Nothing Special   »   [go: up one dir, main page]

WO2006126401A1 - 圧電共振型センサ素子の振動制御装置 - Google Patents

圧電共振型センサ素子の振動制御装置 Download PDF

Info

Publication number
WO2006126401A1
WO2006126401A1 PCT/JP2006/309494 JP2006309494W WO2006126401A1 WO 2006126401 A1 WO2006126401 A1 WO 2006126401A1 JP 2006309494 W JP2006309494 W JP 2006309494W WO 2006126401 A1 WO2006126401 A1 WO 2006126401A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration control
sensor element
vibration
piezoelectric
detection signal
Prior art date
Application number
PCT/JP2006/309494
Other languages
English (en)
French (fr)
Inventor
Kaoru Yamashita
Masanori Okuyama
Original Assignee
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University filed Critical Osaka University
Publication of WO2006126401A1 publication Critical patent/WO2006126401A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/174Membranes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present invention relates to a vibration control device and a vibration control method for a piezoelectric resonance sensor element such as an ultrasonic sensor element, a sound wave sensor element, or a vibration sensor element.
  • the piezoelectric resonance type ultrasonic sensor element on the silicon diaphragm has an advantage that the manufacturing process is simple and the integration into the semiconductor device is easy (for example, see Non-Patent Document 1).
  • the present inventors have invented a highly sensitive piezoelectric ultrasonic microsensor element using a piezoelectric PZT ceramic thin film on a silicon diaphragm (for example, see Non-Patent Document 2).
  • the polarization change at the center always had the opposite direction to that of the periphery on the vibrating diaphragm, so the top electrode was only formed at the center of the diaphragm (e.g., (See Non-Patent Documents 3 and 4.) 0
  • the above-described conventional piezoelectric resonance type ultrasonic sensor element has a problem that its sensitivity is relatively low and the output voltage is easily affected by external noise.
  • the present inventors have increased the sensitivity compared to the prior art and are less susceptible to external noise! (For example, refer to Patent Document 1.)
  • the piezoelectric resonance type ultrasonic sensor element according to the conventional example is characterized in that it is configured as follows. In a piezoelectric ultrasonic sensor element comprising a ferroelectric substance sandwiched between at least a pair of electrodes and having a predetermined resonance frequency and detecting an ultrasonic wave, it is provided on one side of the ferroelectric substance.
  • the common electrode provided, the inner electrode provided on the other side of the ferroelectric and substantially at the center of the ferroelectric, and the other side of the ferroelectric provided outside the inner electrode. And an outer electrode.
  • output between the inner electrode and outer electrode when detecting ultrasound Detect voltage.
  • the outer electrode is provided at a position where the sign of the output voltage at the inner electrode relative to the common electrode and the sign of the output voltage at the outer electrode relative to the common electrode are different from each other.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-039720.
  • Non-Patent Literature 1 T. Faoula et al., Analytical and unite element modeling of resonant s ilicon microsensors ", Sensors and Materials, Vol. 9, No. 8, pp. 501-519, 1997.
  • Patent Document 2 K. Yamashita et al., "Arrayed ultrasonic microsensors with high direc tivity for in-air use using PZT thin film on silicon diaphragms, Sensors and Actuator s A, Vol.97-98., Pp.302- 307 , 2002.
  • Non-Patent Document 3 K. Yamashita et al., "Ultrasonic Array Sensor Using Piezoelectric Film on Silicon Diaphragm and Its Resonant-Frequency Tuning, Transducer '03, Vol.1, No.5, pp.939—942, 2003.
  • Patent Document 4 J. T. Bernstein et al., “Micromachined High Frequency Ferroelectric Sonar Transducers, IEEE Transactions on Ultrasonic Ferroelectric Frequency Count, Vol.44, pp.960—969, 1996.
  • the resonance characteristic becomes a problem.
  • the higher the mechanical quality factor (Q value) of resonance the larger the output can be obtained with less input energy, and the higher the relative sensitivity can be configured, but when performing distance measurement with an ultrasonic sensor element, etc. If the Q value is high, the damping of the vibration is slow and a long tail is drawn, resulting in a decrease in distance resolution. In the conventional example, the Q value was lowered to obtain the required distance resolution, and the element device was configured with low sensitivity and low sensitivity.
  • An object of the present invention is to provide a vibration control device and a vibration control method for a piezoelectric resonance sensor element that can solve the above problems and can effectively attenuate vibration without lowering the Q value. It is in.
  • a vibration control device for a piezoelectric resonance sensor element includes at least one piezoelectric body.
  • a vibration control device for a piezoelectric resonance type sensor element that is sandwiched between a pair of electrodes, detects a vibration wave with a predetermined resonance frequency, and outputs a detection signal.
  • the piezoelectric resonance sensor element is separate from the pair of electrodes that output the detection signal.
  • Amplifying means for amplifying the detection signal with a predetermined gain and applying a vibration control signal having a reverse phase to the vibration control electrode so as to attenuate the vibration of the detection signal when a vibration wave is detected. It is provided with.
  • the vibration control device for the piezoelectric resonance type sensor element further includes control means for setting a gain of the amplification means.
  • the pair of electrodes are preferably formed at the center of the piezoelectric body and have a circular shape, a substantially circular shape, a substantially elliptical shape, or a substantially square shape.
  • the vibration control device for a piezoelectric resonance sensor element comprises a piezoelectric body sandwiched between at least one pair of electrodes, and detects and detects a vibration wave having a predetermined resonance frequency.
  • a vibration control device for a piezoelectric resonance sensor element that outputs a signal
  • the piezoelectric resonance sensor element is separate from the pair of electrodes that output the detection signal.
  • the rising force of the detection signal is delayed by a predetermined time, and then a predetermined vibration control signal is applied to the vibration control electrode to detect the detection signal when the vibration wave is detected. It is characterized by comprising control means for controlling the vibration to be damped.
  • the control means is configured such that when the level of the detection signal exceeds a predetermined threshold, the vibration wave has a substantially half-cycle number.
  • a predetermined vibration control pulse signal is applied to the vibration control electrode after being delayed by a period.
  • the pair of electrodes are preferably formed at the center of the piezoelectric body and have a circular shape, a substantially circular shape, a substantially elliptical shape, or a substantially square shape.
  • a vibration control method for a piezoelectric resonance type sensor element includes a piezoelectric body sandwiched between at least a pair of electrodes, and detects and detects a vibration wave having a predetermined resonance frequency.
  • the piezoelectric resonance sensor element is separate from the pair of electrodes that output the detection signal.
  • the vibration control method for the piezoelectric resonance sensor element further includes a step of setting the gain.
  • the pair of electrodes are preferably formed at the center of the piezoelectric body and have a circular shape, a substantially circular shape, a substantially elliptical shape, or a substantially square shape.
  • a vibration control method for a piezoelectric resonance sensor element includes a piezoelectric body sandwiched between at least a pair of electrodes, and detects and detects a vibration wave having a predetermined resonance frequency.
  • the vibration control method of the piezoelectric resonance type sensor element that outputs a signal!
  • the piezoelectric resonant sensor element further includes a vibration control electrode formed in the vicinity of the electrode, in addition to the pair of electrodes that output the detection signal.
  • the rising force of the detection signal is delayed by a predetermined time, and then a predetermined vibration control signal is applied to the vibration control electrode to detect the detection signal when the vibration wave is detected. It includes a control step for controlling the vibration to be damped.
  • the control step includes substantially a half cycle or a few cycles of the vibration wave when the level of the detection signal exceeds a predetermined threshold value. After the delay, a predetermined vibration control pulse signal is applied to the vibration control electrode.
  • the pair of electrodes are preferably formed at the center of the piezoelectric body and have a circular shape, a substantially circular shape, a substantially elliptical shape, or a substantially square shape.
  • the detection signal is amplified with a predetermined gain, and the vibration control signal having the reverse phase is obtained.
  • the vibration control electrode By applying to the vibration control electrode, the vibration of the detection signal when the vibration wave is detected is controlled to be attenuated. It can be carried out. Therefore, the piezoelectric resonance sensor element can be configured as a device having high sensitivity and good vibration damping characteristics. In the prior art, sensitivity has been sacrificed with priority given to distance resolution in ultrasonic distance measurement, but the present invention achieves both high sensitivity and high distance resolution.
  • the resonance frequency is required to be exactly the same for a sensor that vibrates for a long time. Limiting the resonance frequency in a short time with the use of a, reduces the restriction on the resonance frequency, simplifies the manufacturing process, eliminates the need for frequency adjustment after trimming, reduces the product defect rate, etc. Can be lowered.
  • the vibration control device and the vibration control method of the piezoelectric resonance type sensor element according to the second and fourth inventions in response to the detection signal, a predetermined time from the rising edge of the detection signal. After a certain delay, a predetermined vibration control signal is applied to the vibration control electrode to control the vibration of the detection signal when a vibration wave is detected. Attenuation can be performed effectively. Therefore, the piezoelectric resonant sensor element can be configured as a device with high sensitivity and vibration damping characteristics. In the conventional technology, sensitivity has been sacrificed with priority on distance resolution in ultrasonic distance measurement. However, high sensitivity and high distance resolution are compatible with the present invention.
  • a sensor that continuously vibrates for a long time requires that the resonance frequency be exactly the same.
  • the restriction on the resonance frequency is relaxed, and as a result of simplification of the manufacturing process, trimming after manufacturing ⁇ no need for frequency adjustment, reduction in product defect rate, etc. The manufacturing cost can be reduced.
  • FIG. 1 is a block diagram showing a configuration of a vibration control device of a piezoelectric resonance type ultrasonic sensor element 20 according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a vibration control device of a piezoelectric resonance type ultrasonic sensor element 20 according to a second embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view showing the structure of the piezoelectric resonance type ultrasonic sensor element 20 of FIGS. 1 and 2.
  • FIG. 4 A plan view showing the structure of the piezoelectric resonance type ultrasonic sensor element 20 of FIGS. 1 and 2.
  • FIG. [5] In the piezoelectric resonance type ultrasonic sensor element 20 shown in FIGS. 1 and 2, the signal waveform (a) of the input ultrasonic signal when vibration control is not performed, the amount of diaphragm sag (b), and the sensor output signal ( FIG.
  • the signal waveform (a) of the input ultrasonic signal when the vibration control is performed by the vibration control device of FIG. 1 and the amount of sag of the diaphragm It is a signal waveform diagram which shows b) and a sensor output signal (c).
  • the signal waveform (a) of the input ultrasonic signal when the vibration control is performed by the vibration control device of FIG. 2 and the amount of sag of the diaphragm It is a signal waveform diagram which shows b) and a sensor output signal (c).
  • a diagram for explaining the optimal arrangement of the electrodes of the piezoelectric resonance type ultrasonic sensor element 20 according to the present embodiment which is a three-dimensional diagram showing the vibration amplitude and in-plane strain distribution of the diaphragm.
  • FIG. 9 is a diagram showing a scale that is the degree of in-plane distortion at the gray scale used in the graphs showing the distribution of in-plane distortion in FIGS. 8 and 10 to 14.
  • FIG. 10 is a plan view for explaining the arrangement of detection electrodes and vibration control electrodes in the piezoelectric resonance type ultrasonic sensor element 20 according to the present embodiment.
  • FIG. 11 is a plan view showing the shape of a substantially circular detection electrode showing the optimum arrangement and in-plane strain distribution when the parasitic capacitance is relatively small in FIG.
  • FIG. 12 is a plan view showing the shape of a circular detection electrode showing an appropriate arrangement according to the optimum arrangement and an in-plane strain distribution when the parasitic capacitance is relatively small in FIG.
  • FIG. 13 is a plan view showing the shape of a substantially rectangular detection electrode showing the optimum arrangement and in-plane strain distribution when the parasitic capacitance is relatively large in FIG.
  • FIG. 14 is a plan view showing the shape of a substantially rectangular detection electrode showing an appropriate arrangement according to the optimum arrangement and an in-plane strain distribution in FIG. 10 when the parasitic capacitance is relatively large.
  • FIG. 15 is a diagram for explaining the difference between the piezoelectric resonance type ultrasonic sensor element 20 according to the present embodiment and the piezoelectric resonance type ultrasonic sensor element disclosed in Patent Document 1; 3 is a schematic plan view of a resonant ultrasonic sensor element 20.
  • FIG. 15 is a diagram for explaining the difference between the piezoelectric resonance type ultrasonic sensor element 20 according to the present embodiment and the piezoelectric resonance type ultrasonic sensor element disclosed in Patent Document 1; 3 is a schematic plan view of a resonant ultrasonic sensor element 20.
  • FIG. 16 is a longitudinal sectional view taken along line AA ′ of FIG.
  • FIG. 17 is a diagram for explaining the difference between the piezoelectric resonance type ultrasonic sensor element 20 according to the present embodiment and the piezoelectric resonance type ultrasonic sensor element disclosed in Patent Document 1; 6 is a schematic plan view of a modification of the ultrasonic sensor element 20 of a type.
  • FIG. 17 is a diagram for explaining the difference between the piezoelectric resonance type ultrasonic sensor element 20 according to the present embodiment and the piezoelectric resonance type ultrasonic sensor element disclosed in Patent Document 1; 6 is a schematic plan view of a modification of the ultrasonic sensor element 20 of a type.
  • FIG. 18 is a longitudinal sectional view taken along line BB in FIG.
  • variable DC voltage source
  • FIG. 1 is a block diagram showing the configuration of the vibration control device of the piezoelectric resonant ultrasonic sensor element 20 according to the first embodiment of the present invention, and FIG. 3 shows the piezoelectric resonant ultrasonic wave of FIGS.
  • FIG. 4 is a longitudinal sectional view showing the structure of the sensor element 20, and FIG. 4 is a plan view showing the structure of the piezoelectric resonance type ultrasonic sensor element 20 shown in FIGS.
  • the inner The vibration control outer electrode 19 (here, one pair of the outer electrode 19 and the common electrode 16 on the ground side) formed near the periphery of the electrode 8 is further provided and detected by the pair of electrodes 16 and 18.
  • the detection signal output via the terminal T1 is amplified by the variable gain amplifier 31 with a predetermined gain that is controlled and set by the gain controller 30, and the vibration control signal of the reverse phase is amplified via the terminal T2. Then, by applying to the vibration control outer electrode 19, control is performed so as to attenuate the vibration of the detection signal when the ultrasonic wave as the vibration wave is detected.
  • the piezoelectric resonant ultrasonic sensor element 20 includes a PZT ceramic thin film layer 17 that is a ferroelectric, a pair of inner electrodes 18 and a common electrode 16, 1 It is sandwiched between a pair of outer electrodes 19 and a common electrode 16, and is composed of a piezoelectric resonance type sensor element that has a predetermined resonance frequency and detects ultrasonic waves.
  • a rectangular inner electrode 18 having a length L is formed at a substantially central portion of the upper surface of the PZ T ceramic thin film layer 17.
  • An outer electrode 19 having a width L and having a substantially rectangular shape as a whole is formed on the outer periphery so as to be spaced apart from the inner electrode 18 and surround the inner electrode 18.
  • Inner electrode 18 is
  • connection electrode 21 is connected to the terminal T1, and the outer electrode 19 is connected to the terminal T2 via the connection conductor 22.
  • the inner electrode 18 and the outer electrode 19 are, for example, the sign of the output voltage at the inner electrode 18 with respect to the common electrode 16 and the output at the outer electrode 19 with respect to the common electrode 16 when ultrasonic waves are detected.
  • the outer electrode 19 is formed at a position where the signs of the voltages are the same (in this case, the vibration control signal is set in phase with the detection signal in such a case that the positions may be different from each other).
  • the common electrode 16 More preferably, when the ultrasonic wave is detected, the common electrode 16
  • the output voltage at the inner electrode 18 with respect to the first electrode has a first sign (for example, plus) and its absolute value is substantially the maximum, and the output voltage at the outer electrode 19 with respect to the common electrode 16 is different from the first sign.
  • the outer electrode 19 is formed at a position where the absolute value of the sign (eg, minus) is substantially the maximum value. Details of these codes and the design method of the formation position of the outer electrode 19 are disclosed in Patent Document 1.
  • the structure and manufacturing method of the ultrasonic sensor element 20 used in the present embodiment will be described below.
  • a force that is commonly used is a diaphragm (four sides fixed), a bridge (two sides fixed) or a cantilever (one side fixed).
  • a square diaphragm is used.
  • Use 100 a sol-gel film forming method by spin coating is used as the piezoelectric layer.
  • This sol-gel film-forming method is a film-forming process in which a precursor solution obtained by adjusting the viscosity of a composite metal alkoxide solution by hydrolysis, polycondensation, etc.
  • the piezoelectric layer is formed after the anisotropic etching is completed.
  • the composition of the PZT sol-gel precursor solution used in the sol-gel film formation method is shown below.
  • PZT composition Pb: Zr: Ti 115: 52: 48
  • SOI Silicon On Insulator
  • Both surfaces of the wafer are thermally oxidized for insulation between the mask for anisotropic etching and the common electrode 16 as the lower electrode.
  • the furnace temperature 1,140 ° C, first 5.0 L of O
  • the oxide insulation layer 17 has a thickness of about 1 ⁇ m and is anisotropically etched with EPW (Ethylenediamine Pyrocatechol Water) and TMAH (Tetramethy lammonium Hydroxide). Thick enough to withstand.
  • EPW Ethylenediamine Pyrocatechol Water
  • TMAH Tetramethy lammonium Hydroxide
  • BHF Buffered Hydro-Fluoric acid; buffered hydrofluoric acid (weakly acidic liquid), that is, hydrofluoric acid and ammonium fluoride. Etched with a mixed solution, mainly used to etch silicon oxide.
  • the silicon of the support layer is anisotropically etched by EPW. Etching is performed for about 5 to 6 hours while maintaining the temperature at about 115 ° C., and the thickness of the support layer is set to 50 to 100 / ⁇ ⁇ . This thickness is sufficient to withstand ultrasonic cleaning in the subsequent step (g).
  • PZT ceramic thin film layer 17 is formed as a piezoelectric layer by a sol-gel film forming method. After forming the piezoelectric layer, PZT is used as the contact hole for the lower electrode.
  • HF: HNO: H 0 1: 1
  • step (G) Pt is formed as an upper electrode and an inner electrode 18 and an outer electrode 19 by an RF sputtering apparatus and is patterned by lift-off.
  • the film forming conditions are the same as in step (e), and the film thickness is 0.2 ⁇ m.
  • a square diaphragm structure is formed by anisotropic etching. Although the etching rate varies slightly, the etching almost stops at the I layer of the SOI structure, so the square diaphragm structure was completed by performing etching in accordance with the etch hole with the slowest etching rate. In addition, it is confirmed that the PZT ceramic thin film layer 17 obtained by the sol-gel film forming method has almost no deterioration in electrical characteristics when boiling in EPW for about 90 minutes, so there is no need to protect the surface during etching. ,.
  • the I layer of the SOI structure is indispensable as the above-mentioned anisotropic etching stop layer, but the final structure may cause internal stress, so it is removed after the anisotropic etching is completed. There is a need. Since it is a normal thermal oxide film, it is removed by etching with BHF. After the sensor is manufactured by the above process, the wafer is diced to separate the chip, fixed to the socket, and each electrode is bonded to complete the sensor chip.
  • the wafer 10 is diced, the chip is separated, fixed to the socket, and connected to the connection conductors 31 and 32 connected to the electrodes 18 and 19, respectively. Connect each lead wire to the terminals Tl and T2 (see Fig. 1 and Fig. 4) after bonding each lead wire by bonding, and complete the sensor chip by bonding.
  • the detection electrode 18 is provided at the center of the diaphragm, and mechanical vibration is detected using the piezoelectric effect.
  • the vibration control electrode 19 is also provided in the vicinity of the periphery of the detection electrode 18. This is used to suppress the persistence of vibration associated with resonance. That is, as shown in FIG. 1, the sensor output signal from the detection electrode 18 is amplified by the variable gain amplifier 31, and an anti-phase vibration control signal (feedback signal) is generated and applied to the vibration control electrode 19. In this way, vibration is canceled out by the inverse piezoelectric effect.
  • the vibration control signal is also output as a detection signal to an external circuit via the terminal T11.
  • the diaphragm itself does not vibrate.
  • the force applied to the moving body can be extracted as the magnitude of the vibration control signal.
  • the vibrating body vibrates slightly with the vibration suppressed, and then is forcibly suppressed by the inverse piezoelectric effect.
  • FIG. 5 shows the signal waveform (a) of the input ultrasonic signal when the vibration control device of FIG. 1 does not perform vibration control in the piezoelectric resonant ultrasonic sensor element 20 of FIG. It is a signal waveform diagram which shows (b) and a sensor output signal (c).
  • FIG. 6 shows the signal waveform (a) of the input ultrasonic signal when the vibration is controlled by the vibration control device of FIG. 1 in the piezoelectric resonance type ultrasonic sensor element 20 of FIG. 1 and FIG.
  • FIG. 6 is a signal waveform diagram showing a sampling amount (b) and a sensor output signal (c).
  • the piezoelectric resonance ultrasonic sensor element 20 can rapidly attenuate a sustained vibration while maintaining a high Q value, and has a high sensitivity and a high level. It is possible to achieve both distance resolution.
  • the vibration control system is configured with a very simple structure by utilizing the fact that a piezoelectric body can be used as both a sensor (conversion of mechanical quantity ⁇ electrical quantity) and a drive source (conversion of electrical quantity ⁇ mechanical quantity). can do.
  • the piezoelectric resonant sensor element can be configured as a device with high sensitivity and good vibration damping characteristics.
  • sensitivity has been sacrificed in order to prioritize the distance resolution in ultrasonic distance measurement, but this embodiment achieves both high sensitivity and high distance resolution.
  • the resonance frequency is required to be exactly the same for a sensor that vibrates for a long time.
  • the restriction on the resonance frequency is relaxed, and manufacturing is simplified as a result of simplification of the manufacturing process, trimming after manufacturing 'no need for frequency adjustment, lower product defect rate, etc. Cost can be reduced.
  • it can be used in an ultrasonic distance measurement system including angle scanning, proximity alarms in robot control, security systems, etc., obstacle detection to three-dimensional measurement, three-dimensional shape measurement, surroundings It can also be used for space recognition.
  • FIG. 2 is a block diagram showing the configuration of the vibration control device of the piezoelectric resonance type ultrasonic sensor element 20 according to the second embodiment of the present invention.
  • the vibration control device of the piezoelectric resonance type ultrasonic sensor element 20 according to the second embodiment is a one-shot instead of the gain controller 30 and the variable gain amplifier 31 compared to the vibration control device of FIG. It is characterized by comprising an oscillator 40, a comparator 35, and a variable DC voltage source 36.
  • a predetermined DC voltage that is detected and detected by the variable DC voltage source 36 is applied to the inverting input terminal of the comparator 35.
  • a detection signal from the electrode 18 of the ultrasonic sensor element 20 is input to the non-inverting input terminal of the comparator 35 via the terminal T1.
  • the comparator 35 compares the input detection signal with the above threshold value, and when the level of the detection signal is equal to or greater than the threshold value S, that is, when the detection signal is greater than the predetermined threshold value.
  • a pulse signal having a predetermined time width is generated and input to the control terminal of the switch 43 via the delay circuit 41.
  • the delay time td see FIG.
  • the delay circuit 41 is, for example, a half cycle to several cycles (preferably a half cycle (in the case of FIG. 7) of an ultrasonic wave that is a vibration wave to be detected. It may be 3 cycles.).
  • switch 43 When a pulse signal is input to the control terminal of switch 43, switch 43 is turned on, and the vibration control pulse signal having a predetermined DC voltage from the variable DC voltage source 42 is output as a sensor output signal via the terminal T11. And applied to the vibration control external electrode 19 via the terminal T2. Thereby, the vibration is canceled by the inverse piezoelectric effect.
  • the vibration control signal is also output as a detection signal to the external circuit via terminal T11.
  • the force applied to the vibrating body that the diaphragm itself does not vibrate can be extracted as the magnitude of the vibration control signal.
  • the vibration body is vigorously suppressed by the inverse piezoelectric effect after greatly vibrating for half a cycle.
  • FIG. 7 shows the vibration control of FIG. 1 in the piezoelectric resonance type ultrasonic sensor element 20 of FIG. 1 and
  • FIG. 5 is a signal waveform diagram showing a signal waveform (a) of an input ultrasonic signal, vibration amount (b) of a diaphragm, and sensor output signal (c) when vibration control is performed by the apparatus.
  • the vibration control pulse signal is generated and applied to the vibration control electrode 19, thereby canceling the vibration by the reverse piezoelectric effect, and the diaphragm itself.
  • the force applied to the vibrating body that vibrates can be extracted as the magnitude of the vibration control signal, and this causes the vibrating body to vibrate largely by half a cycle and then forcibly suppress the vibration by the inverse piezoelectric effect.
  • the force applied to the vibrating body that vibrates can be extracted as the magnitude of the vibration control signal, and this causes the vibrating body to vibrate largely by half a cycle and then forcibly suppress the vibration by the inverse piezoelectric effect.
  • the vibration control device configured as described above has the same functions and effects as those of the first embodiment.
  • FIG. 8 is a diagram for explaining the optimal arrangement of the electrodes of the piezoelectric resonant ultrasonic sensor element 20 according to the present embodiment, and is a three-dimensional graph showing the vibration amplitude and in-plane strain distribution of the diaphragm.
  • FIG. 9 is a diagram showing a scale which is the degree of in-plane distortion in the gray scale used in the graphs showing the distribution of in-plane distortion in FIGS. 8 and 10 to 14.
  • the diagonal left direction is the X direction position
  • the diagonal right direction is the Y direction position
  • the height direction indicates the vibration amplitude.
  • the in-plane distortion is shown using the scale in FIG. FIG.
  • FIG. 10 is a plan view for explaining the arrangement of the detection electrodes and the vibration control electrodes in the piezoelectric resonant ultrasonic sensor element 20 according to the present embodiment. Furthermore, FIG. 11 is a plan view showing the shape of a substantially circular detection electrode showing the optimal arrangement and in-plane strain distribution when the parasitic capacitance is relatively small in FIG. 10, and FIG. 12 is a comparison of the parasitic capacitance in FIG. FIG. 6 is a plan view showing the shape of a circular detection electrode showing an appropriate arrangement according to the optimum arrangement and an in-plane strain distribution when the size is small.
  • FIG. 13 is a plan view showing the shape of a substantially rectangular detection electrode close to an ellipse indicating the optimal arrangement and in-plane strain distribution when the parasitic capacitance is relatively large in FIG. 10, and FIG. 14 is a parasitic capacitance in FIG.
  • FIG. 6 is a plan view showing a shape of a substantially rectangular detection electrode showing an appropriate arrangement according to the optimum arrangement and an in-plane strain distribution when the is relatively large.
  • FIG. 8 shows the vibration amplitude and in-plane strain distribution of the vibrating diaphragm.
  • In-plane distortion Are different signs at the center and the periphery of the diaphragm. Since the piezoelectrically generated polarization is proportional to the in-plane strain, it is preferable to install the sensor electrode (detection electrode) so as to correspond to the polarization distribution (strain distribution) and to design the highest output voltage.
  • the output voltage V is
  • the output voltage V is expressed by the following equation.
  • the parasitic capacitance Cp is a constant.
  • ⁇ ⁇ is piezoelectrically generated polarization
  • A is the area of the detection electrode
  • C is the capacitance of the capacitor by the detection electrode
  • is the dielectric constant of the piezoelectric body
  • d is the thickness of the piezoelectric body.
  • the parasitic capacitance Cp does not depend on the area of the detection electrode.
  • the area A of the detection electrode needs to be increased as the parasitic capacitance Cp increases.
  • the vibration control electrode needs to have as large an area as possible because it is necessary to efficiently suppress vibration by the inverse piezoelectric effect. Therefore, it is necessary to install it outside the detection electrode whose area and shape are determined by the parasitic capacitance Cp, etc., in a region extending over the entire remaining part of the diaphragm, for example, as shown in FIG.
  • FIGS. 11 to 14 show examples of actual electrode arrangement.
  • the force shows only the shape of the inner detection electrode.
  • Figure 11 shows an example where the parasitic capacitance Cp is small.
  • the electrodes are placed in a region concentrated near the comparative center. Its shape is the distribution of strain (polarization) It becomes a substantially circular shape that is a shape close to a circle matched to the shape.
  • Fig. 12 shows an example in which geometrical perfect circle electrodes are installed in the same area as a similar shape. Fig.
  • FIG. 13 shows an example where the parasitic capacitance Cp is larger, and it has a square shape (approximately rectangular or approximately elliptical shape close to an ellipse) with rounded corners and sides along the strain (polarization) distribution.
  • Fig. 14 shows an example in which square (round or square) electrodes with rounded corners are installed.
  • the electrode 18 and the electrodes 16, 16a opposed to the electrode 18 are preferably formed at the center of the piezoelectric PZT ceramic thin film layer 17, and are circular, substantially circular, or substantially elliptical. It has a shape or a substantially square shape.
  • FIG. 15 illustrates a difference between the piezoelectric resonance type ultrasonic sensor element 20 according to the present embodiment and the piezoelectric resonance type ultrasonic sensor element disclosed in Patent Document 1 (hereinafter referred to as a comparative example).
  • FIG. 16 is a schematic plan view of the piezoelectric resonant ultrasonic sensor element 20, and FIG. 16 is a longitudinal sectional view taken along the line AA ′ of FIG.
  • FIG. 17 is a diagram for explaining the difference between the piezoelectric resonance type ultrasonic sensor element 20 according to the present embodiment and the piezoelectric resonance type ultrasonic sensor element disclosed in Patent Document 1.
  • FIG. 18 is a schematic plan view of a modification of the piezoelectric resonance type ultrasonic sensor element 20, and FIG.
  • FIGS. 15 and 17 are a longitudinal sectional view taken along line BB ′ of FIG.
  • the electrodes 16, 16a, and 16b are shown as solid lines for the sake of simplification of the illustration of the forces that should be shown as dotted lines because of the V that is hidden and visible.
  • FIGS. 16 and 18 which are schematic diagrams, the members 11 to 15 are not individually illustrated.
  • FIG. 15 to FIG. 18 are schematic diagrams of the electrode structure of the sensor element, and the structure of the embodiment that the present inventor has prototyped is the structure of FIG. 15 to FIG. In order to explain this clearly, Figures 17 to 18 are easier to understand.
  • the terminal T3 in FIGS. 15 and 16 corresponds to a short circuit between the terminal Tla and the terminal T2a in FIGS.
  • the inner electrode 18 is connected.
  • the conductor 21 is connected to the electrode Tl
  • the outer electrode 19 is connected to the electrode T2 via the connecting conductor 22.
  • the common electrode 16 facing the electrodes 18 and 19 is connected to the terminal T3 via the connection conductor 25.
  • the common electrode 16 of the embodiment is divided into an electrode 16a facing the electrode 18 and an electrode 16b corresponding to the electrode 19.
  • the inner electrode 18 is connected to the electrode T1 via the connection conductor 21, and the outer electrode 19 is connected to the electrode T2 via the connection conductor 22.
  • the counter electrode 16a facing the electrode 18 is connected to the terminal Tla via the connection conductor 25a
  • the counter electrode 16b facing the electrode 19 is connected to the terminal T2a via the connection conductor 25b.
  • FIG. 15 to FIG. 18 schematically show the electrode structure of the sensor diaphragm portion in the sensor element according to the embodiment and the comparative example.
  • the sensor element according to the embodiment will be referred to as a “vibration control type sensor element”, and the sensor element according to the comparative example will be referred to as a “polarization complementary sensor element” because of the difference in purpose.
  • the potential difference between the terminal T1 and the terminal T2 is detected as an output signal.
  • Each electrode 18, 19 is used to detect the voltage generated by the piezoelectric effect.
  • the electrode sizes La and Lb are determined so as to maximize the output voltage V in the following equation, taking into account the corresponding parasitic capacitances Cpa and Cpb.
  • V is the detection voltage at terminal T1
  • V is the detection voltage at terminal T2
  • V is the detection voltage at terminal T2
  • terminal T3 and the terminals Tla and Tib in Figs. 17 and 18 do not need to be pulled out of the diaphragm when the sensor element is actually used in the polarization complementary operation.
  • a voltage generated by the piezoelectric effect is detected between the terminal T1 and the terminal Tla (in FIGS. 17 to 18).
  • a vibration control voltage for control is applied between terminal T2 and terminal T2a (in the case of Fig. 17 to Fig. 18) and is used to control vibration by the inverse piezoelectric effect.
  • the terminal Tla and the terminal Tib are The same applies to the terminal T3 shown in FIGS. 15 and 16 by connecting these terminals Tla and Tib.
  • the electrode size of the electrode 18 connected to the terminal T1 is maximized by setting the optimum size in consideration of the parasitic capacitance Cp based on the same principle as described in ⁇ Dipolar complementary sensor element ''. .
  • the shape of the electrode 19 connected to the terminal T2 maximizes the vibration control effect due to the inverse piezoelectric effect, so that the maximum area that can be taken on the diaphragm (that is, the remaining total area not occupied by the electrode 18) is reduced. It needs to be shaped.
  • the force explaining the ultrasonic sensor element 20 as an example of the piezoelectric resonant sensor element.
  • the present invention is not limited to this, and the acoustic sensor element, the mechanical vibration using the piezoelectric resonant sensor element. It may be a detection sensor element or the like.
  • the piezoelectric material used in the piezoelectric resonance type ultrasonic sensor element is, for example, a ferroelectric material that is the PZT ceramic thin film layer 17.
  • the present invention is not limited to this, for example, ZnO And it is not a ferroelectric material such as A1N!
  • the detection signal is amplified by a predetermined gain to have a reverse phase.
  • the vibration control signal is applied to the vibration control electrode, the vibration of the detection signal when the vibration wave is detected is controlled to be attenuated, effectively reducing the vibration attenuation without lowering the Q value. It can be carried out. Therefore, the piezoelectric resonance sensor element can be configured as a device with high sensitivity and good vibration damping characteristics. In the prior art, sensitivity has been sacrificed in order to prioritize distance resolution in ultrasonic distance measurement, but the present invention achieves both high sensitivity and high distance resolution.
  • the resonance frequency is required to be exactly the same for a sensor that vibrates for a long time. Reducing the vibration frequency in a short time using the invention alleviates the restriction on the resonance frequency, simplifying the manufacturing process, trimming after manufacturing 'no need for frequency adjustment, lower product defect rate, etc. Can be lowered.
  • the vibration control device and the vibration control method for the piezoelectric resonance sensor element according to the second and fourth inventions in response to the detection signal, the detection signal is delayed for a predetermined time from the rising edge of the detection signal.
  • the piezoelectric resonant sensor element can be configured as a device with high sensitivity and vibration damping characteristics.
  • sensitivity has been sacrificed with priority on distance resolution in ultrasonic distance measurement.
  • high sensitivity and high distance resolution are compatible with the present invention.
  • a sensor that continuously vibrates for a long time requires that the resonance frequency be exactly the same.
  • the restriction on the resonance frequency is relaxed, and as a result of simplification of the manufacturing process, trimming after manufacturing ⁇ no need for frequency adjustment, reduction in product defect rate, etc.
  • the manufacturing cost can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

 圧電共振型超音波センサ素子(20)においては、超音波センサ素子(20)からの検出信号を出力する2対の内側電極(18)及び共通電極(16)とは別に、内側電極(18)の周囲近傍に形成された振動制御用外側電極(19)(ここで、外側電極19と共通電極(16)とで1対である。)をさらに備える。1対の電極(16,18)で検出されて端子(T1)を介して出力される検出信号は、可変利得増幅器(31)により、利得コントローラ(30)により制御されて設定される所定の利得で増幅され、逆相の振動制御信号を端子(T2)を介して振動制御用外側電極(19)に印加されることにより、振動波である超音波を検出したときの検出信号の振動を減衰するように制御する。

Description

明 細 書
圧電共振型センサ素子の振動制御装置
技術分野
[0001] 本発明は、例えば超音波センサ素子、音波センサ素子又は振動センサ素子などの 圧電共振型センサ素子の振動制御装置及び振動制御方法に関する。
背景技術
[0002] 最近、車両制御、距離測定及び障害者補助等のアプリケーションの観点から、超音 波を使用する三次元のイメージング (画像化)技術が大きな注目を集めている。特に 、シリコンダイアフラム上の圧電共振型超音波センサ素子には、製造プロセスが単純 で半導体デバイスへの統合が容易であるという利点がある(例えば、非特許文献 1参 照。)。
[0003] 本発明者らは、シリコンダイアフラム上の圧電型 PZTセラミックス薄膜を使用して、 高感度の圧電型超音波マイクロセンサ素子を発明している (例えば、非特許文献 2参 照。;)。初期のセンサ製造プロセスでは、中心部での分極変化は振動するダイアフラ ム上の周辺部のそれとは常に反対の方向を有することから、上部電極はダイアフラム の中心部にのみ形成していた (例えば、非特許文献 3及び 4参照。 )0
[0004] 上述の従来技術の圧電共振型超音波センサ素子では、その感度は比較的低ぐま た、出力電圧において外来ノイズの影響を受けやすいという問題点があった。上記の 問題点を解決するために、本発明者らは、従来技術に比較して感度を増大させ、か つ外来ノイズの影響を受けにく!、圧電共振型超音波センサ素子 (以下、従来例と 、う 。)を発明した (例えば、特許文献 1参照。 ) o当該従来例に係る圧電共振型超音波セ ンサ素子は、以下のように構成したことを特徴としている。強誘電体を少なくとも 1対 の電極で挟設してなり、所定の共振周波数を有して超音波を検出する圧電センサに てなる圧電型超音波センサ素子において、強誘電体の一方の側に設けられた共通 電極と、強誘電体の他方の側であって強誘電体の略中央部に設けられた内側電極 と、強誘電体の他方の側であって内側電極よりも外側に設けられた外側電極とを備 えて構成される。ここで、超音波を検出するときに内側電極と外側電極との間で出力 電圧を検出する。また、超音波を検出するときに、共通電極に対する内側電極にお ける出力電圧の符号と、共通電極に対する外側電極における出力電圧の符号とが 互いに異なるような位置に外側電極を設ける。
[0005] 特許文献 1:特開 2005— 039720号公報。
非特干文献 1 : T. Faoula et al., Analytical and unite element modeling of resonant s ilicon microsensors", Sensors and Materials, Vol. 9, No. 8, pp.501- 519, 1997.
特許文献 2 : K. Yamashita et al., "Arrayed ultrasonic microsensors with high direc tivity for in-air use using PZT thin film on silicon diaphragms, Sensors and Actuator s A, Vol.97- 98., pp.302- 307, 2002.
非特許文献 3 : K. Yamashita et al., "Ultrasonic Array Sensor Using Piezoelectric Fil m on Silicon Diaphragm and Its Resonant-Frequency Tuning, Transducer '03, Vol.1, No.5, pp.939— 942, 2003.
特許文献 4 : J. T. Bernstein et al., "Micromachined High Frequency Ferroelectric Sonar Transducers , IEEE Transactions on Ultrasonic Ferroelectric Frequency Cou nter, Vol.44, pp.960— 969, 1996.
発明の開示
発明が解決しょうとする課題
[0006] 振動型センサ素子を超音波センサ素子などに利用する場合、その共振特性が問 題となる。共振の機械的品質係数 (Q値)が高いほど、少ない入力エネルギーでも大 きな出力を得ることができ相対感度が高いデバイスを構成できるが、超音波センサ素 子などで距離計測を行う際は、 Q値が高いと振動の減衰が遅く長い尾を引くことにな り、距離分解能の低下を招くという問題点があった。従来例では、必要な距離分解能 が得られるように Q値を下げ、低 、感度に甘んじて素子デバイスを構成して 、た。
[0007] 本発明の目的は以上の問題点を解決し、 Q値を下げることなぐ振動の減衰を効果 的に行うことができる圧電共振型センサ素子の振動制御装置及び振動制御方法を 提供することにある。
課題を解決するための手段
[0008] 第 1の発明に係る圧電共振型センサ素子の振動制御装置は、圧電体を少なくとも 1 対の電極で挟設してなり、所定の共振周波数を有して振動波を検出して検出信号を 出力する圧電共振型センサ素子の振動制御装置において、
上記圧電共振型センサ素子は、上記検出信号を出力する上記 1対の電極とは別に
、上記電極の近傍に形成された振動制御用電極をさらに備え、
上記検出信号を所定の利得で増幅して逆相の振動制御信号を上記振動制御用電 極に印加することにより、振動波を検出したときの検出信号の振動を減衰するように 制御する増幅手段を備えたことを特徴とする。
[0009] 上記圧電共振型センサ素子の振動制御装置において、上記増幅手段の利得を設 定する制御手段をさらに備えたことを特徴とする。また、上記 1対の電極は、好ましく は、上記圧電体の中央部に形成され、かつ円形状、略円形状、略楕円形状又は略 正方形状を有する。
[0010] 第 2の発明に係る圧電共振型センサ素子の振動制御装置は、圧電体を少なくとも 1 対の電極で挟設してなり、所定の共振周波数を有して振動波を検出して検出信号を 出力する圧電共振型センサ素子の振動制御装置において、
上記圧電共振型センサ素子は、上記検出信号を出力する上記 1対の電極とは別に
、上記電極の近傍に形成された振動制御用電極をさらに備え、
上記検出信号に応答して、上記検出信号の立ち上がり時力 所定の時間だけ遅延 した後、所定の振動制御信号を上記振動制御用電極に印加することにより、振動波 を検出したときの検出信号の振動を減衰するように制御する制御手段を備えたことを 特徴とする。
[0011] 上記圧電共振型センサ素子の振動制御装置において、上記制御手段は、上記検 出信号のレベルが所定のしきい値を超えたときに、上記振動波の実質的に半周期乃 至数周期だけ遅延した後、所定の振動制御パルス信号を上記振動制御用電極に印 加することを特徴とする。また、上記 1対の電極は、好ましくは、上記圧電体の中央部 に形成され、かつ円形状、略円形状、略楕円形状又は略正方形状を有する。
[0012] 第 3の発明に係る圧電共振型センサ素子の振動制御方法は、圧電体を少なくとも 1 対の電極で挟設してなり、所定の共振周波数を有して振動波を検出して検出信号を 出力する圧電共振型センサ素子の振動制御方法にお!、て、 上記圧電共振型センサ素子は、上記検出信号を出力する上記 1対の電極とは別に
、上記電極の近傍に形成された振動制御用電極をさらに備え、
上記検出信号を所定の利得で増幅して逆相の振動制御信号を上記振動制御用電 極に印加することにより、振動波を検出したときの検出信号の振動を減衰するように 制御するステップを含むことを特徴とする。
[0013] 上記圧電共振型センサ素子の振動制御方法において、上記利得を設定するステツ プをさらに含むことを特徴とする。また、上記 1対の電極は、好ましくは、上記圧電体 の中央部に形成され、かつ円形状、略円形状、略楕円形状又は略正方形状を有す る。
[0014] 第 4の発明に係る圧電共振型センサ素子の振動制御方法は、圧電体を少なくとも 1 対の電極で挟設してなり、所定の共振周波数を有して振動波を検出して検出信号を 出力する圧電共振型センサ素子の振動制御方法にお!、て、
上記圧電共振型センサ素子は、上記検出信号を出力する上記 1対の電極とは別に 、上記電極の近傍に形成された振動制御用電極をさらに備え、
上記検出信号に応答して、上記検出信号の立ち上がり時力 所定の時間だけ遅延 した後、所定の振動制御信号を上記振動制御用電極に印加することにより、振動波 を検出したときの検出信号の振動を減衰するように制御する制御ステップを含むこと を特徴とする。
[0015] 上記圧電共振型センサ素子の振動制御方法において、上記制御ステップは、上記 検出信号のレベルが所定のしきい値を超えたときに、上記振動波の実質的に半周期 乃至数周期だけ遅延した後、所定の振動制御パルス信号を上記振動制御用電極に 印加することを特徴とする。また、上記 1対の電極は、好ましくは、上記圧電体の中央 部に形成され、かつ円形状、略円形状、略楕円形状又は略正方形状を有する。 発明の効果
[0016] 従って、第 1及び第 3の発明に係る圧電共振型センサ素子の振動制御装置及び振 動制御方法によれば、上記検出信号を所定の利得で増幅して逆相の振動制御信号 を上記振動制御用電極に印加することにより、振動波を検出したときの検出信号の 振動を減衰するように制御するので、 Q値を下げることなぐ振動の減衰を効果的に 行うことができる。それ故、圧電共振型センサ素子を高感度でかつ振動減衰特性の よいデバイスとして構成できる。従来技術では、超音波距離計測において距離分解 能優先で感度が犠牲にされてきたが、本発明により高感度と高い距離分解能が両立 される。また、複数の圧電共振型センサ素子を用いて位相差を利用した角度計測を 行うフェーズドアレイにおいては、振動が長く持続するセンサではその共振周波数が 厳密に一致することが要求されるが、本発明を用いて振動を短時間で抑えることによ り共振周波数に対する制限が緩和され、製造プロセスの簡略化、製造後のトリミング' 周波数調整の不要、製品不良率の低下等により、トータルとしての製造コストを下げ ることがでさる。
[0017] また、第 2及び第 4の発明に係る圧電共振型センサ素子の振動制御装置及び振動 制御方法によれば、上記検出信号に応答して、上記検出信号の立ち上がり時から所 定の時間だけ遅延した後、所定の振動制御信号を上記振動制御用電極に印加する ことにより、振動波を検出したときの検出信号の振動を減衰するように制御するので、 Q値を下げることなぐ振動の減衰を効果的に行うことができる。それ故、圧電共振型 センサ素子を高感度でかつ振動減衰特性のょ 、デバイスとして構成できる。従来技 術では、超音波距離計測において距離分解能優先で感度が犠牲にされてきたが、 本発明により高感度と高い距離分解能が両立される。また、複数の圧電共振型セン サ素子を用いて位相差を利用した角度計測を行うフェーズドアレイにぉ 、ては、振動 が長く持続するセンサではその共振周波数が厳密に一致することが要求されるが、 本発明を用いて振動を短時間で抑えることにより共振周波数に対する制限が緩和さ れ、製造プロセスの簡略化、製造後のトリミング '周波数調整の不要、製品不良率の 低下等により、トータルとしての製造コストを下げることができる。
図面の簡単な説明
[0018] [図 1]本発明に係る第 1の実施形態である圧電共振型超音波センサ素子 20の振動 制御装置の構成を示すブロック図である。
[図 2]本発明に係る第 2の実施形態である圧電共振型超音波センサ素子 20の振動 制御装置の構成を示すブロック図である。
[図 3]図 1及び図 2の圧電共振型超音波センサ素子 20の構造を示す縦断面図である 圆 4]図 1及び図 2の圧電共振型超音波センサ素子 20の構造を示す平面図である。 圆 5]図 1及び図 2の圧電共振型超音波センサ素子 20において、振動制御しないとき の入力超音波信号の信号波形 (a)と、ダイァフラムの橈み量 (b)と、センサ出力信号 (c)とを示す信号波形図である。
圆 6]図 1及び図 2の圧電共振型超音波センサ素子 20において、図 1の振動制御装 置により振動制御したときの入力超音波信号の信号波形 (a)と、ダイァフラムの橈み 量 (b)と、センサ出力信号 (c)とを示す信号波形図である。
圆 7]図 1及び図 2の圧電共振型超音波センサ素子 20において、図 2の振動制御装 置により振動制御したときの入力超音波信号の信号波形 (a)と、ダイァフラムの橈み 量 (b)と、センサ出力信号 (c)とを示す信号波形図である。
圆 8]本実施形態に係る圧電共振型超音波センサ素子 20の電極の最適配置を説明 するための図であって、ダイァフラムの振動振幅と面内歪みの分布を示す 3次元ダラ フである。
[図 9]図 8及び図 10乃至図 14の面内歪みの分布を示すグラフで用いるグレースケー ルでの面内歪みの度合いであるスケールを示す図である。
圆 10]本実施形態に係る圧電共振型超音波センサ素子 20において検出電極及び 振動制御電極の配置を説明するための平面図である。
[図 11]図 10において寄生容量が比較的小さいときの最適配置及び面内歪み分布を 示す略円形の検出電極の形状を示す平面図である。
圆 12]図 10において寄生容量が比較的小さいときに最適配置に準ずる適切配置及 び面内歪み分布を示す円形の検出電極の形状を示す平面図である。
[図 13]図 10において寄生容量が比較的大きいときの最適配置及び面内歪み分布を 示す略矩形の検出電極の形状を示す平面図である。
圆 14]図 10において寄生容量が比較的大きいときに最適配置に準ずる適切配置及 び面内歪み分布を示す略矩形の検出電極の形状を示す平面図である。
[図 15]本実施形態に係る圧電共振型超音波センサ素子 20と、特許文献 1に開示さ れた圧電共振型超音波センサ素子との相違点を説明するための図であって、圧電 共振型超音波センサ素子 20の模式的平面図である。
[図 16]図 15の A— A'線についての縦断面図である。
[図 17]本実施形態に係る圧電共振型超音波センサ素子 20と、特許文献 1に開示さ れた圧電共振型超音波センサ素子との相違点を説明するための図であって、圧電 共振型超音波センサ素子 20の変形例の模式的平面図である。
[図 18]図 17の B— B,線についての縦断面図である。
符号の説明
lO- ··半導体ウェハチップ、
l l - 半導体基板、
12, 13, 15· ··絶縁膜層、
14· 半導体活性層、
16· ··共通電極、
16a, 16b…対向電極、
17· ••PZTセラミックス薄膜層、
18· ··内側電極、
19· "外側電極、
21, 22, 25, 25a, 25b…接続導体、
30· ··利得コントローラ、
31 · 可変利得増幅器、
35· "コンパレータ、
36· ··可変直流電圧源、
40· "ワンショット発振器、
41 · ··遅延回路、
42· ··可変直流電圧源、
43· "スィッチ、
T1, Tla, T2, T2a, T3, Ti l…端子。
発明を実施するための最良の形態
以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の各 実施形態にぉ 、て、同様の構成要素につ 、ては同一の符号を付して 、る。
[0021] 第 1の実施形態.
図 1は本発明に係る第 1の実施形態である圧電共振型超音波センサ素子 20の振 動制御装置の構成を示すブロック図であり、図 3は図 1及び図 2の圧電共振型超音波 センサ素子 20の構造を示す縦断面図であり、図 4は図 1及び図 2の圧電共振型超音 波センサ素子 20の構造を示す平面図である。
[0022] 第 1の実施形態に係る圧電共振型超音波センサ素子 20においては、超音波セン サ素子 20からの検出信号を出力する 2対の内側電極 18及び共通電極 16とは別に、 上記内側電極 8の周囲近傍に形成された振動制御用外側電極 19 (ここで、外側電 極 19と接地側の共通電極 16とで 1対)をさらに備え、 1対の電極 16, 18で検出され て端子 T1を介して出力される検出信号を、可変利得増幅器 31により、利得コント口 ーラ 30により制御されて設定される所定の利得で増幅して逆相の振動制御信号を端 子 T2を介して振動制御用外側電極 19に印加することにより、振動波である超音波を 検出したときの検出信号の振動を減衰するように制御することを特徴としている。
[0023] 本実施形態に係る圧電共振型超音波センサ素子 20は、図 2に示すように、強誘電 体である PZTセラミックス薄膜層 17を、 1対の内側電極 18及び共通電極 16と、 1対 の外側電極 19及び共通電極 16とで挟設してなり、所定の共振周波数を有して超音 波を検出する圧電共振型センサ素子で構成されている。また、図 4に示すように、 PZ Tセラミックス薄膜層 17の上表面の略中央部に、長さ Lの矩形形状の内側電極 18が
a
形成され、その外側周辺部に内側電極 18から離間して内側電極 18を取り囲むように 、全体の形状が略矩形形状である幅 Lの外側電極 19が形成される。内側電極 18は
b
接続導体 21を介して端子 T1に接続され、外側電極 19は接続導体 22を介して端子 T2に接続される。
[0024] ここで、内側電極 18と外側電極 19とは、例えば、超音波を検出したときに、共通電 極 16に対する内側電極 18における出力電圧の符号と、共通電極 16に対する外側 電極 19における出力電圧の符号とが互いに同一となる位置に(なお、ここで、互いに 異なるような位置でもよぐその場合は、振動制御信号を検出信号と同相に設定する 。;)、外側電極 19を形成する。より好ましくは、超音波を検出したときに、共通電極 16 に対する内側電極 18における出力電圧が第 1の符号 (例えばプラス)でその絶対値 が実質的に最大値となり、共通電極 16に対する外側電極 19における出力電圧が上 記第 1の符号とは異なる第 2の符号 (例えばマイナス)でその絶対値が実質的に最大 値となるような位置に、外側電極 19を形成する。これら符号と外側電極 19の形成位 置の設計方法の詳細にっ 、ては、特許文献 1に開示されて 、る。
[0025] まず、本実施形態において用いる、超音波センサ素子 20の構造及び製造方法に ついて以下に説明する。超音波センサ素子 20の感音部の薄板構造としては、ダイァ フラム(四辺固定)、ブリッジ(二辺固定)又はカンチレバー(一辺固定)の形状が一般 によく用いられる力 本実施形態では、正方形ダイアフラム 100を用いる。また、圧電 層としてスピンコートによるゾル 'ゲル製膜法を用いる。このゾル 'ゲル製膜法は、複合 金属アルコキシド溶液を加水分解と重縮合等により粘度調整した前駆体溶液を,スピ ンコートによって製膜し (ゲル膜)、熱処理で結晶化させる製膜プロセスのことである。 なお、圧電層の形成は異方性エッチングが完了した後である。上記ゾル ·ゲル製膜 法で用 ヽる PZTゾル ·ゲル前駆体溶液の組成を次に示す。
[0026] [表 1]
PZTゾル ·ゲル前駆体溶液の組成 溶媒 2—メトキシエタノール
Pb成分 酢酸鉛 3水和物
Zr成分 Zrノルマルブトキシド
Ti成分 Tiイソプロポキシド
PZT組成 Pb :Zr:Ti= 115 : 52 :48
濃度 Pb Zr Ti O として 15%wt
[0027] (a)出発基板として市販の SOI (Silicon On Insulator)構造を有する半導体ウェハチ ップ 10 (活性層 2 m,酸化膜層 1 μ m)を用いる。 4インチ基板 1枚を 2枚にダイシン グして用いる。 1ウェハ当たり 4チップを配置している。
[0028] (b)異方性エッチング時のマスク用及び下部電極である共通電極 16間の絶縁のた めにウェハ両面を熱酸化する。炉内温度 1, 140° Cにて、最初 Oを 5. 0リットル
2 Z分 のみで 5分間ドライ酸ィ匕した後、 O (5. 0リットル
2 Z分) +H (4. 5リットル
2 Z分)で 18
0分ウエット酸化する。酸化絶縁層 17の厚さは約 1 μ mで、 EPW(Ethylenediamine Py rocatechol Water;エチレンジァミン(強アルカリ性の液体) )及び TMAH (Tetramethy lammonium Hydroxide;テマ(有機アルカリ系の現像液)による異方性エッチングに十 分耐える厚さである。
[0029] (c)異方性エッチング用の窓として裏面の酸化膜を BHF (Buffered Hydro-Fluoric ac id;緩衝弗酸 (弱酸性の液体)、すなわち、弗酸と弗化アンモ-ゥムの混合溶液で、主 にシリコン酸ィ匕物をエッチングするために用いる。 )のエッチング液でエッチングする
[0030] (d) EPWにより支持層のシリコンを異方性エッチングする。温度をほぼ 115° Cに保ち 、約 5〜6時間エッチングを行ない、支持層の厚さを 50〜100 /ζ πιとする。これはこの 後の工程 (g)での超音波洗浄に十分耐える厚さである。
[0031] (e)下部電極である共通電極 16として PtZTiを RFスパッタ装置により製膜する。 Ar ガス流量 44sccm, lPa雰囲気において、まず、 Tiを 500Wで 1分、次に Ptを 200W で 10分スパッタすることにより、それぞれ膜厚 0. 02 m及び 0. 2 mを得る。フォト レジストを用いたリフトオフによりパターユングするため製膜時に加熱することはできな いが、作製した膜を線回折装置 (XRD (X- Ray Diflfractometer) )により評価すると、 Pt (111)単一配向で PZTセラミックス薄膜の共通電極 16として十分良質の薄膜が形成 されることを確認している。またリフトオフパターンは、電極パターンが裏面のエツチン グホールによるダイアフラム形状と正確に重なるように、両面マスクァライナによりパタ ーン合わせを行う。
[0032] (f)ゾル 'ゲル製膜法により圧電層として PZTセラミックス薄膜層 17を製膜する。圧電 層製膜後下部電極のコンタクトホールとして PZTを弗硝酸 (HF:HNO : H 0 = 1 : 1
3 2
: 1)でエッチングする。 1 μ mの厚さの PZTセラミックスをエッチングするのに要する時 間は 10〜30秒で、この際のサイドエッチング量は 5〜10 μ mである。
[0033] (g)上部電極である内側電極 18及び外側電極 19として Ptを RFスパッタ装置により 製膜し、リフトオフによりパターユングする。製膜条件は工程 (e)と同じで膜厚 0. 2 μ mである。
[0034] (h)異方性エッチングにより正方形ダイアフラム構造を形成する。エッチングレートが 若干ばらつくが、 SOI構造の I層でエッチングはほぼ停止するので、最もエッチングレ ートの遅いエッチホールに合わせてエッチングを行うことにより正方形ダイアフラム構 造を完成した。また、ゾル 'ゲル製膜法による PZTセラミックス薄膜層 17は 90分程度 の EPW煮沸では電気特性にほとんど劣化が無 、ことを確認して 、るので、エツチン グ中に表面を保護する必要は無 、。
[0035] (i) SOI構造の I層は上述の異方性エッチングの停止層として不可欠であるが,最終 的な構造としては内部応力の原因となり得るので,異方性エッチング終了後除去す る必要がある。通常の熱酸ィ匕膜であるので, BHFによりエッチングすることで除去す る。以上のプロセスでセンサを作製した後、ウェハをダイシングしてチップを分離し、 ノ ッケージに固定し各電極をボンディングしてセンサチップを完成する。
[0036] 以上のプロセスで超音波センサ素子 20を作製した後、ウェハ 10をダイシングしチッ プを分離して、ノ ッケージに固定し、各電極 18, 19に接続された接続導体 31 , 32に 対してボンディングによりそれぞれ各引き出し導線を接続した後、それぞれの各引き 出し導線を端子 Tl , T2 (図 1及び図 4参照。)に接続し、ボンディングしてセンサチッ プを完成する。
[0037] 第 1の実施形態に係る圧電共振型超音波センサ素子 20の振動制御装置において は、振動板の中央部に検出用電極 18を設け、圧電効果を利用して力学的振動を検 知しているが、本実施形態では振動制御用電極 19を検出用電極 18の周囲近傍にも 設けている。これを利用して共振に伴う振動の持続を抑制する。すなわち、図 1に示 すように、検出用電極 18からのセンサ出力信号を可変利得増幅器 31により増幅し、 逆位相の振動制御信号 (帰還信号)を発生して振動制御用電極 19に印加することに より、逆圧電効果で振動を相殺する。なお、振動制御信号をまた検出信号として端子 T11を介して外部回路に出力する。これにより、振動板自身は振動することなぐ振 動体に加わった力を振動制御信号の大きさとして取り出すことができる。これにより、 振動体は振動抑制された状態で若干振動した後に逆圧電効果により強制的に振動 を抑制される。
[0038] 図 5は図 1の圧電共振型超音波センサ素子 20において、図 1の振動制御装置によ り振動制御しないときの入力超音波信号の信号波形 (a)と、ダイァフラムの橈み量 (b )と、センサ出力信号 (c)とを示す信号波形図である。また、図 6は図 1及び図 2の圧 電共振型超音波センサ素子 20において、図 1の振動制御装置により振動制御したと きの入力超音波信号の信号波形 (a)と、ダイァフラムの橈み量 (b)と、センサ出力信 号 (c)とを示す信号波形図である。図 5及び図 6の比較から明らかなように、逆位相の 振動制御信号を発生して振動制御用電極 19に印加することにより、逆圧電効果で振 動を相殺することにより、振動板自身は振動することなぐ振動体に加わった力を振 動制御信号の大きさとして取り出すことができ、これにより、振動体は振動抑制された 状態で若干振動した後に逆圧電効果により強制的に振動を抑制される。
[0039] 従って、本実施形態では、圧電共振型超音波センサ素子 20にお 、て、高 、Q値を 保ったままで、持続する振動を急速に減衰させることが可能であり、高感度と高い距 離分解能を両立することができる。これには、圧電体がセンサ (力学量→電気量の変 換)と駆動源 (電気量→力学量の変換)の両方に使えることを利用し、非常に単純な 構造で振動制御系を構成することができる。
[0040] 以上説明したように、本実施形態によれば、 Q値を下げることなぐ振動の減衰を効 果的に行うことができる。それ故、圧電共振型センサ素子を高感度でかつ振動減衰 特性のよいデバイスとして構成できる。従来技術では、超音波距離計測において距 離分解能優先で感度が犠牲にされてきたが、本実施形態により高感度と高い距離分 解能が両立される。また、複数の圧電共振型センサ素子を用いて位相差を利用した 角度計測を行うフェーズドアレイにおいては、振動が長く持続するセンサではその共 振周波数が厳密に一致することが要求されるが、本実施形態を用いて振動を短時間 で抑えることにより共振周波数に対する制限が緩和され、製造プロセスの簡略化、製 造後のトリミング '周波数調整の不要、製品不良率の低下等により、トータルとしての 製造コストを下げることができる。 [0041] 本実施形態の具体例としては、角度走査を含む超音波による距離計測系に利用で き、ロボット制御やセキュリティシステム等における近接警報、障害物検知から三次元 計測、立体形状計測、周囲空間認識等にも利用できる。
[0042] 第 2の実施形態.
図 2は本発明に係る第 2の実施形態である圧電共振型超音波センサ素子 20の振 動制御装置の構成を示すブロック図である。第 2の実施形態に係る圧電共振型超音 波センサ素子 20の振動制御装置は、図 1の振動制御装置に比較して、利得コント口 ーラ 30及び可変利得増幅器 31に代えて、ワンショット発振器 40とコンパレータ 35と 可変直流電圧源 36とを備えて構成したことを特徴としている。以下、第 1の実施形態 との相違点につ 、て詳述する。
[0043] 図 2において、コンパレータ 35の反転入力端子には、可変直流電圧源 36から検出 しき 、値となる所定の直流電圧が印加される。超音波センサ素子 20の電極 18からの 検出信号は端子 T1を介してコンパレータ 35の非反転入力端子に入力される。コン パレータ 35は、入力される検出信号を、上記しきい値と比較して、検出信号のレベル 力 Sしきい値以上となるときに、すなわち、所定のしきい値以上の検出信号を検出した とき、所定の時間幅を有するパルス信号を発生して、遅延回路 41を介してスィッチ 4 3の制御端子に入力する。ここで、遅延回路 41の遅延時間 td (図 7参照)は、例えば 、検出する振動波である超音波の半周期乃至数周期 (好ましくは半周期であり(図 7 のとき)、 2周期や 3周期であってもよい。)に予め設定される。パルス信号がスィッチ 4 3の制御端子に入力されたときに、スィッチ 43はオンとなり、可変直流電圧源 42から 所定の直流電圧を有する振動制御パルス信号をセンサ出力信号として端子 T11を 介して外部回路に出力するとともに、端子 T2を介して振動制御用外部電極 19に印 加する。これにより、逆圧電効果で振動を相殺する。なお、振動制御信号をまた検出 信号として端子 T11を介して外部回路に出力する。これにより、振動板自身は振動 することなぐ振動体に加わった力を振動制御信号の大きさとして取り出すことができ る。これにより、振動体は半周期分大きく振動した後に逆圧電効果により強制的に振 動を抑制される。
[0044] 図 7は図 1及び図 2の圧電共振型超音波センサ素子 20において、図 1の振動制御 装置により振動制御したときの入力超音波信号の信号波形 (a)と、ダイァフラムの橈 み量 (b)と、センサ出力信号 (c)とを示す信号波形図である。図 5及び図 7の比較力も 明らかなように、逆位相の振動制御パルス信号を発生して振動制御用電極 19に印 加することにより、逆圧電効果で振動を相殺することにより、振動板自身は振動するこ となぐ振動体に加わった力を振動制御信号の大きさとして取り出すことができ、これ により、振動体は半周期分大きく振動した後に逆圧電効果により強制的に振動を抑 制される。
[0045] 以上のように構成された第 2の実施形態に係る振動制御装置は、第 1の実施形態と 同様の作用効果を有する。
[0046] 電極の最適配置についての説明.
以下では、本実施形態に係る圧電共振型超音波センサ素子 20の電極の最適形状 及びその配置方法について図 8乃至図 14を参照して以下に説明する。
[0047] 図 8は本実施形態に係る圧電共振型超音波センサ素子 20の電極の最適配置を説 明するための図であって、ダイァフラムの振動振幅と面内歪みの分布を示す 3次元グ ラフであり、図 9は図 8及び図 10乃至図 14の面内歪みの分布を示すグラフで用いる グレースケールでの面内歪みの度合いであるスケールを示す図である。図 8におい て、斜め左方向が X方向位置であり、斜め右方向が Y方向位置であり、高さ方向が振 動振幅を示す。ここで、面内歪みは、図 9のスケールを用いて示している。また、図 10 は本実施形態に係る圧電共振型超音波センサ素子 20において検出電極及び振動 制御電極の配置を説明するための平面図である。さらに、図 11は図 10において寄 生容量が比較的小さいときの最適配置及び面内歪み分布を示す略円形の検出電極 の形状を示す平面図であり、図 12は図 10において寄生容量が比較的小さいときに 最適配置に準ずる適切配置及び面内歪み分布を示す円形の検出電極の形状を示 す平面図である。また、図 13は図 10において寄生容量が比較的大きいときの最適 配置及び面内歪み分布を示す楕円に近い略矩形の検出電極の形状を示す平面図 であり、図 14は図 10において寄生容量が比較的大きいときに最適配置に準ずる適 切配置及び面内歪み分布を示す略矩形の検出電極の形状を示す平面図である。
[0048] 図 8において、振動するダイァフラムの振動振幅と面内歪みの分布を示す。面内歪 みは、ダイァフラムの中心部と周辺部で異符号となる。圧電的に発生する分極は面 内歪みに比例するので、センサ電極 (検出電極)は分極分布 (歪み分布)に対応する ように設置し、最も出力電圧が高くなるように設計することが好ましい。出力電圧 Vは
、圧電的に生ずる電荷量を静電容量で割ったものであるので、理想的には最も分極 の大きい点に面積ゼロの電極を設置することが望ましい。しかしながら、実際のセン サには寄生容量 Cpを持つので、ある程度以上の電極面積が必要となる。ここで、出 力電圧 Vは次式で表される。
[0049] [数 1] l APdA
v =
C + Cp
[0050] ここで、
[数 2]
Λ
C = s- d
である。
[0051] また、寄生容量 Cpは定数である。
[0052] ここで、 Δ Ρは圧電的に生ずる分極であり、 Aは検出電極の面積であり、 Cは検出電 極によるキャパシタの静電容量であり、 εは圧電体の誘電率であり、 dは圧電体の厚 さである。また、寄生容量 Cpは検出電極の面積に依存しない。
[0053] 上記の式からわかるように、寄生容量 Cpが大きいほど検出電極の面積 Aを大きくす る必要がある。振動制御用電極は、逆圧電効果により効率よく振動を抑制する必要 があるので、できるだけ大面積にする必要がある。従って、寄生容量 Cp等により面積 や形状が確定した検出用電極の外側に、ダイアフラム上の残りの部分全体に広がつ た領域に設置する必要があり、例えば図 10のような配置となる。
[0054] 次いで、図 11乃至図 14に実際の電極配置例を示す。ここでは、内側の検出電極 の形状のみを示している力 実際の構造では、図 10のように、検出電極の外側に振 動制御電極を設置する必要がある。図 11は寄生容量 Cpが小さい場合の例で、比較 的中心付近に集中した領域に電極を設置する。その形状は、歪み (分極)の分布形 状に合わせた円に近い形状である略円形となる。図 12はこれに準ずる形状として、 同様の領域に幾何学的な真円の電極を設置した例である。図 13はより寄生容量 Cp が大きい場合の例で、歪み (分極)分布に沿って角や辺が丸くなつた正方形状 (楕円 に近い略矩形又は略楕円)の形状となる。図 14はこれに準ずる形状として、角を丸く した正方形 (略矩形又は略正方形)の電極を設置した例である。
[0055] 以上説明したように、電極 18とそれに対向する電極 16, 16aは、好ましくは、圧電 体の PZTセラミックス薄膜層 17の中央部に形成され、かつ円形状、略円形状、略楕 円形状又は略正方形状を有する。
[0056] 本実施形態と特許文献 1との相違点につ!/ヽて .
さらに、本実施形態に係る圧電共振型超音波センサ素子 20と、特許文献 1に開示 された圧電共振型超音波センサ素子との相違点について以下、図 15乃至図 18を参 照して説明する。
[0057] 図 15は本実施形態に係る圧電共振型超音波センサ素子 20と、特許文献 1に開示 された圧電共振型超音波センサ素子 (以下、比較例という。)との相違点を説明する ための図であって、圧電共振型超音波センサ素子 20の模式的平面図であり、図 16 は図 15の A—A'線についての縦断面図である。また、図 17は本実施形態に係る圧 電共振型超音波センサ素子 20と、特許文献 1に開示された圧電共振型超音波セン サ素子との相違点を説明するための図であって、圧電共振型超音波センサ素子 20 の変形例の模式的平面図であり、図 18は図 17の B— B'線についての縦断面図であ る。なお、図 15及び図 17において、電極 16, 16a, 16bについては、隠れて見えな V、ために点線で図示すべきである力 図示の簡単化のために実線で図示して 、る。 また、模式図である図 16及び図 18において、部材 11乃至 15を個々に図示していな い。
[0058] すなわち、図 15乃至図 18は、センサ素子の電極構造の模式図であり、本発明者が 試作している実施例の構造は図 15—図 16の構造である力 各電極の役割を明確に 説明するためには、図 17—図 18の方がわ力りやすい。図 15及び図 16における端子 T3は、図 17及び図 18における端子 Tlaと端子 T2aとを短絡したものに相当する。
[0059] 実施形態に係るセンサ素子を示す図 15及び図 16において、内側電極 18は接続 導体 21を介して電極 Tlに接続され、外側電極 19は接続導体 22を介して電極 T2に 接続されている。また、電極 18, 19に対向する共通電極 16は接続導体 25を介して 端子 T3に接続されている。これに対して、変形例に係るセンサ素子を示す図 17及び 図 18において、実施形態の共通電極 16を、電極 18に対向する電極 16a及び電極 1 9に対応する電極 16bに分割している。ここで、内側電極 18は接続導体 21を介して 電極 T1に接続され、外側電極 19は接続導体 22を介して電極 T2に接続されて 、る 。また、電極 18に対向する対向電極 16aは接続導体 25aを介して端子 Tlaに接続さ れ、電極 19に対向する対向電極 16bは接続導体 25bを介して端子 T2aに接続され ている。
[0060] すなわち、実施形態及び比較例に係るセンサ素子におけるセンサダイアフラム部 分の電極構造を模式的に表すと図 15乃至図 18のようになる。以下目的の違いから、 実施形態に係るセンサ素子を「振動制御型センサ素子」といい、比較例に係るセンサ 素子を「分極相補型センサ素子」 、う。
[0061] 比較例に係る分極相補型センサ素子では、端子 T1と端子 T2の間の電位差を出力 信号として検出する。各電極 18, 19は圧電効果により生じた電圧を検出するために 使用する。電極サイズ La, Lbは、それに対応する寄生容量 Cpa, Cpbの大きさを考 慮し、次式の出力電圧 Vが最大となるように決定される。
[0062] [数 3]
図 15— 16の場合
Figure imgf000019_0001
- VT2a ) 図 17— 18の場合
[0063] ここで、 V は端子 T1の検出電圧であり、 V は端子 T2の検出電圧であり、 V は
Tl T2 Tla 端子 Tlaの検出電圧であり、 V は端子 Tibの検出電圧である。図 15及び図 16に
Tib
おける端子 T3や、図 17及び図 18における端子 Tla, Tibについては、実際に分極 相補動作でセンサ素子を使用するときはダイアフラム外に引き出す必要はない。
[0064] それに対して、本実施形態に係る振動制御型センサ素子では、端子 T1と端子 Tla との間(図 17—図 18のとき)において圧電効果により発生する電圧を検出する。端子 T2と端子 T2aとの間(図 17—図 18のとき)には制御用の振動制御電圧を印加して逆 圧電効果により振動を制御することに用いる。ここで、端子 Tlaと端子 Tibとを同電 位 (例えばアース電位)であれば、これらの端子 Tla, Tibを接続して図 15及び図 1 6の端子 T3としても同様である。端子 T1に接続される電極 18の電極サイズは、「分 極相補型センサ素子」で述べたのと同じ原理により、寄生容量 Cpを考慮した最適サ ィズとすることにより出力電圧を最大化する。一方、端子 T2に接続される電極 19の 形状は、逆圧電効果による振動制御の効果を最大とするため、ダイアフラム上でとり 得る最大面積 (すなわち、電極 18が占めていない残りの全面積)の形状とする必要 がある。
[0065] 変形例.
以上の実施形態においては、圧電共振型センサ素子の一例として、超音波センサ 素子 20について説明している力 本発明はこれに限らず、圧電共振型センサ素子を 用いた、音波センサ素子、機械振動検出センサ素子などであってもよい。
[0066] 以上の実施形態において、圧電共振型超音波センサ素子で用いる圧電体として、 例えば PZTセラミックス薄膜層 17である強誘電体を用いて 、るが、本発明はこれに 限らず、例えば ZnOや A1Nなどの強誘電体ではな!/ヽ圧電体であってもよ!/、。
産業上の利用可能性
[0067] 以上詳述したように、第 1及び第 3の発明に係る圧電共振型センサ素子の振動制 御装置及び振動制御方法によれば、上記検出信号を所定の利得で増幅して逆相の 振動制御信号を上記振動制御用電極に印加することにより、振動波を検出したとき の検出信号の振動を減衰するように制御するので、 Q値を下げることなぐ振動の減 衰を効果的に行うことができる。それ故、圧電共振型センサ素子を高感度でかつ振 動減衰特性のよいデバイスとして構成できる。従来技術では、超音波距離計測にお いて距離分解能優先で感度が犠牲にされてきたが、本発明により高感度と高い距離 分解能が両立される。また、複数の圧電共振型センサ素子を用いて位相差を利用し た角度計測を行うフェーズドアレイにおいては、振動が長く持続するセンサではその 共振周波数が厳密に一致することが要求されるが、本発明を用いて振動を短時間で 抑えることにより共振周波数に対する制限が緩和され、製造プロセスの簡略化、製造 後のトリミング '周波数調整の不要、製品不良率の低下等により、トータルとしての製 造コストを下げることができる。 また、第 2及び第 4の発明に係る圧電共振型センサ素子の振動制御装置及び振動 制御方法によれば、上記検出信号に応答して、上記検出信号の立ち上がり時から所 定の時間だけ遅延した後、所定の振動制御信号を上記振動制御用電極に印加する ことにより、振動波を検出したときの検出信号の振動を減衰するように制御するので、 Q値を下げることなぐ振動の減衰を効果的に行うことができる。それ故、圧電共振型 センサ素子を高感度でかつ振動減衰特性のょ 、デバイスとして構成できる。従来技 術では、超音波距離計測において距離分解能優先で感度が犠牲にされてきたが、 本発明により高感度と高い距離分解能が両立される。また、複数の圧電共振型セン サ素子を用いて位相差を利用した角度計測を行うフェーズドアレイにぉ 、ては、振動 が長く持続するセンサではその共振周波数が厳密に一致することが要求されるが、 本発明を用いて振動を短時間で抑えることにより共振周波数に対する制限が緩和さ れ、製造プロセスの簡略化、製造後のトリミング '周波数調整の不要、製品不良率の 低下等により、トータルとしての製造コストを下げることができる。

Claims

請求の範囲
[1] 圧電体を少なくとも 1対の電極で挟設してなり、所定の共振周波数を有して振動波 を検出して検出信号を出力する圧電共振型センサ素子の振動制御装置において、 上記圧電共振型センサ素子は、上記検出信号を出力する上記 1対の電極とは別に
、上記電極の近傍に形成された振動制御用電極をさらに備え、
上記検出信号を所定の利得で増幅して逆相の振動制御信号を上記振動制御用電 極に印加することにより、振動波を検出したときの検出信号の振動を減衰するように 制御する増幅手段を備えたことを特徴とする圧電共振型センサ素子の振動制御装置
[2] 上記増幅手段の利得を設定する制御手段をさらに備えたことを特徴とする請求項 1 記載の圧電共振型センサ素子の振動制御装置。
[3] 上記 1対の電極は、上記圧電体の中央部に形成され、かつ円形状、略円形状、略 楕円形状又は略正方形状を有することを特徴とする請求項 1記載の圧電共振型セン サ素子の振動制御装置。
[4] 上記 1対の電極は、上記圧電体の中央部に形成され、かつ円形状、略円形状、略 楕円形状又は略正方形状を有することを特徴とする請求項 2記載の圧電共振型セン サ素子の振動制御装置。
[5] 圧電体を少なくとも 1対の電極で挟設してなり、所定の共振周波数を有して振動波 を検出して検出信号を出力する圧電共振型センサ素子の振動制御装置において、 上記圧電共振型センサ素子は、上記検出信号を出力する上記 1対の電極とは別に
、上記電極の近傍に形成された振動制御用電極をさらに備え、
上記検出信号に応答して、上記検出信号の立ち上がり時力 所定の時間だけ遅延 した後、所定の振動制御信号を上記振動制御用電極に印加することにより、振動波 を検出したときの検出信号の振動を減衰するように制御する制御手段を備えたことを 特徴とする圧電共振型センサ素子の振動制御装置。
[6] 上記制御手段は、上記検出信号のレベルが所定のしきい値を超えたときに、上記 振動波の実質的に半周期乃至数周期だけ遅延した後、所定の振動制御パルス信号 を上記振動制御用電極に印加することを特徴とする請求項 5記載の圧電共振型セン サ素子の振動制御装置。
[7] 上記 1対の電極は、上記圧電体の中央部に形成され、かつ円形状、略円形状、略 楕円形状又は略正方形状を有することを特徴とする請求項 5記載の圧電共振型セン サ素子の振動制御装置。
[8] 上記 1対の電極は、上記圧電体の中央部に形成され、かつ円形状、略円形状、略 楕円形状又は略正方形状を有することを特徴とする請求項 6記載の圧電共振型セン サ素子の振動制御装置。
[9] 圧電体を少なくとも 1対の電極で挟設してなり、所定の共振周波数を有して振動波 を検出して検出信号を出力する圧電共振型センサ素子の振動制御方法において、 上記圧電共振型センサ素子は、上記検出信号を出力する上記 1対の電極とは別に
、上記電極の近傍に形成された振動制御用電極をさらに備え、
上記検出信号を所定の利得で増幅して逆相の振動制御信号を上記振動制御用電 極に印加することにより、振動波を検出したときの検出信号の振動を減衰するように 制御するステップを含むことを特徴とする圧電共振型センサ素子の振動制御方法。
[10] 上記利得を設定するステップをさらに含むことを特徴とする請求項 9記載の圧電共 振型センサ素子の振動制御方法。
[11] 上記 1対の電極は、上記圧電体の中央部に形成され、かつ円形状、略円形状、略 楕円形状又は略正方形状を有することを特徴とする請求項 9記載の圧電共振型セン サ素子の振動制御方法。
[12] 上記 1対の電極は、上記圧電体の中央部に形成され、かつ円形状、略円形状、略 楕円形状又は略正方形状を有することを特徴とする請求項 10記載の圧電共振型セ ンサ素子の振動制御方法。
[13] 圧電体を少なくとも 1対の電極で挟設してなり、所定の共振周波数を有して振動波 を検出して検出信号を出力する圧電共振型センサ素子の振動制御方法において、 上記圧電共振型センサ素子は、上記検出信号を出力する上記 1対の電極とは別に
、上記電極の近傍に形成された振動制御用電極をさらに備え、
上記検出信号に応答して、上記検出信号の立ち上がり時力 所定の時間だけ遅延 した後、所定の振動制御信号を上記振動制御用電極に印加することにより、振動波 を検出したときの検出信号の振動を減衰するように制御する制御ステップを含むこと を特徴とする圧電共振型センサ素子の振動制御方法。
[14] 上記制御ステップは、上記検出信号のレベルが所定のしきい値を超えたときに、上 記振動波の実質的に半周期乃至数周期だけ遅延した後、所定の振動制御パルス信 号を上記振動制御用電極に印加することを特徴とする請求項 13記載の圧電共振型 センサ素子の振動制御方法。
[15] 上記 1対の電極は、上記圧電体の中央部に形成され、かつ円形状、略円形状、略 楕円形状又は略正方形状を有することを特徴とする請求項 13記載の圧電共振型セ ンサ素子の振動制御方法。
[16] 上記 1対の電極は、上記圧電体の中央部に形成され、かつ円形状、略円形状、略 楕円形状又は略正方形状を有することを特徴とする請求項 14記載の圧電共振型セ ンサ素子の振動制御方法。
PCT/JP2006/309494 2005-05-25 2006-05-11 圧電共振型センサ素子の振動制御装置 WO2006126401A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005152751 2005-05-25
JP2005-152751 2005-05-25

Publications (1)

Publication Number Publication Date
WO2006126401A1 true WO2006126401A1 (ja) 2006-11-30

Family

ID=37451827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309494 WO2006126401A1 (ja) 2005-05-25 2006-05-11 圧電共振型センサ素子の振動制御装置

Country Status (1)

Country Link
WO (1) WO2006126401A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522616A (ja) * 2007-03-26 2010-07-08 レモン メディカル テクノロジーズ, リミテッド 埋込型医療デバイスのためのバイアスされた音響スイッチ
JP2013098724A (ja) * 2011-10-31 2013-05-20 Konica Minolta Holdings Inc 圧電デバイスおよび超音波探触子並びに圧電デバイスの製造方法
US8934972B2 (en) 2000-10-16 2015-01-13 Remon Medical Technologies, Ltd. Acoustically powered implantable stimulating device
US9024582B2 (en) 2008-10-27 2015-05-05 Cardiac Pacemakers, Inc. Methods and systems for recharging an implanted device by delivering a section of a charging device adjacent the implanted device within a body
WO2016167003A1 (ja) * 2015-04-13 2016-10-20 株式会社村田製作所 超音波センサ、および、その制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223683A (ja) * 1985-03-29 1986-10-04 Nec Corp 超音波素子および超音波素子の駆動方法
JPH03276084A (ja) * 1990-03-27 1991-12-06 Yokogawa Electric Corp 超音波距離計
JP2005039720A (ja) * 2003-07-18 2005-02-10 Osaka Industrial Promotion Organization 圧電型超音波センサ素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223683A (ja) * 1985-03-29 1986-10-04 Nec Corp 超音波素子および超音波素子の駆動方法
JPH03276084A (ja) * 1990-03-27 1991-12-06 Yokogawa Electric Corp 超音波距離計
JP2005039720A (ja) * 2003-07-18 2005-02-10 Osaka Industrial Promotion Organization 圧電型超音波センサ素子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934972B2 (en) 2000-10-16 2015-01-13 Remon Medical Technologies, Ltd. Acoustically powered implantable stimulating device
JP2010522616A (ja) * 2007-03-26 2010-07-08 レモン メディカル テクノロジーズ, リミテッド 埋込型医療デバイスのためのバイアスされた音響スイッチ
US9024582B2 (en) 2008-10-27 2015-05-05 Cardiac Pacemakers, Inc. Methods and systems for recharging an implanted device by delivering a section of a charging device adjacent the implanted device within a body
JP2013098724A (ja) * 2011-10-31 2013-05-20 Konica Minolta Holdings Inc 圧電デバイスおよび超音波探触子並びに圧電デバイスの製造方法
WO2016167003A1 (ja) * 2015-04-13 2016-10-20 株式会社村田製作所 超音波センサ、および、その制御方法
JPWO2016167003A1 (ja) * 2015-04-13 2017-05-25 株式会社村田製作所 超音波センサ、および、その制御方法
US20180021814A1 (en) * 2015-04-13 2018-01-25 Murata Manufacturing Co., Ltd. Ultrasonic sensor and control method therefor
US10639675B2 (en) 2015-04-13 2020-05-05 Murata Manufacturing Co., Ltd. Ultrasonic sensor and control method therefor

Similar Documents

Publication Publication Date Title
US11665968B2 (en) Piezoelectric MEMS microphone
Zhou et al. Epitaxial PMnN-PZT/Si MEMS ultrasonic rangefinder with 2 m range at 1 V drive
US8896184B2 (en) Piezoelectric MEMS microphone
JP5327279B2 (ja) 超音波センサ装置
Wang et al. Micromachined thick film piezoelectric ultrasonic transducer array
JP2003284182A (ja) 超音波センサ素子と超音波アレイセンサ装置とそれらの共振周波数の調整方法
WO2006126401A1 (ja) 圧電共振型センサ素子の振動制御装置
Ito et al. High sensitivity ultrasonic sensor for hydrophone applications, using an epitaxial Pb (Zr, Ti) O3 film grown on SrRuO3/Pt/γ-Al2O3/Si
JP2017117981A (ja) 圧電素子、圧電モジュール、電子機器、及び圧電素子の製造方法
JP2005039720A (ja) 圧電型超音波センサ素子
US20240032429A1 (en) Piezoelectric device and method of forming the same
JPH11132873A (ja) 圧電検出器及びその製造方法
US20230320228A1 (en) Piezoelectric film integrated device, manufacturing method thereof, and acoustic oscillation sensor
JP3006861U (ja) 超音波探触子
CN221453218U (zh) 微机电系统超声换能器器件
JP2006332991A (ja) 圧電共振型センサ素子の共振周波数の制御装置及び制御方法
US20230320219A1 (en) Piezoelectric film integrated device, manufacturing method thereof, and acoustic oscillation sensor
WO2022219717A1 (ja) 超音波トランスデューサ、測距装置および超音波トランスデューサの製造方法
WO2024027730A1 (zh) 基底同侧设置有双pmut的微机械超声换能器结构及其制造方法
Fu et al. A novel method for fabricating 2-D array piezoelectric micromachined ultrasonic transducers for medical imaging
Lee et al. Characteristics of thick sol-gel lead zirconate titanate films for angular rate sensor application
Yamashita et al. Highly sensitive structures for ultrasonic microsensors by buckling control of diaphragms through intrinsic stress of PZT films
Yamashita et al. Vibration Modes of Piezoelectric Diaphragms for Ultrasonic Microsensors and Influence of Top Electrodes
CN118489260A (zh) 超声波换能器的制造方法、超声波换能器以及测距装置
JPH02248864A (ja) 超音波トランスジューサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP