Nothing Special   »   [go: up one dir, main page]

WO2006115198A1 - 多孔質セルロース凝集体及びその成型体組成物 - Google Patents

多孔質セルロース凝集体及びその成型体組成物 Download PDF

Info

Publication number
WO2006115198A1
WO2006115198A1 PCT/JP2006/308414 JP2006308414W WO2006115198A1 WO 2006115198 A1 WO2006115198 A1 WO 2006115198A1 JP 2006308414 W JP2006308414 W JP 2006308414W WO 2006115198 A1 WO2006115198 A1 WO 2006115198A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
porous
particles
aggregate
dispersion
Prior art date
Application number
PCT/JP2006/308414
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Obae
Hideki Amakawa
Ichiro Ibuki
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to CN2006800225598A priority Critical patent/CN101203553B/zh
Priority to BRPI0608113A priority patent/BRPI0608113B8/pt
Priority to JP2007514669A priority patent/JP5240822B2/ja
Priority to US11/918,979 priority patent/US8153157B2/en
Priority to EP06745545.1A priority patent/EP1873196B1/en
Publication of WO2006115198A1 publication Critical patent/WO2006115198A1/ja
Priority to US12/926,318 priority patent/US8771742B2/en
Priority to US13/317,943 priority patent/US20120045636A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/262Cellulose; Derivatives thereof, e.g. ethers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/20Agglomerating; Granulating; Tabletting
    • A23P10/28Tabletting; Making food bars by compression of a dry powdered mixture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2059Starch, including chemically or physically modified derivatives; Amylose; Amylopectin; Dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0504Elimination by evaporation or heat degradation of a liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2397/00Characterised by the use of lignin-containing materials
    • C08J2397/02Lignocellulosic material, e.g. wood, straw or bagasse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component

Definitions

  • the present invention relates to a moldability useful mainly as an excipient in the chemical industry, particularly in medicine and food.
  • the present invention relates to a porous cellulose aggregate excellent in fluidity and a molded body composition thereof.
  • Patent Document 1 has a secondary aggregate structure of the primary cellulose particles formed by agglomerating a particle pore volume within 0. 265cm 3 Zg ⁇ 2. 625cm 3 Zg , containing type I crystals Porous cellulose with an average particle size of more than 30 / zm and less than 250 / zm, a specific surface area of 1.3-20m 2 Zg, an angle of repose of 25 ° to less than 44 °, and a property of disintegrating in water
  • An aggregate (corresponding to Comparative Examples 15 to 17), two or more types of cellulose primary particles having different average particle sizes, and a liquid medium, and the average particle size of the cellulose dispersed particles is 1 to: L 10 / zm
  • a method for producing the above-mentioned porous cellulose aggregate comprising a step of drying a certain dispersion is described.
  • porous cellulose aggregate of the patent document requires two or more types of cellulose primary particle groups having different average particle diameters, as described in the examples of the patent document, a commercial sales pulp is used. It was necessary to mix and treat the separate cellulose primary particles prepared in two steps, such as pulverizing the dried acid-insoluble residue.
  • the porous cellulose particles of the present invention have the advantage that they can be obtained in a single step without going through a step such as pulverization.
  • the porous cellulose aggregate of the present invention has an average width and an average thickness within a specific range, and is easy to bend the cellulose primary particles, so that the size of the major axis of the cellulose primary particles is not limited.
  • Rulose particles have a secondary aggregate structure with a pore size smaller than that of the porous cellulose aggregate of the present invention, and have a low degree of swelling in water. Therefore, even in the case of poorly soluble drugs or water-soluble drugs, In order to avoid tableting troubles, such as magnesium stearate, it is necessary to add a water-repellent additive such as magnesium stearate. There was a case.
  • the porous cellulose aggregate of Patent Document 1 is a mixture of two or more types of cellulose particles having different average particle diameters, and when the cellulose dispersion is dried, the cellulose dispersed particle groups having a small average particle diameter are average particles. It is described that by entering between cellulose dispersed particle components having a large diameter, excessive aggregation of cell-dispersed particles having a large average particle diameter is suppressed and a large pore volume is imparted in the secondary aggregate structure. Yes.
  • the porous cellulose aggregate of the present invention uses single cellulose primary particles, it is not as densely aggregated as the porous cellulose aggregate of the patent document and has a pore diameter of at least 3 m. Is different.
  • a clear peak can be identified in the range of 0.1 to 10 m in the patent document, and the central pore diameter, which is the peak top of the pore distribution, is effective for water permeability into the particles.
  • the porous cellulose aggregate of the present invention is a separate cellulose primary product prepared in two steps from a large porous cellulose aggregate having a median pore diameter of 3 m or more, which was not obtained by the production method of the patent document. It has the advantage that it can be prepared in a single step without the need to mix particles.
  • cellulose particles are mixed with a third component such as a crystalline substance that is insoluble or hardly soluble in water and soluble in an organic solvent, and this is mixed with water or an aqueous solution of a water-soluble organic solvent. After granulation and drying, the crystal component is obtained by extracting and removing the third component with an organic solvent. Pore diameter is 0.1 ⁇ m or more and porosity is 20% or more. And porous cellulose particles (corresponding to Comparative Example 6 of the present application) having a fraction of 350 mesh or more and 90% by weight or more.
  • the porous cellulose particles described in the literature have a cellulose-like dense and strong cellulose wall structure in which the cellulose primary particles are uniformly continuous so that the boundaries between the particles are unclear.
  • the particle structure is completely different from that of porous cellulose aggregates.
  • the cellulose particles of Patent Document 2 are excellent in fluidity, water does not easily permeate into a dense and continuous cellulose wall, so that they do not disintegrate in water and may impede the rapid release of active ingredients.
  • the cellulose particles of Patent Document 2 have insufficient moldability, which is poor in plastic deformability when cellulose is compressed, and further, such as crystalline substances that are soluble in organic solvents and organic solvents in the manufacturing process. Since the third component is used, not only the production cost increases, but the active component may be deactivated, which is insufficient for stable use as an excipient.
  • Patent Document 3 fine natural cellulose dispersed in an organic solvent is granulated and dried by a spray drying method, the crystal form is type I, the specific surface area is 20 m 2 / g or more, Porous microcellulose particles having a porous structure with a diameter of 0.01 m or more and a pore volume of 0.3 cm 3 Zg or more and an average particle size of at most 100 ⁇ m (corresponding to Comparative Example 7 of the present application)
  • the micro cellulose particles also have the above cellulose wall structure, and the particle structure is completely different from the porous cellulose aggregate of the present invention. Further, the cellulose particles of Patent Document 3 have a large pore volume per se, and the particle structure is different from that of the porous cellulose aggregate of the present invention. There is a problem.
  • porous cellulose aggregate particles use an organic solvent in the production process, not only the production cost is increased, but also the specific surface area is too large, which promotes the interaction between the active ingredient and moisture. In some cases, the active ingredient may be deactivated, which is insufficient for stable use as an excipient.
  • Patent Document 4 as a cellulose powder having good moldability and disintegration, the average degree of polymerization is 150 to 375, it is pleasing it bulk force S i .84 to 8.92 cm 3 / g, particle size force 300 m
  • the following senorelose powder (corresponding to Comparative Example 8 of the present application) is described.
  • Patent Document 5 as a cellulose powder having good fluidity and disintegration, the average degree of polymerization is 60 to 375, the apparent specific volume is 1.6 to 3. lcm 3 Zg, and the apparent tapping specific volume is 1.4 cmV.
  • a microcrystalline cellulose aggregate (corresponding to Comparative Example 9 of the present application) having an angle of repose of 35 to 42 ° and a component of 200 mesh or more of 2 to 80% by weight.
  • the cellulose powder obtained by the examples described in these patent documents is intentionally formed as in the present invention having a small intraparticle pore volume. It is completely different from the pore structure.
  • these cellulose powders have a small specific surface area of 0.6 to 1.2 m 3 / g and low compression moldability.
  • the apparent specific volume is adjusted to control the formability, fluidity and disintegration of cellulose particles.
  • the apparent specific volume is 2.0 to 2.9 cm 3 Zg. In a relatively small range, the fluidity and disintegration are excellent, but the moldability is not satisfactory. On the other hand, if the apparent specific volume is slightly increased to 3.0 to 3.2 cm 3 Zg, the moldability is excellent. There was a problem that fluidity and disintegration deteriorated.
  • Patent Document 6 as cellulose powder having good moldability, an average particle size of at most 30
  • j8-1, 4-glucan powder (corresponding to Comparative Example 1 of the present application) having a specific surface area of 1.3 m 2 Zg is described.
  • the j8-1, 4-glucan powder described in this document does not have a secondary aggregation structure, and individual primary particles exist alone. Although this glucan powder has good moldability, it has a problem that it is inferior in disintegration and has a small average particle diameter, so that it has poor fluidity.
  • Patent Document 7 has good moldability and disintegration, and has an average degree of polymerization of 100 to 375 obtained by hydrolyzing a cellulosic substance as cellulose powder, an acetic acid retention rate of 280% or more, and Kawakita.
  • a value force SO. 85 to 0.90, b value force 0.05 to 0.10 in the formula (P'V0 / (V0—V) l / a'b + P / a), apparent specific volume 4.0 to 6.
  • cellulose powder corresponding to Comparative Example 10 of the present application having substantially no particles of 355 m or more and an average particle diameter of 30 to 120 m.
  • the cellulose powder obtained by the method of the example described in this document is also intentionally formed as in the present invention because the pore volume in the particles is small according to the result of pore distribution measurement using mercury porosimetry. It is completely different from the pore structure.
  • Patent Document 7 is excellent in compression moldability and disintegration, when the angle of repose is measured with respect to an example that is specifically disclosed and has the best balance, it exceeds 55 °.
  • the formulation that contains many active ingredients with poor fluidity, which is not fully satisfactory, has a problem that the coefficient of variation of the tablet weight increases and affects the uniformity of drug content.
  • the cellulose powder of the literature can impart high hardness when molded under high pressure, but the water penetration into the particles formed by the intentionally formed intraparticle pores is low. There was a problem when the collapse was delayed!
  • Patent Document 8 the moldability, fluidity and disintegration are good, and particles remaining as a cellulose powder on a 38 ⁇ m sieve after passing through a 75 ⁇ m sieve with an average polymerization degree of 00 to 375 are shown.
  • Crystalline cellulose (corresponding to Comparative Example 11 of the present application) characterized in that it is 70% or more of the total weight and the average value of the major axis / minor axis ratio of the particles is 2.0 or more.
  • Patent Document 9 discloses that the average LZD (major axis Z minor axis ratio) of particles having an average degree of polymerization power of 50 to 450 and 75 m or less as a cellulose powder having good moldability, disintegration property and fluidity is 2.0. -4.5, cellulose having an average particle size of 20-250 111, an apparent specific volume of 4.0-7.0 cm3 / g, an angle of repose of 54 ° or less, and a specific surface area of 0.5-4 m 2 Zg There is a description of powder (corresponding to Comparative Examples 2 to 4 of the present application).
  • the cellulose powder described in these publications is completely different from the pore structure intentionally formed as in the present invention because the pore volume in the particles measured by silver porosimetry is small.
  • the cellulose powders described in these publications have a long and slender shape that gives the molded body a high hardness by making the shape of the particles slender. Therefore, the apparent specific volume is increased and the moldability is increased. The higher the value, the lower the fluidity. In the cellulose powders of the examples described in these publications, when the repose angle is measured for the best fluidity, the angle of repose is 44 °.
  • the formulation contains many active ingredients and is continuously molded at a high speed, the coefficient of variation of the tablet weight increases and affects the uniformity of drug content, which is not satisfactory in terms of fluidity. It was. Furthermore, the cellulose powders described in these publications can impart high hardness when molded under high pressure, but have low water permeability into the particles formed by the intentionally formed intraparticle pores. Therefore, there was a problem that the collapse was delayed.
  • Patent Document 10 discloses that an average degree of polymerization is 150 to 450, an average particle size is 30 to 250 ⁇ m, an apparent specific volume is more than 7 cm 3 / g, and a polyethylene glycol retention rate of a molecular weight of 400 is 190%.
  • the cellulose powder described in this document does not have a secondary agglomeration structure, and the cellulose primary particles exist substantially alone.
  • the pore volume in the particles measured by mercury porosimetry is small and completely different from the pore structure intentionally formed as in the present invention.
  • the apparent specific volume is large, the fluidity is greatly degraded.
  • the repose angle of the best fluidity of this document is 50 °.
  • it contains many active ingredients with poor fluidity.
  • the coefficient of variation of the tablet weight increases and affects the uniformity of the content of the drug.
  • the cellulose powder of this document can impart high hardness when molded under high pressure, it does not disintegrate due to its low water permeability into the particles formed by the intentionally formed intraparticle pores. There was a problem with delay!
  • the average particle size of the cellulose dispersed particles existing in the cellulose dispersion must be 50 ⁇ m or more.
  • the average particle size of the cellulose dispersed particles of the present invention is 10 m. This is obtained at less than 50 m, and the manufacturing method is also clearly different.
  • the apparent specific volume is in the range of 2.3 to 6.4 cm 3 Zg.
  • the apparent ratio is In the range where the volume exceeds 7 cm 3 / g, sufficient moldability was obtained, but there was a problem that fluidity and disintegration were poor.
  • Patent Document 11 describes pharmaceutically containing 10 to 70% crystalline cellulose having an average degree of polymerization of 60 to 375 as cellulose particles having good fluidity and 10 to 90% of a water-soluble additive. Inactive spherical nuclei are described.
  • Patent Document 12 a powder containing 50% or more of crystalline cellulose is mixed with a mixing and agitation granulator while adding distilled water and kneaded to have a water absorption capacity of 0.5 to 1.5 mlZg, true sphere.
  • compositionspherical nucleus containing at least 50% crystalline cellulose having a degree of 0.7 or more, a tapping apparent specific volume of 0.65 gZml or more, a friability of 1% or less, and an average degree of polymerization of 60 to 375 (Corresponding to Comparative Example 12 of the present application).
  • hydrolyzed cellulose particles are mechanically reduced in particle size and have a dry density of at least 0.4 gZcm 3 (2.5 cmVg in apparent specific volume) when spray dried.
  • Microcrystalline cellulose particles having a smooth surface with a spherical shape and an average particle diameter of 2 to 35 m are described.
  • Patent Document 14 a cellulosic material is hydrolyzed to an average degree of polymerization of 60 to 350, then mechanically ground to an average particle size of 15 m, and the resulting dispersion containing crystalline cellulose is obtained.
  • 10% or more of crystalline cellulose having an average degree of polymerization of 60 to 350 which can be dried in the form of droplets, with an apparent specific volume of tapping of 0.60-0.95 gZmL and a sphericity of 0.
  • Cellulose particles (corresponding to Comparative Example 13 of the present application) having a shape factor of 1.10-1.50 and an average particle diameter of 10 to 400 ⁇ m are described.
  • the cellulose particles described in these documents do not have a secondary aggregate structure, and the cellulose particles obtained by the methods of Examples described in these patent documents have an apparent specific volume of 2. Although it is 5cm 3 Zg or less and has a shape close to a sphere and excellent fluidity, it is inferior in compression moldability, and a molded body having practically sufficient hardness cannot be obtained at a compression pressure of 10 to 20 MPa.
  • the cellulose particles described in No. 10 have an apparent specific volume that is too high. In particular, when compression molding is performed at a high speed, the cellulose particles may not be practically used in terms of fluidity and disintegration.
  • these cellulose particles do not have intentionally formed intraparticle pores, and the intraparticle pore volume is small, so that the active component can hardly be supported in the particles.
  • the elution of the active ingredient is slow and cannot be put to practical use unless it undergoes complicated steps such as granulation once with water or an organic solvent and drying.
  • the active ingredient is recrystallized during storage, which has the disadvantage that the commercial value is impaired.
  • the active ingredient in a solid preparation for internal use elutes from the preparation into the body fluid in the digestive tract, is absorbed from the digestive tract, enters the systemic blood, and exhibits its medicinal effects.
  • Active ingredients that are sparingly soluble in water have low solubility, so that all of the administered active ingredient may be excreted before it elutes and may not exhibit sufficient medicinal effects.
  • the ratio of the amount of all active ingredients that enter the systemic circulation to the amount of active ingredient administered is generally known as bioavailability.To improve this bioavailability and to improve the active ingredient, Various methods have been investigated for improving the dissolution of hardly soluble active ingredients.
  • Patent Document 15 describes a method of co-grinding a water-insoluble active ingredient with j8-1,4-glucan powder. In this method, it is necessary to pulverize for a long time until the crystallinity of the j8-1,4-glucan powder disappears, and it is necessary to continue a strong shear for a long time with a roll mixer. There was a problem with inefficiency. In addition, ⁇ 8-1,4-glucan, which has lost crystallinity, has a problem of low compression moldability.
  • Patent Document 16 when a poorly water-soluble active ingredient is used as a solid preparation for oral administration by a direct compression method, ⁇ -1,4-glucan, a disintegrant and a surfactant are added to increase strength. It describes a method that eliminates the variation in the content of the active ingredient and increases the disintegration rate of the tablet and the dissolution rate of the active ingredient.
  • a surfactant it is necessary to add a surfactant to promote the elution of the poorly water-soluble active ingredient.
  • the solid preparation is taken, it is digested by the surfactant. The challenge was to cause inflammation in the ductal mucosa.
  • Patent Document 17 describes that tablets are prepared by a wet-pulling method using powdery water mixing, kneading, granulation, and drying steps using a poorly water-soluble main ingredient and
  • a water-soluble polymer solution it is described that by adding a water-soluble polymer solution, a tablet having a high tablet hardness and a high dissolution rate of the active ingredient with a high disintegration time is described.
  • This document also does not describe porous cellulose particles with large pores in the particles, and it is completely unknown to improve the water solubility of drugs by blending poorly water-soluble active ingredients and porous cellulose aggregates. won.
  • many steps related to drying are essential, and the associated equipment cost and the energy cost used for drying are high.
  • Patent Document 18 discloses a porous structure having a specific specific surface area and pore volume, which is obtained by granulating and drying particulate natural cellulose dispersed in an organic solvent by a spray dry method. A method of improving the elution of a drug by mixing a poorly soluble drug with the cellulose particles and adsorbing the cellulose particles by sublimation is described. Since the porous cell-particles described in this document have a high specific surface area and a large intra-particle pore volume, elution is improved when a poorly water-soluble active ingredient is adsorbed.
  • cellulose particles having an excessively high specific surface area are used, and the active ingredient adsorbed on the surface thereof is amorphous. Active ingredients that are difficult to disintegrate due to storage stability problems such as partial crystallization during storage and changes in dissolution rate, and molded compositions such as tablets that are firmly bound. There was a disadvantage that the elution of was slow.
  • the sublimable active ingredient has a problem of extruding the solid preparation force during storage, and in order to prevent this, many of these solid preparations have been subjected to film coating or sugar coating.
  • the active ingredient in the formulation may vary by passing through the film layer and leaching out of the formulation, or it may adhere to the surface of the formulation, resulting in irritation when taking the drug.
  • the commercial value was remarkably lowered by giving off an odor or recrystallization in a storage container such as a bottle. Further, in the case of a preparation without coating, sublimation recrystallization becomes more prominent than when coating is applied.
  • Patent Document 19 as a method for preventing recrystallization due to sublimation of ibuprofen in the solid preparation, a group comprising ibuprofen-containing solid preparation, polyvinylpyrrolidone, acid magnesium and sodium hydrogen carbonate is used. Describes a method for storing one or more stable substances in a closed container such as a bottle. According to the powerful method, crystal adhesion to the sealed container during preparation storage and the irritating odor of the preparation are improved, but polyvinylpyrrolidone, magnesium oxide, sodium carbonate, etc. are put in separate containers in the container. Since the process is complicated, the sublimation is prevented by adding porous cellulose in the preparation such as the sublimable active ingredient-containing preparation of the present invention to form a single preparation. Is completely different.
  • a composition containing an active ingredient that is oily, liquid, or semisolid at room temperature has a liquid component that oozes out from the preparation when it is compression-molded as compared to a solid active ingredient.
  • problems such as tableting damage, liquid spots on the surface of the obtained preparation, and poor fluidity in the case of a granular preparation. Improvement of these problems is an extremely important issue because they cause variations in active ingredient concentration and drug efficacy that cannot be achieved by force that significantly reduces product quality.
  • Patent Documents 20 to 31 in the manufacture of tablets, a liquid 'semi-solid active ingredient is held on an adsorption carrier as it is at room temperature, or the active ingredient is water, an organic solvent, an oil or fat, a water-soluble polymer, A method is described in which a solution dissolved, emulsified and suspended in a surfactant is retained, and then a dry powder or granule obtained is compression molded through a drying step.
  • liquid or semi-solid active ingredients are leached out at room temperature at the time of compression, causing tableting troubles, and sufficient compression molding cannot be obtained. was there.
  • Patent Document 1 International Publication No. 2005Z073286 Pamphlet
  • Patent Document 2 Japanese Patent Application Laid-Open No. 1-272643
  • Patent Document 3 Japanese Patent Laid-Open No. 2-84401
  • Patent Document 4 Japanese Patent Publication No. 40-26274 (CA 699100 A)
  • Patent Document 5 Japanese Patent Laid-Open No. 53-127553 (US4159345 A)
  • Patent Document 6 Japanese Patent Laid-Open No. 63-267731
  • Patent Document 7 JP-A-6-316535 (US5574150)
  • Patent Document 8 JP-A-11-152233
  • Patent Document 9 International Publication No. 02Z02643 Pamphlet (US20040053887 A1)
  • Patent Document 10 International Publication No. 2004Z106416 Pamphlet (EP1634908)
  • Patent Document 11 Japanese Patent Laid-Open No. 4 283520
  • Patent Document 12 Japanese Patent Laid-Open No. 7-173050 (US5505983, US5384130)
  • Patent Document 13 Japanese Patent Publication No. 7-507692 (US5976600 A)
  • Patent Document 14 International Publication No. 02Z36168 Pamphlet HUS20040043964 A1
  • Patent Document 15 Japanese Patent Publication No. 53-22138 (US4036990 A)
  • Patent Document 16 Japanese Patent Laid-Open No. 53-044617
  • Patent Document 17 Japanese Patent Laid-Open No. 54-052718
  • Patent Document 18 Japanese Patent Laid-Open No. 03-264537
  • Patent Document 19 Japanese Patent Application Laid-Open No. 08-193027
  • Patent Document 20 Japanese Patent Laid-Open No. 56-7713
  • Patent Document 21 Japanese Patent Application Laid-Open No. 60-25919
  • Patent Document 22 Japanese Patent Laid-Open No. 61-207341
  • Patent Document 23 Japanese Patent Laid-Open No. 11-193229 (EP972513 B1)
  • Patent Document 24 Japanese Patent Laid-Open No. 11-35487
  • Patent Document 25 Japanese Unexamined Patent Publication No. 2000--16934
  • Patent Document 26 JP 2000-247247 A
  • Patent Document 27 Japanese Patent Laid-Open No. 2001-181181
  • Patent Document 28 Japanese Patent Laid-Open No. 2001-316316
  • Patent Document 29 Special Table 2002- — Publication No. 534455 (US6630150)
  • Patent Document 30 Japanese Unexamined Patent Publication No. 2003-161
  • Patent Document 31 Japanese Patent Laid-Open No. 2003-55219
  • the present invention provides excellent moldability, fluidity, and disintegration used in the production of molded articles containing various active ingredients by making cellulose particles into porous cellulose aggregates having a specific pore volume. It is an object of the present invention to provide an excipient having properties.
  • the present inventors have controlled the particle structure of the cellulose aggregate to develop a secondary aggregate structure, thereby increasing the pore volume in the particle of the cellulose aggregate, and the cellulose aggregate.
  • the present invention was achieved by controlling the powder physical properties within a specific range. That is, the present invention is as follows.
  • (1) has a secondary aggregate structure primary cellulose particles formed by agglomerating, pore volume within a particle is 0. 265cm 3 Zg ⁇ 2. 625cm 3 is Zg, containing type I crystals, the average Particle size greater than m and 250 m or less, specific surface area of 0.1 lm 2 Zg or more and less than 20 m 2 Zg, repose angle 25 ° or more and less than 44 °, swelling degree 5% or more, and disintegration in water
  • the porous cellulose aggregate according to any one of (1) to (3) which can be obtained by a production method including a step of obtaining a cellulose dispersion and a step of drying the obtained cellulose dispersion. Collection,
  • cellulose dispersion is a cellulose dispersion in which particles that do not settle under a centrifugal separation condition with a centrifugal force of 4900 mZs 2 are 10% by weight or less
  • the natural cellulosic material is subjected to shearing or stirring in the process of mechanical treatment such as grinding and grinding, chemical treatment such as hydrolysis, or a combination of both, or these treatments.
  • mechanical treatment such as grinding and grinding
  • chemical treatment such as hydrolysis, or a combination of both, or these treatments.
  • the natural cellulosic material is wood pulp having a level-off polymerization degree of 130 to 250, a whiteness of 90 to 99%, S power to 20%, and S power ⁇ to 10%.
  • the natural cellulosic material strength is a wood pulp having a level-off polymerization degree of 130 to 250, a whiteness of 90 to 99%, S power to 20%, and S power ⁇ to 10%. Quality
  • a method for producing a roulose aggregate A method for producing a roulose aggregate
  • a method for producing a roulose aggregate A method for producing a roulose aggregate
  • a method for producing a roulose aggregate A method for producing a roulose aggregate
  • the natural cellulosic material strength is a wood pulp according to (9), which is a wood pulp having a level-off polymerization degree of 130 to 250, whiteness of 90 to 99%, S force to 20%, S force ⁇ to 10%. Quality
  • a method for producing a roulose aggregate A method for producing a roulose aggregate
  • the natural cellulosic material strength is a wood pulp according to (10), which is a wood pulp having a level-off polymerization degree of 130 to 250, whiteness of 90 to 99%, S force to 20%, S force ⁇ to 10%. Quality
  • a method for producing a cellulose aggregate A method for producing a cellulose aggregate
  • a method for producing a cellulose aggregate (22) The porous material according to (12), wherein the natural cellulosic material is a wood pulp having a level-off polymerization degree of 130 to 250, a whiteness of 90 to 99%, S force to 20%, and S force ⁇ to 10%. quality
  • a method for producing a cellulose aggregate A method for producing a cellulose aggregate
  • a method for producing a cellulose aggregate A method for producing a cellulose aggregate
  • a molded body composition comprising one or more active ingredients and the porous cellulose aggregate according to any one of (1) to (3),
  • a molded article composition comprising one or more active ingredients, and a porous cellulose aggregate obtainable by the method according to (6),
  • a molded article composition comprising one or more active ingredients, and a porous cellulose aggregate obtainable by the method according to (7),
  • a molded body composition comprising one or more active ingredients and a porous cellulose aggregate obtainable by the method according to any one of (8) to (10),
  • a molded article composition comprising one or more active ingredients, and a porous cellulose aggregate obtainable by the method according to (11),
  • a molded article composition comprising one or more active ingredients, and a porous cellulose aggregate obtainable by the method according to (12),
  • a molded article composition comprising one or more active ingredients, and a porous cellulose aggregate obtainable by the method according to (13),
  • the porous cellulose aggregate of the present invention is extremely excellent in moldability, fluidity and disintegration! /
  • the porous cellulose aggregate of the present invention is used.
  • it When used as an excipient, it has excellent mixing uniformity with the active ingredient, excellent content uniformity of the active ingredient that does not vary in weight, sufficient hardness, and friability that prevents tableting problems.
  • a molded article having excellent low disintegration property can be provided by a simple method.
  • the porous cellulose aggregate of the present invention is a solid preparation containing a poorly water-soluble active ingredient, the dissolution, tableting and disintegrating properties of the active ingredient are extremely good. It is particularly useful in the use of other excipients.
  • the porous cellulose aggregate of the present invention in a solid preparation containing a liquid or semi-solid active ingredient, prevents the liquid or semi-solid active component from leaching, and has good disintegration. It is particularly useful in the use of excipients for solid formulations.
  • the porous cellulose aggregate of the present invention is a mixture of an active ingredient and a component other than the active ingredient when the active ingredient is in a very small amount, particularly when the average particle size of the active ingredient is small and the adhesion cohesiveness is high.
  • This is particularly useful in the use of excipients for solid preparations, because it can contribute to the reduction of mixing speed and concentration variation of active ingredients in solid preparations with improved tableting and disintegration properties. is there.
  • the porous cellulose aggregate of the present invention can prevent recrystallization due to sublimation of a sublimable active ingredient in a solid preparation of a sublimable active ingredient, and prevent a decrease in commercial value. It is particularly useful in the use of excipients for solid formulations.
  • the porous cellulose aggregate of the present invention needs to have a secondary aggregate structure in which primary particles are aggregated.
  • This is a secondary aggregate structure where the boundary of primary particles is clear when the particle surface is observed at 250x or 1500x with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the secondary aggregate structure formed by agglomerating primary particles is closely related to the disintegration property. If this particle structure is not used, the disintegration property is deteriorated.
  • the boundaries of primary particles are clear For example, in the case of having a film-like dense and continuous cellulose partition wall, the cellulose primary particles are densely continuous and firmly bonded, so the particles do not disintegrate in water and the disintegration of the molded product also deteriorates. Preferred,
  • the secondary aggregation structure formed by aggregation of primary particles is closely related not only to the disintegration property but also to the elution property of the active ingredient.
  • Porous cellulose particles with a secondary agglomeration structure formed by agglomeration of primary particles are promoted to disintegrate into primary particles in water where the water permeates quickly between primary particles and retains the active ingredient. Since the contact area between the active ingredient and water increases, it has the effect of improving the elution property of the active ingredient that is hardly soluble in water.
  • This secondary agglomeration structure is uniformly distributed regardless of the inner surface of the particle, and when mixed with the active ingredient, the active ingredient is also retained in the cellulose primary particle gap. In particular, the liquid component can be prevented from being leached out.
  • this secondary agglomeration structure can hold active ingredients not only on the particle surface but also inside, contributing to improved mixing speed and uniformity of active ingredients, and greatly reducing concentration variations. I like it because I can.
  • the porous cellulose aggregate of the present invention has a pore volume within a particle is required to be 0. 265cm 3 Zg ⁇ 2. 625cm 3 Zg .
  • Porous particles having a large pore volume in the particles are excellent in plastic deformability, and are excellent in moldability because the particles are easily crushed during compression.
  • the porous cellulose aggregates of the present invention are those in which the pore volume in the aggregated particles is intentionally increased in addition to those derived from the original cellulose. It has improved deformability. For this reason, high compression moldability is exhibited regardless of the apparent specific volume of the particles.
  • the pore volume force within the particle is less than 0.265 cm 3 Zg, it is formed by the intrinsic pores of the cellulose primary particles, or by the agglomeration of the cell source naturally, not intentionally formed. In addition, since the pores inside the particles are not cautious, the plastic deformability is poor. In order to increase the moldability, the apparent specific volume of the particles must be increased, resulting in poor fluidity of the particles.
  • the porous cellulose aggregate of the present invention can ensure good moldability with its relatively small apparent specific volume, and as a result, has excellent fluidity.
  • the particle has a sufficient pore volume. Therefore, the active component taken into the pores in the particles or on the surface of the particles during the mixing process or compression process is difficult to desorb, so that a sufficient amount of liquid components can be retained in the pores in the particles, so that
  • a solid active ingredient that is preferred because it is excellent in prevention, it is possible to maintain a uniform and large amount of finely pulverized active ingredient for the purpose of improving water dispersibility and solubility, and It is particularly preferable because it can prevent recrystallization during storage, and contribute to stabilization and prevention of deterioration of commercial value.It also contributes to improving the mixing speed and mixing uniformity of active ingredients. This is preferable because it can greatly reduce variation.
  • the use of a slightly water-soluble active ingredient dissolved and suspended or emulsified is also preferred because of its excellent liquid component retention.
  • the drug concentration coefficient of variation which is an indicator of variation in the concentration of the active ingredient, preferably does not exceed 3.0% during the mixing time, more preferably 2.0% or less, particularly preferably 1.5% or less. It is. Particularly when an active ingredient having an average particle size of 10 / zm or less and an extremely high aggregation property is mixed, the pore volume in the particle is not less than 0.25 cm 3 Zg as in the case of the porous cellulose aggregate of the present invention. It is preferable that the active ingredient is retained not only on the surface of the particles but also in the interior, so that the drug concentration variation coefficient can be reduced to 2.0% or less.
  • the pore volume in the particles is less than 0.265 cm 3 Zg, the dispersion uniformity and retention of the solid active ingredient and liquid active ingredient are impaired, so that the concentration of the active ingredient varies and the solid preparation aggregates. Resulting in loss of compression moldability, sublimable active ingredients are recrystallized during storage, and the above effects cannot be obtained, such as reduced stability and commercial value. Although it is good, there is a limit to the pore volume that the particles can have, which is at most about 2.625 cm 3 Zg.
  • the larger the pore volume in the particle the more the moldability is improved by imparting plastic deformability to the particle, the active ingredient is taken in, the elution is improved, and the pulverized active ingredient can be retained more. It is preferable in terms of preventing recrystallization of the sublimable component, improving the mixing speed of the active component, improving the mixing uniformity, and retaining the liquid component. If the pore volume becomes too large, the apparent specific volume tends to increase and the fluidity tends to decrease.Therefore, the preferred and range of the pore volume within the particle that can provide a good balance between moldability and fluidity is 0. 265 cmVg ⁇ l. 500 cm 3 Zg, particularly preferably 0.265 cmVg ⁇ l.
  • the pore size distribution of the porous cellulose aggregate of the present invention is measured, for example, by mercury porosimetry.
  • it is preferable that “clear peaks” can be identified in the range of 0.1 to LO / z m.
  • the median pore diameter which is the peak top of the pore distribution, is closely related to the permeability of water into the particles, and the median pore diameter is preferably 0 or more.
  • the central pore diameter is preferably as large as possible. Repulsive force is in the range of 10 to 15 m at most.
  • the packing between the particles becomes too good, and a large fine particle of 3 ⁇ m or more is substantially obtained. It was difficult to obtain the pore size.
  • the balance between moldability and disintegration is particularly excellent, and the median pore diameter is preferably 3 to 15 / ⁇ ⁇ , more preferably 3 to LO / z m.
  • the crystalline form of the porous cellulose aggregate of the present invention must be type I.
  • Known crystal forms of cellulose include type I, type II, type III, and type IV.
  • type I is called “natural cellulose”
  • type II is called “regenerated cellulose” and is widely used.
  • the type III and type IV can be obtained on the laboratory scale, but they are widely used on the industrial scale.
  • Natural cellulose has been used for food as vegetable fiber since ancient times, and is now widely used as a dispersion stabilizer for liquid foods and as a pharmaceutical excipient.
  • regenerated cellulose is obtained by removing chemical products and solvents such as carbon disulfide and sodium hydroxide, regenerating and changing the crystal structure, and is partly wet and used as a food shape-retaining agent.
  • Regenerated cellulose with a crystal form of type II changes its crystal form from that of natural cellulose with a crystal form strength, which makes the particles stiff, reduces plastic deformation during compression, and gives the molded body sufficient hardness.
  • the porous cellulose aggregate of the present invention has an average particle size of more than 30 ⁇ m and 250 ⁇ m. Must be: If the average particle size is 30 m or less, the cellulose particles agglomerate with each other, so when mixing with the active ingredient, the active ingredient dispersion of the resulting molded body that is difficult to disperse the active ingredient evenly becomes large. In addition, the weight variation of the molded product during continuous production tends to increase. On the other hand, if the average particle diameter exceeds 250 m, segregation and segregation are likely to occur when continuously compressing a prescription powder mixed with an active ingredient having poor fluidity.
  • the specific surface area of the porous cellulose aggregate of the present invention should be not less than 0.1 lm 2 Zg and less than 20 m 2 Zg.
  • the specific surface area is less than 0.1 lm 2 Zg, the compression moldability becomes low, and it is difficult to impart high hardness and low friability to the molded product.
  • the specific surface area exceeds 20 m 2 Zg, when the active ingredient is blended with cellulose, the contact area between the cellulose and the active ingredient becomes excessively large, and the active ingredient is easily deactivated. Absent.
  • the angle of repose of the porous cellulose aggregate of the present invention must be 25 ° or more and less than 44 °.
  • the active ingredient is prepared so that it diffuses in the gastric juice or intestinal fluid medium when taken and can quickly increase the medicinal effect, and is often pulverized or originally finely pulverized. Since they are fine powders, they have poor fluidity.
  • the angle of repose of the cellulose powder is 44 ° or more, when a large amount of active ingredients with poor fluidity are blended, it is not preferable from the viewpoint of fluidity of the mixed powder. ,. In particular, tens of thousands to hundreds of thousands of tablets tend to increase the weight variation of the molded product during high-speed tableting.
  • the porous cellulose aggregate of the present invention needs to have a swelling degree of 5% or more. It is preferably 6 to 50%, particularly preferably 7 to 30%.
  • the degree of swelling can be measured as follows. About 10 g of powder is slowly poured into a cylindrical container with a volume of 100 cm 3 (V), and about 50 cm 3 of pure water is added to the powder layer so that the powder is completely wetted. From the volume (V) after mixing and allowing to stand for 8 hours, use the following formula.
  • the degree of swelling is determined by the cellulose concentration given when the primary cellulose particles are aggregated by drying. This is the gap between the next particles, and the larger the value, the more easily the water penetrates into the particles, and the more easily it collapses.
  • those with improved moldability must have low swelling, and as a result, disintegration may not be sufficient, and those with improved fluidity have high swelling and disintegration. Although the moldability was good, it was difficult to keep the moldability at a high level.
  • Patent Document 1 there is a porous cellulose aggregate described in Patent Document 1 that is most excellent in formability and disintegration.
  • the power was 4%. It has not been achieved so far to improve the moldability while maintaining the disintegration property at a high level of swelling, and has been achieved for the first time by the present invention.
  • the apparent specific volume of the porous cellulose aggregate of the present invention is preferably 2.0 to 6.0 cm 3 Zg. Since the porous cellulose aggregate of the present invention has a porous structure, it has hardness, fluidity, and disintegration in a well-balanced manner over almost the entire area of the apparent specific volume. In order to give high compression moldability, the apparent specific volume is preferably 2. Ocm 3 Zg or more, and in order to give high fluidity, the apparent specific volume is preferably 6.0 cm 3 Zg or less. Specially preferred ⁇ , 2.5 to 5.0 cm 3 / g.
  • porous cellulose aggregate of the present invention 0.5 g of cellulose powder is weighed and placed in a mortar (manufactured by Kikusui Seisakusho, using material SUS2, 3), and a circular flat bowl having a diameter of 1.1 cm (Kikusui). Compressed until the pressure reaches 10MPa and 20MPa (made by Seisakusho, material SUS2, 3) (Aikoichi Engineering, using PCM-1A, compression speed is lcmZ) and kept at the target pressure for 10 seconds It is preferable that the hardness of the cylindrical molded body obtained in (1) is 60N or more and 165N or more, respectively.
  • the hardness of lOMPa is less than 60N and the hardness power of 20MPa is less than 165N, the active ingredient is blended in a large amount, and the molded product made from tens of thousands to hundreds of thousands of tablets has low hardness. And tableting troubles such as cabbing are likely to occur. The higher the tablet hardness is, the better. However, the hardness of lOMPa is 160N at most, and the hardness force of 20N is 20N.
  • the porous cellulose aggregate of the present invention is compressed until the pressure becomes lOMPa.
  • the hardness of the molded product on the cylinder obtained by compressing until the hardness of the obtained molded product on the cylinder is 70 to 160N or 20MPa, and the repose angle is more than 36 ° and less than 44 °.
  • the drug content is a high content of about 30% by weight or more
  • the porous cellulose aggregate of the present invention is added in a small amount of about 1 to 30% by weight, sufficient moldability, friability, and disintegration are achieved.
  • it is excellent because the physical properties required for the preparation such as uniformity of content can be imparted.
  • the conventional cellulose powder has a high drug content of about 30% by weight or more, and even though it can suppress tableting troubles such as sticking and cabbing, it does not have sufficient fluidity. In terms of weight CV, content CV, etc., it was unsuccessful in practical use.
  • the present invention is a remarkably improved flowability of a conventional cellulose powder, and has been made compatible at a high level in spite of the fact that the moldability and flowability are contradictory so far. It is excellent in terms.
  • the porous cellulose aggregate of the present invention is molded on a cylinder obtained by compressing until the hardness of the molded article on a cylinder obtained by compressing until the pressure becomes lOMPa is 60-10 ON or 20 MPa.
  • the drug content should be 30% by weight in a formulation that can contain about 30% by weight or more of excipients. It is particularly preferable in that it becomes possible for the first time to have a high content of about the above level.
  • the moldability decreases when the angle of repose is decreased. Therefore, if cellulose powder is contained in an amount of about 30% by weight or more, and an attempt is made to increase the drug content, cellulose having good fluidity is obtained. Powders have insufficient moldability, and cellulose with good moldability has insufficient fluidity, making it difficult to formulate.
  • the present invention significantly improves the fluidity of conventional cellulose powders in the above applications.
  • the porous cellulose aggregate of the present invention is prepared by the method described above.
  • the collapse time of the cylindrical molded body obtained under the condition of compressing to 20 MPa and holding at the target pressure for 10 seconds is preferably 75 seconds or less in terms of disintegration. Particularly preferably, it is 50 seconds or less. The shorter the decay time, the better.
  • active ingredients are diffused in the gastric juice intestinal fluid medium when ingested and are prepared so as to quickly increase the medicinal effect. It is slow and does not absorb quickly in the gastrointestinal tract and tends to decrease its immediate effect.
  • Compression moldability and disintegration are contradictory properties, and the porous cellulose aggregate of the present invention has these contradictory properties enhanced to an unprecedented level, and is preferably 1 OMPa.
  • the hardness of the molded product on the cylinder obtained by compressing until it becomes 60 to 160 N, or the hardness of the molded product on the cylinder obtained by compressing until 20 MPa is 165 to 410 N, and the disintegration time is 75 seconds.
  • the hardness of the molded article on a cylinder obtained by compressing until lOMPa is particularly preferably 60 to 160 N, or the hardness of the molded article on a cylinder obtained by compressing until 20 MPa is 165 to 410 N, and
  • the decay time is less than 50 seconds.
  • the porous cellulose aggregate of the present invention can have a larger central pore diameter. Therefore, when compared with the same hardness with a high degree of swelling, the disintegration time Has the advantage of being short!
  • the porous cellulose aggregate of the present invention comprises 55 parts by weight of acetoaminophen (manufactured by API Corporation, powder type), light anhydrous kaiic acid (manufactured by Nippon Aerosil Co., Ltd., trade name, Aerosil 200).
  • the molded body having a weight of 200 mg preferably has a hardness of 50 N or more, a friability of less than 1%, and no tableting trouble.
  • the porous cellulose aggregate of the present invention has a prescription powder having a repose angle of 45 ° to 55 ° composed of a medicinal component and a component other than cellulose particles and having a poor flowability of 0.001 to 50% by weight.
  • the repose angle of the final prescription powder constituting the molded product composition of the present invention is 25 ° to 45 °, and more than 50,000 tablets per hour.
  • the tablet composition has a tablet hardness of 50N to 100N (compression pressure range 1 to LOkN) and tablet weight variation (CV value) of 2.0% or less.
  • the angle of repose of all prescription powders is 45 ° or less
  • the tablet hardness of the molding composition is 50 to: L0 0N
  • tablet weight variation (CV value) is 1.5% or less, particularly preferably all
  • the repose angle of the prescription powder is 42 ° or less
  • the tablet hardness of the molding composition is 50 N to 100 N
  • the tablet weight variation (CV value) is 1.0% or less (Examples 17 to 19 and Comparative Examples 80 to 91).
  • the porous cellulose aggregate of the present invention has a good balance of moldability, fluidity, and disintegrability, the medicinal components in the composition, such as direct tableting, and the porous cell of the present invention.
  • the flowability of other components other than mouth agglomerates is poor (the angle of repose is 45 ° to 55 °), and Z or the compression moldability of the component is poor, a large amount of porous cellulose agglomerates are blended
  • the conventional cellulose powder and cellulose particles have a remarkable effect which is not obtained.
  • the porous cell of the present invention Loose aggregates are at a high level not found in conventional cellulose powders and cellulose particles, and have an excellent balance of moldability, fluidity, and disintegration, so even if a large amount of porous cellulose aggregates are blended, fluidity deterioration will not occur. It does not occur but rather has the advantage of improving the fluidity.
  • the term “mixed in a large amount” as used in the present invention means that 30 to 90% of the present porous cellulose aggregate is contained in the composition. Preferably it is 30 to 80%, particularly preferably 30 to 70%. Below, the manufacturing method of the cellulose powder of this invention is described.
  • the porous cellulose aggregate of the present invention has, for example, an average particle diameter of cellulose primary particles of 10 ⁇ m or more and less than 50 ⁇ m, an average width of 2 to 30 ⁇ m, and an average thickness of 0.5 to 5 ⁇ m. It is necessary to obtain a dispersion containing a natural cellulosic material (hereinafter also referred to as a cellulose dispersion). It is preferable to make the primary particles of cellulose in such a shape because the entanglement of the primary cellulose particles in the drying process can be promoted.
  • the present invention focuses on the shape of the cellulose primary particles.
  • entanglement of particles can be promoted by controlling this within a specific range.
  • the aggregated particles can be easily controlled to be spherical, and voids can be easily formed inside the aggregated particles, thereby enhancing the plastic deformability of the particles and making it easier to impart formability. This is possible for the first time.
  • the porous cellulose aggregate of the present invention is produced by a production method including a step of drying the cellulose dispersion. can get.
  • the natural cellulosic substance may be plant or animal, for example, wood, bamboo, straw, rice straw, cotton, ramie, bagasse, kenaf, beet, squirt, nocterelle cell mouth. It is a fibrous material derived from a natural product containing cellulose such as cellulose and has only to have a cellulose I type crystal structure.
  • a raw material one kind of natural cellulosic substance among the above may be used, or a mixture of two or more kinds may be used. Further, it is preferably used in the form of refined pulp, but the pulp refining method is not particularly limited, and any pulp such as dissolving pulp, kraft pulp, NBKP pulp, etc. may be used.
  • a Wood-derived pulp is preferred because of its high cellulose purity, easy availability, and high supply stability.
  • a wood pulp having a level-off polymerization degree of 130 to 250, a whiteness of 90 to 99%, an S force of 20%, and an S force of 10% as measured by a copper ethylenediamine solution method is preferable.
  • a level-off polymerization degree of less than 130 is not preferable because moldability is hardly exhibited.
  • the degree of polymerization exceeds S250, it is not preferable because the average width and average thickness of the cellulose primary particles are difficult to control within a specific range.
  • the whiteness is less than 90, the appearance of the porous cellulose aggregate is inferior, which is not preferable. Higher whiteness is preferable, but at most it is about 99% at most. If S and S are out of the above range, it is not preferable in terms of formability and yield. here
  • the natural cellulosic material may or may not hydrolyze raw materials such as pulp.
  • hydrolyzing either acid hydrolysis, alkaline oxidative decomposition, thermal moisture decomposition, steam explosion, or any other method may be used alone, or two or more may be used in combination. May be.
  • water is preferable as the medium used when the solid content containing the natural cellulosic substance is then dispersed in an appropriate medium, but there is no particular limitation as long as it is industrially used.
  • a mixture of water and an organic solvent may be used.
  • the organic solvent include alcohols such as methanol, ethanol, isopropyl alcohol, butyl alcohol, 2-methylbutyl alcohol, and benzyl alcohol, hydrocarbons such as pentane, hexane, heptane, and cyclohexane, acetone, and ethylmethyl.
  • Ketones such as ruketone
  • organic solvents used in pharmaceuticals Preferred are those classified as solvents in the “Pharmaceutical Additives Encyclopedia” (published by Yakuji Nippo Co., Ltd.). Water and organic solvents can be used alone or in combination of two or more. Once dispersed in one medium, the medium is removed and dispersed in a different medium. A little.
  • the porous cellulose aggregate of the present invention is not particularly limited as long as the natural cellulosic material is a known method.
  • the average particle size of cellulose primary particles is 10 ⁇ m or more but less than 50 ⁇ m, the average width is 2 to 30 m, and the average thickness is 0. It is necessary to prepare a cellulose dispersion having 5 to 5 / ⁇ ⁇ and a solid content of 5 to 40% by weight, and then to dry.
  • the cellulose primary particles referred to in the present invention are fibers constituting a natural cellulosic material, or are subjected to mechanical treatment such as pulverization and grinding, or chemical treatment such as hydrolysis of the natural cellulosic material.
  • mechanical treatment such as pulverization and grinding, or chemical treatment such as hydrolysis of the natural cellulosic material.
  • it means a particle having a size in the range of 1 to 500 ⁇ m in which the fiber is divided and newly formed.
  • Examples of a method for reducing the average particle diameter of cellulose primary particles to less than 50 ⁇ m include mechanical treatment such as pulverization and grinding, or cyclone.
  • This is achieved by appropriately adjusting conditions that are generally known to affect the treatment, such as sieve opening, and for example, when chemical treatment such as acid hydrolysis is performed.
  • This can be achieved by appropriately changing the conditions such as acid concentration and temperature at the time, or in addition to those conditions already known to affect the mechanical treatment and fractionation treatment. Is done.
  • the method for setting the average width of the cellulose primary particles to 2 to 30 ⁇ m and the average thickness to 0.5 to 5 ⁇ m is particularly limited as long as it is a method of tearing cellulose primary particles mainly in the longitudinal direction.
  • a treatment such as high-pressure homogenizer treatment, and mechanical treatment such as grinding or fractionation treatment, or a combination of both as appropriate.
  • high-pressure homogenizer treatment the pressure range may be adjusted appropriately from 10 to 200 MPa, depending on the amount of treatment!
  • a pulp having an average width of cellulose primary particles of ⁇ 30 ⁇ m and an average thickness of 0.5-5 ⁇ m may be selected and used.
  • the cellulose dispersion is preferably 10% by weight or less of particles that do not settle under centrifugal conditions with a centrifugal force of 4900 mZs 2.
  • the hydrolysis conditions are hydrolyzed. For example, a method of appropriately changing in a direction in which it is difficult to proceed, a method of removing fine particle components that are difficult to settle by fractionation from the hydrolysis residue or dispersion, or a method of combining both.
  • Centrifugation conditions with a centrifugal force of 4900mZs 2 as used in the present invention are based on the centrifugal force calculation method defined in the following formula, taking into account the rotational radius (using the maximum radius) of the commercial centrifuge to be used. This means that the number of rotations is determined for each device, and the center is separated for 10 minutes in the range of 15 to 25 ° C under the condition of the number of rotations.
  • inverter As sales equipment, it is an inverter 'multipurpose high-speed cooling centrifuge (model number 6930, manufactured by Kubota, Rapid uses acceleration and deceleration modes), RA —400 angle rotor (capacity: 50cm 3 , material: polypropylene copolymer, tube) Corner (Degree: 35 °, maximum radius: 10.5 cm, minimum radius 5.8 cm, rotation speed 4100 rpm) is preferably used.
  • the average particle size of the primary cellulose particles is 10 ⁇ m or more and less than 50 ⁇ m, the average width is 2 to 30 ⁇ m, and the average thickness is 0.5 to 5 / ⁇ ⁇ (preferably, in addition to these, centrifugal Se force 4900mZs particles do not settle in centrifugal separation conditions of 2 to 10 wt% or less) to prepare a cellulose dispersion of the time of drying the cellulose dispersion has an average thickness and a specific average width cellulose Since primary particles tend to bend easily, entanglement with adjacent cellulose primary particles tends to occur, contributing to the formation of voids inside the aggregates when the aggregates of cellulose primary particles are formed.
  • cellulose dispersion 10% by weight or less of the primary cellulose particles in the cellulose dispersion that do not settle under centrifugal conditions with a centrifugal force of 4900 mZs 2 can be used to enclose the voids formed in the aggregate. Buried Contributes to the formation of porous secondary aggregate structure having an Nag dry large pore volume even in the continued particles-out bow I after.
  • the average particle size of the cellulose primary particles is 50 ⁇ m or more, even if the shape of the cellulose primary particles is in a specific range, the primary particles that are difficult to take a secondary aggregate structure are dried alone. Therefore, it is preferable in terms of the pore volume in the particles, and the apparent specific volume becomes too large, which is preferable in terms of fluidity.
  • the average particle size of the cellulose primary particles is 10 ⁇ m or less, the interparticle bonding force becomes too strong when the particles take a secondary aggregate structure, which is not preferable in terms of disintegration.
  • the average width of the cellulose primary particles exceeds 30 m, the cellulose primary particles are difficult to bend and the entanglement with the adjacent cellulose primary particles is lowered, which is not preferable in terms of pore volume in the particles. If the average width of the cellulose primary particles is less than 2 m, it is not preferable because it is densely aggregated and pores in the particles are not formed, and the moldability and disintegration properties are poor.
  • the average thickness of the primary cellulose particles exceeds 5 ⁇ m, the primary cellulose particles are difficult to bend, and the entanglement with the adjacent primary cellulose particles decreases, which is not preferable in terms of pore volume in the particles.
  • the lower the lower limit of the average thickness of the cell mouth primary particles the more likely the particles are entangled.
  • it is preferable in terms of the pore volume in the particles it is at most about 0.5 m. If the width of the cellulose primary particles is less than 2 ⁇ m and the thickness is less than 0.5 ⁇ m, such fine particles are closely bonded and the pore volume in the particles is reduced, so that moldability and disintegration are reduced. Not good because it is inferior.
  • the particle shape of the primary cellulose particles it is preferable to use those having an average value ratio (LZ D) of the major axis to the minor axis of 2.0 or more.
  • LZ D average value ratio
  • the cellulose dispersion referred to in the present invention is not particularly limited, but i) A method in which cellulose primary particles obtained by treating single or two or more natural cellulosic substances are used as a cellulose dispersion.
  • Ii) A method in which the cellulose dispersion liquid in i) is divided and subjected to separate treatment, and then mixed to obtain a cellulose dispersion liquid.
  • the cellulose dispersion liquid in i) or ii) is fractionated, After the treatment, it may be produced by any method of mixing to make a cellulose dispersion, or iv) mixing two or more types of separately prepared cellulose primary particles to make a cellulose dispersion. Economic viewpoint i) is particularly preferred.
  • the treatment method applied here may be either wet or dry, and each of those obtained by wet may be mixed before drying, or each of those obtained by dry may be dried. Even if it mixes before, the thing obtained by the wet type or the dry type may be combined.
  • Known methods and the like are not particularly limited, and examples include methods such as mechanical treatment of pulverization and grinding, centrifugation using a cyclone and a centrifuge, and classification such as classification using a sieve. It may be a combination of both methods.
  • a mixing blade such as a portable mixer, a three-dimensional mixer, a side mixer, etc., which is a one-way rotating type, a multi-axis rotating type, a reciprocating reversing type, a vertical moving type, a rotating + vertical moving type, a pipe type, etc.
  • a grinding method using a jet mixer, a jet mixer agitating method such as a line mixer, a grinding method using a high shear homogenizer, a high pressure homogenizer, an ultrasonic homogenizer, etc. You can use the grinding method.
  • the pulverization methods include screen-type pulverization methods such as screen mills and hammer mills, blade-rotating screen-type pulverization methods such as flash mills, air-flow-type pulverization methods such as jet mills, and ball-type pulverization methods such as ball mills and vibration ball mills.
  • the method, blade stirring type pulverization method, etc. may be misaligned.
  • the aggregate of cellulose dispersed particles obtained by the above operation is preferably made into a dispersion having a concentration of 5 to 40% by weight before drying. When this concentration is less than 5% by weight, the average particle diameter of the obtained cell mouth particles becomes small and the self-fluidity tends to be impaired. On the other hand, if this concentration exceeds 40% by weight, the apparent specific volume of the cellulose particles becomes small and the compression moldability tends to be impaired.
  • the amount is preferably 10 to 40% by weight, more preferably 15 to 40% by weight.
  • the drying method is not particularly limited. For example, any one of freeze drying, spray drying, drum drying, shelf drying, airflow drying, and vacuum drying may be used. Two or more kinds may be used in combination.
  • the spraying method for spray drying can be any spraying method such as a disk type, pressurized nozzle, pressurized two-fluid nozzle, pressurized four-fluid nozzle, etc. May be used in combination. From an economical viewpoint, spray drying is preferred. When spray drying is performed, a foaming agent or a gas is added for the purpose of accelerating the vaporization rate of the medium even if a small amount of water-soluble polymer or surfactant is added for the purpose of lowering the surface tension of the dispersion. It may be added to the dispersion.
  • water-soluble polymer examples include hydroxypropylcellulose, hydroxypropylmethylcellulose, polyacrylic acid, carboxyvinyl polymer, polyethylene glycol, polybulal alcohol, polybulurpyrrolidone, methylcellulose, gum arabic, and starch paste.
  • Water-soluble high molecular weight compounds described in “Pharmaceutical Additives Encyclopedia” (published by Yakuji Nippo Co., Ltd.) can be used, and one kind can be used alone or two or more kinds can be used in combination.
  • surfactant examples include phospholipid, glycerin fatty acid ester, polyethylene glycol fatty acid ester, sorbitan fatty acid ester, polyoxyethylene hydrogenated castor oil, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, and polyoxyethylene.
  • Ethylene nonyl phenyl ether polyoxyethylene polyoxypropylene glycol, polyoxyethylene sorbitan sun monolaurate, polysorbate, sorbitan monooleate, glyceride monostearate, monooxyethylene sorbitan monopalmitate, monooxyethylene sorbitan “Pharmaceutical Additives Encyclopedia” such as monostearate, polyoxyethylene sorbitan monooleate, sorbitan monopalmitate, sodium lauryl sulfate Can be mentioned those classified as a surfactant in Daily Co., Ltd. issued) You can use it alone or in combination of two or more.
  • effervescent agents include “Pharmaceutical Additives Encyclopedia” such as tartaric acid, sodium hydrogen carbonate, potato starch, citrate anhydride, medicinal sarcophagus, sodium lauryl sulfate, lauric acid diethanolamide, and laumacrogol (Pharmaceutical Daily Inc. ( (E.g., issue)), and may be used alone or in combination of two or more.
  • pyrolysis of sodium bicarbonate, ammonium bicarbonate, etc. to generate gas react with acids such as sodium carbonate, ammonium carbonate, etc. to generate gas Carbonates may be used. However, when using the above carbonates, it is necessary to use them together with an acid.
  • the acid examples include organic acids such as citrate, acetic acid, ascorbic acid, and adipic acid, acid substances such as protonic acid such as hydrochloric acid, sulfuric acid, phosphoric acid and nitric acid, and Lewis acid such as boron fluoride. Those used as food are preferred, but other than these have the same effect. Impregnating the dispersion with gases such as nitrogen, carbon dioxide, liquefied petroleum gas, and dimethyl ether.
  • gases such as nitrogen, carbon dioxide, liquefied petroleum gas, and dimethyl ether.
  • water-soluble polymers are not particularly limited as long as they are added before drying.
  • the molded body composition referred to in the present invention is not particularly limited as long as it contains at least one active ingredient and the porous cellulose aggregate of the present invention.
  • the active ingredient is 0.001 to 99%, and the cellulose powder of the present invention is 1 to 99%. Furthermore, it can be processed by known methods such as mixing, stirring, granulation, sizing, and tableting. If the active ingredient is less than 0.001%, a therapeutically effective amount cannot be secured, and if it exceeds 99%, the porous cellulose aggregate of the present invention is less than 1%, and the practical hardness, friability, It is difficult to obtain a molded body showing collapse.
  • the molded body composition of the present invention includes excipients, disintegrants, binders, fluidizing agents, lubricants, flavoring agents, flavoring agents, coloring agents, and sweetening agents as necessary. It is also free to include.
  • Examples of the molded body composition referred to in the present invention include tablets, powders, fine granules, granules, extracts, pills and the like when used for pharmaceuticals. Not only pharmaceuticals, but also foods such as confectionery, health foods, texture improvers, dietary fiber reinforcements, solid foundations, bath preparations, veterinary drugs, diagnostic drugs, agricultural chemicals, fertilizers, ceramic catalysts, etc. Included in the invention.
  • wrinkle active ingredient means pharmaceutical medicinal ingredient, agricultural chemical ingredient, fertilizer ingredient, feed ingredient, food ingredient, cosmetic ingredient, pigment, fragrance, metal, ceramics, catalyst, surfactant, solid form (Powder, crystal, etc.), oily, liquid, semi-solid, etc. may be used. Further, it may be coated for the purpose of elution control and bitterness reduction.
  • the active ingredients may be used alone or in combination.
  • the active ingredient may be dissolved, suspended, or emulsified in a medium.
  • medicinal medicinal ingredients include antipyretic analgesic / anti-inflammatory drugs, hypnotic sedatives, drowsiness preventives, antipruritics, pediatric analgesics, stomachic drugs, antacids, digestive drugs, cardiotonic drugs, arrhythmic drugs, antihypertensive drugs, vasodilators Drugs, diuretics, anti-ulcers, intestinals, osteoporosis treatments, antitussive expectorants, antiasthmatics, antibacterials, frequent urinations, nourishing tonics, vitamins, etc. It becomes.
  • the medicinal ingredients can be used alone or in combination of two or more.
  • the active pharmaceutical ingredients used in the present invention include, for example, aspirin, aspirin aluminum, acetaminophen, ethenamide, sazapyrine, salicylamide, lactylphenetidine, isothibenzyl hydrochloride, diphenylhydraline hydrochloride, diphenhydramine hydrochloride, Difeterol hydrochloride, triprolidine hydrochloride, triberenamine hydrochloride, tondialamine hydrochloride, phenetazine hydrochloride, methodilazin hydrochloride, diphenhydramine salicylate, carbinoxamine diphenyldisulfonate, diphenhydramine tannate, diphenyldimethypropylmethadipyramedapromate teprolate Methylene disalicylate, carbinoxamine maleate, dl-chloramine-lamine maleate, d-chlorfelaminate maleate , Difeterol phosphat
  • the poorly water-soluble active ingredient as used in the present invention refers to, for example, a pharmaceutical active ingredient, and the amount of water required to dissolve the solute lg in the 14th revised Japanese Pharmacopoeia is 30 mL or more. If it is sparingly soluble in water, the effect can be obtained by blending it into the composition of the present invention as an active ingredient regardless of the degree of sublimation and surface polarity.
  • Examples of the poorly water-soluble and solid active ingredient include acetaminophen, ibuprofen, benzoic acid, ethenzamid, caffeine, camphor, quinine, calcium dalconate, dimethinorecapronole, snolefamine, theophylline, Antipyretic analgesics such as theopromin, riboflavin, mefenesin, phenovabital, aminophylline, thioacetazone, taercetin, rutin, salicylic acid, theophylline sodium salt, virapital, quinine hydrochloride, irgapilin, diquitoxin, griseofulvin, phenacetin, etc.
  • Drugs muscle relaxants, blood pressure sclerosis agents, antihistamines, etc., acetylsiramycin, ampicillin, erythromycin, xatamycin, chloramphenicol, triacetyloleandomycin, Antibiotics such as isatin and colistin sulfate, methyltestosterone, methylandrostetolone diol, progesterone, estradiol benzoate, ethi-rest radiol, deoxycorticosterone 'acetate, cortisone acetate, hide mouth cortisone, hide mouth cortisone Steroid hormones such as acetate and bradnisolone,dienstrone, hexastronore, getinorestino lestellonole, getinorestino levesterol, non-steroidal egg yolk hormones such as chlorotriacene, and other fat-soluble vitamins
  • pharmacologically active pharmaceutical ingredients described in “Japanese Pharmacopoei
  • Examples of the poorly water-soluble oily and liquid active ingredient used in the present invention include vitamins such as teprenone, indomethacin 'farnesyl, menatetrenone, phitonadione, vitamin A oil, phenpentol, vitamin D, and vitamin E.
  • "Japanese Pharmacy” such as DHA (docosahexaenoic acid), EPA (eicosapentaenoic acid), higher unsaturated fatty acids such as liver oil, coenzyme Q, orange oil, lemon oil, peppermint oil and other oil-soluble flavorings Medicine, medicinal active ingredients described in “Method”, “External base”, “USP”, “NF”, “EP”, and the like.
  • vitamin E there are family members and derivatives, but there is no particular limitation as long as it is liquid at room temperature.
  • family members and derivatives dl- ⁇ -tocopherol, acetic acid dl--tocopherol, d--tocopherol, acetic acid d- ⁇ -tocopherol, etc. Two or more types can be used together.
  • Examples of poorly water-soluble semi-solid active ingredients include terrestrial dragon, licorice, keihi, peonies, button pie, force ginkgo, salamander, ginger, chimpi, maou, nantenji, oohi, onji, kikiyou,rissazushi, technicallyzou , Sarcophagus, senne force, baimo, wiki, ovata, ollen, gadju, force mitsu, gentian, go, beast, shajin, shokiyo, sojutsu, chiyouji, chinhi, biakujutsu, chikusennin, carrot, kakoch , Katsura hot springs, kososan, purple katsura hot water, small purple hot water, small blue dragon hot water, barmon winter hot water, semi-summer koboku hot water, mao hot water, etc., herbal medicine extract, oyster meat extract, propolis and propolis extraction Products, ferment
  • the finely pulverized active ingredient used in the present invention is used for the purpose of improving the dispersibility of the poorly water-soluble solid active ingredient and improving the mixing uniformity of the active ingredient having a medicinal effect in a small amount. , 1-40 m or less finely pulverized.
  • the average particle size of the active ingredient is more preferably 1 to 20 / z m, and further preferably 1 to 10 / ⁇ ⁇ .
  • the sublimable active ingredient referred to in the present invention is not particularly limited as long as it has sublimability, and it is solid at room temperature, liquid, semi-solid. However, the state may be any.
  • sublimable active ingredients examples include ⁇ Japanese pharmacopoeia '' such as benzoic acid, ethenzamid, caffeine, camphor, salicylic acid, phenacetin, ibuprofen, etc., ⁇ external group '', ⁇ USP '', ⁇ NF '', ⁇ EP ''
  • the sublimable medicinal medicinal ingredients described in the above can be mentioned, and one kind selected from the above can be used alone or two or more kinds can be used together.
  • the solid pharmaceutical composition of the present invention may further contain other physiologically active ingredients.
  • Examples of active ingredients that are liquid at room temperature used in the present invention include vitamins such as teprenone, indomethacin 'farnesyl, menatetrenone, phytonadione, vitamin A oil, fe-pentol, vitamin D, and vitamin E. , Japanese Pharmacopoeia such as DHA (docosahexaenoic acid), EPA (eicosapentaenoic acid), higher unsaturated fatty acids such as liver oil, coenzyme Q, oil-soluble flavorings such as orange oil, lemon oil, peppermint oil ”,“ External group ”,“ USP ”,“ NF ”,“ EP ”, and the like.
  • vitamins such as teprenone, indomethacin 'farnesyl, menatetrenone, phytonadione, vitamin A oil, fe-pentol, vitamin D, and vitamin E.
  • Japanese Pharmacopoeia such as DHA (docosahexaenoic
  • Vitamin E has various homologues and derivatives, but is not particularly limited as long as it is liquid at room temperature.
  • dl a tocopherol
  • acetic acid dl tocopherol
  • d tocopherol
  • acetic acid d tocopherol
  • Two or more types can be used together.
  • Examples of semi-solid active ingredients used in the present invention at room temperature include, for example, earth dragons, licorice, peony, peonies, buttonpis, power nokosou, salamander, ginger, chimpi, maou, nantenji, oohi, Onji, Kikiyou, Shazenshi, Shazenso, sarcophagus, Sene force, Baimo, Wikiwe, Obata, Oren, Gaju, force mitsu, Gentian, Go, Beast, Shajin, Shokiyo, Souju, Chiyouji, Chinhi, Beak Juk, Chikuse Traditional Chinese medicines or herbal extracts such as carrot, carrot, kakkon-yu, katsushi-yu, koso-san, shikoku-eda-yu, shikoku-yu, shosei-ryu, bakumon-toyu, half-summer Kokaku-yu, mao-yu, etc.
  • Disintegrants include croscarmellose sodium, carmellose, carmellose calcium, carmellose sodium, celluloses such as low-substituted hydroxypropyl cellulose, carboxymethyl starch sodium, hydroxypropyl starch, rice starch, wheat starch
  • celluloses such as low-substituted hydroxypropyl cellulose, carboxymethyl starch sodium, hydroxypropyl starch, rice starch, wheat starch
  • a disintegrating agent in the “Pharmaceutical Additives Encyclopedia” published by Yakuji Nippo Co., Ltd.
  • starches such as corn starch, potato starch and partially alpha starch
  • synthetic polymers such as crospovidone and crospovidone copolymer What can be classified. It is free to use one kind selected from the above alone or two or more kinds.
  • binder examples include sugars such as sucrose, glucose, lactose, and fructose, sugar alcohols such as mannitol, xylitol, maltitol, erythritol, and sorbitol, gelatin, pullulan, carrageenan, locust bean gum, agar, Water-soluble polysaccharides such as dalcomannan, xanthan gum, tamarind gum, pectin, sodium alginate, gum arabic, etc., celluloses such as crystalline cellulose, powdered senorelose, hydroxypropinoresenorelose, methinorescenellose, alpha-unified starch , Starches such as starch paste, synthetic polymers such as polybutylpyrrolidone, carboxyvinyl polymer, polyvinyl alcohol, inorganic compounds such as calcium hydrogen phosphate, calcium carbonate, synthetic hydrotalcite, magnesium aluminate silicate And the like, which are classified
  • fluidizing agent those classified as fluidizing agents in the “Pharmaceutical Additives Encyclopedia” (published by Yakuji Nippo Co., Ltd.) such as hydrous silicon dioxide, key compounds such as light anhydrous keying acid, etc. Can be mentioned.
  • One kind selected from the above can be used alone, or two or more kinds can be used in combination.
  • Lubricants are classified as lubricants in the “Pharmaceutical Additives Encyclopedia” (published by Yakuji Nippo Co., Ltd.) such as magnesium stearate, calcium stearate, stearic acid, sucrose fatty acid ester, and talc. Things can be mentioned. It is possible to use one selected from the above alone or in combination of two or more.
  • Examples of the corrigent include glutamic acid, fumaric acid, succinic acid, succinic acid, sodium succinate, tartaric acid, malic acid, ascorbic acid, sodium chloride sodium salt, and 1-menthol. Nichihosha Co., Ltd.) can be listed as a corrigent. One kind selected from the above can be used alone, or two or more kinds can be used in combination.
  • Perfumes include oranges, vanillas, strawberry, yogurt, menthol, wikiweed oil, kayoh oil, spruce oil, hearth oil, and other “pharmaceutical additives encyclopedias” such as green tea powder (Pharmaceutical Daily Inc. ) Issuance) can be classified as fragrances and fragrances.
  • One kind selected from the above can be used alone, or two or more kinds can be used in combination.
  • colorants include food additives such as food red No. 3, food yellow No. 5, food blue No. 1, etc., copper chlorophine sodium, titanium oxide, riboflavin, etc. (Pharmaceutical Daily Report ( And those classified as colorants in the issue).
  • food additives such as food red No. 3, food yellow No. 5, food blue No. 1, etc., copper chlorophine sodium, titanium oxide, riboflavin, etc.
  • One kind selected from the above may be used alone, or two or more kinds may be used in combination.
  • sweeteners they are classified as sweeteners in the “Pharmaceutical Additives Encyclopedia” (published by Yakuji Nippo Co., Ltd.) such as aspartame, saccharin, dipotassium darhinorelitic acid, stevia, maltose, maltitol, chickenpox, and Amatya powder. Can be mentioned. One kind selected from the above may be used alone, or two or more kinds may be used in combination.
  • the following is a force for describing a method for producing a tablet mainly composed of one or more active ingredients and the porous cellulose aggregate of the present invention.
  • the method includes the active ingredient and the porous cell port of the present invention.
  • a method of compression molding after mixing the cellulose aggregates can be employed.
  • other additives that may be mixed with other additives as necessary include, for example, the excipients, disintegrants, binders, fluidizing agents, Lubricants, flavoring agents, fragrances, coloring agents, sweeteners
  • One or more selected from the components of the solubilizing agent may be blended.
  • each component is not particularly limited. 0 Active ingredient, the porous cellulose aggregate of the present invention, and other additives as needed are mixed together and compression molded, ii) Activity
  • the ingredients and additives such as a fluidizing agent and Z or a lubricant are pretreated and mixed, and the porous cellulose aggregate of the present invention and other additives as necessary are mixed, followed by compression molding. Either method is acceptable.
  • a lubricant may be added to the mixed powder for compression molding obtained in i) or ii), and after further mixing, compression molding may be performed.
  • the following production method can be employed.
  • the production method include: i) pulverizing the active ingredient or using it as it is, mixing the porous cellulose aggregate of the present invention with other ingredients as necessary, and compression molding; ii) activity
  • the components are dissolved or dispersed in water and Z or an organic solvent and Z or a solubilizing agent, and then adsorbed on the porous cellulose aggregate and Z or other additives used in the present invention as necessary.
  • Any of the method of mixing with the porous cellulose aggregate of the present invention and Z or other additives, distilling off water and Z or an organic solvent as required, and performing compression molding may be used.
  • the crystalline form of the active ingredient before compression molding may be the same as or different from that before the preparation, but is preferably the same in terms of stability.
  • a water-insoluble active ingredient it is particularly effective to use a water-soluble polymer and a surfactant in combination as a solubilizing agent and disperse them in a medium.
  • the other additives referred to here are additives other than the porous cellulose aggregate of the present invention.
  • liquid dispersion such as polyethylene glycol
  • the dispersion in which it is dispersed becomes liquid or semi-solid. Therefore, it cannot be tableted unless it is excellent in compression moldability and fluidity like the porous cellulose aggregate of the present invention.
  • polyethylene glycol or the like is used as a dispersion of a pharmaceutical active ingredient, it is said that when the active ingredient is absorbed into the body, it takes a structure that is coated with a polyethylene glycol in the blood. It is also expected to maintain the medicinal properties of easily active components that are metabolized in the liver.
  • the method of adding each component is usually performed and is not particularly limited as long as it is a method.
  • a small suction transport device, a pneumatic transport device, a bucket conveyor, a pressure transport device, a vacuum converter Even if it is added continuously using a vibratory quantitative feeder, spray, funnel, etc., throw it all together.
  • the concentration of the active ingredient in the final product can be determined by adopting a method of spraying them on porous cellulose aggregates or other additives. This is preferable because the tack is small.
  • the spraying method uses a pressure nozzle, two-fluid nozzle, four-fluid nozzle, rotating disk, ultrasonic nozzle, etc. to spray the active ingredient solution and dispersion, and a method of dropping the active ingredient solution Z dispersion from the tubular nozzle. No!
  • the active ingredient solution Z dispersion When the active ingredient solution Z dispersion is added, it may be layered or coated so that the active ingredient is laminated on the surface of the porous cellulose aggregate particles, or may be supported inside the porous cellulose aggregate particles.
  • the active ingredient solution Z dispersion may be used as a binding solution to granulate porous cellulose aggregate particles or a mixture of porous cellulose and other additives into a matrix. Layering and coating may be wet or dry.
  • the mixing method is not particularly limited as long as it is a normal method, but is a container rotary mixer such as a V-type, W-type, double cone type, container tack type mixer, or high-speed stirring.
  • Stirring mixers such as a mold, a universal stirring type, a ribbon type, a bag type, and a Nauter type mixer, a high-speed fluidized mixer, a drum mixer, and a fluidized bed mixer may be used. Also shaker etc.
  • a container-shaking mixer can also be used.
  • the compression molding method of the composition is usually performed and is not particularly limited as long as it is a method, but a method of compression molding into a desired shape using a mortar and a pestle, and compression molding into a sheet in advance A method of cleaving into the desired shape may be used.
  • a roller press such as a static pressure press, a briquetting roller press or a smooth roller press, a compressor such as a single punch tablet press or a rotary tablet press is used. it can.
  • a method for dissolving or dispersing the active ingredient in a medium is not particularly limited as long as it is a commonly used dissolution and dispersion method, but it is a one-way rotation type, multi-axis rotation such as a portable mixer, a three-dimensional mixer, and a side mixer. , Reciprocating reversal, up-and-down moving, rotating + up-and-down moving, pipe-type stirring and mixing methods, jet-type stirring and mixing methods such as line mixers, gas blowing type stirring and mixing methods, high shear You can use a mixing method that uses a homogenizer, high-pressure homogenizer, ultrasonic homogenizer, or a container-shaking mixing method that uses a shaker!
  • the solvent used in the above production method is not particularly limited as long as it is used in pharmaceuticals.
  • water and Z or an organic solvent may be used.
  • Alcohols such as methanol, ethanol, isopropyl alcohol, butyl alcohol, 2-methylol butyl alcohol and benzyl alcohol, hydrocarbons such as pentane, hexane, heptane and cyclohexane, ketones such as acetone and ethylmethyl ketone can be classified as a solvent in the “Pharmaceutical Additives Encyclopedia” (published by Yakuji Nippo Co., Ltd.). It can be used alone or in combination of two or more. After being dispersed once with the above medium, the medium may be removed and dispersed in a different medium.
  • water-soluble polymer as a solubilizer examples include hydroxypropylcellulose, hydroxypropylmethylcellulose, polyacrylic acid, carboxyvinyl polymer, polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, methylcellulose, ethylcellulose, Water-soluble polymers such as gum arabic, starch paste, etc. listed in the “Pharmaceutical Additives Encyclopedia” (published by Yakuji Nippo Co., Ltd.) are listed. Is also free.
  • Oils and fats as solubilizing agents include, for example, stearic acid monoglyceride, stearic acid “Pharmaceutical Additives Encyclopedia” such as triglycerides, stearic acid sucrose ester, paraffins such as liquid paraffin, hard oils such as carnauba wax, hardened castor oil, castor oil, stearic acid, stearyl alcohol, polyethylene glycol (Pharmaceutical Daily)
  • the fats and oils listed in “Issue Co., Ltd.” can be used. They can be used alone or in combination of two or more.
  • Surfactants as solubilizing agents include, for example, phospholipids, glycerin fatty acid ester, polyethylene glycol fatty acid ester, sorbitan fatty acid ester, polyoxyethylene hydrogenated castor oil, polyoxyethylene cetyl ether, polyoxyethylene stearin.
  • the tablet referred to in the present invention contains the porous cellulose aggregate of the present invention, one or more active ingredients, and optionally other additives, and can be obtained by compression molding.
  • the tablet composition containing the porous cellulose aggregate of the present invention can obtain practical hardness by a simple method such as a direct tableting method without going through complicated steps. Dry granule compression method, wet granule compression method, latter method, multi-nuclear tablet with pre-compressed tablet as inner core, and multi-layer tablet manufacturing method in which a plurality of pre-compressed molded products are stacked and compressed again. Use the manufacturing method.
  • the porous cellulose aggregate of the present invention is excellent in various physical properties required as a compression moldability, self-flowing property, and a disintegrating excipient. Tablets that easily cause tableting troubles such as peeling from the inside and cracks, and that contain a large amount of drugs, such as tablets containing extract powders such as popular medicines and Kampo medicines, small tablets, and constrictions at the edges Non-circular deformed tablets that have areas where pressure is not evenly applied, It is effective for drugs such as enzymes and proteins that are easily inactivated by friction with the formulation, and tablets containing coated granules.
  • the cellulose powder of the present invention is excellent in compression moldability and disintegration, a tablet showing a practical friability at a relatively low compression pressure can be obtained. For this reason, voids (water conduits) can be maintained in the tablet, which is also effective for orally disintegrating tablets that disintegrate rapidly in the oral cavity.
  • porous cellulose aggregate of the present invention has a secondary aggregation structure in which primary particles are aggregated, it is excellent in the splitting property of the particles themselves, and when used in a scored tablet or the like, it is easy to uniformly divide the tablet. Become. Furthermore, since the porous cellulose aggregate of the present invention has a developed porous structure, and the cellulose particles themselves are excellent in the retention of fine-particle drugs, suspension drugs, and liquid components, tablets using the same are also available.
  • the solid, liquid, semi-solid active ingredient and porous cellulose aggregate particle composition obtained by the method described so far can be used as a solid preparation in the form of powder or granule, or the powder or granule composition can be used.
  • the product may be further coated with a coating agent and used as a coating powder or a granular solid preparation.
  • the powder or granular composition with or without the coating obtained here may be filled in a capsule or used. They may be compressed and used as a tablet-type solid preparation. In addition, use capsules or tablets with coating.
  • a coating agent in the case of coating for example, ethyl acrylate
  • the porous cellulose aggregate of the present invention has a developed porous structure, and the particles themselves are excellent in drug retention, so that the particles carrying the drug in the pores are used as fine granules as they are. Alternatively, they may be granulated and used as granules, or they may be compression molded. These granules, granules and tablets may be further coated thereon.
  • the loading method is not particularly limited as long as it is a known method, but i) a method of mixing with a fine drug and loading it in the pores,
  • the porous cellulose aggregate of the present invention has a developed pore structure and has moderate water retention and oil retention, so it can be used as core particles for layering and coating in addition to excipients. In this case, there is an effect of suppressing aggregation between particles in the layering and coating processes. Layering and coating may be dry or wet.
  • the active ingredient is a solution, suspension, or emulsion
  • porous cellulose aggregate particles or a mixture of porous cellulose aggregate particles and other additives as a carrier is used. It is possible to use a method of retaining the active ingredient by immersing it in an active ingredient solution, suspension or emulsion. Depending on conditions such as active ingredient species and concentration, even liquid dipping methods such as stubble dipping are excellent in that the uniformity of the active ingredient is practically maintained and the process is simple compared to the above spraying. Yes.
  • the active ingredient is a solution, suspension, or emulsion
  • the active ingredient solution, suspension, or mixture of porous cellulose aggregate particles or porous cellulose aggregate particles and other additives is used as a carrier.
  • the dispersion After immersing in the emulsion, the dispersion may be spray-dried to form a composite.
  • porous cellulose aggregate particles before or after the addition of the active ingredient solution Z dispersion or the mixture of the porous cellulose aggregate particles and other additives are in a state in which each unit particle is individually dispersed. Also, you can take the form of agglomerated granules.
  • granulation methods in the case of granulation include dry granulation, wet granulation, heated granulation, spray granulation, and microcapsule koji.
  • the fluidized bed granulation method, the stirring granulation method, the extrusion granulation method, the crushing granulation method, and the rolling granulation method are effective as the wet granulation method.
  • the layer granulator the fluidized powder is sprayed with the binding liquid and granulated.
  • the stirring granulation method powder is mixed, kneaded, and granulated simultaneously in a sealed structure by rotating the stirring blade in the mixing tank while adding the binding liquid.
  • the extrusion granulation method granulation is performed by forcibly extruding the wet mass kneaded by the addition of the binding liquid from a screen of an appropriate size by a screw type or basket type method.
  • the crushing granulation method the wet lump kneaded by the addition of the binding liquid is cut and crushed with a rotary blade of a granulator, and granulated by ejecting it from the outer screen by the centrifugal force.
  • rolling granulation method rolling is performed by the centrifugal force of a rotating rotor, and spherical particles having a uniform particle size are grown in a snowman-like manner using a binding liquid sprayed by a spray gun. Grain.
  • the method for drying the granulated product can be any of hot air heating type (shelf drying, vacuum drying, fluidized bed drying), conduction heat transfer type (flat pan type, shelf box type, drum type), freeze drying, etc. Use one of these methods You can also.
  • hot air heating type the material is brought into direct contact with hot air, and at the same time, evaporated water is removed.
  • conduction heat transfer type the material is indirectly heated through the heat transfer wall.
  • a mixture of an active ingredient and porous cellulose aggregate particles, or a mixture of one or more active ingredients and porous cellulose aggregate particles, and if necessary, other additives Compressed by the usual method (direct tableting method), ii) After mixing the active ingredient, porous cellulose aggregate particles, and other additives as necessary, granulate into granules. Compression molding by the method. (Wet Z dry granule compression method), or m) active ingredient, porous cellulose aggregate particles, and other additives as necessary, mixed and granulated into granules, and more porous Cellulose aggregate particles and other additives as necessary are mixed and compression-molded by a normal method (wet Z dry granule powder compression method).
  • the method of adding one or more active ingredients, porous cellulose aggregates, other additives, or granules is not particularly limited as long as it is a commonly used method. It may be added continuously using a pneumatic transportation device, a bucket conveyor, a pressure-feeding transportation device, a vacuum conveyor, a vibratory quantitative feeder, a spray, a funnel or the like, or may be charged all at once. Besides being compressed and molded as described above and used as a tablet, the tablet composition of the present invention also has excellent retention of solid and liquid components, and thus improves fluidity, blocking resistance, and aggregation resistance. It may be used as a granule or powder for the purpose. As a method for producing granules and powders, for example, a deviation of dry granulation, wet granulation, heat granulation, spray drying, or microencapsulation may be used!
  • Cellulose primary particles which also have natural cellulosic material strength, are dried if necessary, placed on a sample table with carbon tape, and platinum palladium is vacuum-deposited.
  • the film thickness is 20 nm or less), and using JASCO Corporation Heng SM-5550LV (trade name), observed at an acceleration voltage of 6 kV and a magnification of 250 times to obtain the average value of three typical cellulose primary particles. .
  • Cellulose primary particles which also have natural cellulosic material strength, are dried if necessary, placed on a sample table with carbon tape, and after vacuum deposition of gold, a focused ion beam processing device (manufactured by Hitachi, Ltd., FB — Using 2100 (trade name)), a cross section of cellulose primary particles was cut out with a Ga ion beam and observed at an acceleration voltage of 6 kV and a magnification of 1500 times. The average value of three typical cellulose primary particles It was.
  • the cellulose dispersion before drying was accurately weighed (A (g)) in a centrifuge tube (with an internal volume of 50 cm 3 ), and pure water was added thereto to prepare a cellulose concentration of about 1%.
  • the cellulose dispersion before drying was weighed so that the weight after preparation was about 30 g.
  • a tube for centrifugation containing approximately 1% concentration of cellulose dispersion is connected to an inverter multipurpose high-speed cooling centrifuge (Model No.
  • a laser diffraction particle size distribution analyzer (LA-910 (trade name) manufactured by Horiba, Ltd.), a cellulose dispersion liquid dispersed in water was sonicated for 1 minute, and the cumulative volume measured at a refractive index of 1.20 was 50. Expressed as% particles.
  • this measured value does not necessarily correlate because the measurement principle is completely different from the particle size distribution of the dry particles obtained by the following low tap method.
  • laser The average particle diameter measured by one diffraction is measured from the volume frequency depending on the major axis of the fibrous particles, whereas the average particle diameter obtained by the low tap method is obtained by sieving the obtained powder on a sieve. Therefore, it is dependent on the minor axis of the fibrous particles. Therefore, the laser diffraction type that depends on the major axis of the fibrous particles may be larger and more value than the low tap type that depends on the minor axis of the fibrous particles.
  • X-ray diffraction was performed using an X-ray diffractometer, and the determination was made based on the X-ray pattern.
  • the average particle size of the powder sample is a low-tap sieve shaker
  • Measurement was performed by the BET method using a product name, TriSTAR manufactured by Micromeritics Co., Ltd., using nitrogen as an adsorption gas. Each sample powder was charged into a cell about lg and measured. Each sample powder used for measurement was dried under reduced pressure at 110 ° C for 3 hours.
  • the pore distribution was determined by mercury porosimetry using Shimadzu Corporation auto pore type 9520 (trade name). Each sample powder used for measurement was dried under reduced pressure at room temperature for 15 hours. By measuring the initial pressure at 20 kPa, from the obtained pore distribution, a “clear peak portion” in the pore diameter range of 0.1 to 15 m was calculated as the intraparticle pore volume. In addition, from the obtained pore distribution, the peak top of the “clear peak” seen in the pore diameter of 0.1 to 15 m was taken as the central pore diameter, and the value was read.
  • Aspirin a small amount of pulverized crystal aspirin, ⁇ ⁇ . 5mm, 1-pass treatment
  • 5Z5 total amount 0.5g
  • the decomposition rate was measured. 8 g of ferric sulfate (III) sulfate ⁇ 12 hydrate was introduced into a lOOmL volumetric flask, pure water was made up to 10 mL, and used as a color test solution.
  • Degradation rate (%) (1 (Absorbance after storage Z Absorbance before storage)) X 100
  • Sugihara style repose angle measuring instrument (slit size depth 10 X width 50 X height 140 mm, width 50 mm A protractor was installed at the position), and a quantitative feeder was used to measure the dynamic self-fluidity when the cellulose powder was dropped into the slit at 3 gZ.
  • the angle between the bottom of the device and the formed layer of cellulose powder is the angle of repose.
  • each cellulose powder is weighed and placed in a mortar (manufactured by Kikusui Seisakusho, using material SUS2, 3), and pressure is applied by a circular flat bowl (made by Kikusui Seisakusho, using material SUS2, 3) with a diameter of 1.1 cm.
  • the product was compressed to 10 MPa and 20 MPa (product name, PCM-1A manufactured by Aiko I Engineering Co., Ltd., compression speed is lcmZ), held at the target pressure for 10 seconds, and the cylindrical molded body was taken out.
  • Acetaminophen (manufactured by API Corporation, powder type) 55 parts by weight, light anhydrous kaiic acid (manufactured by Nippon Aerosil Co., Ltd., Aerosil 200 (trade name)) is obtained in 0.25 parts by weight, Examples and Comparative Examples 27 parts by weight of the obtained cellulose particles or powder, 2 parts by weight of crospovidone (BASF, Kollidon CL (trade name)), and 15 parts by weight of granulated lactose (Lattose-Egyland, Super-Tab (trade name)) Place in a 100-liter scale V-type mixer (Dalton), mix for 30 minutes, and then add 0.5 parts by weight of magnesium stearate (Taipei Sogaku Sangyo Co., Ltd., vegetable) 5 Mixed for minutes to obtain a prescription powder.
  • crospovidone BASF, Kollidon CL (trade name)
  • 15 parts by weight of granulated lactose Lattose-E
  • the total charge of each powder was 25 kg.
  • a rotary tableting machine manufactured by Kikusui Seisakusho Co., Ltd., LIBRA-II (trade name), rotating disk diameter ⁇ 410 ⁇ , 36 stand
  • Tableting was performed using a 12R mortar with a diameter of 8 mm at a turntable rotation speed of 50 rpm and a stirring compression pressure of 7.5 kN to obtain a tablet having a weight of 200 mg.
  • the cylindrical molded body or tablet is broken by applying a load in the diameter direction of the cylindrical molded body or tablet. The load of was measured. The average value of 10 samples was expressed.
  • Disintegration tests were conducted in accordance with the 14th revised Japanese Pharmacopoeia, General Tests, and Tablet Disintegration Tests.
  • a disintegration tester manufactured by Toyama Sangyo Co., Ltd., NT-40HS type (trade name), with a disk for cellulose alone, no disk for prescription), 37 ° C, pure Calculated as the disintegration time in water. The average value of 6 samples was expressed.
  • the weight (Wa) of 20 tablets was measured, put in a friability tester (Japan Machinery Co., Ltd., PTF-3RA type (trade name)), rotated for 4 minutes at 25 rpm, and then adhered to the tablets. The fine powder was removed, the weight (Wb) was measured again, and the friability was calculated from the following equation.
  • Friction 100 X (Wa-Wb) / Wa
  • Randomly select 100 tablets obtained by a rotary tableting machine observe them visually, count the number of tablet cracks (lamination), chipping (chipbing), and peeling (cabbing). It was shown as a value (percentage) divided by the number of tablets observed.
  • G Pulp weight X (100—Pulp moisture) Z 100
  • Pulp moisture is calculated by drying the pulp for 1.5 hours at 125 ° C.
  • a high-pressure homogenizer manufactured by MFIC Corp., trade name "Microfluidizer I" M-140K type, The material treated twice at a treatment pressure of 200 MPa was centrifuged at a centrifugal force of 19600 m / s 2 and the supernatant was discarded to obtain a sediment. About 2kg of the sediment dried for 16 hours at 40 ° C and 30L of 4N hydrochloric acid aqueous solution were put into a low-speed stirrer (Ikebukuro Sakai Kogyo Co., Ltd., 50LGL reactor (trade name)) and stirred at 40 ° C, 48 hours Hydrolysis gave an acid-insoluble residue.
  • a low-speed stirrer Ikebukuro Sakai Kogyo Co., Ltd., 50LGL reactor (trade name)
  • the resulting acid-insoluble residue is thoroughly washed with pure water, filtered, introduced into a 90-liter plastic bucket, and purified water is added so that the total solid concentration is 20% by weight.
  • 3-1 Motor The mixture was neutralized with aqueous ammonia while stirring at pH (pH after neutralization was 7.5 to 8.0).
  • the cellulose dispersion was spray-dried (dispersion supply rate 6 kgZhr, inlet temperature 180 to 220 ° C., outlet temperature 50 to 70 ° C.) to obtain cellulose particles A as cellulose aggregates.
  • Table 1 shows the physical properties of cellulose particles A.
  • Fig. 1 shows the results of measuring the pore distribution of cellulose particles A by mercury porosimetry
  • Fig. 6 shows an electron micrograph of the cross section of cellulose particles A.
  • “clear peaks” derived from the pores in the particles were observed in the cellulose particles A at 0.1 to 15 m. This is about the same size as the pore size shown in the electron micrograph by SEM.
  • the peak shown at 10-50 / ⁇ ⁇ shown in FIG. 1 is caused by the particle gap.
  • FIG. 6 it was observed that the intra-particle pores having a pore diameter corresponding to the “clear peak portion” shown in FIG. 1 were developed.
  • the average fiber width of the primary cellulose particles is about 19 ⁇ m, the average thickness is about 3 ⁇ m, the level-off polymerization degree is 140-220, the moisture is 5-10%, Whiteness 92-97%, Viscosity 5-40cps, S 5-15%, S 1-8%, Copper value 0.5
  • the average fiber width of the primary cellulose particles in the cellulose dispersion having a solid content of 15% by weight was 22 ⁇ m, the average thickness was 2.5 m, and the average particle size was 38 ⁇ m.
  • the cellulose dispersion is spray-dried (dispersion supply rate: 6 kgZhr, inlet temperature: 180 to 220 ° C, outlet temperature: 50 to 70 ° C).
  • Cellulose particles B which are roulose aggregates, were obtained. Table 1 shows the physical properties of Cellulose Particle B.
  • the average fiber width of the primary cellulose particles is about 19 ⁇ m, the average thickness is about 3 ⁇ m, the level-off polymerization degree is 140-220, the moisture is 5-10%, Whiteness 92-97%, Viscosity 5-40cps, S 5-15%, S 1-8%, Copper value 0.5
  • Pulp of ⁇ 1.5 and dichloromethane extract 0.03 ppm or less was obtained. 2 kg of the pulp and 30 L of 5 N hydrochloric acid aqueous solution are hydrolyzed at 40 ° C for 20 hours while stirring in a low-speed stirrer (trade name, 50LGL reactor, manufactured by Ikebukuro Sakai Kogyo Co., Ltd.), acid insoluble A residue was obtained. The obtained acid-insoluble residue is thoroughly washed with pure water, filtered, introduced into a 90 L plastic bucket, and purified water is added so that the total solid concentration is 15% by weight. While stirring with a motor, the solution was neutralized with aqueous ammonia (pH after neutralization was 7.5 to 8.0).
  • the average fiber width of the primary cellulose particles in the cellulose dispersion having a solid content of 18% by weight was 22 ⁇ m, the average thickness was 2.5 m, and the average particle size was 35 ⁇ m.
  • the cellulose dispersion was spray-dried (dispersion supply rate 6 kgZhr, inlet temperature 180 to 220 ° C., outlet temperature 50 to 70 ° C.) to obtain cellulose particles C as cellulose aggregates.
  • Table 1 shows the physical properties of Cellulose Particle C.
  • a high-pressure homogenizer (MFIC Cor p., “Microfluidizer I” M-140K type ( The product treated 4 times at a trade name of 200 MPa) was centrifuged with a centrifugal force of 19600 mZs 2 and the supernatant was discarded to obtain a sediment.
  • About 2 kg of the sediment dried at 40 ° C for 16 hours and 30 L of 5N hydrochloric acid aqueous solution were placed in a low-speed stirrer (Ikebukuro Sakai Kogyo Co., Ltd., 50 LGL reactor (trade name)) while stirring. ° C, 2 Hydrolysis for 0 hour gave an acid-insoluble residue.
  • the obtained acid-insoluble residue is thoroughly washed with pure water, filtered, introduced into a 90-liter plastic bucket, and pure water is added so that the total solids concentration becomes 20% by weight.
  • the mixture was neutralized with aqueous ammonia while stirring at pH (pH after neutralization was 7.5 to 8.0).
  • the average fiber width of the primary cellulose particles in the cellulose dispersion having a solid content of 20% by weight was 15 ⁇ m, the average thickness was 1.5 m, and the average particle size was 31 m.
  • the cellulose dispersion was spray-dried (dispersion supply rate: 6 kgZhr, inlet temperature: 180 to 220 ° C., outlet temperature: 50 to 70 ° C.) to obtain cellulose particles D as cellulose aggregates.
  • Table 1 shows the physical properties of Cellulose Particle D.
  • the cellulose dispersion was spray-dried (dispersion supply rate 6 kgZhr, inlet temperature 180 to 220 ° C., outlet temperature 50 to 70 ° C.) to obtain cellulose particles E as cellulose aggregates.
  • Table 1 shows the physical properties of Cellulose Particle E.
  • the cellulose dispersion was spray-dried (dispersion supply rate 6 kgZhr, inlet temperature 180 to 220 ° C., outlet temperature 50 to 70 ° C.) to obtain a cellulose aggregate.
  • This cellulose aggregate was pulverized by using an airflow type pulverizer (manufactured by Seishin Enterprise Co., Ltd., single track jet mill STJ-200 type (trade name)), and cellulose powder F (in Example 1 of Patent Document 6) Equivalent).
  • Table 1 shows the physical properties of the obtained cellulose powder F.
  • Cellulose powder G (corresponding to Example 5 of Patent Document 9), except that the hydrolysis conditions were 3N hydrochloric acid solution, 40 ° C, 40 hours, and drying was performed with a solid content concentration of 8%. ) Table 1 shows various physical properties of the obtained cellulose powder G.
  • the average fiber width of the cellulose primary particles in the cell mouth dispersion before drying was 39 ⁇ m, the average thickness was 8 ⁇ m, and the average particle size was 47 ⁇ m.
  • Table 1 shows various physical properties of the obtained cellulose powder H.
  • the average fiber width of the primary cellulose particles in the cell mouth dispersion before drying is 39 ⁇ m, the average thickness is 8 ⁇ m, The average particle size was 49 ⁇ m.
  • Fig. 2 shows the pore distribution of cellulose powder H measured by mercury porosimetry.
  • Cellulose powder H did not have a “clear peak” as observed in the porous cellulose aggregate of Example 1. Without such a “clear peak”, the pores are those of the original cellulose primary particles.
  • the peak observed at 10 to 50 / ⁇ ⁇ is due to the particle gap in consideration of the particle size distribution force of the powder.
  • the product name “Avicel” PH-200 manufactured by FMC was used as the cellulose powder.
  • cellulose aggregate obtained in Comparative Example 1 a bantam mill (Hosokawa Iron Works Co., use cleans diameter 2 mm) cellulose forces 0 weight Pharmacopeia ⁇ Seto ⁇ amino phen (manufactured Merukuhoei) were finely ground in a 0/0 Acetoaminophen is 50% by weight and 500g of powder meter is introduced into a high-speed agitation granulator (manufactured by Gohashi Seisakusho, NSK250 (trade name)). Then, the mixture was further mixed for 2 minutes while adding 245 to 255 g of 50% by weight aqueous ethanol solution as a binding solution to obtain a spherical granulated product.
  • cellulose powder K (corresponding to Example 2 of Patent Document 2).
  • Table 1 shows the physical properties of the obtained cellulose powder K.
  • Fig. 3 shows an electron micrograph of cellulose particles K at a magnification of 250
  • Fig. 5 shows an electron micrograph at a magnification of 1,500.
  • a “clear peak” was confirmed for cellulose powder K in the pore distribution of 0.1 to 10 m.
  • the particle structure is not a “secondary aggregate structure in which primary particles are aggregated” but a “uniform and dense film-like barrier rib structure”. It was confirmed to have.
  • the cellulose primary particles are refined and the refined particles are strongly bonded during drying, so that the boundary of the primary particles is unclear.
  • the particles did not disintegrate in the water.
  • the cylindrical molded body (compressed pressure lOMPa) obtained with cellulose particles K was fragile and severely worn.
  • the average particle size of the primary cellulose particles in the 9.8 wt% cellulose dispersion was 1 ⁇ m.
  • the cellulose dispersion was used and spray dried using a nitrogen circulating spray dryer.
  • the obtained sample was cut into a crude fraction of 250 m or more using a JIS standard sieve to obtain cellulose powder L (corresponding to Example 2 of Patent Document 3).
  • Table 1 shows the physical properties of the obtained cellulose powder L.
  • Cellulose particles L showed a “clear peak” below 0.1 m from the results of pore distribution measurement by mercury porosimetry.
  • SEM micrographs confirmed that the particle structure was not a “secondary aggregate structure in which primary particles were aggregated” but a “film-like partition structure that was uniformly dense and continuous”. In the partition walls, the boundaries of the primary particles were unclear. The particles did not disintegrate in water, and the rate of aspirin degradation was higher than that of the drug alone.
  • the cellulose dispersion was spray-dried (dispersion supply rate 6 kgZhr, inlet temperature 180 to 220 ° C., outlet temperature 50 to 70 ° C.) to obtain cellulose powder M (corresponding to Example 4 in Patent Document 4).
  • Table 1 shows various physical properties of the cellulose powder M.
  • Fig. 4 shows an electron micrograph of cellulose powder M at a magnification of 250 times.
  • the average fiber width of the primary cellulose particles in the cellulose water / ethanol dispersion before drying was 31 ⁇ m, the average thickness was 8 ⁇ m, and the average particle size was 28 ⁇ m. After air-drying, it is crushed with a normal hammer mill, and coarse particles are removed with a 40-mesh sieve. Corresponding to Example 1). Table 1 shows the physical properties of the obtained cellulose powder N.
  • % Dispersion was obtained.
  • the average fiber width of the primary cellulose particles in the cellulose dispersion was 39 m, the average thickness was 8 ⁇ m, and the average particle size was 33 ⁇ m.
  • the resulting cellulose dispersion was dispersed into a drum dryer (manufactured by Kashiwagi Machine Mfg. Co., Ltd., KDD-1 type (trade name), steam pressure 0.35 MPa, drum temperature 136 ° C, drum rotation speed 2 rpm.
  • cellulose powder O After drying at a body temperature of 100 ° C., the mixture was pulverized with a hammer mill, and the coarse fraction was removed with a sieve having an opening of 425 ⁇ m to obtain cellulose powder O (corresponding to Example 1 of Patent Document 7). Table 1 shows the physical properties of the obtained cellulose powder O.
  • Cellulose powder K obtained in Comparative Example 10 was removed using an air jet sieve, large particles were removed with a 75 ⁇ m sieve, fine particles were removed with a 38 ⁇ m sieve, and cellulose powder ⁇ (implemented in Patent Document 8) Equivalent to the example).
  • Table 1 shows various physical properties of the obtained cellulose powder P.
  • Cellulose spherical core particles Q were extremely heavy and had excellent fluidity.
  • the specific surface area of the particles and the pore volume within the particles were almost 10.10 and 20MPa. .
  • the mixture was milled for 1 hour with an active mixing stirrer (manufactured by Sanei Seisakusho, 5DM-03-R type (trade name)). Water is added to this ground cake, and the mixture is made into a cellulose dispersion with a solid content of 12.5% by weight using a homomixer (made by Tokushu Kika Kogyo Co., Ltd., TK homomixer MARKII type (trade name)). , Particle size, pH, and IC were adjusted. The primary cellulose particles in the cellulose dispersion obtained here had an average particle diameter of 7 m.
  • the dispersion is spray-dried on a rotating disk of about 8 cm with a rotating disk speed of 5000 rpm, a flow rate of 6 LZhr, an intake air temperature of 170 ° C, and an exhaust temperature of 85 ° C, and is coarsened with a sieve having an opening of 177 m.
  • the particles were removed to obtain cellulose powder R.
  • Table 1 shows various physical properties of the obtained cellulose powder R (corresponding to Example 1 of Patent Document 14).
  • Cellulose particle R is also heavy and has excellent fluidity Specific surface area, small pore volume in the particle 10 and 20MPa are used to form a molded body, but the molded body is brittle. It was worn out when taken out and easily broken by hand.
  • wet flocs 90% by weight was further thoroughly washed with pure water and then ground with a planetary mixer (the average particle size of the cellulose dispersed particles in the ground wet floc was 1 ⁇ m). there were). 90% and 10 parts by weight (dry base) of wet floc, which has been ground and not ground, are introduced into a 90-liter poly bucket and pure water is added so that the total solids concentration is 30% by weight.
  • the range of repose angle of the porous cellulose aggregate of the present application the range of hardness of the cylindrical molded body molded with lOMPa, the range of hardness of the cylindrical molded body molded at 20 MPa, the circle molded at 20 MPa
  • the comparative examples 15 to 17 corresponding to the examples of Patent Document 1 satisfy only the collapse time range of the columnar molded body.
  • the advantage of the porous cellulose aggregate of the present application is that the collapse time is short when compared at the same degree of hardness (Example 5 and Comparative Example 15, Example 2 and Comparative Example 16, Example 3 and Comparative Example 17) have the advantage that the cylindrical molded body can be collapsed in about half the time.
  • the porous cellulose aggregate of Patent Document 1 has a large central pore size. This is due to the fact that the median pore diameter of the porous cellulose aggregate of the present application is at least about 3.0 m while it is about 1.5 / zm. This is because the permeation rate is high.
  • Acetaminophen (Api Co., Ltd., powder type) 55 parts, light anhydrous caustic anhydride (Nippon Aerosil Co., Ltd., Aerosil 200 (trade name)) 0.25 parts by weight, cellulose obtained in Example 1 27 parts by weight of powder A or cellulose powders B, C, E to L, and O obtained in Comparative Examples 1, 2, and 4 to 11 and 14, Crospovidone (BASF, Kollidon CL (trade name)) Double Part, 15 parts of granulated lactose (Lattose New Zealand, Super-Tab (trade name)) are placed in a 100 L scale V-type mixer (Dalton), mixed for 30 minutes, then magnesium stearate ( 0.5% by weight of Taihei Ishigaku Sangyo Co., Ltd.
  • a rotary tableting machine manufactured by Kikusui Seisakusho, LIBRA-II (trade name), 36-spindle rotating disk diameter ⁇ 410mm
  • a turntable speed of 8mm and 12R Tableting was performed at 50 rpm and a compressive force of 7.5 kN to obtain a tablet having a weight of 200 mg. Tablets 60 minutes after the start of tableting were sampled, and the tablet weight, hardness, friability, and tableting failure incidence were measured. Table 2 shows the physical properties of the obtained tablets.
  • this formulation contains a high content of drugs with poor moldability, it is difficult to make the tablet hardness 50N or more, which is called practical hardness. It is difficult to obtain a practical tablet because it is prone to failure.
  • those with a tablet hardness of 50N or more have comparative examples 18, 19, 26, 27, and 28, but the variation in tablet weight is 1.8 to 3.5%, which is 0.8 in the examples. It was difficult to put it to practical use because it was very high.
  • Acetaminophen manufactured by API Corporation, pulverized powder type, average particle size 16 m
  • 40 parts light anhydrous carboxylic acid (manufactured by Nippon Aerosil Co., Ltd., Aerosil 200 (trade name)) 0.5 parts by weight, cellulose powders C and D obtained in Examples 3 and 4, cellulose powders G, I to P, S and V obtained in Comparative Examples 2, 4 to 11, 14 and 17 30 parts by weight, cross strength Lumellose sodium (sales from Asahi Kasei Chemicals Co., Ltd., manufactured by Nichirin Chemical Industry Co., Ltd., Kikkolate ND— 2HS (trade name)), 2 parts by weight, granulated lactose (from Ratato-Eugeland, Sup er-Tab (trade name)) 27.
  • This prescription has the same fluidity as that used in the previous section because the type of drug is the same as that used in the previous section. For this reason, it is a formulation that has a lower drug content than the previous item, but is difficult to reduce the tablet weight variation, and it is difficult to make the tablet hardness more than 50N practical hardness. It is difficult to obtain a practical tablet from the viewpoint of easy failure.
  • the tablet hardness strength s practical hardness 50N or more later, it comparison f row 29, 30, 33, 36, 37, 38, 39 force S, except for comparative example 39 3. Since the weight variation of the tablets was high compared with 5% and 0.2-0.5% of the examples, it was difficult to put it to practical use.
  • Comparative Example 39 is equivalent to the porous cellulose aggregate of the present invention in terms of tablet hardness and tablet weight variation, but the collapse time at the same degree of hardness is inferior.
  • the direct tableting method is susceptible to the effects of drug lot-to-lot differences, particularly the particle size, and is difficult to produce stably. Therefore, it is preferable to pulverize and manage the drug according to the particle size of the drug. The problem arises that the drug content cannot be increased due to the poor mobility.
  • those having particularly good fluidity that is, those having an angle of repose in a range as low as 25 ° to 36 ° are useful for solving the above problems.
  • the porous cellulose aggregate of the present invention has an advantage not found in conventional cellulose powders in that the fluidity and moldability are enhanced at the same time to overcome the above-mentioned problems.
  • the total charge of each powder was 2 kg.
  • the obtained prescription powder was turned into a turntable with a rotation speed of 54 rpm and a compression force of 8 kN using a 8 mm diameter, 12R punch.
  • a weight of 180 mg Tablets 10 minutes after the start of tableting were sampled, and the tablet weight, hardness, friability, tableting failure rate, and disintegration time (without disk) were measured.
  • Table 4 shows various physical property values of the obtained tablets.
  • This prescription is a prescription that is difficult to reduce the variation in tablet weight because the drug is insoluble in water and pulverized and used, so its disintegration into water is poor and its fluidity is poor.
  • it is a formulation that causes tableting problems that cause high pressure cabbing, and is one example where it is difficult to make a practical tablet with a high drug content.
  • those having a tablet hardness of 50N or more are available in Comparative Examples 40, 41, 64, 47 to 51.Except for Comparative Examples 50 and 51, the variation in tablet weight is 1.6-4. It was very high compared to 0% and 0.5-0.7% of the examples, and it was difficult to put it to practical use.
  • Comparative Examples 50 and 51 have the same strength as the porous cellulose aggregate of the present invention in terms of tablet hardness and tablet weight variation, and the disintegration time is inferior at the same degree of hardness.
  • the porous cellulose aggregate of the present invention clearly shows that the lower the solubility of the drug in water, the wider the disintegration time difference from the porous cellulose aggregate of Patent Document 1. This is superior to the porous cellulose aggregate of Patent Document 1 in that it rapidly disintegrates.
  • Example 9 B 0.5 70 0.4 0 15
  • Ascorbic acid manufactured by Ebisu Chemical Co., Ltd., used after pulverization 55 parts, cellulose powders B and E obtained in Examples 2 and 5, celluloses obtained in Comparative Examples 2, 4-11, and 14-16 30 parts by weight of powders G, I to P, and S to U, croscarmellose sodium (sales from Asahi Kasei Chemicals Corporation, manufactured by Chirin Chemical Industry Co., Ltd., Kikkolate ND-2HS (trade name)) 1.5 Part by weight, 13 parts of granulated lactose (Lattose New Zealand, Super-Tab (trade name)) are placed in a 5L scale V-type mixer (Dalton), mixed for 30 minutes, and then stearate Gnesium (produced by Taihei Igaku Sangyo Co., Ltd., plant) was added in an external ratio of 2.0 parts by weight, and further mixed for 5 minutes to obtain a prescribed powder.
  • the total amount of each powder charged was 2 kg.
  • a rotary tableting machine manufactured by Kikusui Seisakusho Co., Ltd., Clean Press—12HUK (trade name), 12 pcs
  • the prescription powder thus obtained was turned into a turntable with a rotation speed of 54rpm and a compression force of 8mm, 12R.
  • Tableting was performed at 10 kN to obtain a tablet having a weight of 180 mg. Tablets 10 minutes after the start of tableting were sampled, and tablet weight, hardness, friability, tableting failure rate, and disintegration time (without disc) were measured. Table 5 shows various physical property values of the obtained tablets.
  • the drug used in this formulation is relatively fluid even when pulverized. However, as the drug content increases, the fluidity of the formulation gradually deteriorates, and as the drug content increases, the variation in tablet weight decreases.
  • the drugs used in this prescription are prescriptions that cause tableting problems, such as high-pressure and high-level staining and high-pressure cubbing. This is one of the examples where it is difficult to make a practical tablet as the product content increases.
  • tablets with a practical hardness of 50N or more include Comparative Examples 52, 56, 59 to 63, except for Comparative Examples 62 and 63, the variation in tablet weight is 1. 8-2.6% Compared with 0.7 to 0.8% of Examples, it was very difficult to put it into practical use.
  • Comparative Examples 62 and 63 have the same strength as the porous cellulose aggregate of the present invention in terms of tablet hardness and tablet weight variation, but the disintegration time is inferior at the same degree of hardness.
  • the drug used in this formulation is one of the cases where water-repellent magnesium stearate has to be added in order to avoid a forceful tableting disorder that has a relatively high solubility in water. There is also. In such cases, the wettability of the tablets with water tends to decrease, and the disintegration time tends to be delayed even when the drug has high water solubility.
  • the porous cellulose aggregate of the present invention has a disintegration time with the porous cellulose aggregate of Patent Document 1, particularly in the case of inhibiting water wettability of tablets, etc. during the formulation. It is clear that the difference between the two is superior to the porous cellulose aggregate of Patent Document 1.
  • Cellulose particles A5g was added to 20g of a solution-like active ingredient obtained by diluting ibuprofen polyethylene glycol solution (quantity ratio 1: 5) 10 times with ethanol (Wako Pure Chemicals, special grade). Mix for 5 minutes. The obtained mixed solution was evaporated. The powder was obtained by vacuum drying using one ter. 0.2 g of the obtained powder is weighed and placed in a mortar (manufactured by Kikusui Seisakusho, using material SUS2, 3), and pressure is applied using a 0.8 cm diameter circular flat plate (manufactured by Kikusui Seisakusho, using material SUS2, 3).
  • Example 13 The same procedure as in Example 13 was carried out except that cellulose particle A was changed to cellulose powder K (corresponding to Example 2 of Patent Document 2), a liquid component-containing molded article was produced, and the liquid component was leached and collapsed. Carried out. The results are shown in Table 6.
  • Example 13 The same procedure as in Example 13 was carried out except that cellulose particle A was changed to cellulose powder L (corresponding to Example 2 of Patent Document 3), a liquid component-containing molded article was produced, and the liquid component was leached and collapsed. Carried out. The results are shown in Table 6.
  • Example 13 The same procedure as in Example 13 was carried out except that the cellulose particles A were changed to cellulose powder M (corresponding to the example of Patent Document 4), a liquid component-containing molded product was produced, and the liquid component was leached and subjected to a collapse test. Carried out. The results are shown in Table 6.
  • Example 13 The same procedure as in Example 13 was carried out except that cellulose particle A was changed to cellulose powder N (corresponding to Example 1 of Patent Document 5), a liquid component-containing molded product was produced, and the liquid component was leached and collapsed. Carried out. The results are shown in Table 6.
  • Example 69 The same procedure as in Example 13 was carried out except that the cellulose particles A were changed to cellulose powder G (corresponding to Example 5 of Patent Document 9), a liquid component-containing molded article was produced, and the liquid component was leached and collapsed. Carried out. The results are shown in Table 6. [0163] (Comparative Example 69)
  • Example 13 The same procedure as in Example 13 was carried out except that cellulose particle A was changed to cellulose powder S (corresponding to Example 2 of Patent Document 10), a liquid component-containing molded body was produced, the liquid component was leached, and a disintegration test was conducted. Carried out. The results are shown in Table 6.
  • Cellulose particles A are used, and commercially available ibuprofen (active ingredient described as being almost insoluble in water in the 14th revision of the Japanese Pharmacopoeia) is added to polyethylene glycol (Sanyo Kasei Co., Ltd., Macrogol 400) 1 : A solution dissolved at a ratio of 5 and further diluted 10-fold with ethanol was added to cellulose particles A so as to be 10% by weight and stirred in a mortar.
  • Example 14 The same procedure as in Example 14 was carried out except that the cellulose particles A were made into cellulose powder K (corresponding to Example 2 of Patent Document 2), and the molding was prepared and the liquid component on the surface of the molding was observed. The drug dissolution rate from the cylindrical molded body was measured and the disintegration was observed. The results are shown in Table 7. The leaching of the liquid component from the cylindrical molded body was not recognized, but in the dissolution test, the liquid surface floated without collapsing for 3 minutes, and the disintegration was bad.
  • Example 14 The same procedure as in Example 14 was carried out except that the cellulose particles A were made into cellulose powder L (corresponding to Example 2 of Patent Document 3), and the molding was prepared and the liquid component on the surface of the molding was observed to ooze out.
  • the drug dissolution rate from the cylindrical molded body was measured and the disintegration was observed.
  • Table 7 The results are shown in Table 7. The leaching of the liquid component from the cylindrical molded body was not recognized, but in the dissolution test, the liquid surface floated without collapsing for 3 minutes, and the disintegration was bad.
  • Example 14 Operate in the same manner as in Example 14 except that the cellulose particle A is made of cellulose powder IM (corresponding to the example of Patent Document 4).
  • Preparation of a molded body and observation of liquid component leaching on the surface of the molded body The drug dissolution rate from the columnar molded body was measured and the disintegration was observed. The results are shown in Table 7. It was confirmed that the liquid component oozed out on the surface of the cylindrical molded body, and it did not become a tablet.
  • Example 14 The same procedure as in Example 14 was carried out except that cellulose particles A were made into cellulose powder N (corresponding to Example 1 of Patent Document 5). The drug dissolution rate from the cylindrical molded body was measured and the disintegration was observed. The results are shown in Table 7. It is confirmed that the liquid component oozes out on the surface of the cylindrical molded body. The dissolution test was not possible.
  • Example 14 The same procedure as in Example 14 was carried out except that the cellulose particles A were changed to cellulose powder G (corresponding to Example 5 of Patent Document 9), production of a molded body and observation of leaching of liquid components on the surface of the molded body, The drug dissolution rate from the cylindrical molded body was measured and the disintegration was observed. The results are shown in Table 7. It was confirmed that the liquid component oozed out on the surface of the cylindrical molded body, and it did not become a tablet.
  • Example 14 The same procedure as in Example 14 was conducted except that cellulose particle A was changed to cellulose powder S (corresponding to Example 2 of Patent Document 10), and a molded body was produced and observation of liquid components on the surface of the molded body was observed. The drug elution rate from the cylindrical molded body was measured and the disintegration was observed. The results are shown in Table 7. The extruding of liquid components from the cylindrical molded body was a powerful force S, and in the elution test, it did not collapse for 3 minutes, and the disintegration was bad.
  • Example 15 Cellulose particles Alg in 10 mL of a solution of ethenzamide (manufactured by API Co., Ltd., powder grade pulverized with a small pulverizer) with ethanol (Wako Pure Chemicals, reagent grade) at a ratio of 5:95 And stirred with a magnetic stirrer for 3 minutes. The obtained dispersion was introduced into an evaporator and completely desolvated to obtain a powder sample.
  • ethenzamide manufactured by API Co., Ltd., powder grade pulverized with a small pulverizer
  • ethanol Waako Pure Chemicals, reagent grade
  • Cellulose particles A are used, and commercially available ibuprofen (active ingredient described as ⁇ almost insoluble in water according to the 14th revision of the Japanese Pharmacopoeia) is added to ethanol (made by Wako Pure Chemicals, reagent grade) at a ratio of 1: 5.
  • ethanol made by Wako Pure Chemicals, reagent grade
  • the liquid dissolved in was added to cellulose particles A so as to be 10% by weight and stirred in a mortar.
  • the obtained wet mixed powder was completely removed of ethanol using an evaporator to obtain a dry powder.
  • 0.2 g of the obtained dry powder is weighed and placed in a mortar (manufactured by Kikusui Seisakusho, using material SUS2, 3), and a 0.8 mm diameter circular flat bowl (manufactured by Kikusui Seisakusho, material SUS 2 and 3) until the pressure reaches lOOMPa (product name, PCM-1A used, manufactured by Aikoichi Engineering Co., Ltd., compression speed is lcmZ) and held at the target pressure for 10 seconds. I took it out. 100 pieces of the obtained cylindrical molded body were put in a bottle and stored for 2 weeks at 40 ° C in a sealed cap system, and clouding of the bottle was observed.
  • lOOMPa product name, PCM-1A used, manufactured by Aikoichi Engineering Co., Ltd., compression speed is lcmZ
  • Example 16 Except that the cellulose particle A is cellulose powder K (corresponding to Example 2 of Patent Document 2), the same operation as in Example 16 was carried out to produce a cylindrical molded body, observation of the cloudiness of the bottle after storage in a sealed bottle, and elution Tests and observation of disintegration were performed. The results are shown in Table 9. No cloudiness was observed in the bottle. The tablet did not disintegrate in 1 minute and was floating on the liquid surface.
  • Example 16 Except that the cellulose particle A is cellulose powder L (corresponding to Example 2 of Patent Document 3), the same operation as in Example 16 was carried out to produce a cylindrical molded body, and observed and eluted the bottle after it was sealed and stored Tests and observation of disintegration were performed. The results are shown in Table 9. No cloudiness was observed in the bottle. The tablet did not disintegrate in 1 minute and was floating on the liquid surface.
  • Example 16 Except that the cellulose particle A is cellulose powder M (corresponding to the example of Patent Document 4), the same operation as in Example 16 was carried out to produce a cylindrical molded body, observation of cloudiness of the bottle after storage in a sealed bottle, and dissolution test The disintegration was observed. The results are shown in Table 9. The sublimated ibuprofen recrystallized inside the bottle wall, which confirmed the cloudiness of the bottle.
  • Acetoaminophen (powder type made by API Co., Ltd. is used after pulverizing with a small pulverizer.
  • the average particle size of the obtained atoaminophene is 16 ⁇ m) 20g, talc (Wako Pure Chemical Industries, Ltd.) 2) Put 2 Og in a polyethylene bag and shake and mix for 3 minutes by hand.
  • Acetoaminophen (Apia Co., Ltd. powder type was used after being pulverized with a small pulverizer.
  • the average particle size of Acetoaminophene was 16 / zm) 20g, Talc (Wako Pure Chemical ( Co., Ltd.) 20 g in a polyethylene bag and mixed by shaking for 3 minutes by hand, 40 g of the mixed powder, 100 mesh lactose (DMV Co., Ltd., Pharmatose 100M (trade name)) 952 g, Japan 408 g of pharmacopoeia corn starch (manufactured by Nissui Chemical Co., Ltd.) and porous cellulose particles A600 g were put into a 5 liter V-type mixer (Dalton) and mixed for 30 minutes.
  • the final prescription powder is turned into a rotary tableting machine (manufactured by Kikusui Seisakusho, LIBRA-II (trade name), 3 Using a 6-spindle rotary disk diameter of ⁇ 410mm), using a 8mm diameter, 12R punch, tableted with a turntable speed of 50rpm (hours 108,000 tablets) and a compression force of 10kN to obtain a tablet with a weight of 180mg . Tablets 10 minutes after the start of tableting were sampled, and tablet weight variation, hardness, and friability were measured. Table 10 shows the physical properties of the obtained tablets.
  • Example 17 The same operation as in Example 17 was performed except that the porous cellulose particles A of Example 17 were changed to cellulose powder K, ⁇ , ⁇ , or G. The results are shown in Table 10.
  • Acetoaminophen (Apiai Co., Ltd. powder type is used after pulverizing with a small pulverizer.
  • the average particle size of the obtained acetominophen is 16 g), 200g, granulated lactose (Asahi Kasei Chemicals Co., Ltd.) ) Sales, Manufactured by New Zealand Fontera, SUPER— TAB (trade name)) 760 g, Croscarmellose sodium (Asahi Kasei Chemicals Co., Ltd., manufactured by Nichirin Chemical Industries, Ltd., Kikkolate ND— 2HS (trade name)) 40 g
  • acetoaminophen (Apia Co., Ltd. powder type is used after pulverizing with a small pulverizer.
  • the average particle size of the obtained acetominophen is 16 m) 200 g, granulated lactose (Asahi Kasei Chemicals) Sold by Co., Ltd., manufactured by New Zealand Fontera Co., Ltd., SUPER— TAB (trade name)) 7 60 g, croscarmellose sodium (sales from Asahi Kasei Chemicals Co., Ltd., manufactured by Nichirin Chemical Industries, Ltd., Kikkolate ND— 2HS (trade name) ) 40 g and 100 g of porous cellulose particles A100 g were put into a V-type mixer (made by Dalton) having a capacity of 5 liters and mixed for 30 minutes.
  • V-type mixer made by Dalton
  • the final prescription powder is rotated using a rotary tableting machine (manufactured by Kikusui Seisakusho Co., Ltd., LIBRA-II (trade name), 3 6-spindle rotating disk diameter ⁇ 410mm), using a 8mm diameter, 12R punch. Tablets of several 50rpm (time 108,000 tablets), compression force 10kN, weight 180mg An agent was obtained. Tablets 10 minutes after the start of tableting were sampled, and tablet weight variation, hardness, and friability were measured. Table 10 shows the physical properties of the obtained tablets.
  • Example 18 The same operation as in Example 18 was performed except that the porous cellulose particles A of Example 18 were changed to cellulose powder K, ⁇ , ⁇ , or G. The results are shown in Table 10.
  • Acetoaminophene (Apia Co., Ltd. powder type is used after being pulverized with a small pulverizer. The average particle size of the obtained acetominophen is 16 ⁇ m) is used as a component model C having poor fluidity. The angle of repose was measured and found to be 55 °.
  • acetoaminophen (Apia Co., Ltd. powder type is used after pulverization with a small pulverizer.
  • the average particle size of acetoaminophen obtained is 16 m)
  • A18000 g of particles A were charged into a 5 liter V-type mixer (Dalton) and mixed for 30 minutes.
  • 10 g each of light anhydrous caustic acid and magnesium stearate (0.5% each in an external ratio) were added to the prescription powder and mixed for another 5 minutes.
  • the final prescription powder is rotated using a rotary tableting machine (manufactured by Kikusui Seisakusho Co., Ltd., LIBRA-II (trade name), 3 6-piece rotating disk diameter ⁇ 410 mm) using a 8 mm diameter, 12R punch. Tableting was performed at several 50 rpm (time: 108,000 tablets) at a compression force of 2 kN to obtain a tablet having a weight of 180 mg. Tablets 10 minutes after the start of tableting were sampled, and tablet weight variation, hardness, and friability were measured. Table 10 shows the physical properties of the obtained tablets.
  • Example 19 The same operation as in Example 19 was performed except that the porous cellulose particles A of Example 19 were changed to cellulose powder K, ⁇ , ⁇ , or G. The results are shown in Table 10.
  • the highly fluid porous cellulose aggregate excellent in moldability and disintegration of the present invention, and the molded composition containing the cell mouth particles and one or more active ingredients have a crystal form of I type. Yes, has a porous structure with primary particles agglomerated, has a specific surface area within a specific range, rapidly disintegrates in water with a large pore volume within the particle, and has a low repose angle and high fluidity porous cellulose aggregation And a molded body composition containing cellulose particles and one or more active ingredients, and can be suitably used mainly in the field of pharmaceuticals.
  • FIG. 1 is a pore distribution diagram of a porous cellulose aggregate of the present invention (Example 1) measured by mercury porosimetry.
  • FIG. 2 is a pore distribution diagram of cellulose powder H (Comparative Example 3) measured by mercury porosimetry.
  • FIG. 3 is an electron micrograph of cellulose particles K (Comparative Example 6) at a magnification of 250 times.
  • FIG. 4 is an electron micrograph of cellulose powder M (Comparative Example 8) at a magnification of 250 times.
  • FIG. 5 is an electron micrograph of cellulose particles K (Comparative Example 6) at a magnification of 1500 times. From the photograph, it can be seen that the partition walls are film-like and the boundaries of the primary particles are unclear.
  • FIG. 6 Electron microscope cross-sectional image of porous cellulose aggregate of the present invention (Example 1). Is true.
  • FIG. 7 is a cross-sectional photograph of particles of cellulose powder M (Comparative Example 8) taken with an electron microscope.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Nutrition Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

 セルロース一次粒子が凝集してなる二次凝集構造を有し、粒子内細孔容積が0.265cm3/g~2.625cm3/gであり、I型結晶を含有し、平均粒子径が30μmを超え250μm以下、比表面積が0.1m2/g以上20m2/g未満、安息角が25°以上44°未満であり、膨潤度が5%以上であり、かつ水中で崩壊する性質を有することを特徴とする多孔質セルロース凝集体。

Description

明 細 書
多孔質セルロース凝集体及びその成型体組成物
技術分野
[0001] 本発明は、化学工業分野、特に医薬、食品で主として賦形剤として有用な、成形性
、流動性に優れた多孔質セルロース凝集体及びその成型体組成物に関する。
背景技術
[0002] 従来、医薬、食品、その他化学工業分野等において、結晶セルロース、粉末セル口 ース等のセルロース粒子を賦形剤として用いることにより、活性成分を含有する成型 体を調製することは、広く行われており、これらセルロース粒子には、良好な、成形性 、流動性、崩壊性が求められている。
[0003] 特許文献 1には、セルロース一次粒子が凝集してなる二次凝集構造を有し、粒子 内細孔容積が 0. 265cm3Zg〜2. 625cm3Zgであり、 I型結晶を含有し、平均粒子 径が 30 /z mを超え 250 /z m以下、比表面積が 1. 3〜20m2Zg、安息角が 25° 以 上 44° 未満であり、水中で崩壊する性質を有する多孔質セルロース凝集体 (比較例 15〜17に相当)と、平均粒径の異なる 2種以上のセルロース一次粒子群と、液媒体 とを含み、セルロース分散粒子の平均粒子径が 1〜: L 10 /z mである分散液を、乾燥 する工程を含む、上記多孔質セルロース凝集体の製造方法が記載されている。該特 許文献の多孔質セルロース凝集体は、平均粒径の異なる 2種以上のセルロース一次 粒子群を必要とすることから、該特許文献の実施例に記載されているように、巿販パ ルプの酸不溶性残渣を乾燥したものを粉砕する等の 2つの工程で調製された別々の セルロース一次粒子を混合処理する必要があった。これに対し、本発明の多孔質セ ルロース粒子は粉砕等の工程を経ることなぐ単一の工程で得られる利点を有する。 本発明の多孔質セルロース凝集体は、平均幅と平均厚みを特定範囲とし、セルロー ス一次粒子を折れ曲がりやすくすることにより、セルロース一次粒子の長軸の大きさ の制限を受けることなくセルロース一次粒子の絡み合いを促進できるという、言うなれ ば自己凝集性を付与することによって単一の工程で得られるものであり、該特許文献 とは製法の点で明確に異なるものである。また、該特許文献に記載される多孔性セ ルロース粒子は、二次凝集構造が有する細孔径が本発明の多孔質セルロース凝集 体よりも小さぐ水中での膨潤度が低いために、難溶性薬物の場合や水溶性薬物で あってもステイツキング等の打錠障害を回避するために、ステアリン酸マグネシウム等 の撥水性の添加剤を配合する必要がある場合等の、さらに崩壊性が要求される処方 の錠剤化等においては崩壊性が十分でない場合があった。我々は、崩壊性を支配 する粒子構造にっ 、て詳細に検討した結果、セルロース粒子自体の膨潤性が高!、 ものが崩壊性が高いことを改めて認識するに至った力 従来のセルロース粉末につ いてみると、膨潤性の高いものは成形性が十分でなぐ成形性の高いものは膨潤性 が低いことがわ力つた。すなわち、成形性が高くかつ高い膨潤性を有しているセル口 ース粉末は知られていなかった。我々は多孔質セルロース粒子の持つ細孔径をでき るだけ大きく保ったまま、粒子内部に空隙を付与する方法について検討し、上記課 題を解決するに至った。すなわち平均幅と平均厚みを特定範囲としたセルロース一 次粒子を用い、自己凝集性を付与すれば、過度の凝集を抑制でき細孔径を大きく保 つたまま、粒子内部に空隙を付与することを見出した。特許文献 1の多孔質セルロー ス凝集体は、 2種以上の平均粒径の異なるセルロース粒子群を混合し、セルロース 分散液を乾燥する際に、平均粒子径の小さなセルロース分散粒子群が、平均粒子 径の大きいセルロース分散粒子成分間に入ることにより、平均粒子径の大きいセル口 ース分散粒子の過度の凝集が抑制されて二次凝集構造内に大きな細孔容積を付与 することが記載されている。しかし、 2種以上の平均粒子径の異なるセルロース同士 では緻密に凝集されてしまうために、具体的に開示されている実施例の方法で得ら れる多孔質セルロース凝集体の細孔径を測定すると 1. 5 m程度と小さなものであ つた。本発明の多孔質セルロース凝集体は、単一のセルロース一次粒子を用いてい るために、該特許文献の多孔質セルロース凝集体ほど緻密に凝集されず、小さくとも 3 mの細孔径を有している点で異なる。細孔径の大きさについては、該特許文献に 0. 1〜10 mの範囲に明確なピークが識別でき、細孔分布のピークトップである中 央細孔径は、粒子内への水浸透性に密接に関わるものであり、 0. 3 m以上が好ま しいこと、中央細孔径は大きいほど好ましいが、その分布を考慮するとせいぜい 5 m程度であるとの記載がある。確かに、中央細孔径の大きさが大きいほど崩壊性に優 れることの記載はあるものの、該特許文献の製造方法では、実質的に 3 μ m以上の 大きな細孔径を得ることは困難であつたと推察される。本発明の多孔質セルロース凝 集体は、該特許文献の製造方法では得られなかった、中央細孔径が 3 m以上の大 きな多孔質セルロース凝集体を、 2つの工程で調製した別々のセルロース一次粒子 群を混合する必要もなぐ単一の工程で調製できる利点を有している。
特許文献 2には、セルロース粒子を、水に対して不溶性若しくは難溶性で有機溶媒 に可溶の結晶性物質などの第三成分と混合し、これを水若しくは水溶性有機溶媒の 水溶液を用いて造粒、乾燥した後、第三成分を有機溶媒で抽出 '除去して得られる 結晶形力 型であり、細孔径が 0. 1 μ m以上であり、気孔率が 20%以上の細孔を有 し、かつ 350メッシュ以上の留分が 90重量%以上ある多孔性セルロース粒子 (本願 の比較例 6に相当)が記載されている。該文献に記載される多孔性セルロース粒子 は、そのセルロース一次粒子が、その粒子の境界が不明瞭なほどに一様に連続した フィルム状の緻密で強固なセルロース壁構造を形成するため、本発明の多孔質セル ロース凝集体と粒子構造が全く異なる。特許文献 2のセルロース粒子は、流動性に優 れるものの、緻密で連続したセルロース壁に水が浸透しにくいため、水中で崩壊せず 、活性成分の速放性に支障をきたす場合もあった。また、特許文献 2のセルロース粒 子は、セルロース圧縮時の塑性変形性に乏しぐ成形性が不十分であり、さらに、そ の製造工程で有機溶媒や有機溶媒に可溶の結晶性物質などの第三成分を使用す るため、製造コストが高くなるばかりか、活性成分を失活させる場合もあり、賦形剤とし て安定的に使用するには不十分であった。
特許文献 3には、有機溶媒に分散させた微粒子状天然セルロースをスプレードライ 法により造粒、乾燥することで得られる、結晶形が I型であり、比表面積が 20m2/g以 上で、直径 0. 01 m以上の細孔容積が 0. 3cm3Zg以上の多孔質構造を有し、平 均粒子径が大きくとも 100 μ mである多孔性微小セルロース粒子 (本願の比較例 7に 相当)が記載されている力 この微小セルロース粒子も上記セルロース壁構造を有し ており、本発明の多孔質セルロース凝集体と粒子構造が全く異なる。また、特許文献 3のセルロース粒子は、細孔容積自体は大きいものである力 本発明の多孔質セル ロース凝集体と粒子構造が異なるため、粒子内へ水が浸透し難ぐ崩壊性に劣るとい う問題がある。カ卩えて、該多孔質セルロース凝集体粒子も、その製造工程で有機溶 媒を使用するため、製造コストが高くなるばかりか、比表面積が大きすぎるため、活性 成分と水分との相互作用を助長して活性成分を失活させる場合もあり、賦形剤として 安定的に使用するには不十分であった。
[0005] 特許文献 4には、成形性と崩壊性が良いセルロース粉末として、平均重合度が 150 〜375、見力け it容積力 S i . 84〜8. 92cm3/g、粒度力 300 m以下のセノレロース 粉末 (本願の比較例 8に相当)が記載されて 、る。
[0006] 特許文献 5には、流動性、崩壊性が良いセルロース粉末として、平均重合度が 60 〜375、見かけ比容積が 1. 6〜3. lcm3Zg、見かけタッピング比容積が 1. 4cmV g以上で、安息角が 35〜42° 、 200メッシュ以上の成分が 2〜80重量%である微結 晶セルロース凝集体 (本願の比較例 9に相当)が記載されている。これらの特許文献 に記載される実施例により得られたセルロース粉末は、水銀ポロシメトリーを用いた細 孔分布測定結果によれば、粒子内細孔容積が小さぐ本発明の如く意図的に形成さ せた細孔構造とは全く異なる。このため、これらのセルロース粉末は比表面積が 0. 6 〜1. 2m3/gと小さぐ圧縮成形性が低い。これらの公報には、見掛け比容積の値を 調整して、セルロース粒子の成形性、流動性、崩壊性を制御することが開示されてい る力 見掛け比容積が 2. 0〜2. 9cm3Zgと比較的小さい範囲においては、流動性、 崩壊性に優れるものの、成形性が満足いくものではなぐ一方、 3. 0〜3. 2cm3Zgと やや見掛け比容積が大きくなると、成形性は優れるが、流動性、崩壊性が悪くなると いう問題があった。
[0007] 特許文献 6には、成形性の良いセルロース粉末として、平均粒子径が大きくとも 30
/z mであり、かつ比表面積が 1. 3m2Zgである j8—1 , 4—グルカン粉末 (本願の比 較例 1に相当)が記載されている。該文献に記載される j8—1 , 4—グルカン粉末は、 二次凝集構造を有さず、個々の一次粒子が単独で存在している。このグルカン粉末 は、良好な成形性を有するものの、崩壊性に劣る上、平均粒子径が小さいため、流 動性に乏し 、と 、う問題があった。
[0008] 特許文献 7には、成形性と崩壊性が良 、セルロース粉末として、セルロース質物質 を加水分解して得られる平均重合度 100〜375、酢酸保持率が 280%以上で、川北 式(P'V0/ (V0— V) = l/a'b + P/a)の a値力 SO. 85〜0. 90、 b値力0. 05〜0. 10であり、見かけ比容積が 4. 0〜6.
Figure imgf000006_0001
実質的に 355 m以上の粒子がな く、平均粒子径が 30〜120 mであるセルロース粉末 (本願の比較例 10に相当)に っ ヽての記載がある。該文献に記載される実施例の方法で得られたセルロース粉末 も、水銀ポロシメトリーを用いた細孔分布測定結果によれば、粒子内細孔容積が小さ いため、本発明の如く意図的に形成させた細孔構造とは全く異なる。特許文献 7のセ ルロース粉末は圧縮成形性と崩壊性に優れるとの記載があるが、具体的に開示され ている、最もバランスの優れる実施例について安息角を測定すると 55° を超えており 、流動性は充分満足のいくものではなぐ流動性に乏しい活性成分が多く配合される 処方等では錠剤重量の変動係数が大きくなり、薬物の含量均一性に影響を及ぼすと いう課題があった。また、該文献のセルロース粉末では、高圧下で成型した場合には 高硬度を付与できるものの、意図的に形成させた粒子内細孔がなぐ粒子内部への 水の浸透性が低!、ため、崩壊が遅延すると!、う問題があった。
[0009] 特許文献 8には、成形性と流動性と崩壊性が良 、セルロース粉末として、平均重合 度力 00〜375、 75 μ mの篩を通過し 38 μ m篩上に残留する粒子が全重量の 70 %以上で、かつ、粒子の長径短径比の平均値が 2. 0以上であることを特徴とする結 晶セルロース (本願の比較例 11に相当)が記載されて 、る。
[0010] 特許文献 9には、成形性と崩壊性、流動性が良いセルロース粉末として、平均重合 度力 50〜450、 75 m以下の粒子の平均 LZD (長径 Z短径比)が 2. 0〜4. 5、 平均粒子径が20〜250 111、見かけ比容積が 4. 0〜7. 0cm3/g,安息角が 54° 以下であり、比表面積が 0. 5〜4m2Zgであるセルロース粉末 (本願の比較例 2〜4 に相当)の記載がある。これらの公報に記載されるセルロース粉末も、上記と同様、水 銀ポロシメトリーで測定した粒子内細孔容積が小さいため、本発明の如く意図的に形 成させた細孔構造とは全く異なる。これらの公報に記載されるセルロース粉末は、粒 子の形状を細長くすることで、成型体に高い硬度を付与するものである力 細長い形 状を有するが故に、見かけ比容積が大きくなり、成形性が高いものほど流動性が低 下する。これらの公報に記載される実施例のセルロース粉末において、最も流動性 が良好なものについて安息角を測定すると 44° であり、例えば、流動性に乏しい活 性成分が多く配合される処方で、かつ高速度で連続成形する場合に、錠剤重量の 変動係数が大きくなり、薬物の含量均一性に影響を及ぼすため、流動性の点で満足 いくものではなかった。さらに、これらの公報に記載されるセルロース粉末も、高圧下 で成型した場合には高い硬度を付与できるものの、意図的に形成させた粒子内細孔 がなぐ粒子内部への水の浸透性が低いため、崩壊が遅延するという問題があった。
[0011] 特許文献 10には、平均重合度が 150〜450、平均粒子径が 30〜250 μ m、見か け比容積が 7cm3/gを超え、分子量 400のポリエチレングリコール保持率が 190% 以上であるセルロース粉末 (本願の比較例 14に相当)の記載がある。該文献に記載 されるセルロース粉末は二次凝集構造をとらず、セルロース一次粒子が実質的に単 独で存在するものである。また水銀ポロシメトリーで測定した粒子内細孔容積は小さく 、本発明の如く意図的に形成させた細孔構造とは全く異なる。また、見かけ比容積が 大きいと、流動性が大きく悪ィ匕する力 該文献の最も流動性が良好なものについて 安息角を測定すると 50° であり、例えば、流動性に乏しい活性成分が多く配合され る処方で、かつ高速度で連続成形する場合に、錠剤重量の変動係数が大きくなり、 薬物の含量均一性に影響を及ぼすため、流動性の点で満足!、くものではなかった。 該文献のセルロース粉末は、高圧下で成型した場合には高 、硬度を付与できるもの の、意図的に形成させた粒子内細孔がなぐ粒子内部への水の浸透性が低いため、 崩壊が遅延すると!、う問題があった。
加えて見かけ比容積を大きくするためにセルロース分散液中に存在するセルロー ス分散粒子の平均粒子径を 50 μ m以上とする必要がある力 本発明の該セルロース 分散粒子の平均粒径は 10 m以上 50 m未満で得られるものであり、製法の点で も明確に異なるものである。
[0012] これらの特許文献 6〜9に記載されるセルロース粉末では、見掛け比容積が 2. 3〜 6. 4cm3Zgの範囲において、また、特許文献 10に記載されるセルロース粉末では、 見掛け比容積が 7cm3/gを超える範囲において、それぞれ十分な成形性は得られ るものの、流動性、崩壊性が悪ィ匕するという問題があった。
[0013] 特許文献 11には、流動性の良いセルロース粒子として平均重合度が 60〜375で ある結晶セルロースを 10〜70%及び水溶性添加剤を 10〜90%含有する薬学的に 不活性な球状核が記載されている。また、特許文献 12には、結晶セルロースを 50% 以上含有する粉体を混合攪拌造粒機で混合しながら、蒸留水を加え練合し、吸水能 が 0. 5〜1. 5mlZg、真球度が 0. 7以上、タッピング見掛け比容積が 0. 65gZml以 上、摩損度が 1%以下、平均重合度が 60〜375である結晶セルロースを 50%以上 含有する薬学的に不活性な球状核 (本願の比較例 12に相当)が記載されている。特 許文献 13には、加水分解したセルロース粒子を、機械的に粒径を減少させ、スプレ 一乾燥した少なくとも 0. 4gZcm3の疎力さ密度(見かけ比容積では、 2. 5cmVg) を有し、球状であり、平均粒子径が 2〜35 mである滑らかな表面をもつ微結晶セル ロース粒子が記載されている。特許文献 14には、セルロース質材料を平均重合度が 60〜350になるまで加水分解し、次いで平均粒子径が 15 mになるまで機械的に 摩砕し、得られた結晶セルロースを含む分散液を、液滴の形態で乾燥し得られる、平 均重合度が 60〜350の結晶セルロースを 10%以上含有し、タッピング見掛け比容 積が 0. 60-0. 95gZmL、真球度が 0. 7以上、形状係数が 1. 10-1. 50、及び 平均粒子径が 10〜400 μ mであるセルロース系粒子(本願の比較例 13に相当)が 記載されている。
[0014] これらの文献に記載されるセルロース粒子も二次凝集構造とはならず、これらの特 許文献に記載されて ヽる実施例の方法で得られたセルロース粒子は、見掛け比容積 が 2. 5cm3Zg以下であり、球に近い形状を有し、流動性に優れるものの、圧縮成形 性に劣り、常用される圧縮圧 10〜20MPaでは実用上十分な硬度を有する成型体と ならない。
上記のように、従来の技術のセルロース粒子においては、成形性、流動性、崩壊性 は、互いに相反する性質であり、これらすベての物性をバランスよく兼ね備えた、セル ロース粒子の実現が望まれて 、た。
[0015] 一方特許文献 4〜9、及び 11〜14に記載されるセルロース粒子は、意図的に形成 させた粒子内細孔を持たず、粒子内細孔容積が小さいため、粒子内に活性成分を ほとんど担持できないために、圧縮成形時に液状成分の浸み出しや、打錠障害が生 じる問題があった。また特許文献 2及び 3に記載されるセルロース粒子は、粒子内細 孔はあるが、細孔径が小さいため、緻密で連続したセルロース壁に水が浸透しにくい ため、水中で崩壊せず、活性成分の速放性に支障をきたす問題があった。特許文献
10に記載のセルロース粒子は、見掛け比容積が高すぎて、特に高速で圧縮成形す る場合は流動性、崩壊性の点で実用に供さな!/ヽ場合があった。
[0016] また、これらのセルロース粒子は、意図的に形成させた粒子内細孔を持たず、粒子 内細孔容積が小さいため、粒子内に活性成分をほとんど担持できないために、水難 溶性活性成分の固形製剤化においては、水や有機溶媒で一旦造粒し乾燥する等の 複雑な工程を経ない限り、活性成分の溶出が遅く実用に供さないという欠点や、昇華 性の活性成分の固形製剤化の場合には、活性成分が保存中に再結晶化してしまい 、商品価値を損なう等の欠点を有していた。
[0017] 内服用固形製剤における活性成分は、消化管内で製剤より体液中に溶出し、消化 管から吸収され、体循環血液に入り、薬効を発揮する。水に難溶性の活性成分は溶 出性が低いので、投与された活性成分が全て溶出しないうちに体外へ排出され、十 分な薬効を発揮しない場合がある。投与活性成分量に対する、体循環血液に入る全 活性成分量の比は一般的にバイオアベイラビリティ一として知られている力 このバイ ォアベイラビリティ一の向上と、活性成分が速効性を目的として、今日まで難溶性活 性成分の溶出性改善は種々の方法が検討されてきた。
[0018] 特許文献 15には、水に難溶性の活性成分を j8— 1, 4—グルカン粉末と共粉砕す る方法が記載されている。本方法は、 j8— 1, 4ーグルカン粉末の結晶性が消失する まで長時間粉砕処理を施さなければならず、またロール混合機で長時間強力なシ ァをかけ続けなければならないため実生産上効率が悪い問題があった。また、結晶 性が消失した ι8—1, 4—グルカンは圧縮成形性が低い問題があった。
[0019] 特許文献 16には、直接打錠法により水難溶性の主薬を経口投与固形剤とする場 合に、 β - 1, 4—グルカン、崩壊剤及び界面活性剤を配合して強度を高め、主薬含 有量のばらつきをなくし、錠剤の崩壊度及び主薬の溶出速度を速める方法が記載さ れている。該文献には、粒子内細孔に関する記載はなぐ水難溶性の活性成分と多 孔質セルロース凝集体を配合することにより、薬物の水溶性を改善することについて は全く知られていなかった。また、水難溶性の活性成分の溶出を促進するため界面 活性剤を配合する必要があり、該固形製剤を服用した際に、界面活性剤により消化 管粘膜に炎症を生じることが課題であった。
[0020] また、特許文献 17には、水難溶性主薬と |8—1, 4—グルカンとを用いて、粉体混 合、練合、造粒、乾燥の工程を経た湿打法により錠剤を製造する場合に、水溶性高 分子溶液を添加することにより、錠剤硬度が高ぐ崩壊時間が短ぐ主薬溶出速度が 大きい錠剤を製造することが記載されている。該文献も、粒子内細孔の大きい多孔質 セルロース粒子に関する記載はなぐ水難溶性の活性成分と多孔質セルロース凝集 体を配合することにより、薬物の水溶性を改善することについては全く知られていな かった。また、かかる方法では、乾燥に関わる多くの工程が必須であり、それに伴う設 備コスト、乾燥に使用するエネルギーコストが高くなることが課題であった。また、熱に より失活する活性成分には適用できない等の課題があった。
[0021] また、特許文献 18には、有機溶媒に分散させた微粒子状天然セルロースをスプレ 一ドライ法により造粒、乾燥することで得られる、特定の比表面積及び細孔容積を有 する多孔構造のセルロース粒子に、難溶性薬物を混合し、昇華吸着させることにより 、薬物の溶出を改善する方法が記載されている。該文献に記載される多孔質セル口 ース粒子は、高い比表面積、大きい粒子内細孔容積を有するため、確かに水難溶性 活性成分を昇華吸着させた場合に、溶出の改善がみられる。しカゝしながら、該特許 文献の実施例には、過度に高い比表面積を有するセルロース粒子を使用し、その表 面で昇華吸着された活性成分は非晶化して 、るため、活性成分が保存中に一部が 結晶化して、溶出速度が変化してしまう等の保存安定性の問題や、錠剤など強固に 結合した成型体組成物では、その崩壊が悪いために崩壊しにくぐ活性成分の溶出 が遅くなるという欠点があった。
[0022] 昇華性の活性成分は、保存時に固形製剤力 侵出する問題があり、それを防止す る目的で、それらの固形製剤の多くはフィルムコーティング又は糖衣コーティングが 施されてきた。しかし、そのような処置を施されても、フィルム層を通過して製剤外部 に浸出することで、製剤中の活性成分のばらつきを生じたり、それが製剤表面に付着 することで服薬時の刺激臭を呈したり、瓶などの保存容器内で再結晶化することによ り商品価値を著しく低下させる問題があった。また、コーティングを施さない製剤の場 合は、コーティングを施した場合に対し、昇華再結晶化はさらに顕著になる。 [0023] 特許文献 18ではすでに述べたように過度に高!、比表面積を有するセルロース粒 子を使用し、その表面で昇華吸着された活性成分は非晶化しているため、活性成分 の保存安定性が悪いという問題や、錠剤など強固に結合した成型体組成物では、そ の崩壊性が悪いために崩壊しにくぐ活性成分の溶出が遅くなるという欠点があった
[0024] また特許文献 19には、固形製剤中のイブプロフェンが昇華することによる再結晶化 を防止する方法として、イブプロフェン含有固形製剤と、ポリビニルピロリドン、酸ィ匕マ グネシゥム及び炭酸水素ナトリウム力 なる群から 1種又は 2種以上の安定ィ匕物質を 共に、瓶などの密閉容器内で保存する方法が記載されている。力かる方法によると、 確かに製剤保存時の密閉容器への結晶付着、製剤の刺激臭は改善されるが、ポリビ -ルピロリドン、酸ィ匕マグネシウム及び炭酸ナトリウム等を別の製剤として容器に入れ る必要があり、工程が複雑になるため、本発明の昇華性活性成分含有製剤の如ぐ その製剤中に多孔質セルロースを入れることで、昇華性が防止された単一製剤とす るものとは全く異なる。
[0025] 従来、常温で、油状、液体、半固体状の活性成分を含む組成物は、固体状活性成 分と比較して、圧縮成形する際に、製剤から液状成分が浸み出すため、特に打錠障 害を生じやすぐ得られた製剤表面に液状成分の斑点が生じる、顆粒状製剤の場合 は流動性不良を生じる等の問題があった。これらの問題は、製品の品質を著しく低下 させるば力りではなぐ活性成分濃度 ·薬効ばらつきの原因となるため、その改善は 極めて重要な課題である。
[0026] 特許文献 20〜31には、錠剤の製造において、常温で液状'半固形状の活性成分 をそのまま吸着担体に保持させる、或いは活性成分を水、有機溶媒、油脂、水溶性 高分子、界面活性剤に溶解、乳化、懸濁させたものを保持させた後、乾燥工程を経 て、得られた乾燥粉末、又は顆粒を圧縮成形する方法が記載されている。しカゝしなが ら、これらの特許文献の方法では、圧縮時に常温で液状又は半固形状の活性成分 が浸み出し、打錠障害を発生させ、十分な圧縮成型体が得られない場合があった。 またこれら特許文献には、セルロース粒子に関して、粒子内細孔容積に関する記載 はなぐ常温で液状又は半固形状の活性成分を圧縮する際に、本発明の粒子内細 孔容積の大きな多孔質セルロース凝集体を加えることにより、該多孔質セルロース凝 集体が常温で液状又は半固形状の活性成分をその粒子内部に保持することにより、 浸み出しを防止し、粉末、顆粒、錠剤等のような固形製剤を調製しやすくなること〖こ ついては全く知られていなかった。また、特許文献 20〜31の方法では、乾燥に関わ る多くの工程が必須であり、それに伴う設備コスト、乾燥に使用するエネルギーコスト が高くなることが課題でもあった。
特許文献 1:国際公開第 2005Z073286号パンフレット
特許文献 2:特開平 1― 272643号公報
特許文献 3:特開平 2— 84401号公報
特許文献 4:特公昭 40— 26274号公報(CA 699100 A)
特許文献 5 :特開昭 53— 127553号公報(US4159345 A)
特許文献 6:特開昭 63 - 267731号公報
特許文献 7:特開平 6— 316535号公報 (US5574150)
特許文献 8:特開平 11— 152233号公報
特許文献 9:国際公開第 02Z02643号パンフレツ卜 (US20040053887 A1) 特許文献 10:国際公開第 2004Z106416号パンフレット(EP1634908) 特許文献 11:特開平 4 283520号公報
特許文献 12 :特開平 7— 173050号公報(US5505983、 US5384130) 特許文献 13:特表平 7— 507692号公報 (US5976600 A)
特許文献 14:国際公開第 02Z36168号パンフレツ HUS20040043964 A1) 特許文献 15特公昭 53 — 22138号公報(US4036990 A)
特許文献 16特開昭 53 — 044617号公報
特許文献 17特開昭 54 — 052718号公報
特許文献 18特開平 03 — 264537号公報
特許文献 19特開平 08 — 193027号公報
特許文献 20特開昭 56 — 7713号公報
特許文献 21 特開昭 60 — 25919号公報
特許文献 22特開昭 61 — 207341号公報 特許文献 23 :特開平 11 - - 193229号公報(EP972513 B1)
特許文献 24:特開平 11 - - 35487号公報
特許文献 25 :特開 2000- — 16934号公報
特許文献 26 :特開 2000- — 247869号公報
特許文献 27 :特開 2001 - — 181195号公報
特許文献 28 :特開 2001 - — 316248号公報
特許文献 29 :特表 2002- — 534455号公報(US6630150 )
特許文献 30 :特開 2003- - 161号公報
特許文献 31 :特開 2003- - 55219号公報
発明の開示
発明が解決しょうとする課題
[0028] 本発明は、セルロース粒子を特定の細孔容積を持つ多孔質セルロース凝集体とす ることにより、各種活性成分を含む成型体の製造に用いられる、優れた成形性、流動 性、崩壊性を有する賦形剤を提供することを課題とする。
課題を解決するための手段
[0029] 本発明者らは、前記課題を解決するため、セルロース凝集体の粒子構造を制御し 、二次凝集構造を発現させ、セルロース凝集体の粒子内細孔容積を高め、セルロー ス凝集体の粉体物性を特定の範囲に制御することにより、本発明をなすに至った。 すなわち本発明は、下記の通りである。
[0030] (1)セルロース一次粒子が凝集してなる二次凝集構造を有し、粒子内細孔容積が 0 . 265cm3Zg〜2. 625cm3Zgであり、 I型結晶を含有し、平均粒子径が mを 超え 250 m以下、比表面積が 0. lm2Zg以上 20m2Zg未満、安息角が 25° 以上 44° 未満であり、膨潤度が 5%以上であり、かつ水中で崩壊する性質を有することを 特徴とする多孔質セルロース凝集体、
(2)前記多孔質セルロース凝集体を 0. 5g計りとり、臼に入れ、直径 1. 1cmの円形平 面杵で圧力が lOMPaになるまで圧縮し、目標圧で 10秒間保持する条件下で得られ る円柱状成型体の硬度力 70〜160Nであり、かつ安息角が 36° を超え 44° 未満 である(1)に記載の多孔質セルロース凝集体、 (3)前記多孔質セルロース凝集体を 0. 5g計りとり、臼に入れ、直径 1. 1cmの円形平 面杵で圧力が lOMPaになるまで圧縮し、目標圧で 10秒間保持する条件下で得られ る円柱状成型体の硬度力 60〜: LOONでかつ安息角が 25° 以上 36° 以下である( 1)に記載の多孔質セルロース凝集体、
(4)セルロース一次粒子の平均粒径が 10 μ m以上 50 μ m未満、平均幅が 2〜30 μ m、及び平均厚みが 0. 5〜5 μ mである天然セルロース質物質を含む分散液(以下
、セルロース分散液とも言う)を得る工程、得られたセルロース分散液を乾燥する工程 を含む製造方法によって得られ得る、 (1)〜(3)のいずれか一項に記載の多孔質セ ルロース凝集体、
(5)前記セルロース分散液が、遠心力 4900mZs2の遠心分離条件で沈降しない粒 子が 10重量%以下であるセルロース分散液である(4)に記載の多孔質セルロース 凝集体、
(6)セルロース一次粒子の平均粒径が 10 μ m以上 50 μ m未満、平均幅が 2〜30 μ m、及び平均厚みが 0. 5〜5 μ mである天然セルロース質物質を含む分散液(以下
、セルロース分散液とも言う)を得る工程、得られたセルロース分散液を乾燥する工程 を含むことを特徴とする(1)〜(3)のいずれか一項に記載の多孔質セルロース凝集 体の製造方法、
(7)前記セルロース分散液が、遠心力 4900mZs2の遠心分離条件で沈降しない粒 子が 10重量%以下であるセルロース分散液である(6)に記載の方法、
(8)前記天然セルロース質物質を粉砕、磨砕等の機械的処理、又は加水分解等の 化学的処理、又は両者を組み合わせた処理の工程中でせん断又は攪拌を行うこと により、或いはこれらの処理の後の工程で攪拌を行う(6)に記載の方法、
(9)前記天然セルロース質物質を粉砕、磨砕等の機械的処理をする工程、次いで加 水分解する工程でせん断又は攪拌を行う(6)に記載の方法、
(10)前記天然セルロース質物質を加水分解する工程又はその後の工程で攪拌を 行う (6)に記載の方法、
(11)前記セルロース分散液が、遠心力 4900mZs2の遠心分離条件で沈降しない 粒子が 10重量%以下であるセルロース分散液である(8)に記載の方法、 (12)前記セルロース分散液が、遠心力 4900mZs2の遠心分離条件で沈降しない 粒子が 10重量%以下であるセルロース分散液である(9)に記載の方法、
(13)前記セルロース分散液が、遠心力 4900mZs2の遠心分離条件で沈降しない 粒子が 10重量%以下であるセルロース分散液である(10)に記載の方法、
(14)前記天然セルロース質物質が、レベルオフ重合度が 130〜250、白色度が 90 〜99%、S 力 〜 20%、S 力^〜 10%の木材パルプである(4)に記載の多孔質セ
10 18
ルロース凝集体、
(15)前記天然セルロース質物質力 レベルオフ重合度が 130〜250、白色度が 90 〜99%、S 力 〜 20%、S 力^〜 10%の木材パルプである(5)に記載の多孔質セ
10 18
ルロース凝集体、
(16)前記天然セルロース質物質力 レベルオフ重合度が 130〜250、白色度が 90 〜99%、S 力 〜 20%、S 力^〜 10%の木材パルプである(6)に記載の多孔質セ
10 18
ルロース凝集体の製造方法、
(17)前記天然セルロース質物質力 レベルオフ重合度が 130〜250、白色度が 90 〜99%、S 力 〜 20%、S 力^〜 10%の木材パルプである(7)に記載の多孔質セ
10 18
ルロース凝集体の製造方法、
(18)前記天然セルロース質物質力 レベルオフ重合度が 130〜250、白色度が 90 〜99%、S 力 〜 20%、S 力^〜 10%の木材パルプである(8)に記載の多孔質セ
10 18
ルロース凝集体の製造方法、
(19)前記天然セルロース質物質力 レベルオフ重合度が 130〜250、白色度が 90 〜99%、S 力 〜 20%、S 力^〜 10%の木材パルプである(9)に記載の多孔質セ
10 18
ルロース凝集体の製造方法、
(20)前記天然セルロース質物質力 レベルオフ重合度が 130〜250、白色度が 90 〜99%、S 力 〜 20%、S 力^〜 10%の木材パルプである(10)に記載の多孔質
10 18
セルロース凝集体の製造方法、
(21)前記天然セルロース質物質力 レベルオフ重合度が 130〜250、白色度が 90 〜99%、S 力 〜 20%、S 力^〜 10%の木材パルプである(11)に記載の多孔質
10 18
セルロース凝集体の製造方法、 (22)前記天然セルロース質物質力 レベルオフ重合度が 130〜250、白色度が 90 〜99%、S 力 〜 20%、S 力^〜 10%の木材パルプである(12)に記載の多孔質
10 18
セルロース凝集体の製造方法、
(23)前記天然セルロース質物質力 レベルオフ重合度が 130〜250、白色度が 90 〜99%、S 力 〜 20%、S 力^〜 10%の木材パルプである(13)に記載の多孔質
10 18
セルロース凝集体の製造方法、
(24) 1種以上の活性成分と(1)〜(3)の 、ずれか一項に記載の多孔質セルロース 凝集体とを含むことを特徴とする成型体組成物、
(25) 1種以上の活性成分と (4)に記載の多孔質セルロース凝集体とを含むことを特 徴とする成型体組成物、
(26) 1種以上の活性成分と(5)に記載の多孔質セルロース凝集体とを含むことを特 徴とする成型体組成物、
(27) 1種以上の活性成分と、 (6)に記載の方法により得られ得る多孔質セルロース 凝集体とを含むことを特徴とする成型体組成物、
(28) 1種以上の活性成分と、 (7)に記載の方法により得られ得る多孔質セルロース 凝集体とを含むことを特徴とする成型体組成物、
(29) 1種以上の活性成分と、(8)〜(10)のいずれか一項に記載の方法により得られ 得る多孔質セルロース凝集体とを含むことを特徴とする成型体組成物、
(30) 1種以上の活性成分と、 (11)に記載の方法により得られ得る多孔質セルロース 凝集体とを含むことを特徴とする成型体組成物、
(31) 1種以上の活性成分と、 (12)に記載の方法により得られ得る多孔質セルロース 凝集体とを含むことを特徴とする成型体組成物、
(32) 1種以上の活性成分と、 (13)に記載の方法により得られ得る多孔質セルロース 凝集体とを含むことを特徴とする成型体組成物、
(33)成型体組成物が錠剤である(24)に記載の成形体組成物、
(34)成型体組成物が錠剤である(25)〜(28)の ヽずれか一項に記載の成型体組 成物、
(35)成型体組成物が錠剤である(29)に記載の成型体組成物、 (36)成型体組成物が錠剤である(30〜32)の ヽずれか一項に記載の成型体組成 物。
発明の効果
[0031] 本発明の多孔質セルロース凝集体は、成形性、流動性、崩壊性に極めて優れて!/ヽ るため、各種活性成分を含む成型体の製造において、本発明の多孔質セルロース 凝集体を賦形剤として使用する際に、活性成分との混合均一性に優れ、重量ばらつ きがなぐ活性成分の含量均一性に優れ、十分な硬度を有し、打錠障害がなぐ摩損 度が低ぐ崩壊性が優れる成型体が簡便な方法で提供できる。
[0032] 本発明の多孔質セルロース凝集体は、水難溶性の活性成分を含む固形製剤にお いて、活性成分の溶出性、打錠性、崩壊性が極めて良好となるために、固形製剤の ための賦形剤の用途では特に有用である。また、本発明の多孔質セルロース凝集体 は、液状、半固形状活性成分を含む固形製剤において、液状又は半固形状活性成 分の浸み出しが防止され、崩壊性が良好となるために、固形製剤のための賦形剤の 用途では特に有用である。加えて、本発明の多孔質セルロース凝集体は、活性成分 が微量である場合で特に活性成分の平均粒径が小さく付着凝集性が高い場合の、 活性成分と活性成分以外の成分の混合やそれを用いた固形製剤において、活性成 分の混合速度及び、濃度ばらつきの低減に寄与でき、打錠性、崩壊性が良好となる ために、固形製剤のための賦形剤の用途では特に有用である。さらには本発明の多 孔質セルロース凝集体は、昇華性の活性成分の固形製剤において、昇華性活性成 分の昇華による再結晶化を防止でき、商品価値の低下を防ぐことができるために、固 形製剤のための賦形剤の用途では特に有用である。
発明を実施するための最良の形態
[0033] 本発明について、特にその好ましい形態を中心に、以下具体的に説明する。
本発明の多孔質セルロース凝集体は、一次粒子が凝集してなる二次凝集構造を有 する必要がある。これは、走査型電子顕微鏡 (SEM)にて、 250倍若しくは 1500倍 で、粒子表面を観察した場合に、一次粒子の境界が明確な二次凝集構造のことをい う。一次粒子が凝集してなる二次凝集構造は、崩壊性と密接に関係し、この粒子構 造でない場合は、崩壊性が悪ィ匕するので好ましくない。一次粒子の境界が明確でな ぐ例えばフィルム状の緻密で連続したセルロース隔壁を有する場合は、セルロース 一次粒子が緻密に連続し、強固に結合しているため、水中で粒子が崩壊せず、成型 体の崩壊性も悪くなるので好ましくな 、。
[0034] また、一次粒子が凝集してなる二次凝集構造は、崩壊性のみならず、活性成分の 溶出性とも密接に関係する。一次粒子が凝集してなる二次凝集構造を有する多孔質 セルロース粒子は、水中で、一次粒子間への水の浸透が速ぐ一次粒子への崩壊が 促進され、活性成分を保持させた場合には、活性成分と水との接触面積が増大する ため、水に難溶性の活性成分の溶出性を改善する効果がある。
[0035] カロえて、この二次凝集構造は、粒子の内部'表面に関わらず、均一に分布するもの であり、活性成分と混合する際には、セルロース一次粒子間隙にも、活性成分を保持 できるため、特に、液状成分の浸み出しを防止できるので好ましい。
さらに、この二次凝集構造は、粒子の表面のみならず、内部にも活性成分を保持で きるため、活性成分の混合速度の向上、混合均一性の向上に寄与し、濃度ばらつき を大幅に低減できるので好まし 、。
[0036] 本発明の多孔質セルロース凝集体は、その粒子内細孔容積が 0. 265cm3Zg〜2 . 625cm3Zgである必要がある。粒子内細孔容積が大きい多孔質粒子は、塑性変 形性に優れ、圧縮時に粒子が潰れ易いため、成形性に優れる。本発明の多孔質セ ルロース凝集体は、元々のセルロースに由来するものに加えて、意図的に凝集粒子 内細孔容積を大きくしたものであり、このように粒子自身の構造を変えることで塑性変 形性を高めたものである。そのため、粒子の見掛け比容積によらず、高い圧縮成形 性を発現する。粒子内細孔容積力 0. 265cm3Zg未満の場合は、セルロース一次 粒子が本来有する粒子内細孔、又は意図的に形成させたものではなく自然とセル口 ースが凝集したことにより形成された粒子内細孔しカゝ持たな 、ため、塑性変形性に乏 しい。成形性を高めるためには、粒子の見掛け比容積を大きくせねばならないため、 結果的に粒子の流動性が悪くなる。本発明の多孔質セルロース凝集体は、その比較 的小さい見かけ比容積で良好な成形性を確保できるため、結果的に流動性にも優れ たものが得られる。
[0037] 粒子内細孔容積が 0. 265cm3Zg以上であると、粒子内に十分な細孔容積を有す るため、混合過程や圧縮過程でー且粒子内又は粒子表面の細孔に取り込まれた活 性成分が、脱離し難いため、粒子内細孔に液状成分を十分量保持できるので、浸み 出し防止にも優れるため好ましぐ固体活性成分を使用する場合には、水分散性、溶 出性改善を目的とし、微粉砕した活性成分を均一に、多く保持できることや、昇華性 活性成分の、特に保存中の再結晶化を防止し、安定化や商品価値の劣化を防ぐこと に寄与できるために好ましぐさらには活性成分の混合速度の向上、混合均一性の 向上にも寄与し、濃度ばらつきを大幅に低減できるので好ま 、。
[0038] 水難溶性の活性成分を、ー且溶解又は懸濁又は乳化させたものを使用する場合 にも、液状成分の保持性に優れるため好ましい。活性成分の濃度ばらつきの指標で ある薬物濃度変動係数は、混合時間中に 3. 0%を超えないことが好ましぐさらに好 ましくは 2. 0%以下、特に好ましくは 1. 5%以下である。特に平均粒子径が 10 /z m 以下の、凝集性が非常に高い活性成分を混合する場合には、本発明の多孔質セル ロース凝集体のように粒子内細孔容積が 0. 265cm3Zg以上のものを用いることによ つて、粒子の表面のみならず、内部にも活性成分を保持する効果があるため、薬物 濃度変動係数を 2. 0%以下にできるため好ましい。
[0039] 粒子内細孔容積が 0. 265cm3Zg未満であると、固体活性成分、液状活性成分の 分散均一性、保持性が損なわれるので、活性成分濃度ばらつきを生じる、固形製剤 が凝集を生じる、圧縮成形性が損なわれる、昇華性活性成分では保存中に再結晶 化し、安定性や商品価値が低下する等、上記の効果が得られないので好ましくない 粒子内細孔容積は大きければ大きいほど良いが、粒子が持ち得る細孔容積には 限界があり、せいぜい 2. 625cm3Zg程度である。
また 2. 625cm3Zgを超えると見かけ比容積が増加し流動性が低下するので好まし くない。
以上述べたように、粒子内細孔容積が大きいほど、粒子に塑性変形性を付与する ため成形性を高め、活性成分を内部に取り込み溶出性を改善し、粉砕した活性成分 を多く保持でき、昇華性成分の再結晶化を防止でき、活性成分の混合速度を向上さ せ、混合均一性を良好にでき、液状成分を保持できる等の点で好ましいが、粒子内 細孔容積が大きくなりすぎると見かけ比容積が増大し流動性が低下する傾向にある ので、成形性と流動性をバランスよく付与できる粒子内細孔容積の好まし 、範囲とし ては、0. 265cmVg~l . 500cm3Zg、特に好ましくは 0. 265cmVg~l . OOOc m / gでめる。
[0040] 本発明の多孔質セルロース凝集体の細孔径分布は、例えば、水銀ポロシメトリーに より測定される。特に、 0. 1〜: LO /z mの範囲に、「明確なピーク」を識別できることが 好
ましい。また、細孔分布のピークトップである中央細孔径は、粒子内への水の浸透性 に密接に関わるものであり、中央細孔径は 0. 以上が好ましい。中央細孔径が 0. 3 m以上の時に水の浸透速度が大きくなり、崩壊性力 ^、つそう向上する。中央 細孔径は大き ヽほど好まし ヽ力 大きくとも 10〜 15 mの範囲内に存在する。
特許文献 1の製造方法では、平均粒径の異なる 2種以上のセルロース一次粒子を 混合して乾燥するために、粒子同士のパッキングが良くなりすぎてしまい、実質的に 3 μ m以上の大きな細孔径を得ることは困難であった。本発明は成形性と崩壊性のバ ランスが特に優れるものであり、中央細孔径が 3〜15 /ζ πιが好ましぐさらに好ましく は 3〜: LO /z mである。
[0041] 本発明の多孔質セルロース凝集体の結晶形は I型でなければならない。セルロース の結晶形としては、 I型、 II型、 III型、 IV型などが知られており、その中でも特に I型は、 「天然セルロース」、 II型は「再生セルロース」と呼ばれ、汎用されており、 III型、 IV型 は実験室スケールでは得られて 、るものの工業スケールでは汎用されて ヽな 、。天 然セルロースは古来、植物性繊維として食用に供しており、現在では液状食品の分 散安定剤や、医薬品賦形剤として広く使用されている。一方、再生セルロースは、二 硫化炭素、水酸化ナトリウム等の化学品溶液、溶剤を取り除き、再生させ、結晶構造 を変えたものであり、一部湿式で食品用保形剤として使用されている。結晶形が II型 である再生セルロースは、結晶形力 型の天然セルロースから、結晶形が変わること で、粒子が剛直になり、圧縮時の塑性変形性が低下し、成型体に十分な硬度を付与 できな!/ヽので好ましくな!/、。
[0042] 本発明の多孔質セルロース凝集体は、その平均粒子径が 30 μ mを超え 250 μ m 以下である必要がある。平均粒子径が 30 m以下であると、セルロース粒子同士が 凝集するため、活性成分と混合する際に、活性成分が均一に分散しにくぐ得られた 成型体の活性成分ばらつきが大きくなりやすぐまた、連続生産する際の成型体の重 量ばらつきも大きくなる傾向にある。また、平均粒子径が 250 mを超えると、流動性 の悪!ゝ活性成分と混合した処方粉体を連続で圧縮する際に、分離偏析を生じやす い。
[0043] 本発明の多孔質セルロース凝集体の比表面積は、 0. lm2Zg以上〜 20m2Zg未 満でなければならない。比表面積が 0. lm2Zg未満であると、圧縮成形性が低くなり 、成型体に高い硬度、低い摩損度を付与しにくい。また、比表面積が 20m2Zgを超 えると、セルロースにより失活しゃすい活性成分と配合した場合に、セルロースと活性 成分の接触面積が過度に大きくなりやすぐ活性成分が失活しやすいので好ましくな い。
[0044] 本発明の多孔質セルロース凝集体の安息角は、 25° 以上 44° 未満でなければな らない。通常、活性成分は、服用した際の胃液'腸液媒体中で拡散し、迅速に薬効を 高められるよう調製されるものであり、粉砕を施されたり、元々微粉ィ匕しているものが 多い。それらは微粉であるが故、流動性が悪いものである力 セルロース粉末の安息 角が 44° 以上では、流動性が悪い活性成分を多量に配合した場合、混合末の流動 性の点で好ましくな 、。特に数万〜数十万錠 Z時の高速打錠時における成型体の 重量ばらつきが大きくなる傾向がある。安息角は小さいほど流動性がよいが、 25〜4 2° のものが特に優れる。さらに好ましくは 25〜40° である。安息角が 25° 未満で あると、活性成分との分離偏祈の点で好ましくない。
本発明の多孔質セルロース凝集体は、膨潤度が 5%以上である必要がある。好まし くは 6〜50%、特に好ましくは 7〜30%である。膨潤度は次のようにして測定すること ができる。容積が 100cm3の円筒状の容器内に約 10gの粉末をゆっくりと流し込んだ 時の体積 (V )と、該粉末層に約 50cm3の純水を入れ、粉末が完全に湿潤されるよう に混合し 8時間静置した後の体積 (V )から次式により求める。
2
膨潤度(%) = (v 2 -v1)/v 1 X 100
膨潤度は、セルロース一次粒子が乾燥により凝集する際に付与されるセルロース一 次粒子間の間隙であり、この値が大きいほど粒子内への水浸透性が高まるため、崩 壊しやすくなる。従来のセルロース粉末においては、成形性を高めたものは、膨潤度 を低くせざるを得ず、結果として崩壊性が十分でない場合があったり、流動性を高め たものは、膨潤度は高く崩壊性は良好であるものの、成形性を高いレベルにしておく ことが困難であった。従来のセルロース粉末の中で、最も成形性と崩壊性のノ ランス に優れて 、るものとしては特許文献 1に記載の多孔質セルロース凝集体がある。該特 許文献には膨潤度の記載はな 、が、実施例に記載の該特許文献の多孔質セルロー ス凝集体について測定すると、成形性が高くなるほど膨潤度は低い値となり、高くとも
4%であることがわ力つた。膨潤度を高いレベルにして崩壊性を維持したまま、成形 性を高めることはこれまでにできておらず、本発明によって初めて達成されたもので ある。
[0045] 本発明の多孔質セルロース凝集体の見かけ比容積は、 2. 0〜6. 0cm3Zgである ことが好ましい。本発明の多孔質セルロース凝集体は、多孔質構造を有するため、従 来のものに対し、見かけ比容積のほぼ全域に渡って、硬度、流動性、崩壊性をバラン スよく有するものである。高い圧縮成形性を付与するためには見かけ比容積が 2. Oc m3Zg以上、高い流動性を付与するために見かけ比容積が 6. 0cm3Zg以下が好ま し ヽ。特【こ好ましく ίま、 2. 5〜5. 0cm3/gである。
[0046] 本発明の多孔質セルロース凝集体は、セルロース粉末を 0. 5g計りとり、臼(菊水製 作所製、材質 SUS2, 3を使用)に入れ、直径 1. 1cmの円形平面杵 (菊水製作所製 、材質 SUS2, 3を使用)で圧力が 10MPa、及び 20MPaになるまで圧縮し(アイコ一 エンジニアリング製、 PCM—1A使用、圧縮速度は lcmZ分)、目標圧で 10秒間保 持する条件下で得られる円柱状成型体の硬度が、それぞれ 60N以上、及び 165N 以上であることが好ましい。それぞれの条件において、 lOMPaの硬度が 60N未満、 20MPaの硬度力 165N未満であると、活性成分を多量に配合し、数万〜数十万錠 Z時で製した成型体の硬度が低ぐ摩損や、キヤッビング等の打錠障害が発生しや すい。ここに示す錠剤硬度は高ければ高いほどよいが、せいぜい lOMPaの硬度が 1 60N、 20MPaの硬度力 50Nである。
[0047] 本発明の多孔質セルロース凝集体は、上記の圧力が lOMPaになるまで圧縮して 得られる円柱上成型体の硬度が 70〜160N、又は 20MPaになるまで圧縮して得ら れる円柱上成型体の硬度が 170〜410Nであって、かつ安息角が 36° を超え 44° 未満である場合には、薬物含量が 30重量%程度以上の高い含有率の時に、本発明 の多孔質セルロース凝集体を 1〜30重量%程度の少量の添加でも十分な成形性、 摩損性、崩壊性、含量均一性等の製剤に要求される物性を付与できるために特に優 れる。ステイツキングやキヤッビング等の打錠障害性を有する薬物を 0. 5g計りとり、臼 (菊水製作所製、材質 SUS2, 3を使用)に入れ、直径 1. 1cmの円形平面杵 (菊水 製作所製、材質 SUS2, 3を使用)で圧力が 50MPaになるまで圧縮し (アイコーェン ジニアリング製、 PCM— 1A使用、圧縮速度は lcmZ分)、目標圧で 10秒間保持す る条件下で得られる円柱状成型体の硬度が 50N以下、好ましくは 40N以下、さらに 好ましくは 20N以下、又はその両方の性質を有する場合にぉ 、て特に有効である。 従来のセルロース粉末では、薬物の含量が 30重量%程度以上の高含有率で、ステ イツキングやキヤッビングなどの打錠障害を抑制できたとしても、十分な流動性を有し ていなかったので、錠剤重量 CV、含量 CV等の点で、実用化ができていな力つた。 本発明は上記の用途において、従来のセルロース粉末の流動性を顕著に改善した ものであり、これまで成形性と流動性が相反する性質であるにも関わらず、高いレべ ルで両立させた点で優れるものである。また、本発明の多孔質セルロース凝集体は、 上記の圧力が lOMPaになるまで圧縮して得られる円柱上成型体の硬度が 60— 10 ON、又は 20MPaになるまで圧縮して得られる円柱上成型体の硬度が 165— 41 ON であって、かつ安息角が 25〜36° である場合には、賦形剤を 30重量%程度以上含 有できる処方にぉ 、て、薬物含量を 30重量%程度以上の高含有率にすることが初 めて可能となる点で特に好ましい。従来のセルロース粉末では、安息角を小さくする と成形性が低下するために、セルロース粉末を 30重量%程度以上含有して 、ても薬 物の含有率を上げようとすると、流動性の良いセルロース粉末では成形性が足りず、 成形性の良いセルロースでは流動性が足りずに製剤化が困難であつたが、本発明 は、上記の用途において、従来のセルロース粉末の流動性を顕著に改善したもので あり、これまで成形性と流動性が相反する性質であるにも関わらず、高いレベルで両 立させた点で優れるものである。本発明の多孔質セルロース凝集体は、上記の方法 で、 20MPaになるまで圧縮し、目標圧で 10秒間保持する条件下で得られる円柱状 成型体の崩壊時間は、崩壊性の点で 75秒以下であることが好ましい。特に好ましく は 50秒以下である。この崩壊時間は短ければ、短いほどよい。通常、活性成分は、 服用した際の胃液'腸液媒体中で拡散し、迅速に薬効を高められるよう調製されるも のであるが、成型体の崩壊時間が長くなると、成型体力 の薬物の溶出が遅くなり、 消化管で速やかに吸収されず、即効性が低下する傾向がある。
[0048] 圧縮成形性と崩壊性は相反する性質であり、本発明の多孔質セルロース凝集体は 、これら相反する性質を従来にないレベルに高めたものであることから、好ましくは、 1 OMPaになるまで圧縮して得られる円柱上成型体の硬度が 60〜160N、又は 20MP aになるまで圧縮して得られる円柱上成型体の硬度が 165〜410Nであって、かつ、 崩壊時間が 75秒以下、特に好ましくは lOMPaになるまで圧縮して得られる円柱上 成型体の硬度が 60〜160N、又は 20MPaになるまで圧縮して得られる円柱上成型 体の硬度が 165〜410Nであって、かつ、崩壊時間が 50秒以下である。本発明の多 孔質セルロース凝集体は、特許文献 1に記載の多孔質セルロース凝集体と比較して 、中央細孔径を大きくできるため、膨潤度が高ぐ同一硬度で比較した場合に、崩壊 時間が短!ヽと 、う利点を有して 、る。
[0049] 本発明の多孔質セルロース凝集体は、ァセトァミノフェン( (株)エーピーアイ製、粉 末タイプ) 55重量部、軽質無水ケィ酸(日本ァエロジル (株)製、商品名、ァエロジル 200)を 0. 25重量部、セルロース粒子を 27重量部、クロスポビドン(BASF製、商品 名、コリドン CL) 2重量部、造粒乳糖 (ラタトース-ユージーランド製、商品名、 Super -Tab) 15重量部を 100Lスケールの V型混合機 (ダルトン社製)に入れて、 30分間 混合し、次いでステアリン酸マグネシウム (太平ィ匕学産業 (株)製、植物性)を 0. 5重 量部入れてさらに 5分間混合し、処方粉体を得て、得られた処方粉体を、ロータリー 打錠機 (菊水製作所製、商品名、 LIBRA— II 36本立て 回転盤 φ 410mm)を使 用し、直径 8mm、 12Rの杵を用いてターンテーブル回転数 50rpm、圧縮力 7. 5kN で打錠し、得られた重量 200mgの成型体の硬度が、 50N以上であり、摩損度が 1% 未満であり、打錠障害がないことが好ましい。
[0050] 成形性に乏しい薬物を多量に含有する処方に硬度を付与し、摩損度を低減するた めには、成形性の高い賦形剤が必要であり、かつ高速で連続成型する際に、重量ば らっきを低減するために、流動性の高い賦形剤が必要となる。このような低成形性の 薬物を多量に配合する処方、かつ高速打錠での成型体の製造は、本発明の如く成 形性に優れ、かつ流動性が優れる賦形剤を配合することで初めて実現し得るもので ある。成型体の硬度が、 50N未満、摩損度が 1%以上であると、輸送中に摩損、粉立 ち、割れ、欠けが生じるため好ましくない。打錠障害が発生すると、不良品が発生す るので好ましくない。ここに示す硬度は、高ければ高い程良いが、せいぜい 100Nで あり、摩損度は低ければ低いほど良い。
[0051] また本発明の多孔質セルロース凝集体は、薬効成分とセルロース粒子以外の成分 からなる 45° 〜55° の安息角を有する、流動性の悪い処方粉体 0. 001〜50重量 %に対し、セルロース粒子 30〜90重量%を添加することにより、本発明の成型体組 成物を構成する最終の全処方粉体の安息角が 25° 〜45° となり、かつ時間あたり 5 万錠以上の高速打錠において、該成型体組成物の錠剤硬度が 50N〜100N (打圧 範囲 1〜: LOkN)、錠剤重量ばらつき(CV値)が 2. 0%以下であることが好ましい。好 ましくは全処方粉体の安息角が 45° 以下、該成型体組成物の錠剤硬度が 50〜: L0 0N、錠剤重量ばらつき (CV値)が 1. 5%以下、特に好ましくは、全処方粉体の安息 角が 42° 以下、該成型体組成物の錠剤硬度が 50N〜100N、錠剤重量ばらつき( CV値)が 1. 0%以下である(実施例 17〜19と比較例 80〜91)。
[0052] 本発明の多孔質セルロース凝集体は、成形性、流動性、崩壊性をバランスよく兼ね 備えているため、特に直接打錠等、組成物中の薬効成分や、本発明の多孔質セル口 ース凝集体以外のその他成分の流動性が悪く(安息角として、 45° 〜55° )、及び Z又は、該成分の圧縮成形性が乏しい場合において、多孔質セルロース凝集体を 多量に配合することによって従来のセルロース粉末、セルロース粒子では得られなか つた顕著な効果を奏するのが特徴の一つである。すなわち、従来のセルロース粉末 、セルロース粒子では、セルロースの添カ卩量が増すほどに成形性は増すものの、逆 にセルロース粉末、セルロース粒子自身の流動性に近づくために、流動性、崩壊性 が悪化するため、実用的な生産速度での高速打錠が困難であったり、得られた錠剤 の崩壊時間が遅延してしまう等の問題があった。これに対して、本発明の多孔質セル ロース凝集体は、従来のセルロース粉末、セルロース粒子にはない高いレベルで、 成形性と流動性、崩壊性のバランスに優れるため、多孔性セルロース凝集体を多量 に配合しても、流動性悪化は生じず、むしろ流動性を改善できるという利点がある。 本発明でいう「多量に配合」とは、組成物中に、本多孔質セルロース凝集体が 30〜9 0%含まれていることをいう。好ましくは 30〜80%、特に好ましくは 30〜70%である。 以下に本発明のセルロース粉末の製造方法について記述する。
本発明の多孔質セルロース凝集体は、例えばセルロース一次粒子の平均粒径が 1 0 μ m以上 50 μ m未満、平均幅が 2〜30 μ m、平均厚みが 0. 5〜5 μ mである天然 セルロース質物質を含む分散液 (以下、セルロース分散液とも 、う)を得る必要がある 。セルロースの一次粒子をこのような形状にすることで、乾燥工程でのセルロース一 次粒子同士の絡み合いを促進することができるために好ましい。従来、セルロース一 次粒子の長軸が長ければ長いほど、粒子の絡み合いが起こり難いために、凝集粒子 の形状を球形に保つことが難し力つたが、本発明は、セルロース一次粒子の形状に 着目し、これを特定範囲に制御すれば、粒子同士の絡み合いが促進できることを初 めて実証したものである。セルロース一次粒子同士の絡み合いを促進することにより 、凝集粒子を球形に制御しやすぐかつ、凝集粒子内部に空隙を付与して、粒子の 塑性変形性を高めて成形性を付与しやすくなることが初めて可能となったものである 。従来、凝集粒子を球形に制御しょうとすれば、セルロース一次粒子の長軸を短くす る必要があった力 機械的処理又は加水分解又は両者の組合せ等、セルロース一 次粒子を処理する工程において、セルロース一次粒子の長軸を短くすればするほど に、セルロース一次粒子の微細な断片が生じてくるようになり、これらが凝集粒子の 間隙をふさ ヽでしま ヽ十分な塑性変形性が得られず、成形性が低下してしまう問題 があった。従って、セルロース一次粒子の長軸を短くせずに粒子を造粒する必要が あつたが、このような粒子は凝集しにくぐ球形度を高めることが困難であった。上述し たセルロース一次粒子の微細な断片が多く生じてくると、凝集粒子の間隙をふさいで しまうことから、好ましくは、遠心力 4900mZs2の遠心分離条件で沈降しない粒子が 10重量%以下であるセルロース分散液を調製することが好ま 、。本発明の多孔質 セルロース凝集体は、該セルロース分散液を乾燥する工程を含む製造方法によって 得られる。
[0054] 本発明で 、う天然セルロース質物質とは、植物性でも動物性でもよぐ例えば木材 、竹、麦わら、稲わら、コットン、ラミー、バガス、ケナフ、ビート、ホヤ、ノ クテリアセル口 ース等のセルロースを含有する天然物由来の繊維質物質であり、セルロース I型の結 晶構造を有していればよい。原料として、上記のうち 1種の天然セルロース質物質を 使用してもよいし、 2種以上を混合したものを使用することも可能である。また、精製 パルプの形態で使用することが好ま 、が、パルプの精製方法には特に制限がなく 、溶解パルプ、クラフトパルプ、 NBKPパルプ等いずれのパルプを使用してもよい。 a セルロース純度が高い、入手しやすい、供給安定性が高い等の点で木材由来 のパルプが好ましい。
銅エチレンジァミン溶液法で測定するレベルオフ重合度が 130〜250、白色度が 9 0〜99%、S 力 〜 20%、S 力^〜 10%である木材パルプであることが好ましい。
10 18
レベルオフ重合度が 130未満では成形性が発現しにくいため好ましくない。重合度 力 S250を超えるとセルロース一次粒子の平均幅、平均厚みを特定範囲に制御しにく いため好ましくない。白色度が 90未満であると、多孔質セルロース凝集体の外観が 劣るために好ましくない。白色度は高いほど好ましいが、高くてもせいぜい 99%程度 である。 S と S が上記範囲力 外れると成形性や歩留まりの点で好ましくない。ここ
10 18
で天然セルロース質物質は、パルプ等の原料を加水分解してもよいし、しなくてもよ い。特に加水分解する場合は、酸加水分解であっても、アルカリ酸化分解、熱水分 解、スチームエクスプロージョン等であってもよぐいずれかの方法単独であっても、 2 種以上を併用してもよい。
[0055] 上記製法において、天然セルロース質物質を含む固形分を、その後適当な媒体に 分散させる場合に用いられる媒体としては、水が好ましいが、工業的に使用されるも のであれば特に制限はなぐ例えば、水と有機溶剤の混合物を使用してもよい。有機 溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール、ブチルアル コーノレ、 2—メチルブチルアルコール、ベンジルアルコールなどのアルコール類、ぺ ンタン、へキサン、ヘプタン、シクロへキサン等の炭化水素類、アセトン、ェチルメチ ルケトンなどのケトン類が挙げられる。特に、有機溶剤は、医薬品に使用されるものが 好ましく「医薬品添加物事典」(薬事日報社 (株)発行)に溶剤として分類されるものが 挙げられる。水、有機溶剤はそれを単独で使用しても、 2種以上を併用することも自 由であり、 1種の媒体で一旦分散させたのち、その媒体を除去し、異なる媒体に分散 させてちょい。
[0056] 本発明の多孔質セルロース凝集体は、天然セルロース質物質を、公知の方法であ れば特に限定されないが、粉砕、磨砕等の機械的処理を施したり、加水分解等の化 学的処理を施す、或いは両者を適宜組み合わせる等の処理を施すことによって、セ ルロース一次粒子の平均粒径が 10 μ m以上 50 μ m未満、平均幅が 2〜30 m、平 均厚みが 0. 5〜5 /ζ πι、及び固形分が 5〜40重量%であるセルロース分散液に調製 し、次いで乾燥する必要がある。
[0057] 本発明でいうセルロース一次粒子とは、天然セルロース質物質を構成する繊維の 場合、又は、粉砕、磨砕等の機械的処理を施したり、天然セルロース質物質が加水 分解等の化学処理を施された場合には、該繊維が分割され新たに形成される 1〜5 00 μ mの範囲の大きさを有する粒子をいう。セルロース一次粒子の平均粒子径を 50 μ m未満にする方法としては、例えば、粉砕、磨砕等の機械的処理、又はサイクロン
、遠心分離、篩い分け等の公知の分別処理、又は両者を適宜組み合わせる等の方 法によって、その際の処理量、せん断力(回転数や羽形状、羽根寸法等が影響する )、遠心力、篩目開き等の、一般的に処理に影響することが知られている条件を適宜 調整することにより達成されるし、また例えば、酸加水分解等の化学的処理を行う場 合には、その際の酸濃度、温度等の条件等を適宜変える、或いはそれらに加えて上 記機械的処理や分別処理等に影響することが既に知られている条件を適宜変更す ること〖こよっても達成される。
[0058] 加水分解を行う場合、一般に、加水分解溶液の酸、アルカリ濃度、反応温度を高く すると、セルロース重合度が低下し、分散液中のセルロース平均分散粒子径が小さく なる傾向にあり、また、溶液の攪拌力を強めても、セルロース分散粒子の平均粒子径 力 S小さくなる傾向にあるため、原料セルロースの重合度、及び、天然セルロース質物 質の加水分解及び Z又は分散工程での攪拌力を調整することにより、所望の範囲に 制御することができる。攪拌力は攪拌層の幅、高さ、容積、翼の種類、翼径と攪拌回 転数等に依存するため、特定範囲に規定することは難しいが、翼径 (m)と攪拌回転 数 (rpm)の積が 5〜200の範囲にあることが好ましぐより好ましくは 10〜150、特に 好ましくは 10〜 120である。
[0059] セルロース一次粒子の平均幅を 2〜30 μ m、平均厚みが 0. 5〜5 μ mとする方法と しては、例えばセルロース一次粒子を主として縦方向に引き裂く方法であれば特に 限定されないが、木材パルプを高圧ホモジナイザー処理等の処理に付し、必要に応 じて磨砕等の機械的処理や分別処理、又は両者を適宜組み合わせる方法等が挙げ られる。高圧ホモジナイザー処理をする場合、処理量にもよるが、圧力の範囲は 10 〜200MPa程度で適宜調整すればよ!、。また例えばセルロース一次粒子の平均幅 力^〜 30 μ m、平均厚みが 0. 5〜5 μ mであるパルプを選別して使用してもよい。セ ルロース分散液は、遠心力 4900mZs2の遠心分離条件で沈降しない粒子が 10重 量%以下とすることが好ましいが、該方法としては、例えば酸加水分解を行う場合、 加水分解条件を加水分解が進みにくい方向に適宜変更する方法、或いは加水分解 残渣又は分散液から分別処理等により、沈降しにくい微粒子成分を取り除く方法、或 いは両者を組み合わせる等の方法等が挙げられる。
[0060] 天然セルロース質物質の加水分解では、酸濃度が高 、ほど、温度が高 、ほど、沈 降しにく!/、微粒子成分が生成する傾向にあるが、天然セルロース質物質の重合度や 原料起源、パルプ化方法等のセルロース質物質の抽出方法等によって加水分解の 程度が異なるため、加水分解条件を一義的に定義することは困難であるものの、遠 心力 4900mZs2の遠心分離条件で沈降しない粒子の重量を測定することによって、 該粒子の重量%が 10重量%以下になるような適切な加水分解条件を容易に決定す ることがでさる。
[0061] 本発明でいう、遠心力 4900mZs2の遠心分離条件とは、下式に定義される遠心力 の算出方法から、使用する市販遠心分離機の回転半径 (最大半径を使用)を考慮し て、装置ごとに回転数を決定し、該回転数の条件下、 15〜25°Cの範囲で 10分間遠 心分離することをいう。巿販装置としてはインバータ 'マルチパーパス高速冷却遠心 機 (型番 6930、久保田製作所製、加速及び減速の各モードは Rapidを使用)、 RA —400アングルローター(容量: 50cm3、材質:ポリプロピレンコポリマー、チューブ角 度: 35° 、最大半径: 10. 5cm、最小半径 5. 8cm、回転数 4100rpm)を用いること が好ましい。
遠心力(mZs2) = l l . 18 X (回転数 (rpm) Zl000) 2 X回転半径(cm) X 9. 8 (m
/ S )
[0062] セルロース一次粒子の平均粒径が 10 μ m以上 50 μ m未満、平均幅が 2〜30 μ m 、及び平均厚みが 0. 5〜5 /ζ πι (好ましくは、これらに加えて遠心力 4900mZs2の遠 心分離条件で沈降しない粒子が 10重量%以下とする)のセルロース分散液を調製 することは、セルロース分散液を乾燥する際に、特定の平均幅と平均厚みを有するセ ルロース一次粒子が折れ曲がりやすいために、隣接するセルロース一次粒子との絡 み合いが起こりやすくなり、セルロース一次粒子の凝集体が形成される際に凝集体 内部に空隙を形成することに寄与し、さらに好ましくは、セルロース分散液中の、セル ロース一次粒子のうち、遠心力 4900mZs2の遠心分離条件で沈降しない粒子が 10 重量%以下であることで、凝集体内に形成された空隙が、該粒子により包埋されるこ となぐ乾燥した後も弓 Iき続き粒子内に大きな細孔容積を有する多孔質の二次凝集 構造を形成することに寄与する。
[0063] セルロース一次粒子の平均粒径を 50 μ m以上にしてしまうと、セルロース一次粒子 の形状が特定範囲であっても、二次凝集構造を取り難ぐ一次粒子単独で乾燥され るようになるために、粒子内細孔容積の点で好ましくなぐまた見掛け比容積が大きく なりすぎて流動性の点で好ましくな 、。
セルロース一次粒子の平均粒径が 10 μ m以下であると、粒子が二次凝集構造を 取る際に粒子間結合力が強くなりすぎ、崩壊性の点で好ましくない。セルロース一次 粒子の平均幅が 30 mを超えると、セルロース一次粒子が折れ曲がりにくくなり、隣 接するセルロース一次粒子との絡み合 、が低下し、粒子内細孔容積の点で好ましく ない。セルロース一次粒子の平均幅が 2 m未満だと、緻密に凝集し粒子内細孔が 形成されず成形性、崩壊性が悪ィ匕するので好ましくない。セルロース一次粒子の平 均厚みが 5 μ mを超えるとセルロース一次粒子が折れ曲がりにくくなり、隣接するセル ロース一次粒子との絡み合いが低下し、粒子内細孔容積の点で好ましくない。セル口 ース一次粒子の平均厚みの下限は低いほど粒子の絡み合いが生じやすくなるため 粒子内細孔容積の点で好ましいが、せいぜい 0. 5 m程度である。セルロース一次 粒子の幅を 2 μ m未満かつ厚みを 0. 5 μ m未満までにすると、そのような微細な粒子 は緻密に結合して粒子内細孔容積が小さくなり、成形性、崩壊性に劣るので好ましく ない。
[0064] セルロース一次粒子の粒子形状は、その長径と短径それぞれの平均値の比 (LZ D)が 2. 0以上であるものを用いることが好ましい。 LZDが大きいほど、乾燥時の過 度の粒子凝集を抑制する効果が大きぐそのため、粒子内に大きい細孔容積を付与 することに寄与する。
[0065] 本発明でいうセルロース分散液は、特に制限はないが、 i)単一又は 2種以上の天 然セルロース質物質を処理したセルロース一次粒子をセルロース分散液とする方法
、 ii)上記 i)のセルロース分散液を分割し、別々の処理を施した後、混合しセルロース 分散液とする方法、 iii)上記 i)又は ii)のセルロース分散液を分画し、それぞれに処理 を施した後、混合しセルロース分散液とする方法、 iv) 2種以上の、別個に調製したセ ルロース一次粒子を混合しセルロース分散液とする方法のいずれの方法で製造して もよいが、経済的観点力 i)が特に好ましい。ここで施す処理方法は、湿式であって も、乾式であってもよぐそれぞれ湿式で得られたもの同士を乾燥前に混合しても、そ れぞれ乾式で得られたもの同士を乾燥前に混合しても、湿式又は乾式で得られたも のを組み合わせてもよい。公知の方法等特に制限はないが、例えば粉砕や磨砕の 機械的処理、サイクロン、遠心分離機を用いた遠心分離、篩を使用した分級等の分 別処理等の方法が挙げられ、単独でも両者を組み合わせた方法であってもよ ヽ。
[0066] 摩砕方法としては、ポータブルミキサー、立体ミキサー、側面ミキサーなどの 1方向 回転式、多軸回転式、往復反転式、上下移動式、回転 +上下移動式、管路式等の 撹拌翼を使用する摩砕方法、ラインミキサー等の噴流式撹拌摩砕方法、高剪断ホモ ジナイザー、高圧ホモジナイザー、超音波ホモジナイザー等を使用する摩砕方法、 例えば-一ダ一のような軸回転押し出し式の摩砕方法でもよ ヽ。粉砕方法としては、 スクリーンミル、ハンマーミル等のスクリーン式粉砕方法、フラッシュミル等の翼回転せ ん断スクリーン式粉砕方法、ジェットミル等の気流式粉砕方法、ボールミル、振動ボー ルミル等のボール式粉砕方法、翼攪拌式粉砕方法等の 、ずれでもよ 、。 [0067] 上記操作により得られたセルロース分散粒子集合体は、乾燥前に 5〜40重量%濃 度の分散液とすることが好ましい。この濃度が 5重量%未満であると、得られるセル口 ース粒子の平均粒子径が小さくなり、自流動性が損なわれやすい。また、この濃度が 40重量%を超えると、セルロース粒子の見かけ比容積が小さくなり、圧縮成形性が 損なわれやすい。好ましくは 10〜40重量%、さらに好ましくは、 15〜40重量%であ る。
[0068] 乾燥方法についても特に制限はないが、例えば、凍結乾燥、噴霧乾燥、ドラム乾燥 、棚乾燥、気流乾燥、真空乾燥のいずれを使用してもよぐ 1種を単独で使用しても、 2種以上を併用してもよい。噴霧乾燥する際の、噴霧方法は、ディスク式、加圧ノズル 、加圧二流体ノズル、加圧四流体ノズル等のいずれの噴霧方法でもよぐ 1種を単独 で使用しても、 2種以上を併用してもよい。経済的観点からは噴霧乾燥が好ましい。 上記の噴霧乾燥する際には、分散液の表面張力を下げる目的で、微量の水溶性 高分子、界面活性剤を添加しても、媒体の気化速度を促進させる目的で発泡剤又は 、ガスを分散液に添加してもよい。
[0069] 水溶性高分子としては、例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピル メチルセルロース、ポリアクリル酸、カルボキシビ二ルポリマー、ポリエチレングリコー ル、ポリビュルアルコール、ポリビュルピロリドン、メチルセルロース、アラビアゴム、デ ンプン糊当の「医薬品添加剤事典」(薬事日報社 (株)発行)に記載される水溶性高 分子類が挙げられ、 1種を単独で使用しても、 2種以上を併用してもよい。
[0070] 界面活性剤としては、例えば、リン脂質、グリセリン脂肪酸エステル、ポリエチレング リコール脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレン硬化ヒマシ 油、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリ ォキシエチレンノニルフエニルエーテル、ポリオキシエチレンポリオキシプロピレングリ コール、ポリオキシエチレンソルビタンサンモノラウレート、ポリソルベート、モノォレイ ン酸ソルビタン、モノステアリン酸グリセリド、モノォキシエチレンソルビタンモノパルミ テート、モノォキシエチレンソルビタンモノステアレート、モノォレイン酸ポリオキシェチ レンソルビタン、モノパルミチン酸ソルビタン、ラウリル硫酸ナトリウム等の「医薬品添加 剤事典」(薬事日報社 (株)発行)に界面活性剤として分類されるものが挙げられ 、それを単独で使用しても、 2種以上を併用することも自由である。
[0071] 発泡剤としては、酒石酸、炭酸水素ナトリウム、バレイショデンプン、無水クェン酸、 薬用石鹼、ラウリル硫酸ナトリウム、ラウリン酸ジエタノールアミド、ラウマクロゴール等 の「医薬品添加剤事典」(薬事日報社 (株)発行)に記載される発泡剤類が挙げられ、 1種を単独で使用しても、 2種以上を併用してもよい。また、医薬品添加剤以外にも、 炭酸水素ナトリウム、炭酸水素アンモ-ゥム等の熱分解しガスを発生する重炭酸塩類 、炭酸ナトリウム、炭酸アンモ-ゥム等の酸と反応してガスを発生する炭酸塩類を使 用してもよい。ただし、上記の炭酸塩類を使用する際には、酸とともに使用する必要 がある。酸としては、クェン酸、酢酸、ァスコルビン酸、アジピン酸等の有機酸類、塩 酸、硫酸、リン酸、硝酸等のプロトン酸、フッ化ホウ素等のルイス酸等の酸物質が挙げ られ、医薬品 ·食品として使用されるものが好ましいが、それ以外でも同様の効果を 有する。発泡剤ではなぐ窒素、二酸化炭素、液化石油ガス、ジメチルエーテル等の ガス類を分散液に含浸してもょ 、。
これらの水溶性高分子、界面活性剤、ガスを発生する物質は、乾燥前に添加され ていればよぐその添加のタイミングには特に制限はない。
[0072] 本発明でいう成型体組成物は、 1種以上の活性成分と本発明の多孔質セルロース 凝集体を含有していればよぐその量に特に制限はないが、通常の使用範囲として は、活性成分は 0. 001〜99%、本発明のセルロース粉末は 1〜99%である。さらに 、混合、攪拌、造粒、整粒、打錠等の公知の方法で加工できる。活性成分が 0. 001 %未満であると、治療に有効な量が確保できず、 99%を超えると、本発明の多孔質 セルロース凝集体が 1%未満となり、実用的な硬度、摩損度、崩壊を示す成型体が 得られにくい。本発明の成型体組成物は、活性成分、セルロース粒子の他に、必要 に応じて賦形剤、崩壊剤、結合剤、流動化剤、滑沢剤、矯味剤、香料、着色剤、甘味 剤を含むことも自由である。
本発明でいう成型体組成物の例としては、医薬品に用いる場合、錠剤、散剤、細粒 剤、顆粒剤、エキス剤、丸剤等が挙げられる。医薬品に限らず、菓子、健康食品、食 感改良剤、食物繊維強化剤等の食品、固形ファンデーション、浴用剤、動物薬、診 断薬、農薬、肥料、セラミックス触媒等に利用されるものも本発明に含まれる。 [0073] 本発明で ヽぅ活性成分とは、医薬品薬効成分、農薬成分、肥料成分、飼料成分、 食品成分、化粧品成分、色素、香料、金属、セラミックス、触媒、界面活性剤をいい、 固形状 (粉体状、結晶状等)、油状、液状、半固形状などいずれの形態でもよい。ま た溶出制御、苦味低減などの目的でコーティングを施したものであってもよい。活性 成分は単独で使用しても、複数を併用してもよい。活性成分を媒体に溶解、懸濁、乳 化して使用してもよい。
例えば医薬品薬効成分としては、解熱鎮痛消炎薬、催眠鎮静薬、眠気防止薬、鎮 暈薬、小児鎮痛薬、健胃薬、制酸薬、消化薬、強心薬、不整脈用薬、降圧薬、血管 拡張薬、利尿薬、抗潰瘍薬、整腸薬、骨粗鬆症治療薬、鎮咳去痰薬、抗喘息薬、抗 菌剤、頻尿改善剤、滋養強壮剤、ビタミン剤など、経口で投与されるものが対象とな る。薬効成分は、それを単独で使用しても、 2種以上を併用することも自由である。
[0074] 本発明で使用される医薬品有効成分としては、例えば、アスピリン、アスピリンアルミ ユウム、ァセトァミノフェン、ェテンザミド、サザピリン、サリチルアミド、ラクチルフエネチ ジン、塩酸イソチベンジル、塩酸ジフヱ二ルビラリン、塩酸ジフェンヒドラミン、塩酸ジフ ェテロール、塩酸トリプロリジン、塩酸トリべレナミン、塩酸トンジルァミン、塩酸フエネタ ジン、塩酸メトジラジン、サリチル酸ジフェンヒドラミン、ジフエ-ルジスルホン酸カルビ ノキサミン、酒石酸ァリメマジン、タンニン酸ジフェンヒドラミン、テオクル酸ジフエニル ピラリン、ナパジシル酸メブヒドロリン、プロメタジンメチレン二サリチル酸塩、マレイン 酸カルビノキサミン、 dl—マレイン酸クロルフエ-ラミン、 d—マレイン酸クロルフエ-ラ ミン、リン酸ジフエテロール、塩酸ァロクラミド、塩酸クロペラスチン、クェン酸ペントキ シベリン(タエン酸カルベタペンタン)、クェン酸チぺピジン、ジブナートナトリウム、臭 化水素酸デキストロメトルファン、デキストロメトルファン'フエノールフタリン酸、ヒベン ズ酸チぺピジン、フェンジゾ酸クロペラスチン、リン酸コディン、リン酸ジヒドロコディン 、塩酸ノス力ピン、ノス力ピン、 dl—塩酸メチルエフェドリン、 dl—メチルエフェドリンサ ッカリン塩、グアヤコールスルホン酸カリウム、グァイフェネシン、安息香酸ナトリウム力 フェイン、カフェイン、無水カフェイン、ビタミン B1及びその誘導体並びにそれらの塩 類、ビタミン B2及びその誘導体並びにそれらの塩類、ビタミン C及びその誘導体並び にそれらの塩類、ヘスペリジン及びその誘導体並びにそれらの塩類、ビタミン B6及 びその誘導体並びにそれらの塩類、ニコチン酸アミド、パントテン酸カルシウム、アミ ノ酢酸、ケィ酸マグネシウム、合成ケィ酸アルミニウム、合成ヒドロタルサイト、酸ィ匕マ グネシゥム、ジヒドロキシアルミニウム 'ァミノ酢酸塩 (アルミニウムグリシネート)、水酸 化アルミニウムゲル(乾燥水酸ィ匕アルミニウムゲルとして)、乾燥水酸化アルミニウム ゲル、水酸ィ匕アルミニウム '炭酸マグネシウム混合乾燥ゲル、水酸ィ匕アルミニウム '炭 酸水素ナトリウムの共沈生成物、水酸ィ匕アルミニウム ·炭酸カルシウム '炭酸マグネシ ゥムの共沈生成物、水酸ィ匕マグネシウム '硫酸アルミニウムカリウムの共沈生成物、炭 酸マグネシウム、メタケイ酸アルミン酸マグネシウム、塩酸ラ-チジン、シメチジン、フ ァモチジン、ナプロキセン、ジクロフエナックナトリウム、ピロキシカム、ァズレン、インド メタシン、ケトプロフェン、イブプロフェン、塩酸ジフエ-ドール、塩酸ジフエ-ルビラリ ン、塩酸ジフェンヒドラミン、塩酸プロメタジン、塩酸メタリジン、ジメンヒドリナート、タン ニン酸ジフェンヒドラミン、タン-ン酸フエネタジン、テオクル酸ジフエ-ルビラリン、フ マル酸ジフェンヒドラミン、プロメタジンメチレンジサリチル酸塩、臭化水素酸スポコラミ ン、塩酸ォキシフェンサイクリミン、塩酸ジサイクロミン、塩酸メチキセン、臭化メチルァ トロピン、臭ィ匕メチルァ-ソトロピン、臭ィ匕メチルスポコラミン、臭ィ匕メチル一 1—ヒヨス チアミン、臭ィ匕メチルべナクチジゥム、ベラドンナエキス、ヨウ化イソプロノ ミド、ヨウィ匕 ジフエ二ルビペリジノメチルジォキソラン、塩酸パパべリン、ァミノ安息香酸、シユウ酸 セシウム、ピベリジルァセチルァミノ安息香酸ェチル、アミノフィリン、ジプロフィリン、 テオフィリン、炭酸水素ナトリウム、フルスルチアミン、硝酸イソソルバイド、エフェドリン 、セファレキシン、アンピシリン、スルフィキサゾール、スクラルフアート、ァリルイソプロ ピルァセチル尿素、ブロムヮレリル尿素等、マオゥ、ナンテンジッ、ォゥヒ、オンジ、力 ンゾゥ、キキヨウ、シャゼンシ、シャゼンソゥ、セネガ、バイモ、ウイキヨウ、ォゥバタ、ォ ゥレン、ガジュッ、力ミツレ、ケィヒ、ゲンチアナ、ゴォゥ、獣胆 (ユウタンを含む)、シャ ジン、ショウキヨウ、ソウジュッ、チヨウジ、チンピ、ビヤクジュッ、地竜、チクセツユンジ ン、ニンジン、力ノコソゥ、ボタンピ、サンショウ及びこれらのエキス等、インスリン、バゾ プレツシン、インターフェロン、ゥロキナーゼ、セラチオペプチターゼ、ソマトスタチン 等の「日本薬局方」、「局外基」、「USP」、「NF」、「EP」に記載の医薬品薬効成分等 を挙げることができ、上記カゝら選ばれる 1種を単独で使用しても、 2種以上を併用する ことも自由である。
[0075] 本発明でいう水難溶性活性成分とは、例えば、医薬品活性成分であり、第 14改正 日本薬局方において、溶質 lgを溶かすのに必要な水量が 30mL以上であるものの ことを指す。水に難溶性であれば、昇華性、表面極性の程度にかかわらず、本発明 の組成物に活性成分として配合することで効果が得られるものである。
[0076] 水難溶性で固体状の活性成分としては、例えば、ァセトァミノフェン、イブプロフェン 、安息香酸、ェテンザミド、カフェイン、カンフル、キニーネ、ダルコン酸カルシウム、ジ メチノレカプローノレ、スノレファミン、テオフィリン、テオプロミン、リボフラビン、メフエネシ ン、フエノバ一ビタル、アミノフィリン、チオアセタゾン、タエルセチン、ルチン、サリチル 酸、テオフィリンナトリウム塩、ビラピタール、塩酸キニーネ、ィルガピリン、ジキトキシン 、グリセオフルビン、フエナセチン等の解熱鎮痛薬、神経系医薬、鎮静催眠薬、筋弛 緩剤、血圧硬化剤、抗ヒスタミン剤等、ァセチルスビラマイシン、アンピシリン、エリス口 マイシン、キサタマイシン、クロラムフエ二コール、トリァセチルォレアンドマイシン、ナ イスタチン、硫酸コリスチン等の抗生物質、メチルテストステロン、メチルアンドロステト ロンジオール、プロゲステロン、エストラジオールべンゾエイト、ェチ-レストラジオ一 ル、デォキシコルチコステロン'アセテート、コーチゾンアセテート、ハイド口コーチゾン 、ハイド口コーチゾンアセテート、ブレドニゾロン等のステロイドホルモン剤、ジエンスト ローノレ、へキサストローノレ、ジェチノレスチノレべステローノレ、ジェチノレスチノレべステロー ルジブ口ヒォネイト、クロロトリア-セン等の非ステロイド系卵黄ホルモン剤、その他脂 溶性ビタミン類等の「日本薬局方」、「局外基」、「USP」、「NF」、 ¾?」に記載の医薬 品薬効成分等を挙げることができ、上記力も選ばれる 1種を単独で使用しても、 2種 以上を併用することも自由である。
[0077] 本発明で使用される、水難溶性の油状、液状活性成分としては、例えば、テプレノ ン、インドメタシン'フアルネシル、メナテトレノン、フイトナジオン、ビタミン A油、フエ二 ペントール、ビタミン D、ビタミン E等のビタミン類、 DHA (ドコサへキサェン酸)、 EPA (エイコサペンタエン酸)、肝油等の高級不飽和脂肪酸類、補酵素 Q類、オレンジ油、 レモン油、ペパーミント油等の油溶性香味料等の「日本薬局方」、「局外基」、「USP」 、「NF」、「EP」に記載の医薬品薬効成分等が挙げられる。ビタミン Eには種々の同 族体、誘導体があるが、常温で液状であれば特に限定されない。例えば dl— α—ト コフェローノレ、酢酸 dl— —トコフェローノレ、 d- —トコフェローノレ、酢酸 d— α—ト コフエロール等を挙げることができ、上記力も選ばれる 1種を単独で使用しても、 2種 以上を併用することも自由である。
[0078] 水難溶性の半固形状活性成分としては、例えば地竜、カンゾゥ、ケィヒ、シャクャク 、ボタンピ、力ノコソゥ、サンショウ、ショウキヨウ、チンピ、マオゥ、ナンテンジッ、ォゥヒ 、オンジ、キキヨウ、シャゼンシ、シャゼンソゥ、石蒜、セネ力、バイモ、ウイキヨウ、ォゥ バタ、ォゥレン、ガジュッ、力ミツレ、ゲンチアナ、ゴォゥ、獣胆、シャジン、ショウキヨウ 、ソウジュッ、チヨウジ、チンヒ、ビヤクジュッ、チクセッニンジン、ニンジン、葛根湯、桂 枝湯、香蘇散、紫胡桂枝湯、小紫胡湯、小青竜湯、麦門冬湯、半夏厚朴湯、麻黄湯 等の漢方又は生薬エキス類、カキ肉エキス、プロポリス及びプロポリス抽出物、補酵 素 Q類等を挙げることができ、上記力も選ばれる 1種を単独で使用しても、 2種以上を 併用することも自由である。本発明の固形製剤組成物は、上記の水難溶性活性成分 に加えて、さらに他の生理活性成分を添加してもよい。
[0079] 本発明で使用される微粉砕された活性成分は、水難溶性の固体状活性成分の分 散性を改善する、微量で薬効を有する活性成分の混合均一性を改善する等の目的 で、 1〜40 m以下に微粉砕したものをいう。活性成分の平均粒子径が小さいほど 本発明の効果は大きくなる。活性成分の平均粒子径としては、より好ましくは 1〜20 /z mであり、さらに好ましくは、 1〜10 /ζ πιである。
[0080] 本発明でいう昇華性の活性成分とは、昇華性を有するものであれば、特に制限さ れるものではなぐ常温で固体状であっても、液体状であっても、半固体状であっても 、その状態はいずれでもよい。
昇華性の活性成分としては、例えば、安息香酸、ェテンザミド、カフェイン、カンフル 、サリチル酸、フエナセチン、イブプロフェン等の「日本薬局方」、「局外基」、「USP」 、「NF」、「EP」に記載される昇華性の医薬品薬効成分等を挙げることができ、上記 カゝら選ばれる 1種を単独で使用しても、 2種以上を併用することも自由である。本発明 の固形製剤組成物は、上記の昇華性活性成分に加えて、さらに他の生理活性成分 を添加してもよい。 [0081] 本発明で使用される、常温で液状の活性成分としては、例えば、テプレノン、インド メタシン'フアルネシル、メナテトレノン、フイトナジオン、ビタミン A油、フエ-ペントー ル、ビタミン D、ビタミン E等のビタミン類、 DHA (ドコサへキサェン酸)、 EPA (エイコ サペンタエン酸)、肝油等の高級不飽和脂肪酸類、補酵素 Q類、オレンジ油、レモン 油、ペパーミント油等の油溶性香味料等の「日本薬局方」、「局外基」、「USP」、「NF 」、「EP」に記載の医薬品薬効成分等が挙げられる。ビタミン Eには種々の同族体、誘 導体があるが、常温で液状であれば特に限定されない。例えば dl— a トコフェロー ノレ、酢酸 dl— —トコフェローノレ、 d— —トコフェローノレ、酢酸 d— —トコフェロー ル等を挙げることができ、上記力も選ばれる 1種を単独で使用しても、 2種以上を併用 することも自由である。
[0082] 本発明で使用される、常温で半固形状活性成分としては、例えば地竜、カンゾゥ、 ケィヒ、シャクャク、ボタンピ、力ノコソゥ、サンショウ、ショウキヨウ、チンピ、マオゥ、ナン テンジッ、ォゥヒ、オンジ、キキヨウ、シャゼンシ、シャゼンソゥ、石蒜、セネ力、バイモ、 ウイキヨウ、ォゥバタ、ォゥレン、ガジュッ、力ミツレ、ゲンチアナ、ゴォゥ、獣胆、シャジ ン、ショウキヨウ、ソウジュッ、チヨウジ、チンヒ、ビヤクジュッ、チクセッニンジン、ニンジ ン、葛根湯、桂枝湯、香蘇散、紫胡桂枝湯、小紫胡湯、小青竜湯、麦門冬湯、半夏 厚朴湯、麻黄湯等の漢方又は生薬エキス類、カキ肉エキス、プロポリス及びプロポリ ス抽出物、補酵素 Q類等を挙げることができ、上記力も選ばれる 1種を単独で使用し ても、 2種以上を併用することも自由である。
[0083] 賦形剤としては、アクリル酸デンプン、 Lーァスパラギン酸、アミノエチルスルホン酸 、ァミノ酢酸、あめ(粉)、アラビアゴム、アラビアゴム末、ァノレギン酸、ァノレギン酸ナトリ ゥム、アルファ一化デンプン、軽石粒、イノシトール、ェチルセルロース、エチレン酢 酸ビュルコポリマー、塩ィ匕ナトリウム、ォリーブ油、カオリン、カカオ脂、カゼイン、果糖 、軽石粒、カルメロース、カルメロースナトリウム、含水二酸化ケイ素、乾燥酵母、乾燥 水酸ィ匕アルミニウムゲル、乾燥硫酸ナトリウム、乾燥硫酸マグネシウム、カンテン、力 ンテン末、キシリトール、クェン酸、クェン酸ナトリウム、クェン酸ニナトリウム、グリセリ ン、グリセ口リン酸カルシウム、ダルコン酸ナトリウム、 L グルタミン、クレー、クレー 3、 クレー粒、クロスカルメロースナトリウム、クロスポビドン、ケィ酸アルミン酸マグネシウム 、ケィ酸カルシウム、ケィ酸マグネシウム、軽質無水ケィ酸、軽質流動パラフィン、ケィ ヒ末、結晶セルロース、結晶セルロース 'カルメロースナトリウム、結晶セルロース(粒) 、ゲンマイコウジ、合成ケィ酸アルミニウム、合成ヒドロタルサイト、ゴマ油、小麦粉、コ ムギデンプン、小麦胚芽粉、コメコ、コメデンプン、酢酸カリウム、酢酸カルシウム、酢 酸フタル酸セルロース、サフラワー油、サラシミツロウ、酸化亜鉛、酸化チタン、酸化 マグネシウム、 j8—シクロデキストリン、ジヒドロキシアルミニウムァミノアセテート、 2, 6 ジープチルー 4 メチルフエノール、ジメチルポリシロキサン、酒石酸、酒石酸水素 カリウム、焼セッコゥ、ショ糖脂肪酸エステル、水酸ィ匕アルミナマグネシウム、水酸化ァ ルミ-ゥム.ゲル、水酸ィ匕アルミニウム '炭酸水素ナトリウム共沈物、水酸化マグネシゥ ム、スクラワン、ステアリルアルコール、ステアリン酸、ステアリン酸カルシウム、ステアリ ン酸ポリオキシル、ステアリン酸マグネシウム、ダイズ硬化油、精製ゼラチン、精製セ ラック、精製白糖、精製白糖球状顆粒、セトステアリルアルコール、ポリエチレングリコ ール 1000モノセチルエーテル、ゼラチン、ソルビタン脂肪酸エステル、 D ソルビト ール、第三リン酸カルシウム、ダイズ油、大豆不ケン化物、大豆レシチン、脱脂粉乳、 タルク、炭酸アンモ-ゥム、炭酸カルシウム、炭酸マグネシウム、中性無水硫酸ナトリ ゥム、低置換度ヒドロキシプロピルセルロース、デキストラン、デキストリン、天然ケィ酸 アルミニウム、トウモロコシデンプン、トラガント末、二酸化ケイ素、乳酸カルシウム、乳 糖、乳糖造粒物、パーフィラー 101、白色セラック、白色ワセリン、ノ、クド、白糖、白糖 'デンプン球状顆粒、ハダカムギ緑葉エキス末、裸麦芽葉青汁乾燥粉末、ハチミツ、 パラフィン、バレイショデンプン、半消化体デンプン、人血清アルブミン、ヒドロキシプ 口ピノレスターチ、ヒドロキシプロピノレセノレロース、ヒドロキシプロピノレセノレロース、ヒドロ キシプロピルメチルセルロースフタレート、ヒドロキシプロピルメチルセルロースフタレ ート、フィチン酸、ブドウ糖、ブドウ糖水和物、部分アルファ一化デンプン、プルラン、 プロピレングリコール、粉末還元麦芽糖水飴、粉末セルロース、ぺクチン、ベントナイ ト、ポリアクリル酸ナトリウム、ポリオキシエチレンアルキルエーテル、ポリオキシェチレ ン硬化ヒマシ油、ポリオキシエチレン(105)ポリオキシプロピレン(5)グリコール、ポリ ォキシエチレン(160)ポリオキシプロピレン(30)グリコール、ポリスチレンスルホン酸 ナトリウム、ポリソノレべート 80、ポリビニノレアセターノレジェチノレアミノアセテート、ポリビ ニルピロリドン、ポリエチレングリコール、マノレチトーノレ、マルトース、 D—マンニトーノレ 、水ァメ、ミリスチン酸イソプロピル、無水乳糖、無水リン酸水素カルシウム、無水リン 酸カルシウム造粒物、メタケイ酸アルミン酸マグネシウム、メチルセルロース、綿実粉 、綿実油、モクロウ、モノステアリン酸アルミニウム、モノステアリン酸グリセリン、モノス テアリン酸ソルビタン、薬用炭、ラッカセィ油、硫酸アルミニウム、硫酸カルシウム、粒 状トウモロコシデンプン、流動パラフィン、 dl—リンゴ酸、リン酸—水素カルシウム、リン 酸水素カルシウム、リン酸水素カルシウム造粒物、リン酸水素ナトリウム、リン酸二水 素カリウム、リン酸二水素カルシウム、リン酸二水素ナトリウム等の「医薬品添加剤事 典」(薬事日報社 (株)発行)に賦形剤として分類されるものが挙げられ、それを単独 で使用しても、 2種以上を併用することも自由である。
[0084] 崩壊剤としては、クロスカルメロースナトリウム、カルメロース、カルメロースカルシゥ ム、カルメロースナトリウム、低置換度ヒドロキシプロピルセルロース等のセルロース類 、カルボキシメチルスターチナトリウム、ヒドロキシプロピルスターチ、コメデンプン、コ ムギデンプン、トウモロコシデンプン、バレイショデンプン、部分アルファ一化デンプン 等のデンプン類、クロスポビドン、クロスポビドンコポリマー等の合成高分子等の「医 薬品添加物事典」(薬事日報社 (株)発行)に崩壊剤として分類されるものを挙げるこ とができる。上記カゝら選ばれる 1種を単独で使用しても、 2種以上を併用することも自 由である。
[0085] 結合剤としては、白糖、ブドウ糖、乳糖、果糖等の糖類、マン-トール、キシリトール 、マルチトール、エリスリトール、ソルビトール等の糖アルコール類、ゼラチン、プルラ ン、カラギーナン、ローカストビーンガム、寒天、ダルコマンナン、キサンタンガム、タマ リンドガム、ぺクチン、アルギン酸ナトリウム、アラビアガム等の水溶性多糖類、結晶セ ノレロース、粉末セノレロース、ヒドロキシプロピノレセノレロース、メチノレセノレロース等のセ ルロース類、アルファ一化デンプン、デンプン糊等のデンプン類、ポリビュルピロリド ン、カルボキシビ二ルポリマー、ポリビニルアルコール等の合成高分子類、リン酸水素 カルシウム、炭酸カルシウム、合成ヒドロタルサイト、ケィ酸アルミン酸マグネシウム等 の無機化合物類等「医薬品添加物事典」(薬事日報社 (株)発行)に結合剤として分 類されるものを挙げることができる。上記カゝら選ばれる 1種を単独で使用しても、 2種 以上を併用することも自由である。
[0086] 流動化剤としては、含水二酸化ケイ素、軽質無水ケィ酸等のケィ素化合物類等の「 医薬品添加物事典」(薬事日報社 (株)発行)に流動化剤として分類されるものを挙げ ることができる。上記カゝら選ばれる 1種を単独で使用しても、 2種以上を併用することも 自由である。
[0087] 滑沢剤としては、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸、 ショ糖脂肪酸エステル、タルク等の「医薬品添加物事典」(薬事日報社 (株)発行)に 滑沢剤として分類されるものを挙げることができる。上記カゝら選ばれる 1種を単独で使 用しても、 2種以上を併用することも自由である。
[0088] 矯味剤としては、グルタミン酸、フマル酸、コハク酸、クェン酸、クェン酸ナトリウム、 酒石酸、リンゴ酸、ァスコルビン酸、塩ィ匕ナトリウム、 1—メントール等の「医薬品添カロ 物事典」(薬事日報社 (株)発行)に矯味剤として分類されるものを挙げることができる 。上記カゝら選ばれる 1種を単独で使用しても、 2種以上を併用することも自由である。
[0089] 香料としては、オレンジ、バニラ、ストロベリー、ヨーグルト、メントール、ウイキヨゥ油、 ケィヒ油、トウヒ油、ハツ力油等の油類、緑茶末等の「医薬品添加物事典」(薬事日報 社 (株)発行)に着香剤、香料として分類されるものを挙げることができる。上記か ら選ばれる 1種を単独で使用しても、 2種以上を併用することも自由である。
[0090] 着色剤としては、食用赤色 3号、食用黄色 5号、食用青色 1号等の食用色素、銅ク ロロフインナトリウム、酸化チタン、リボフラビン等の「医薬品添加物事典」(薬事日報 社 (株)発行)に着色剤として分類されるものを挙げることができる。上記から選ばれる 1種を単独で使用しても、 2種以上を併用することも自由である。
[0091] 甘味剤としては、アスパルテーム、サッカリン、ダリチノレリチン酸二カリウム、ステビア 、マルトース、マルチトール、水飴、アマチヤ末等の「医薬品添加物事典」(薬事日報 社 (株)発行)に甘味剤として分類されるものを挙げることができる。上記から選ばれる 1種を単独で使用しても、 2種以上を併用することも自由である。
[0092] 以下に 1種以上の活性成分と本発明の多孔質セルロース凝集体を主成分とする錠 剤の製造方法について記述する力 これは一例であって、本発明の効果は、以下の 方法に制限されるものではない。方法としては、活性成分と本発明の多孔質セル口 ース凝集体を混合した後、圧縮成形する方法が採れる。この際に、活性成分以外に 、必要に応じて他の添加剤を配合してもよぐ他の添加剤としては、例えば、上記に 示す賦形剤、崩壊剤、結合剤、流動化剤、滑沢剤、矯味剤、香料、着色剤、甘味剤
、溶解補助剤の成分カゝら選ばれる 1種以上を配合してもよい。
[0093] 各成分の添加順序には、特に制限がなぐ 0活性成分と、本発明の多孔質セルロー ス凝集体と、必要に応じ他の添加剤を一括混合し圧縮成形する方法、 ii)活性成分と 、流動化剤及び Z又は滑沢剤等の添加剤を前処理混合し、本発明の多孔質セル口 ース凝集体と、必要に応じ他の添加剤を混合した後、圧縮成形する方法のいずれで もよい。 i)、又は ii)により得られた圧縮成形用混合末に、滑沢剤を添加し、さらに混合 した後、圧縮成形してもよい。
[0094] 特に水に難溶性の活性成分を使用する際は、以下の製造方法を採ることができる 。製造方法としては、例えば、 i)活性成分に粉砕を施す、又はそのまま使用し、本発 明の多孔質セルロース凝集体と必要に応じてその他の成分と混合し圧縮成形する方 法、 ii)活性成分を水及び Z又は有機溶媒及び Z又は溶解補助剤に溶解又は分散 させた後、必要に応じて本発明で用いる多孔質セルロース凝集体及び Z又は他の 添加剤に吸着させ、必要に応じて本発明の多孔質セルロース凝集体及び Z又は他 の添加剤と混合し、必要に応じて水及び Z又は有機溶媒を留去し、圧縮成形する方 法、のいずれでもよい。
[0095] i)のうち、特に、活性成分に流動化剤等の添加剤を前処理混合した後、本発明の 多孔質セルロース凝集体と必要に応じてその他の成分と混合し圧縮成形すると、成 形性、流動性の点で好ましい。圧縮成形前の活性成分の結晶形は製剤前の状態と 同じであっても、異なってもよいが、安定性の点で同じであることが好ましい。水に難 溶性の活性成分を使用する際は、特に溶解補助剤として、水溶性高分子、界面活性 剤を併用し、媒体に分散させることが効果的である。ここでいう他の添加剤とは、本発 明の多孔質セルロース凝集体以外の添加剤であり、例えば上記に示す賦形剤、崩 壊剤、結合剤、流動化剤、滑沢剤、矯味剤、香料、着色剤、甘味剤、溶解補助剤等 の添加剤のことである。これらの添加剤は単独で使用しても、二種以上を併用しても よい。 [0096] 特に ii)の方法の場合には、水に難溶性、不溶性の活性成分を一旦溶解又は分散 させる工程を経るため、活性成分の溶出改善の効果もある。特に医薬品活性成分の 分散体として、ポリエチレングリコール等の液状分散体を併用する際は、元々の活性 成分が結晶粉末であっても、それを分散させた分散体は液状又は半固形状となるた め、本発明の多孔質セルロース凝集体のように圧縮成形性、流動性に優れるもので ないと錠剤化できない。また、医薬品活性成分の分散体として、ポリエチレングリコー ル等を使用する際は、活性成分が体内に吸収されたときに、血中においてポリェチ レンダリコールで被覆された構造をとると ヽわれており、肝臓で代謝され易 ヽ活性成 分の薬効を持続させる効果も期待される。
[0097] 各成分の添加方法は、通常行われて 、る方法であれば特に制限はな 、が、小型 吸引輸送装置、空気輸送装置、バケツトコンべャ、圧送式輸送装置、バキュームコン べャ、振動式定量フィーダ一、スプレー、漏斗等を用いて連続的に添加しても、一括 投人してちょい。
[0098] 活性成分が溶液、懸濁液、乳化液の場合には、それらを多孔質セルロース凝集体 又は他の添加剤に噴霧する方法を採用することで、最終製品中の活性成分濃度ば らつきが小さくなるので好ましい。噴霧方法としては、圧力ノズル、二流体ノズル、四 流体ノズル、回転ディスク、超音波ノズル等を使用し活性成分溶液,分散液を噴霧 する方法、管状ノズルから活性成分溶液 Z分散液を滴下する方法の!ゝずれでもよ ヽ 。活性成分溶液 Z分散液を添加する際には、多孔質セルロース凝集体粒子表面に 活性成分を積層させるようなレイヤリング、コーティングを施しても、多孔質セルロース 凝集体粒子内部に担持させてもよぐ活性成分溶液 Z分散液を結合液として多孔質 セルロース凝集体粒子又は多孔質セルロースと他の添加剤の混合物をマトリックス状 に造粒させてもよい。レイヤリング、コーティングは湿式であっても、乾式であってもよ い。
[0099] 混合方法は、通常行われて 、る方法であれば特に制限はな 、が、 V型、 W型、ダ ブルコーン型、コンテナタック型混合機などの容器回転式混合機、又は高速撹拌型 、万能撹拌型、リボン型、バグ型、ナウター型混合機などの撹拌式混合機、高速流動 式混合機、ドラム式混合機、流動層式混合機を使用してもよい。またシェーカー等の 容器振とう式混合機を使用することもできる。
[0100] 組成物の圧縮成形方法は、通常行われて 、る方法であれば特に制限はな 、が、 臼と杵を使用し所望の形状に圧縮成形する方法、予めシート状に圧縮成形した後所 望の形状に割断する方法でもよい。圧縮成形機としては、例えば、静圧プレス機、ブ リケッティングローラー型プレス機、平滑ローラー型プレス機等のローラー式プレス機 、シングルパンチ打錠機、ロータリー打錠機等の圧縮機を使用できる。
[0101] 活性成分を媒体に溶解又は分散する方法としては、通常行われる溶解、分散方法 であれば特に制限はないが、ポータブルミキサー、立体ミキサー、側面ミキサーなど の 1方向回転式、多軸回転式、往復反転式、上下移動式、回転 +上下移動式、管路 式等の撹拌翼を使用する撹拌混合方法、ラインミキサー等の噴流式撹拌混合方法、 気体吹き込み式の撹拌混合方法、高剪断ホモジナイザー、高圧ホモジナイザー、超 音波ホモジナイザー等を使用する混合方法でも、シェーカーを使用する容器振とう 式混合方法等を用いてもよ!、。
[0102] 上記の製造方法において使用する溶剤としては、医薬品に使用されるものであれ ば、特に制限されるものではないが、例えば水及び Z又は有機溶剤を使用してもよ い。メタノール、エタノール、イソプロピルアルコール、ブチルアルコール、 2—メチノレ ブチルアルコール、ベンジルアルコールなどのアルコール類、ペンタン、へキサン、 ヘプタン、シクロへキサン等の炭化水素類、アセトン、ェチルメチルケトンなどのケトン 類等の「医薬品添加剤事典」(薬事日報社 (株)発行)に溶剤として分類されるものが 挙げられ、それを単独で使用しても、 2種以上を併用することも自由であり、 1種の媒 体で一旦分散させたのち、その媒体を除去し、異なる媒体に分散させてもよい。
[0103] 溶解補助剤としての水溶性高分子としては、例えば、ヒドロキシプロピルセルロース 、ヒドロキシプロピルメチルセルロース、ポリアクリル酸、カルボキシビ二ルポリマー、ポ リエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、メチルセルロース 、ェチルセルロース、アラビアゴム、デンプン糊等の「医薬品添加剤事典」(薬事日報 社 (株)発行)に記載される水溶性高分子が挙げられ、それを単独で使用しても、 2種 以上を併用することも自由である。
[0104] 溶解補助剤としての油脂としては、例えば、ステアリン酸モノグリセリド、ステアリン酸 トリグリセリド、ステアリン酸ショ糖エステル、流動パラフィン等のパラフィン類、カルナウ パロウ,硬化ヒマシ油等の硬化油類、ヒマシ油、ステアリン酸、ステアリルアルコール、 ポリエチレングリコール等の「医薬品添加剤事典」(薬事日報社 (株)発行)に記載さ れる油脂が挙げられ、それを単独で使用しても、 2種以上を併用することも自由であ る。
[0105] 溶解補助剤としての界面活性剤としては、例えば、リン脂質、グリセリン脂肪酸エス テル、ポリエチレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキ シエチレン硬化ヒマシ油、ポリオキシエチレンセチルエーテル、ポリオキシエチレンス テアリルエーテル、ポリオキシエチレンノニルフエニルエーテル、ポリオキシエチレン ポリオキシプロピレングリコール、ポリオキシエチレンソルビタンサンモノラウレート、ポ リソルベート、モノォレイン酸ソルビタン、モノステアリン酸グリセリド、モノォキシェチレ ンソルビタンモノパルミテート、モノォキシエチレンソルビタンモノステアレート、モノォ レイン酸ポリオキシエチレンソルビタン、モノパルミチン酸ソルビタン、ラウリル硫酸ナト リウム等の「医薬品添加剤事典」(薬事日報社 (株)発行)に界面活性剤として分類さ れるものが挙げられ、それを単独で使用しても、 2種以上を併用することも自由である
[0106] 本発明でいう錠剤とは、本発明の多孔質セルロース凝集体と、 1種以上の活性成分 と必要に応じて他の添加剤を含んだものであって、圧縮成形により得られ得る成型体 をいう。本発明の多孔質セルロース凝集体を配合した錠剤用組成物は、特に、複雑 な工程を経ずに直接打錠法のような簡便な方法で実用硬度が得られるものであるが 、必要に応じて乾式顆粒圧縮法、湿式顆粒圧縮法、後末法、予め圧縮成形した錠剤 を内核とする多核錠、予め圧縮した複数の成型体を重ねて再度圧縮する多層錠の 製造方法等の 、ずれかの製造方法を使用してもょ 、。
[0107] 本発明の多孔質セルロース凝集体は、圧縮成形性、自流動性、崩壊性の賦形剤と して要求される諸物性に優れるので、特に錠剤硬度が出にくぐ錠剤表面の割れ、か け、内部からの剥離、クラック等の打錠障害を生じやすい、薬物を多種、大量に含む 錠剤、例えば大衆薬、漢方等のエキス粉末配合錠剤、小型の錠剤、エッジのくびれ 等の圧縮圧が均等にかかり難い箇所を有するような円形でない変形錠剤、打圧'賦 形剤との摩擦により失活し易い酵素 ·蛋白等の薬物、コーティング顆粒含有錠剤等に 有効である。また、本発明のセルロース粉末は、圧縮成形性、崩壊性に優れるため、 比較的低い圧縮圧で実用的な摩損度を示す錠剤が得られる。そのため、錠剤内に 空隙 (導水管)を維持できるので、口腔内で迅速に崩壊させるような口腔内崩壊錠に も有効である。
[0108] さらに、数種の組成の成分を一段回又は他段階で圧縮成形する多層錠、有核錠に 関しては、上記の硬度付与、一般的な打錠障害の抑制に加え、層間の剥離、クラック を抑制する効果もある。本発明の多孔質セルロース凝集体は、一次粒子が凝集した 二次凝集構造を有すため、粒子自体の分割性にも優れ、割線錠等に使用した場合 には、錠剤を均一に分割し易くなる。さらに、本発明の多孔質セルロース凝集体は発 達した多孔質構造を有し、セルロース粒子自体が微粒子状薬物、懸濁液状薬物、溶 液状成分の保持性に優れるため、それを使用した錠剤も、微粒子状薬物、懸濁液、 溶液状成分の保持性に優れる。そのため、錠剤に懸濁液状、溶液状成分を用いてな るレイヤリング、コーティング錠剤、さらに糖、炭酸カルシウム等の成分を懸濁状態で 錠剤表面に積層させてなる糖衣錠剤等のレイヤリング、コーティング層、糖衣層の剥 離防止、補強に使用することも有効である。
[0109] 次に 1種以上の活性成分と多孔質セルロース凝集体粒子を含む組成物の使用方 法について説明する。ここまでに説明した方法で得られる固形、液状、半固形状の活 性成分と多孔質セルロース凝集体粒子組成物は、粉末又は顆粒状で固形製剤とし て使用しても、粉末又は顆粒状組成物にさらにコーティング剤をコーティングしコーテ イング粉末又は顆粒状固形製剤として使用してもよ ヽ。ここで得られたコーティングを 施した、又は施さない粉末又は顆粒状組成物は、カプセルに充填し使用してもよぐ それらを圧縮成形し錠剤型固形製剤として使用してもよい。さらにカプセル又は、錠 剤にコ一ティングを施して使用してもょ 、。
[0110] ここでコーティングを施す場合のコーティング剤としては、例えば、アクリル酸ェチル
'メタクリル酸メチルコポリマー分散液、ァセチルグリセリン脂肪酸エステル、アミノアル キルメタクリレートコポリマー、アラビアゴム末、ェチルセルロース、ェチルセルロース 水分散液、ォクチルデシルトリグリセリド、ォリーブ油、カオリン、カカオ脂、カゴソゥ、 カスターワックス、カラメル、カルナパロウ、カルボキシビュルポリマー、カルボキシメチ ルェチルセルロース、カルボキシメチルスターチナトリウム、カルメロースカルシウム、 カルメロースナトリウム、含水二酸化ケイ素、乾燥水酸ィ匕アルミニウムゲル、乾燥乳状 白ラック、乾燥メタクリル酸コポリマー、寒梅粉、魚鱗粉、金箔、銀箔、クェン酸トリェチ ル、グリセリン、グリセリン脂肪酸エステル、ケィ酸マグネシウム、軽質無水ケィ酸、軽 質無水ケィ酸含有ヒドロキシプロピルセルロース、軽質流動パラフィン、鯨ロウ、結晶 セルロース、硬化油、合成ケィ酸アルミニウム、合成ワックス、高ブドウ糖水飴、硬ロウ 、コハク化ゼラチン、小麦粉、コムギデンプン、コメデンプン、酢酸セルロース、酢酸ビ -ル榭脂、酢酸フタル酸セルロース、サラシミツロウ、酸化チタン、酸化マグネシウム、 ジメチルアミノエチルメタアタリレート'メチルメタアタリレートコポリマー、ジメチルポリシ ロキサン、ジメチルポリシロキサン'二酸ィ匕ケィ素混合物、酸化ケィ素混合物、焼セッ コゥ、ショ糖脂肪酸エステル、ジンコゥ末、水酸ィ匕アルミニウムゲル、水素添加ロジン グリセリンエステル、ステアリルアルコール、ステアリン酸、ステアリン酸アルミニウム、 ステアリン酸カルシウム、ステアリン酸ポリオキシル、ステアリン酸マグネシウム、精製 ゼラチン、精製セラック、精製白糖、ゼイン、セスキォレイン酸ソルビタン、セタノール 、セッコゥ、ゼラチン、セラック、ソルビタン脂肪酸エステル、 D—ソルビトール、 D—ソ ルビトール液、第三リン酸カルシウム、タルク、炭酸カルシウム、炭酸マグネシウム、単 シロップ、中金箔、沈降炭酸カルシウム、低置換度ヒドロキシプロピルセルロース、テ ルペン榭脂、デンプン (溶性)、トウモロコシシロップ、トウモロコシ油、トリァセチン、乳 酸カルシウム、白色セラック、白糖、蜂蜜、ハードフアット、パラフィン、パール末、バレ イショデンプン、ヒドロキシプロピルセルロース、ヒドロキシプロピルセルロース、ヒドロ キシプロピルセルロースアセテートサクシネート、ヒドロキシプロピルセルロース ·酸化 チタン'ポリエチレングリコール混合物、ヒドロキシプロピルメチルセルロースフタレート 、ピぺ口-ルブトキシド、ヒマシ油、フタル酸ジェチル、フタル酸ジブチル、ブリツフタリ ルブチルダリコレート、ブドウ糖、部分アルファ一化デンプン、フマル酸'ステアリン酸 •ポリビュルァセタールジェチルァミノアセテート'ヒドロキシプロピルセルロース混合 物、プルラン、プロピレングリコース、粉糖、ベントナイト、ポビドン、ポリオキシエチレン 硬化ヒマシ油、ポリオキシエチレン(105)ポリオキシプロピレン(5)グリコール、ポリオ キシエチレン(160)ポリオキシプロピレン(30)グリコール、ポリオキシエチレンソルビ タンモノステアレート、ポリビュルァセタールジェチルァミノアセテート、ポリビュルアル コール (部分けん化物)、ポリエチレングリコール、末端水酸基置換メチルポリシロキ サンシリコーン榭脂共重合体、 D—マン-トール、水飴、ミツロウ、ミリスチルアルコー ル、無水ケィ酸水和物、無水フタル酸、無水リン酸水素カルシウム、メタクリル酸コポリ マー、メタケイ酸アルミン酸マグネシウム、メチルセルロース、 2—メチルー 5—ビュル ピリジンメチルアタリレート'メタクリル酸コポリマー、モクロウ、モノステアリン酸グリセリ ン、モノステアリン酸ソルビタン、モノラウリル酸ソルビタン、モンタン酸エステルヮック ス、薬用炭、ラウロマクロゴール、硫酸カルシウム、流動クマロン榭脂、流動パラフィン 、 dl—リンゴ酸、リン酸一水素カルシウム、リン酸水素カルシウム、リン酸水素ナトリウム 、リン酸二水素カルシウム、ロジン等の「医薬品添加剤事典」(薬事日報社 (株)発行) に記載されるコーティング剤が挙げられ、それを単独で使用しても、 2種以上を併用 することも自由である。
[0111] 本発明の多孔質セルロース凝集体は発達した多孔質構造を有し、粒子自体が薬 物の保持性に優れるため、薬物を細孔内に担持させた粒子をそのまま細粒として使 用しても、造粒して顆粒として使用しても、それらを圧縮成形してもよい。それらの細 粒、顆粒、錠剤は、さらにその上にコーティングしてもよい。担持方法は、公知の方法 であれば特に制限がないが、 i)微粒子状薬物と混合し、細孔内に担持させる方法、 ϋ
)粉末状薬物と高シァ下で混合し、強制的に細孔内に担持させる方法、 m)—旦溶液 又は分散液とした薬物と混合し、細孔内に担持させた後、必要に応じ乾燥し担持さ せる方法、 iv)昇華性の薬物と混合し、加熱及び Z又は減圧することで細孔内に昇華 吸着させる方法、 V)加熱前又は加熱中に薬物と混合し、溶融させたものを細孔内に 担持させる方法のいずれの方法でもよぐ単独で使用しても、 2種以上を併用してもよ い。
[0112] 本発明の多孔質セルロース凝集体は、発達した細孔構造を有し、適度に保水性、 保油性を有するので賦形剤以外に、レイヤリング、コーティング用の核粒子としても使 用でき、その際には、レイヤリング、コーティング工程において、粒子間の凝集を抑制 する効果がある。レイヤリング、コーティングは乾式であっても、湿式であってもよい。 [0113] また、活性成分が溶液、懸濁液、乳化液の場合には、多孔質セルロース凝集体粒 子又は多孔質セルロース凝集体粒子と他の添加剤の混合物を担体としたディッピン グの如ぐ活性成分溶液、懸濁液、乳化液に浸漬させ、活性成分を保持させる方法 が採れる。活性成分種、濃度等の条件によるが、カゝかるディッビング等の液浸漬方法 でも、実用的に活性成分の均一性が保たれ、また、上記噴霧に比べ、工程が簡略で ある点で優れている。
さらに、活性成分が溶液、懸濁液、乳化液の場合には、多孔質セルロース凝集体 粒子又は多孔質セルロース凝集体粒子と他の添加剤の混合物を担体として、活性 成分溶液、懸濁液、乳化液に浸漬させた後、その分散液を噴霧乾燥し、複合体とす る方法を採ってもよ ヽ。
[0114] 活性成分溶液 Z分散液を添加前後の多孔質セルロース凝集体粒子又は、多孔質 セルロース凝集体粒子と他の添加剤の混合物は、それぞれの単位粒子が個々に分 散した状態であっても、凝集した造粒物の形態をとつて 、てもよ 、。
[0115] 製造工程にお 、て造粒を経る場合の造粒方法としては、乾式造粒、湿式造粒、加 熱造粒、噴霧造粒、マイクロカプセルィ匕がある。湿式造粒法は、具体的には流動層 造粒法、攪拌造粒法、押し出し造粒法、破砕造粒法、転動造粒法が有効であり、流 動層造粒法では、流動層造粒装置の中で、流動化された粉体に結合液を噴霧して 造粒する。攪拌造粒法では、結合液を添加しながら、混合槽内で攪拌羽根を回転さ せることにより、粉体の混合、練合、造粒が密閉構造の中で同時に行われる。押し出 し造粒法では、結合液の添カ卩によって練合された湿潤塊をスクリュー式やバスケット 式等の方法で、適当な大きさのスクリーンから強制的に押し出すことにより造粒する。 破砕造粒法では、結合液の添加によって練合された湿潤塊を造粒機の回転刃で剪 断、破砕し、その遠心力によって外周のスクリーンからはじき出すことにより造粒する 。転動造粒法では、回転するローターの遠心力によって転動し、この時スプレーガン 力ゝら噴霧される結合液によって、雪だるま式に粒径の均一な球形顆粒を成長させて いくことにより造粒する。
[0116] 造粒物の乾燥方法は、熱風加熱型 (棚乾燥、真空乾燥、流動層乾燥)、伝導伝熱 型 (平鍋型、棚段箱型、ドラム型)や、凍結乾燥のようないずれかの方法を使用するこ ともできる。熱風加熱型では、材料を熱風を直接接触させ、同時に蒸発水分を除去 する。伝導伝熱型では、伝熱壁を通して材料を間接的に加熱させる。凍結乾燥では
、材料を— 10〜― 40°Cで凍結させておき、次に高真空下(1. 3 X 10_5〜2. 6 X 10 _4MPa)で加温することによって、水を昇華させて除去する。
[0117] 例えば、 i)活性成分と多孔質セルロース凝集体粒子を混合したもの、又は 1種以上 の活性成分と多孔質セルロース凝集体粒子と、必要に応じて他の添加剤を混合した ものを通常の方法で圧縮成形する(直接打錠法)、 ii)活性成分と多孔質セルロース 凝集体粒子と、必要に応じて他の添加剤を混合した後、造粒して顆粒とし、通常の方 法で圧縮成形する。(湿式 Z乾式顆粒圧縮法)、又は、 m)活性成分と多孔質セル口 ース凝集体粒子と、必要に応じて他の添加剤を混合し、造粒して顆粒とし、さらに多 孔質セルロース凝集体粒子と、必要に応じて他の添加剤を混合し、通常の方法で圧 縮成形する (湿式 Z乾式顆粒後末圧縮法)。
[0118] 1種以上の活性成分、多孔質セルロース凝集体、他の添加剤、又は顆粒の添加方 法は、通常行われている方法であれば特に制限はないが、小型吸引輸送装置、空 気輸送装置、バケツトコンべャ、圧送式輸送装置、バキュームコンペャ、振動式定量 フィーダ一、スプレー、漏斗等を用いて連続的に添加しても、一括投入してもよい。 上記の如く圧縮成形し、錠剤にして使用する以外に、本発明の錠剤用組成物は、 固体、液状成分の保持性にも優れるため、特に流動性、耐ブロッキング性、耐凝集 性を改善する目的で顆粒剤又は散剤として使用してもよい。顆粒剤、散剤の製造方 法としては、例えば、乾式造粒、湿式造粒、加熱造粒、噴霧乾燥、マイクロカプセル 化の 、ずれを使用してもよ!、。
実施例
[0119] 本発明を実施例に基づいて説明する。ただし、本発明の実施態様は、これら実施 例の記載に限定されるものではない。なお、実施例、比較例における各物性の測定 方法及び評価方法は以下の通りである。
[0120] (1)セルロース一次粒子の平均幅(/z m)
天然セルロース質物質力もなるセルロース一次粒子を、必要に応じて乾燥し、カー ボンテープを貼った試料台に載せ、白金パラジウムを真空蒸着 (この際の蒸着膜の 膜厚は 20nm以下)し、日本分光 (株)衡 SM— 5510LV (商品名)を使用し、加速電 圧 6kV、倍率 250倍で観察し、代表的なセルロース一次粒子 3個の平均値とした。
[0121] (2)セルロース一次粒子の平均厚み( m)
天然セルロース質物質力もなるセルロース一次粒子を、必要に応じて乾燥し、カー ボンテープを貼った試料台に載せ、金を真空蒸着した後、集束イオンビーム加工装 置(日立製作所 (株)製、 FB— 2100 (商品名))を使用し、 Gaイオンビームにより、セ ルロース一次粒子の断面を切り出した後、加速電圧 6kV、倍率 1500倍で観察し、代 表的なセルロース一次粒子 3個の平均値とした。
[0122] (3)遠心力 4900mZs2の遠心分離条件で沈降しな 、粒子量 (重量%)
遠心分離用チューブ(内容量 50cm3)に、乾燥前のセルロース分散液を正確に秤 取り(A (g) )、これに純水を加えてセルロース濃度約 1%に調製した。調製後の重量 は約 30gとなるように、乾燥前のセルロース分散液を秤取るようにした。約 1%濃度の セルロース分散液の入った遠心分離用チューブを、インバータ.マルチパーパス高 速冷却遠心機 (型番 6930、久保田製作所製、加速及び減速の各モードは Rapidを 使用)、 RA—400アングルローター(容量: 50cm3、材質:ポリプロピレンコポリマー、 チューブ角度:35° 、最大半径: 10. 5cm、最小半径 5. 8cm、回転数 4100rpm) に仕込み、遠心力 4900mZs2、 15— 25°Cの範囲で 10分間遠心分離した。遠心分 離後の上澄みは秤量瓶に移し、 110°C5時間乾燥し、乾燥後のセルロースの固形分 重量を測定した (B (g) )。また、別に乾燥前のセルロース分散液を 2〜5gの範囲で測 り取り、 110°C5時間乾燥し、乾燥後の固形分重量を測定した (C (%) )。
遠心力 4900mZs2の遠心分離条件で沈降しない粒子量を D (重量%)とすると、 D の値は次の計算式で求めた。
D (重量%) = {B (g) /[A (g) X (C (%) Z100) ] } X 100
[0123] (4)セルロース分散液の平均粒子径( μ m)
水で分散したセルロース分散液を、レーザー回折式粒度分布計 (堀場製作所製、 L A— 910 (商品名))を使用し、超音波処理 1分、屈折率 1. 20で測定した累積体積 5 0%粒子として表した。ただし、この測定値は、以下のロータップ式で得られる乾燥粒 子の粒度分布と測定原理が全く異なるため、必ずしも相関するものではない。レーザ 一回折により測定される平均粒子径は、繊維状粒子の長径に依存する体積頻度から 測定されるものであるのに対し、ロータップ式で得られる平均粒子径は、得られた粉 末を篩上で振とうさせて分画するため、繊維状粒子の短径に依存するものである。従 つて、繊維状粒子の長径に依存するレーザー回折式の方が、繊維状粒子の短径に 依存するロータップ式に対し、大き 、値となる場合がある。
[0124] (5)結晶形
X線ディフラクトメ一ターにより X線回折を行い、その X線パターンにより判定した。
(6)乾燥粒子の平均粒子径( μ m)
粉体試料の平均粒子径はロータップ式篩振盪機 (平工作所製、シーブシェーカー
A型 (商品名))、 JIS標準篩 (Z8801— 1987)を用いて、試料 10gを 10分間篩分 することにより粒度分布を測定し、累積重量 50%粒径として表した。
(7)比表面積 (m2Zg)
マイクロメリテイクス (株)製、商品名、 TriSTARを用い、吸着ガスとして窒素を使用 し BET法により測定した。各試料粉体を約 lgづっセルに仕込み測定した。測定に用 Vヽた各試料粉体は、 110°Cで 3時間減圧乾燥したものを使用した。
[0125] (8)粒子内細孔容積 (cm3/g)、中央細孔径 m)
島津製作所 (株)製、オートポア 9520型 (商品名)を用い、水銀ポロシメトリーにより 細孔分布を求めた。測定に用いた各試料粉体は、室温で 15時間減圧乾燥したもの を使用した。初期圧 20kPaの測定により、得られた細孔分布から、細孔径 0. 1〜15 mの範囲にある「明確なピーク部分」を粒子内細孔容積として計算した。また、得ら れた細孔分布から、細孔径 0. 1〜15 mに見られる「明確なピーク」のピークトップを 中央細孔径とし値を読みとつた。
[0126] (9)見かけ比容積 (cm3Zg)
100cm3のメスシリンダーを使用し、粉体試料を定量フィーダ一などを用いて 2〜3 分かけて粗充填し、粉体層上面を筆のような軟らかい刷毛で水平になるようにならし 、その容積を読み取り、これを粉体試料の重量で割った値である。粉体の重量は、容 積が 70〜: LOOcm3になるよう適宜設定した。
[0127] (10) SEMによる粒子表面及び細孔の観察 各セルロース試料を、カーボンテープを貼った試料台に載せ、白金パラジウムを真 空蒸着 (この際の蒸着膜の膜厚は 20nm以下)し、 日本分光 (株)衡 SM— 5510LV (商品名)を使用し、加速電圧 6kV、倍率 250〜 1500倍で観察した場合に、一次粒 子が連続して凝集し、一次粒子の境界が明確であり、確認できる細孔の中央細孔径 が 0. 1 μ m以上である一次粒子が凝集した二次凝集粒子構造を有するものを〇とし 、それ以外の構造を取るものを Xとした。
[0128] (11)水中でのセルロース粒子の崩壊
各セルロース試料 0. lgをガラス試験管に導入し、さらに 10gの純水を投入し、超音 波で 1分間処理した後、超音波処理の有無でマイクロスコープ (キーエンス製、 VH— 7000 (商品名))で観察し、粒子の崩壊の有無を観察した。崩壊が観察されたものを 〇とし、観察されな力つたものを Xとした。
[0129] (12)薬物との反応性
アスピリン (局方結晶アスピリンを小型粉砕機 φ θ. 5mm、 1パス処理)と、各セル口 ースサンプルを乾式で、 5Z5 (全量 0. 5g)で混合したものを、ガラス製サンプル瓶中 で混合し、オーブン (タバイエスペック製、パーフェクトオーブン (商品名))に、密栓( 60°C)で 2週間保存した後、分解率を測定した。硫酸第二鉄 (III)ナトリウム · 12水和 物 8gを lOOmLのメスフラスコに導入し、純水をカ卩ぇ lOOmLとし、呈色試験液とした。 保存後のアスピリン 0. 25g (粉体ブレンド品は全量で 0. 5g)を、 50mLのメスフラスコ に導入し、エタノールをカ卩えて 50mLとし、 5分間振とうした。得られたエタノール溶液 をろ過し、ろ液 lOOmLのメスフラスコに移し、エタノールを加えて lOOmLとした。この エタノール溶液 lmLと、上記呈色試験液 lmLを 50mLのメスフラスコに導入し、純水 を加えて 50mLとしたものを、紫外吸光度測定器(日本分光 (株)製)を用いて、波長 532nmの吸光度を測定した。分解率は次の計算式で求めた。
分解率 (%) = (1 (保存後の吸光度 Z保存前の吸光度)) X 100
アスピリン単独の分解率である 15%を超える分解率を示すものを反応性ありと判定 した。
[0130] (13)安息角(° )
杉原式安息角測定器 (スリットサイズ奥行 10 X幅 50 X高さ 140mm、幅 50mmの 位置に分度器を設置)を使用し、定量フィーダ一を使用し、セルロース粉末を 3gZ分 でスリットに投下した際の動的自流動性を測定した。装置底部とセルロース粉末の形 成層との角度が安息角である。
(14)膨潤度
容積が 100cm3の円筒状の容器内に約 10gの粉末をゆっくりと流し込んだ時の体 積 (V )と、該粉末層に約 50cm3の純水を入れ、粉末が完全に湿潤されるように混合 し 8時間静置した後の体積 (V )から次式により求める。
2
膨潤度(%) = (v 2 -v1)/v X 100
1
[0131] (14)セルロース試料単独の圧縮成形
各セルロース粉末を 0. 5g計りとり、臼(菊水製作所製、材質 SUS2, 3を使用)に入 れ、直径 1. 1cmの円形平面杵 (菊水製作所製、材質 SUS2, 3を使用)で圧力が 10 MPa、 20MPaになるまで圧縮し(アイコ一エンジニアリング製、商品名、 PCM— 1A 使用、圧縮速度は lcmZ分)、目標圧で 10秒間保持した後、円柱状成型体を取り出 した。
[0132] (15)処方粉体のロータリー打錠
ァセトアミノフ ン((株)エーピーアイ製、粉末タイプ) 55重量部、軽質無水ケィ酸( 日本ァエロジル (株)製、ァエロジル 200 (商品名))を 0. 25重量部、実施例、比較例 で得られたセルロース粒子又は粉末を 27重量部、クロスポビドン (BASF製、コリドン CL (商品名)) 2重量部、造粒乳糖 (ラタトース-ユージーランド製、 Super— Tab (商 品名)) 15重量部を 100Lスケールの V型混合機 (ダルトン社製)に入れて、 30分間 混合し、次いでステアリン酸マグネシウム (太平ィ匕学産業 (株)製、植物性)を 0. 5重 量部入れてさらに 5分間混合し、処方粉体を得た。ここで各粉体の仕込み全量は 25 kgであった。得られた処方粉体を、ロータリー打錠機 (菊水製作所製、 LIBRA— II ( 商品名)、回転盤径 φ 410πιπι、 36本立て)を使用し、攪拌フィーダ一により処方粉 体を供給した。直径 8mm、 12Rの臼杵を用いてターンテーブル回転数 50rpm、攪 圧縮圧 7. 5kNで打錠し、重量 200mgの錠剤を得た。
[0133] (16)錠剤質量ばらつき(%)
ロータリー打錠により得られた錠剤 20錠の重量を測定し、平均重量と、重量の標準 偏差をとり、(標準偏差 Z平均重量) X 100で定義される変動係数 (%)から質量ばら つきを評価した。変動係数が小さいほど、ばらつきが小さい。
[0134] (17)錠剤硬度 (N)
円柱状成型体又は錠剤をシュロインゲル硬度計 (フロイント産業 (株)製、 6D型 (商 品名))を用いて、円柱状成型体又は錠剤の直径方向に荷重を加え、破壊し、そのと きの荷重を測定した。試料 10個の平均値で表した。
[0135] (18)崩壊時間 (秒)
第 14改正日本薬局方、一般試験法、錠剤の崩壊試験法に準じて崩壊試験を行つ た。円柱状成型体又は錠剤について、崩壊試験器 (富山産業 (株)製、 NT— 40HS 型(商品名)、セルロース単独の場合はディスクあり、処方の場合はディスクなし)で、 37°C、純水中における崩壊時間として求めた。試料 6個の平均値で表した。
[0136] (19)錠剤摩損度 (重量%)
錠剤 20個の重量 (Wa)を測定し、これを摩損度試験機 (ジャパンマシナリー (株)製 、 PTF— 3RA型(商品名))に入れ、 25rpmで 4分間回転した後、錠剤に付着してい る微粉を取り除き、再び重量 (Wb)を測定し、次式より摩損度を計算した。
摩損度 = 100 X (Wa-Wb) /Wa
[0137] (20)打錠障害発生率 (%)
ロータリー打錠機により得られた錠剤 100個を無作為に選び、それらについて目視 で観察し、錠剤の割れ (ラミネーシヨン)、欠け (チッビング)、剥離 (キヤッビング)の個 数をカウントし、それらの総数を観察した錠剤個数で割った値 (百分率)で示した。
( 21 )木材パルプのレベルオフ重合度
木材パルプ 10gを細断し、 2. 5N塩酸、沸騰温度、 15分の条件で加水分解した後 、精製処理し、乾燥した粉末を第 13改正日本薬局方、結晶セルロースの確認試験( 3)に記載された、粘度法 (銅エチレンジァミン法)に準拠して測定される重合度であ る。
(22)木材パルプの白色度
ISO (filter R457)に準拠して測定される値。
青色フィルタを用い、完全な白色を 100%として、色差計で測定する。透過中心波 長 457 /z mにおける反射率を白色度とする。
(22)木材パルプの S 、 S
10 18
Tappi T253m— 60に準拠して測定される値。
S :
10
10%NaOH、 100cm3をガラス容器に入れ 20°Cで 30分冷却し、 1. 6gの引き裂いた パルプ (絶乾重量を Gとする)を入れ、アルカリに十分浸漬させた後、 2300— 2800r pmで攪拌してパルプを完全に溶解させる。ガラス容器を水冷した後、濾過した溶液 10cm3に 0. 4N重クロム酸カリウム 10cm3と濃硫酸 30cm3をカ卩え、さらに 100cm3の 純水を加えて 30分水冷する。 10cm3の 10%KIをカ卩えて放置後、 0. 1Nチォ硫酸ナ トリウムで滴定する。終点でのチォ硫酸ナトリウムの体積を A (cm3)とする。ノルプを 加える前の 10%NaOH、 10cm3についても上記の滴定を行う。終点でのチォ硫酸 ナトリウムの体積を B (cm3)とする。 S は下式により算出する。
10
S (%) = (B-A) X O. 685/G
10
G=パルプ重量 X ( 100—パルプの水分) Z 100
パルプの水分はパルプを 125°Cで 1. 5時間乾燥して算出する。
S :
18
18%NaOHを用いる以外は、 S の測定方法に準じる。
10
(実施例 1)
市販のパルプ(木材由来の天然セルロース溶解パルプ、平均重合度 1030、セル口 ース一次粒子の繊維平均幅は約 39 μ m、平均厚みは約 8 μ m)を細断したものを 2k gを水に浸漬し、約 70%の水分を含む状態で、カッターミル(URSCHEL LABOR ATORIES, INC.製、「コミトロール」(商品名)、モデル 1700、マイクロカットヘッド Zブレード間隙: 2. 029mm、インペラ一回転数 9000rpm)を通した後、純水を加え て約 2%濃度のセルロース分散液に調製し、高圧ホモジナイザー(MFIC Corp.製 、商品名「マイクロフルイダィザ一」 M—140K型、処理圧力 200MPa)で 2回処理し たものを、遠心力 19600m/s2で遠心分離し、上澄みを捨て、沈降物を得た。沈降 物を 40°Cで 16時間乾燥したもの約 2kgと、 4N塩酸水溶液 30Lを低速型攪拌機 (池 袋琺瑯工業 (株)製、 50LGL反応器 (商品名))に入れ攪拌しながら、 40°C、 48時間 加水分解し、酸不溶解性残渣を得た。得られた酸不溶解性残渣は、純水で十分に 洗浄した後、ろ過し、 90Lポリバケツに導入し、全固形分濃度が 20重量%になるよう に純水をカ卩ぇ 3—1モーターで攪拌しながら、アンモニア水で中和(中和後の pHは 7 . 5〜8. 0であった)した。この固形分濃度 20重量0 /0のセルロース分散液中のセル口 ース一次粒子の繊維平均幅は 19 μ m、平均厚みは 3 μ m、平均粒子径は 38 μ mで あった。該セルロース分散液を噴霧乾燥 (分散液供給速度 6kgZhr、入口温度 180 〜220°C、出口温度 50〜70°C)して、セルロース凝集体であるセルロース粒子 Aを 得た。セルロース粒子 Aの諸物性を表 1に示す。
図 1に、セルロース粒子 Aを水銀ポロシメトリーにより細孔分布を測定した結果を、ま た、図 6にセルロース粒子 Aの粒子断面の電子顕微鏡写真を示す。図 1に示されるよ うにセルロース粒子 Aには 0. 1〜15 mに粒子内細孔に由来する「明確なピーク」が 確認された。これは、 SEMによる電子顕微鏡写真に示される細孔径とほぼ同じ大き さのものである。なお、図 1に示される 10〜50 /ζ πιに示されるピークは粒子間隙に由 来するものである。また、図 6に示すように、図 1で示される「明確なピーク部分」に相 当する細孔径の粒子内細孔が発達した様子が観察された。
(実施例 2)
広葉樹を公知のパルプ化処理、漂白処理を施すことにより、セルロース一次粒子の 繊維平均幅は約 19 μ m、平均厚みは約 3 μ m、レベルオフ重合度 140〜220、水分 5〜10%、白色度 92〜97%、粘度 5〜40cps、 S 5〜15%、 S 1〜8%、銅価 0. 5
10 18
〜1. 5、及びジクロロメタン抽出物 0. 03ppm以下のパルプを得た。該パルプ 2kgと 4 N塩酸水溶液 30Lを、低速型攪拌機 (池袋琺瑯工業 (株)製、商品名、 50LGL反応 器)に入れ攪拌しながら、 40°C、 48時間加水分解し、酸不溶解性残渣を得た。得ら れた酸不溶解性残渣は、純水で十分に洗浄した後、ろ過し、 90Lポリバケツに導入し 、全固形分濃度が 15重量%になるように純水をカ卩ぇ 3—1モーターで攪拌しながら、 アンモニア水で中和(中和後の pHは 7. 5〜8. 0であった)した。この固形分濃度 15 重量%のセルロース分散液中のセルロース一次粒子の繊維平均幅は 22 μ m、平均 厚みは 2. 5 m、平均粒子径は 38 μ mであった。該セルロース分散液を噴霧乾燥( 分散液供給速度 6kgZhr、入口温度 180〜220°C、出口温度 50〜70°C)して、セ ルロース凝集体であるセルロース粒子 Bを得た。セルロース粒子 Bの諸物性を表 1に 示す。
(実施例 3)
広葉樹を公知のパルプ化処理、漂白処理を施すことにより、セルロース一次粒子の 繊維平均幅は約 19 μ m、平均厚みは約 3 μ m、レベルオフ重合度 140〜220、水分 5〜10%、白色度 92〜97%、粘度 5〜40cps、 S 5〜15%、 S 1〜8%、銅価 0. 5
10 18
〜1. 5、及びジクロロメタン抽出物 0. 03ppm以下のパルプを得た。該パルプ 2kgと 5 N塩酸水溶液 30Lを、低速型攪拌機 (池袋琺瑯工業 (株)製、商品名、 50LGL反応 器)に入れ攪拌しながら、 40°C、 20時間加水分解し、酸不溶解性残渣を得た。得ら れた酸不溶解性残渣は、純水で十分に洗浄した後、ろ過し、 90Lポリバケツに導入し 、全固形分濃度が 15重量%になるように純水をカ卩ぇ 3—1モーターで攪拌しながら、 アンモニア水で中和(中和後の pHは 7. 5〜8. 0であった)した。この固形分濃度 18 重量%のセルロース分散液中のセルロース一次粒子の繊維平均幅は 22 μ m、平均 厚みは 2. 5 m、平均粒子径は 35 μ mであった。該セルロース分散液を噴霧乾燥( 分散液供給速度 6kgZhr、入口温度 180〜220°C、出口温度 50〜70°C)して、セ ルロース凝集体であるセルロース粒子 Cを得た。セルロース粒子 Cの諸物性を表 1に 示す。
(実施例 4)
市販のパルプ(木材由来の天然セルロース溶解パルプ、平均重合度 1030、セル口 ース一次粒子の繊維平均幅は約 39 μ m、及び平均厚みは約 8 μ m)を細断したもの を 2kgを水に浸漬し約 70%の水分を含む状態で、カッターミル(URSCHEL LAB ORATORIES, INC.製、「コミトロール」(商品名)、モデル 1700、マイクロカットへ ッド Zブレード間隙: 2. 029mm,インペラ一回転数 9000rpm)を通した後、純水を 加えて約 2%濃度のセルロース分散液に調製し、高圧ホモジナイザー(MFIC Cor p.製、「マイクロフルイダィザ一」 M—140K型(商品名)、処理圧力 200MPa)で 4回 処理したものを、遠心力 19600mZs2で遠心分離し、上澄みを捨て、沈降物を得た。 沈降物を 40°Cで 16時間乾燥したもの約 2kgと、 5N塩酸水溶液 30Lを、低速型攪拌 機 (池袋琺瑯工業 (株)製、 50LGL反応器 (商品名))に入れ攪拌しながら、 40°C、 2 0時間加水分解し、酸不溶解性残渣を得た。得られた酸不溶解性残渣は、純水で十 分に洗浄した後、ろ過し、 90Lポリバケツに導入し、全固形分濃度が 20重量%にな るように純水を加え 3— 1モーターで攪拌しながら、アンモニア水で中和(中和後の p Hは 7. 5〜8. 0であった)した。この固形分濃度 20重量%のセルロース分散液中の セルロース一次粒子の繊維平均幅は 15 μ m、平均厚みは 1. 5 m、平均粒子径は 31 mであった。該セルロース分散液を噴霧乾燥 (分散液供給速度 6kgZhr、入口 温度 180〜220°C、出口温度 50〜70°C)して、セルロース凝集体であるセルロース 粒子 Dを得た。セルロース粒子 Dの諸物性を表 1に示す。
(実施例 5)
市販のパルプ(木材由来の天然セルロース溶解パルプ、平均重合度 1030、セル口 ース一次粒子の繊維平均幅は約 39 μ m、平均厚みは約 8 μ m)を細断したものを 2k gを水に浸漬し約 70%の水分を含む状態で、カッターミル(URSCHEL LABORA TORIES, INC.製、「コミトロール」(商品名)、モデル 1700、マイクロカットヘッド/ ブレード間隙:2. 029mm、インペラ一回転数 9000rpm)を通した後、純水を加えて 約 2%濃度のセルロース分散液に調製し、高圧ホモジナイザー(MFIC Corp.製、 「マイクロフルイダィザ一」 M— 140K型(商品名 )、処理圧力 200MPa)で 6回処理し たものを、遠心力 19600mZs2で遠心分離し、上澄みを捨て、沈降物を得た。沈降 物を 40°Cで 16時間乾燥したもの約 2kgと、 4N塩酸水溶液 30Lを、低速型攪拌機( 池袋琺瑯工業 (株)製、 50LGL反応器 (商品名))に入れ攪拌しながら、 40°C、 48時 間加水分解し、酸不溶解性残渣を得た。得られた酸不溶解性残渣は、純水で十分 に洗浄した後、ろ過し、 90Lポリバケツに導入し、全固形分濃度が 15重量%になるよ うに純水をカ卩ぇ 3— 1モーターで攪拌しながら、アンモニア水で中和(中和後の pHは 7. 5〜8. 0であった)した。この固形分濃度 15重量0 /0のセルロース分散液中のセル ロース一次粒子の繊維平均幅は 8 μ m、平均厚みは 0. 6 m、平均粒子径は 18 μ mであった。該セルロース分散液を噴霧乾燥 (分散液供給速度 6kgZhr、入口温度 180〜220°C、出口温度 50〜70°C)して、セルロース凝集体であるセルロース粒子 Eを得た。セルロース粒子 Eの諸物性を表 1に示す。
(比較例 1) 市販のパルプ(木材由来の天然セルロース溶解パルプ、平均重合度 1030、セル口 ース一次粒子の繊維平均幅は約 39 μ m、平均厚みは約 8 μ m)を細断したもの 2kg と 0. 14N塩酸水溶液 30Lを低速型攪拌機 (池袋琺瑯工業 (株)製、 50LGL反応器( 商品名))に入れ攪拌しながら、 121°C、 1時間の条件で加水分解し、酸不溶解性残 渣を得た。得られた酸不溶解性残渣は、純水で十分に洗浄した後、ろ過し、 90Lポリ バケツに導入し、全固形分濃度が 17重量%になるように純水を加え 3— 1モーターで 攪拌しながら、アンモニア水で中和(中和後の pHは 7. 5〜8. 0であった)した。この 固形分濃度 17重量%のセルロース分散液中のセルロース一次粒子の繊維平均幅 は 39 μ m、平均厚みは 8 μ m、平均粒子径は 36 μ mであった。該セルロース分散液 を噴霧乾燥 (分散液供給速度 6kgZhr、入口温度 180〜220°C、出口温度 50〜70 °C)してセルロース凝集体を得た。このセルロース凝集体を、気流式粉砕機 (セイシン 企業 (株)製、シングルトラックジェットミル STJ— 200型 (商品名))を使用し、粉砕し、 セルロース粉末 F (特許文献 6の実施例 1に相当)を得た。得られたセルロース粉末 F の諸物性値を表 1に示す。
セルロース粉末 Bを SEMで観察した結果、粒子が粒子内細孔をもたず、一次粒子 が単独で存在しているだけで、二次凝集構造とらず、水中での粒子の崩壊も観察さ れなかった。
[0141] (比較例 2)
加水分解条件を 3N塩酸水溶液、 40°C、 40時間とし、固形分濃度を 8%として乾燥 する以外は、比較例 1と同様に操作し、セルロース粉末 G (特許文献 9の実施例 5に 相当)を得た。得られたセルロース粉末 Gの諸物性値を表 1に示す。乾燥前のセル口 ース分散液中のセルロース一次粒子の繊維平均幅は 39 μ m、平均厚みは 8 μ m、 平均粒径は 47 μ mであった。
[0142] (比較例 3)
加水分解条件を 3N塩酸水溶液、 40°C、 20時間とし、固形分濃度を 6%として乾燥 する以外は、比較例 1と同様に操作し、セルロース粉末 H (特許文献 9の実施例 7に 相当)を得た。得られたセルロース粉末 Hの諸物性値を表 1に示す。乾燥前のセル口 ース分散液中のセルロース一次粒子の繊維平均幅は 39 μ m、平均厚みは 8 μ m、 平均粒径は 49 μ mであった。
また、図 2にセルロース粉末 Hの水銀ポロシメトリーにより測定された細孔分布図を 示す。セルロース粉末 Hは実施例 1の多孔質セルロース凝集体に見られるような「明 確なピーク」が確認されな力つた。このような「明確なピーク」がな 、細孔は、元々のセ ルロース一次粒子が有するものである。なお、 10〜50 /ζ πιに見られるピークは、粉末 の粒度分布力 考えて、粒子間隙によるものである。
[0143] (比較例 4)
加水分解条件を 4Ν塩酸水溶液、 40°C、 48時間とし、固形分濃度を 16%として乾 燥する以外は、比較例 1と同様に乾燥し、セルロース粉末 1 (特許文献 9の実施例 4に 相当)を得た。得られたセルロース粉末 Iの諸物性値を表 1に示す。乾燥前のセル口 ース分散液中のセルロース一次粒子の繊維平均幅は 39 μ m、平均厚みは 8 μ m、 平均粒径は 44 μ mであった。
[0144] (比較例 5)
FMC社製商品名、「アビセル」 PH - 200をセルロース粉 ¾ [とした。
セルロース粉 ¾ [の諸物性値を表 1に示す。
[0145] (比較例 6)
比較例 1で得られたセルロース凝集体と、バンタムミル (細川鉄工所 (株)製、使用ス クリーン径 2mm)で微粉砕した局方ァセトァミノフェン (メルクホエイ製)をセルロース 力 0重量0 /0、ァセトァミノフェンが 50重量%の組成で、粉体計 500gを高速攪拌造 粒機 (五橋製作所製、 NSK250型 (商品名))に導入し、攪拌羽根の回転速度を 500 rpmで 1分間回転させることによりょく混合し、次いで結合液として 50重量%エタノー ル水溶液を 245〜255g添加しながら 2分間さらに混合し、球状造粒物を得た。得ら れた造粒物を 50°Cで 12時間乾燥後、粗大粒子として 12メッシュ以上の留分を切り すてた後、ァセトァミノフェンをソックスレ一抽出器を使用し、 20時間アセトンで抽出し た。これを再び 50°Cで 12時間乾燥しセルロース粉末 K (特許文献 2の実施例 2に相 当)を得た。得られたセルロース粉末 Kの諸物性値を表 1に示す。
[0146] また、セルロース粒子 Kの倍率 250倍における電子顕微鏡写真図を図 3に、倍率 1 500倍における電子顕微鏡写真を図 5に示す。 セルロース粉末 Kは、水銀ポロシメトリーによる細孔分布測定結果から、 0. 1〜10 mの細孔分布において「明確なピーク」が確認された。し力し、 SEMによる電子顕 微鏡写真(図 3及び 5)から、粒子構造は「一次粒子が凝集した二次凝集構造」では なぐ「一様に緻密に連続したフィルム状の隔壁構造」をもつことが確認された。図 3 及び 5から、セルロース一次粒子が微細化し、微細化した粒子が乾燥時に強固に結 合してしまうため、一次粒子の境界が不明瞭なほどに、「連続した強固なフィルム状 のセルロース隔壁」となっていることが分かる。また、粒子は水中で崩壊しな力つた。 さら〖こ、セルロース粒子 Kで得られた円柱状成型体 (圧縮圧 lOMPa)はもろく、摩損 がひどかった。
[0147] (比較例 7)
市販の溶解パルプを切断し、 7%の塩酸水溶液中で 105°C、 20分間加水分解し、 得られた酸不溶解性残渣を中和、洗浄、ろ過、脱水したウエットケーク (水分 50重量 %)をイソプロピルアルコールに分散し、ろ過、脱水、再分散を 2回行い、さらにマント ンゴーリンホモジナイザー(日本精機製作所 (株)製、 15M型 (商品名))を使用し、処 理圧 400kgZcm2で 3回分散処理を行い、固形分濃度 9. 8重量%、水分 2. 5重量 %、イソプロピルアルコールが 87. 7重量%のセルロース分散液を得た。この固形分 濃度 9. 8重量%のセルロース分散液中のセルロース一次粒子の平均粒径は 1 μ m であった。該セルロース分散液をとして、これを窒素循環型スプレードライヤーを用い て噴霧乾燥を行った。得られたサンプルを JIS標準篩を用いて 250 m以上の粗留 分をカットし、セルロース粉末 L (特許文献 3の実施例 2に相当)を得た。得られたセル ロース粉末 Lの諸物性値を表 1に示す。
セルロース粒子 Lは、水銀ポロシメトリーによる細孔分布測定結果から、 0. 1 m以 下に「明確なピーク」が確認された。また、 SEMによる電子顕微鏡写真から、粒子構 造は「一次粒子が凝集した二次凝集構造」ではなく、「一様に緻密に連続したフィル ム状の隔壁構造」をもつことが確認された。その隔壁は、一次粒子の境界が不明瞭 であった。また粒子は水中で崩壊せず、アスピリン分解率も薬物単独に対し高カゝつた
[0148] (比較例 8) 市販のパルプ(木材由来の天然セルロース溶解パルプ、平均重合度 1030、セル口 ース一次粒子の繊維平均幅は約 39 μ m、平均厚みは約 8 μ m)を細断したもの 2kg と、 0. 14N塩酸水溶液 30Lを、低速型攪拌機 (池袋琺瑯工業 (株)製、 50LGL反応 器 (商品名))に入れ攪拌しながら、 121°C、 1時間の条件で加水分解し、酸不溶解 性残渣を得た。得られた酸不溶解性残渣は、純水で十分に洗浄した後、ろ過し、 90 Lポリバケツに導入し、全固形分濃度が 17重量%になるように純水をカ卩ぇ 3—1モー ターで攪拌しながら、アンモニア水で中和(中和後の pHは 7. 5〜8. 0であった)した 。この固形分濃度 17重量%のセルロース分散液中のセルロース一次粒子の繊維平 均幅は 39 μ m、平均厚みは 8 μ m、平均粒子径は 36 μ mであった。該セルロース分 散液を噴霧乾燥 (分散液供給速度 6kgZhr、入口温度 180〜220°C、出口温度 50 〜70°C)してセルロース粉末 M (特許文献 4実施例に相当)を得た。
[0149] セルロース粉末 Mの諸物性値を表 1に示す。また、セルロース粉末 Mの倍率 250倍 における電子顕微鏡写真を図 4に示す。
図 4から、セルロース粉末 Mの粒子構造は、「一次粒子が凝集した二次凝集構造」 をとつて!/、ることが分かるが、単一の平均粒子径を有するセルロース粒子の分散液を 乾燥したものであるため、粒子内細孔容積は小さぐ水銀ポロシメトリーで細孔分布を 測定した結果、細孔分布で 0. 1〜10 μ mに「明確なピーク」が確認されな力つた。 また、図 7は、セルロース粉末 Mの電子顕微鏡による粒子断面写真である力 セル ロース粒子が剛直に結合することで、密に結合した構造が確認される。粒子内細孔 はまばらで、発達したものではなぐ水銀ポロシメトリーによる細孔容積も小さい。
[0150] (比較例 9)
市販のクラフトパルプ 2kgを細断し、 0. 7重量%塩酸水溶液中で、 125°C、 150分 間加水分解し、得られた酸不溶解性残渣をろ過 ·中和し、得られた湿フロックをニー ダ一中で充分摩砕した後、容積比で 1倍のエタノールを加え、圧搾ろ過した後風乾し た。
乾燥前のセルロース水 ·エタノール分散液中のセルロース一次粒子の繊維平均幅 は 31 μ m、平均厚みは 8 μ m、平均粒子径は 28 μ mであった。風乾後、通常のハン マーミルで解砕し、 40メッシュの篩で粗大分を除き、セルロース粉末 N (特許文献 5の 実施例 1に相当)を得た。得られたセルロース粉末 Nの諸物性値を表 1に示す。
[0151] (比較例 10)
市販の溶解パルプを細断し、 10重量%の塩酸水溶液中で 105°C、 30分間加水分 解し、得られた酸不溶解性残渣をろ過、洗浄、中和し、固形分濃度 17重量%の分散 液を得た。該セルロース分散液中のセルロース一次粒子の繊維平均幅は 39 m、 平均厚みは 8 μ m、平均粒子径は 33 μ mであった。得られたセルロース分散液をドラ ム乾燥機 (楠木機械製作所 (株)製、 KDD— 1型 (商品名)、スチーム圧 0. 35MPa、 ドラム温度 136°C、ドラム回転数 2rpm、ため部水分散体温度 100°C)で乾燥後、ハ ンマーミルで粉砕し、目開き 425 μ mの篩で粗大留分を除き、セルロース粉末 O (特 許文献 7の実施例 1に相当)を得た。得られたセルロース粉末 Oの諸物性値を表 1に 示す。
[0152] (比較例 11)
比較例 10で得られたセルロース粉末 Kをエアジェットシーブを使用して、 75 μ mの 篩で大粒子を取り除き、 38 μ mの篩で微細粒子を取り除きセルロース粉末 Ρ (特許文 献 8の実施例に相当)を得た。得られたセルロース粉末 Pの諸物性値を表 1に示す。
[0153] (比較例 12)
比較例 8で得られたセルロース粉末 Ml . 5kgを高速攪拌造粒機 (深江工業 (株)製 、 FS— 10 (商品名))に仕込み、蒸留水 1. 5kgをカ卩え、 5分間練合した。この湿潤顆 粒 1. Okgをマルメライザ一 Q— 230 (商品名、不二パゥダル (株)製)へ移し、 500rp mで 10分間転動させ、球形化した。同時に蒸留水を 20gZmin.の速度で 200g供 給した。その後 40°Cに一昼夜放置し、乾燥後 16メッシュ(目開き lmm)でふるい球 状核粒子 Q (特許文献 12の実施例 1に相当)を得た。得られた球状核粒子 Qの諸物 性値を表 1に示した。
セルロース球状核粒子 Qは、極度に重質であり、流動性に優れていた力 比表面 積、粒子内細孔容積はほとんどなぐ 10、 20MPaの常用される圧縮圧では成型体と はならなかった。
[0154] (比較例 13)
市販のクラフトパルプを細断し、 10%塩酸水溶液中で 105°C、 30分の条件で実施 例 1と同様に加水分解し、得られた酸不溶解性残渣をろ過し、固形分濃度 40%の結 晶セルロースのケーク状物を得た (このケーク状物の重合度は 153)。このケーク状物 に万
能混合攪拌機 ( (株)三英製作所製、 5DM— 03— R型 (商品名))で 1時間摩砕処理 を施した。この摩砕処理したケーク状物に水を加え、ホモミキサー(特殊機化工業 (株 )製、 T. K.ホモミキサー MARKII型(商品名))で、固形分 12. 5重量%のセルロー ス分散液とし、粒子径、 pH、及び ICを調整した。ここで得られたセルロース分散液中 のセルロース一次粒子は、平均粒子径 7 mであった。その分散液を、約 8cmの回 転盤を用い、回転盤回転数 5000rpm、流量 6LZhr、吸気温度 170°C、排気温度 8 5°Cの条件で噴霧乾燥し、目開き 177 mの篩で粗大粒子を除去し、セルロース粉 末 Rを得た。得られたセルロース粉末 R (特許文献 14の実施例 1に相当)の諸物性値 を表 1に示す。
セルロース粒子 Rも、重質であり、流動性に優れていた力 比表面積、粒子内細孔 容積が小さぐ 10、 20MPaの常用される圧縮圧で成型体となったものの、成型体は もろく、取り出し時に摩損し、手で容易に破壊されるものであった。
(比較例 14)
市販のパルプ (重合度 790)を細断したもの 2kgと、 4Nの塩酸水溶液 30Lを低速型 攪拌機 (池袋琺瑯工業 (株)製、 30LGL反応器、翼径約 30cm)に入れ、攪拌速度 5 rpmで攪拌しながら、 40°C、 48時間加水分解し、平均重合度が 270の酸不溶解性 残渣を得た。得られた酸不溶解性残渣は、ヌッチェを使用し、固形分濃度 40%となる よう濾過し、濾過残渣をさらに純水で洗浄し、アンモニア水で中和後、 90Lのポリバケ ッに入れ、純水を加えて、スリーワンモーター(HEIDON製、タイプ 1200G、 8M/ M、攪拌翼径 5cm)で、攪拌速度 5rpmで攪拌することにより、固形分濃度 22%のセ ルロース分散液を得た。セルロース分散液中のセルロース一次粒子の繊維平均幅は 39 μ m、平均厚みは 8 μ m、平均粒子径は 54 μ mであった。これを噴霧乾燥 (分散 液供給速度 6LZhr、入口温度 180— 220°C、出口温度 50— 70°C)して、セルロー ス粉末 Sを得た。セルロース粉末 Sの諸物性値を表 1に示す (特許文献 10の実施例 2 に相当)。セルロース粒子 Sは、 10、 20MPaでの圧縮成型体の硬度は高いものの、 見掛け比容積が大きすぎて、流動性 (安息角)、崩壊性が悪力つた。
(比較例 15)
市販のパルプ (木材由来の天然セルロース溶解パルプ)を細断したものを 2kgと、 4 Nの塩酸水溶液 30Lを低速型攪拌機 (池袋琺瑯工業 (株)製、 30LGL反応器 (商品 名))に入れ攪拌しながら、 40°C、 48時間加水分解し、酸不溶解性残渣を得た。得ら れた酸不溶解性残渣は、純水で十分に洗浄した後、ろ過し、湿フロック (この酸不溶 解性残渣のセルロース分散粒子の平均粒子径は 55 μ mであった)を得た。得られた 湿フロックの内、 60重量%をさらに純水で充分洗浄した後、中和し、再度ろ過し、風 乾することにより、フロック状の乾燥物を得た。このフロック状乾燥物を家庭用ミキサー で解砕した後、気流式粉砕機 (セイシン企業 (株)製、シングルトラックジェットミル STJ - 200型(商品名))を使用してさらに粉砕し (この時のセルロース粒子径は 3 μ mで あった)粉砕物を得た。得られた粉砕物と前記湿状態の酸不溶解性残渣を 60重量 部と 40重量部(ドライベース)の組成で、 90Lポリバケツに導入し、全固形分濃度が 2 5重量%になるように純水をカ卩ぇ 3—1モーターで攪拌しながら、アンモニア水で中和 (中和後の pHは 7. 5〜8. 0であった)し、これを噴霧乾燥 (分散液供給速度 6kgZh r、入口温度 180〜220°C、出口温度 50〜70°C)して、セルロース粒子 T (特許文献 1の実施例 2に相当)を得た。セルロース粒子 Tの諸物性を表 1に示す。
(比較例 16)
市販のパルプ (木材由来の天然セルロース溶解パルプ)を細断したものを 2kgと、 3 Nの塩酸水溶液 30Lを低速型攪拌機 (池袋琺瑯工業 (株)製、 30LGL反応器 (商品 名))に入れ攪拌しながら、 40°C、 24時間加水分解し、酸不溶解性残渣を得た。得ら れた酸不溶解性残渣は、純水で十分に洗浄した後、ろ過し、湿フロック (この酸不溶 解性残渣のセルロース分散粒子の平均粒子径は 55 μ mであった)を得た。得られた 湿フロックの内、 10重量%をさらに純水で充分洗浄した後、中和し、再度ろ過し、風 乾することにより、フロック状の乾燥物を得た。このフロック状乾燥物を家庭用ミキサー で解砕した後、気流式粉砕機 (セイシン企業 (株)製、シングルトラックジェットミル STJ - 200型(商品名))を使用してさらに粉砕し (この時のセルロース粒子径は 3 μ mで あった)、粉砕物を得た。得られた粉砕物と前記湿状態の酸不溶解性残渣を 10重量 部と 90重量部(ドライベース)の組成で、 90Lポリバケツに導入し、全固形分濃度が 3 5重量%になるように純水をカ卩ぇ 3—1モーターで攪拌しながら、アンモニア水で中和 (中和後の pHは 7. 5〜8. 0であった)し、これを噴霧乾燥 (分散液供給速度 6kgZh r、入口温度 180〜220°C、出口温度 50〜70°C)して、セルロース粒子 U (特許文献 1の実施例 5に相当)を得た。セルロース粒子 Uの諸物性を表 1に示す。
(比較例 17)
市販のパルプ(コットンリンター由来の天然セルロースクラフトパルプ)を細断したも のを 2kgと、 0. 14Nの塩酸水溶液 30Lを低速型攪拌機 (池袋琺瑯工業 (株)製、商 品名、 30LGL反応器)に入れ攪拌しながら、 121°C、 1時間加水分解し、酸不溶解 性残渣を得た。得られた酸不溶解性残渣は、純水で十分に洗浄した後、ろ過し、湿 フロック(この酸不溶解性残渣のセルロース分散粒子の平均粒子径は 36 μ mであつ た)を得た。得られた湿フロックの内、 90重量%をさらに純水で充分洗浄した後、ブラ ネタリーミキサーで磨砕した(磨砕した湿フロック中のセルロース分散粒子の平均粒 子径は 1 μ mであった)。磨砕した湿フロック及び磨砕しない湿フロックを 90重量部と 10重量部(ドライベース)の組成で、 90Lポリバケツに導入し、全固形分濃度が 30重 量%になるように純水をカ卩ぇ 3—1モーターで攪拌しながら、アンモニア水で中和(中 和後の pHは 7. 5〜8. 0であった)し、これを噴霧乾燥 (分散液供給速度 6kgZhr、 入口温度 180〜220°C、出口温度 50〜70°C)して、セルロース粒子 V (特許文献 1 の実施例 7に相当)を得た。セルロース粒子 Vの諸物性を表 1— 1及び表 1— 2に示 す。
本願の多孔質セルロース凝集体が有している、安息角の範囲、 lOMPaで成型した 円柱状成型体の硬度の範囲、 20MPaで成型した円柱状成型体の硬度の範囲、 20 MPaで成型した円柱状成型体の崩壊時間の範囲を満たすものは、従来のセルロー ス粉末では、特許文献 1の実施例に相当する比較例 15〜17のみである。これらに対 して本願の多孔質セルロース凝集体の利点は、同程度の硬度で比較した場合に崩 壊時間が短いことであり(実施例 5と比較例 15、実施例 2と比較例 16、実施例 3と比 較例 17)、およそ半分の時間で円柱状成型体を崩壊させることができるという利点を 有している。これは特許文献 1の多孔質セルロース凝集体の中央細孔径が大きくとも 1. 5 /z m程度であるのに対して、本願の多孔質セルロース凝集体の中央細孔径が 小さくとも 3. 0 m程度であることに起因しており、中央細孔径の大きいことによって 水の浸透速度が速 、ためである。
[¾1-1]
Figure imgf000069_0001
Figure imgf000070_0002
Figure imgf000070_0004
Figure imgf000070_0003
Figure imgf000070_0001
(実施例 6、及び比較例 18〜28)
ァセトアミノフ ン( (株)エーピーアイ製、粉末タイプ) 55部、軽質無水ケィ酸(日本 ァエロジル (株)製、ァエロジル 200 (商品名))を 0. 25重量部、実施例 1で得られた セルロース粉末 A又は、比較例 1、 2、及び 4〜11、 14で得られたセルロース粉末 B、 C、 E〜L、及び Oを 27重量部、クロスポビドン (BASF製、コリドン CL (商品名)) 2重 量部、造粒乳糖 (ラタトースニュージーランド製、 Super— Tab (商品名)) 15部を 100 Lスケールの V型混合機 (ダルトン社製)に入れて、 30分間混合し、次いでステアリン 酸マグネシウム (太平ィ匕学産業 (株)製、植物性)を 0. 5重量部入れてさらに 5分間混 合し、処方粉体を得た。ここで各粉体の仕込み全量は 25kgであった。得られた処方 粉体を、ロータリー打錠機 (菊水製作所製、 LIBRA— II (商品名)、 36本立て 回転 盤径 φ 410mm)を使用し、直径 8mm、 12Rの杵を用いてターンテーブル回転数 50 rpm、圧縮力 7. 5kNで打錠し、重量 200mgの錠剤を得た。打錠開始後 60分後の 錠剤をサンプリングし、錠剤重量、硬度、摩損度、打錠障害発生率を測定した。得ら れた錠剤の諸物性値を表 2に示す。
本処方は成形性の乏しい薬物を高含有量で配合されているために、錠剤の硬度を 実用硬度といわれる 50N以上にすることが難しぐ低圧ではステイツキング力 高圧で はキヤッビングが起きるという打錠障害が起こり易い点でも実用的な錠剤を得るのが 難しいものである。比較例中、錠剤硬度が実用硬度 50N以上のものは、比較例 18、 19、 26、 27、 28があるが、錠剤重量のばらつきが 1. 8— 3. 5%と実施例の 0. 8% に対して非常に高いため、実用化が困難であった。
[表 2] セルロース高速打錠により得られた錠剤物性 粉末 錠剤重量 錠剤 錠剤 打錠障害
ばらつき (%) 硬度 (Ν) 摩損度(%) 発生率(%) 実施例 6 A 0.8 60 0.4 0 比較例 18 F 2.3 65 0.6 0
19 G 1.8 67 0.6 0
20 I 1.1 42 6.0 30
21 J 0.6 38 15.0 88
22 κ 0.7 32 12.0 48
23 し 1.5 48 5.0 15
24 Μ 1.1 35 19.0 72
25 Ν 0.8 30 22.7 90
26 Ο 2.4 55 0.9 0
27 Ρ 2.3 57 0.8 0
28 S 3.5 100 0.1 0 (実施例 7、 8及び比較例 29〜39)
ァセトァミノフェン((株)エーピーアイ製、粉末タイプを粉砕して使用。平均粒子径 1 6 m) 40部、軽質無水ケィ酸(日本ァエロジル (株)製、ァエロジル 200 (商品名))を 0. 5重量部、実施例 3及び 4で得られたセルロース粉末 C及び D、比較例 2、 4〜11 、 14、及び 17で得られたセルロース粉末 G、 I〜P、 S、及び Vを 30重量部、クロス力 ルメロースナトリウム (旭化成ケミカルズ (株)販売、ニチリン化学工業 (株)製造、キッコ レート ND— 2HS (商品名)) 2重量部、造粒乳糖 (ラタトース-ユージーランド製、 Sup er-Tab (商品名)) 27. 5部を 10Lスケールの V型混合機 (ダルトン社製)に入れて、 30分間混合し、次いでステアリン酸マグネシウム (太平ィ匕学産業 (株)製、植物性)を 外割で 0. 5重量部入れてさらに 5分間混合し、処方粉体を得た。ここで各粉体の仕 込み全量は 2kgであった。得られた処方粉体を、ロータリー打錠機 (菊水製作所製、 クリーンプレス— 12HUK (商品名) 12本立て)を使用し、直径 8mm、 12Rの杵を用 いてターンテーブル回転数 54rpm、圧縮力 5kNで打錠し、重量 180mgの錠剤を得 た。打錠開始後 10分後の錠剤をサンプリングし、錠剤重量、硬度、摩損度、打錠障 害発生率崩壊時間 (ディスクなし)を測定した。得られた錠剤の諸物性値を表 3に示 す。
本処方は、薬物の種類は前項と同一である力 粉砕しているために前項で用いたも のより流動性が悪い処方となっている。そのため前項よりも薬物含量が少ないが、錠 剤の重量ばらつきを低減しにくい処方であり、かつ錠剤の硬度を実用硬度 50N以上 にすることが難しく低圧ではステイツキング力 高圧ではキヤッビングが起きるという打 錠障害が起こり易い点でも実用的な錠剤を得るのが難しいものである。比較例中、錠 剤硬度力 s実用硬度 50N以上のちの ίま、 it較 f列 29、 30、 33、 36、 37、 38、 39力 Sある が、比較例 39以外は錠 1. 6- 3. 5%と実施例の 0. 2-0. 5%に対して錠剤の重量 ばらつきが高いため、実用化が困難であった。比較例 39は錠剤硬度、錠剤重量ばら つきの点で本発明の多孔質セルロース凝集体と同等であるが、同程度の硬度での崩 壊時間が劣っている。直接打錠法では、薬物のロット間差、特に粒度などの影響を受 けやす 、ために安定的に製造することが難 、面がある。従 、薬物の粒度にっ 、て は、薬物を粉砕して管理するのが好ましいが、このような場合には粉砕した薬物の流 動性が悪すぎて薬物含量を増やすことができないという課題が生じる。本発明の多 孔質セルロース凝集体のうち、特に流動性の良いものすなわち安息角が 25° 〜36 ° と低い範囲にあるものは、上記課題解決に有用である。また本処方のように、打錠 成形性の劣る薬物に対しては、実用硬度を付与できるだけの賦形剤量を添加しなけ ればならないために、賦形剤自体の流動性がよくなければならないし、薬物含量をで きるだけ増やすためには、賦形剤自体の成形性が限られた添加量で実用硬度を発 揮できるほどに高くなければならない。本発明の多孔質セルロース凝集体は、流動 性と成形性を同時に、上記課題を克服できるほどに高めているという点で従来のセル ロース粉末にはなかった利点を有して 、る。
[表 3]
Figure imgf000073_0001
(実施例 9、 10、及び比較例 40〜51)
ェテンザミド (エーピーアイ (株)製、粉末グレードを小型粉砕機で粉砕した) 60部、 軽質無水ケィ酸(日本ァエロジル (株)製、ァエロジル 200 (商品名))を 0. 5重量部、 実施例 2及び 5で得られたセルロース粉末 B及び E、比較例 2、 4〜11、及び 14〜16 で得られたセルロース粉末 G、 I〜P、及び S〜Uを 10重量部、クロスカルメロースナト リウム (旭化成ケミカルズ (株)販売、ニチリン化学工業 (株)製造、キッコレート ND— 2 HS (商品名)) 1. 5重量部、造粒乳糖 (ラタトース-ユージーランド製、 Super-Tab ( 商品名)) 28部を 5Lスケールの V型混合機 (ダルトン社製)に入れて、 30分間混合し 、次いでステアリン酸マグネシウム (太平ィ匕学産業 (株)製、植物性)を外割で 0. 5重 量部入れてさらに 5分間混合し、処方粉体を得た。ここで各粉体の仕込み全量は 2kg であった。得られた処方粉体を、ロータリー打錠機 (菊水製作所製、クリーンプレス 12HUK (商品名) 12本立て)を使用し、直径 8mm、 12Rの杵を用いてターンテープ ル回転数 54rpm、圧縮力 8kNで打錠し、重量 180mgの錠剤を得た。打錠開始後 1 0分後の錠剤をサンプリングし、錠剤重量、硬度、摩損度、打錠障害発生率、崩壊時 間(ディスクなし)を測定した。得られた錠剤の諸物性値を表 4に示す。
本処方は、薬物が水に難溶性のものを粉砕して使用しているため、水への崩壊性 が悪ぐ流動性が悪いため、錠剤重量のばらつきを低減しにくい処方である。加えて 高圧でキヤッビングが起きるという、打錠障害を起こす処方で、高薬物含有量で実用 的な錠剤とするのが困難な例のひとつである。比較例中、錠剤硬度が実用硬度 50N 以上のものは、比較例 40、 41、 64、 47〜51があるが、比較例 50、 51以外は、錠剤 重量のばらつきが、 1. 6-4. 0%と実施例の 0. 5-0. 7%に比較して非常に高ぐ 実用化が難し力つた。比較例 50、 51は錠剤硬度、錠剤重量ばらつきの点で本発明 の多孔質セルロース凝集体と同等である力 同程度の硬度での崩壊時間が劣って 、 る。薬物の水への溶解度が低ければ低いほど、崩壊時間が律速になって、薬物の溶 出時間が遅くなる。体内への速やかな吸収をさせたければ、素早く崩壊させる必要 がある。本発明の多孔質セルロース凝集体は、薬物の水への溶解度が低くなるほど 、特許文献 1の多孔質セルロース凝集体との崩壊時間の差が広がることが明らかな ので、特に水に難溶性の薬物を素早く崩壊させるという点で特許文献 1の多孔質セ ルロース凝集体よりも優れて 、るものである。
[表 4] セルロース高速打錠により得られた錠剤物性
粉末 錠剤重量 錠剤 錠剤 打錠障害 崩壊時間
ばらつき(%) 硬度(N) 摩損度(%) 発生率("½) vsec)
実施例 9 B 0.5 70 0.4 0 15
10 E 0.7 100 0.1 0 20 比較例 40 G 2.3 63 0.5 0 40
41 I 1.6 50 7.0 50 35
42 J 0.3 44 8.0 60 20
43 K 0.2 38 13.0 80 80
44 し 1.7 64 0.6 0 75
45 M 1.5 49 10.0 70 16
46 N 0.7 30 21.0 88 15
47 0 3.1 90 0.2 0 50
48 P 4.0 95 0.2 0 76
49 S 2.0 97 0.2 0 85
50 T 0.8 100 0.1 0 42
51 U 0.7 70 0.5 0 25
(実施例 11、 12、及び比較例 52〜63)
ァスコルビン酸 (ェビス薬品 (株)製、粉砕して使用) 55部、実施例 2及び 5で得られ たセルロース粉末 B及び E、比較例 2、 4〜11、及び 14〜16で得られたセルロース粉 末 G、 I〜P、及び S〜Uを 30重量部、クロスカルメロースナトリウム(旭化成ケミカルズ (株)販売、 -チリン化学工業 (株)製造、キッコレート ND— 2HS (商品名)) 1. 5重量 部、造粒乳糖 (ラタトースニュージーランド製、 Super— Tab (商品名)) 13部を 5Lスケ ールの V型混合機 (ダルトン社製)に入れて、 30分間混合し、次いでステアリン酸マ グネシゥム (太平ィ匕学産業 (株)製、植物性)を外割で 2. 0重量部入れてさらに 5分間 混合し、処方粉体を得た。ここで各粉体の仕込み全量は 2kgであった。得られた処方 粉体を、ロータリー打錠機 (菊水製作所製、クリーンプレス— 12HUK (商品名) 12本 立て)を使用し、直径 8mm、 12Rの杵を用いてターンテーブル回転数 54rpm、圧縮 力 10kNで打錠し、重量 180mgの錠剤を得た。打錠開始後 10分後の錠剤をサンプ リングし、錠剤重量、硬度、摩損度、打錠障害発生率、崩壊時間 (ディスクなし)を測 定した。得られた錠剤の諸物性値を表 5に示す。
本処方で使用している薬物は、粉砕しても比較的流動性の良いものである。しかし 薬物含量が増えるほど、処方の流動性は次第に悪化し、高薬物含量になるほど錠剤 重量のばらつきを低減しに《なる。また本処方で使用している薬物は、低高圧でス テイツキング、高圧でキヤッビングが起きるという、打錠障害を起こす処方であり、高薬 物含有量になるほど実用的な錠剤とするのが困難な例のひとつである。比較例中、 錠剤硬度が実用硬度 50N以上のものは、比較例 52、 56、 59〜63があるが、比較例 62、 63以外は、錠剤重量のばらつきが、 1. 8- 2. 6%と実施例の 0. 7— 0. 8%に 比較して非常に高ぐ実用化が難し力つた。比較例 62、 63は錠剤硬度、錠剤重量ば らつきの点で本発明の多孔質セルロース凝集体と同等である力 同程度の硬度での 崩壊時間が劣っている。本処方で使用している薬物は、水への溶解度が比較的高 いものである力 打錠障害回避のために、撥水性のステアリン酸マグネシウムを多め に添カ卩しなければならない例の一つでもある。このようなケースでは、錠剤の水への 濡れ性が低下するために、薬物の水溶解度が高い場合であっても崩壊時間が遅くな る傾向にある。本発明の多孔質セルロース凝集体は、処方中に撥水性の添加剤等、 錠剤等の水濡れ性を阻害するような場合においては特に、特許文献 1の多孔質セル ロース凝集体との崩壊時間の差が広がることが明らかなので、特許文献 1の多孔質 セルロース凝集体よりも優れて 、るものである。
[表 5]
Figure imgf000076_0001
(実施例 13)
イブプロフェン ポリエチレングリコール溶液(量比 1: 5)をエタノール(和光純薬製 、特級)で 10倍希釈した溶液状活性成分 20gに、セルロース粒子 A5gを投入し、ビ 一力一中、マグネチックスターラーで 5分間混合した。得られた混合溶液を、エバポレ 一ターを使用し、真空乾燥し、粉末を得た。得られた粉末を、 0. 2g計りとり、臼 (菊水 製作所製、材質 SUS2, 3を使用)に入れ、直径 0. 8cmの円形平面杵 (菊水製作所 製、材質 SUS2, 3を使用)で圧力が lOOMPaになるまで圧縮し (アイコ一エンジニア リング製、 PCM— 1A (商品名)使用、圧縮速度は lcmZ分)、目標圧で 10秒間保持 した後、円柱状成型体を取り出した。圧縮成形した成型体の表面を観察すると、液状 成分の浸み出しはな力つた。また、 lOOmLの純水を入れ攪拌子で攪拌したビーカー 中に、攪拌子を覆うように、目開き 1000 mの篩を入れておき、この篩成型体を篩上 に投入し、 1分放置した時の様子を観察した。結果を表 6に示す。
[0160] (比較例 64)
セルロース粒子 Aをセルロース粉末 K (特許文献 2の実施例 2に相当)とする以外は 実施例 13と同様に操作し、液状成分含有成型体を製し、液状成分の浸み出し、崩 壊試験を実施した。結果を表 6に示す。
(比較例 65)
セルロース粒子 Aをセルロース粉末 L (特許文献 3の実施例 2に相当)とする以外は 実施例 13と同様に操作し、液状成分含有成型体を製し、液状成分の浸み出し、崩 壊試験を実施した。結果を表 6に示す。
(比較例 66)
セルロース粒子 Aをセルロース粉末 M (特許文献 4の実施例に相当)とする以外は 実施例 13と同様に操作し、液状成分含有成型体を製し、液状成分の浸み出し、崩 壊試験を実施した。結果を表 6に示す。
[0161] (比較例 67)
セルロース粒子 Aをセルロース粉末 N (特許文献 5の実施例 1に相当)とする以外は 実施例 13と同様に操作し、液状成分含有成型体を製し、液状成分の浸み出し、崩 壊試験を実施した。結果を表 6に示す。
[0162] (比較例 68)
セルロース粒子 Aをセルロース粉末 G (特許文献 9の実施例 5に相当)とする以外は 実施例 13と同様に操作し、液状成分含有成型体を製し、液状成分の浸み出し、崩 壊試験を実施した。結果を表 6に示す。 [0163] (比較例 69)
セルロース粒子 Aをセルロース粉末 S (特許文献 10の実施例 2に相当)とする以外 は実施例 13と同様に操作し、液状成分含有成型体を製し、液状成分の浸み出し、 崩壊試験を実施した。結果を表 6に示す。
[0164] [表 6]
Figure imgf000078_0001
[0165] (実施例 14)
セルロース粒子 Aを使用し、市販のイブプロフェン(日本薬局方 14改訂に水にほと んど溶けな 、と記載される活性成分)をポリエチレングリコール (三洋化成 (株)製、マ クロゴール 400)に 1: 5の割合で溶解させ、さらにエタノールで 10倍希釈した液をセ ルロース粒子 Aに対し、 10重量%となるように添加し、乳鉢中で攪拌した。得られた 混合粉末を 0. 2g計りとり、臼 (菊水製作所製、材質 SUS2, 3を使用)に入れ、直径 0 . 8cmの円形平面杵 (菊水製作所製、材質 SUS2, 3を使用)で圧力が lOOMPaに なるまで圧縮し (アイコ一エンジニアリング製、 PCM—1A (商品名)使用、圧縮速度 は lcmZ分)、目標圧で 10秒間保持した後、円柱状成型体を取り出した。得られた 成型体表面の液状成分の浸み出しの観察、円柱状成型体からの薬物溶出 (溶出試 験器(日本分光 (株)製、パドル回転数 100rpm、局方 I液、 900mL)を使用し、紫外 吸光度測定器で 3分後の液の吸光度力 溶出率を算出した)、円柱状成型体の崩壊 時間を測定した。結果を表 7に示す。円柱状成型体からのポリエチレングリコールの 浸み出しはなぐ崩壊性は良好で 3分後の薬物溶出率も高ぐ素早い溶解性であるこ とを確認した。
[0166] (比較例 70)
セルロース粒子 Aをセルロース粉末 K (特許文献 2の実施例 2に相当)とする以外は 実施例 14と同様に操作し、成型体の作製及び、成型体表面の液状成分の浸み出し の観察、円柱状成型体からの薬物溶出率の測定、崩壊性の観察を行った。結果を 表 7に示す。円柱状成型体からの液状成分の浸み出しは認められな力つたが、溶出 試験において 3分間崩壊せずに液面浮遊し、崩壊性は悪力つた。
[0167] (比較例 71)
セルロース粒子 Aをセルロース粉末 L (特許文献 3の実施例 2に相当)とする以外は 実施例 14と同様に操作し、成型体の作製及び、成型体表面の液状成分の浸み出し の観察、円柱状成型体からの薬物溶出率の測定、崩壊性の観察を行った。結果を 表 7に示す。円柱状成型体からの液状成分の浸み出しは認められな力つたが、溶出 試験において 3分間崩壊せずに液面浮遊し、崩壊性は悪力つた。
[0168] (比較例 72)
セルロース粒子 Aをセルロース粉末 IM (特許文献 4の実施例に相当)とする以外は 実施例 14と同様に操作し、成型体の作製及び、成型体表面の液状成分の浸み出し の観察、円柱状成型体からの薬物溶出率の測定、崩壊性の観察を行った。結果を 表 7に示す。円柱状成型体表面には液状成分の浸み出しが確認され、錠剤とならず 、溶出試験は実施できな力つた。
[0169] (比較例 73)
セルロース粒子 Aをセルロース粉末 N (特許文献 5の実施例 1に相当)とする以外は 実施例 14と同様に操作し、成型体の作製及び、成型体表面の液状成分の浸み出し の観察、円柱状成型体からの薬物溶出率の測定、崩壊性の観察を行った。結果を 表 7に示す。円柱状成型体表面には液状成分の浸み出しが確認され、錠剤とならな ず、溶出試験は実施できな力つた。
[0170] (比較例 74)
セルロース粒子 Aをセルロース粉末 G (特許文献 9の実施例 5に相当)とする以外は 実施例 14と同様に操作し、成型体の作製及び、成型体表面の液状成分の浸み出し の観察、円柱状成型体からの薬物溶出率の測定、崩壊性の観察を行った。結果を 表 7に示す。円柱状成型体表面には液状成分の浸み出しが確認され、錠剤とならな ず、溶出試験は実施できな力つた。
[0171] (比較例 75)
セルロース粒子 Aをセルロース粉末 S (特許文献 10の実施例 2に相当)とする以外 は実施例 14と同様に操作し、成型体の作製及び、成型体表面の液状成分の浸み出 しの観察、円柱状成型体からの薬物溶出率の測定、崩壊性の観察を行った。結果を 表 7に示す円柱状成型体からの液状成分の浸み出しは認められな力つた力 S、溶出試 験において 3分間崩壊せず崩壊性は悪力つた。
[0172] [表 7]
Figure imgf000080_0001
[0173] (実施例 15) ェテンザミド (エーピーアイ (株)製、粉末グレードを小型粉砕機で粉砕した)をェタノ ール (和光純薬製、試薬特級)で 5 : 95の割合で溶解させた溶液 10mLに、セルロー ス粒子 Algを添加し、マグネチックスターラーで 3分間攪拌した。得られた分散液を エバポレーターに導入し、完全に脱溶媒し、粉末サンプルを得た。
この粉末を円柱状成型体作製時の圧縮を 50MPaとする以外は実施例 14と同様に 操作し、溶出試験を行った。結果を表 8に示す。
[0174] (比較例 76)
実施例 15の方法で粉砕したェテンザミドのみを溶出試験した。結果を表 8に示す。
[0175] [表 8]
Figure imgf000081_0001
[0176] (実施例 16)
セルロース粒子 Aを使用し、市販のイブプロフェン(日本薬局方 14改訂に水にほと んど溶けな ヽと記載される活性成分)をエタノール (和光純薬製、試薬特級)に 1: 5の 割合で溶解させた液をセルロース粒子 Aに対し、 10重量%となるように添加し、乳鉢 中で攪拌した。得られた湿混合粉末をエバポレーターを使用し、完全にエタノールを 除去し、乾燥粉末を得た。得られた乾燥粉末を 0. 2g計りとり、臼 (菊水製作所製、材 質 SUS2, 3を使用)に入れ、直径 0. 8cmの円形平面杵 (菊水製作所製、材質 SUS 2, 3を使用)で圧力が lOOMPaになるまで圧縮し (アイコ一エンジニアリング製、商品 名、 PCM— 1A使用、圧縮速度は lcmZ分)、目標圧で 10秒間保持した後、円柱状 成型体を取り出した。得られた円柱状成型体 100個を瓶に入れ、密栓系 40°Cで 2週 間保存し、瓶の曇りを観察した。また、得られた円柱状成型体からの活性成分の溶出 試験(日本分光 (株)製、パドル回転数 100rpm、局方 I液、 900mLの条件で溶出試 験を行い、紫外吸光度測定器で 1分後の液の吸光度を測定し試験開始 3分後の溶 出率を算出した)、及び成型体の崩壊性を観察した。結果を表 9に示す。
[0177] (比較例 77)
セルロース粒子 Aをセルロース粉末 K (特許文献 2の実施例 2に相当)とする以外は 、実施例 16と同様に操作し、円柱状成型体を作製し密栓保存後の瓶の曇りの観察、 溶出試験、崩壊性の観察を行った。結果を表 9に示す。瓶の曇りは観察されなカゝつた 力 錠剤は 1分では崩壊せず、液面を浮遊していた。
[0178] (比較例 78)
セルロース粒子 Aをセルロース粉末 L (特許文献 3の実施例 2に相当)とする以外は 、実施例 16と同様に操作し、円柱状成型体を作製し密栓保存後の瓶の曇りの観察、 溶出試験、崩壊性の観察を行った。結果を表 9に示す。瓶の曇りは観察されなカゝつた 力 錠剤は 1分では崩壊せず、液面を浮遊していた。
[0179] (比較例 79)
セルロース粒子 Aをセルロース粉末 M (特許文献 4の実施例に相当)とする以外は 、実施例 16と同様に操作し、円柱状成型体を作製し密栓保存後の瓶の曇りの観察、 溶出試験、崩壊性の観察を行った。結果を表 9に示す。昇華したイブプロフ ンが瓶 壁内で再結晶化したため瓶の曇りが確認された。
[0180] [表 9] 圧縮成型体の物性
セルロース粒子 瓶内壁の曇り 朋壊 te 溶出率
(%)
実施例 1 6 A なし 崩壊 95
比較例 77 K なし 崩壊せず 32
比較例 78 し なし 崩壊せず 30
比較例 79 M あり 崩壊 18
(実施例 17)
ァセトァミノフェン( (株)エーピーアイ製の粉末タイプを小型粉砕機で粉砕して使用 。得られたァセトァミノフェンの平均粒径は 16 μ m) 20g、タルク (和光純薬 (株)製) 2 Ogをポリエチレン袋に入れて、 3分間手で振とうしょく混合後、該混合粉体 40gの他、 100メッシュ乳糖 (DMV (株)製、ファーマトース 100M (商品名)) 952g、日本薬局 方トウモロコシデンプン(日澱ィ匕学 (株)製) 408gとを、容量 5リットルの V型混合機 (ダ ルトン社製)に投入し、 30分間混合した。このものを流動性の悪い成分モデル Aとし、 30分混合後の安息角を測定したところ 47° であった。
次にァセトァミノフェン( (株)エーピーアイ製の粉末タイプを小型粉砕機で粉砕して 使用。得られたァセトァミノフェンの平均粒径は 16 /z m) 20g、タルク(和光純薬 (株) 製) 20gをポリエチレン袋にいれて、 3分間手で振とうしょく混合した該混合粉体 40g の他、 100メッシュ乳糖 (DMV (株)製、ファーマトース 100M (商品名)) 952g、日本 薬局方トウモロコシデンプン(日澱ィ匕学 (株)製) 408g、さらに多孔質セルロース粒子 A600gを、容量 5リットルの V型混合機 (ダルトン社製)に投入し、 30分間混合した。 混合 30分後の処方粉体に、ステアリン酸マグネシウムを 10g (外割で 0. 5%)添加し 、さらに 5分間混合した。該最終処方粉体 (最終組成:ァセトァミノフェン Zタルク Z1 00メッシュ乳糖 Zトウモロコシデンプン/多孔性セルロース凝集体 Zステアリン酸マ グネシゥム = 1. 0/1. 0/47. 6/20. 4/30. 0/0. 5)の安息角を測定した結果 を表 10に示す。
次に該最終処方粉体をロータリー打錠機 (菊水製作所製、 LIBRA— II (商品名)、 3 6本立て 回転盤径 φ 410mm)を使用し、直径 8mm、 12Rの杵を用いてターンテー ブル回転数 50rpm (時間 10万 8000錠)、圧縮力 10kNで打錠し、重量 180mgの錠 剤を得た。打錠開始後 10分後の錠剤をサンプリングし、錠剤重量ばらつき、硬度、摩 損度を測定した。得られた錠剤の諸物性値を表 10に示す。
[0182] (比較例 80〜83)
実施例 17の多孔質セルロース粒子 Aを、セルロース粉末 K、 Μ、 Ν、又は Gとする以 外は実施例 17と同様に操作した。結果を表 10に示す。
[0183] (実施例 18)
ァセトァミノフェン( (株)エーピーアイ製の粉末タイプを小型粉砕機で粉砕して使用 。得られたァセトァミノフェンの平均粒径は 16 m) 200g、造粒乳糖 (旭化成ケミカル ズ (株)販売、ニュージーランドフォンテラ社製造、 SUPER— TAB (商品名)) 760g、 クロスカルメロースナトリウム (旭化成ケミカルズ (株)販売、二チリン化学工業 (株)製 造、キッコレート ND— 2HS (商品名)) 40gとを、容量 5リットルの V型混合機 (ダルトン 社製)に投入し、 30分間混合した。このものを流動性の悪い成分モデル Bとし、 30分 混合後の安息角を測定したところ 50° であった。
次にァセトァミノフェン( (株)エーピーアイ製の粉末タイプを小型粉砕機で粉砕して 使用。得られたァセトァミノフェンの平均粒径は 16 m) 200g、造粒乳糖 (旭化成ケ ミカルズ (株)販売、ニュージーランドフォンテラ社製造、 SUPER— TAB (商品名)) 7 60g、クロスカルメロースナトリウム (旭化成ケミカルズ (株)販売、二チリン化学工業( 株)製造、キッコレート ND— 2HS (商品名)) 40g、さらに多孔質セルロース粒子 A10 00gを、容量 5リットルの V型混合機 (ダルトン社製)に投入し、 30分間混合した。混合 30分後の処方粉体に、ステアリン酸マグネシウムを 10g (外割で 0. 5%)添加し、さら に 5分間混合した。該最終処方粉体 (最終組成:ァセトァミノフェン Z造粒乳糖 Zクロ スカルメロースナトリウム/多孔性セルロース凝集体 Zステアリン酸マグネシウム = 10 /38. 0/2. 0/50. 0/0. 5)の安息角を測定した結果を表 10に示す。
次に該最終処方粉体をロータリー打錠機 (菊水製作所製、 LIBRA— II (商品名)、 3 6本立て 回転盤径 φ 410mm)を使用し、直径 8mm、 12Rの杵を用いてターンテー ブル回転数 50rpm (時間 10万 8000錠)、圧縮力 10kNで打錠し、重量 180mgの錠 剤を得た。打錠開始後 10分後の錠剤をサンプリングし、錠剤重量ばらつき、硬度、摩 損度を測定した。得られた錠剤の諸物性値を表 10に示す。
[0184] (比較例 84〜87)
実施例 18の多孔質セルロース粒子 Aを、セルロース粉末 K、 Μ、 Ν、又は Gとする 以外は実施例 18と同様に操作した。結果を表 10に示す。
[0185] (実施例 19)
ァセトァミノフェン( (株)エーピーアイ製の粉末タイプを小型粉砕機で粉砕して使用 。得られたァセトァミノフェンの平均粒径は 16 μ m)を流動性の悪い成分モデル Cとし 、安息角を測定したところ 55° であった。
次にァセトァミノフェン( (株)エーピーアイ製の粉末タイプを小型粉砕機で粉砕して 使用。得られたァセトァミノフェンの平均粒径は 16 m) 200g、さらに多孔質セル口 ース粒子 A18000gを、容量 5リットルの V型混合機 (ダルトン社製)に投入し、 30分 間混合した。混合 30分後の処方粉体に、軽質無水ケィ酸及びステアリン酸マグネシ ゥムを各々 10g (各々外割で 0. 5%)添加し、さらに 5分間混合した。該最終処方粉 体 (最終組成:ァセトァミノフェン Z多孔性セルロース凝集体 Z軽質無水ケィ酸 Zス テアリン酸マグネシウム =10Z90Z0. 5/0. 5)の安息角を測定した結果を表 10に 示す。
次に該最終処方粉体をロータリー打錠機 (菊水製作所製、 LIBRA— II (商品名)、 3 6本立て 回転盤径 φ 410mm)を使用し、直径 8mm、 12Rの杵を用いてターンテー ブル回転数 50rpm (時間 10万 8000錠)、圧縮力 2kNで打錠し、重量 180mgの錠 剤を得た。打錠開始後 10分後の錠剤をサンプリングし、錠剤重量ばらつき、硬度、摩 損度を測定した。得られた錠剤の諸物性値を表 10に示す。
[0186] (比較例 88〜91)
実施例 19の多孔質セルロース粒子 Aを、セルロース粉末 K、 Μ、 Ν、又は Gとする 以外は実施例 19と同様に操作した。結果を表 10に示す。
比較例のうち、錠剤が実用硬度 50N以上のものは、錠剤の重量ばらつきが悪く実 用化が困難であり、混合後の最終粉体の薬物含量ばらつきや錠剤重量ばらつきの 良好なものは実用硬度が得られず実用化が困難であった。 [0187] [表 10]
Figure imgf000086_0001
産業上の利用可能性
[0188] 本発明の成形性、崩壊性に優れた高流動性多孔質セルロース凝集体、そのセル口 ース粒子と 1種以上の活性成分を含む成型体組成物は、結晶形が I型であり、一次 粒子が凝集した多孔質構造を有し、比表面積が特定の範囲にあり、粒子内細孔容 積が大きぐ水中で迅速に崩壊し、安息角が小さい高流動性多孔質セルロース凝集 体及びそのセルロース粒子と 1種以上の活性成分を含む成型体組成物に関するもの であり、主に医薬品の分野で好適に利用できる。
図面の簡単な説明
[0189] [図 1]本発明の多孔質セルロース凝集体 (実施例 1)の水銀ポロシメトリーにより測定さ れた細孔分布図である。
[図 2]セルロース粉末 H (比較例 3)の水銀ポロシメトリーにより測定された細孔分布図 である。
[図 3]セルロース粒子 K (比較例 6)の倍率 250倍における電子顕微鏡写真である。
[図 4]セルロース粉末 M (比較例 8)の倍率 250倍における電子顕微鏡写真である。
[図 5]セルロース粒子 K (比較例 6)の倍率 1500倍における電子顕微鏡写真である。 写真から、隔壁がフィルム状であり、一次粒子の境界が不明瞭であることが分かる。
[図 6]本発明の多孔質セルロース凝集体 (実施例 1)の電子顕微鏡による粒子断面写 真である。
[図 7]セルロース粉末 M (比較例 8)の電子顕微鏡による粒子断面写真である。

Claims

請求の範囲
[1] セルロース一次粒子が凝集してなる二次凝集構造を有し、粒子内細孔容積が 0. 2
65cm3Zg〜2. 625cm3Zgであり、 I型結晶を含有し、平均粒子径が 30 mを超え 250 m以下、比表面積が 0. lm2Zg以上 20m2Zg未満、安息角が 25° 以上 44 ° 未満であり、膨潤度が 5%以上であり、かつ水中で崩壊する性質を有することを特 徴とする多孔質セルロース凝集体。
[2] 前記多孔質セルロース凝集体を lOMPaで圧縮し得られる円柱状成型体の硬度が 、 70〜160Nであり、かつ安息角が 36° を超え 44° 未満である請求項 1に記載の 多孔質セルロース凝集体。
[3] 前記多孔質セルロース凝集体を lOMPaになるまで圧縮し、得られる円柱状成型体 の硬度が、 60〜: L00Nでかつ安息角が 25° 以上 36° 以下である請求項 1に記載の 多孔質セルロース凝集体。
[4] セルロース一次粒子の平均粒径が 10 μ m以上 50 μ m未満、平均幅が 2〜30 μ m 、及び平均厚みが 0. 5〜5 mである天然セルロース質物質を含む分散液(以下、 セルロース分散液とも言う)を得る工程、得られたセルロース分散液を乾燥する工程 を含む製造方法によって得られ得る、請求項 1〜3のいずれか一項に記載の多孔質 セルロース凝集体。
[5] 前記セルロース分散液が、遠心力 4900mZs2の遠心分離条件で沈降しな 、粒子 が 10重量%以下であるセルロース分散液である請求項 4に記載の多孔質セルロー ス凝集体。
[6] セルロース一次粒子の平均粒径が 10 μ m以上 50 μ m未満、平均幅が 2〜30 μ m 、及び平均厚みが 0. 5〜5 mである天然セルロース質物質を含む分散液(以下、 セルロース分散液とも言う)を得る工程、得られたセルロース分散液を乾燥する工程 を含むことを特徴とする請求項 1〜3のいずれか一項に記載の多孔質セルロース凝 集体の製造方法。
[7] 前記セルロース分散液が、遠心力 4900mZs2の遠心分離条件で沈降しな 、粒子 が 10重量%以下であるセルロース分散液である請求項 6に記載の方法。
[8] 前記天然セルロース質物質を粉砕、磨砕等の機械的処理、又は加水分解等の化 学的処理、又は両者を組み合わせた処理の工程中でせん断又は攪拌を行うことによ り、或いはこれらの処理の後の工程で攪拌を行う請求項 6に記載の方法。
[9] 前記天然セルロース質物質を粉砕、磨砕等の機械的処理をする工程、次 、で加水 分解する工程でせん断又は攪拌を行う請求項 6に記載の方法。
[10] 前記天然セルロース質物質を加水分解する工程又はその後の工程で攪拌を行う 請求項 6に記載の方法。
[11] 前記セルロース分散液が、遠心力 4900mZs2の遠心分離条件で沈降しない粒子 が 10重量%以下であるセルロース分散液である請求項 8に記載の方法。
[12] 前記セルロース分散液が、遠心力 4900mZs2の遠心分離条件で沈降しない粒子 が 10重量%以下であるセルロース分散液である請求項 9に記載の方法。
[13] 前記セルロース分散液が、遠心力 4900mZs2の遠心分離条件で沈降しない粒子 が 10重量%以下であるセルロース分散液である請求項 10に記載の方法。
[14] 前記天然セルロース質物質が、レベルオフ重合度が 130〜250、白色度が 90〜9
9%、 S 力 〜 20%、 S 力^〜 10%の木材パルプである請求項 4に記載の多孔質
10 18
セルロース凝集体。
[15] 前記天然セルロース質物質が、レベルオフ重合度が 130〜250、白色度が 90〜9 9%、 S 力 〜 20%、 S 力^〜 10%の木材パルプである請求項 5に記載の多孔質
10 18
セルロース凝集体。
[16] 前記天然セルロース質物質が、レベルオフ重合度が 130〜250、白色度が 90〜9 9%、 S 力 〜 20%、 S 力^〜 10%の木材パルプである請求項 6に記載の多孔質
10 18
セルロース凝集体の製造方法。
[17] 前記天然セルロース質物質が、レベルオフ重合度が 130〜250、白色度が 90〜9 9%、 S 力 〜 20%、 S 力^〜 10%の木材パルプである請求項 7に記載の多孔質
10 18
セルロース凝集体の製造方法。
[18] 前記天然セルロース質物質が、レベルオフ重合度が 130〜250、白色度が 90〜9 9%、 S 力 〜 20%、 S 力^〜 10%の木材パルプである請求項 8に記載の多孔質
10 18
セルロース凝集体の製造方法。
[19] 前記天然セルロース質物質が、レベルオフ重合度が 130〜250、白色度が 90〜9 9%、 S 力 〜 20%、 S 力^〜 10%の木材パルプである請求項 9に記載の多孔質
10 18
セルロース凝集体の製造方法。
[20] 前記天然セルロース質物質が、レベルオフ重合度が 130〜250、白色度が 90〜9 9%、 S 力 〜 20%、 S 力^〜 10%の木材パルプである請求項 10に記載の多孔
10 18
質セルロース凝集体の製造方法。
[21] 前記天然セルロース質物質が、レベルオフ重合度が 130〜250、白色度が 90〜9 9%、S 力 〜 20%、S 力^〜 10%の木材パルプである請求項 11に記載の多孔
10 18
質セルロース凝集体の製造方法。
[22] 前記天然セルロース質物質が、レベルオフ重合度が 130〜250、白色度が 90〜9 9%、 S 力 〜 20%、 S 力^〜 10%の木材パルプである請求項 12に記載の多孔
10 18
質セルロース凝集体の製造方法。
[23] 前記天然セルロース質物質が、レベルオフ重合度が 130〜250、白色度が 90〜9 9%、 S 力 〜 20%、 S 力^〜 10%の木材パルプである請求項 13に記載の多孔
10 18
質セルロース凝集体の製造方法。
[24] 1種以上の活性成分と請求項 1〜3のいずれか一項に記載の多孔質セルロース凝 集体とを含むことを特徴とする成型体組成物。
[25] 1種以上の活性成分と請求項 4に記載の多孔質セルロース凝集体とを含むことを特 徴とする成型体組成物。
[26] 1種以上の活性成分と請求項 5に記載の多孔質セルロース凝集体とを含むことを特 徴とする成型体組成物。
[27] 1種以上の活性成分と、請求項 6に記載の方法により得られ得る多孔質セルロース 凝集体とを含むことを特徴とする成型体組成物。
[28] 1種以上の活性成分と、請求項 7に記載の方法により得られ得る多孔質セルロース 凝集体とを含むことを特徴とする成型体組成物。
[29] 1種以上の活性成分と、請求項 8〜: L0のいずれか一項に記載の方法により得られ 得る多孔質セルロース凝集体とを含むことを特徴とする成型体組成物。
[30] 1種以上の活性成分と、請求項 11に記載の方法により得られ得る多孔質セルロー ス凝集体とを含むことを特徴とする成型体組成物。
[31] 1種以上の活性成分と、請求項 12に記載の方法により得られ得る多孔質セルロー ス凝集体とを含むことを特徴とする成型体組成物。
[32] 1種以上の活性成分と、請求項 13に記載の方法により得られ得る多孔質セルロー ス凝集体とを含むことを特徴とする成型体組成物。
[33] 成型体組成物が錠剤である請求項 24に記載の成形体組成物。
[34] 成型体組成物が錠剤である請求項 25〜28の 、ずれか一項に記載の成型体組成 物。
[35] 成型体組成物が錠剤である請求項 29に記載の成型体組成物。
[36] 成型体組成物が錠剤である請求項 30〜32の 、ずれか一項に記載の成型体組成 物。
PCT/JP2006/308414 2005-04-22 2006-04-21 多孔質セルロース凝集体及びその成型体組成物 WO2006115198A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN2006800225598A CN101203553B (zh) 2005-04-22 2006-04-21 多孔纤维素聚集体及其成型组合物
BRPI0608113A BRPI0608113B8 (pt) 2005-04-22 2006-04-21 agregado de celulose porosa, método para produzir o mesmo, e, composição de compactação
JP2007514669A JP5240822B2 (ja) 2005-04-22 2006-04-21 多孔質セルロース凝集体及びその成型体組成物
US11/918,979 US8153157B2 (en) 2005-04-22 2006-04-21 Porous cellulose aggregate and molding composition thereof
EP06745545.1A EP1873196B1 (en) 2005-04-22 2006-04-21 Porous cellulose aggregate and molding composition thereof
US12/926,318 US8771742B2 (en) 2005-04-22 2010-11-09 Porous cellulose aggregate and molding composition thereof
US13/317,943 US20120045636A1 (en) 2005-04-22 2011-11-01 Porous cellulose aggregate and molding composition thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-124477 2005-04-22
JP2005124477 2005-04-22

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US11/918,979 A-371-Of-International US8153157B2 (en) 2005-04-22 2006-04-21 Porous cellulose aggregate and molding composition thereof
US12/926,318 Division US8771742B2 (en) 2005-04-22 2010-11-09 Porous cellulose aggregate and molding composition thereof
US13/317,943 Division US20120045636A1 (en) 2005-04-22 2011-11-01 Porous cellulose aggregate and molding composition thereof

Publications (1)

Publication Number Publication Date
WO2006115198A1 true WO2006115198A1 (ja) 2006-11-02

Family

ID=37214814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308414 WO2006115198A1 (ja) 2005-04-22 2006-04-21 多孔質セルロース凝集体及びその成型体組成物

Country Status (7)

Country Link
US (3) US8153157B2 (ja)
EP (1) EP1873196B1 (ja)
JP (1) JP5240822B2 (ja)
CN (1) CN101203553B (ja)
BR (1) BRPI0608113B8 (ja)
TW (1) TWI313278B (ja)
WO (1) WO2006115198A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142255A1 (ja) * 2008-05-21 2009-11-26 旭化成ケミカルズ株式会社 偏析防止効果に優れるセルロース粉末及びその組成物
JP2010221242A (ja) * 2009-03-23 2010-10-07 Nippon Steel & Sumikin Welding Co Ltd 非低水素系被覆アーク溶接棒
JP2012001474A (ja) * 2010-06-16 2012-01-05 Asahi Kasei Chemicals Corp エキス末配合錠剤
WO2012002253A1 (ja) * 2010-06-29 2012-01-05 旭化成ケミカルズ株式会社 セルロースと無機化合物を含む複合粒子
JP2012001473A (ja) * 2010-06-16 2012-01-05 Asahi Kasei Chemicals Corp 固形製剤
JP2012501630A (ja) * 2008-09-04 2012-01-26 カーギル インコーポレイテッド エリスリトールの打錠
JP2012525448A (ja) * 2009-05-01 2012-10-22 エフピーイノベイションズ ナノ結晶のセルロースフィルムの虹色の波長の制御
JP5292520B1 (ja) * 2013-02-13 2013-09-18 アピ株式会社 ローヤルゼリー含有錠剤及びその製造方法
WO2013180248A1 (ja) * 2012-05-31 2013-12-05 旭化成ケミカルズ株式会社 セルロース粉末
WO2013180249A1 (ja) 2012-05-31 2013-12-05 旭化成ケミカルズ株式会社 セルロース粉末
WO2013180246A1 (ja) * 2012-05-31 2013-12-05 旭化成ケミカルズ株式会社 セルロース粉末
WO2016024493A1 (ja) * 2014-08-12 2016-02-18 旭化成ケミカルズ株式会社 微小セルロース粉末
JP2017114791A (ja) * 2015-12-22 2017-06-29 アサヒグループ食品株式会社 錠剤の製造方法、錠剤原料用顆粒の製造方法、及び錠剤原料用顆粒
WO2018194050A1 (ja) * 2017-04-19 2018-10-25 日本製紙株式会社 メイクアップ化粧料
JP2018184503A (ja) * 2017-04-24 2018-11-22 王子ホールディングス株式会社 粒子状パルプ会合体および粒子状パルプ会合体の製造方法
WO2020004604A1 (ja) * 2018-06-29 2020-01-02 日揮触媒化成株式会社 多孔質セルロース粒子とその製造方法、および化粧料
WO2020136995A1 (ja) 2018-12-27 2020-07-02 旭化成株式会社 セルロース粉末、その使用および錠剤
WO2020202598A1 (ja) * 2019-04-02 2020-10-08 旭化成株式会社 セルロース粉末、錠剤及び錠剤の製造方法
WO2023145866A1 (ja) * 2022-01-31 2023-08-03 住友精化株式会社 薬物放出制御製剤用組成物及び薬物放出制御製剤

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913688A1 (fr) * 2007-03-15 2008-09-19 Bluestar Silicones France Soc Article comprenant un gel silicone additive d'un principe actif anti-odeur
KR101555345B1 (ko) * 2007-03-30 2015-09-23 가부시키가이샤 코세 제립화 실리카 입자, 복합 분체, 그리고 이들의 제조 방법 및 이들을 함유하는 화장료
WO2009028487A1 (ja) * 2007-08-27 2009-03-05 Asahi Kasei Chemicals Corporation 結晶セルロース及び顆粒含有錠の製造方法
JP5572305B2 (ja) * 2008-12-12 2014-08-13 株式会社日立製作所 発光素子,発光素子を用いた発光装置、及び発光素子に使用される透明基板
EP2608773A4 (en) * 2010-08-24 2014-03-05 Univ Rutgers FORMULATION AND MANUFACTURE OF PHARMACEUTICAL PRODUCTS BY IMPREGNATING ON POROUS SUBSTRATES
WO2012087113A1 (en) * 2010-12-24 2012-06-28 N.V. Nutricia Improved nutritional tablet
US20130248760A1 (en) * 2012-03-26 2013-09-26 Sundrop Fuels, Inc. Particle for gasification containing a cellulose core with a coating of lignin
GB201215380D0 (en) 2012-08-29 2012-10-10 Ccm Res Ltd Methods and compositions
CA2827670A1 (en) * 2012-10-26 2014-04-26 Rohm And Haas Company Method of preparing soy flour dispersions using an extruder
KR102319022B1 (ko) * 2013-05-16 2021-10-28 오지 홀딩스 가부시키가이샤 인산에스테르화 미세 셀룰로오스 섬유 및 그 제조 방법
KR102185524B1 (ko) * 2014-12-17 2020-12-02 로레알 복합 입자 및 그의 제조 방법
US10675379B2 (en) * 2014-12-18 2020-06-09 Cellink Ab Cellulose nanofibrillar bioink for 3D bioprinting for cell culturing, tissue engineering and regenerative medicine applications
MX2016013830A (es) * 2015-10-27 2017-05-10 Shinetsu Chemical Co Eter de celulosa porosa no ionico soluble en agua que tiene excelente solubilidad y metodo para producir el mismo.
JP2018052909A (ja) * 2016-05-16 2018-04-05 日本製紙株式会社 化粧用組成物
EP3254569A1 (de) * 2016-06-09 2017-12-13 Deutsches Institut für Lebensmitteltechnik e.V. Verfahren zur herstellung von hydrokolloid mit erhöhtem wasserbindevermögen
GB201610628D0 (en) * 2016-06-17 2016-08-03 Mihranyan Albert New compositions
US10287366B2 (en) 2017-02-15 2019-05-14 Cp Kelco Aps Methods of producing activated pectin-containing biomass compositions
US11931966B2 (en) 2018-01-26 2024-03-19 Cellink Bioprinting Ab Systems and methods for optical assessments of bioink printability
US11186736B2 (en) 2018-10-10 2021-11-30 Cellink Ab Double network bioinks
JP7192442B2 (ja) * 2018-11-29 2022-12-20 セイコーエプソン株式会社 吸収性複合体
US11826951B2 (en) 2019-09-06 2023-11-28 Cellink Ab Temperature-controlled multi-material overprinting
CN113716634A (zh) * 2021-09-17 2021-11-30 内蒙古美赢环保科技有限公司 一种用于石油化工含油污水处理药剂的制备方法
CN114781121B (zh) * 2022-03-17 2023-01-06 长沙学院 一种戴帽单桩荷载-沉降计算方法
CN116903921B (zh) * 2023-09-13 2023-12-26 山东科迈生物制浆有限公司 一种纸浆泡沫材料及其制备方法

Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA699100A (en) 1964-12-01 Fmc Corporation Hemostatic wound covering and method of treating wounds
US4036990A (en) 1974-09-13 1977-07-19 Fmc Corporation Method of increasing the rate of solubility of materials of low solubility
JPS5344617A (en) 1976-10-04 1978-04-21 Asahi Chem Ind Co Ltd Drug composition
JPS53127553A (en) 1977-04-13 1978-11-07 Asahi Chem Ind Co Ltd Vehicle
JPS5452718A (en) 1977-09-30 1979-04-25 Asahi Chem Ind Co Ltd Preparation of solid pharmaceuticals
US4159345A (en) 1977-04-13 1979-06-26 Fmc Corporation Novel excipient and pharmaceutical composition containing the same
JPS567713A (en) 1979-06-29 1981-01-27 Asahi Chem Ind Co Ltd Oily main drug preparation composition
JPS6025919A (ja) 1983-07-25 1985-02-08 Asahi Chem Ind Co Ltd 混合粉体の成形方法
JPS61207341A (ja) 1985-03-09 1986-09-13 Sawai Seiyaku Kk 製剤用基剤
JPS6390501A (ja) * 1986-10-03 1988-04-21 Kanebo Ltd 多孔性微小セルロ−ズ粒子およびその製造法
JPS63267731A (ja) 1987-04-23 1988-11-04 Asahi Chem Ind Co Ltd 錠剤組成物
JPH01272643A (ja) 1988-04-26 1989-10-31 Asahi Chem Ind Co Ltd 多孔性セルロース粒子
JPH02208A (ja) * 1987-12-08 1990-01-05 American Home Prod Corp 噴霧乾燥イブプロフェン
JPH0284401A (ja) 1988-09-20 1990-03-26 Asahi Chem Ind Co Ltd 多孔性微小セルロース粒子
JPH03264537A (ja) 1990-03-15 1991-11-25 Asahi Chem Ind Co Ltd 難溶性薬物の溶出性改善方法
JPH0426274B2 (ja) 1984-01-18 1992-05-06 Rca Corp
JPH04283520A (ja) 1991-03-12 1992-10-08 Asahi Chem Ind Co Ltd 球状核および球形顆粒
WO1994023703A1 (en) * 1993-04-14 1994-10-27 Pharmacia Ab Manufacturing matrices
JPH06316535A (ja) 1993-01-05 1994-11-15 Asahi Chem Ind Co Ltd 高成形性賦形剤およびその製造方法
US5384130A (en) 1990-04-18 1995-01-24 Asahi Kasei Kogyo Kabushiki Kaisha Spherical seed cores, spherical granules and process for production thereof
JPH07507692A (ja) 1992-09-22 1995-08-31 エフ エム シー コーポレーション 微晶質セルロース生成物及びその製造法
US5505983A (en) 1990-04-18 1996-04-09 Asahi Kasei Kogyo Kabushiki Kaisha Spherical seed cores, spherical granules and process for production thereof
JPH08193027A (ja) 1995-01-11 1996-07-30 Taisho Pharmaceut Co Ltd 昇華イブプロフェンの再結晶防止方法
US5574150A (en) 1993-01-05 1996-11-12 Asahi Kasei Kogyo Kabushiki Kaisha Excipient having high compactability and process for preparing same
JPH09132601A (ja) * 1995-09-06 1997-05-20 Bio Polymer Res:Kk 多孔性セルロース粒子の製造方法
JPH1135487A (ja) 1997-07-23 1999-02-09 Lion Corp 錠剤用組成物及び打錠方法
JPH11152233A (ja) 1997-11-20 1999-06-08 Asahi Chem Ind Co Ltd 結晶セルロース及びその製法
JPH11193229A (ja) 1997-10-07 1999-07-21 Eisai Co Ltd 乳化粉末の製造方法
JP2000016934A (ja) 1998-06-30 2000-01-18 Eisai Co Ltd テプレノンを含有した錠剤
JP2000247869A (ja) 1999-02-24 2000-09-12 Eisai Co Ltd 油状物質含有粉末の製造方法
JP2001122973A (ja) * 1999-10-28 2001-05-08 Morinaga Milk Ind Co Ltd 微粒化セルロ−ス系素材懸濁液の製造方法、微粒化セルロ−ス系素材の製造方法、及び微粒化セルロ−ス系素材懸濁液の製造装置
JP2001181195A (ja) 1999-12-24 2001-07-03 Yamada Shinichi テトウストレエキスを有効成分とする固形製剤
JP2001316248A (ja) 2000-02-28 2001-11-13 Eisai Co Ltd 油状薬物含有組成物の製造方法
WO2002036168A1 (fr) 2000-11-06 2002-05-10 Asahi Kasei Kabushiki Kaisha Particules cellulosiques destinees a des preparations pharmaceutiques
JP2002534455A (ja) 1999-01-12 2002-10-15 メルク シャープ エンド ドーム リミテッド 疎水性物質及び水感受性物質のための球状化自己乳化系
JP2003000161A (ja) 2001-06-20 2003-01-07 Fancl Corp プロポリス抽出物の粉末組成物及びその製造方法
JP2003055219A (ja) 2001-08-06 2003-02-26 Lion Corp マイクロカプセル並びに錠剤、食品用及び医薬品用配合剤
EP0972513B1 (en) 1997-10-07 2003-05-02 Eisai Co., Ltd. Process for preparing emulsified powder
US20040053887A1 (en) 2000-07-05 2004-03-18 Kazuhiro Obae Cellulose powder
JP2005073286A (ja) 2004-09-30 2005-03-17 Matsushita Electric Ind Co Ltd セクションデータ正当性確認装置および方法
WO2005073286A1 (ja) * 2004-01-30 2005-08-11 Asahi Kasei Chemicals Corporation 多孔質セルロース凝集体及びその成型体組成物
JP2005232260A (ja) * 2004-02-18 2005-09-02 Asahi Kasei Chemicals Corp セルロース無機化合物多孔質複合粒子
EP1634908A1 (en) 2003-05-30 2006-03-15 Asahi Kasei Chemicals Corporation Cellulose powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063017A (en) 1976-04-22 1977-12-13 Purdue Research Foundation Porous cellulose beads and the immobilization of enzymes therewith

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA699100A (en) 1964-12-01 Fmc Corporation Hemostatic wound covering and method of treating wounds
US4036990A (en) 1974-09-13 1977-07-19 Fmc Corporation Method of increasing the rate of solubility of materials of low solubility
JPS5322138B2 (ja) 1974-09-13 1978-07-06
JPS5344617A (en) 1976-10-04 1978-04-21 Asahi Chem Ind Co Ltd Drug composition
US4159345A (en) 1977-04-13 1979-06-26 Fmc Corporation Novel excipient and pharmaceutical composition containing the same
JPS53127553A (en) 1977-04-13 1978-11-07 Asahi Chem Ind Co Ltd Vehicle
JPS5452718A (en) 1977-09-30 1979-04-25 Asahi Chem Ind Co Ltd Preparation of solid pharmaceuticals
JPS567713A (en) 1979-06-29 1981-01-27 Asahi Chem Ind Co Ltd Oily main drug preparation composition
JPS6025919A (ja) 1983-07-25 1985-02-08 Asahi Chem Ind Co Ltd 混合粉体の成形方法
JPH0426274B2 (ja) 1984-01-18 1992-05-06 Rca Corp
JPS61207341A (ja) 1985-03-09 1986-09-13 Sawai Seiyaku Kk 製剤用基剤
JPS6390501A (ja) * 1986-10-03 1988-04-21 Kanebo Ltd 多孔性微小セルロ−ズ粒子およびその製造法
JPS63267731A (ja) 1987-04-23 1988-11-04 Asahi Chem Ind Co Ltd 錠剤組成物
JPH02208A (ja) * 1987-12-08 1990-01-05 American Home Prod Corp 噴霧乾燥イブプロフェン
JPH01272643A (ja) 1988-04-26 1989-10-31 Asahi Chem Ind Co Ltd 多孔性セルロース粒子
JPH0284401A (ja) 1988-09-20 1990-03-26 Asahi Chem Ind Co Ltd 多孔性微小セルロース粒子
JPH03264537A (ja) 1990-03-15 1991-11-25 Asahi Chem Ind Co Ltd 難溶性薬物の溶出性改善方法
US5384130A (en) 1990-04-18 1995-01-24 Asahi Kasei Kogyo Kabushiki Kaisha Spherical seed cores, spherical granules and process for production thereof
JPH07173050A (ja) 1990-04-18 1995-07-11 Asahi Chem Ind Co Ltd 球状核、球形顆粒およびその製造方法
US5505983A (en) 1990-04-18 1996-04-09 Asahi Kasei Kogyo Kabushiki Kaisha Spherical seed cores, spherical granules and process for production thereof
JPH04283520A (ja) 1991-03-12 1992-10-08 Asahi Chem Ind Co Ltd 球状核および球形顆粒
JPH07507692A (ja) 1992-09-22 1995-08-31 エフ エム シー コーポレーション 微晶質セルロース生成物及びその製造法
US5976600A (en) 1992-09-22 1999-11-02 Fmc Corporation Microcrystalline cellulose,a bulking agent
JPH06316535A (ja) 1993-01-05 1994-11-15 Asahi Chem Ind Co Ltd 高成形性賦形剤およびその製造方法
US5574150A (en) 1993-01-05 1996-11-12 Asahi Kasei Kogyo Kabushiki Kaisha Excipient having high compactability and process for preparing same
WO1994023703A1 (en) * 1993-04-14 1994-10-27 Pharmacia Ab Manufacturing matrices
JPH08193027A (ja) 1995-01-11 1996-07-30 Taisho Pharmaceut Co Ltd 昇華イブプロフェンの再結晶防止方法
JPH09132601A (ja) * 1995-09-06 1997-05-20 Bio Polymer Res:Kk 多孔性セルロース粒子の製造方法
JPH1135487A (ja) 1997-07-23 1999-02-09 Lion Corp 錠剤用組成物及び打錠方法
JPH11193229A (ja) 1997-10-07 1999-07-21 Eisai Co Ltd 乳化粉末の製造方法
EP0972513B1 (en) 1997-10-07 2003-05-02 Eisai Co., Ltd. Process for preparing emulsified powder
JPH11152233A (ja) 1997-11-20 1999-06-08 Asahi Chem Ind Co Ltd 結晶セルロース及びその製法
JP2000016934A (ja) 1998-06-30 2000-01-18 Eisai Co Ltd テプレノンを含有した錠剤
JP2002534455A (ja) 1999-01-12 2002-10-15 メルク シャープ エンド ドーム リミテッド 疎水性物質及び水感受性物質のための球状化自己乳化系
US6630150B1 (en) 1999-01-12 2003-10-07 Merck Sharp & Dohme Limited Spheronized self-emulsifying system for hydrophobic and water-sensitive agents
JP2000247869A (ja) 1999-02-24 2000-09-12 Eisai Co Ltd 油状物質含有粉末の製造方法
JP2001122973A (ja) * 1999-10-28 2001-05-08 Morinaga Milk Ind Co Ltd 微粒化セルロ−ス系素材懸濁液の製造方法、微粒化セルロ−ス系素材の製造方法、及び微粒化セルロ−ス系素材懸濁液の製造装置
JP2001181195A (ja) 1999-12-24 2001-07-03 Yamada Shinichi テトウストレエキスを有効成分とする固形製剤
JP2001316248A (ja) 2000-02-28 2001-11-13 Eisai Co Ltd 油状薬物含有組成物の製造方法
US20040053887A1 (en) 2000-07-05 2004-03-18 Kazuhiro Obae Cellulose powder
WO2002036168A1 (fr) 2000-11-06 2002-05-10 Asahi Kasei Kabushiki Kaisha Particules cellulosiques destinees a des preparations pharmaceutiques
US20040043964A1 (en) 2000-11-06 2004-03-04 Gomi Shun?Apos;Ichi Cellulosic particle for pharmaceuticals preparation
JP2003000161A (ja) 2001-06-20 2003-01-07 Fancl Corp プロポリス抽出物の粉末組成物及びその製造方法
JP2003055219A (ja) 2001-08-06 2003-02-26 Lion Corp マイクロカプセル並びに錠剤、食品用及び医薬品用配合剤
EP1634908A1 (en) 2003-05-30 2006-03-15 Asahi Kasei Chemicals Corporation Cellulose powder
WO2005073286A1 (ja) * 2004-01-30 2005-08-11 Asahi Kasei Chemicals Corporation 多孔質セルロース凝集体及びその成型体組成物
JP2005232260A (ja) * 2004-02-18 2005-09-02 Asahi Kasei Chemicals Corp セルロース無機化合物多孔質複合粒子
JP2005073286A (ja) 2004-09-30 2005-03-17 Matsushita Electric Ind Co Ltd セクションデータ正当性確認装置および方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Pharmaceutical additives", YAKUJI NIPPO LIMITED.
See also references of EP1873196A4 *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9132195B2 (en) 2008-05-21 2015-09-15 Asahi Kasei Chemicals Corporation Cellulose powder having excellent segregation preventive effect, and compositions thereof
US20110062630A1 (en) * 2008-05-21 2011-03-17 Asahi Kasei Chemicals Corporation Cellulose powder having excellent segregation preventive effect, and compositions thereof
WO2009142255A1 (ja) * 2008-05-21 2009-11-26 旭化成ケミカルズ株式会社 偏析防止効果に優れるセルロース粉末及びその組成物
JP2012501630A (ja) * 2008-09-04 2012-01-26 カーギル インコーポレイテッド エリスリトールの打錠
JP2010221242A (ja) * 2009-03-23 2010-10-07 Nippon Steel & Sumikin Welding Co Ltd 非低水素系被覆アーク溶接棒
JP2012525448A (ja) * 2009-05-01 2012-10-22 エフピーイノベイションズ ナノ結晶のセルロースフィルムの虹色の波長の制御
JP2012001474A (ja) * 2010-06-16 2012-01-05 Asahi Kasei Chemicals Corp エキス末配合錠剤
JP2012001473A (ja) * 2010-06-16 2012-01-05 Asahi Kasei Chemicals Corp 固形製剤
US8951636B2 (en) 2010-06-29 2015-02-10 Asahi Kasei Chemicals Corporation Composite particles which contain both cellulose and inorganic compound
JP5759457B2 (ja) * 2010-06-29 2015-08-05 旭化成ケミカルズ株式会社 セルロースと無機化合物を含む複合粒子
WO2012002253A1 (ja) * 2010-06-29 2012-01-05 旭化成ケミカルズ株式会社 セルロースと無機化合物を含む複合粒子
US9446137B2 (en) 2010-06-29 2016-09-20 Asahi Kasei Chemicals Corporation Composite particles which contain both cellulose and inorganic compound
JPWO2013180249A1 (ja) * 2012-05-31 2016-01-21 旭化成ケミカルズ株式会社 セルロース粉末
WO2013180246A1 (ja) * 2012-05-31 2013-12-05 旭化成ケミカルズ株式会社 セルロース粉末
JP2018028101A (ja) * 2012-05-31 2018-02-22 旭化成株式会社 セルロース粉末
JPWO2013180246A1 (ja) * 2012-05-31 2016-01-21 旭化成ケミカルズ株式会社 セルロース粉末
JPWO2013180248A1 (ja) * 2012-05-31 2016-01-21 旭化成ケミカルズ株式会社 セルロース粉末
WO2013180248A1 (ja) * 2012-05-31 2013-12-05 旭化成ケミカルズ株式会社 セルロース粉末
US11390690B2 (en) 2012-05-31 2022-07-19 Asahi Kasei Chemicals Corporation Cellulose powder
JP2018172699A (ja) * 2012-05-31 2018-11-08 旭化成株式会社 セルロース粉末
US10662258B2 (en) 2012-05-31 2020-05-26 Asahi Kasei Chemicals Corporation Cellulose powder
US9592199B2 (en) 2012-05-31 2017-03-14 Asahi Kasei Chemicals Corporation Cellulose powder
WO2013180249A1 (ja) 2012-05-31 2013-12-05 旭化成ケミカルズ株式会社 セルロース粉末
JP2019059949A (ja) * 2012-05-31 2019-04-18 旭化成株式会社 セルロース粉末
JP2019049012A (ja) * 2012-05-31 2019-03-28 旭化成株式会社 セルロース粉末
JP2017165972A (ja) * 2012-05-31 2017-09-21 旭化成株式会社 セルロース粉末
JP5292520B1 (ja) * 2013-02-13 2013-09-18 アピ株式会社 ローヤルゼリー含有錠剤及びその製造方法
JPWO2016024493A1 (ja) * 2014-08-12 2017-04-27 旭化成株式会社 微小セルロース粉末
US10016367B2 (en) * 2014-08-12 2018-07-10 Asahi Kasei Kabushiki Kaisha Cellulose micropowder
US20170258728A1 (en) * 2014-08-12 2017-09-14 Asahi Kasei Kabushiki Kaisha Cellulose micropowder
WO2016024493A1 (ja) * 2014-08-12 2016-02-18 旭化成ケミカルズ株式会社 微小セルロース粉末
TWI572360B (zh) * 2014-08-12 2017-03-01 Asahi Kasei Chemicals Corp Tiny cellulose powder
JP2017114791A (ja) * 2015-12-22 2017-06-29 アサヒグループ食品株式会社 錠剤の製造方法、錠剤原料用顆粒の製造方法、及び錠剤原料用顆粒
WO2018194050A1 (ja) * 2017-04-19 2018-10-25 日本製紙株式会社 メイクアップ化粧料
JPWO2018194050A1 (ja) * 2017-04-19 2020-03-05 日本製紙株式会社 メイクアップ化粧料
JP2018184503A (ja) * 2017-04-24 2018-11-22 王子ホールディングス株式会社 粒子状パルプ会合体および粒子状パルプ会合体の製造方法
JPWO2020004604A1 (ja) * 2018-06-29 2021-08-02 日揮触媒化成株式会社 多孔質セルロース粒子とその製造方法、および化粧料
WO2020004604A1 (ja) * 2018-06-29 2020-01-02 日揮触媒化成株式会社 多孔質セルロース粒子とその製造方法、および化粧料
JP7269239B2 (ja) 2018-06-29 2023-05-08 日揮触媒化成株式会社 多孔質セルロース粒子とその製造方法、および化粧料
US11806421B2 (en) 2018-06-29 2023-11-07 Jgc Catalysts And Chemicals Ltd. Porous-cellulose particles and production method thereof, and cosmetic
WO2020136995A1 (ja) 2018-12-27 2020-07-02 旭化成株式会社 セルロース粉末、その使用および錠剤
WO2020202598A1 (ja) * 2019-04-02 2020-10-08 旭化成株式会社 セルロース粉末、錠剤及び錠剤の製造方法
JP2020189885A (ja) * 2019-04-02 2020-11-26 旭化成株式会社 顆粒の静電量を低減させる方法
JPWO2020202598A1 (ja) * 2019-04-02 2021-04-30 旭化成株式会社 錠剤の保存安定性を向上させる方法
JP7028927B2 (ja) 2019-04-02 2022-03-02 旭化成株式会社 顆粒の静電量を低減させる方法
WO2023145866A1 (ja) * 2022-01-31 2023-08-03 住友精化株式会社 薬物放出制御製剤用組成物及び薬物放出制御製剤

Also Published As

Publication number Publication date
JPWO2006115198A1 (ja) 2008-12-18
EP1873196A1 (en) 2008-01-02
EP1873196A4 (en) 2010-03-17
US20090022791A1 (en) 2009-01-22
US8153157B2 (en) 2012-04-10
BRPI0608113B8 (pt) 2021-07-27
JP5240822B2 (ja) 2013-07-17
CN101203553A (zh) 2008-06-18
EP1873196B1 (en) 2016-04-13
TWI313278B (en) 2009-08-11
BRPI0608113B1 (pt) 2018-08-07
US8771742B2 (en) 2014-07-08
US20110064805A1 (en) 2011-03-17
CN101203553B (zh) 2011-05-18
BRPI0608113A2 (pt) 2010-11-03
US20120045636A1 (en) 2012-02-23
TW200702365A (en) 2007-01-16

Similar Documents

Publication Publication Date Title
WO2006115198A1 (ja) 多孔質セルロース凝集体及びその成型体組成物
JP4969104B2 (ja) 多孔質セルロース凝集体及びその成型体組成物
JP5759457B2 (ja) セルロースと無機化合物を含む複合粒子
KR100526285B1 (ko) 약제 제제용 셀룰로오스계 입자
JP5439366B2 (ja) 偏析防止効果に優れるセルロース粉末及びその組成物
TWI617326B (zh) 包含纖維素、無機化合物及羥丙基纖維素之複合粒子
JP4737754B2 (ja) セルロース粉末
JP2005232260A (ja) セルロース無機化合物多孔質複合粒子
JP2005255619A (ja) 昇華性活性成分および多孔質セルロース粒子含有固形製剤組成物
JP2005255618A (ja) 水難溶性活性成分および多孔質セルロース粒子含有固形製剤組成物。
JP2018083923A (ja) セルロース分散液、セルロース分散液の製造方法、成形体組成物、成形体、及び成形体組成物の製造方法
JP2005255617A (ja) 微粒子状活性成分および多孔質セルロース凝集体含有固形製剤組成物
JP2005255616A (ja) 液状、半固形状活性成分および多孔質セルロース凝集体粒子含有固形製剤組成物
WO2024204699A1 (ja) セルロース粉末及び成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680022559.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514669

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3905/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006745545

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11918979

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006745545

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0608113

Country of ref document: BR

Kind code of ref document: A2