 非特許文献 3 :滝澤章著、「膜」、平成 4年 1月発行、 404-406頁、アイピーシ一社刊 非特許文献 4 : D.R丄 loyd,et.al., Jounal of Membrane Science, 64(1991)1-11 発明の開示
発明が解決しょうとする課題
[0007] 本発明は、濾過用途に好適な、緻密な細孔と高い透水性能とを併せ持ち、かつ強 度に優れた、熱可塑性榭脂より成る多孔性多層中空糸膜、およびその安定した製造 方法を提供することを目標とする。
課題を解決するための手段
[0008] 本発明者らは、上記課題を解決するために、高強度膜を得るに有利と考えられる熱 誘起相分離法 (非特許文献 1〜4)により、緻密な細孔と高い透水性能を併せ持つに 有利である多孔性多層中空糸膜およびこれを安定して製造する技術の確立を目指 して鋭意検討を重ねた。その結果、隣り合う吐出ロカ 異なる組成の溶融混練物を 吐出し、少なくとも一つの吐出口から吐出される溶融混練物に無機微粉が含まれて いることが、多孔性多層中空糸膜を安定して紡糸(製膜)するために、さらには、得ら れる多孔性多層中空糸膜の強度の向上のために、極めて重要であることを見出した 。さらに、内外少なくとも 2層からなる多孔性多層中空糸膜であって、熱可塑性榭脂 からなり、前記 2層のうちの少なくとも 1層(A)は、等方的な三次元網目構造を有して 、かつ表面孔径が断面孔径の 0.6倍から 1.4倍であり、前記 2層の他の 1層(B)は、表 面孔径が断面孔径の 1/2未満であることを特徴とする多孔性多層中空糸膜が阻止性 能、透水性能および強度を高 、レベルでバランスさせるために有効であることを見出 し、本発明に至った。
[0009] すなわち本発明は以下のものである。
(1)
円環状吐出口を有する中空糸成型ノズルを用い、該円環状吐出口から熱可塑性榭 脂と有機液体を含む溶融混練物を吐出し、得られた多層中空糸から該有機液体を 抽出除去して多孔性多層中空糸膜を製造する方法において、該中空糸成型ノズル が同心円状に配置された円環状吐出口を二つ以上有し、隣り合う吐出口からは互い に異なる組成の溶融混練物が吐出され、少なくとも 1つの該円環状吐出口から吐出 される溶融混練物が無機微粉も含み、得られた多層中空糸状から該無機微粉も抽 出除去される事を特徴とする製造方法。
(2)
該円環状吐出口から吐出される該溶融混練物のうち、少なくとも吐出量が最も多い 溶融混練物には、該熱可塑性榭脂と該有機液体に加えて、該無機微粉が混練され て!、ることを特徴とする(1)記載の多孔性中空糸膜の製造方法。
(3)
該無機微粉が微粉シリカであることを特徴とする(1)または(2)の何れかに記載の多 孔性多層中空糸膜の製造方法。
(4)
1つの該円環状吐出ロカ 吐出される溶融混練物に無機微粉が 5質量%以上、 40 質量%以下含まれて 、ることを特徴とする(1)力も (3)の何れかに記載の多孔性多 層中空糸膜の製造方法。
(5)
該溶融混練物に対する、有機液体の質量比 D、無機微粉の質量比 S、および該無機 微粉が単位質量当たりに該有機液体を吸油する最大質量 Mが、 0.2≤ (D/S)/M≤ 2 の関係を満たすことを特徴とする(1)力も (4)の何れかに記載の多孔性多層中空糸 膜の製造方法。
(6)
隣り合う円環状吐出口から吐出される該溶融混練物に含まれる該有機液体のうち、 少なくとも 1種類は共通であることを特徴とする(1)から(5)の何れかに記載の多孔性 多層中空糸膜の製造方法。
(7)
隣り合う円環状吐出口から吐出される該溶融混練物に含まれる該有機液体の種類 が全て共通であり、その組成比が異なることを特徴とする(1)から(5)の何れかに記 載の多孔性多層中空糸膜の製造方法。 (8)
該溶融混練物の紡口吐出時における線速 V(m/秒)を紡口吐出口のスリット幅 d(m)で 除した、紡口パラメーター R(l/秒)の少なくとも一つが 10以上 1000以下であるように該 溶融混練物を吐出することを特徴とする(1)から(7)の何れかに記載の多孔性多層 中空糸膜の製造方法。
(9)
有機液体および Zまたは無機微粉の抽出除去の前または後に、 1.1倍以上 3倍以内 の延伸倍率で多層中空糸を中空糸長手方向に延伸することを特徴とする(1)から (8 )の何れかに記載の多孔性多層中空糸膜の製造方法。
(10)
熱可塑性榭脂がポリオレフインおよびポリフッ化ビ-リデンカも選ばれたものである ことを特徴とする(1)力も (9)の何れかに記載の多孔性多層中空糸膜の製造方法。 (11)
内外少なくとも 2層力もなる多孔性多層中空糸膜であって、熱可塑性榭脂からなり、 該 2層のうちの少なくとも 1層(A)は、等方的な三次元網目構造を有して、かつ表面 孔径が断面中央孔径の 0.6倍から 1.4倍であり、該 2層の他の 1層(B)は、表面孔径が 断面中央孔径の 1/2未満であることを特徴とする多孔性多層中空糸膜。
(12)
該 1層(B)が、等方的な三次元網目構造を有することを特徴とする(11)に記載の 多孔性多層中空糸膜。
(13)
該 1層(B)の表面孔径が、 0.01 μ m以上 5 μ m未満であることを特徴とする(11)ま たは(12)記載の多孔性多層中空糸膜。
(14)
該断面中央孔径が、 0.1 m以上 10 m以下であることを特徴とする(11)から(13) の何れかに記載の多孔性多層中空糸膜。
(15)
該 1層(B)の表面開孔率力 20%以上 80%以下であることを特徴とする(11)から( 14)の何れかに記載の多孔性多層中空糸膜。
(16)
該 1層(B)の厚み力 膜厚の 1/100以上 40/100以下であることを特徴とする(11)か ら(15)の何れかに記載の多孔性多層中空糸膜。
(17)
1層(A)および 1層(B)の等方率が共に 80%以上であることを特徴とする(11)から(
16)の何れかに記載の多孔性多層中空糸膜。
(18)膜厚の外表面力 内表面に至る孔径変化率を表す値であるパラメーター Qが — 0.2≤Q≤0.2となる Qの個数力 Qの全測定値数に対し 80%以上である(11)から(
17)の何れかに記載の多孔性多層中空糸膜。
(19)
該熱可塑性榭脂が、ポリオレフインおよびポリフッ化ビ-リデンカも選ばれたもので あることを特徴とする(11)力 (18)の何れかに記載の多孔性多層中空糸膜。
(20)
内径力 S0.4mm以上 5mm以下、膜厚が 0.2mm以上 lmm以下であることを特徴とする( 11)から(19)の何れかに記載の多孔性多層中空糸膜。
(21)
(1)から(10)の何れかに記載の多孔性多層中空糸膜の製法にぉ 、て製造される ことを特徴とする多孔性多層中空糸膜。
(22)
(1)から(10)の何れかに記載の多孔性多層中空糸膜の製法にぉ 、て製造される ことを特徴とする(11)から (20)に記載の多孔性多層中空糸膜。
発明の効果
[0010] 本発明により、濾過用途に好適な、緻密な細孔と高い透水性能を併せ持ち、かつ 強度に優れた、熱可塑性榭脂より成る多孔性中空糸膜および前記多孔性中空糸膜 を安定に製造することができる。
図面の簡単な説明
[0011] [図 1]2層中空糸成型ノズルの例を示す図であり、 (a)吐出方向に平行な面で切った 断面図、 (b)ノズル吐出口の正対図、 (c) 2層中空糸状押出物を押出方向に垂直な 面で切った断面図である。
[図 2]2層中空糸成型ノズルの他の例を示す図である。
[図 3]等方的三次元網目構造の模式図である。
[図 4]球晶構造の模式図である。
圆 5]多孔性 2層中空糸膜の膜厚方向の孔径変化の例を示した模式図である。 圆 6]実施例 1で得られた多孔性 2層中空糸膜の外表面の倍率 5000倍の電子顕微鏡 写真である。
圆 7]実施例 1で得られた多孔性 2層中空糸膜の外表面近傍断面の倍率 5000倍の電 子顕微鏡写真である。
圆 8]実施例 1で得られた多孔性 2層中空糸膜の外表面近傍断面の倍率 1000倍の電 子顕微鏡写真である。
圆 9]実施例 1で得られた多孔性 2層中空糸膜の断面中央部の倍率 5000倍の電子顕 微鏡写真である。
[図 10]実施例 1で得られた多孔性 2層中空糸膜の内表面近傍断面の倍率 5000倍の 電子顕微鏡写真である。
圆 11]実施例 1で得られた多孔性 2層中空糸膜の内表面の倍率 5000倍の電子顕微 鏡写真である。
圆 12]実施例 1において、溶融混練物 (a) (外層)に黒鉛を混合して得られた中空糸 状押出し物の円環断面のマイクロスコープ像である。
圆 13]実施例 2で得られた多孔性 2層中空糸膜の外表面の倍率 5000倍の電子顕微 鏡写真である。
圆 14]実施例 2で得られた多孔性 2層中空糸膜の外表面近傍断面の倍率 5000倍の 電子顕微鏡写真である。
圆 15]実施例 2で得られた多孔性 2層中空糸膜の外表面近傍断面の倍率 1000倍の 電子顕微鏡写真である。
[図 16]実施例 2で得られた多孔性 2層中空糸膜の断面中央部の倍率 5000倍の電子 顕微鏡写真である。 [図 17]実施例 2で得られた多孔性 2層中空糸膜の内表面近傍断面の倍率 5000倍の 電子顕微鏡写真である。
圆 18]実施例 2で得られた多孔性 2層中空糸膜の内表面の倍率 5000倍の電子顕微 鏡写真である。
圆 19]実施例 2で得られた多孔性 2層中空糸膜の円環断面全体の倍率 60倍の電子 顕微鏡写真である。
圆 20]実施例 2で得られた多孔性 2層中空糸膜の円環断面の倍率 300倍の電子顕微 鏡写真である。
圆 21]実施例 2で得られた多孔性 2層中空糸膜の断面孔径変化のグラフである。 圆 22]比較例 2で得られた多孔性 2層中空糸膜の外表面の倍率 5000倍の電子顕微 鏡写真である。
圆 23]比較例 2で得られた多孔性 2層中空糸膜の外表面近傍断面の倍率 5000倍の 電子顕微鏡写真である。
[図 24]比較例 2で得られた多孔性 2層中空糸膜の断面中央部の倍率 5000倍の電子 顕微鏡写真である。
[図 25]比較例 2で得られた多孔性 2層中空糸膜の内表面近傍断面の倍率 5000倍の 電子顕微鏡写真である。
[図 26]比較例 2で得られた多孔性 2層中空糸膜の内表面の倍率 5000倍の電子顕微 鏡写真である。
圆 27]比較例 3で得られた多孔性中空糸膜の外表面の倍率 5000倍の電子顕微鏡写 真である。
圆 28]比較例 3で得られた多孔性中空糸膜の外表面近傍断面の倍率 5000倍の電子 顕微鏡写真である。
圆 29]比較例 3で得られた多孔性中空糸膜の断面中央部の倍率 5000倍の電子顕微 鏡写真である。
圆 30]比較例 3で得られた多孔性中空糸膜の内表面近傍断面の倍率 5000倍の電子 顕微鏡写真である。
圆 31]比較例 3で得られた多孔性中空糸膜の内表面の倍率 5000倍の電子顕微鏡写 真である。
[図 32]参考例で得られた球晶構造の多孔性中空糸膜の断面中央部の倍率 1000倍 の電子顕微鏡写真である。
[図 33]実施例 2で得られた多孔性 2層中空糸膜の、パラメーター Qの膜厚位置による 変動を示す図である。横軸が全膜厚を 1としたときの膜厚の位置、縦軸が Qを示す。 符号の説明
[0012] 1 押出機 A (外層用)の先端部
2 押出機 B (内層用)の先端部
3 中空糸成型ノズル
4 外層用溶融混練物吐出口と内層溶融混練物吐出口との間の隔壁下端
5 外層用溶融混練物が流れる空間
6 内層用溶融混練物が流れる空間
7 中空部形成用流体の流路
8 内層用溶融混練物吐出口と中空部形成用流体吐出口との間の隔壁の下端 9 ノズル下端面
10 製造装置
11 外層用溶融混練物の円環状吐出口
12 内層用溶融混練物の円環状吐出口
13 中空部形成用流体の吐出口
20 押出し物(断面)
21 外層
22 内層
23 中空部
30 製造装置
31 外層用溶融混練物吐出口と内層用溶融混練物吐出口との間の隔壁下端 32 内層用溶融混練物吐出口と中空部形成用流体吐出口との間の隔壁下端 発明を実施するための最良の形態
[0013] 以下、本発明につき、具体的かつ詳細に説明する。 [0014] 熱可塑性榭脂は、常温では弾性を有し塑性を示さな ヽが、適当な加熱により塑性 を現し、成型が可能になる榭脂である。冷却して温度が下がると再びもとの弾性体に 戻り、その間に分子構造など化学変化を生じない榭脂である (化学大辞典編集委員 会編集、化学大辞典 6縮刷版、共立出版、 860および 867頁、 1963年)。
[0015] 熱可塑性榭脂の例としては、 12695の化学商品(化学工業日報社、 1995年)の熱可 塑性プラスチックの項 (829〜882頁)記載の榭脂や、化学便覧応用編改訂 3版(日本 化学会編、丸善、 1980年)の 809— 810頁記載の榭脂等を挙げることができる。具体例 名を挙げると、ポリエチレン、ポリプロピレンのようなポリオレフイン、ポリフッ化ビ -リデ ン、エチレン一ビュルアルコール共重合体、ポリアミド、ポリエーテルイミド、ポリスチレ ン、ポリサノレホン、ポリビニルアルコール、ポリフエ二レンエーテル、ポリフエ二レンサル ファイド、酢酸セルロース、ポリアクリロニトリルなどである。中でも、結晶性を有する、 ポリエチレン、ポリプロピレン、ポリフッ化ビ-リデン、エチレン一ビュルアルコール共 重合体、ポリビニルアルコールなどの結晶性熱可塑性榭脂は強度発現の面力 好適 に用いることができる。さらに好適には、疎水性ゆえ耐水性が高ぐ通常の水系液体 の濾過において耐久性が期待できる、ポリオレフイン、ポリフッ化ビ-リデン等を用い ることができる。特に好適には、耐薬品性等の化学的耐久性に優れるポリフッ化ビ- リデンを用いることができる。ポリフッ化ビニリデンとしては、フッ化ビニリデンホモポリ マーや、フッ化ビ-リデン比率 50モル%以上のフッ化ビ-リデン共重合体が挙げられ る。フッ化ビ-リデン共重合体としては、フッ化ビ-リデンと、四フッ化工チレン、六フッ ィ匕プロピレン、三フッ化塩ィ匕エチレンまたはエチレン力 選ばれた 1種以上との共重 合体を挙げることができる。ポリフッ化ビ-リデンとしては、フッ化ビ-リデンホモポリマ 一がもっとも好ましい。
[0016] 有機液体は、本願で用いる熱可塑性榭脂に対し、潜在的溶剤となるものを用いる。
本願では、潜在的溶剤とは、該熱可塑性榭脂を室温 (25°C)ではほとんど溶解しない 力 室温よりも高い温度では該熱可塑性榭脂を溶解できる溶剤を言う。熱可塑性榭 脂との溶融混練温度にて液状であればよく、必ずしも常温で液体である必要はな 、
[0017] 熱可塑性榭脂がポリエチレンの場合、有機液体の例として フタル酸ジブチル、フタル酸ジヘプチル、フタル酸ジォクチル、フタル酸ジ(2—ェチ ルへキシル)、フタル酸ジイソデシル、フタル酸ジトリデシル等のフタル酸エステル類; セバシン酸ジブチル等のセバシン酸エステル類;
アジピン酸ジォクチル等のアジピン酸エステル類;
トリメリット酸トリオクチル等のトリメリット酸エステル類;
リン酸トリプチル、リン酸トリオクチル等のリン酸エステル類;
プロピレングリコールジカプレート、プロピレングリコールジォレエート等のグリセリンェ ステル類;
流動パラフィン等のパラフィン類;
およびこれらの混合物等を挙げることができる。
[0018] 熱可塑性榭脂がポリフッ化ビ-リデンの場合、有機液体の例として、
フタル酸ジメチル、フタル酸ジェチル、フタル酸ジブチル、フタル酸ジシクロへキシル 、フタル酸ジヘプチル、フタル酸ジォクチル、フタル酸ジ(2—ェチルへキシル)等の フタル酸エステル類;
メチルベンゾエイト、ェチルベンゾエイト等の安息香酸エステル類;
リン酸トリフエ-ル、リン酸トリブチル、リン酸トリクレジル等のリン酸エステル類; γ—ブ チロラタトン、エチレンカーボネイト、プロピレンカーボネイト、シクロへキサノン、ァセト フエノン、イソホロン等のケトン類;
およびこれらの混合物等を挙げることができる。
[0019] 無機微粉としては、シリカ、アルミナ、酸化チタン、酸ィ匕ジルコユア、炭酸カルシウム 等が挙げられる力 特に平均一次粒子径が 3應以上 500nm以下の微粉シリカが好ま しい。より好ましくは 5nm以上 lOOnm以下である。凝集しに《分散性の良い疎水性シ リカ微粉がより好ましぐさらに好ましくは MW (メタノールゥエツタビリティ)値が 30容量 %以上である疎水性シリカである。ここでいう MW値とは、粉体が完全に濡れるメタノ ールの容量%の値である。具体的には、純水中にシリカを入れ、攪拌した状態で液 面下にメタノールを添加していった時に、シリカの 50質量%が沈降した時の水溶液中 におけるメタノールの容量%を求めて決定される。
[0020] 無機微粉の添加量は、溶融混練物中に占める無機微粉の質量比率が、 5質量% 以上 40質量%以下が好ましい。無機微粉の割合が 5質量%以上であれば、無機微 粉混練による効果が十分に発現でき、 40質量%以下であれば、安定に紡糸できる。
[0021] 溶融混練における混合割合は、質量を比重で除した容量の比率が、熱可塑性榭 脂が 15容量%から 50容量%の範囲、有機液体と無機微粉の両者の合計が 50容量% 力も 85容量%の範囲であることが、得られる中空糸の透水性能と強度のバランス、ま た溶融押出し操作である紡糸操作の安定性の面カゝら好ましい。熱可塑性榭脂は、得 られる多孔性多層中空糸膜の強度と紡糸安定性の点から、 15容量%以上であること が好ましい」。また、得られる多孔性多層中空糸膜の透水性能と紡糸安定性の点力も 、 85容量%以下であることが好ましい。
[0022] 熱可塑性榭脂と有機液体および無機微粉の溶融混練は、通常の溶融混練手段、 例えば 2軸押出機を用いて行うことができる。同心円状に配置された 2つ以上の円環 状吐出口を有する中空糸成型ノズルを押出機の先端に装着し、それぞれの円環状 吐出口にはそれぞれ異なる押出機より溶融混練物を供給押出しできるようにする。異 なる押出機より供給される溶融混練物を吐出口で合流させ重ね合わせることで、多 層構造を有する中空糸状押出物を得ることができる。このとき、互いに隣り合う円環状 吐出ロカ 組成の異なる溶融混練物を押出すことで、互いに隣り合う層の孔径が異 なる多層膜を得ることができる。互いに異なる組成とは、溶融混練物の構成物質が異 なる場合、または、構成物質が同じでも構成比率が異なる場合を指す。同種の熱可 塑性榭脂であっても、分子量や分子量分布が明確に異なる場合は、構成物質が異 なるとみなす。層数が 2の場合の多層溶融押出しによる多層中空糸状押出物作製要 領の概念図を、図 1、図 2に示す。互いに異なる組成の溶融混練物の合流位置は、 中空糸成型用ノズル下端面であっても(図 1)、中空糸成型用ノズル下端面とは異な つていてもよい(図 2)。ノズル下端面通過前、すなわち冷却されて相分離が始まる前 に合流させる図 2のノズルを用いるほうが層間の接着性の観点からより好ましい。
[0023] 図 1や図 2に例示されるような同心円状に配置された 2つ以上の円環状吐出口を有 する中空糸成型用ノズルを用いることで、少なくとも 1つの円環状吐出口からは、熱可 塑性榭脂と有機液体に加えて無機微粉が混練されている溶融混練物を押出すこと が可能となる。この結果、阻止性能と透水性能および強度が高いレベルでバランスの 取れた多孔性多層中空糸膜を容易に得ることができる。
[0024] 無機微粉を添加することで、以下の 3つの具体的な効果により、優れた性能を持つ 多孔性多層中空糸膜を安定に得ることができる。
(1)多層構造を有する中空糸状押出物の押出しの安定性 (紡糸安定性)が格段に向 上する。これは、無機微粉を加えることで溶融混練物の粘度が大きく増大するためで ある。多層押出しは 1層押出しに比べると不安定になりやすいが、本発明では貼り合 わせる層の少なくとも 1つの層が粘度が高ぐ「硬い」層となるために安定性が付与さ れる。具体的には、真円性が保持されると同時に、層界面の乱れが抑止された多層 中空糸状押出物を容易に得ることが可能になる。層界面の波打ちなど、層界面の乱 れを抑止することは、多層押出しを行う上で重要である。
(2)孔径分布がシャープになり、阻止性能、透水性能および強度の 3つが高いレべ ルでバランスした膜が得られる。これは、溶融混練物の粘度が高いことにより、あるい は無機微粉の凝集体が有機液体をその内部に吸油することにより、隣り合う層への 有機液体の染み出しを抑制し、また隣り合う層力 有機液体が染み込んできた場合 にも無機微粉が吸油する、すなわちノ ッファーの役割を果たすためと考えられる。粘 度が高!、ために有機液体の移動が抑えられる、あるいは層間での有機液体の混ざり 合 、による膜構造の変化を緩和されるからである。
(3)理由は不明であるが、少なくとも一層に無機微粉を添加した場合、有機液体およ び無機微粉の抽出除去前においても、抽出除去後においても、膜の機械的強度お よびィ匕学的強度 (耐薬品性)が高くなる傾向がある。
[0025] 上述の 3つの効果は、吐出される複数の溶融混練物のうち、最も吐出量が多い溶 融混練物に無機微粉が含まれている場合に、より効果が高まるために好ましい。吐 出される全ての溶融混練物に無機微粉が含まれて ヽる場合が、さらに好まし 、。
[0026] さらに、無機微粉を含む溶融混練物の組成が、有機液体の質量比 Dを無機微粉の 質量比 Sで除し、更に単位質量当たりの前記無機微粉が前記有機液体を吸油する 最大質量 Mで除した値が、 0.2以上 2以下の範囲になる組成であれば、溶融混練物 間における有機液体の移動を抑止する効果をより高めることができるため、より好まし い。ここでいう有機液体は、溶融混練物に含まれる組成と同一のもの、すなわち、単 一のものあるいは混合した有機液体であれば同じ混合比のものである。 0.2以上であ れば、層界面付近で隣り合う層から有機液体の移動を抑え、緻密な層が形成されず 、高い純水透水率が維持される。 2以下であれば、無機微粉に吸油されていない有 機液体が十分に少なぐ界面付近での有機液体の移動が起こりにくくなる。これは膜 構造の変化の緩和につながり、結果として阻止性能が維持される。より好ましくは 0.3 以上 1.5以下、より好ましくは 0.4以上 1.0以下である。この効果も、吐出される複数の 溶融混練物のうち、最も吐出量が多い溶融混練物に無機微粉が含まれている場合 に、より効果が高まるために好ましくい。吐出される全ての溶融混練物に無機微粉が 含まれている場合が、さらに好ましい。なお、ここでいう無機微粉が単位質量あたりに 有機液体を吸油する最大質量 Mは、無機微粉を混練しながら有機液体を滴下して いき、混練時のトルクが最初に最大トルクの 70%になったときの有機液体の添加質量 を無機微粉の添加質量で除することで求めることができる。
[0027] また、隣り合う 2つの溶融混練物に混練されている有機液体が少なくとも 1種類は共 通であることも、溶融混練物間における有機液体の移動が起こった際の構造変化の 影響が小さくなるため、好ましい。さらに、隣り合う溶融混練物に用いられる有機液体 の種類が全て共通で混合比が異なることがより好まし 、。有機液体が全て共通である 場合には、抽出した有機液体の回収も容易になるのでさらに好まし!/、。
[0028] 互いに隣り合う溶融混練物を合流させる際の榭脂温度の差は、 20°C以下が好まし い。 20°C以下であれば、溶融混練物の界面において緻密化ゃボイド形成が起こりに くい。その結果、高い透水性能や強度の膜を得ることができる。合流時の榭脂温度の 差は、より好ましくは 10°C以下、さらに好ましくは 0°Cである。
[0029] 円環状吐出ロカ 溶融混練物を押出す際には、紡口吐出パラメーター R(l/秒)が 1 0以上 1000以下の値になるように吐出すると、高い生産性と紡糸安定性さらに高強度 の膜が得られるため、好ましい。ここで紡口吐出パラメーター Rとは、吐出線速 V(m/秒 )を、吐出口のスリット幅 d(m)で除した値である。吐出線速 V(m/秒)は、溶融混練物の 時間当たりの吐出容量 (m3/秒)を吐出口の断面積 (m2)で除した値である。 Rが 10以上 であれば、中空状押出し物の糸径が脈動する等の問題が無ぐ生産性良く安定に紡 糸できる。また Rが 1000以下であれば、得られる多孔性多層中空糸膜の重要な強度 の一つである破断伸度が十分に高く維持できる。破断伸度とは、膜長手方向に引つ 張った時の元の長さに対する伸び率のことである。図 2に示される紡口ノズルのように 、吐出前に溶融混練物が合流する場合は、図 2の下端面 9における合流後の積層さ れた溶融混練物の吐出線速 Vを吐出口のスリット幅 dで除した値を紡口パラメーター R とする。なお、図 1に示される紡口ノズルのように、吐出と同時、あるいは吐出後に溶 融混練物が合流する場合は、図 1の下端面 9の円環状吐出口 11および 12における それぞれの d、 dに対し、紡口パラメーター R、 Rを求める。このような場合には、少な
1 2 1 2
くとも 1つの紡口パラメーター Rが 10以上 1000以下であることが好まし 、。より好ましく は最も吐出量が多い紡口パラメーター Rが 10以上 1000以下、さらに好ましくは全ての 円環状吐出口における紡口パラメーター Rが 10以上 1000以下である。 Rの範囲は、よ り好ましくは 50以上 800以下、さらに好ましくは 100以上 500以下である。
[0030] 多層を形成する層の数および各層の孔径ゃ各層の厚みの比率は、目的により適宜 設定することができる。例えば 2層の濾過膜を目的とする場合であれば、(i)小孔径か っ薄 、外層と大孔径かつ厚い内層の組み合わせ、あるいは (ii)大孔径かつ厚 、外 層と小孔径かつ薄い内層の組み合わせ力 緻密な細孔と高 、透水性能を併せ持つ ために有効であり、例えば 3層の場合であれば、( )小孔径かつ薄い外層および内 層と大孔径かつ厚 ヽ中間層の組み合わせ、ある 、は (iv)大孔径かつ厚 、外層およ び内層と小孔径かつ薄 ヽ中間層の組み合わせが、緻密な細孔と高!、透水性能を併 せ持っために有効である。
[0031] 吐出ロカ 多層構造で押出された中空糸状溶融混練物は、空気中あるいは水等 の冷媒を通過して冷却固化され、必要に応じてかせ等に巻き取られる。冷却中に熱 誘起相分離が誘発される。冷却固化後の中空糸状物中には、ポリマー濃厚部分相と 有機液体濃厚部分相とが微細に分かれて存在する。なお、無機微粉が微粉シリカで ある場合、微粉シリカは有機液体濃厚部分相に偏在する。この冷却固化中空糸状物 力 有機液体と無機微粉を抽出除去することで、有機液体濃厚相部分が空孔となる 。よって多孔性多層中空糸膜を得ることができる。
[0032] 有機液体の抽出除去および無機微粉の抽出除去は、同じ溶剤にて抽出除去でき る場合であれば同時に行うことができる。通常は別々に抽出除去する。 [0033] 有機液体の抽出除去は、用いた熱可塑性榭脂を溶解あるいは変性させずに有機 液体とは混和する、抽出に適した液体を用いる。具体的には浸漬等の手法により接 触させることで行うことができる。該液体は、抽出後に中空糸膜から除去しやすいよう に、揮発性であることが好ましい。該液体の例としては、アルコール類や塩化メチレン 等がある。有機液体が水溶性であれば水も抽出用液体として使うことが可能である。
[0034] 無機微粉の抽出除去は、通常、水系の液体を用いて行う。例えば無機微粉がシリ 力である場合、まずアルカリ性溶液と接触させてシリカをケィ酸塩に転化させ、次いで 水と接触させてケィ酸塩を抽出除去することで行うことができる。
[0035] 有機液体の抽出除去と無機微粉の抽出除去とは、どちらが先でも差し支えはない。
有機液体が水と非混和性の場合は、先に有機液体の抽出除去を行い、その後に無 機微粉の抽出除去を行う方が好ま 、。通常有機液体および無機微粉は有機液体 濃厚部分相に混和共存しているため、無機微粉の抽出除去をスムースに進めること ができ、有利である。
[0036] このように、冷却固化した多層中空糸から有機液体および無機微粉を抽出除去す ることにより、多孔性多層中空糸膜を得ることができる。
[0037] なお、冷却固化後の多層中空糸に対し、(0有機液体および無機微粉の抽出除去 前、 GO有機液体の抽出除去後で無機微粉の抽出除去前、(m)無機微粉の抽出除去 後で有機液体の抽出除去前、 Gv)有機液体および無機微粉の抽出除去後、のいず れかの段階で、多層中空糸の長手方向への延伸を、延伸倍率 3倍以内の範囲で行 うことができる。一般に多層中空糸膜を長手方向に延伸すると透水性能は向上する 力 耐圧性能 (破裂強度および圧縮強度)が低下するため、延伸後は実用的な強度 の膜にならない場合が多い。し力しながら、本願の製造方法で得られる多孔性多層 中空糸膜は機械的強度が高い。よって延伸倍率 1.1倍以上 3倍以内の延伸は実施可 能である。延伸により、多孔性多層中空糸膜の透水性能が向上する。ここで言う延伸 倍率とは、延伸後の中空糸長を延伸前の中空糸長で割った値を指す。例えば、中空 糸長 10cmの多層中空糸を、延伸して中空糸長を 20cmまで伸ばした場合、下記式より
、延伸倍率は 2倍である。
20cm÷ 10cm= 2 また、必要に応じて延伸後の膜に熱処理をおこない、圧縮強度を高めても良い。熱 処理温度は通常は熱可塑性榭脂の融点以下が好適である。
[0038] 阻止性能、透水性能、および強度が高!ヽレベルでバランスの取れた本願発明の多 孔性多層中空糸膜は、少なくとも 2層を有する熱可塑性榭脂から成る多層膜である。
[0039] 以下、多孔性 2層中空糸膜の模式図(図 5参照)を例に、本願の多孔性多層中空糸 膜を説明する。
[0040] 2層のうち大きい孔径を有する層を 1層 (A)、小さい孔径を有する層を 1層(B)とする 。また 1層(A)を内層、 1層(B)を外層として説明する。しかし本願発明はこれによって 限定されるものではない。例えば 1層 (A)、 1層(B)の間に別の層が存在していても良 いし、 1層 (A)や 1層(B)に他の層が積層されていても良い。
[0041] 図 5 (1)は、 1層(A)および 1層(B)が共に等方的な三次元網目構造である場合の 膜厚方向の孔径変化を示す図であり、図 5 (2)は、 1層(B)が異方的な三次元網目 構造である場合の孔径変化を示す図であり、図 5 (3)は図 5 (1)の外表面側に孔径が 小さい層、すなわちスキン層が形成されている場合の孔径変化を示す図である。図 5 (1)から (3)にそれぞれの中空糸膜断面の膜厚と断面孔径の関係を表すグラフを示 す。グラフの縦軸は断面中央孔径に対する、各断面における孔径の比、横軸は全膜 厚を 1として、外表面力も膜厚方向へ進んだ位置の間の距離を表示している。表面の 摩耗が生じても阻止性能が変化しにくいため、 1層 (A)および (B)共に、等方的な三 次元網目構造とするのが好ましい。
[0042] 2層のうちの 1層(A)は、いわゆる支持層である。この支持層は耐圧性能等の高い 機械的強度を担保すると共に、透水性をできるだけ低下させな!/ヽ機能を有する。
[0043] この 1層 (A)は、等方的な三次元網目構造を有する。ここでいう等方的とは、膜厚 方向及び膜円周方向及び膜長手方向のいずれに関しても、孔径の変化が小さぐほ ぼ均質な構造であることを意味する。等方的な構造とは、マクロボイド等の強度的に 弱 、部分が生じにく 、構造である。よって多孔性多層中空糸膜の透水性を維持しな がら、耐圧性能等の機械的強度を高くすることが可能になる。
[0044] また、本願で言う三次元網目構造とは、模式的には図 3で表したような構造を指す。
熱可塑性榭脂 aが接合して網目を形成し、空隙部 bが形成されていることがわかる。ま た実施例 1で得られた実際の多孔性 2層中空糸膜における等方的な三次元網目構 造の顕微鏡写真の一例を図 9に示す。網目を形成する熱可塑性榭脂の太さはほぼ 一定である。この三次元網目構造では、図 4で模式的に示されるような、いわゆる球 晶構造の榭脂の塊状物がほとんど見られない。三次元網目構造の空隙部は、熱可 塑性榭脂に囲まれており、空隙部の各部分は互いに連通している。用いられた熱可 塑性榭脂のほとんどが、中空糸膜の強度に寄与しうる三次元網目構造を形成してい るので、高い強度の支持層を形成することが可能になる。また、耐薬品性も向上する 。耐薬品性が向上する理由は明確ではないが、強度に寄与しうる網目を形成する熱 可塑性榭脂の量が多いため、網目の一部が薬品に侵されても、層全体としての強度 には大きな影響が及ばないためではないかと考えられる。一方、図 4で模式的に示さ れるような、いわゆる球晶構造では、塊状物に樹脂が集まっているため相対的に強 度に寄与する熱可塑性榭脂の量が少ないため、一部が薬品に侵されると層全体の 強度に影響が及びやすいのではないかと考えられる。参考のため、球晶構造の模式 図を図 4に示す。図 4では、球晶 cが部分的に密集しており、その球晶 cの密集部分 間の間隙が空隙部 dであることがわかる。また、後述の参考例 1で得られた球晶構造 の顕微鏡写真を図 23に示す。
[0045] 1層(A)の表面孔径は、断面中央孔径の 0.6倍以上 1.4倍以下である。 1層(A)の表 面孔径が断面中央孔径の 0.6倍以上 1.4倍以下であるのは、 1層 (A)が等方的な三 次元網目構造を有することと整合している。 0.6倍以上であれば支持層表面での濾過 抵抗が大きくなりすぎず、膜全体として実用上十分な高透水性を発現できる。また 1.4 倍以下であれば高!、機械的強度を発現できる。
[0046] 中空糸膜は、メッシュ状の金属やプラスチック等の支持体上に載せて使用すること が一般的である平膜とは異なり、膜自身で濾過圧に耐える強度を発現する必要があ る。よって、特に濾過方向に対する強度、すなわち破裂強度および圧縮強度を発現 できる膜構造設計が重要である。断面中央付近力も中空糸内表面側への孔径の増 大を抑止することで、低濾過抵抗と高圧縮強度を両立させることができる。膜断面方 向の孔径をこのように制御することにより、高いレベルで阻止性能、機械的強度、透 水性のバランスをとることが可能になる。 1層(A)の表面孔径は、好ましくは断面中央 孔径の 0.7倍から 1.3倍であり、さらに好ましくは 0.8倍から 1.2倍である。
[0047] なお、ここにいう 1層 (A)の表面孔径とは、中空糸膜を外部から観察する場合に、 1 層(A)が露出している表面に観察される孔の平均孔径を言う。この平均孔径は、以 下のようにして測定する。まず走査型電子顕微鏡を用い、多孔性多層中空糸膜の 1 層(A)が露出している表面を、極力多数の孔の形状が明確に確認できる程度の倍 率で撮影する。次に、その写真上で、縦横方向に直交するように各 5本の線をほぼ均 等な間隔で引き、それらの線が写真中の孔を横切る長さを測定する。そして、それら の測定値の算術平均値を求め、これを平均孔径としている。孔径測定の精度を上げ るために、縦横計 10本の線が横切る孔径の数は 20個以上とするのが好ましい。孔径 力 .1 μ mから 1 μ m程度であれば、 5000倍程度の倍率の電子顕微鏡画像を用いる のが適当である。
[0048] また、ここにいう断面中央孔径とは、多孔性多層中空糸膜を長さ方向に垂直な断面 で切断した場合の断面において、膜厚の中央位置から、全膜厚の 10%の範囲内で 任意の倍率で走査型電子顕微鏡写真を撮影し、この写真を用いて上記の平均孔径 と同様にして孔径の算術平均値を求めたものである。断面中央孔径は、具体的には , 0.1 ^ m以上 10 μ m以下であることが好ましい。この範囲で望ましい透水性と機械的 強度の良いバランスをとることができる。より好ましくは 0.3 m以上 8 m以下、さらに 好ましくは 0.6 μ m以上 6 μ m以下、さらに好ましくは 0.8 μ m以上 4 μ m以下である。
[0049] 1層(B)の表面における開孔率は、目的により適宜定めれば良く特に限定されない 力 懸濁物質等を含む被処理液の濾過安定性の観点からは 20%以上であることが 好ましぐより好ましくは 23%以上、さらに好ましくは 25%以上である。なお、表面部分 の機械的強度の観点を高める観点からは、開孔率は 80%以下であることが好ま 、 。より好ましくは 60%以下であり、さらに好ましくは 50%以下である。開孔率は、例えば 、国際公開公報 PCT/WO 01/53213 A1に記載されているように、電子顕微鏡画像の コピーの上に透明シートを重ね、黒いペン等を用いて孔部分を黒く塗り潰し、その後 透明シートを白紙にコピーすることにより、孔部分は黒、非孔部分は白と明確に区別 し、その後に市販の画像解析ソフトを利用して求めることができる。
[0050] 2層のうちのもう一つの 1層(B)は、いわゆる阻止層である。小さい表面孔径により 被処理液中に含まれる異物の膜透過を阻止する機能を発揮する。ここに言う 1層(B) の表面孔径とは、中空糸膜を外部から観察する場合に、 1層(B)が露出している表 面に観察される孔の平均孔径を言う。 1層(B)の表面孔径の測定は、 1層(A)の表面 孔径の測定と同じようにして走査型電子顕微鏡写真を用いて行えばよい。なお、 1層 (B)の具体的な表面孔径は、 0.01 μ m以上 5 μ m未満であることが好ましい。 0.01 μ m以上であれば、緻密表面の濾過抵抗が小さぐ実用上十分な透水性を発現しやす V、。また、 5 μ m以下であれば、濾過膜の重要な要求機能である除濁性能の発現が 可能になる。より好ましくは 0.05 μ m以上 2 μ m以下、さらに好ましくは 0.05 μ m以上 0. 5 μ m以下、もっとも好ましくは 0.1 μ m以上 0.5 μ m以下である。
[0051] この 1層(B)は、その表面孔径が上記断面中央孔径の 1/2未満である。これにより、 1層(B)が望ましい阻止層として機能する。表面孔径の下限は阻止したい対象物の 大きさに合わせて適宜選択すればよい。透水性を確保する観点力 断面中央孔径 の 1/1000以上とするのが好ましい。より好ましくは断面中央孔径の 1/3以下 1/500以 上、さらに好ましくは 1/4以下 1/100以上である。
[0052] 1層(B)の厚みは、膜厚みの 1/100以上 40/100未満とするのが好まし!/、。このように 1層(B)の厚みを比較的厚くすることで、被処理液に砂や凝集物等の不溶物が含ま れていても使用可能となる。多少磨耗しても、表面孔径が変化しないからである。この 厚みの範囲内であれば、望ましい阻止性能と高い透水性能のバランスがとれる。より 好ましくは膜厚みの 3/100以上 20/100以下、さらに好ましくは 5/100以上 15/100以下 である。
[0053] また、 1層(B)は、 1層(A)と異なり、個々の孔の径が表面力も膜内部に向けて徐々 に大きくなる異方的な構造としても良い。または、 1層(A)と同様に、個々の孔の径が 表面からの距離によらずに均一となる等方的な構造としても良い。 1層(B)の好まし い構造は、 1層(A)と同様の等方的な三次元網目構造である。これにより望ましい阻 止能を維持しながら中空糸膜全体の機械強度を高めることができる。
[0054] 1層(A)と 1層(B)の厚みは、以下のように求める。各膜厚部について、実施例の(7 )に記載の方法にて各膜厚部の断面孔径を求める。断面中央から 1層(B)の表面に 向かって、断面中央孔径の 0.7倍に最も近い孔径となる膜厚部までの厚みを両層の 境界線とし、この境界線から 1層(A)の表面までの距離を 1層(A)の厚みとし、同様に 境界線から 1層(B)の表面までの距離を 1層(B)の厚みとする。なお、断面中央孔径 の 0.7倍に最も近い孔径になる断面部が複数ある場合は、断面中央に最も近い点ま でを 1層(A)とする。
[0055] 1層(A)の等方率は 80%以上であることが好まし 、。これは、 1層(A)が極めて等方 的な構造であることを意味する。 80%以上であれば、高い透水性能を維持しつつ、高 い強度が発現できる。 1層(A)の等方率は、より好ましくは 90%以上、さらに好ましくは 95%以上である。
[0056] なお、 1層(A)の等方率とは上記で測定した 1層(A)に含まれる各膜厚部のうち、 断面中央孔径の 0.8倍以上 1.2倍以下の断面孔径である膜厚部の数を 1層 (A)に含 まれる膜厚部の総数で除した比率である。
[0057] また同様に、 1層(B)の等方率が 80%以上であることも好まし 、。これは、同様に、 1 層(B)が極めて等方的な構造であることを意味する。 80%以上であれば、高い阻止性 能を発現でき、さらに 1層 (B)の表面が被処理液に砂や凝集物等の不溶物により磨 耗した場合でも阻止性能の低下を極力抑えることができる。 1層(B)の等方率は、 1 層(B)の厚みの 1/2にあたる膜厚部における断面孔径を断面中央孔径 (B)とし、 1層 (B)に含まれる各膜厚部のうち、断面中央孔径 (B)の 0.8倍以上 1.2倍以下の断面孔 径である膜厚部の数を 1層(B)に含まれる膜厚部の総数で除した比率である。 1層( B)の等方率は、より好ましくは 90%以上、さらに好ましくは 95%以上である。なお、 1層( B)が全膜厚に対して極めて薄い場合は、 1層(B)の断面孔径の点数を増やして本 測定をおこなう。両層においてそれぞれ 20点以上の断面孔径を測定することが適当 である。
[0058] さらに、 1層(A)および 1層(B)の等方率が共に 80%以上であることが最も好ましい。
共に 80%以上であれば、阻止層と強度支持層で無駄なく構成された膜構造であるた め、阻止性能、透水性能および強度のバランスが高い膜を最も好適に得ることができ る。両層の等方率は、より好ましくは 90%以上、さらに好ましくは 95%以上、である。
[0059] 本願で言う等方性は下記に示すパラメーター Qで表すこともできる。
[0060] ノ メーター Qとは、外表面から内表面に至る膜厚の各位置における孔径の変化 率を表す値である。具体的には下記のようにして求める。
[0061] 膜厚の各位置での断面孔径を、外表面から内表面の位置順に並べる。
ここで、外表面孔径を D、断面孔径を外表面側から順に D、 D、 · · ' D、内表面孔
0 1 2 n
径を Dとする。
[0062] このとき Qは一般式で下記のように表される。
Q = (D - D ) /Ό
外表面孔径に関する計算をする場合は
Q = (D D ) /Ό
1 0 1
内表面孔径に関する計算をする場合は
Q = (D - D ) /Ό
である。
[0063] 本願発明の多孔性多層中空糸膜は 0. 2≤Q≤0. 2となる Qの個数が Qの全測 定値数に対し 80%以上であることが好ましい。より好ましくは 85%以上、さらに好まし くは 90%以上である。この範囲であれば、孔径がそろつている部分が膜の大部分を 占めるため、阻止性能、透水性能および強度のバランスが高い膜を得ることができる
[0064] また、 0. 1≤Q≤0. 1となる Qの個数が Qの全測定値数に対し 50%以上であるこ とも好ましい。より好ましくは 60%以上、さらに好ましくは 70%以上である。
[0065] このパラメーター Qが一 0. 2より小さい、又は 0. 2より大きい部分は膜厚位置による 孔径の変化が特に大き 、ことが示されて 、る。
[0066] なおこのときの外表面孔径、内表面孔径は前述の方法で測定し、断面孔径の測定 は実施例の測定方法(7)により測定する。
[0067] なお、 1層(A)と 1層(B)は、いずれが中空糸膜の外側にあっても良ぐ目的に応じ て適宜配置すればよい。水道用水の濾過用途には、阻止層を中空糸膜の外側に配 置するのが、安定した運転を長期間継続する観点力も好ましい。
[0068] 中空糸膜の内径は 0.4mm以上 5mm以下が好ましい。 0.4mm以上であれば中空糸膜 内を流れる液体の圧損が大きくなりすぎず、 5mm以下であれば比較的薄 、膜厚で十 分な圧縮強度や破裂強度を発現しやす!/ヽ。より好ましくは 0.5mm以上 3mm以下であり 、さらに好ましくは 0.6mm以上 lmm以下である。
膜厚は 0.1mm以上 lmm以下が好ましい。 0.1mm以上であれば十分な圧縮強度や破 裂強度を発現しやすぐ lmm以下であれば十分な透水性能が発現しやすい。より好 ましくは 0.15mm以上 0.8mm以下、さらに好ましくは 0.2mm以上 0.6mm以下である。
[0069] このような好ま 、構造の中空糸膜は、透水性能と阻止性能と機械的強度とが高!、 レベルでバランスしており、広い運転条件に対応しながら高い性能を発揮する。また 、被処理液に砂や凝集物等の不溶物が含まれていても阻止性能が変化しにくぐ高 ぃ耐摩耗性を有する。
[0070] 本願発明の目的に対して特に好ましい膜物性は、 0.2 μ mのユニフォームラテックス 球の阻止率が 95%以上、かつ、純水透水率が 5000 L/m2/hr/0.1MPa以上、かつ、圧 縮強度が 0.3MPa以上の膜である。
実施例
[0071] 本発明を実施例に基づいてさらに具体的に説明する。以下に諸物性の測定方法 について説明する。なお、測定は測定温度の記載があるものを除き、全て 25°Cで行 つた o
(1)糸径 (mm)、偏平率
中空糸膜を膜長手方向に垂直な向きに力ミソリ等で薄く切り、断面を顕微鏡で観察 した。中空糸の内径の長径と短径、外径の長径と短径を測定し、以下の式により、そ れぞれ内径と外径を決定した。
[0072] [数 1] 内長 g[mm] +内短怪[ mm I
内怪 [mm〗 =
2
[0073] [数 2]
& [mm]十? ¾aft [mm]
外柽 [mm] =
2
[0074] また、内径の長径を内径の短径で割ることで偏平率を決定した。 (2)純水透水率(L/m2/hr/0. IMPa)
中空糸膜を 50質量%のエタノール水溶液中に 30分間浸漬させた後、水中に 30分 間浸漬し、中空糸膜を湿潤化した。 10cm長の湿潤中空糸膜の一端を封止し、他端の 中空部内へ注射針を入れた。注射針力 O. lMPaの圧力にて純水を中空部内へ注入 し、外表面へと透過してくる純水の透過水量を測定した。純水透水率を以下の式によ り決定した。
[0075] [数 3]
60 [分 hr] X透過水量 [L]
純水透水率 [L/m2 hr] =
7Γ X膜内径 [m] X膜有効長 [m] X測定時間 [分]
[0076] ここで 、う膜有効長とは、注射針が挿入されて 、る部分を除 、た、正味の膜長を指 す。
[0077] (3)破断強度 (MPa)、破断伸度 (%)
引張り、破断時の荷重と変位を以下の条件で測定した。
サンプル:(2)の方法で作成した湿潤中空糸膜
測定機器:インストロン型引張試験機 (島津製作所製 AGS-5D)チャック間距離: 5cm 引張り速度: 20cm/分
以下の式により破断強度および破断伸度を決定した。
[0078] [数 4] 破断時荷重 [kgf]
破断強度 j gf/cm2] =
膜断面積 [cm2]
[0079] [数 5] 破断時変位 [cm]
破断伸度 [%] = : ~:—— X I 00
5 [cmj
[0080] ここに膜断面積は以下の式により求められる
[0081] [数 6] 膜断面積 [cm2] = 7T x
Figure imgf000027_0001
[0082] (4)ラテックス阻止率(%)
粒子径 0.208 mの粒径が単分散のラテックス (JSR (株)製、商品名: STADEX、固 形分 1質量%)を、 0.5質量%SDS (ドデシルスルホン酸ナトリウム)水溶液にて希釈し、 ラテックス濃度 0.01質量%の懸濁液を調整した。 lOOmLのラテックス懸濁液をビーカ 一に入れ、チューブポンプにて有効長約 12cmの湿潤中空糸膜に対し、線速 0.1m/秒 にて外表面から 0.03MPaの圧力にて供給し、中空糸膜の両端 (大気開放)から透過 液を出すことでラテックス懸濁液の濾過を行った。濾過液はビーカーに戻し、液的に 閉鎖系にて濾過を行った。濾過 10分後に中空糸膜の両端からの透過液およびビー カーから供給液をそれぞれサンプリングし、吸光度計を用いて 600nmの吸光度を測 定し、以下の式によりラテックス阻止率を決定した。
[0083] [数 7]
ラテックス阻止率 [%] X 100
Figure imgf000027_0002
[0084] (5)圧縮強度 (MPa)
約 5cm長の湿潤中空糸膜の一端を封止し、他端を大気開放とし、外表面より 40°Cの 純水を加圧し大気開放端より透過水を出した。このとき膜供給水を循環させることなく その全量を濾過する方式、即ち全量濾過方式を取った。加圧圧力を O.lMPaより 0.01 MPa刻みで昇圧し、各圧力にて 15秒間圧力を保持し、この 15秒間に大気開放端より 出てくる透過水をサンプリングした。中空糸膜の中空部がつぶれないうちは加圧圧力 が増すにつれて透過水量 (質量)の絶対値も増してゆくが、加圧圧力が中空糸膜の 圧縮強度を超えると中空部が潰れて閉塞が始まるため、透過水量の絶対値は加圧 圧力が増すにも関わらず、低下する。透過水量の絶対値が極大になる加圧圧力を圧 縮強度とした。 (6)内外表面孔径および断面中央孔径 m)
走査型電子顕微鏡により、 20個以上の孔の形状が確認できる写真を用いて多孔性 中空糸膜の内外両表面孔径および断面中央孔径を測定した。 A4版の写真を縦横各 々6分割するよう、縦横方向に直交する各 5本の線を均等な間隔で引き、その線が写 真中の空孔部を横切る長さを測定し、その長さの平均値を算術平均により算出し、そ れぞれ内外表面孔径および断面中央孔径とした。孔径が 0.1 μ m〜l μ m程度であ れば、 5000倍程度の倍率の走査型顕微鏡像が適切である。なお、断面中央孔径に 関しては、膜厚の中央位置力も全膜厚の 10%の範囲を対象にして測定した。
(7)各膜厚部における断面孔径および 1層 (A)と 1層(B)の厚み
走査型電子顕微鏡により、中空糸膜の断面を撮影し、 20個以上の孔の形状が確認 できる写真を用いた。 A4版の写真上で、外表面力もの距離が等しい線 (すなわち同 じ膜厚になる点を結んだ線)を、全膜厚を 101等分する間隔で 100本引き、その線が 写真中の空孔部を横切る長さを測定した。その長さの平均値を算術平均により算出 して、各膜厚部における断面孔径を求めた。走査型電子顕微鏡写真の倍率が十分 に高い場合は、外表面力もの距離が等しい線を直線で近似しても良い。断面中央か ら 1層(B)の表面に向かって、断面中央孔径の 0.7倍に最も近くなる点を両層の境界 線とし、 1層(A)の表面力も境界線までの距離を 1層(A)の厚み、 1層(B)の表面から 境界線までの距離を 1層(B)の厚みとした。孔径が 0.1 μ m〜l μ m程度であれば、 50 00倍程度の倍率の走査型顕微鏡像が適切である。本願では、全膜厚を 14分割して 撮影した。即ち、中空糸膜の断面の 5000倍の電子顕微鏡写真 14枚を用いて前述の 測定を行った。また、倍率が十分に高いため、外表面力もの距離が等しい線を直線 で近似した。
(8) 1層(A)の等方率(%)
(7)で測定した 1層 (A)の各膜厚部における断面孔径のうち、断面中央孔径の 0.8 倍以上 1.2倍以下である膜厚部の数を、 1層 (A)に含まれる膜厚部の総数で除した比 率を 1層(A)の等方率とした。
(9) 1層(B)の等方率(%)
(7)で測定した 1層(B)の厚みを 20等分する間隔で中空糸の断面が示す円と同心 円状に線を引き、その線が写真中の空孔部を横切る長さを測定し、その長さの平均 値を算術平均により算出し、 1層(B)の各膜厚部における断面孔径を求めた。
[0085] 1層(B)の厚みの 1/2の厚み部における断面孔径を断面中央孔径 (B)とし、測定し た 1層(B)の各膜厚部のうち、断面中央孔径 (B)の 0.8倍以上 1.2倍以下である膜厚 部の数を、 1層(B)に含まれる膜厚部の総数 20で除した比率を 1層(B)の等方率とし た。
[0086] (10)無機微粉が吸油する最大質量 M
JIS K6217-4記載の方法を参照し、吸油量測定機 (FRONTEX社製 S410)を用いて 吸油量の測定をおこなった。微粉シリカ 5gを試料室に入れ、回転翼を 125rpmで回転 させながら有機液体を 4mL/分の速度で滴下して 、つた。微粉シリカが有機液体を吸 油していくとトルクが上昇し、最大値を示した後、低下する。始めにトルクが最大値の 7 0%になった時の有機液体の総滴下質量から、以下の式により無機微粉の単位質量 あたりの吸油最大質量 Mを求めた。
[0087] [数 8] 無機微粉が単位質量あたり I 最大トルクの 70%になる時の有機液体の総滴下貧量 [g] 吸油する最大質量 [一]
5 Eg]
[0088] (11)最大孔径( μ m) (バブルポイント法)
ASTM F316-03に準拠し、膜の最大孔径を測定した。
( 12)平均孔径 m) (ハーフドライ法)
ASTM F316-03に準拠し、膜の最小孔径層の平均孔径を測定した。
(13)紡糸安定性
中空糸膜を 8時間連続して紡糸し、溶融混練物が押出され、冷却されて多層中空 糸となる工程を目視で観察した。中空糸の糸径が変動せず、界面が乱れず、真円性 が保持されていれば優とした。界面は乱れないが、(a)真円性が若干保持されていな い場合、(b)糸径が生産に支障の無い程度に変動する場合、などは全て良とした。界 面が乱れ、真円性も保持されないものを不可とした。
[0089] 実施例で用 ヽた原材料を下記に示す。 [原材料]
熱可塑性榭脂
(R-1)フッ化ビニリデンホモポリマー (株式会社クレハ製、商品名: KF # 1000) (R-2)高密度ポリエチレン榭脂 (旭化成ケミカルズ株式会社製、商品名: SH800) 有機液体
(L-1)フタル酸ジ(2—ェチルへキシル)(シージーエスター株式会社製)
(L-2)フタル酸ジブチル(シージーエスター株式会社製)
(L-3) y—プチ口ラ外ン (和光純薬工業株式会社製、特級試薬)
無機微粉
(P-1)微粉シリカ(日本ァエロジル株式会社製、商品名: AEROSIL— R972、 1次粒子 径が約 16nmのもの、)
各実施例での配合や製造条件は表 1に示す。
[実施例 1]
熱可塑性榭脂としてフッ化ビ-リデンホモポリマー、有機液体としてフタル酸ジ (2— ェチルへキシル)とフタル酸ジブチルとの混合物、無機微粉として微粉シリカを用い、 図 2に示す中空糸成型用ノズルを用いて押出し機 2台による 2層中空糸膜の溶融押 出しを行った。外層用の溶融混練物(a)として組成がフッ化ビ-リデンホモポリマー: フタル酸ジ(2—ェチルへキシル):フタル酸ジブチル:微粉シリカ =40.0: 30.8: 6.2: 23 .0 (質量比)(容量比で 32.2 :44.4 : 8.4 : 15.0)の溶融混練物を、内層用の溶融混練物( b)として組成がフッ化ビ-リデンホモポリマー:フタル酸ジ(2—ェチルへキシル):フタ ル酸ジブチル:微粉シリカ =40.0 : 35.1 : 1.9 : 23.0 (質量比)(容量比で 32.0: 50.0: 2.6: 14.9)の溶融混練物を、中空部形成用流体として空気を、それぞれ用い、共に 240°C の榭脂温度にて、外径 2.00mm、内径 0.92mmの中空糸成形用ノズルから、吐出線速 1 4.2m/分、すなわち紡口吐出パラメーター Rが 440/秒、外層:内層の膜厚比 = 10 : 90 になるような量比にて押出した。ここでいうノズルの外径とは、図 2においては吐出口 の最外径を指す。また、ノズルの内径とは内層用溶融混練物吐出口と中空部形成用 流体吐出口との間の隔壁下端の最大径を指す。
押出した中空糸状押出物は、 60cmの空中走行を経た後 40°Cの水浴中に導き入れ ることで冷却固化させ、 40mZ分の速度で力せに巻き取った。得られた 2層中空糸を 塩化メチレン中に浸漬させてフタル酸ジ(2—ェチルへキシル)およびフタル酸ジブチ ルを抽出除去した後、乾燥させた。次いで、 50質量%のエタノール水溶液中に 30分 間浸漬させた後、水中に 30分間浸漬し、次いで、 20質量%水酸化ナトリウム水溶液 中に 70°Cにて 1時間浸漬し、さらに水洗を繰り返して微粉シリカを抽出除去した。
[0091] 得られた多孔性 2層中空糸膜は、界面の乱れが無ぐ真円性が高力つた。電子顕 微鏡での断面観察によると、阻止層、支持層共にマクロボイドの無い等方的な 3次元 網目構造でであった。得られた膜の外径、内径、偏平率、純水透水率、ユニフォーム ラテックス球阻止率、破断強度、破断伸度、圧縮強度、外表面孔径(1層(B)の表面 孔径に相当)、内表面孔径(1層 (A)の表面孔径に相当)、断面中央孔径、外表面孔 径と断面中央孔径の比、内表面孔径と断面中央孔径の比、 1層 (A)および 1層(B) の等方率を表 2に示す。純水透水率、ラテックス阻止率、各種の機械強度のいずれも 優れた値を示した。
[0092] 得られた多孔性 2層中空糸膜を、(2)の方法で湿潤させ、遊離塩素濃度が 0.5質量 %である次亜塩素酸ナトリウムを含む 4質量%水酸ィ匕ナトリウム水溶液に室温にて 10 日間浸潰し、浸漬前後での破断伸度を測定したところ、浸漬後の破断伸度は浸漬前 の破断伸度の 90%の値を保持しており、良好な耐薬品性を有して!/、ることがわかった
[0093] なお、得られた多孔性 2層中空糸膜の外表面の倍率 5000倍の電子顕微鏡像を図 6 に、断面の外表面近傍の倍率 5000倍の電子顕微鏡像を図 7に、断面の外表面近傍 の倍率 1000倍の電子顕微鏡像を図 8に、断面中央部の倍率 5000倍の電子顕微鏡像 を図 9に、断面の内表面近傍の倍率 5000倍の電子顕微鏡像を図 10に、内表面の倍 率 5000倍の電子顕微鏡像を図 11に、それぞれ示す。これら図 6〜: L 1の電子顕微鏡 像から、小孔径の外層と大孔径の内層が形成されていることがわかる。また、 1層(B) の表面開孔率は 25%であった。
[0094] また、溶融混練物 (a) (外層)に少量の黒鉛を混ぜて 2層中空糸を得た (有機液体 は未除去)。 2層中空糸の外表面は全面が黒色であり、溶融混練物(a)が外表面側 全体を覆っていることが確認できた。外表面には、溶融混練物 (b)が外表面に露出し た欠陥部分を示す白色領域は、 2層中空糸の 100メートル以上に渡って認められな かった。この 2層中空糸の円環断面のマイクロスコープ像を図 12に示す。図 12より、 断面方向においても、黒色層 (溶融混練物 (ァ)の層)が欠陥なく均一な厚みで外表 面を薄く覆って 、ることがわ力る。
[実施例 2]
外層用の溶融混練物(a)として組成がフッ化ビ-リデンホモポリマー:フタル酸ジ (2 ェチルへキシル):フタル酸ジブチル:微粉シリカ = 34: 33.8: 6.8: 25.4 (質量比)の 溶融混練物を、内層用の溶融混練物 (b)として組成がフッ化ビニリデンホモポリマー :フタル酸ジ(2 ェチルへキシル):フタル酸ジブチル:微粉シリカ = 36: 35.3: 5.0: 23. 7 (質量比)の溶融混練物を用いた以外は実施例 1と同様にして多孔性 2層中空糸膜 を得た。
[0095] なお、得られた多孔性 2層中空糸膜の外表面の倍率 5000倍の電子顕微鏡像を図 1 3に、断面の外表面近傍の倍率 5000倍の電子顕微鏡像を図 14に、断面の外表面近 傍の倍率 1000倍の電子顕微鏡像を図 15に、断面中央部の倍率 5000倍の電子顕微 鏡像を図 16に、断面の内表面近傍の倍率 5000倍の電子顕微鏡像を図 17に、内表 面の倍率 5000倍の電子顕微鏡像を図 18に、断面の倍率 70倍の電子顕微鏡写真を 図 19に、断面の 300倍の電子顕微鏡写真を図 20に、それぞれ示す。これら図 13〜 20の電子顕微鏡像から、小孔径の外層と大孔径の内層が形成されていることがわか る。また、 1層(B)の表面開孔率は 30%であった。
[0096] 得られた多孔性 2層中空糸膜は、界面の乱れが無ぐ真円性が高力つた。電子顕 微鏡での断面観察によると、阻止層、支持層共にマクロボイドの無い等方的な 3次元 網目構造でであった。得られた膜の物性評価結果を表 2に示す。純水透水率、ラテツ タス阻止率、各種の機械強度のいずれも優れた値を示した。また、得られた多孔性 2 層中空糸膜の断面を 100等分し、断面孔径を測定した結果を図 21に示す。図 5 (3) に極めて近い構造の膜であることがわかる。また、パラメーター Qを測定した値を図 3 3に示す。
[実施例 3]
外層用の溶融混練物(a)として組成がフッ化ビ-リデンホモポリマー:フタル酸 (2— ェチルへキシル):フタル酸ジブチル =40.0: 36.0: 24.0 (質量比)の溶融混練物を用 いた以外は、実施例 1と同様にして多孔性 2層中空糸膜を得た。
[0097] 得られた多孔性 2層中空糸膜は、界面の乱れが無ぐ真円性が高力つた。電子顕 微鏡での断面観察によると、阻止層、支持層共にマクロボイドの無い等方的な 3次元 網目構造でであった。得られた膜の物性評価結果を表 2、に示す。純水透水率、ラテ ックス阻止率、各種の機械強度の!/、ずれも優れた値を示した。
[実施例 4]
内層と外層を逆転、すなわち内層側に組成がフッ化ビ-リデンホモポリマー:フタル 酸ジ(2—ェチルへキシル):フタル酸ジブチル:微粉シリカ =40.0: 30.8 : 6.2 : 23.0 (質 量比)の溶融混練物を、外層側に組成がフッ化ビ-リデンホモポリマー:フタル酸ジ( 2—ェチルへキシル):フタル酸ジブチル:微粉シリカ =40.0: 35.1: 1.9: 23.0 (質量比) の溶融混練物を用い、外層:内層の膜厚比 = 90: 10になるような量比にて押出した以 外は実施例 1と同様にして多孔性 2層中空糸膜を得た。得られた多孔性 2層中空糸 膜は電子顕微鏡での断面観察によると、阻止層、支持層共にマクロボイドの無い等 方的な 3次元網目構造であった。得られた膜の物性評価結果を表 2、に示す。実施 例 1と同様に、純水透水率、ラテックス阻止率、各種の機械強度のいずれも優れた値 を示した。
[実施例 5]
外層用の溶融混練物 (a)の組成を、熱可塑性榭脂として高密度ポリエチレン榭脂、 有機液体としてフタル酸ジ (2—ェチルへキシル)、無機微粉として微粉シリカを用い、 ポリエチレン榭脂:フタル酸ジ(2—ェチルへキシル):微粉シリカ = 20.0: 56.0: 24.0 ( 質量比)(容量比で 23.5 : 64.2 : 12.3)を用いた以外は、実施例 1と同様にして多孔性 2 層中空糸膜を得た。得られた多孔性 2層中空糸膜は、電子顕微鏡での断面観察によ ると、阻止層、支持層共にマクロボイドの無い等方的な 3次元網目構造であった。得 られた膜の物性評価結果を表 2に示す。
[0098] 得られた多孔性 2層中空糸膜を、(2)の方法で湿潤させ、遊離塩素濃度が 0.5質量 %である次亜塩素酸ナトリウムを含む 4質量%水酸ィ匕ナトリウム水溶液に室温にて 10 日間浸潰し、浸漬前後での破断伸度を測定したところ、浸漬後の破断伸度は浸漬前 の破断伸度の 60%の値を保持しており、良好な耐薬品性を有して!/、ることがわかった [実施例 6]
実施例 2で得た有機液体および無機微粉抽出除去後の有効長 10cmの多孔性 2層 中空糸膜の両端を手で持ち、糸長 20cmにまで 2倍に延伸した後、両端力も手を放し た。手を放すことにより糸長が縮み、最終的な糸長は 13cmとなった。得られた膜の物 性評価結果を表 2に示す。
[実施例 7]
外層用の溶融混練物(a)と内層用の溶融混練物 (b)の合流時における榭脂温度を それぞれ 270°C、 250°Cとした以外は、実施例 1と同様にして多孔性 2層中空糸膜を得 た。得られた膜の物性評価結果を表 2に示す。
[実施例 8]
内層用の溶融混練物 (b)として組成がフッ化ビ-リデンホモポリマー:フタル酸ジ (2 ーェチルへキシル):フタル酸ジブチル:微粉シリカ =40 : 19.1: 1.0 : 39.9 (質量比)の 溶融混練物を用いた以外は実施例 1と同様にして多孔性 2層中空糸膜を得た。得ら れた膜の物性評価結果を表 2に示す。
[実施例 9]
内層用の溶融混練物 (b)として組成がフッ化ビ-リデンホモポリマー:フタル酸ジ (2 ェチルへキシル):フタル酸ジブチル:微粉シリカ =40: 49.9 : 2.6 : 7.5 (質量比)の溶 融混練物を用いた以外は実施例 1と同様にして多孔性 2層中空糸膜を得た。得られ た中空糸膜は若干偏平していたおり、真円性が保持されていな力つたが、問題無い 範囲であった。得られた膜の物性評価結果を表 2に示す。
[実施例 10]
外径 1.75mm、内径 0.92mmの中空糸成形用ノズルを用い、吐出線速 20.2m/分、す なわち紡口吐出パラメーター Rが 814/秒になるように吐出した以外は実施例 1と同様 にして多孔性多層中空糸膜を得た。得られた膜の物性評価結果を表 2に示す。
[実施例 11]
外径 1.75mm、内径 0.92mmの中空糸成形用ノズルを用い、吐出線速 10.1m/分、す なわち紡口吐出パラメーター Rが 407/秒になるように吐出し、 30cmの空中走行を経た 後 40°Cの水浴中に導き入れることで冷却固化させ、 20m/分の速度で力セに卷き取つ た以外は実施例 1と同様にして多孔性 2層中空糸膜を得た。得られた膜の物性評価 結果を表 2に示す。
[実施例 12]
外径 1.75mm、内径 0.92mmの中空糸成形用ノズルを用い、吐出線速 0.20m/分、す なわち紡口吐出パラメーター Rが 8/秒になるように吐出し、 0.6cmの空中走行を経た 後 40°Cの水浴中に導き入れることで冷却固化させ、 0.4m/分の速度で力セに卷き取 つた以外は実施例 1と同様にして多孔性 2層中空糸膜を得た。空中走行部において 、若干の糸径の変動が見られたが、問題のない範囲であった。得られた膜の物性評 価結果を表 2に示す。
[実施例 13]
外径 1.75mm、内径 0.92mmの中空糸成形用ノズルを用い、吐出線速 25.3m/分、す なわち紡口吐出パラメーター Rが 1017/秒になるように吐出し、 75cmの空中走行を経 た後 40°Cの水浴中に導き入れることで冷却固化させ、 50m/分の速度で力セに卷き取 つた以外は実施例 1と同様にして多孔性 2層中空糸膜を得た。得られた膜の物性評 価結果を表 2に示す。
[実施例 14]
外層:内層の膜厚比 = 5 : 95になるような量比にて押出し、 30cmの空中走行を経た 後 40°Cの水浴中に導き入れることで冷却固化させ、 20m/分の速度で力セに卷き取つ た以外は実施例 1と同様にして多孔性 2層中空糸膜を得た。得られた膜の物性評価 結果を表 2に示す。
[比較例 1]
内層用の溶融混練物 (b)として組成がフッ化ビ-リデンホモポリマー:フタル酸ジ (2 ーェチルへキシル):フタル酸ジブチル =40.0: 42.0: 18.0 (質量比)を用いた以外は 実施例 3と同様にして多孔性 2層中空糸膜を得た。得られた多孔性 2層中空糸膜は 実施例で得られた多孔性 2層中空糸膜とは異なり安定して真円状にはならず、楕円 形になったり表面が波状になったりした。得られた膜の物性評価結果を表 2に示す。 [0099] 得られた多孔性 2層中空糸膜を、(2)の方法で湿潤させ、遊離塩素濃度が 0.5質量 %である次亜塩素酸ナトリウムを含む 4質量%水酸ィ匕ナトリウム水溶液に室温にて 10 日間浸潰し、浸漬前後での破断伸度を測定したところ、浸漬後の破断伸度は浸漬前 の破断伸度の 20%の値にまで低下して 、た。
[0100] 実施例 1と同様にして、溶融混練物 (a) (外層)に少量の黒鉛を混ぜて 2層中空糸を 得た (有機液体は未除去)。 2層中空糸の外表面は全面が黒色にはならず、白い筋 や白い斑点が多数見られ、溶融混練物(a)が外表面側全体を完全には覆ってはお らず、溶融混練物 (b) (内層)が外表面に露出している部分が多数あることがわかつ た。また、中空糸断面を割断して断面を観察すると、図 12のように黒色層 (溶融混練 物 (a)の層)が欠陥なく均一な厚みで外表面を薄く覆ってはおらず、溶融混練物 (a) の層(黒色層、外層)と溶融混練物 (b)の層(白色層、内層)の界面が波打っており、 一部外層が切れて内層が外表面に露出していることが見て取れた。
[比較例 2]
外層の溶融混練物(a)の押し出しを行わず、内層の溶融混練物 (b)として組成がフ ッ化ビユリデンホモポリマー:フタル酸ジ(2—ェチルへキシル):フタル酸ジブチル:微 粉シリカ =40.0: 30.8: 6.2: 23.0 (質量比)の溶融混練物のみを内層側のスリットから押 し出した以外は、膜全体の厚みも実施例 1と同様にして多孔性中空糸膜を得た。得ら れた多孔性中空糸膜は電子顕微鏡での断面観察によるとマクロボイドの無い等方的 な 3次元網目構造であった。得られた膜の物性評価結果を表 2に示す。ラテックス阻 止率が高ぐまた、高い機械的強度を示したが、純水透過率が著しく低い結果となつ た。
[0101] 得られた多孔性中空糸膜の外表面の倍率 5000倍の電子顕微鏡像を図 22に、断面 の外表面近傍の倍率 5000倍の電子顕微鏡像を図 23に、断面中央部の倍率 5000倍 の電子顕微鏡像を図 24に、断面の内表面近傍の倍率 5000倍の電子顕微鏡像を図 25に、内表面の倍率 5000倍の電子顕微鏡像を図 26に、それぞれ示す。
[0102] なお、得られた多孔性中空糸膜を、 (2)の方法で湿潤させ、遊離塩素濃度が 0.5質 量%である次亜塩素酸ナトリウムを含む 4質量%水酸ィ匕ナトリウム水溶液に室温にて 1 0日間浸潰し、浸漬前後での破断伸度を測定したところ、浸漬後の破断伸度は浸漬 前の破断伸度の 90%の値を保持して 、た。
[比較例 3]
外層の溶融混練物(a)の押し出しを行わず、内層の溶融混練物 (b)のみの押し出 しを行った以外は実施例 1と同様にして多孔性中空糸膜を得た。得られた多孔性中 空糸膜は電子顕微鏡での断面観察によるとボイドの無い等方的な 3次元網目構造で あった。得られた膜の物性評価結果を表 2に示す。純水透過率が高ぐまた、高い機 械的強度を示したが、阻止率が著しく低い結果となった。
得られた多孔性中空糸膜の外表面の倍率 5000倍の電子顕微鏡像を図 27に、断面 の外表面近傍の倍率 5000倍の電子顕微鏡像を図 28に、断面中央部の倍率 5000倍 の電子顕微鏡像を図 29に、断面の内表面近傍の倍率 5000倍の電子顕微鏡像を図 30に、内表面の倍率 5000倍の電子顕微鏡像を図 31に、それぞれ示す。
なお、得られた多孔性中空糸膜を、(2)の方法で湿潤させ、遊離塩素濃度が 0.5質量 %である次亜塩素酸ナトリウムを含む 4質量%水酸ィ匕ナトリウム水溶液に室温にて 10 日間浸潰し、浸漬前後での破断伸度を測定したところ、浸漬後の破断伸度は浸漬前 の破断伸度の 90%の値を保持して 、た。
[比較例 4]
外層の溶融混練物(a)の押出しを行わず、内層の溶融混練物 (b)のみの押出しを 行い、かつ溶融混練物(b)の組成を、ポリエチレン榭脂:フタル酸ジ (2—ェチルへキ シル):微粉シリカ = 20.0: 56.0: 24.0 (質量比)(容量比だと 23.5: 64.2: 12.3)とした以 外は、実施例 1と同様にして多孔性中空糸膜を得た。得られた膜の物性評価結果を 表 2に示す。
[参考例]
Journal of Membrane Science, 52 (1990) , 239— 261頁(D丄 loyd)および ACS Symp.
Ser. , 269 (1985) , 229— 244頁(W.C.Hiatt et.al.)を参考にして、外層となる溶融混 練物(a)の押し出しを行わず、内層となる溶融混練物 (b)のみの押し出しを行い、か つ溶融混練物(b)の組成を、フッ化ビ-リデンホモポリマー: γ —ブチロラタトン = 40. 0 : 60.0 (質量比)(容量比で 29.4 : 70.6)とした以外は実施例 1と同様にして多孔性中 空糸膜を得た。得られた膜の物性評価結果を表 2に示す。純水透過率、阻止率、機 械的強度の 、ずれも低 、結果となった。
[0104] 得られた中空糸膜は三次元網目構造ではなぐ球晶が連結した構造を有する膜で あった。得られた多孔性中空糸膜の断面中央部の倍率 1000倍の電子顕微鏡像を図 32に示す。さらに、得られた湿潤多孔性中空糸膜を、遊離塩素濃度が 0.5質量%で ある次亜塩素酸ナトリウムを含む 4質量%水酸ィ匕ナトリウム水溶液に室温にて 10日間 浸漬し、浸漬前後での破断伸度を測定したところ、浸漬後の破断伸度は浸漬前の破 断伸度の 10%の値まで低下して 、た。
[0105] [表 1]
外層、 内層の組成比は全て質量部である
Figure imgf000039_0001
TSZ0ZC/900Zdf/X3d 88 滅 00Z OAV
Figure imgf000041_0001
産業上の利用可能性
本発明により、濾過用途に好適な、緻密な細孔と高い透水性能を併せ持ち、かつ 強度に優れた多孔性多層中空糸膜を供給できる。また、該多孔性多層中空糸膜を 安定して製造することができる。

Claims

請求の範囲
[1] 円環状吐出口を有する中空糸成型ノズルを用い、該円環状吐出口から熱可塑性榭 脂と有機液体を含む溶融混練物を吐出し、得られた多層中空糸から該有機液体を 抽出除去して多孔性多層中空糸膜を製造する方法において、該中空糸成型ノズル が同心円状に配置された円環状吐出口を二つ以上有し、隣り合う吐出口からは互い に異なる組成の溶融混練物が吐出され、少なくとも 1つの該円環状吐出口から吐出 される溶融混練物が無機微粉も含み、得られた多層中空糸状から該無機微粉も抽 出除去される事を特徴とする製造方法。
[2] 該円環状吐出口から吐出される該溶融混練物のうち、少なくとも吐出量が最も多い 溶融混練物には、該熱可塑性榭脂と該有機液体に加えて、該無機微粉が混練され ていることを特徴とする請求項 1記載の多孔性中空糸膜の製造方法。
[3] 該無機微粉が微粉シリカであることを特徴とする請求項 1または 2の何れかに記載の 多孔性多層中空糸膜の製造方法。
[4] 1つの該円環状吐出ロカ 吐出される溶融混練物に無機微粉が 5質量%以上、 40 質量%以下含まれていることを特徴とする請求項 1から 3の何れかに記載の多孔性 多層中空糸膜の製造方法。
[5] 該溶融混練物に対する、有機液体の質量比 D、無機微粉の質量比 S、および該無機 微粉が単位質量当たりに該有機液体を吸油する最大質量 Mが、 0.2≤ (D/S)/M≤ 2 の関係を満たすことを特徴とする請求項 1から 4の何れかに記載の多孔性多層中空 糸膜の製造方法。
[6] 隣り合う円環状吐出口から吐出される該溶融混練物に含まれる該有機液体のうち、 少なくとも 1種類は共通であることを特徴とする請求項 1から 5の何れかに記載の多孔 性多層中空糸膜の製造方法。
[7] 隣り合う円環状吐出口から吐出される該溶融混練物に含まれる該有機液体の種類 が全て共通であり、その組成比が異なることを特徴とする請求項 1から 5の何れかに 記載の多孔性多層中空糸膜の製造方法。
[8] 該溶融混練物の紡口吐出時における線速 V(m/秒)を紡口吐出口のスリット幅 d(m)で 除した、紡口パラメーター R(l/秒)の少なくとも一つが 10以上 1000以下であるように 該溶融混練物を吐出することを特徴とする請求項 1から 7の何れかに記載の多孔性 多層中空糸膜の製造方法。
[9] 有機液体および Zまたは無機微粉の抽出除去の前または後に、 1.1倍以上 3倍以内 の延伸倍率で多層中空糸を中空糸長手方向に延伸することを特徴とする請求項 1か ら 8の何れかに記載の多孔性多層中空糸膜の製造方法。
[10] 熱可塑性榭脂がポリオレフインおよびポリフッ化ビ-リデンカも選ばれたものである ことを特徴とする請求項 1から 9の何れかに記載の多孔性多層中空糸膜の製造方法
[11] 内外少なくとも 2層力もなる多孔性多層中空糸膜であって、熱可塑性榭脂からなり、 該 2層のうちの少なくとも 1層(A)は、等方的な三次元網目構造を有して、かつ表面 孔径が断面中央孔径の 0.6倍から 1.4倍であり、該 2層の他の 1層(B)は、表面孔径が 断面中央孔径の 1/2未満であることを特徴とする多孔性多層中空糸膜。
[12] 該 1層(B)が、等方的な三次元網目構造を有することを特徴とする請求項 11に記 載の多孔性多層中空糸膜。
[13] 該 1層(B)の表面孔径が、 0.01 μ m以上 5 μ m未満であることを特徴とする請求項 1 1または 12記載の多孔性多層中空糸膜。
[14] 該断面中央孔径が、 0.1 m以上 10 m以下であることを特徴とする請求項 11から 13の何れかに記載の多孔性多層中空糸膜。
[15] 該 1層(B)の表面開孔率が、 20%以上 80%以下であることを特徴とする請求項 11 力も 14の何れかに記載の多孔性多層中空糸膜。
[16] 該 1層(B)の厚みが、膜厚の 1/100以上 40/100以下であることを特徴とする請求項 11から 15の何れかに記載の多孔性多層中空糸膜。
[17] 1層(A)および 1層(B)の等方率が共に 80%以上であることを特徴とする請求項 11 力 16の何れかに記載の多孔性多層中空糸膜。
[18] 膜厚の外表面から内表面の位置による平均孔径の変化量を表す値であるパラメータ 一 Qがー 0. 2≤Q≤0. 2となる Qの個数力 全平均孔径測定値数に対し 80%以上 であることを特徴とする請求項 11から 17の何れかに記載の多孔性多層中空糸膜。
[19] 該熱可塑性榭脂が、ポリオレフインおよびポリフッ化ビ-リデン力 選ばれたもので あることを特徴とする請求項 11から 18の何れかに記載の多孔性多層中空糸膜。
[20] 内径力0.4mm以上 5mm以下、膜厚が 0.2mm以上 lmm以下であることを特徴とする請 求項 11から 19の何れかに記載の多孔性多層中空糸膜。
[21] 請求項 1から 10の何れかに記載の多孔性多層中空糸膜の製法において製造され ることを特徴とする多孔性多層中空糸膜。
[22] 請求項 1から 10の何れかに記載の多孔性多層中空糸膜の製法において製造され ることを特徴とする請求項 11から 20に記載の多孔性多層中空糸膜。
PCT/JP2006/320251 2005-10-13 2006-10-11 多孔性多層中空糸膜及びその製造方法 WO2007043553A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2006300331A AU2006300331C1 (en) 2005-10-13 2006-10-11 Porous multilayered hollow-fiber membrane and process for producing the same
JP2007539955A JP4563457B2 (ja) 2005-10-13 2006-10-11 多孔性多層中空糸膜及びその製造方法
US12/089,729 US8137800B2 (en) 2005-10-13 2006-10-11 Porous multilayered hollow-fiber membrane and process for producing the same
EP10009719.5A EP2260931B1 (en) 2005-10-13 2006-10-11 Porous multilayered hollow-fiber membrane
ES06811558T ES2402577T3 (es) 2005-10-13 2006-10-11 Proceso para la producción de una membrana de fibras huecas porosa multicapa
CA 2625523 CA2625523C (en) 2005-10-13 2006-10-11 Porous multilayered hollow-fiber membrane and process for producing the same
CN2006800378502A CN101282780B (zh) 2005-10-13 2006-10-11 多孔性多层中空纤维膜及其制造方法
EP20060811558 EP1935480B1 (en) 2005-10-13 2006-10-11 Process for producing a porous multilayered hollow-fiber membrane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-298374 2005-10-13
JP2005298374 2005-10-13
JP2006-128119 2006-05-02
JP2006128119 2006-05-02

Publications (1)

Publication Number Publication Date
WO2007043553A1 true WO2007043553A1 (ja) 2007-04-19

Family

ID=37942785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320251 WO2007043553A1 (ja) 2005-10-13 2006-10-11 多孔性多層中空糸膜及びその製造方法

Country Status (10)

Country Link
US (1) US8137800B2 (ja)
EP (2) EP2260931B1 (ja)
JP (2) JP4563457B2 (ja)
KR (1) KR100966718B1 (ja)
CN (2) CN101282780B (ja)
AU (1) AU2006300331C1 (ja)
CA (1) CA2625523C (ja)
ES (1) ES2402577T3 (ja)
TW (1) TW200736426A (ja)
WO (1) WO2007043553A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272636A (ja) * 2007-04-26 2008-11-13 Asahi Kasei Corp 多層微多孔膜
JP2009219979A (ja) * 2008-03-14 2009-10-01 Asahi Kasei Chemicals Corp 多孔性多層中空糸膜
JP2010023017A (ja) * 2008-06-20 2010-02-04 Maruo Calcium Co Ltd 多孔質濾過膜用樹脂組成物及び多孔質濾過膜の製造方法
JP2010023019A (ja) * 2008-06-20 2010-02-04 Maruo Calcium Co Ltd 多孔質濾過膜用微孔形成剤、これを配合してなる多孔質濾過膜用樹脂組成物、及び多孔質濾過膜の製造方法
EP2263782A1 (en) 2007-05-22 2010-12-22 Asahi Kasei Chemicals Corporation Device for fluid distribution in hollow fiber membrane modules
WO2011129023A1 (ja) * 2010-04-16 2011-10-20 旭化成ケミカルズ株式会社 異形多孔性中空糸膜、異形多孔性中空糸膜の製造方法、異形多孔性中空糸膜を用いたモジュール、ろ過装置、及び水処理方法
JP2013202461A (ja) * 2012-03-27 2013-10-07 Asahi Kasei Chemicals Corp 多孔質膜の製造方法
WO2014148470A1 (ja) * 2013-03-21 2014-09-25 旭化成ケミカルズ株式会社 多孔性中空糸膜及び多孔性中空糸膜の製造方法
JP2015037791A (ja) * 2007-10-26 2015-02-26 旭化成ケミカルズ株式会社 気体分離膜
WO2015041286A1 (ja) * 2013-09-18 2015-03-26 三菱レイヨン株式会社 多孔質中空糸膜及びその製造方法
WO2016175308A1 (ja) * 2015-04-28 2016-11-03 東レ株式会社 複合中空糸膜およびその製造方法
JP2017159295A (ja) * 2014-02-28 2017-09-14 ポール・コーポレーションPall Corporation 六角形の空隙を有する中空繊維膜
JP2017164743A (ja) * 2014-02-28 2017-09-21 ポール・コーポレーションPall Corporation 六角形の空隙を有する荷電中空繊維膜
CN109922875A (zh) * 2016-11-09 2019-06-21 旭化成株式会社 多孔性中空纤维膜及多孔性中空纤维膜的制造方法
WO2020059344A1 (ja) * 2018-09-20 2020-03-26 住友電気工業株式会社 中空糸膜
US10751671B2 (en) 2014-01-10 2020-08-25 Asahi Kasei Kabushiki Kaisha Porous hollow fiber membrane, method for producing same, and water purification method

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131569B (zh) * 2008-08-20 2015-06-03 可隆工业株式会社 多孔膜及其制备方法
CN101543733B (zh) * 2009-03-31 2012-08-08 枫科(北京)膜技术有限公司 聚偏氟乙烯多芯超滤膜管的制造方法
JP5552289B2 (ja) * 2009-09-04 2014-07-16 株式会社クレハ フッ化ビニリデン系樹脂多孔膜の製造方法
CN102085457B (zh) * 2009-12-07 2013-01-02 广州美能材料科技有限公司 一种制备复合多层多孔中空纤维膜的方法及其装置和产品
DE102010035698A1 (de) * 2010-08-27 2012-03-01 Innowa Gmbh Mehrkanalmembran
JP5828281B2 (ja) * 2010-11-24 2015-12-02 三菱レイヨン株式会社 中空糸膜紡糸ノズル、及び中空糸膜の製造方法
US9283525B2 (en) * 2011-06-22 2016-03-15 Daikin Industries, Ltd. Porous polymer film and production method for porous polymer film
US9683312B2 (en) 2011-12-10 2017-06-20 The Boeing Company Fiber with gradient properties and method of making the same
US9683310B2 (en) 2011-12-10 2017-06-20 The Boeing Company Hollow fiber with gradient properties and method of making the same
US20150136691A1 (en) * 2011-12-13 2015-05-21 MEMSTAR (Guangzhou) Co. Ltd Method for preparing double layered porous hollow membrane and device and product thereof
KR101389560B1 (ko) * 2011-12-27 2014-04-28 도레이케미칼 주식회사 다공성 금속 중공사 여과재를 이용한 하/폐수 처리방법 및 장치
KR101432580B1 (ko) * 2011-12-27 2014-09-25 도레이케미칼 주식회사 다공성 금속 중공사 여과재가 구비된 막생물반응기를 이용한 하/폐수 처리방법 및 장치
KR20140116146A (ko) * 2011-12-28 2014-10-01 다이킨 고교 가부시키가이샤 고분자 다공질막
JP5741871B2 (ja) * 2012-03-16 2015-07-01 三菱レイヨン株式会社 多孔質中空糸膜の製造方法および紡糸装置
US8999454B2 (en) * 2012-03-22 2015-04-07 General Electric Company Device and process for producing a reinforced hollow fibre membrane
TWI410272B (zh) * 2012-05-10 2013-10-01 Univ Southern Taiwan 醋酸纖維素中空纖維膜及其製備方法
KR101939328B1 (ko) * 2012-12-21 2019-01-16 주식회사 엘지화학 신규한 구조를 가지는 중공사막 및 그 제조 방법
KR101443491B1 (ko) * 2013-01-24 2014-09-24 주식회사 효성 중공사막의 제조방법 및 그에 의해서 제조된 중공사막
WO2015002333A1 (ko) * 2013-07-02 2015-01-08 한국화학연구원 다공성 알루미늄계 중공사막의 제조방법 및 이에 따라 제조되는 선택 투과성과 기계적 강도가 향상된 직선형의 다공성 알루미늄계 중공사막
JP6208031B2 (ja) * 2014-01-30 2017-10-04 東芝ライフスタイル株式会社 ブラシレスモータおよびその製造方法
JP6229553B2 (ja) * 2014-03-06 2017-11-15 富士通株式会社 金属イオン除去装置及び液冷装置
WO2016006670A1 (ja) * 2014-07-10 2016-01-14 旭化成株式会社 膜蒸留装置及び疎水性多孔質膜
CN104474922A (zh) * 2014-11-14 2015-04-01 东莞市长安东阳光铝业研发有限公司 一种聚偏氟乙烯中空纤维水处理膜的制备方法
JP6004120B1 (ja) * 2015-09-03 2016-10-05 三菱レイヨン株式会社 中空糸膜の製造方法及び中空糸膜紡糸用ノズル
CN105214509B (zh) * 2015-10-14 2018-03-02 湖北聚孚膜科技有限公司 一种高强度中空纤维过滤膜及其制备方法
EP3427817A4 (en) * 2016-03-11 2019-04-03 Asahi Kasei Kabushiki Kaisha POROUS MEMBRANE, POROUS MEMBRANE MODULE, POROUS MEMBRANE MANUFACTURING METHOD, CLEANING LIQUID MANUFACTURE METHOD AND BEER PREPARATION METHOD
JP6854412B2 (ja) * 2017-07-11 2021-04-07 住友電気工業株式会社 中空糸膜及び中空糸膜の製造方法
WO2019017750A1 (ko) * 2017-07-21 2019-01-24 주식회사 아모그린텍 필터여재, 이의 제조방법 및 이를 포함하는 필터유닛
JP7185448B2 (ja) * 2017-09-01 2022-12-07 旭化成株式会社 多孔性中空糸膜及びその製造方法、並びにろ過方法
JP7219032B2 (ja) * 2017-09-01 2023-02-07 旭化成株式会社 分離層を含む多孔性中空糸膜の製造方法、多孔性中空糸膜、およびろ過方法
WO2019045069A1 (ja) 2017-09-01 2019-03-07 旭化成株式会社 多孔性中空糸膜、多孔性中空糸膜の製造方法、およびろ過方法
CN109078498A (zh) * 2018-09-03 2018-12-25 东莞理工学院 一种变直径喷丝头、中空纤维膜丝束及膜组件的加工装置
WO2020190652A1 (en) 2019-03-15 2020-09-24 Entegris, Inc. Composite hollow fiber and related methods and products
CN111850714A (zh) * 2019-04-30 2020-10-30 东华大学 规则圆环中空纤维、喷丝组件及其制备方法
CN110479115A (zh) * 2019-05-30 2019-11-22 江苏滤盾膜科技有限公司 一种mabr用中空纤维膜制备方法
EP3954811A1 (en) * 2020-08-13 2022-02-16 Gelatex Technologies OÜ Device and method for producing polymer fibers and its uses thereof
EP4237130A4 (en) * 2020-10-30 2024-10-09 Arkema Inc MEMBRANES MADE OF FINE POWDER
JPWO2023074670A1 (ja) * 2021-10-29 2023-05-04
CN115012125A (zh) * 2022-07-29 2022-09-06 韩忠 一种吸湿速干涤纶面料及制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233026A (ja) * 1985-04-09 1986-10-17 Asahi Chem Ind Co Ltd 多孔膜の製造方法
US4623670A (en) 1984-12-27 1986-11-18 Asahi Kasei Kogyo Kabushiki Kaisha Porous fluorine resin membrane and process for preparing the same
US5022990A (en) 1989-01-12 1991-06-11 Asahi Kasei Kogyo Kabushiki Kaisha Polyvinylidene fluoride porous membrane and a method for producing the same
JPH0445830A (ja) 1990-06-08 1992-02-14 Kuraray Co Ltd 複合中空糸膜の製造方法
JPH10168218A (ja) * 1996-12-10 1998-06-23 Asahi Chem Ind Co Ltd フッ化ビニリデン系樹脂多孔膜
EP1010457A1 (en) 1996-12-10 2000-06-21 Asahi Kasei Kogyo Kabushiki Kaisha Porous polyvinylidene fluoride resin film and process for producing the same
JP2002233739A (ja) 2001-02-09 2002-08-20 Asahi Kasei Corp 多孔性中空糸複合膜
WO2002070115A1 (fr) * 2001-03-06 2002-09-12 Asahi Kasei Kabushiki Kaisha Procede de fabrication d'une pellicule de fil creux
US20030232184A1 (en) 2002-06-14 2003-12-18 Toray Industries, Inc. Porous membrane and method for manufacturing the same
WO2005063366A2 (en) 2003-12-22 2005-07-14 Entegris, Inc. Exchange devices with potted hollow conduits and methods of making

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962380A (ja) 1972-10-18 1974-06-17
US4266026A (en) * 1975-08-04 1981-05-05 Rohm And Haas Company Catalytic process utilizing hollow fiber membranes
JPS60139815A (ja) 1983-12-28 1985-07-24 Mitsubishi Rayon Co Ltd 複合中空糸及びその製造方法
JPS621404A (ja) * 1985-06-27 1987-01-07 Mitsubishi Rayon Co Ltd 多層複合中空繊維状膜及びその製造法
JPH0696104B2 (ja) * 1985-08-26 1994-11-30 日東電工株式会社 芳香族ポリスルホン中空糸状膜の製造方法
JP2899903B2 (ja) 1989-01-12 1999-06-02 旭化成工業株式会社 ポリフツ化ビニリデン多孔膜及びその製造方法
JP2728549B2 (ja) 1990-07-04 1998-03-18 帝人株式会社 複合中空糸の製造方法
JP3215535B2 (ja) 1993-03-22 2001-10-09 日本無線株式会社 潮流測定装置
TW311947B (ja) 1995-06-05 1997-08-01 Kuraray Co
JP2000334281A (ja) * 1999-05-28 2000-12-05 Terumo Corp ポリスルホン製人工腎臓用中空糸膜およびその製造方法
JP4299468B2 (ja) * 1999-05-31 2009-07-22 ダイセル化学工業株式会社 セルロース誘導体中空糸膜
JP2001157826A (ja) * 1999-09-21 2001-06-12 Asahi Kasei Corp 異方性ポリエチレン中空糸状多孔膜
JP2001190940A (ja) * 2000-01-11 2001-07-17 Asahi Kasei Corp ポリエチレン中空糸状多孔膜の製造方法
CN1166566C (zh) 2000-01-18 2004-09-15 旭化成株式会社 悬浮水的膜过滤纯化方法
JP4527858B2 (ja) 2000-08-10 2010-08-18 三井化学株式会社 炭化水素化合物および有機電界発光素子

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623670A (en) 1984-12-27 1986-11-18 Asahi Kasei Kogyo Kabushiki Kaisha Porous fluorine resin membrane and process for preparing the same
JPS61233026A (ja) * 1985-04-09 1986-10-17 Asahi Chem Ind Co Ltd 多孔膜の製造方法
US5022990A (en) 1989-01-12 1991-06-11 Asahi Kasei Kogyo Kabushiki Kaisha Polyvinylidene fluoride porous membrane and a method for producing the same
JPH0445830A (ja) 1990-06-08 1992-02-14 Kuraray Co Ltd 複合中空糸膜の製造方法
JPH10168218A (ja) * 1996-12-10 1998-06-23 Asahi Chem Ind Co Ltd フッ化ビニリデン系樹脂多孔膜
EP1010457A1 (en) 1996-12-10 2000-06-21 Asahi Kasei Kogyo Kabushiki Kaisha Porous polyvinylidene fluoride resin film and process for producing the same
JP2002233739A (ja) 2001-02-09 2002-08-20 Asahi Kasei Corp 多孔性中空糸複合膜
WO2002070115A1 (fr) * 2001-03-06 2002-09-12 Asahi Kasei Kabushiki Kaisha Procede de fabrication d'une pellicule de fil creux
US20030107150A1 (en) 2001-03-06 2003-06-12 Katsuhiko Hamanaka Method for producing hollow yarn film
US20030232184A1 (en) 2002-06-14 2003-12-18 Toray Industries, Inc. Porous membrane and method for manufacturing the same
WO2005063366A2 (en) 2003-12-22 2005-07-14 Entegris, Inc. Exchange devices with potted hollow conduits and methods of making

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1935480A4

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272636A (ja) * 2007-04-26 2008-11-13 Asahi Kasei Corp 多層微多孔膜
EP2263782A1 (en) 2007-05-22 2010-12-22 Asahi Kasei Chemicals Corporation Device for fluid distribution in hollow fiber membrane modules
JP2015037791A (ja) * 2007-10-26 2015-02-26 旭化成ケミカルズ株式会社 気体分離膜
JP2009219979A (ja) * 2008-03-14 2009-10-01 Asahi Kasei Chemicals Corp 多孔性多層中空糸膜
JP2010023017A (ja) * 2008-06-20 2010-02-04 Maruo Calcium Co Ltd 多孔質濾過膜用樹脂組成物及び多孔質濾過膜の製造方法
JP2010023019A (ja) * 2008-06-20 2010-02-04 Maruo Calcium Co Ltd 多孔質濾過膜用微孔形成剤、これを配合してなる多孔質濾過膜用樹脂組成物、及び多孔質濾過膜の製造方法
JP2014240071A (ja) * 2010-04-16 2014-12-25 旭化成ケミカルズ株式会社 異形多孔性中空糸膜、異形多孔性中空糸膜の製造方法、異形多孔性中空糸膜を用いたモジュール、ろ過装置、及び水処理方法
WO2011129023A1 (ja) * 2010-04-16 2011-10-20 旭化成ケミカルズ株式会社 異形多孔性中空糸膜、異形多孔性中空糸膜の製造方法、異形多孔性中空糸膜を用いたモジュール、ろ過装置、及び水処理方法
JPWO2011129023A1 (ja) * 2010-04-16 2013-07-11 旭化成ケミカルズ株式会社 異形多孔性中空糸膜、異形多孔性中空糸膜の製造方法、異形多孔性中空糸膜を用いたモジュール、ろ過装置、及び水処理方法
US9821501B2 (en) 2010-04-16 2017-11-21 Asahi Kasei Chemicals Corporation Production method of deformed porous hollow fiber membrane
JP5631871B2 (ja) * 2010-04-16 2014-11-26 旭化成ケミカルズ株式会社 異形多孔性中空糸膜、異形多孔性中空糸膜の製造方法、異形多孔性中空糸膜を用いたモジュール、ろ過装置、及び水処理方法
EP2559478A4 (en) * 2010-04-16 2013-02-27 Asahi Kasei Chemicals Corp HETEROMORPH POROUS HOLLOW FIBER MEMBRANE, METHOD FOR PRODUCING HORIZONIC POROUS HOLLOW FIBER MEMBRANE, MODULE HORMETRIC POROUS HOLLOW FIBER MEMBRANE, FILTRATION DEVICE AND WATER TREATMENT METHOD
EP2559478A1 (en) * 2010-04-16 2013-02-20 Asahi Kasei Chemicals Corporation Heteromorphic porous hollow fiber membrane, method for producing heteromorphic porous hollow fiber membrane, module using heteromorphic porous hollow fiber membrane, filtration device, and water treatment method
US9511529B2 (en) 2010-04-16 2016-12-06 Asahi Kasei Chemicals Corporation Deformed porous hollow fiber membrane, production method of deformed porous hollow fiber membrane, and module, filtration device, and water treatment method in which deformed porous hollow fiber membrane is used
JP2013202461A (ja) * 2012-03-27 2013-10-07 Asahi Kasei Chemicals Corp 多孔質膜の製造方法
JPWO2014148470A1 (ja) * 2013-03-21 2017-02-16 旭化成株式会社 多孔性中空糸膜及び多孔性中空糸膜の製造方法
WO2014148470A1 (ja) * 2013-03-21 2014-09-25 旭化成ケミカルズ株式会社 多孔性中空糸膜及び多孔性中空糸膜の製造方法
US10023709B2 (en) 2013-03-21 2018-07-17 Asahi Kasei Chemicals Corporation Multiporous hollow-fiber membrane and process for producing multiporous hollow-fiber membrane
JP6020592B2 (ja) * 2013-09-18 2016-11-02 三菱レイヨン株式会社 多孔質中空糸膜及びその製造方法
JP2016196004A (ja) * 2013-09-18 2016-11-24 三菱レイヨン株式会社 多孔質中空糸膜
WO2015041286A1 (ja) * 2013-09-18 2015-03-26 三菱レイヨン株式会社 多孔質中空糸膜及びその製造方法
JPWO2015041286A1 (ja) * 2013-09-18 2017-03-02 三菱レイヨン株式会社 多孔質中空糸膜及びその製造方法
US10751671B2 (en) 2014-01-10 2020-08-25 Asahi Kasei Kabushiki Kaisha Porous hollow fiber membrane, method for producing same, and water purification method
US11338253B2 (en) 2014-01-10 2022-05-24 Asahi Kasei Kabushiki Kaisha Porous hollow fiber membrane, method for producing same, and water purification method
JP2017159295A (ja) * 2014-02-28 2017-09-14 ポール・コーポレーションPall Corporation 六角形の空隙を有する中空繊維膜
JP2017164743A (ja) * 2014-02-28 2017-09-21 ポール・コーポレーションPall Corporation 六角形の空隙を有する荷電中空繊維膜
WO2016175308A1 (ja) * 2015-04-28 2016-11-03 東レ株式会社 複合中空糸膜およびその製造方法
US10478782B2 (en) 2015-04-28 2019-11-19 Toray Industries, Inc. Composite hollow fiber membrane and method for producing same
JPWO2016175308A1 (ja) * 2015-04-28 2018-02-15 東レ株式会社 複合中空糸膜およびその製造方法
CN109922875A (zh) * 2016-11-09 2019-06-21 旭化成株式会社 多孔性中空纤维膜及多孔性中空纤维膜的制造方法
US11654400B2 (en) 2016-11-09 2023-05-23 Asahi Kasei Kabushiki Kaisha Porous hollow fiber membrane and method for producing porous hollow fiber membrane
WO2020059344A1 (ja) * 2018-09-20 2020-03-26 住友電気工業株式会社 中空糸膜
US12115503B2 (en) 2018-09-20 2024-10-15 Sumitomo Electric Industries, Ltd. Hollow-fiber membrane

Also Published As

Publication number Publication date
US20090297822A1 (en) 2009-12-03
EP1935480A4 (en) 2010-04-28
EP2260931B1 (en) 2018-12-26
CN102728239A (zh) 2012-10-17
TW200736426A (en) 2007-10-01
AU2006300331B2 (en) 2010-01-21
KR100966718B1 (ko) 2010-06-29
ES2402577T3 (es) 2013-05-06
JP4563457B2 (ja) 2010-10-13
CN101282780B (zh) 2012-10-31
CN102728239B (zh) 2015-06-17
EP2260931A3 (en) 2012-03-21
JP2010227932A (ja) 2010-10-14
KR20080045275A (ko) 2008-05-22
US8137800B2 (en) 2012-03-20
AU2006300331A1 (en) 2007-04-19
AU2006300331C1 (en) 2011-01-27
EP2260931A2 (en) 2010-12-15
CA2625523C (en) 2012-07-17
JPWO2007043553A1 (ja) 2009-04-16
EP1935480B1 (en) 2013-03-27
TWI327180B (ja) 2010-07-11
EP1935480A1 (en) 2008-06-25
CN101282780A (zh) 2008-10-08
JP5717987B2 (ja) 2015-05-13
CA2625523A1 (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP5717987B2 (ja) 多孔性多層中空糸膜
JP5893093B2 (ja) 異形多孔性中空糸膜、異形多孔性中空糸膜の製造方法、異形多孔性中空糸膜を用いたモジュール、ろ過装置、及び水処理方法
JP5546992B2 (ja) 多孔性中空糸膜の製造方法、多孔性中空糸膜、多孔性中空糸膜を用いたモジュール、多孔性中空糸膜を用いたろ過装置及び多孔性中空糸膜を用いた水処理方法
JP6824284B2 (ja) 多孔性中空糸膜及び多孔性中空糸膜の製造方法
JP6097818B2 (ja) 多孔性中空糸膜及び多孔性中空糸膜の製造方法
WO2022107856A1 (ja) 多孔質膜
JP2001157827A (ja) ポリエチレン中空糸状多孔膜
JP2008253922A (ja) 懸濁水の濾過方法
JP2001157826A (ja) 異方性ポリエチレン中空糸状多孔膜
JP2001190939A (ja) ポリエチレン中空糸状多孔膜の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680037850.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007539955

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006811558

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1317/KOLNP/2008

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2625523

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006300331

Country of ref document: AU

Ref document number: 1020087008654

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12089729

Country of ref document: US