Nothing Special   »   [go: up one dir, main page]

WO2006038614A1 - 非水電解液及びそれを備えた非水電解液電池 - Google Patents

非水電解液及びそれを備えた非水電解液電池 Download PDF

Info

Publication number
WO2006038614A1
WO2006038614A1 PCT/JP2005/018347 JP2005018347W WO2006038614A1 WO 2006038614 A1 WO2006038614 A1 WO 2006038614A1 JP 2005018347 W JP2005018347 W JP 2005018347W WO 2006038614 A1 WO2006038614 A1 WO 2006038614A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
aqueous electrolyte
electrolytic solution
nonaqueous
Prior art date
Application number
PCT/JP2005/018347
Other languages
English (en)
French (fr)
Inventor
Yasuo Horikawa
Masashi Otsuki
Shinichi Eguchi
Hiroshi Kanno
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004292479A external-priority patent/JP4911888B2/ja
Priority claimed from JP2005108711A external-priority patent/JP5093992B2/ja
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to EP05790529A priority Critical patent/EP1798792B1/en
Priority to DE602005025788T priority patent/DE602005025788D1/de
Priority to US11/576,183 priority patent/US20080153005A1/en
Publication of WO2006038614A1 publication Critical patent/WO2006038614A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Non-aqueous electrolyte and non-aqueous electrolyte battery including the same
  • the present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte battery including the same, and particularly relates to a non-aqueous electrolyte having high non-flammability characteristics and a non-aqueous electrolyte battery having excellent battery characteristics.
  • Non-aqueous electrolytes are used as electrolytes for lithium batteries, lithium ion secondary batteries, electric double layer capacitors, etc., and these devices have high voltage and high energy density. In addition, it is widely used as a driving power source for mobile phones and the like.
  • these non-aqueous electrolytes generally used are solutions in which a supporting salt such as LiPF is dissolved in a non-protonic organic solvent such as an ester compound or an ether compound. But
  • the aprotic organic solvent is flammable, it may ignite and burn when leaked from the above device, which has a safety problem!
  • phosphate esters such as trimethyl phosphate are used in non-aqueous electrolyte solutions, or aprotic organic solvents are used.
  • aprotic organic solvents are used.
  • phosphate esters are gradually reduced and decomposed at the negative electrode by repeated charge and discharge, and battery characteristics such as charge and discharge efficiency and cycle characteristics are greatly deteriorated.
  • battery characteristics such as charge and discharge efficiency and cycle characteristics are greatly deteriorated.
  • 6-13108 discloses a method of adding a phosphazene compound to a non-aqueous electrolyte solution in order to impart flame retardancy to the non-aqueous electrolyte solution.
  • the phosphazene compound exhibits high nonflammability depending on the type, and the flame retardancy of the nonaqueous electrolyte tends to improve as the amount added to the nonaqueous electrolyte is increased.
  • phosphazene compounds that exhibit high nonflammability generally have low solubility and dielectric constant of the supporting salt, so increasing the amount added causes precipitation of the supporting salt and a decrease in conductivity, leading to the Discharge capacity may be reduced and charge / discharge characteristics may be impaired. Therefore, when adding a phosphazene compound exhibiting high incombustibility, there is a problem that the addition amount is limited.
  • the non-aqueous electrolyte be non-flammable not only in a normal atmosphere but also non-flammable even under higher oxygen concentration conditions.
  • the use of such a non-flammable non-aqueous electrolyte significantly reduces the risk of ignition and ignition of the battery, and is considered to dramatically improve the safety of the battery.
  • the conventional method of adding the phosphate ester phosphazene compound described above has a limit in improving flame retardancy. Disclosure of the invention
  • an object of the present invention is to solve the above-described problems of the prior art, and to provide a nonaqueous electrolyte that exhibits nonflammability even under high oxygen concentration conditions, and the nonaqueous electrolyte, and has excellent battery performance. It is to provide a non-aqueous electrolyte battery.
  • the present inventors have found that a non-aqueous solvent containing a specific phosphazene compound and a specific phosphate ester compound is used in the non-aqueous electrolyte.
  • a non-aqueous solvent containing a specific phosphazene compound and a specific phosphate ester compound is used in the non-aqueous electrolyte.
  • non-aqueous electrolyte of the present invention has the following general formula (I):
  • R 2 is independently a halogen element, an alkoxy group or an aryloxy group, and at least one of the two R 2 is an alkoxy group or an aryloxy group]. It comprises a non-aqueous solvent containing an acid ester compound and a supporting salt.
  • the fluorophosphate ester compound includes, in the general formula (II), one of two R2s is fluorine and the other is an alkoxy group or an aryloxy group.
  • U the compound that is the group is preferred.
  • R 1 is is either each independently fluorine, an alkoxy group and Ariruokishi group A compound and a compound in which at least three of R 1 in the general formula (I) are fluorine are preferred.
  • a cyclic phosphazene compound represented by the general formula (I) and a fluorophosphate ester compound represented by the general formula (II) Is in the range of 30Z70 to 70Z30.
  • the nonaqueous solvent further contains an aprotic organic solvent.
  • the non-aqueous electrolyte of the present invention comprises a cyclic phosphazene compound represented by the general formula (I) and a fluorophosphate ester compound represented by the general formula (II) in the non-aqueous solvent. Total inclusion with The content is preferably 15% by volume or more, more preferably 70% by volume or more.
  • the non-aqueous electrolyte of the present invention further has the following general formula (III):
  • R 3 is independently hydrogen, fluorine or an alkyl group having 1 to 2 carbon atoms, provided that two R 3 may be bonded to each other to form a ring
  • each R 4 independently represents hydrogen, fluorine, an alkoxy group having 1 to 2 carbon atoms, an alkyl group or cycloalkyl group having 1 to 6 carbon atoms, or an aryl group] Preferred to include family compounds.
  • a non-aqueous electrolyte battery of the present invention includes the non-aqueous electrolyte, a positive electrode, and a negative electrode.
  • the battery characteristics are high when used in a non-aqueous electrolyte battery. It is possible to provide a nonaqueous electrolytic solution capable of sufficiently maintaining the above. Further, it is possible to provide a non-aqueous electrolyte battery having the non-aqueous electrolyte and having high nonflammability and excellent battery characteristics.
  • the non-aqueous electrolyte of the present invention comprises a non-aqueous solvent containing a cyclic phosphazene compound represented by the above general formula (I) and a fluorophosphate compound represented by the above general formula (II), and a supporting salt.
  • a non-aqueous solvent containing a cyclic phosphazene compound represented by the above general formula (I) and a fluorophosphate compound represented by the above general formula (II), and a supporting salt.
  • an aprotic organic solvent may be contained.
  • R 1 in formula (I) is not particularly limited as long as it is a halogen element or a monovalent substituent, and each R 1 may be the same or different.
  • the halogen element fluorine, chlorine, bromine and the like are preferable. From the viewpoint of low viscosity, fluorine is most preferable, and then chlorine is preferable.
  • the monovalent substituent in R 1 of the formula (I) includes an alkoxy group, an aryloxy group, an alkyl group, an aryl group, an acyl group, a substituted or unsubstituted amino group, an alkylthio group, an arylthio group.
  • an alkoxy group and an allyloxy group are preferable from the viewpoint of excellent nonflammability.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like, a aryloxy group containing a double bond, an alkoxy-substituted alkoxy group such as a methoxyethoxy group and a methoxyethoxyethoxy group, and the like.
  • aryloxy group examples include a phenoxy group, a methylphenoxy group, and a methoxyphenoxy group.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group.
  • Examples of the aryl group include a phenol group, a tolyl group, a naphthyl group, and the substituted or unsubstituted amino group includes an amino group, a methylamino group, a dimethylamino group, an ethylamino group, a jetylamino group, an aziridyl group, Pyrrolidyl group and the like, and examples of the alkylthio group include methylthio group and ethyl Thio group and the like.
  • Examples of the Ariruchio group include phenylene thioether group.
  • R 1 in the formula (I) is preferably a halogen element in terms of improving flame retardancy, and more preferably fluorine in terms of low viscosity. Further, from the viewpoint of achieving both flame retardancy and low viscosity, it is preferable that three or more of R 1 are fluorine.
  • n in the formula (I) is preferably 3 to 4 in terms of power cost and easy preparation.
  • the said phosphazene compound may be used individually by 1 type, and may mix and use 2 or more types.
  • the fluorophosphate ester compound used in the non-aqueous electrolyte of the present invention is represented by the general formula (II).
  • R 2 in the formula (II) is any one of a halogen element, an alkoxy group, and an aryloxy group, and at least one of the two R 2 is an alkoxy group or an aryloxy group.
  • halogen elements fluorine, chlorine, bromine, and the like are preferable. From the viewpoint of low viscosity, fluorine is most preferable.
  • the hydrogen element in these alkoxy groups is preferably substituted with fluorine which may be substituted with a halogen element.
  • a methoxy group, an ethoxy group, a trifluoroethoxy group, and a propoxy group are more preferable in terms of excellent flame retardancy and low viscosity.
  • Examples of the aryloxy group in R 2 of the formula (II) include a phenoxy group, a methylphenoxy group, a methoxyphenoxy group, and the like.
  • the hydrogen element in these aryloxy groups is preferably substituted with fluorine, which may be substituted with a halogen element.
  • a phenoxy group and a fluorophenoxy group are more preferable in terms of excellent flame retardancy and low viscosity.
  • the two R 2 s in the above formula (II) may be the same or different and may be bonded to each other to form a ring. Further, from the viewpoint of achieving both flame retardancy and low viscosity, difluorophosphate ester in which one of the two R 2 is fluorine and the other is an alkoxy group or an aryloxy group is most preferable.
  • Specific examples of the fluorophosphate ester of the above formula (II) include dimethyl fluorophosphate, decyl fluorophosphate, bis (trifluoroethyl) fluorophosphate, ethylene fluorophosphate, dipropyl fluorophosphate, and diaryl fluorophosphate.
  • Dibutyl fluorophosphate Diphenyl fluorophosphate, difluorophenol fluorophosphate, methyl fluorophosphate, ethyl chlorofluorophosphate, trifluoroethyl chlorofluorophosphate, propyl fluorophosphate, chloro mouth Fluorophosphate, chlorofluorophosphate, cyclohexyl chlorofluorophosphate, methoxyethyl chlorofluorophosphate, methoxyethoxyethyl chlorophosphate, chloroethoxyphosphate, chlorofluorophosphate fluor , Methyl difluorophosphate, ethyl difluorophosphate, trifluoroethyl difluorophosphate, propyl difluorophosphate, tetrafluoropropyl difluorophosphate, allylic difluorophosphate, butyl difluorophosphate, cycl
  • bis (trifluoroethyl) fluorophosphate ethylene fluorophosphate, methyl difluorophosphate, ethyl difluorophosphate, trifluoroethyl difluorophosphate, propyl difluorophosphate, tetrafluoropropyl difluorophosphate, difluorophosphate fe- Is preferred.
  • fluorophosphate esters may be used alone or in a combination of two or more.
  • the volume ratio of the cyclic phosphazene compound to the fluorophosphate ester compound is preferably in the range of 5Z95 to 95Z5 from the viewpoint of the balance between battery performance and nonflammability.
  • the range of 30Z70 to 70Z30 is even more preferred!
  • the nonaqueous electrolytic solution of the present invention preferably contains an unsaturated cyclic ester compound represented by the general formula (III).
  • R 3 is hydrogen, fluorine or an alkyl group having 1 to 2 carbon atoms, and the hydrogen element in the alkyl group may be substituted with fluorine.
  • Two R 3 in the formula (III) may be the same or different, and may be bonded to each other to form a ring. In this case, the R 3 may have an unsaturated bond. Good.
  • Examples of the divalent group formed by combining two R 3 include an alkylene group such as a trimethylene group, a tetramethylene group, and a methyltrimethylene group, a probelene group, a butylene group, and a methyl probe.
  • Alkylene groups such as len groups And alkadielenene groups such as a butagelenene group.
  • the unsaturated cyclic ester compound of the formula (III) include vinylene carbonate, 4-fluorovinylene carbonate, 4,5-difluorovinylene carbonate, 4-methylvinylene carbonate, 4,5 -Dimethyl vinylene carbonate, 4-Fluoromethyl vinylene power -Bonate, 4-Difluoromethyl biylene carbonate, 4-Trifluoromethyl birene carbonate, 4-Ethyl biylene carbonate, 4,5-Jetyl bilene Carbonate, 4-fluoroethyl bilene carbonate, 4-difluoroethyl bilene carbonate, 4-trifluoroethyl biylene carbonate, 4,5-bistrifluoromethyl bilen carbonate, catechol carbonate, tetrahydrocatechol And carbonate.
  • bi-phenylene carbonate, 4-fluorovinylene carbonate, and catechol carbonate are preferable.
  • the content of the unsaturated cyclic ester compound of the above formula (III) is 1 to 6 masses from the viewpoint of the balance of battery performance that is preferably in the range of 0.5 to 10 mass% of the whole nonaqueous electrolytic solution. A range of% is further preferred.
  • the nonaqueous electrolytic solution of the present invention preferably also contains an aromatic compound represented by the above general formula (IV).
  • R 4 is hydrogen, fluorine, an alkoxy group having 1 to 2 carbon atoms, an alkyl group having 1 to 6 carbon atoms or a cycloalkyl group, or an aryl group. Note that three R 4 in the formula (IV) may be the same or different.
  • aromatic compound of the formula (IV) include fluorobenzene, difluorobenzene, carsol, fluoro-nor, difluoro-nor, fluoroveratrol, fluoroethoxybenzene, biphenyl. -Fluorene, fluorobiol, methoxybiphenyl, terfel, cyclohexylbenzene and the like. Is preferred. These aromatic compounds may be used alone or as a mixture of two or more.
  • the content of the aromatic compound of the above formula (IV) is in the range of 0.1 to 2% by mass from the viewpoint of the balance of battery performance that is preferably in the range of 0.05 to 4% by mass of the whole non-aqueous electrolyte. Further preferred.
  • the compound of the above formula (III) and the compound of the formula (IV) are each effective when added alone to the nonaqueous electrolytic solution of the present invention, the compound of the formula (I) is effective in the nonaqueous electrolytic solution. When used at a high content of 30% by volume or more, it is more preferable to use a compound of formula (III) and a compound of formula (IV) in combination.
  • an aprotic organic solvent can be added to the non-aqueous electrolyte within a range that does not impair the object of the present invention.
  • the amount of the aprotic organic solvent added is 85% by volume or less in the non-aqueous electrolyte, so that the non-aqueous electrolyte can be made non-flammable. In order to give it, it is preferable to make it 30% by volume or less.
  • aprotic organic solvent examples include dimethyl carbonate (DMC), diethyl carbonate (DEC), diphenyl carbonate, ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), Carbonates such as beylene carbonate (VC), ethers such as 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), jetyl ether (DEE), and phenyl methyl ether, Examples thereof include carboxylic acid esters such as rataton (GBL), y-valerolataton, and methyl formate (MF), -tolyls such as acetonitrile, amides such as dimethylformamide, and sulfones such as dimethylsulfoxide. These aprotic organic solvents may contain unsaturated bonds and / or rogen elements. These aprotic organic solvents may be used alone or in combination of two or more.
  • the supporting salt used in the nonaqueous electrolytic solution of the present invention is preferably a supporting salt serving as an ion source of lithium ions.
  • the supporting salt is not particularly limited.
  • LiPF LiCF SO, LiAsF, LiC F SO, Li (CF SO) N, Li (C F SO) N, etc.
  • Preferable examples include 6 3 3 6 4 9 3 3 2 2 2 5 2 2 thium salt.
  • LiPF is more excellent in terms of excellent nonflammability.
  • the concentration of the supporting salt in the nonaqueous electrolyte is preferably 0.2 to 1.5 mol / L (M), more preferably 0.5 to 1 mol / L (M). If the concentration of the supporting salt is less than 0.2 mol / L, sufficient conductivity of the electrolyte cannot be ensured, which may hinder the discharge and charge characteristics of the battery. Increases the viscosity of the electrolyte and ensures sufficient mobility of lithium ions Since it cannot be ensured, the conductivity of the electrolyte cannot be sufficiently ensured as described above, which may impair the discharge characteristics and charge characteristics of the battery.
  • the nonaqueous electrolyte battery of the present invention comprises the above-described non-aqueous electrolyte, a positive electrode, and a negative electrode, and, if necessary, other non-aqueous electrolyte batteries that are usually used in the technical field of non-aqueous electrolyte batteries such as separators.
  • a member is provided.
  • the nonaqueous electrolyte battery of the present invention can be configured as a primary battery or a secondary battery.
  • Examples of the positive electrode active material of the nonaqueous electrolyte battery of the present invention include V 2 O, V 2 O, MnO, and MnO.
  • 2 5 6 13 2 3 metal oxides including LiCoO, LiNiO, LiMn O, LiFeO and LiFePO
  • Composite oxides metal sulfides such as TiS and MoS, and conductive polymers such as polyarine.
  • the lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, and M.
  • the composite oxide is , LiFe Co Ni O [where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1 xy (1-xy) 2
  • These positive electrode active materials may be used alone or in combination of two or more.
  • Suitable examples include alloys with In, Sn, Si, Pb or Zn, carbon materials such as graphite doped with lithium, and among these, the safety is higher and the wettability of the electrolyte is excellent.
  • Particularly preferred is graphite, which is preferred for carbon materials such as Kurofune.
  • examples of graphite include natural black lead, artificial graphite, mesophase carbon microbeads (MCMB) and the like, and widely include easily graphitized carbon and non-graphite carbon.
  • These negative electrode active materials may be used alone or in combination of two or more.
  • the above-described non-aqueous electrolyte of the present invention is suitable as a non-aqueous electrolyte for secondary batteries, and particularly suitable as a non-aqueous electrolyte for secondary batteries using lithium or an alloy thereof as a negative electrode. .
  • a conductive agent and a binder can be mixed in the positive electrode and the negative electrode as necessary.
  • the conductive agent include acetylene black and the like
  • the binder include polyvinylidene fluoride ( PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), strong ruboxymethylcellulose (CMC) and the like. These additives can be used at the same mixing ratio as before.
  • the shape of the positive electrode and the negative electrode can be appropriately selected from known shapes as an electrode without particular limitation.
  • a sheet shape, a columnar shape, a plate shape, a spiral shape, and the like can be given.
  • Other members that can be used in the non-aqueous electrolyte battery of the present invention include a separator interposed between the positive and negative electrodes in the role of preventing current short-circuit due to contact of both electrodes in the non-aqueous electrolyte battery.
  • a separator interposed between the positive and negative electrodes in the role of preventing current short-circuit due to contact of both electrodes in the non-aqueous electrolyte battery.
  • an electrolyte solution such as polytetrafluoroethylene, polypropylene, polyethylene, cenorelose, polybutylene terephthalate, polyethylene
  • a non-woven fabric made of a synthetic resin such as phthalate, a thin layer film and the like are preferable.
  • ком ⁇ онент may be a single substance, a mixture, or a copolymer.
  • known members that are normally used in batteries can be suitably used.
  • the non-aqueous electrolyte battery of the present invention described above has various known forms such as a coin-type, button-type, paper-type, square-type or spiral-structured cylindrical battery that are not particularly limited. Are preferable.
  • a non-aqueous electrolyte battery can be produced by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode.
  • a spiral structure for example, a sheet-like positive electrode is produced.
  • a non-aqueous electrolyte battery can be produced by sandwiching the current collector and superimposing a sheet-like negative electrode on the current collector and winding it up.
  • the nonflammability and critical oxygen index of the obtained non-aqueous electrolyte were evaluated and measured by the following method, and the results shown in Table 1 were obtained.
  • test piece was made to be soaked and evaluated.
  • the following are non-flammability, flame retardancy, self-extinguishing properties, and evaluation criteria for flammability.
  • Flammability was evaluated when the ignited flame exceeded the 100 mm line.
  • the limiting oxygen index of the electrolyte was measured according to JIS K 7201. The higher the limiting oxygen index, the more difficult the electrolyte is to burn. Specifically, SiO
  • test piece was prepared by impregnating with 1 mL of the electrolytic solution.
  • the test piece is perpendicular to the test piece support, and a combustion cylinder (with an inner diameter of 75 mm, a height of 450 mm, and a diameter of 4 mm is uniformly filled with a thickness of 100 ⁇ 5 mm from the bottom, and a metal net is placed thereon. ), And then placed on the combustion cylinder with oxygen CFIS K 1101 or equivalent) and nitrogen (JIS K 1107 grade 2 or equivalent)
  • the test piece was ignited under a predetermined oxygen concentration (type 1 of heat source WIS K 2240) and the combustion state was examined.
  • the oxygen index refers to the value of the minimum oxygen concentration expressed by the volume percentage required for the material to continue to burn. In this application, the test piece burns continuously for 3 minutes or more. From the minimum oxygen flow rate required to burn 50mm or more after the flame and the nitrogen flow rate at that time, the following formula:
  • Critical oxygen index (oxygen flow rate) Z [(oxygen flow rate) + (nitrogen flow rate)] X 100 (volume%).
  • polyvinylidene fluoride binder 1 part by weight and 3 parts by weight of polyvinylidene fluoride (binder) are added and kneaded with an organic solvent (50/50% by weight mixed solvent of ethyl acetate and ethanol).
  • organic solvent 50/50% by weight mixed solvent of ethyl acetate and ethanol.
  • a 25 ⁇ m aluminum foil (current collector) was coated with a doctor blade, and further dried with hot air (100 to 120 ° C.) to prepare a positive electrode sheet having a thickness of 80 m.
  • 10 parts by mass of polyvinylidene fluoride (binder) is added to 90 parts by mass of artificial graphite (negative electrode active material), and an organic solvent (50/50 mass% mixed solvent of ethyl acetate and ethanol) is added.
  • the kneaded product is coated on a 25 ⁇ m thick copper foil (current collector) with a doctor blade and dried with hot air (100 to 120 ° C.) to obtain a negative electrode sheet having a thickness of 80 m. Was made.
  • the negative electrode sheet was overlapped and wound up on the obtained positive electrode sheet via a separator having a thickness of 25 ⁇ m (microporous film: made of polypropylene) to produce a cylindrical electrode.
  • the cylindrical electrode had a positive electrode length of about 260 mm.
  • the above electrolytic solution was injected into the cylindrical electrode and sealed to produce an AA lithium battery (non-aqueous electrolyte secondary battery).
  • the initial discharge capacity and cycle characteristics of the obtained battery were measured by the following methods, and the results shown in Table 1 were obtained.
  • the capacity remaining rate S was calculated according to the above and used as an index of the cycle characteristics of the battery.
  • n 3 out of all R 1 are chlorine (C1), and 4 are A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that a mixed solvent of 50% by volume of a cyclic phosphazene compound that was fluorine (F) and 50% by volume of methyl difluorophosphate was used.
  • the non-flammability and limit oxygen index of the water electrolyte were evaluated and measured, and a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1.
  • n 3
  • one of all R 1 is an ethoxy group (EtO)
  • One is an annular ho Sufazeni ⁇ was 30 vol 0/0 is fluorine (F), except that had use a mixed solvent of Jifuruororin propyl 70 volume 0/0, a non-aqueous electrolyte solution in the same manner as in example 1
  • the non-flammability and critical oxygen index of the prepared non-aqueous electrolyte were evaluated and measured, and a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 to obtain the initial discharge capacity and cycle characteristics. Measured and evaluated. The results are shown in Table 1.
  • n 3
  • R 1 3
  • TFEO trifluoroethoxy group
  • a cyclic phosphazene compound 40% by volume of fluorine (F), and methyl Jifuruororin acid 30% by volume, and E Ji alkylene carbonate 10 volume 0/0 a mixed solvent of E chill methyl carbonate 20 volume 0/0
  • the non-aqueous electrolyte was prepared in the same manner as in Example 1, and the non-flammability and critical oxygen index of the obtained non-aqueous electrolyte were evaluated and measured.
  • a non-aqueous electrolyte secondary battery was prepared, and the initial discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1. [0058] (Example 5)
  • n 4
  • all phosphazene compounds in which R 1 is fluorine (F) 40 volumes % and a Furuo port dimethyl phosphate 30 volume 0/0, ethylene carbonate 10 volume 0/0, bi - and Renkabone preparative 5% by volume, except for using a mixed solvent of Jefferies chill carbonate 15% by volume performed
  • a non-aqueous electrolyte solution was prepared in the same manner as in Example 1, and the non-flammability and critical oxygen index of the obtained non-aqueous electrolyte solution were evaluated and measured. The initial discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1.
  • n 4
  • R 1 a methoxy group (MeO).
  • Jifuruororin acid Hue - the Le 5 vol 0/0 were used and ethylene carbonate sulfonate 28% by volume, the mixed solvent of dimethyl carbonate 57% by volume
  • prepare a non-aqueous electrolyte in the same manner as in Example 1 evaluate and measure the nonflammability and critical oxygen index of the obtained non-aqueous electrolyte, and perform non-aqueous electrolysis in the same manner as in Example 1.
  • a liquid secondary battery was fabricated, and the initial discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that 1.0% by mass of 4-fluoro-anol was further added to the mixed solvent used in “Preparation of non-aqueous electrolyte” in Example 3.
  • the nonflammability and critical oxygen index of the obtained nonaqueous electrolyte were evaluated and measured, and a nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and cycle characteristics were measured and evaluated. .
  • the results are shown in Table 1.
  • n 3 and one of all R 1 is a methoxy group (MeO).
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that a mixed solvent of 30% by volume of cyclic phosphazene compound, which is fluorine (F), and 70% by volume of bistrifluoroethyl fluorophosphate was used. The nonflammability and critical oxygen index of the obtained nonaqueous electrolyte solution were evaluated and measured. Electrolyte Secondary batteries were prepared, and the initial discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1.
  • Example 8 The mixed solvent used in “Preparation of non-aqueous electrolyte” in Example 8 was further replaced with Example 1 except that 3-fluorovinylene force-bonate 2% by mass and 4-fluoroveratrol 0.5% by mass were added.
  • a non-aqueous electrolyte solution was prepared, and the non-flammability and critical oxygen index of the obtained non-aqueous electrolyte solution were evaluated and measured, and a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1.
  • the initial discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1.
  • Example 1 was used except that a mixed solvent of 33% by volume of ethylene carbonate and 67% by volume of ethyl carbonate was used in place of the mixed solvent used in “Preparation of non-aqueous electrolyte” in Example 1.
  • a mixed solvent of 33% by volume of ethylene carbonate and 67% by volume of ethyl carbonate was used in place of the mixed solvent used in “Preparation of non-aqueous electrolyte” in Example 1.
  • Prepare a non-aqueous electrolyte in the same manner as above evaluate and measure the nonflammability and critical oxygen index of the obtained non-aqueous electrolyte, and prepare a non-aqueous electrolyte secondary battery in the same manner as in Example 1.
  • the initial discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that a mixed solvent was used, and the nonflammability and critical oxygen index of the obtained non-aqueous electrolyte were evaluated and measured.
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as described above, and the initial discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1.
  • n 3
  • one of all R 1 is a phenoxy group (PhO)
  • One is an annular Hosufazeni ⁇ was 18 vol 0/0 is fluorine (F), ethylene carbonate 27 volume 0/0, except for using a mixed solvent of Jechirukabo sulphonate 55% by volume, in the same manner as in example 1
  • the non-aqueous electrolyte was prepared, and the non-flammability and critical oxygen index of the obtained non-aqueous electrolyte were evaluated and measured, and a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1. Initial discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1.
  • n 3
  • one of all R 1 is a phenoxy group (PhO)
  • One is an annular Hosufazeni ⁇ was 50% by volume of fluorine (F)
  • a non-aqueous electrolyte solution was prepared in the same manner as in example 1
  • the nonaqueous electrolytic solution of the present invention exhibits high nonflammability with a critical oxygen index of 30% by volume or more even when 30% by volume of an aprotic organic solvent is added.
  • the non-aqueous electrolyte of the present invention contains a total of 15% by volume of the cyclic phosphazene compound of the general formula (I) and the fluorophosphate ester compound of the general formula (II). It turns out that it shows nonflammability.
  • Examples 5, 7, and 9 by adding a small amount of the unsaturated cyclic ester compound of the above general formula (III) and the aromatic compound of Z or general formula (IV), the discharge capacity can be increased.
  • the cycle characteristics are further improved.
  • the non-aqueous electrolyte of the present invention containing a specific phosphazene compound and a specific phosphate ester compound has a very high limiting oxygen index.
  • the water electrolyte secondary battery has excellent discharge capacity and cycle characteristics.
  • Comparative Examples 2 and 3 in Table 1 when the phosphoric acid ester compound was used alone, the initial discharge capacity was smaller than that of the Examples regardless of the structure, and It can be seen that the cycle characteristics are greatly degraded.
  • Comparative Example 4 in Table 1 when the cyclic phosphazene compound of the general formula (I) is mixed with an aprotic organic solvent (ECZEMC) alone, the cyclic phosphazene compound is 20% by volume. If added above, the cyclic phosphazene compound and the aprotic organic solvent (ECZEMC) are separated into two layers (non-homogeneous) and cannot be used as a non-aqueous electrolyte for batteries.
  • ECZEMC aprotic organic solvent
  • n 3
  • R 1 is a phenoxy group
  • five are fluorine.
  • An annular Hosufazeni ⁇ was 10 vol 0/0 is a Jifuruororin methyl 5 vol 0/0, E and Ji Ren carbonate 42% by volume of a mixed solvent consisting of 43 vol% methyl E chill carbonate, I mol of LiPF To prepare a non-aqueous electrolyte solution by dissolving to
  • lithium manganese composite oxide (LiMn 2 O 3) is used as the positive electrode active material, and the oxide
  • Acetylene black which is a conductive agent
  • fluorine resin which is a binder
  • Acetylene black which is a conductive agent
  • fluorine resin which is a binder
  • a stainless steel sealing plate that also serves as a negative electrode terminal via a polypropylene gasket, in which a positive electrode and a negative electrode are stacked in a stainless steel case that also functions as a positive electrode terminal via a separator of cellulose nonwoven fabric impregnated with an electrolyte.
  • a coin-type battery lithium secondary battery having a diameter of 20 mm and a thickness of 1.6 mm was produced.
  • the initial discharge capacity and cycle life of the obtained battery were measured by the following methods, and the results shown in Table 2 were obtained.
  • the coin-type battery produced as described above charging and discharging were performed at a current density of 2.0 mA / cm 2 in a voltage range of 4.3 to 3.0 V in an environment of 20 ° C, and the discharge capacity at this time was divided by the known positive electrode mass to determine the initial discharge capacity (mAh / g). Furthermore, the charge / discharge cycle was repeated under the same conditions, and the cycle life was evaluated. Here, the cycle life is shown as the number of cycles when the end-of-charge voltage (4.3V) is not reached, or when the capacity is less than 1% of the initial discharge capacity. In addition, if the voltage drops suddenly during charging or the voltage behaves unstablely and does not reach the end-of-charge voltage (4.3V), a battery short circuit occurs!
  • the number of cycles was used as an index of the dendrite suppression effect. If the capacity is less than 1% of the initial discharge capacity, it is determined that the electrolyte has undergone reductive decomposition before the occurrence of the short circuit, and the number of cycles is determined as the reduction resistance of the electrolyte. It was used as an index.
  • N is a 3, with two of ethoxy groups of all R 1, a cyclic phosphazene compound 20 volume 0/0 is a four thereof are fluorine, and Jifuruororin acid propyl 40 volume 0/0, ethylene carbonate 4 0 vol%
  • a nonaqueous electrolytic solution was prepared in the same manner as in Example 10 except that a mixed solvent was used, and the nonflammability of the obtained nonaqueous electrolytic solution was evaluated.
  • a lithium secondary battery was prepared in the same manner as in Example 10 except that the negative electrode was a lithium-tin alloy sheet, and the initial discharge capacity and cycle life in the charge / discharge test were measured. The results are shown in Table 2.
  • n 3 of all R 1 is an aryl group, and 5 is fluorine.
  • a lithium secondary battery was prepared in the same manner as in Example 10, and the initial discharge capacity and cycle life in the charge / discharge test were measured. The results are shown in Table 2.
  • Example 10 Instead of the mixed solvent used in the "Preparation of non-aqueous electrolyte" in Example 10, ethylene carbonate Ne over preparative 50 volume 0/0, using a mixed solvent of methyl E chill carbonate 50 volume 0/0 other Prepared a nonaqueous electrolytic solution in the same manner as in Example 10, and evaluated the nonflammability of the obtained nonaqueous electrolytic solution. Further, a lithium secondary battery was prepared in the same manner as in Example 10, and the initial discharge capacity and cycle life in the charge / discharge test were measured. The results are shown in Table 2.
  • Example 10 instead of the mixed solvent used in the "Preparation of non-aqueous electrolyte" in Example 10, the trimethyl phosphate 15 volume 0/0, ethylene carbonate 42 volume 0/0, E Chino Les methylate Honoré carbonate 43 volume 0 / A nonaqueous electrolytic solution was prepared in the same manner as in Example 10 except that a mixed solvent of 0 and 0 was used, and the nonflammability of the obtained nonaqueous electrolytic solution was evaluated. Further, a lithium secondary battery was produced in the same manner as in Example 10, and the initial discharge capacity and cycle life in the charge / discharge test were measured. The results are shown in Table 2.
  • the non-aqueous electrolyte of the present invention has high nonflammability, and by using the non-aqueous electrolyte in a lithium secondary battery, dendrite is formed on the negative electrode made of lithium or an alloy thereof. It was confirmed that a lithium secondary battery that is difficult to grow and has an excellent charge / discharge cycle life can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、高い酸素濃度条件下でも不燃性を示す非水電解液に関し、より詳しくは、下記一般式(I):    (NPR1 2)n ・・・ (I) [式中、R1は、それぞれ独立してハロゲン元素又は一価の置換基を表し;nは3~4を表す]で表される環状ホスファゼン化合物及び下記一般式(II): [式中、R2は、それぞれ独立してハロゲン元素、アルコキシ基及びアリールオキシ基のいずれかであり、2つのR2のうち少なくとも1つは、アルコキシ基又はアリールオキシ基である]で表されるフルオロリン酸エステル化合物を含む非水溶媒と、支持塩とからなることを特徴とする非水電解液に関するものである。

Description

明 細 書
非水電解液及びそれを備えた非水電解液電池
技術分野
[0001] 本発明は、非水電解液及びそれを備えた非水電解液電池に関し、特に高い不燃 特性を有する非水電解液及び優れた電池特性を有する非水電解液電池に関するも のである。
背景技術
[0002] 非水電解液は、リチウム電池やリチウムイオン 2次電池、電気二重層キャパシタ等の 電解質として使用されており、これらデバイスは、高電圧、高エネルギー密度を有す ることから、ノ ソコン及び携帯電話等の駆動電源として広く用いられている。そして、 これら非水電解液としては、一般にエステルイ匕合物及びエーテルィ匕合物等の非プロ トン性有機溶媒に、 LiPF等の支持塩を溶解させたものが用いられている。しかしな
6
がら、非プロトン性有機溶媒は、可燃性であるため、上記デバイスから漏液した際に 引火'燃焼する可能性があり、安全面での問題を有して!/、る。
[0003] この問題に対して、非水電解液を難燃化する方法が検討されており、例えば、非水 電解液にリン酸トリメチル等のリン酸エステル類を用いたり、非プロトン性有機溶媒に リン酸エステル類を添加したりする方法が提案されている(特開平 4— 184870号公 報、特開平 8— 22839号公報、特開 2000— 182669号公報参照)。し力しながら、こ れらリン酸エステル類は、充放電を繰り返すことで、徐々に負極で還元分解され、充 放電効率及びサイクル特性等の電池特性が大きく劣化してしまうため、その添加量 には制限がある。
[0004] この問題に対して、非水電解液にリン酸エステルの分解を抑制する化合物を更に 添加したり、リン酸エステルそのものの分子構造を工夫する等の方法も試みられてい る(特開平 11— 67267号公報、特開平 10— 189040号公報、特開 2003— 10965 9号公報参照)。し力しながら、この場合も、添加量に制限があり、また、リン酸エステ ル自体の難燃性の低下等の理由から、電解液が自己消火性になる程度で、電解液 の安全性を十分に確保することができな 、。 [0005] また、特開平 6— 13108号公報には、非水電解液に難燃性を付与するために、非 水電解液にホスファゼンィ匕合物を添加する方法が開示されて 、る。該ホスファゼンィ匕 合物は、その種類によっては高い不燃性を示し、非水電解液への添加量を増量する に従い、非水電解液の難燃性が向上する傾向がある。し力しながら、高い不燃性を 示すホスファゼンィ匕合物は、概して支持塩の溶解性や誘電率が低いため、添加量を 多くすると、支持塩の析出や導電性の低下を招き、電池の放電容量が低下したり、充 放電特性に支障をきたすことがある。そのため、高い不燃性を示すホスファゼン化合 物を添加する場合、添加量が制限されるという問題がある。
[0006] 一方、近年、電気自動車や燃料電池自動車の主電源若しくは補助電源として使用 するために、電池の大型化や、更なる高エネルギー密度化が進められており、従来よ りも高い安全性が電池に求められている。これに対し、従来の非水電解液 2次電池に おいては、過充電、外部ショート等の異常時に、大電流が急激に流れ、電池が異常 に発熱した際に、正極に用いられている金属酸ィ匕物が分解して、多量の酸素ガスが 発生する。これにより、電池内は、大気中よりも力なり高い酸素濃度状態となり、極め て発火 '引火し易い状態にさらされる。
[0007] このような状況で発生したガス及び熱により、電池が破裂'発火したり、短絡時に生 じる火花が引火した場合、その被害は、極めて大きくなることが考えられる。このような 理由から、非水電解液としては、通常の大気中で不燃性であることはもとより、より高 い酸素濃度条件下でも不燃性であることが望ましい。そして、このような不燃性の高 い非水電解液を用いることで、電池の発火'引火の危険性が大幅に低減され、電池 の安全性が飛躍的に向上するものと考えられる。し力しながら、前述のリン酸エステ ルゃホスファゼンィ匕合物を添加する従来の方法では、難燃性の向上に限界がある。 発明の開示
[0008] そこで、本発明の目的は、上記従来技術の問題を解決し、高い酸素濃度条件下で も不燃性を示す非水電解液と、該非水電解液を備え、優れた電池性能を有する非水 電解液電池を提供することにある。
[0009] 本発明者らは、上記目的を達成するために鋭意検討した結果、非水電解液に特定 のホスファゼンィ匕合物及び特定のリン酸エステルイ匕合物を含む非水溶媒を用いるこ とにより、該電解液を用いた非水電解液電池の放電容量やサイクル特性等の電池特 性を維持しつつ、非水電解液の不燃性を大幅に向上させることが可能であることを見 出し、本発明を完成させるに至った。
[0010] 即ち、本発明の非水電解液は、下記一般式 (I) :
(NPR1 ) · · · (I)
2 n
[式中、 R1は、それぞれ独立してハロゲン元素又は一価の置換基を表し; nは 3〜4を 表す]で表される環状ホスファゼン化合物及び下記一般式 (II):
F
R - P =0 " - (Π )
R2
[式中、 R2は、それぞれ独立してハロゲン元素、アルコキシ基及びァリールォキシ基 のいずれかであり、 2つの R2のうち少なくとも 1つは、アルコキシ基又はァリールォキシ 基である]で表されるフルォロリン酸エステルイ匕合物を含む非水溶媒と、支持塩とから なることを特徴とする。
[0011] 本発明の非水電解液において、前記フルォロリン酸エステルイ匕合物としては、前記 一般式 (II)において、 2つの R2のうち 1つがフッ素であり、他の 1つがアルコキシ基又は ァリールォキシ基である化合物が好ま U、。
[0012] 本発明の非水電解液において、前記環状ホスファゼンィ匕合物としては、前記一般 式 (I)において、 R1が、それぞれ独立してフッ素、アルコキシ基及びァリールォキシ基 のいずれかである化合物、並びに、前記一般式 (I)において、 R1のうち少なくとも 3つ がフッ素である化合物が好まし 、。
[0013] 本発明の非水電解液の好適例においては、前記一般式 (I)で表される環状ホスファ ゼンィ匕合物と前記一般式 (II)で表されるフルォロリン酸エステルイ匕合物との体積比が 3 0Z70〜70Z30の範囲である。
[0014] 本発明の非水電解液の他の好適例においては、前記非水溶媒が、更に非プロトン 性有機溶媒を含む。
[0015] 本発明の非水電解液は、前記非水溶媒における前記一般式 (I)で表される環状ホ スファゼンィ匕合物と前記一般式 (II)で表されるフルォロリン酸エステルイ匕合物との総含 有量が 15体積%以上であることが好ましぐ 70体積%以上であることが更に好ましい [0016] 本発明の非水電解液は、更に、下記一般式 (III) :
Figure imgf000005_0001
[式中、 R3は、それぞれ独立して水素、フッ素又は炭素数 1〜2のアルキル基であり、 但し、 2つの R3は互いに結合して環を形成してもよい]で表される不飽和環状エステ ル化合物及び Z又は下記一般式 (IV):
Figure imgf000005_0002
[式中、 R4は、それぞれ独立して水素、フッ素、炭素数 1〜2のアルコキシ基、炭素数 1〜6のアルキル基若しくはシクロアルキル基、又はァリール基である]で表される芳 香族化合物を含むことが好まし 、。
[0017] また、本発明の非水電解液電池は、上記非水電解液と、正極と、負極とを備えるこ とを特徴とする。
[0018] 本発明によれば、特定のホスファゼン化合物及び特定のリン酸エステル化合物を 含む非水溶媒を用いた、極めて高い不燃性を有し、非水電解液電池に使用した際 に、電池特性を十分に維持することが可能な非水電解液を提供することができる。ま た、該非水電解液を備えた、高い不燃性と優れた電池特性を有する非水電解液電 池を提供することができる。
発明を実施するための最良の形態
[0019] <非水電解液 >
以下に、本発明の非水電解液を詳細に説明する。本発明の非水電解液は、上記 一般式 (I)で表される環状ホスファゼンィ匕合物及び上記一般式 (II)で表されるフルォロ リン酸エステル化合物を含む非水溶媒と、支持塩とからなることを特徴とし、更に、非 水溶媒として、非プロトン性有機溶媒を含有してもよい。従来、ホスファゼンィ匕合物又 はリン酸エステルイ匕合物をそれぞれ単独で使用した場合、非水電解液の不燃性と電 池性能とを両立させることに限界があった力 式 (I)のホスファゼンィ匕合物と式 (II)のフ ルォロリン酸エステルイ匕合物を組み合わせて使用することで、非水電解液の不燃性 と電池性能とを高度にバランスさせることができる。なお、理由は必ずしも明らかでは な!、が、式 (I)のホスファゼン化合物と式 (II)のフルォロリン酸エステル化合物との相乗 効果によって、電極表面に安定な被膜が形成され、その結果、電池の充放電特性が 安定化し、また、上記ホスファゼンィ匕合物及びフルォロリン酸エステルイ匕合物の反応 •熱分解によって生成する高不燃性ガス成分が、高酸素濃度下でも不燃性を発現す るものと考えられる。
[0020] 本発明の非水電解液に用いる環状ホスファゼンィ匕合物は、上記一般式 (I)で表され る。式 (I)の R1は、ハロゲン元素又は一価の置換基である限り特に制限はなぐ各 R1は 、同一でも、異なってもよい。ここで、ハロゲン元素としては、フッ素、塩素、臭素等が 好ましぐこれらの中でも、低粘度である点で、フッ素が最も好ましぐ次いで塩素が 好ましい。
[0021] また、式 (I)の R1における一価の置換基としては、アルコキシ基、ァリールォキシ基、 アルキル基、ァリール基、ァシル基、置換又は非置換アミノ基、アルキルチオ基、ァリ 一ルチオ基等が挙げられ、これらの中でも、不燃性に優れる点で、アルコキシ基及び ァリールォキシ基が好ましい。上記アルコキシ基としては、メトキシ基、エトキシ基、プ 口ポキシ基、ブトキシ基等や、二重結合を含むァリルォキシ基等や、メトキシェトキシ 基、メトキシェトキシエトキシ基等のアルコキシ置換アルコキシ基等が挙げられ、上記 ァリールォキシ基としては、フエノキシ基、メチルフエノキシ基、メトキシフエノキシ基等 が挙げられ、上記アルキル基としては、メチル基、ェチル基、プロピル基、ブチル基、 ペンチル基等が挙げられ、上記ァリール基としては、フエ-ル基、トリル基、ナフチル 基等が挙げられ、上記置換又は非置換アミノ基としては、アミノ基、メチルァミノ基、ジ メチルァミノ基、ェチルァミノ基、ジェチルァミノ基、アジリジル基、ピロリジル基等が挙 げられ、上記アルキルチオ基としては、メチルチオ基、ェチルチオ基等が挙げられ、 上記ァリールチオ基としては、フエ二ルチオ基等が挙げられる。これら一価の置換基 中の水素元素は、ハロゲン元素で置換されていてもよぐフッ素で置換されていること が好ましい。
[0022] 式 (I)の R1は、難燃性が向上する点で、ハロゲン元素であることが好ましぐ更に、低 粘度である点で、フッ素であることがより好ましい。また、難燃性及び低粘度の両立の 点で、 R1のうち 3つ以上がフッ素であることが好ましい。
[0023] また、式 (I)の nは、 3〜4である力 コスト及び調製が容易な点で、 nとしては 3が好ま しい。なお、上記ホスファゼンィ匕合物は、 1種単独で使用してもよいし、 2種以上を混 合して用いてもよい。
[0024] 本発明の非水電解液に用いるフルォロリン酸エステルイ匕合物は、上記一般式 (II)で 表される。式 (II)の R2は、ハロゲン元素、アルコキシ基及びァリールォキシ基のいずれ かであり、 2つの R2のうち少なくとも 1つは、アルコキシ基又はァリールォキシ基である 。ここで、ハロゲン元素としては、フッ素、塩素、臭素等が好ましぐこれらの中でも、低 粘度である点で、フッ素が最も好ましい。
[0025] 式 (II)の R2におけるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブ トキシ基等や、二重結合を含むァリルォキシ基等や、メトキシェトキシ基、メトキシエト キシエトキシ基等のアルコキシ置換アルコキシ基等が挙げられる。これらアルコキシ 基中の水素元素は、ハロゲン元素で置換されていてもよぐフッ素で置換されている ことが好ましい。これらの中でも、難燃性に優れ且つ低粘度である点で、メトキシ基、 エトキシ基、トリフルォロエトキシ基、プロポキシ基が更に好ましい。
[0026] 式 (II)の R2におけるァリールォキシ基としては、フエノキシ基、メチルフエノキシ基、メ トキシフヱノキシ基等が挙げられる。これらァリールォキシ基中の水素元素は、ハロゲ ン元素で置換されていてもよぐフッ素で置換されていることが好ましい。これらの中 でも、難燃性に優れ且つ低粘度である点で、フエノキシ基、フルオロフエノキシ基が更 に好ましい。
[0027] 上記式 (II)の 2つの R2は、同一でも、異なってもよぐ互いに結合して環を形成しても よい。また、難燃性及び低粘度の両立の点で、 2つの R2のうち 1つがフッ素であり、他 の 1つがアルコキシ基又はァリールォキシ基であるジフルォロリン酸エステルが最も 好ましい。 [0028] 上記式 (II)のフルォロリン酸エステルの具体例としては、フルォロリン酸ジメチル、フ ルォロリン酸ジェチル、フルォロリン酸ビス (トリフルォロェチル)、フルォロリン酸ェチ レン、フルォロリン酸ジプロピル、フルォロリン酸ジァリル、フルォロリン酸ジブチル、フ ルォロリン酸ジフエ-ル、フルォロリン酸ジフルオロフェ -ル、クロ口フルォロリン酸メチ ル、クロ口フルォロリン酸ェチル、クロ口フルォロリン酸トリフルォロェチル、クロ口フル ォロリン酸プロピル、クロ口フルォロリン酸ァリル、クロ口フルォロリン酸ブチル、クロロフ ルォロリン酸シクロへキシル、クロ口フルォロリン酸メトキシェチル、クロ口フルォロリン 酸メトキシエトキシェチル、クロ口フルォロリン酸フエ-ル、クロ口フルォロリン酸フルォ 口フエ-ル、ジフルォロリン酸メチル、ジフルォロリン酸ェチル、ジフルォロリン酸トリフ ルォロェチル、ジフルォロリン酸プロピル、ジフルォロリン酸テトラフルォロプロピル、 ジフルォロリン酸ァリル、ジフルォロリン酸ブチル、ジフルォロリン酸シクロへキシル、 ジフルォロリン酸メトキシェチル、ジフルォロリン酸メトキシエトキシェチル、ジフルォロ リン酸フエ-ル、ジフルォロリン酸フルオロフェ-ル等が挙げられる。これらの中でも、 フルォロリン酸ビス (トリフルォロェチル)、フルォロリン酸エチレン、ジフルォロリン酸メ チル、ジフルォロリン酸ェチル、ジフルォロリン酸トリフルォロェチル、ジフルォロリン 酸プロピル、ジフルォロリン酸テトラフルォロプロピル、ジフルォロリン酸フエ-ルが好 ましい。これらフルォロリン酸エステルは、 1種単独で使用してもよいし、 2種以上を混 合して用いてもよい。
[0029] 本発明の非水電解液において、上記環状ホスファゼンィ匕合物とフルォロリン酸エス テル化合物との体積比は、 5Z95〜95Z5の範囲が好ましぐ電池性能及び不燃性の バランスの観点から、 30Z70〜70Z30の範囲が更に好まし!/、。
[0030] 本発明の非水電解液は、上記一般式 (III)で表される不飽和環状エステルイ匕合物を 含有することが好ましい。式 (III)において、 R3は、水素、フッ素又は炭素数 1〜2のァ ルキル基であり、該アルキル基中の水素元素は、フッ素で置換されていてもよい。な お、式 (III)中の 2つの R3は、同一でも、異なってもよぐまた、互いに結合して環を形 成してもよぐこの場合、不飽和結合を有していてもよい。 2つの R3が結合して形成す る二価の基としては、トリメチレン基、テトラメチレン基、メチルトリメチレン基等のアル キレン基、プロべ-レン基、ブテ-レン基、メチルプロべ-レン基等のァルケ-レン基 、ブタジェ-レン基等のアルカジエ-レン基等が挙げられる。
[0031] 式 (III)の不飽和環状エステル化合物の具体例としては、ビニレンカーボネート、 4- フルォロビニレンカーボネート、 4,5-ジフルォロビニレンカーボネート、 4-メチルビ- レンカーボネート、 4,5-ジメチルビ-レンカーボネート、 4-フルォロメチルビ-レン力 ーボネート、 4-ジフルォロメチルビ-レンカーボネート、 4-トリフルォロメチルビ-レン カーボネート、 4-ェチルビ-レンカーボネート、 4,5-ジェチルビ-レンカーボネート、 4-フルォロェチルビ-レンカーボネート、 4-ジフルォロェチルビ-レンカーボネート、 4-トリフルォロェチルビ-レンカーボネート、 4,5-ビストリフルォロメチルビ-レンカー ボネート、カテコールカーボネート、テトラヒドロカテコールカーボネート等が挙げられ る。これらの中でも、ビ-レンカーボネート、 4-フルォロビニレンカーボネート、カテコ ールカーボネートが好ましい。これら不飽和環状エステルイ匕合物は、 1種単独で使用 してもよく、 2種以上を混合して使用してもよい。
[0032] 上記式 (III)の不飽和環状エステルイ匕合物の含有量は、非水電解液全体の 0.5〜10 質量%の範囲が好ましぐ電池性能のバランスの観点から、 1〜6質量%の範囲が更 に好ましい。
[0033] また、本発明の非水電解液は、上記一般式 (IV)で表される芳香族化合物を含有す ることも好ましい。式 (IV)において、 R4は、水素、フッ素、炭素数 1〜2のアルコキシ基 、炭素数 1〜6のアルキル基若しくはシクロアルキル基、又はァリール基である。なお 、式 (IV)中の 3つの R4は、同一でも、異なってもよい。
[0034] 式 (IV)の芳香族化合物として、具体的には、フルォロベンゼン、ジフルォロベンゼン 、ァ-ソール、フルォロア-ノール、ジフルォロア-ノール、フルォロベラトロール、フ ルォロエトキシベンゼン、ビフエ-ル、フルォロビフエ-ル、メトキシビフエ-ル、テルフ ェ -ル、シクロへキシルベンゼン等が挙げられ、これら中でも、フルォロベンゼン、ビ フエ-ル、フルォロビフエ-ル、フルォロア-ノール、ジフルォロア-ノール、フノレオ口 ベラトロールが好ましい。これら芳香族化合物は、 1種単独で使用してもよぐ 2種以 上を混合して使用してもよい。
[0035] 上記式 (IV)の芳香族化合物の含有量は、非水電解液全体の 0.05〜4質量%の範囲 が好ましぐ電池性能のバランスの観点から、 0.1〜2質量%の範囲が更に好ましい。 [0036] 上記式 (III)の化合物及び式 (IV)の化合物は、それぞれ単独で本発明の非水電解 液に添加しても効果があるが、式 (I)の化合物を非水電解液中 30体積%以上の高含 有率で用いる場合は、式 (III)の化合物及び式 (IV)の化合物を併用することがより好ま しい。
[0037] また、上記非水電解液には、本発明の目的を損なわな!/、範囲で非プロトン性有機 溶媒を添加することができる。該非プロトン性有機溶媒の添加量としては、非水電解 液中 85体積%以下とすることで、非水電解液を不燃性にすることができるが、より高 V、不燃性を非水電解液に付与するためには、 30体積%以下にすることが好ま 、。 該非プロトン性有機溶媒として、具体的には、ジメチルカーボネート(DMC)、ジェチ ルカーボネート(DEC)、ジフエ-ルカーボネート、ェチルメチルカーボネート(EMC) 、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビ-レンカーボネート( VC)等の炭酸エステル類、 1,2-ジメトキシェタン(DME)、テトラヒドロフラン (THF)、 ジェチルエーテル(DEE)、フエ-ルメチルエーテル等のエーテル類、 Ύ -ブチ口ラタ トン(GBL)、 y -バレロラタトン、メチルフオルメート(MF)等のカルボン酸エステル類 、ァセトニトリル等の-トリル類、ジメチルホルムアミド等のアミド類、ジメチルスルホキ シド等のスルホン類が挙げられる。これら非プロトン性有機溶媒は、不飽和結合ゃノ、 ロゲン元素を含有していてもよい。また、これら非プロトン性有機溶媒は、 1種単独で 使用してもよぐ 2種以上を混合して用いてもよい。
[0038] 本発明の非水電解液に用いる支持塩としては、リチウムイオンのイオン源となる支 持塩が好ましい。該支持塩としては、特に制限はないが、例えば、 LiClO、 LiBF、 L
4 4 iPF、 LiCF SO、 LiAsF、 LiC F SO、 Li(CF SO ) N及び Li(C F SO ) N等のリ
6 3 3 6 4 9 3 3 2 2 2 5 2 2 チウム塩が好適に挙げられる。これらの中でも、不燃性に優れる点で、 LiPFが更に
6 好ましい。これら支持塩は、 1種単独で使用してもよぐ 2種以上を組み合わせて用い てもよい。
[0039] 上記非水電解液中の支持塩の濃度としては、 0.2〜1.5mol/L(M)が好ましぐ 0.5〜 lmol/L(M)が更に好ましい。支持塩の濃度が 0.2mol/L未満では、電解液の導電性を 充分に確保することができず、電池の放電特性及び充電特性に支障をきたすことが あり、 1.5mol/Lを超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に 確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の放電 特性及び充電特性に支障をきたすことがある。
[0040] <非水電解液電池 >
次に、本発明の非水電解液電池を詳細に説明する。本発明の非水電解液電池は 、上述の非水電解液と、正極と、負極とを備え、必要に応じて、セパレーター等の非 水電解液電池の技術分野で通常使用されている他の部材を備える。この場合、本発 明の非水電解液電池は、 1次電池としても、 2次電池としても構成することができる。
[0041] 本発明の非水電解液電池の正極活物質としては、 V O、 V O 、 MnO、 MnO等
2 5 6 13 2 3 の金属酸化物、 LiCoO、 LiNiO、 LiMn O、 LiFeO及び LiFePO等のリチウム含
2 2 2 4 2 4
有複合酸化物、 TiS、 MoS等の金属硫化物、ポリア-リン等の導電性ポリマー等が
2 2
好適に挙げられる。上記リチウム含有複合酸化物は、 Fe、 Mn、 Co及び Mからなる 群から選択される 2種又は 3種の遷移金属を含む複合酸化物であってもよぐこの場 合、該複合酸化物は、 LiFe Co Ni O [式中、 0≤x< 1、 0≤y< 1、 0<x+y≤ 1 x y (1-x-y) 2
]、或いは LiMn Fe O 等で表される。これらの中でも、高容量で安全性が高ぐ更
2—
には電解液の濡れ性に優れる点で、 LiCoO
2、 LiNiO
2、 LiMn O
2 4が特に好適である
。これら正極活物質は、 1種単独で使用してもよぐ 2種以上を併用してもよい。
[0042] 本発明の非水電解液電池の負極活物質としては、リチウム金属自体、リチウムと A1
、 In、 Sn、 Si, Pb又は Zn等との合金、リチウムをドープした黒鉛等の炭素材料等が 好適に挙げられ、これらの中でも安全性がより高ぐ電解液の濡れ性に優れる点で、 黒船等の炭素材料が好ましぐ黒鉛が特に好ましい。ここで、黒鉛としては、天然黒 鉛、人造黒鉛、メソフェーズカーボンマイクロビーズ (MCMB)等、広くは易黒鉛化力 一ボンや難黒鉛ィ匕カーボンが挙げられる。これら負極活物質は、 1種単独で使用して もよぐ 2種以上を併用してもよい。
[0043] なお、従来の非水電解液 2次電池、特に負極活物質としてリチウム又はその合金を 選択した従来の非水電解液 2次電池の場合、充放電の繰返しによりリチウム金属の 不均一な電析 '溶解が進行し、リチウムが樹枝状に成長するデンドライトの問題があり
、発生したデンドライトが、電池性能の低下を招くだけでなぐ正負極間に配置したセ パレーターを貫通して電池をショートさせることがあった力 上述した本発明の非水電 解液は、上述した効果に加えて、充放電の繰返しによるデンドライトの発生を抑制す る効果も有する。従って、上述した本発明の非水電解液は、 2次電池用の非水電解 液として好適で、リチウム又はその合金を負極に用いた 2次電池用の非水電解液とし て特に好適である。
[0044] 上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導 電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビ-リデン( PVDF)、ポリテトラフルォロエチレン(PTFE)、スチレン 'ブタジエンゴム(SBR)、力 ルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様 の配合割合で用いることができる。
[0045] また、上記正極及び負極の形状としては、特に制限はなぐ電極として公知の形状 の中から適宜選択することができる。例えば、シート状、円柱形状、板状形状、スパイ ラル形状等が挙げられる。
[0046] 本発明の非水電解液電池に使用できる他の部材としては、非水電解液電池におい て、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレ 一ターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、 且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルォロエチレン、ポリ プロピレン、ポリエチレン、セノレロース系、ポリブチレンテレフタレート、ポリエチレンテ レフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これら は、単体でも、混合物でも、共重合体でもよい。これらの中でも、厚さ 20〜50 /ζ πι程度 のポリプロピレン又はポリエチレン製の微孔性フィルム、セルロース系、ポリブチレン テレフタレート、ポリエチレンテレフタレート等のフィルムが特に好適である。本発明で は、上述のセパレーターの他にも、通常電池に使用されている公知の各部材が好適 に使用できる。
[0047] 以上に説明した本発明の非水電解液電池の形態としては、特に制限はなぐコイン タイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種 々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び 負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液電池を作 製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製 して集電体を挟み、これにシート状の負極を重ね合わせて巻き上げる等して、非水電 解液電池を作製することができる。
[0048] <実施例 >
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例 に何ら限定されるものではな 、。
[0049] (実施例 1)
上記式 (I)において、 nが 3であって、全 R1のうち 2つがメトキシ基(MeO)で、 4つがフ ッ素(F)である環状ホスファゼンィ匕合物 70体積%と、ジフルォロリン酸ェチル 30体積 %との混合溶媒に、 LiPFを lmol/Lになるように溶解させて非水電解液を調製した。
6
得られた非水電解液の不燃性及び限界酸素指数を下記の方法で評価'測定し、表 1 に示す結果を得た。
[0050] (1)電解液の不燃性
UL (アンダーライティングラボラトリー)規格の UL94HB法をアレンジした方法で、 大気環境下において着火した炎の燃焼長及び燃焼時間を測定 '評価した。具体的 には、 UL試験基準に基づき、 127mm X 12.7mmのSiOシートに上記電解液 l.OmLを
2
染み込ませて試験片を作製して評価を行った。以下に不燃性 ·難燃性 ·自己消火性 •燃焼性の評価基準を示す。
<不燃性の評価 >試験炎を点火しても全く着火しな力つた場合 (燃焼長: 0mm)を不 燃性ありと評価した。
<難燃性の評価 >着火した炎力 装置の 25mmラインまで到達せず且つ網からの落 下物にも着火が認められなカゝつた場合を難燃性ありと評価した。
<自己消火性の評価 >着火した炎が 25〜100mmラインで消火し且つ網からの落下 物にも着火が認められな力つた場合を自己消火性ありと評価した。
<燃焼性の評価 >着火した炎が、 100mmラインを超えた場合を燃焼性と評価した。
[0051] (2)電解液の限界酸素指数
JIS K 7201に準じて、電解液の限界酸素指数を測定した。限界酸素指数が大き い程、電解液が燃焼し難いことを示す。具体的には、 SiO
2シート (石英濾紙、不燃性
) 127mm X 12.7mmを U字型のアルミ萡で補強して自立可能とし、該 SiOシートに前 記電解液 l.OmLを含浸して試験片を作製した。該試験片を試験片支持具に垂直に、 燃焼円筒(内径 75mm、高さ 450mm、直径 4mmのガラス粒を底部から 100 ± 5mmの厚さ に均等に満たし金属製の網をその上に置 、たもの)の上端部から 100mm以上の距離 に位置するように取り付け、次に、燃焼円筒に酸素 CFIS K 1101又はこれと同等以 上のもの)及び窒素 (JIS K 1107の 2級又はこれと同等以上のもの)を流し、試験片 を所定の酸素濃度下で点火し (熱源 WIS K 2240の 1種 1号)、燃焼状態を調べた 。但し、燃焼円筒内の総流量は 11.4L/minである。この試験を 3回行い、その平均値 を表 1に示す。なお、酸素指数とは、材料が燃焼を持続するのに必要な容量パーセ ントで表される最低酸素濃度の値をいい、本願では、試験片が 3分以上継続して燃 焼するか、着炎後の燃焼長さが 50mm以上燃えるのに必要な最低の酸素流量とその ときの窒素流量から、下記の式:
限界酸素指数 = (酸素流量) Z [ (酸素流量) + (窒素流量) ] X 100 (体積%) に従って限界酸素指数を算出した。
[0052] 次に、 LiCoO (正極活物質) 94質量部に対して、アセチレンブラック (導電剤) 3質
2
量部と、ポリフッ化ビ-リデン (結着剤) 3質量部とを添加し、有機溶媒 (酢酸ェチルと エタノールとの 50/50質量%混合溶媒)で混練した後、該混練物を厚さ 25 μ mのアル ミニゥム箔 (集電体)にドクターブレードで塗工し、更に熱風乾燥(100〜120°C)して、 厚さ 80 mの正極シートを作製した。また、人造グラフアイト (負極活物質) 90質量部 に対してポリフッ化ビ-リデン (結着剤) 10質量部を添加し、有機溶媒 (酢酸ェチルと エタノールとの 50/50質量%混合溶媒)で混練した後、該混練物を厚さ 25 μ mの銅箔 (集電体)にドクターブレードで塗工し、更に熱風乾燥(100〜120°C)して、厚さ 80 m の負極シートを作製した。
[0053] 得られた正極シートに、厚さ 25 μ mのセパレーター(微孔性フィルム:ポリプロピレン 製)を介して負極シートを重ね合わせて巻き上げ、円筒型電極を作製した。該円筒型 電極の正極長さは約 260mmであった。該円筒型電極に、上記電解液を注入して封 口し、単三型リチウム電池 (非水電解液 2次電池)を作製した。得られた電池の初期 放電容量及びサイクル特性を下記の方法で測定し、表 1に示す結果を得た。
[0054] (3)電池の初期放電容量及びサイクル特性評価 20°Cの環境下で、上限電圧 4.3V、下限電圧 3.0V、放電電流 50mA、充電電流 50m Aの条件で充放電を行い、この時の放電容量を既知の電極重量で除することにより 初期放電容量 (mAh/g)を求めた。更に、同様の充放電条件で 50サイクルまで充放電 を繰り返して、 50サイクル後の放電容量を求め、下記の式:
容量残存率 S = 50サイクル後の放電容量 Z初期放電容量 X 100 (%)
に従って容量残存率 Sを算出し、電池のサイクル特性の指標とした。
[0055] (実施例 2)
実施例 1の「非水電解液の調製」に用いた混合溶媒に代えて、上記式 (I)において、 nが 3であって、全 R1のうち 2つが塩素(C1)で、 4つがフッ素(F)である環状ホスファゼ ン化合物 50体積%と、ジフルォロリン酸メチル 50体積%との混合溶媒を用いた他は、 実施例 1と同様にして非水電解液を調製し、得られた非水電解液の不燃性及び限界 酸素指数を評価 '測定し、また、実施例 1と同様にして非水電解液 2次電池を作製し 、初期放電容量及びサイクル特性を測定,評価した。結果を表 1に示す。
[0056] (実施例 3)
実施例 1の「非水電解液の調製」に用いた混合溶媒に代えて、上記式 (I)において、 nが 3であって、全 R1のうち 1つがエトキシ基 (EtO)で、 5つがフッ素(F)である環状ホ スファゼンィ匕合物 30体積0 /0と、ジフルォロリン酸プロピル 70体積0 /0との混合溶媒を用 いた他は、実施例 1と同様にして非水電解液を調製し、得られた非水電解液の不燃 性及び限界酸素指数を評価,測定し、また、実施例 1と同様にして非水電解液 2次電 池を作製し、初期放電容量及びサイクル特性を測定 ·評価した。結果を表 1に示す。
[0057] (実施例 4)
実施例 1の「非水電解液の調製」に用いた混合溶媒に代えて、上記式 (I)において、 nが 3であって、全 R1のうち 1つがトリフルォロエトキシ基 (TFEO)で、 5つがフッ素(F) である環状ホスファゼン化合物 40体積%と、ジフルォロリン酸メチル 30体積%と、ェチ レンカーボネート 10体積0 /0と、ェチルメチルカーボネート 20体積0 /0との混合溶媒を用 いた他は、実施例 1と同様にして非水電解液を調製し、得られた非水電解液の不燃 性及び限界酸素指数を評価,測定し、また、実施例 1と同様にして非水電解液 2次電 池を作製し、初期放電容量及びサイクル特性を測定 ·評価した。結果を表 1に示す。 [0058] (実施例 5)
実施例 1の「非水電解液の調製」に用いた混合溶媒に代えて、上記式 (I)において、 nが 4であって、全 R1がフッ素(F)である環状ホスファゼン化合物 40体積%と、フルォ 口リン酸ジメチル 30体積0 /0と、エチレンカーボネート 10体積0 /0と、ビ-レンカーボネー ト 5体積%と、ジェチルカーボネート 15体積%との混合溶媒を用いた他は、実施例 1と 同様にして非水電解液を調製し、得られた非水電解液の不燃性及び限界酸素指数 を評価 ·測定し、また、実施例 1と同様にして非水電解液 2次電池を作製し、初期放 電容量及びサイクル特性を測定'評価した。結果を表 1に示す。
[0059] (実施例 6)
実施例 1の「非水電解液の調製」に用いた混合溶媒に代えて、上記式 (I)において、 nが 4であって、全 R1のうち 1つがメトキシ基(MeO)で、 7つがフッ素(F)である環状ホ スファゼン化合物 10体積0 /0と、ジフルォロリン酸フエ-ル 5体積0 /0と、エチレンカーボ ネート 28体積%と、ジメチルカーボネート 57体積%との混合溶媒を用いた他は、実施 例 1と同様にして非水電解液を調製し、得られた非水電解液の不燃性及び限界酸素 指数を評価 ·測定し、また、実施例 1と同様にして非水電解液 2次電池を作製し、初 期放電容量及びサイクル特性を測定 ·評価した。結果を表 1に示す。
[0060] (実施例 7)
実施例 3の「非水電解液の調製」に用いた混合溶媒に、更に 4-フルォロア-ノール 1.0質量%を加えた他は、実施例 1と同様にして非水電解液を調製し、得られた非水 電解液の不燃性及び限界酸素指数を評価 '測定し、また、実施例 1と同様にして非 水電解液 2次電池を作製し、初期放電容量及びサイクル特性を測定 ·評価した。結 果を表 1に示す。
[0061] (実施例 8)
実施例 1の「非水電解液の調製」に用いた混合溶媒に代えて、上記式 (I)において、 nが 3であって、全 R1のうち 1つがメトキシ基(MeO)で、 5つがフッ素(F)である環状ホ スファゼン化合物 30体積%と、フルォロリン酸ビストリフルォロェチル 70体積%との混 合溶媒を用いた他は、実施例 1と同様にして非水電解液を調製し、得られた非水電 解液の不燃性及び限界酸素指数を評価 '測定し、また、実施例 1と同様にして非水 電解液 2次電池を作製し、初期放電容量及びサイクル特性を測定,評価した。結果を 表 1に示す。
[0062] (実施例 9)
実施例 8の「非水電解液の調製」に用いた混合溶媒に、更に 3-フルォロビニレン力 ーボネート 2質量%及び 4-フルォロベラトロール 0.5質量%をカ卩えた他は、実施例 1と 同様にして非水電解液を調製し、得られた非水電解液の不燃性及び限界酸素指数 を評価 ·測定し、また、実施例 1と同様にして非水電解液 2次電池を作製し、初期放 電容量及びサイクル特性を測定'評価した。結果を表 1に示す。
[0063] (比較例 1)
実施例 1の「非水電解液の調製」に用いた混合溶媒に代えて、エチレンカーボネー ト 33体積%と、ェチルメチルカーボネート 67体積%との混合溶媒を用いた他は、実施 例 1と同様にして非水電解液を調製し、得られた非水電解液の不燃性及び限界酸素 指数を評価 ·測定し、また、実施例 1と同様にして非水電解液 2次電池を作製し、初 期放電容量及びサイクル特性を測定 ·評価した。結果を表 1に示す。
[0064] (比較例 2)
実施例 1の「非水電解液の調製」に用いた混合溶媒に代えて、リン酸トリメチル 30体 積0 /0と、エチレンカーボネート 23体積0 /0と、ェチルメチルカーボネート 47体積0 /0との 混合溶媒を用いた他は、実施例 1と同様にして非水電解液を調製し、得られた非水 電解液の不燃性及び限界酸素指数を評価 '測定し、また、実施例 1と同様にして非 水電解液 2次電池を作製し、初期放電容量及びサイクル特性を測定 ·評価した。結 果を表 1に示す。
[0065] (比較例 3)
実施例 1の「非水電解液の調製」に用いた混合溶媒に代えて、ジフルォロリン酸フ ェ-ル 30体積0 /0と、エチレンカーボネート 23体積0 /0と、ェチルメチルカーボネート 47 体積%との混合溶媒を用いた他は、実施例 1と同様にして非水電解液を調製し、得 られた非水電解液の不燃性及び限界酸素指数を評価 '測定し、また、実施例 1と同 様にして非水電解液 2次電池を作製し、初期放電容量及びサイクル特性を測定'評 価した。結果を表 1に示す。 [0066] (比較例 4)
実施例 1の「非水電解液の調製」に用いた混合溶媒に代えて、上記式 (I)において、 nが 3であって、全 R1のうち 1つがフエノキシ基(PhO)で、 5つがフッ素(F)である環状 ホスファゼンィ匕合物 18体積0 /0と、エチレンカーボネート 27体積0 /0と、ジェチルカーボ ネート 55体積%との混合溶媒を用いた他は、実施例 1と同様にして非水電解液を調 製し、得られた非水電解液の不燃性及び限界酸素指数を評価,測定し、また、実施 例 1と同様にして非水電解液 2次電池を作製し、初期放電容量及びサイクル特性を 測定 ·評価した。結果を表 1に示す。
[0067] (比較例 5)
実施例 1の「非水電解液の調製」に用いた混合溶媒に代えて、上記式 (I)において、 nが 3であって、全 R1のうち 1つがフエノキシ基(PhO)で、 5つがフッ素(F)である環状 ホスファゼンィ匕合物 50体積%と、リン酸トリェチル 50体積0 /0との混合溶媒を用いた他 は、実施例 1と同様にして非水電解液を調製し、得られた非水電解液の不燃性及び 限界酸素指数を評価'測定し、また、実施例 1と同様にして非水電解液 2次電池を作 製し、初期放電容量及びサイクル特性を測定,評価した。結果を表 1に示す。
[0068] 表 1
限界酸素指数 初期放電容量 50サイクル後の 不燃性の評価
(体積0 /o) (mAh/g) 容量残存率 (%) 実施例 1 不燃性 40.2 147 97 実施例 2 不燃性 79.3 143 96 実施例 3 不燃性 43.4 134 94 実施例 4 不燃性 34.3 145 96 実施例 5 不燃性 38.7 146 95 実施例 6 不燃性 25.3 147 97 実施例 7 不燃性 43.4 146 97 実施例 8 不燃性 39.6 131 91 実施例 9 不燃性 39.6 144 96 比較例 1 燃焼性 18.0 147 97 比較例 2 自己消火'性 21.5 64 33 比較例 3 難燃性 23.2 98 42 比較例 4 不燃性 26.1 139 97 比較例 5 不燃性 28.3 25 22 [0069] 表 1の実施例 1〜3から、上記一般式 (I)で表される環状ホスファゼン化合物及び上 記一般式 (Π)で表されるフルォロリン酸エステルカゝらなる混合溶媒を用いた本発明の 非水電解液が、 40体積%以上の高い酸素濃度下でも不燃性を示すと共に、それを 用いた電池が、高い放電容量と優れたサイクル特性を示すことが分る。また、実施例 4及び 5から、本発明の非水電解液は、非プロトン性有機溶媒を 30体積%添加した場 合においても、限界酸素指数 30体積%以上の高い不燃性を示すことが分る。更に、 実施例 6から、本発明の非水電解液は、上記一般式 (I)の環状ホスファゼンィ匕合物及 び一般式 (II)のフルォロリン酸エステルイ匕合物を合計 15体積%含有するだけでも、不 燃性を示すことが分る。また更に、実施例 5, 7, 9が示すように、上記一般式 (III)の不 飽和環状エステル化合物及び Z又は一般式 (IV)の芳香族化合物を少量添加するこ とにより、放電容量とサイクル特性が更に改善されることが分る。このように、特定のホ スファゼンィ匕合物と特定のリン酸エステルイ匕合物とを含む本発明の非水電解液は、 限界酸素指数が非常に高ぐまた、該非水電解液を用いた非水電解液 2次電池は、 放電容量とサイクル特性が非常に優れて 、た。
[0070] 一方、表 1の比較例 2及び 3から、リン酸エステルイ匕合物を単独で使用した場合、そ の構造にかかわらず、初期放電容量が、実施例に比べて小さくなり、また、サイクル 特性が大幅に悪ィ匕してしまうことが分る。なお、表 1の比較例 4では、上記一般式 (I)の 環状ホスファゼンィ匕合物を単独で非プロトン性有機溶媒 (ECZEMC)と混合した場 合、環状ホスファゼンィ匕合物を 20体積%以上添加すると、環状ホスファゼンィ匕合物と 非プロトン性有機溶媒 (ECZEMC)とが二層分離 (不均一化)して、電池用非水電 解液として使用できなくなるため、 18体積%程度しか添加することができず、該電解 液は、不燃性であるものの、その限界酸素指数は、 26体積%程度が限界であった。 また、表 1の比較例 5から、上記一般式 (II)のフルォロリン酸エステルイ匕合物とは構造 が異なるリン酸エステルイ匕合物と上記環状ホスファゼンィ匕合物とを組み合わせて用い た場合、不燃ィ匕が可能であるものの、初期放電容量及びサイクル特性が大幅に低下 してしまうことが分る。
[0071] (実施例 10)
上記式 (I)において、 nが 3であって、全 R1のうち 1つがフエノキシ基で、 5つがフッ素 である環状ホスファゼンィ匕合物 10体積0 /0と、ジフルォロリン酸メチル 5体積0 /0と、ェ チレンカーボネート 42体積%と、メチルェチルカーボネート 43体積%とからなる混合 溶媒に、 LiPFを lmol/Lになるように溶解させて非水電解液を調製し、得られた非水
6
電解液の不燃性評価を上記の方法で評価した。結果を表 2に示す。
[0072] 次に、正極活物質としでリチウムマンガン複合酸ィ匕物(LiMn O )を用い、該酸ィ匕
2 4
物と、導電剤であるアセチレンブラックと、結着剤であるフッ素榭脂とを、質量比で 90 : 5 : 5で混合し、これを N-メチルピロリドンに分散させてスラリーとしたものを、正極集電 体としてのアルミニウム箔に塗布 ·乾燥した後、直径 12.5mmの円板状に打ち抜 ヽて、 正極を作製した。一方、負極としては、直径 12.5mm、厚さ 1.0mmのリチウム金属シート を用いた。次いで、正極端子を兼ねたステンレスケース内に、正極と負極とを、電解 液を含浸したセルロース不織布のセパレーターを介して重ねて収容し、ポリプロピレ ン製ガスケットを介して負極端子を兼ねるステンレス製封口板で密封して、直径 20mm 、厚さ 1.6mmのコイン型電池(リチウム二次電池)を作製した。得られた電池の初期放 電容量及びサイクル寿命を下記の方法で測定し、表 2に示す結果を得た。
[0073] (4)コイン型電池による充放電試験
上記のようにして作製したコイン型電池を用い、 20°Cの環境下で、 4.3〜3.0Vの電 圧範囲で、 2.0mA/cm2の電流密度による充放電を行い、この時の放電容量を既知の 正極質量で除することにより初期放電容量 (mAh/g)を求めた。さらに同条件で充放 電サイクルを繰り返し、サイクル寿命の評価を行った。ここで、サイクル寿命は、充電 終了電圧 (4.3V)に到達しない場合、もしくは初期放電容量に対して容量力 l%未満 になった場合のサイクル数で示した。なお、充電時の急激な電圧の降下、または電 圧が不安定な挙動を示し、充電終了電圧 (4.3V)に到達しない場合には、電池の短 絡が発生して!/、るものと判断し、そのサイクル数をデンドライト抑制効果の指標とした 。また、初期放電容量に対して容量力 l%未満になった場合には、上記短絡の発生 前に電解液の還元分解が進行したものと判断し、そのサイクル数を電解液の耐還元 性の指標とした。
[0074] (実施例 11)
実施例 10の「非水電解液の調製」に用いた混合溶媒に代えて、上記式 (I)において 、 nが 3であって、全 R1のうち 2つがエトキシ基で、 4つがフッ素である環状ホスファゼン 化合物 20体積0 /0と、ジフルォロリン酸プロピル 40体積0 /0と、エチレンカーボネート 4 0体積%との混合溶媒を用いた他は、実施例 10と同様にして非水電解液を調製し、 得られた非水電解液の不燃性を評価した。また、負極をリチウム—スズ合金シートと した他は、実施例 10と同様にしてリチウム二次電池を作製し、充放電試験における 初期放電容量及びサイクル寿命を測定した。結果を表 2に示す。
[0075] (実施例 12)
実施例 10の「非水電解液の調製」に用いた混合溶媒に代えて、上記式 (I)において 、 nが 3であって、全 R1のうち 1つがァリル基で、 5つがフッ素である環状ホスファゼン 化合物 5体積0 /0と、ジフルォロリン酸ェチル 93体積0 /0と、ビ-レンカーボネート 2体 積%との混合溶媒を用いた他は、実施例 10と同様にして非水電解液を調製し、得ら れた非水電解液の不燃性を評価した。また、実施例 10と同様にしてリチウム二次電 池を作製し、充放電試験における初期放電容量及びサイクル寿命を測定した。結果 を表 2に示す。
[0076] (比較例 6)
実施例 10の「非水電解液の調製」に用いた混合溶媒に代えて、エチレンカーボネ ート 50体積0 /0と、メチルェチルカーボネート 50体積0 /0との混合溶媒を用いた他は、 実施例 10と同様にして非水電解液を調製し、得られた非水電解液の不燃性を評価 した。また、実施例 10と同様にしてリチウム二次電池を作製し、充放電試験における 初期放電容量及びサイクル寿命を測定した。結果を表 2に示す。
[0077] (比較例 7)
実施例 10の「非水電解液の調製」に用いた混合溶媒に代えて、リン酸トリメチル 15 体積0 /0と、エチレンカーボネート 42体積0 /0と、ェチノレメチノレカーボネート 43体積0 /0と の混合溶媒を用いた他は、実施例 10と同様にして非水電解液を調製し、得られた非 水電解液の不燃性を評価した。また、実施例 10と同様にしてリチウム二次電池を作 製し、充放電試験における初期放電容量及びサイクル寿命を測定した。結果を表 2 に示す。
[0078] (比較例 8) 実施例 10の「非水電解液の調製」に用いた混合溶媒に代えて、上記式 (I)において 、 nが 3であって、全 R1のうち 2つがエトキシ基で、 4つがフッ素である環状ホスファゼン 化合物 20体積0 /0と、リン酸トリェチル 40体積0 /0と、エチレンカーボネート 40体積0 /0と の混合溶媒を用いた他は、実施例 10と同様にして非水電解液を調製し、得られた非 水電解液の不燃性を評価した。また、負極をリチウム—スズ合金シートとした他は、実 施例 10と同様にしてリチウム二次電池を作製し、充放電試験における初期放電容量 及びサイクル寿命を測定した。結果を表 2に示す。
[0079] 表 2
Figure imgf000022_0001
[0080] 表 2の実施例 10〜12に示すように、一般式 (I)の環状ホスファゼンィ匕合物と一般式 (I I)のフルォロリン酸エステルイ匕合物を含む非水電解液が不燃性を示すと共に、それを 用いたリチウム二次電池が優れたサイクル寿命を示すことから、一般式 (I)の環状ホス ファゼンィ匕合物及び一般式 (II)のフルォロリン酸エステルイ匕合物は、デンドライトの抑 制に効果があるものと判断される。このように本発明の非水電解液は、高い不燃性を 有しており、また、該非水電解液をリチウム二次電池に用いることで、リチウム又はそ の合金カゝらなる負極にデンドライトが成長し難ぐ充放電サイクル寿命に優れたリチウ ムニ次電池が得られることが確認された。
[0081] 一方、表 2の比較例 7、 8に示すように、通常のリン酸トリエステルを含有する非水電 解液は、たとえ一般式 (I)の環状ホスファゼンィ匕合物を加えても、溶媒自身の分解によ る容量低下により、サイクル寿命が大幅に低下してしまうことがわかる。
[0082] 以上の結果から、一般式 (I)で表される環状ホスファゼンィ匕合物と一般式 (II)で表さ れるフルォロリン酸エステルとを含有する非水電解液を用いることにより、高い不燃性 と優れた電池性能とを両立させた非水電解液電池を提供できることが分る。

Claims

請求の範囲
[1] 下記一般式 (I) :
(NPR1 ) · · · (I)
2 n
[式中、 R1は、それぞれ独立してハロゲン元素又は一価の置換基を表し; nは 3〜4を 表す]で表される環状ホスファゼン化合物及び下記一般式 (II):
F
R - P =0 · ' · (Π )
R2
[式中、 R2は、それぞれ独立してハロゲン元素、アルコキシ基及びァリールォキシ基 のいずれかであり、 2つの R2のうち少なくとも 1つは、アルコキシ基又はァリールォキシ 基である]で表されるフルォロリン酸エステルイ匕合物を含む非水溶媒と、支持塩とから なることを特徴とする非水電解液。
[2] 前記一般式 (II)において、 2つの R2のうち 1つがフッ素であり、他の 1つがアルコキシ 基又はァリールォキシ基であることを特徴とする請求項 1に記載の非水電解液。
[3] 前記一般式 (I)にお 、て、 R1が、それぞれ独立してフッ素、アルコキシ基及びァリー ルォキシ基の 、ずれかであることを特徴とする請求項 1に記載の非水電解液。
[4] 前記一般式 (I)において、 R1のうち少なくとも 3つがフッ素であることを特徴とする請 求項 1に記載の非水電解液。
[5] 前記一般式 (I)で表される環状ホスファゼン化合物と前記一般式 (II)で表されるフル ォロリン酸エステルイ匕合物との体積比が 30Z70〜70Z30の範囲であることを特徴と する請求項 1に記載の非水電解液。
[6] 前記非水溶媒が、更に非プロトン性有機溶媒を含むことを特徴とする請求項 1に記 載の非水電解液。
[7] 前記非水溶媒における、前記一般式 (I)で表される環状ホスファゼンィ匕合物と前記 一般式 (II)で表されるフルォロリン酸エステルイ匕合物との総含有量が 15体積%以上で あることを特徴とする請求項 1に記載の非水電解液。
[8] 前記非水溶媒における、前記一般式 (I)で表される環状ホスファゼンィ匕合物と前記 一般式 (II)で表されるフルォロリン酸エステルイ匕合物との総含有量が 70体積%以上で あることを特徴とする請求項 7に記載の非水電解液。
[9] 更に、下記一般式 (III) :
Figure imgf000025_0001
[式中、 R3は、それぞれ独立して水素、フッ素又は炭素数 1〜2のアルキル基であり、 但し、 2つの R3は互いに結合して環を形成してもよい]で表される不飽和環状エステ ル化合物及び Z又は下記一般式 (IV):
Figure imgf000025_0002
[式中、 R4は、それぞれ独立して水素、フッ素、炭素数 1〜2のアルコキシ基、炭素数 1〜6のアルキル基若しくはシクロアルキル基、又はァリール基である]で表される芳 香族化合物を含むことを特徴とする請求項 1に記載の非水電解液。
請求項 1〜9のいずれかに記載の非水電解液と、正極と、負極とを備えた非水電解
PCT/JP2005/018347 2004-10-05 2005-10-04 非水電解液及びそれを備えた非水電解液電池 WO2006038614A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05790529A EP1798792B1 (en) 2004-10-05 2005-10-04 Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same
DE602005025788T DE602005025788D1 (de) 2004-10-05 2005-10-04 Wasserfreie elektrolytlösung und batterie mit selbigen wasserfreiem elektrolyt
US11/576,183 US20080153005A1 (en) 2004-10-05 2005-10-04 Non-Aqueous Electrolyte and Non-Aqueous Electrolyte Battery Comprising the Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004292479A JP4911888B2 (ja) 2004-10-05 2004-10-05 非水電解液及びそれを備えた非水電解液2次電池
JP2004-292479 2004-10-05
JP2005-108711 2005-04-05
JP2005108711A JP5093992B2 (ja) 2005-04-05 2005-04-05 リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池

Publications (1)

Publication Number Publication Date
WO2006038614A1 true WO2006038614A1 (ja) 2006-04-13

Family

ID=36142687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018347 WO2006038614A1 (ja) 2004-10-05 2005-10-04 非水電解液及びそれを備えた非水電解液電池

Country Status (4)

Country Link
US (1) US20080153005A1 (ja)
EP (1) EP1798792B1 (ja)
DE (1) DE602005025788D1 (ja)
WO (1) WO2006038614A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235830A (ja) * 2012-05-04 2013-11-21 Samsung Sdi Co Ltd リチウム二次電池用電解液およびこれを含むリチウム二次電池
JP2014522077A (ja) * 2011-04-11 2014-08-28 ビーエーエスエフ コーポレーション 非水電解質溶液およびその非水電解質溶液を含む電気化学セル
CN111430781A (zh) * 2020-05-06 2020-07-17 杉杉新材料(衢州)有限公司 一种三元高电压锂离子电池电解液及其锂离子电池

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048508B2 (en) * 2007-04-20 2015-06-02 Mitsubishi Chemical Corporation Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same
EP2272722B1 (en) * 2009-07-01 2015-04-08 Denso Corporation Power source apparatus for vehicle
KR101181835B1 (ko) * 2010-06-07 2012-09-11 솔브레인 주식회사 첨가제를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
JP5656521B2 (ja) * 2010-09-06 2015-01-21 株式会社Nttファシリティーズ 非水電解液電池
JP5623199B2 (ja) * 2010-09-06 2014-11-12 株式会社Nttファシリティーズ 非水電解液電池
JP5641593B2 (ja) * 2011-03-03 2014-12-17 Necエナジーデバイス株式会社 リチウムイオン電池
JP5925159B2 (ja) * 2013-06-12 2016-05-25 株式会社ノリタケカンパニーリミテド 耐熱性ガラス接合材およびその利用
EP3353844B1 (en) 2015-03-27 2022-05-11 Mason K. Harrup All-inorganic solvents for electrolytes
WO2017010255A1 (ja) * 2015-07-15 2017-01-19 日本電気株式会社 リチウムイオン二次電池
PL3396768T3 (pl) * 2015-12-25 2020-11-16 Stella Chemifa Corporation Niewodny roztwór elektrolitu dla akumulatora i akumulator zawierający ten roztwór
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR102383073B1 (ko) 2017-07-21 2022-04-04 삼성에스디아이 주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR102498193B1 (ko) * 2017-12-12 2023-02-09 샌트랄 글래스 컴퍼니 리미티드 비수전해액 전지용 전해액 및 그것을 이용한 비수전해액 전지
KR102094263B1 (ko) * 2018-02-23 2020-03-30 에스케이이노베이션 주식회사 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
US11757135B2 (en) * 2018-02-23 2023-09-12 Sk On Co., Ltd. Electrolytic solution for lithium secondary battery, and lithium secondary battery comprising same
CN113273013A (zh) * 2019-01-14 2021-08-17 巴特尔纪念研究院 用于硅阳极的局部超浓缩电解质
WO2020203148A1 (ja) * 2019-03-29 2020-10-08 株式会社村田製作所 二次電池用電解液および二次電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191431A (ja) * 1997-12-26 1999-07-13 Sony Corp 非水電解液電池
JP2001015158A (ja) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd 非水電解液二次電池および非水電解液二次電池の充電制御システムおよびこれを用いた機器
JP2001015172A (ja) * 1999-04-26 2001-01-19 Fuji Photo Film Co Ltd 非水二次電池およびその製造方法
JP2001516492A (ja) * 1996-05-24 2001-09-25 エス・アール・アイ・インターナシヨナル 電池用不燃性/自消性電解質
JP2003077532A (ja) * 2001-08-31 2003-03-14 Sanyo Electric Co Ltd 非水電解質電池
JP2003173819A (ja) * 2001-12-06 2003-06-20 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455200B1 (en) * 1999-09-02 2002-09-24 Illinois Institute Of Technology Flame-retardant additive for li-ion batteries
JP3422769B2 (ja) * 2000-11-01 2003-06-30 松下電器産業株式会社 非水系電池用電解液およびこれを用いた二次電池
KR100647052B1 (ko) * 2002-04-19 2006-11-23 가부시키가이샤 브리지스톤 비수전해액 전지용 양극 및 그 제조 방법, 그리고비수전해액 전지
KR100656724B1 (ko) * 2002-06-19 2006-12-13 가부시키가이샤 브리지스톤 포스파젠 유도체 리튬염으로 이루어지는 전지용 지지염, 그의 제조방법 및 그를 사용한 전지
US20040091772A1 (en) * 2002-06-20 2004-05-13 Boris Ravdel Lithium-ion battery electrolytes with improved thermal stability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001516492A (ja) * 1996-05-24 2001-09-25 エス・アール・アイ・インターナシヨナル 電池用不燃性/自消性電解質
JPH11191431A (ja) * 1997-12-26 1999-07-13 Sony Corp 非水電解液電池
JP2001015172A (ja) * 1999-04-26 2001-01-19 Fuji Photo Film Co Ltd 非水二次電池およびその製造方法
JP2001015158A (ja) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd 非水電解液二次電池および非水電解液二次電池の充電制御システムおよびこれを用いた機器
JP2003077532A (ja) * 2001-08-31 2003-03-14 Sanyo Electric Co Ltd 非水電解質電池
JP2003173819A (ja) * 2001-12-06 2003-06-20 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1798792A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014522077A (ja) * 2011-04-11 2014-08-28 ビーエーエスエフ コーポレーション 非水電解質溶液およびその非水電解質溶液を含む電気化学セル
JP2013235830A (ja) * 2012-05-04 2013-11-21 Samsung Sdi Co Ltd リチウム二次電池用電解液およびこれを含むリチウム二次電池
CN111430781A (zh) * 2020-05-06 2020-07-17 杉杉新材料(衢州)有限公司 一种三元高电压锂离子电池电解液及其锂离子电池

Also Published As

Publication number Publication date
US20080153005A1 (en) 2008-06-26
EP1798792B1 (en) 2011-01-05
DE602005025788D1 (de) 2011-02-17
EP1798792A4 (en) 2009-02-11
EP1798792A1 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP5314885B2 (ja) 非水電解液及びそれを備えた非水電解液二次電源
JP4911888B2 (ja) 非水電解液及びそれを備えた非水電解液2次電池
JP2008053212A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2008053211A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
WO2008007734A1 (en) Electrochemical device
JP2008300126A (ja) 電池用非水電解液及びそれを備えた非水電解液2次電池
WO2006038614A1 (ja) 非水電解液及びそれを備えた非水電解液電池
JP2007200605A (ja) 非水電解液及びそれを備えた非水電解液電池
WO2006109443A1 (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
WO2012120846A1 (ja) 非水電解液用添加剤、非水電解液及び非水電解液二次電池
JP2008041296A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2008041413A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2008258022A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2010015719A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2010050021A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP5738010B2 (ja) 二次電池用非水電解液及び非水電解液二次電池
JP4671693B2 (ja) 二次電池の非水電解液用添加剤及び非水電解液二次電池
JP5134770B2 (ja) 2次電池用非水電解液及びそれを備えた非水電解液2次電池
JP2008300125A (ja) 電池用非水電解液及びそれを備えた非水電解液2次電池
JP2010015717A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP5093992B2 (ja) リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
JP2008047480A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2010050026A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2008052988A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP4818603B2 (ja) 電池用セパレータ及びそれを備えた非水電解質電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11576183

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005790529

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200580039032.1

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005790529

Country of ref document: EP