Nothing Special   »   [go: up one dir, main page]

WO2006008939A1 - インダクタンス部品およびその製造方法 - Google Patents

インダクタンス部品およびその製造方法 Download PDF

Info

Publication number
WO2006008939A1
WO2006008939A1 PCT/JP2005/012182 JP2005012182W WO2006008939A1 WO 2006008939 A1 WO2006008939 A1 WO 2006008939A1 JP 2005012182 W JP2005012182 W JP 2005012182W WO 2006008939 A1 WO2006008939 A1 WO 2006008939A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
inductance component
magnetic
forming
Prior art date
Application number
PCT/JP2005/012182
Other languages
English (en)
French (fr)
Inventor
Hitoshi Ishimoto
Nobuya Matsutani
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/572,059 priority Critical patent/US7403091B2/en
Publication of WO2006008939A1 publication Critical patent/WO2006008939A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/265Magnetic multilayers non exchange-coupled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0066Printed inductances with a magnetic layer

Definitions

  • the present invention relates to an inductance component used in a power supply circuit such as a mobile phone and a manufacturing method thereof.
  • this type of inductance component has a flat and low-profile viewpoint, and there is an increasing demand for a low profile.
  • FIG. 9 shows the configuration of a conventional inductance component described in the above publication.
  • the inductance component applies a magnetic field to the magnetic layer, a laminated film of a magnetic layer containing Fe, a positive element nitride insulating layer having a specific resistance higher than that of the magnetic layer, and the magnetic layer.
  • a coil conductor portion That is, the magnetic layer 111 formed by the thin film process, the insulating layer 112 such as A1N, and the planar coil portion 113 are laminated.
  • an object of the present invention is to provide a small and low-profile inductance component that is inexpensive and excellent in mass productivity, and a method for manufacturing the same.
  • the present invention provides a coil, a first metal layer and a first metal magnetic layer on at least one surface of a substrate.
  • This is an inductance component composed of an intermediate layer containing a cuprate oxide and a multilayer magnetic layer formed by laminating a second metal magnetic layer.
  • the first and second metal magnetic layers contain at least one of Fe, Ni, and Co, and the intermediate layer has a larger specific resistance and material than the first and second metal magnetic layers. It is composed.
  • FIG. 1 is a perspective view of an inductance component according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the multilayer magnetic layer of the inductance component according to Embodiment 1 of the present invention.
  • FIG. 3 is a perspective view of an inductance component according to Embodiment 2 of the present invention.
  • FIG. 4 is a cross-sectional view of an inductance component according to Embodiment 2 of the present invention.
  • FIG. 5 is an enlarged cross-sectional view of a multilayer magnetic body layer of an inductance component according to Embodiment 2 of the present invention.
  • FIG. 6 is a cross-sectional view of an inductance component according to Embodiment 3 of the present invention.
  • FIG. 7 is an enlarged cross-sectional view of the multilayer magnetic body layer of the inductance component according to Embodiment 3 of the present invention.
  • FIG. 8 is an enlarged cross-sectional view of a multilayer magnetic body layer according to the fourth embodiment of the present invention.
  • FIG. 9 is an exploded perspective view of a conventional inductance component.
  • FIG. 1 is an inductance component according to Embodiment 1 of the present invention
  • FIG. 2 is an enlarged cross-sectional view of the multilayer magnetic layer 2 of the inductance component shown in FIG.
  • the coil 1 is formed such that a coated conductor using a high conductivity material such as copper or silver is wound around the surface of the multilayer magnetic layer 2.
  • a coated conductor using a high conductivity material such as copper or silver is wound around the surface of the multilayer magnetic layer 2.
  • the insulating layer 8 may be provided so as to cover the surface of the multilayer magnetic layer 2 using an insulating resin material or the like. This insulating layer 8 prevents a short circuit when the inductance component is mounted on a mounting board.
  • an organic resin material such as epoxy resin, silicon resin, acrylic resin, or a mixture thereof is preferable.
  • an inorganic filler may be mixed in order to improve heat resistance and mechanical strength.
  • a first metal layer 4 having conductivity is formed on at least one surface of a sheet-like substrate 3.
  • a first metal magnetic layer 5 is laminated on the first metal layer 4.
  • an intermediate layer 6 containing cuprate oxide is laminated on the first metal magnetic layer 5.
  • a second metal magnetic layer 7 is laminated on the intermediate layer 6. In this way, the multilayer magnetic layer 2 composed of these laminates is formed.
  • the multilayer magnetic layer 2 By adopting such a configuration of the multilayer magnetic layer 2, it is possible to form all the steps by a mating process. In particular, this can be realized by providing an intermediate layer 6 containing cuprates.
  • the intermediate layer 6 containing cuprate oxide has a specific resistance higher than that of the first and second metal magnetic layers 5 and 7 and can form a plating film on the surface thereof.
  • Cu 2 O is used for the intermediate layer 6.
  • Cu O is electric
  • the second metal magnetic layer 7 is electrically connected to the CuO.
  • a film can be formed by plating.
  • the first metal magnetic layer 5 has a first metal layer 4 under the first metal magnetic layer 5
  • the second metal magnetic layer 7 has an intermediate layer 6 containing copper oxide under the second metal magnetic layer 7. It is possible to form a film by a staking process for all steps.
  • the electroplating process can be used to form the first metal magnetic layer 5 and the second metal magnetic layer 7 which require a considerable film thickness from the viewpoint of magnetic properties, so that it is inexpensive. With the equipment, a production process with excellent mass productivity can be realized.
  • the thickness of the first metal layer 4 and the intermediate layer 6 containing copper oxide is designed to be thin, so that any method used has little effect on productivity. ! /
  • the base material 3 may be any material such as an inorganic material, an organic material, and a metal material, but is appropriately selected from the viewpoint of the shape, strength, cost, and reliability of the inductance component.
  • the first metal layer 4 is formed on at least one surface of the base material 3 by electric plating or electroless plating.
  • the base material 3 is a metal material
  • the base material 3 can also serve as the first metal layer 4, so that the configuration can be simplified.
  • the first metal layer 4 is provided to facilitate the formation of the first metal magnetic layer 5 by the electroplating method, and a metal such as Cu having excellent conductivity is preferable. Furthermore, it is more preferable from the viewpoint of magnetic properties to use magnetic Fe, Ni, and Co. Therefore, it is desirable that the thickness of the first metal layer 4 is thin when using a metal such as Cu that does not have magnetism.
  • the first metal magnetic layer 5 is formed on the first metal layer 4 by electrical plating.
  • a metal magnetic material having a composition containing at least one of Fe, Ni, and Co is preferable from the viewpoint of magnetic flux density and magnetic loss.
  • the intermediate layer 6 containing copper oxide is formed on the first metal magnetic layer 5.
  • the intermediate layer 6 is provided so as to separate the first metal magnetic layer 5 and the second metal magnetic layer 7.
  • the second metal magnetic layer 7 is formed by an electroplating method by including a cuprate oxide in the intermediate layer 6 and devising a plating bath on the cuprate oxide. It becomes possible. Therefore, it is sufficient that at least the surface layer of the intermediate layer 6 has cuprate oxide.
  • Cu 2 O is superior to those in view of film formation speed and film quality homogeneity.
  • the intermediate layer 6 is preferably thin. For example, even when a current of 30 A is passed through a choke coil or the like, if the thickness of the intermediate layer 6 is 1 ⁇ m, the function can be sufficiently exerted.
  • the multilayer structure having such a structure is used as the multilayer magnetic layer 2, and the surface of the multilayer magnetic layer 2 is coated with an insulating layer 8 such as silicon resin or epoxy resin as necessary. Isolate. Thereafter, as shown in FIG. 1, by forming a coil 1 using a coated copper wire or the like, an inductance component can be obtained.
  • an insulating layer 8 such as silicon resin or epoxy resin
  • the configuration of the multilayer magnetic layer 2 can be the multilayer magnetic layer 2 arranged on both sides of the force base 3 described in the structure laminated on one side of the base material 3, and the electromagnetic performance From the viewpoint of shape or cost, it is selected as appropriate. For example, if the total thickness of the magnetic layer is increased, an inductance component having a large inductance value can be obtained, and if the total thickness of the magnetic layer is constant, the number of the magnetic layers is increased to provide excellent high frequency characteristics. Inductance parts can be used. The same effect can be obtained no matter how the multilayer magnetic layer 2 is laminated.
  • the main component of the first metal magnetic layer 5 or the second metal magnetic layer 7 contains at least one of Fe, Ni, and Co, so that a high saturation magnetic flux density capable of handling a large current is obtained.
  • a multilayer magnetic material layer 2 having a high magnetic permeability can be realized.
  • Magnetic metal materials used for these include magnetic alloys such as Fe-Mn, Fe-A1 and Fe-Si-A1.
  • the composition of the first and second metal magnetic layers 5 and 7 of the multilayer magnetic layer 2 is not necessarily the same. By including at least one of Fe, Ni and Co as a main component, the effect is can get.
  • the intermediate layer 6 has a higher specific resistance than the first and second metal magnetic layers 5, 7, so that the first metal magnetic layer 5 and the second metal magnetic layer It has the effect of blocking eddy currents that span seven. The effect is particularly remarkable when the ratio of the specific resistance values of the intermediate layer 6 and the first and second metal magnetic layers 5 and 7 is 10 3 or more. [0027] Further, since at least the cuprate oxide is contained in the intermediate layer 6, adhesion between the intermediate layer 6 and the second metal magnetic layer 7 is improved. For example, even when the thickness of the second magnetic metal layer 7 is 10 to 20 mt and the film is thick, it has a good adhesion.
  • the inductance value is larger and the high frequency characteristics are excellent. It can be an inductance part.
  • the multilayer magnetic layer 2 can be continuously formed by the staking method.
  • a small and low-profile inductance component that is inexpensive and does not require the use of expensive equipment such as vapor deposition or a sputtering apparatus and is excellent in mass productivity.
  • the manufacturing method of the inductance component shown in FIGS. 1 and 2 can be manufactured through the following manufacturing process.
  • a polyimide film having a thickness of 20 ⁇ m is prepared as the base material 3, and Ni having a thickness of 0.5 m is formed on one side of the base material 3 by electroless plating as the first metal layer 4.
  • Ni having a thickness of 0.5 m is formed on one side of the base material 3 by electroless plating as the first metal layer 4.
  • an Fe—Ni alloy having a thickness of 20 / zm is formed on the first metal layer 4 as the first metal magnetic layer 5 by electroplating.
  • cuprous oxide is formed on the first metal magnetic layer 5 as an intermediate layer 6 by electroplating.
  • a multilayer magnetic layer 2 is formed by performing a step of forming a 20-zm-thick Fe—Ni alloy as the second metal magnetic layer 7 on the intermediate layer 6 by electroplating. Can be manufactured. [0036] By repeating the film forming process of the intermediate layer 6 and the second metal magnetic layer 7, it is possible to manufacture the multilayer magnetic layer 2 having a more multilayered structure.
  • the inductance component shown in FIG. 1 can be manufactured.
  • FIG. 3 is a perspective view of the inductance component according to Embodiment 2 of the present invention.
  • FIG. 4 is a cross-sectional view taken along line 4-4.
  • FIG. 5 is an enlarged sectional view of the multilayer magnetic body layer 22 of the inductance component according to the second embodiment of the present invention.
  • the coil 11 is disposed so as to be incorporated in the coil insulating portion 12.
  • the reason why the coil insulating portion 12 is provided is to prevent the coil 11 from being short-circuited.
  • the coil 11 is formed on the coil insulating portion 12 made of a resin film or the like by patterning a high conductivity material such as copper or silver by a staking method or the like.
  • the upper line of the coil 11 is formed by being spirally wound from the terminal portion 10b on one side of the inductance component toward the core portion. Then, the upper line of the coil 11 at the center moves to the lower line of the coil 11 via the through-hole electrode 15.
  • the lower line of the coil is formed by winding it in a spiral shape by applying force to the terminal portion 10a provided on the other side.
  • the winding direction of the upper line of the coil 11 and the line of the lower coil 11 is The same direction.
  • a current flows from the upper line of the coil 11 to the lower line via the through-hole electrode 15 without canceling the magnetic flux between the upper line and the lower line of the coil 11, and a large inductance value is realized. Can do.
  • the coil portion can be formed by embedding in the coil insulating portion 12 after processing a copper wire or processing a thin metal plate.
  • the thickness (cross-sectional area) of the coil 11 varies depending on the electronic device used, but at least a thickness of 10 m or more is required to handle a large current. Further, the coil 11 may be one stage or three stages or more instead of the two stages as shown in FIG.
  • Multilayer magnetic layers 22 are disposed on the upper and lower surfaces of the coil 11 configured as described above.
  • the inductance value can be further increased.
  • the insulating layer 8 is sufficient to cover at least the surface layer of the multilayer magnetic layer 22 from the role of ensuring insulation. Insulating layer 8 prevents short-circuiting when an inductance component is mounted on a mounting board.
  • the insulating layer 8 is preferably made of an organic resin material such as epoxy resin, silicon resin, acrylic resin, etc. from the viewpoint of productivity.
  • the coil 11 can be formed by plating using copper or silver. Further, since the coil 11 has a quadrangular cross section, a low profile coil 11 having a high space factor can be obtained.
  • a fine electrode pattern can be formed on a plane by such patterning technology, a lower-inductance component can be realized as compared with the configuration of the first embodiment. Can do.
  • the basic structure of the multilayer body is almost the same as the multilayer magnetic body layer 2 of the inductance component of Embodiment 1, and the second metal layer 9 is provided at a different point. It is. Reduce the cuprate oxide contained in the intermediate layer 6 using a reducing agent such as NaBH.
  • the second metallic layer 9 can be formed easily and inexpensively.
  • reducing agents such as DMAB and LiAlH, can be used, for example.
  • the homogeneity and film-forming speed of the second metal magnetic layer 7 are further increased, and the adhesion between the intermediate layer 6 and the second metal magnetic layer 7 is increased. You can increase your power.
  • the multilayer magnetic body layer 22 in which the laminated body of the intermediate layer 6, the second metal layer 9, and the second metal magnetic body layer 7 is laminated into two or more layers makes the inductance value larger. be able to. Furthermore, by providing a laminated film on both surfaces of the base material 3, an inductance component having a larger inductance value can be realized. Note that the same effect can be obtained no matter how the multilayer magnetic layer 22 is laminated if the structure is the same.
  • the main component of the first and second metal magnetic layers 5 and 7 contains at least one of Fe, Ni, and Co, so that a high saturation magnetic flux density and a high A magnetic layer having magnetic permeability can be obtained.
  • the compositions of the first and second metal magnetic layers 5 and 7 constituting the multilayer magnetic layer 22 are not necessarily the same, and the main component includes at least one of Fe, Ni, and Co. The effect can be obtained.
  • the coil 11 can be manufactured through the following manufacturing process. First, a resist film is formed on a substrate such as a polyimide film so as to form a lower coil pattern of the coil 11. Thereafter, a lower coil pattern of the coil 11 is formed on the substrate by using a metal having a high conductivity such as copper or silver so as to have a thickness of several tens of meters. Next, a resist film is provided again on the lower coil pattern of the coil 11. Then, a hole is formed by etching or the like at a place where the through hole electrode 15 is to be formed. Then, the upper coil of coil 11 A resist film for forming a gold pattern is formed.
  • an upper coil pattern of the coil 11 is formed on the substrate on which the resist film is formed by plating so that a metal such as copper or silver has a thickness of several tens of meters. Then, the upper coil pattern is covered. Through the above steps, the sheet-like coil 11 shown in FIG. 4 can be manufactured.
  • the multilayer magnetic body layer 22 is formed on the sheet-like coil 11 formed in this way.
  • the basic manufacturing steps of the multilayer magnetic layer 22 are almost the same as the steps shown in the first embodiment, except that the second metal layer 9 is provided on the intermediate layer 6. Accordingly, the manufacturing steps up to the intermediate layer 6 are the same as those in the first embodiment, and are omitted.
  • At least the surface of the intermediate layer 6 is made of NaBH or the like.
  • Metal copper which is the second metal layer 9 is formed by reduction using a reducing agent. Thereafter, the second metal magnetic layer 7 is formed on the second metal layer 9 by an electric plating method.
  • the film quality of the second metal magnetic layer 7 can be formed uniformly and the film formation rate can be increased.
  • the inductance component of the present invention can be efficiently manufactured using the base material 3 having a large size.
  • the step of laminating the laminated body of the intermediate layer 6, the second metal layer 9 and the second metal magnetic layer 7 into two or more layers makes it possible to increase the inductance value.
  • a method for manufacturing a ductance component can be provided.
  • the multilayer magnetic body layer 22 in which the laminated film is formed on both surfaces of the substrate 3 can be manufactured in the same manner.
  • the second metal layer 9 may be formed by a plating method. Further, even if the multilayer magnetic layer 22 is laminated by a method other than the above, the same effect can be obtained as long as the structure is the same.
  • FIG. 6 is a cross-sectional view of the inductance component according to Embodiment 3 of the present invention
  • FIG. 7 is an enlarged cross-sectional view of the multilayer magnetic body layer of the inductance component according to Embodiment 3 of the present invention.
  • FIG. 6 and FIG. 7 the configuration and forming method of the coil 11 are the same as those in the second embodiment, and thus the description thereof is omitted here.
  • the difference from FIG. 4 of the second embodiment is that a through hole portion 16 is provided in the core portion of the coil 11.
  • a multi-layer magnetic layer 23 is provided on the inner wall of the through-hole portion 16.
  • the multilayer magnetic layer 23 provided separately on the upper and lower surfaces of the coil 11 is connected via the multilayer magnetic layer 23 provided on the inner wall of the through hole portion 16.
  • the magnetic gap is eliminated and the leakage magnetic flux is reduced. Furthermore, an inductance component having a large inductance value can be obtained.
  • the gap between the through-hole portions 16 can be filled with a force magnetic material filled with the insulating layer 8, which further improves the magnetic characteristics.
  • an insulating layer 8 is provided on the surface of the multilayer magnetic layer 23.
  • the insulating layer 8 is provided to prevent a short circuit, and an inorganic material, an organic material, and a composite thereof are preferable.
  • the multilayer magnetic body layer 23 can be formed in a lump by the fitting method, an inductance component having excellent productivity can be provided. For example, it is difficult to form the multilayer magnetic layer 23 in the through hole 16 having a diameter of lmm or less and a depth force of SO. Lmm or more by sputtering, vapor deposition, etc. Can be formed.
  • the basic structure of the multilayer magnetic layer 23 of the inductance component in the third embodiment is substantially the same as that described in the first embodiment, and is different here. Only that will be described.
  • a third metal layer 13 is provided on the first metal magnetic layer 5 in the multilayer magnetic layer 23 of the inductance component according to the third embodiment. With this configuration, the adhesion between the first metal magnetic layer 5 and the intermediate layer 6 is increased. It can be done.
  • the inductance value can be further increased.
  • the through-hole portion 16 is provided in the core portion of the coil 11 by punching by a method such as a puncher or laser processing. Further, when the multilayer magnetic material layer 23 is provided on the upper and lower surfaces of the coil 11, the multilayer magnetic material layer 23 is also provided on the inner wall of the through hole portion 16. By forming the multilayer magnetic material layer 23 on the inner wall of the through hole portion 16, the multilayer magnetic material layer 23 integrated with the upper and lower surfaces of the coil 11 can be obtained.
  • the third metal layer 13 is formed on the first metal magnetic layer 5 by depositing copper, nickel or the like on the first metal magnetic layer 5 by plating. Is done.
  • the other manufacturing methods are the same as those in the second embodiment.
  • a small and low-profile inductance component with better adhesion can be manufactured by the method for manufacturing an inductance component according to the third embodiment.
  • FIG. 8 is an enlarged cross-sectional view of multilayer magnetic body layer 24 of the inductance component according to Embodiment 4 of the present invention.
  • the basic configuration of the inductance component in the fourth embodiment is almost the same as that of the third embodiment, but there is a difference in the laminated structure of the force multilayer magnetic layer 24. 8 is different from the multilayer magnetic layer 23 in FIG. 7 in that a second metal layer 9 is further provided on the intermediate layer 6.
  • the manufacturing method of the inductance component configured as described above can be manufactured by combining the manufacturing processes described in the second embodiment and the third embodiment.
  • the inductance component according to the present invention has high adhesion between the magnetic layer and the intermediate layer in the multilayer magnetic layer with little loss due to eddy current even when operated in a high frequency region.
  • the manufacturing method with excellent mass productivity it is possible to obtain an inductance component that is excellent in reliability and has a sufficient inductance even if it is reduced in size and height. Therefore, the present invention can also be applied to the production of inductance components used in telephone circuits such as cellular phones.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Thin Magnetic Films (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 コイル(1)と、少なくとも基材(3)の片面に第1の金属層(4)と第1の金属磁性体層(5)と銅酸化物を含む中間層(6)と第2の金属磁性体層(7)を積層した多層磁性体層(2)とからなるインダクタンス部品であり、第1および第2の金属磁性体層(5)、(7)はFe、Ni、Coのうちの少なくとも一つを含むとともに、中間層(6)は第1および第2の金属磁性体層(5)、(7)より比抵抗の大きい材料で形成される。このような構成により、高周波帯域で用いる量産性に優れた小型低背型のインダクタンス部品を提供する。

Description

明 細 書
インダクタンス部品およびその製造方法
技術分野
[0001] 本発明は、携帯電話等の電源回路に用いられるインダクタンス部品およびその製 造方法に関する。
背景技術
[0002] 従来、この種のインダクタンス部品は、小型 ·低背化の観点力 平面型の部品構造 をしており、低背化の要望はますます高まってきている。
[0003] さらに、スイッチング周波数の高周波領域へのシフトに対応するためには渦電流を 低減させる必要があり、その対応策としては磁性体層と絶縁体層との積層構造を構 成する方法が一般的に知られている。これらの技術内容は特開平 9 55316号公報 に開示されている。
[0004] 図 9は上記公報に記載された従来のインダクタンス部品の構成を示すものである。
図 9において、インダクタンス部品は Feを含む磁性体層と、この磁性体より比抵抗の 大きい陽性元素の窒化物カゝらなる絶縁体層との積層膜と、磁性体層に磁界を印加す るコイル導体部とを具備する。すなわち、薄膜プロセスによって成膜された磁性体層 111と、 A1Nなどの絶縁層 112と、平面コイル部分 113とが積層された構成となって いる。
[0005] しカゝしながら、電源回路に必要なインダクタンス値を確保するためには磁性体層の 層数を多くしたり、一層あたりの磁性体層の膜厚をより厚くしたりする必要がある。従 来の構成方法では蒸着あるいはスパッタなどの真空装置を利用する薄膜プロセスを 用いて行う必要があることから、設備投資が高額になるとともに生産性においても量 産しにく 、と 、う課題を有して 、た。
発明の開示
[0006] 従来の課題を解決するために、本発明は、安価な設備で量産性に優れた、小型低 背のインダクタンス部品およびその製造方法を提供することを目的とする。
[0007] 本発明はコイルと、少なくとも基材の片面に第 1の金属層と第 1の金属磁性体層と 銅酸ィ匕物を含む中間層と第 2の金属磁性体層を積層した多層磁性体層とからなるィ ンダクタンス部品である。そして、第 1および第 2の金属磁性体層は Fe、 Ni、 Coのう ちの少なくとも一つを含むとともに、中間層は第 1および第 2の金属磁性体層より比抵 抗の大き 、材料で構成されて 、る。
図面の簡単な説明
[0008] [図 1]図 1は本発明の実施の形態 1におけるインダクタンス部品の斜視図である。
[図 2]図 2は本発明の実施の形態 1におけるインダクタンス部品の多層磁性体層の拡 大断面図である。
[図 3]図 3は本発明の実施の形態 2におけるインダクタンス部品の斜視図である。
[図 4]図 4は本発明の実施の形態 2におけるインダクタンス部品の断面図である。
[図 5]図 5は本発明の実施の形態 2におけるインダクタンス部品の多層磁性体層の拡 大断面図である。
[図 6]図 6は本発明の実施の形態 3におけるインダクタンス部品の断面図である。
[図 7]図 7は本発明の実施の形態 3におけるインダクタンス部品の多層磁性体層の拡 大断面図である。
[図 8]図 8は本発明の実施の形態 4における多層磁性体層の拡大断面図である。
[図 9]図 9は従来のインダクタンス部品の分解斜視図である。
符号の説明
[0009] 1, 11 コイル
2, 22, 23, 24 多層磁性体層
3 基材
4 第 1の金属層
5 第 1の金属磁性体層
6 中間層
7 第 2の金属磁性体層
8 絶縁層
9 第 2の金属層
10a, 10b 端子部 12 コイル絶縁部
13 第 3の金属層
15 スノレホーノレ電極
16 スノレホーノレ咅
発明を実施するための最良の形態
[0010] (実施の形態 1)
以下、本発明の実施の形態 1におけるインダクタンス部品およびその製造方法につ いて、図面を参照しながら説明する。
[0011] 図 1は本発明の実施の形態 1におけるインダクタンス部品であり、図 2は図 1に示し たインダクタンス部品の多層磁性体層 2の拡大断面図である。
[0012] 図 1にお 、て、コイル 1は銅あるいは銀などの高導電率材料を用いた被覆導線など を多層磁性体層 2の表面に卷廻するように形成して 、る。図 1では 4ターン卷 ヽて ヽ るがこの巻き数に制限はない。
[0013] また、必要に応じて絶縁榭脂材料などを用いて多層磁性体層 2の表面を被覆する ように絶縁層 8を設けても良 ヽ。この絶縁層 8はインダクタンス部品が実装基板上に 搭載される場合などに回路の短絡を防止する。絶縁層 8の材料としてはエポキシ榭 脂、シリコン榭脂、アクリル榭脂あるいはこれらの混合物等の有機榭脂材料が好まし い。さらに耐熱性と機械的強度を高めるために無機フィラーを混合しても良い。
[0014] 次に、図 2を用いて多層磁性体層 2の構成について説明する。
[0015] 図 2において、シート状の基材 3の少なくとも片面に導電性を有する第 1の金属層 4 が形成される。この第 1の金属層 4の上に第 1の金属磁性体層 5が積層される。さらに この第 1の金属磁性体層 5の上に銅酸ィ匕物を含む中間層 6が積層される。その後こ の中間層 6の上に第 2の金属磁性体層 7が積層される。このようにして、これら積層体 からなる多層磁性体層 2が構成される。
[0016] このような多層磁性体層 2の構成とすることにより、全てのステップをめつきプロセス で形成することが可能となる。特にこれは銅酸ィ匕物を含む中間層 6を設けることにより 実現できるものである。銅酸ィ匕物を含む中間層 6は、第 1および第 2の金属磁性体層 5、 7より比抵抗が大きぐかつ、その表面にめっき膜を形成することができるという特 徴を有している。例えば、中間層 6には Cu Oなどが用いられる。 Cu Oは電気めつき
2 2
によって製膜することができる。その後この Cu Oの上に第 2の金属磁性体層 7を電気
2
めっきで製膜することができる。このように、第 1の金属磁性体層 5の下層には第 1の 金属層 4があり、第 2の金属磁性体層 7の下層には酸化銅を含んだ中間層 6があるこ とにより、全てのステップをめつきプロセスで製膜することが可能となる。特に、磁気特 性の観点からかなりの膜厚を必要とする第 1の金属磁性体層 5と第 2の金属磁性体層 7の製膜に電気めつきプロセスを用いることができるので、安価な設備で、量産性に 優れた生産プロセスが実現できる。
[0017] なお、第 1の金属層 4と酸化銅を含んだ中間層 6の厚みは薄く設計しておくことが望 まし 、ので、どのような工法を用いても生産性への影響は少な!/、。
[0018] 次に、多層磁性体層 2の構成方法について説明する。
[0019] まず始めに、シート状の基材 3を準備する。この基材 3は無機材料、有機材料およ び金属材料など材質は何でも良いがインダクタンス部品の形状、強度、コスト、信頼 性の観点力 適宜選択される。そして、この基材 3の少なくとも片面に電気めつきある いは無電解めつきなどにより第 1の金属層 4が形成される。なお、このとき基材 3が金 属材料であれば基材 3を第 1の金属層 4と兼ねることができるので構成を簡略ィ匕する ことができる。また、第 1の金属層 4は第 1の金属磁性体層 5を電気めつき法で形成し やすくするために設けたものであり、導電性に優れた Cuなどの金属が好ましい。さら に磁性を有する Fe、 Ni、 Coを用いることが磁気特性の観点からより好ましい。従って 、磁性を有しな 、Cuなどの金属を用いるときは第 1の金属層 4の厚みは薄 、ことが望 ましい。
[0020] 次に、第 1の金属層 4の上に電気めつきによって第 1の金属磁性体層 5が形成され る。この第 1の金属磁性体層 5の材料としては、 Fe、 Ni、 Coのうちの少なくとも一つを 含む組成の金属磁性材料が磁束密度、磁気損失の観点から好まし ヽ。
[0021] その後、第 1の金属磁性体層 5の上に銅酸化物を含む中間層 6が形成される。中間 層 6は第 1の金属磁性体層 5と第 2の金属磁性体層 7とを隔てるように設けられている 。中間層 6の比抵抗を第 1および第 2の金属磁性体層 5, 7の比抵抗より大きくするこ とにより、第 1の金属磁性体層 5と第 2の金属磁性体層 7にまたがる渦電流を遮断する ことができる。さらに、中間層 6の中に銅酸ィ匕物を含ませ、この銅酸ィ匕物の上にめっき 浴を工夫することにより、第 2の金属磁性体層 7を電気めつき法で形成することが可能 となる。従って、少なくとも中間層 6の表層に銅酸ィ匕物があれば良い。中間層 6に含ま れる銅酸ィ匕物としては Cu Oが製膜速度、膜質の均質性の観点カゝらより優れている。
2
[0022] また、中間層 6の厚みは薄いことが望ましい。例えば、チョークコイルなどで 30Aの 電流を流したときにも、中間層 6の厚みは 1 μ mもあれば十分その機能を発揮するこ とがでさる。
[0023] このような構成を有する積層体を多層磁性体層 2とし、必要に応じてシリコン榭脂ぁ るいはエポキシ榭脂などの絶縁層 8を多層磁性体層 2の表面に被覆することにより絶 縁化処理する。その後、図 1に示すように、被覆銅線などを用いてコイル 1を形成する ことによってインダクタンス部品とすることができる。
[0024] なお、多層磁性体層 2の構成は基材 3の片面に積層した構造で説明してきた力 基 材 3の両面に配置した多層磁性体層 2とすることも可能であり、電磁気性能、形状あ るいはコストなどの観点力 適宜選択される。例えば、磁性体層の総厚を大きくすれ ばインダクタンス値の大きなインダクタンス部品とすることができ、磁性体層の総厚を 一定としたときに磁性体層の層数を多くすれば高周波特性に優れたインダクタンス部 品とすることができる。なお、この多層磁性体層 2をいかなる方法で積層しても同じ効 果が得られる。
[0025] また、第 1の金属磁性体層 5または第 2の金属磁性体層 7の主成分は Fe、 Ni、 Co のうち少なくとも一つを含むことで大電流に対応可能な高飽和磁束密度と高透磁率 を有する多層磁性体層 2を実現することができる。これらに用いる金属磁性材料とし ては、 Fe-Mn系、 Fe— A1系、 Fe— Si— A1系などの磁性合金などがある。また多層 磁性体層 2の第 1および第 2の金属磁性体層 5, 7の組成は必ずしも同じである必要 はなぐ主成分が Fe、 Ni、 Coのうち少なくとも一つを含むことでその効果は得られる。
[0026] また、中間層 6は第 1および第 2の金属磁性体層 5, 7よりその比抵抗値を高くするこ とにより、第 1の金属磁性体層 5と第 2の金属磁性体層 7にまたがる渦電流を遮断する という効果を発揮する。中間層 6と第 1および第 2の金属磁性体層 5, 7との比抵抗値 の比が 103以上であれば特にその効果は顕著となる。 [0027] また、中間層 6に少なくとも銅酸ィ匕物が含まれることにより、中間層 6と第 2の金属磁 性体層 7との密着性が向上する。例えば、第 2の金属磁性体層 7の厚みが 10〜20 mt 、う厚膜の場合にぉ 、ても良好な密着性を有して 、ることが分力つた。
[0028] また、多層磁性体層 2の総厚みに対する中間層 6の占める割合が高くなると、インダ クタンス部品としてのインダクタンス値が小さくなる。よって、中間層 6の厚みとして第 1 および第 2の金属磁性体層 5, 7の厚みより薄くすることがより望ましい。
[0029] また、中間層 6と第 2の金属磁性体層 7の積層体を基本として、この積層体を 2層以 上に積層することにより、よりインダクタンス値が大きぐ且つ高周波特性に優れたイン ダクタンス部品とすることができる。
[0030] 以上説明してきたような構成を有するインダクタンス部品とすることにより、多層磁性 体層 2をめつき工法により連続的に形成することができる。その結果、蒸着あるいはス パッタ装置などの高価な設備を使うことなぐ安価な設備で量産性に優れた小型低背 のインダクタンス部品を提供することができる。
[0031] また、従来の蒸着、スパッタといった薄膜工法を用いて磁性体層を形成する場合は 成膜速度が遅ぐ密着強度の観点力 磁性体層をあまり厚くすることは困難であった 。しかし、本発明の構成によれば容易に 10〜20 mの金属磁性体層を形成すること ができ、インダクタンス値の大きなインダクタンス部品を実現することができる。
[0032] 次に、このインダクタンス部品の製造方法について説明する。
[0033] 図 1、図 2に示したインダクタンス部品の製造方法は次のような製造プロセスを経て 製造することができる。
[0034] まず始めに、例えば厚み 20 μ mのポリイミドフィルムを基材 3として準備し、この基 材 3の片面に第 1の金属層 4として無電解めつきにより厚み 0. 5 mの Niを形成する 。次に、この第 1の金属層 4の上に電気めつきにより厚み 20 /z mの Fe—Ni合金を第 1 の金属磁性体層 5として形成する。次に、この第 1の金属磁性体層 5の上に亜酸化銅 を電解めつきにより中間層 6として形成する。
[0035] 次に、その中間層 6の上に電気めつきにより厚み 20 /z mの Fe—Ni合金を第 2の金 属磁性体層 7として形成するステップを経ることにより多層磁性体層 2を製造すること ができる。 [0036] なお、中間層 6と第 2の金属磁性体層 7の成膜プロセスを繰り返すことによってより 多層化された多層磁性体層 2を製造することができる。
[0037] その後、必要に応じてエポキシ榭脂などをこの多層磁性体層 2の表面に絶縁層 8と して被覆した後、直径 200 mの太さの銅線を所定のターン数に巻き付けることによ り、図 1に示すインダクタンス部品を製造することができる。
[0038] このように、全てのステップを高価な設備を必要とする蒸着、スパッタ等の薄膜プロ セスを用いることなく設備が比較的安価なめっき装置により製造することが可能となる
[0039] 以上説明してきたように本発明のインダクタンス部品およびその製造方法によれば
、安価な設備で量産性に優れた、小型低背のインダクタンス部品およびその製造方 法を提供することができる。
[0040] (実施の形態 2)
以下、本発明の実施の形態 2におけるインダクタンス部品およびその製造方法につ いて、図面を参照にしながら説明する。
[0041] 図 3は本発明の実施の形態 2におけるインダクタンス部品の斜視図であり、図 4は図
3の 4—4部における断面図である。また、図 5は本発明の実施の形態 2におけるイン ダクタンス部品の多層磁性体層 22の拡大断面図である。
[0042] 図 3および図 4において、コイル絶縁部 12の中に内蔵されるようにコイル 11が配置 されている。コイル絶縁部 12を設けたのは、コイル 11がショートするのを防ぐためで ある。
[0043] 榭脂フィルムなどで構成されたコイル絶縁部 12の上に、例えば銅や銀などの高導 電率材料をめつき法などでパター-ングすることによりコイル 11が形成される。また、 コイル 11の上段のラインはインダクタンス部品の一方の側面にある端子部 10bから芯 部へ向かって渦巻き状に巻かれて形成されている。そして、中心部でコイル 11の上 段のラインはスルホール電極 15を介してコイル 11の下段のラインに移る。コイルの下 段のラインは他方の側面に設けた端子部 10aに向力つて今度は渦巻き状に広がるよ うに巻かれて形成されて!、る。
[0044] ここで、このコイル 11の上段のラインと下段のコイル 11のラインの巻かれる方向は 同じ方向である。その結果、コイル 11の上段のラインと下段のラインで磁束を打ち消 し合うことなぐスルホール電極 15を介してコイル 11の上段のラインから下段のライン に電流が流れ、大きなインダクタンス値を実現することができる。
[0045] この他にも、コイル 11の形成方法としては銅線の加工あるいは薄板状の金属板を 加工した後コイル絶縁部 12に埋設することによりコイル部を形成できるものである。な お、コイル 11の厚み(断面積)は用いられる用途の電子機器により異なるが、少なくと も大電流に対応するためには 10 m以上の厚みが必要となる。また、コイル 11は図 4に示したような二段ではなく一段あるいは三段以上であっても良い。
[0046] 上記のように構成されたコイル 11の上下面に多層磁性体層 22が配置されている。
多層磁性体層 22を両面に配置することにより、よりインダクタンス値を大きくすること ができる。
[0047] 絶縁層 8は絶縁性を確保するという役割から、少なくとも多層磁性体層 22の表層を 被覆して ヽれば良 ヽ。絶縁層 8はインダクタンス部品が実装基板などに搭載された場 合、ショートするのを防ぐ。また、絶縁層 8はエポキシ榭脂、シリコン榭脂、アクリル榭 脂等の有機榭脂材料で構成されるのが生産性の観点カゝら好ましい。
[0048] 以上のような構成とすることにより、多層磁性体層 22の厚さ方向に生じる渦電流を 抑制することができる。その結果、インダクタンス部品からの発熱が抑制できるので、 インダクタンス値を大きくすることができる。コイル 11を平板状に形成することにより、 より低背型のインダクタンス部品を実現することができる。また、コイル 11を多段にす ることにより低背化しても十分にインダクタンス値の大きいインダクタンス部品を実現 することができる。
[0049] コイル 11は銅あるいは銀などを用いてめっきで形成することができる。また、コイル 11の断面が四角形であることから高占積率を有する低背型のコイル 11を得ることが できる。
[0050] 特に、このようなパターユング技術により微細な電極パターンを平面上に形成するこ とができるので、実施の形態 1の構成に比較してより低背型のインダクタンス部品を実 現することができる。
[0051] 次に、図 5を用いて本発明の実施の形態 2におけるインダクタンス部品の多層磁性 体層 22の構成について説明する。
[0052] 図 5において、積層体の基本的な構造は実施の形態 1のインダクタンス部品の多層 磁性体層 2とほぼ同様であり、異なっているところは第 2の金属層 9を設けていること である。中間層 6に含まれる銅酸ィ匕物を例えば NaBHなどの還元剤を用いて還元す
4
ることにより中間層 6の表面を還元する。そして、金属銅を析出させることにより、容易 にかつ安価に第 2の金属層 9を形成することができる。なお、還元剤としては、例えば DMAB、 LiAlH等の還元剤を使用することができる。
4
[0053] 第 2の金属層 9を設けることにより、第 2の金属磁性体層 7の均質性と製膜速度をよ り高めるとともに、中間層 6と第 2の金属磁性体層 7との密着力を高めることができる。
[0054] また、中間層 6と第 2の金属層 9と第 2の金属磁性体層 7の積層体を 2層以上に積層 した多層磁性体層 22とすることにより、よりインダクタンス値を大きくすることができる。 さら〖こ、基材 3の両面に積層膜を設けることにより、さらに大きなインダクタンス値のィ ンダクタンス部品を実現することができる。なお、多層磁性体層 22をいかなる方法で 積層しても、構造が同じであれば同じ効果が得られる。
[0055] また、本実施の形態 2においても第 1および第 2の金属磁性体層 5, 7の主成分が F e、 Ni、 Coのうち少なくとも一つを含むことで高飽和磁束密度と高透磁率を有する磁 性体層を得ることができる。また多層磁性体層 22を構成する第 1および第 2の金属磁 性体層 5, 7の組成は必ずしも同じである必要はなぐ主成分が Fe、 Ni、 Coのうち少 なくとも一つを含むことでその効果は得られる。
[0056] 以上のように構成した本実施の形態 2のインダクタンス部品について、以下にその 製造方法を説明する。
[0057] 本実施の形態 2におけるインダクタンス部品のうち、コイル 11は次のような製造プロ セスを経て製造することができる。まず、ポリイミドフィルムなどの基板上にコイル 11の 下段のコイルパターンになるようにレジスト膜を形成する。その後、この基板に銅ある いは銀などの高導電率を有する金属をめつき法により数 10 mの厚みになるようにコ ィル 11の下段のコイルパターンを形成する。次に、コイル 11の下段のコイルパターン が形成されたその上に、再度レジスト膜を設ける。そして、スルホール電極 15を形成 する箇所にはエッチングなどにより孔カ卩ェをしておく。その後、コイル 11の上段のコィ ルパターンを形成するためのレジスト膜を形成する。次に、このレジスト膜が形成され た基板にめっき法により銅あるいは銀などの金属を数 10 mの厚みになるようにコィ ル 11の上段のコイルパターンを形成する。その後、上段のコイルパターンを被覆する 。以上のステップを経ることによって、図 4に示すシート状のコイル 11を製造すること ができる。
[0058] 次に、このようにして形成されたシート状のコイル 11に多層磁性体層 22を形成する 。多層磁性体層 22の基本的な製造ステップは、実施の形態 1で示したステップとほ ぼ同様であるが、中間層 6の上に第 2の金属層 9を設けることが異なっている。従って 、中間層 6までの製造ステップは実施の形態 1と同じであるので省略する。
[0059] 図 5に示すように中間層 6を形成した後、中間層 6の少なくとも表面を NaBH等の
4 還元剤を用いて還元することにより第 2の金属層 9である金属銅を形成する。その後 、第 2の金属層 9の上に電気めつき法で第 2の金属磁性体層 7を形成する。このように 第 2の金属層 9を設けることにより、第 2の金属磁性体層 7の膜質形成が均質であると ともに成膜速度も速くすることができる。また、このような構成とすることによって、大き なサイズの基材 3を用いて効率よく本発明のインダクタンス部品を製造することができ る。
[0060] さらに、必要に応じて中間層 6、第 2の金属層 9および第 2の金属磁性体層 7の積層 体を 2層以上に積層するステップとすることにより、よりインダクタンス値の大きなイン ダクタンス部品の製造法を提供することができる。また積層膜を基材 3の両面に形成 した多層磁性体層 22についても同様に製造することができる。
[0061] なお、第 2の金属層 9をめつき法で形成してもよい。また、多層磁性体層 22を上記 以外の方法で積層しても構造が同じであれば同じ効果が得られる。
[0062] 以上のように、本実施の形態 2のようなインダクタンス部品の構成とすることにより、 高周波領域で動作させる場合でも渦電流による損失が少なぐ密着性を高め、小型 低背化しても十分なインダクタンス値を有する量産性に優れたインダクタンス部品を 提供することができる。
[0063] (実施の形態 3)
以下、本発明の実施の形態 3におけるインダクタンス部品およびその製造方法につ いて、図面を参照しながら説明する。
[0064] 図 6は本発明の実施の形態 3におけるインダクタンス部品の断面図であり、図 7は本 発明の実施の形態 3におけるインダクタンス部品の多層磁性体層の拡大断面図であ る。
[0065] 図 6および図 7において、コイル 11の構成と形成方法は実施の形態 2と同じである ので、ここでの説明は省略する。実施の形態 2の図 4と異なっているところは、コイル 1 1の芯部にスルホール部 16を設けていることである。また、このスルホール部 16の内 壁には多層磁性体層 23を設けている。その結果、コイル 11の上下面に分離して設 けていた多層磁性体層 23はスルホール部 16の内壁に設けた多層磁性体層 23を介 して連結される。
[0066] このような構成とすることにより、磁気ギャップが無くなるとともに漏洩磁束もより少な くなる。さらに、インダクタンス値の大きなインダクタンス部品とすることができる。なお、 図 6ではこのスルホール部 16の隙間には絶縁層 8で充填している力 磁性体で充填 することも可能であり、さらに磁気特性が向上する。
[0067] また、多層磁性体層 23の表面には絶縁層 8を設けている。絶縁層 8はショートを防 ぐために設けられており、無機材料、有機材料およびこれらの複合物が好ましい。
[0068] また、多層磁性体層 23はめつき法で一括して形成することができるので、生産性に 優れたインダクタンス部品を提供することができる。例えば、直径が lmm以下で、深 さ力 SO. lmm以上のスルホール部 16にスパッタ、蒸着等で多層磁性体層 23を形成 することは困難であるが、めっき法を用いることによりインダクタンス部品を容易に形 成することができる。
[0069] 次に、本実施の形態 3におけるインダクタンス部品の多層磁性体層 23の構造につ いて図 7を用いて詳細に説明する。
[0070] 図 7において、本実施の形態 3におけるインダクタンス部品の多層磁性体層 23の基 本的な構造は実施の形態 1で説明してきたものとほぼ同様であるので、ここでは異な つている点のみについて説明する。本実施の形態 3におけるインダクタンス部品の多 層磁性体層 23には、第 1の金属磁性体層 5の上に第 3の金属層 13が設けられてい る。このような構成とすることにより、第 1の金属磁性体層 5と中間層 6の密着力を高め ることがでさる。
[0071] その作用について説明する。例えば、第 1の金属磁性体層 5に Fe— Ni合金を製膜 したとき、この第 1の金属磁性体層 5の表面には極微量の鉄の酸ィ匕物が析出される。 この鉄の酸ィ匕物の発生により、第 1の金属磁性体層 5の上に形成する中間層 6との密 着力が低下するときがある。これに対して、ニッケルなどを第 3の金属層 13としてめつ き法で形成したとき、鉄の酸ィ匕物は還元されて金属鉄となり第 1の金属磁性体層 5と 第 3の金属層 13との密着力が高まり、その上に形成する中間層 6との密着力も高める ことができる。
[0072] また、第 3の金属層 13と中間層 6と第 2の金属磁性体層 7の積層体を 2層以上に積 層形成することにより、よりインダクタンス値を大きくすることができる。
[0073] 以上のように構成したインダクタンス部品について、以下にその製造方法を説明す る。
[0074] 本実施の形態 3におけるインダクタンス部品の製造方法は基本的なステップは実施 の形態 2とほぼ同様であるので、異なっている内容についてのみ説明する。
[0075] 実施の形態 2におけるシート状のコイル 11を形成した後、コイル 11の芯部にパンチ ヤーあるいはレーザー加工などの方法による孔あけカ卩ェによってスルホール部 16を 設ける。また、コイル 11の上下面に多層磁性体層 23を設けるときに、スルホール部 1 6の内壁にも多層磁性体層 23を設ける。このスルホール部 16の内壁に多層磁性体 層 23を形成することによって、コイル 11の上下面と一体となる多層磁性体層 23とす ることがでさる。
[0076] また、第 1の金属磁性体層 5の上に第 3の金属層 13は、第 1の金属磁性体層 5の上 に銅、またはニッケルなどをめつきにより製膜することによって製造される。なお、それ 以外の製造方法は実施の形態 2と同じである。
[0077] 以上のように、本実施の形態 3におけるインダクタンス部品の製造方法により、より 密着力に優れた小型低背型のインダクタンス部品を製造することができる。
[0078] (実施の形態 4)
以下、本発明の実施の形態 4におけるインダクタンス部品について、図面を参照し ながら説明する。 [0079] 図 8は本発明の実施の形態 4におけるインダクタンス部品の多層磁性体層 24の拡 大断面図である。本実施の形態 4におけるインダクタンス部品の基本的な構成は実 施の形態 3のインダクタンス部品とほぼ同様である力 多層磁性体層 24の積層構造 に違いがある。図 8において、図 7の多層磁性体層 23と異なっている点は中間層 6の 上に第 2の金属層 9をさらに設けていることである。
[0080] このような構成とすることにより、第 1の金属磁性体層 5と中間層 6と第 2の金属磁性 体層 7の密着力に優れた多層磁性体層 24とすることができ、より信頼性に優れた小 型低背型のインダクタンス部品を提供することができる。
[0081] また、第 3の金属層 13と中間層 6と第 2の金属層 9と第 2の金属磁性体層 7の積層体 を 2層以上に積層した多層磁性体層 24とすることにより、よりインダクタンス値の大き なインダクタンス部品とすることができる。
[0082] 以上のように構成したインダクタンス部品の製造方法については、実施の形態 2と 実施の形態 3で説明してきた製造プロセスを組み合わせることによって製造すること ができる。
産業上の利用可能性
[0083] 以上のように、本発明にかかるインダクタンス部品は、高周波領域で動作させる場 合でも渦電流による損失が少なぐ多層磁性体層における磁性体層と中間層の間の 密着性が高い。そして、その量産性に優れた製造方法により、信頼性に優れ、小型 低背化しても十分なインダクタンスを有するインダクタンス部品を得ることができる。よ つて、本発明は、例えば携帯電話等の電話回路に用いられるインダクタンス部品の 生産にも適用できる。

Claims

請求の範囲
[1] コイルと、
基材の上に
第 1の金属層と、
第 1の金属磁性体層と、
銅酸化物を含む中間層と、
第 2の金属磁性体層と、を積層した多層磁性体層と
を有するインダクタンス部品であり、
前記第 1および第 2の金属磁性体層は Fe、 Ni、 Coのうちの少なくとも一つを含み、 前記中間層は前記第 1および前記第 2の金属磁性体層より比抵抗の大きい材料で 構成される、
インダクタンス咅品。
[2] 前記多層磁性体層は、前記中間層と前記第 2の金属磁性体層の積層体を 2層以上 に積層したことを特徴とする、
請求項 1に記載のインダクタンス咅品。
[3] 前記第 1の金属層は Fe、 Ni、 Coのうちの少なくとも一つを含むことを特徴とする、 請求項 1に記載のインダクタンス咅品。
[4] 前記多層磁性体層は、前記中間層と前記第 2の金属磁性体層との間にさらに第 2の 金属層を有することを特徴とする、
請求項 1に記載のインダクタンス咅品。
[5] 前記多層磁性体層は、前記中間層と前記第 2の金属層と前記第 2の金属磁性体層 の積層体を 2層以上に積層したことを特徴とする、
請求項 4に記載のインダクタンス部品。
[6] 前記第 1の金属層と前記第 2の金属層は、 Fe、 Ni、 Coのうちの少なくとも一つを含む ことを特徴とする、
請求項 4に記載のインダクタンス部品。
[7] 前記多層磁性体層は、前記第 1の金属磁性体層と前記中間層の間にさらに第 3の金 属層を有することを特徴とする、 請求項 1に記載のインダクタンス咅品。
[8] 前記多層磁性体層は、前記第 3の金属層と前記中間層と前記第 2の金属磁性体層 の積層体を 2層以上に積層したことを特徴とする、
請求項 7に記載のインダクタンス部品。
[9] 前記多層磁性体層は、前記中間層と前記第 2の金属磁性体層との間にさらに第 2の 金属層を有することを特徴とする、
請求項 7に記載のインダクタンス部品。
[10] 前記多層磁性体層は、前記第 3の金属層と前記中間層と前記第 2の金属層と前記第
2の金属磁性体層の積層体を 2層以上に積層したことを特徴とする、
請求項 9に記載のインダクタンス部品。
[11] 前記第 1の金属層と前記第 2の金属層と前記第 3の金属層は、 Fe、 Ni、 Coのうちの 少なくとも一つを含むことを特徴とする、
請求項 7な!、し 10の!、ずれか一つに記載のインダクタンス部品。
[12] 前記コイルの芯部に形成されたスルホール部をさらに有し、
前記多層磁性体層を前記スルホール部の内壁と前記コイルの上面及び下面とに連 続して配置したことを特徴とする、
請求項 1、 4、 7、 9のいずれか一つに記載のインダクタンス部品。
[13] 前記中間層に含まれる銅酸ィ匕物が Cu Oであることを特徴とする
2
請求項 1、 4、 7、 9のいずれか一つに記載のインダクタンス部品。
[14] 前記多層磁性体層の最表面が絶縁層にて被覆されることを特徴とする、
請求項 1、 4、 7、 9のいずれか一つに記載のインダクタンス部品。
[15] 前記基材と前記第 1の金属層は、同一の金属で構成されることを特徴とする、
請求項 1、 4、 7、 9のいずれか一つに記載のインダクタンス部品。
[16] 基材の上に第 1の金属層を形成するステップと、
前記第 1の金属層の上に第 1の金属磁性体層を形成するステップと、
前記第 1の金属磁性体層の上に銅酸ィ匕物を含む中間層を形成するステップと、 前記中間層の上に第 2の金属磁性体層を形成するステップとを、
実行することにより多層磁性体層を形成するステップと、 コイルを形成するステップとを有する
インダクタンス部品の製造方法。
[17] 前記中間層の上に第 2の金属磁性体層を形成するステップは、
前記中間層の上に第 2の金属層を形成した後、前記第 2の金属層の上に前記第 2の 金属磁性体層を形成するステップであることを特徴とする
請求項 16に記載のインダクタンス部品の製造方法。
[18] 前記第 1の金属磁性体層の上に銅酸化物を含む中間層を形成するステップは、 前記第 1の金属磁性体層の上に第 3の金属層を形成した後、前記第 3の金属層の上 に前記中間層を形成するステップであることを特徴とする
請求項 16、 17の 、ずれか一つに記載のインダクタンス部品の製造方法。
[19] 基材の上に第 1の金属層をめつき法で形成する方法は、めっき法であることを特徴と する
請求項 16に記載のインダクタンス部品の製造方法。
[20] 前記第 1の金属層の上に第 1の金属磁性体層をめつき法で形成する方法は、めっき 法であることを特徴とする
請求項 16に記載のインダクタンス部品の製造方法。
[21] 前記第 1の金属磁性体層の上に銅酸ィ匕物を含む中間層を形成する方法は、めっき 法であることを特徴とする
請求項 16に記載のインダクタンス部品の製造方法。
[22] 前記中間層の上に第 2の金属磁性体層を形成する方法は、めっき法であることを特 徴とする
請求項 16に記載のインダクタンス部品の製造方法。
[23] 前記中間層の上に前記第 2の金属層を形成する方法は、前記中間層を還元する方 法であることを特徴とする
請求項 17に記載のインダクタンス部品の製造方法。
PCT/JP2005/012182 2004-07-15 2005-07-01 インダクタンス部品およびその製造方法 WO2006008939A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/572,059 US7403091B2 (en) 2004-07-15 2005-07-01 Inductance component and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004208145A JP2006032587A (ja) 2004-07-15 2004-07-15 インダクタンス部品およびその製造方法
JP2004-208145 2004-07-15

Publications (1)

Publication Number Publication Date
WO2006008939A1 true WO2006008939A1 (ja) 2006-01-26

Family

ID=35785059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012182 WO2006008939A1 (ja) 2004-07-15 2005-07-01 インダクタンス部品およびその製造方法

Country Status (4)

Country Link
US (1) US7403091B2 (ja)
JP (1) JP2006032587A (ja)
CN (1) CN100568413C (ja)
WO (1) WO2006008939A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119426A1 (ja) 2006-03-24 2007-10-25 Matsushita Electric Industrial Co., Ltd. インダクタンス部品
US8941457B2 (en) 2006-09-12 2015-01-27 Cooper Technologies Company Miniature power inductor and methods of manufacture
US8378777B2 (en) 2008-07-29 2013-02-19 Cooper Technologies Company Magnetic electrical device
US8466764B2 (en) * 2006-09-12 2013-06-18 Cooper Technologies Company Low profile layered coil and cores for magnetic components
US9589716B2 (en) 2006-09-12 2017-03-07 Cooper Technologies Company Laminated magnetic component and manufacture with soft magnetic powder polymer composite sheets
US7791445B2 (en) 2006-09-12 2010-09-07 Cooper Technologies Company Low profile layered coil and cores for magnetic components
JP4956412B2 (ja) 2007-12-27 2012-06-20 株式会社東芝 アンテナ装置および無線通信装置
US9558881B2 (en) 2008-07-11 2017-01-31 Cooper Technologies Company High current power inductor
US8279037B2 (en) * 2008-07-11 2012-10-02 Cooper Technologies Company Magnetic components and methods of manufacturing the same
US9859043B2 (en) 2008-07-11 2018-01-02 Cooper Technologies Company Magnetic components and methods of manufacturing the same
US8659379B2 (en) * 2008-07-11 2014-02-25 Cooper Technologies Company Magnetic components and methods of manufacturing the same
US20100277267A1 (en) * 2009-05-04 2010-11-04 Robert James Bogert Magnetic components and methods of manufacturing the same
WO2011114181A1 (en) * 2010-03-16 2011-09-22 Renault Trucks Cab suspension unit and vehicle comprising at least two such cab suspension units
DE102014218043A1 (de) * 2014-09-10 2016-03-10 Würth Elektronik eiSos Gmbh & Co. KG Magnetkern, induktives Bauteil und Verfahren zum Herstellen eines Magnetkerns
KR102047564B1 (ko) * 2014-09-18 2019-11-21 삼성전기주식회사 칩 전자부품 및 그 제조방법
CN105632717B (zh) * 2015-12-03 2018-09-21 上海磁宇信息科技有限公司 一种嵌入集成电路芯片的电感及集成电路芯片
US9859357B1 (en) * 2016-07-14 2018-01-02 International Business Machines Corporation Magnetic inductor stacks with multilayer isolation layers
JP2018198275A (ja) * 2017-05-24 2018-12-13 イビデン株式会社 コイル内蔵基板及びその製造方法
DE102018113765B4 (de) * 2017-06-09 2023-11-02 Analog Devices International Unlimited Company Transformator mit einer durchkontaktierung für einen magnetkern
KR101994754B1 (ko) * 2017-08-23 2019-07-01 삼성전기주식회사 인덕터
WO2019099011A1 (en) * 2017-11-16 2019-05-23 Georgia Tech Research Corporation Substrate-compatible inductors with magnetic layers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153461A (ja) * 1984-08-22 1986-03-17 Nippon Denso Co Ltd 電波雑音抑止用点火配電器
JPH05190314A (ja) * 1992-01-14 1993-07-30 Mitsubishi Rayon Co Ltd インダクタ
JP2001244124A (ja) * 2000-02-28 2001-09-07 Kawasaki Steel Corp 平面磁気素子およびスイッチング電源
JP2003051419A (ja) * 2001-08-06 2003-02-21 Mitsubishi Materials Corp チップ型コイルの製造方法及びこの方法で製造されたチップ型コイル
JP2003203813A (ja) * 2001-08-29 2003-07-18 Matsushita Electric Ind Co Ltd 磁性素子およびその製造方法、並びにそれを備えた電源モジュール

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1774856A (en) * 1924-04-22 1930-09-02 Dubilier Condenser Corp Magnetic device
US4799115A (en) * 1986-10-27 1989-01-17 International Business Machines Corp. Method and apparatus for tolerating track misregistration systems in twin track vertical recording systems
US4959631A (en) * 1987-09-29 1990-09-25 Kabushiki Kaisha Toshiba Planar inductor
JPH05109314A (ja) 1991-10-15 1993-04-30 Toshiba Chem Corp 導電性樹脂組成物およびその成形品
JPH0983104A (ja) * 1995-09-12 1997-03-28 Murata Mfg Co Ltd コイル内蔵回路基板
US6162311A (en) * 1998-10-29 2000-12-19 Mmg Of North America, Inc. Composite magnetic ceramic toroids
US6768409B2 (en) 2001-08-29 2004-07-27 Matsushita Electric Industrial Co., Ltd. Magnetic device, method for manufacturing the same, and power supply module equipped with the same
TWI232710B (en) * 2004-05-17 2005-05-11 Hannstar Display Corp Printed circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153461A (ja) * 1984-08-22 1986-03-17 Nippon Denso Co Ltd 電波雑音抑止用点火配電器
JPH05190314A (ja) * 1992-01-14 1993-07-30 Mitsubishi Rayon Co Ltd インダクタ
JP2001244124A (ja) * 2000-02-28 2001-09-07 Kawasaki Steel Corp 平面磁気素子およびスイッチング電源
JP2003051419A (ja) * 2001-08-06 2003-02-21 Mitsubishi Materials Corp チップ型コイルの製造方法及びこの方法で製造されたチップ型コイル
JP2003203813A (ja) * 2001-08-29 2003-07-18 Matsushita Electric Ind Co Ltd 磁性素子およびその製造方法、並びにそれを備えた電源モジュール

Also Published As

Publication number Publication date
US20070030108A1 (en) 2007-02-08
JP2006032587A (ja) 2006-02-02
CN1860564A (zh) 2006-11-08
CN100568413C (zh) 2009-12-09
US7403091B2 (en) 2008-07-22

Similar Documents

Publication Publication Date Title
WO2006008939A1 (ja) インダクタンス部品およびその製造方法
JP6639626B2 (ja) コイル部品及びその製造方法
US9899143B2 (en) Chip electronic component and manufacturing method thereof
JP6815807B2 (ja) 表面実装型のコイル部品
US9269486B2 (en) Power inductor and method of manufacturing the same
CN108922727B (zh) 线圈电子组件及其制造方法
JP6863553B2 (ja) コイル電子部品及びその製造方法
KR101598295B1 (ko) 다층 시드 패턴 인덕터, 그 제조방법 및 그 실장 기판
US8941457B2 (en) Miniature power inductor and methods of manufacture
CN106057399B (zh) 线圈电子组件及其制造方法
JP5874199B2 (ja) コイル部品及びその製造方法
KR101762039B1 (ko) 코일 부품
CN104766692B (zh) 芯片电子组件
JP2007503716A (ja) 極薄フレキシブル・インダクタ
CN110993253B (zh) 线圈电子组件
US20160247624A1 (en) Chip electronic component and manufacturing method thereof
CN110729109A (zh) 电感器部件
WO2004040597A1 (ja) インダクタンス部品とそれを用いた電子機器
KR20170142974A (ko) 인덕터 및 이의 제조방법
US20220351883A1 (en) Coil component
JP2021052105A (ja) インダクタ部品
KR20170073554A (ko) 코일 부품
CN113948271A (zh) 电子部件
JP2005116666A (ja) 磁性素子
JP2006287093A (ja) インダクタンス部品およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001119.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2007030108

Country of ref document: US

Ref document number: 10572059

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 10572059

Country of ref document: US

122 Ep: pct application non-entry in european phase