Nothing Special   »   [go: up one dir, main page]

WO2006095543A1 - ズームレンズ系及び撮像装置 - Google Patents

ズームレンズ系及び撮像装置 Download PDF

Info

Publication number
WO2006095543A1
WO2006095543A1 PCT/JP2006/302662 JP2006302662W WO2006095543A1 WO 2006095543 A1 WO2006095543 A1 WO 2006095543A1 JP 2006302662 W JP2006302662 W JP 2006302662W WO 2006095543 A1 WO2006095543 A1 WO 2006095543A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
refractive power
group
wide
Prior art date
Application number
PCT/JP2006/302662
Other languages
English (en)
French (fr)
Inventor
Daisuke Kuroda
Masafumi Sueyoshi
Kazuya Watanabe
Original Assignee
Sony Corporation
Tamron Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation, Tamron Co., Ltd. filed Critical Sony Corporation
Priority to DE602006006039T priority Critical patent/DE602006006039D1/de
Priority to US11/885,365 priority patent/US7535657B2/en
Priority to EP06713803A priority patent/EP1865352B1/en
Publication of WO2006095543A1 publication Critical patent/WO2006095543A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/22Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with movable lens means specially adapted for focusing at close distances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present invention relates to a zoom lens system and an image pickup apparatus using the zoom lens system.
  • an imaging apparatus using an individual imaging element such as a digital still camera
  • the digital still camera has excellent compactness, and covers a wide range from the telephoto side with a single lens, and is ideal for high-speed autofocus and is high regardless of shooting distance.
  • a zoom lens system having a high zoom ratio has been proposed.
  • this type of zoom lens there are those disclosed in JP-A-4-146407 (Patent Document 1) and JP-A-11-174324 (Patent Document 2).
  • the zoom lenses described in these patent documents are provided with six positive, negative, positive, positive and negative lens groups to achieve high zooming. Disclosure of the invention
  • the zoom lenses described in Patent Documents 1 and 2 relate to interchangeable lenses used in single-lens reflex cameras and the like, and a long back focus is necessary to secure a space for arranging the flip-up mirrors. Therefore, it is difficult to reduce the size and widen the angle.
  • focusing for example, focusing is performed mainly by moving the first lens group or the second lens group in combination with a mechanism for manual focus operation.
  • the problem is that the angle change is large.
  • AF autofocus
  • the change in the angle of view during focusing is not a problem due to differences in the distance measuring system, but for AF in lens-type digital still cameras, etc., the focus position is calculated based on the data obtained by the image sensor.
  • the change in the angle of view during focusing is a major problem in processing.
  • An object of the present invention is to provide a zoom lens system useful for use in an imaging device such as a video camera, a digital still camera, etc., such as a video camera and a digital still camera.
  • Another object of the present invention is to provide an imaging device using a zoom lens system that is compact and covers from the wide-angle side to the telephoto side, and is optimal for high-speed AF and has high imaging performance regardless of the shooting distance.
  • the zoom lens system includes at least a first lens group GR1 having a positive refractive power, a second lens group GR2 having a negative refractive power, and a positive refractive power, arranged in order from the object side.
  • Magnification is performed by changing the distance between the lens groups, and the group distance between the i-th lens group and the j-th lens group at the wide-angle end when shooting at infinity is DWG-j).
  • the group distance between the i-th lens group and the j-th lens group at the telephoto end is DT (H)
  • the following conditional expressions (1), (2), (3), (4), ( 5) Satisfied
  • an imaging apparatus includes a zoom lens system that includes a plurality of groups and performs zooming by changing the group interval, and an imaging element that converts an optical image formed by the zoom lens system into an electrical signal.
  • the zoom lens system includes at least a first lens group GR1 having a positive refractive power and a second lens group having a negative refractive power, which are arranged in order from the object side.
  • zooming is performed by changing the distance between the lens groups, and the group between the i-th lens group and the j-th lens group at the wide-angle end at infinity shooting
  • the distance is DW (ij)
  • DT (ij) is the group spacing of the following, the following conditional expressions (1), (2), (3), (4), (5) are satisfied,
  • focusing is performed by moving the fourth lens group GR4 in the optical axis direction.
  • the zoom lens system according to the present invention is provided with at least six lens groups of positive, negative, positive, positive and negative, and by changing the distance between the lens groups at the time of zooming, the movement of the entire lens system is relatively small and compact. Magnification can be achieved.
  • the fourth lens group GR4 as the focus group, the focus group can be made compact compared to the conventional case where the first lens group and the second lens group are used as the focus group. Miniaturization is possible, and high-speed AF (autofocus) is also possible.
  • a negative group in the final group and enlarging the image all at once the closest shooting distance can be shortened, and high imaging performance can be achieved regardless of the shooting distance.
  • the image pickup apparatus using the zoom lens system according to the present invention can reduce the size of the zoom lens system, so that the apparatus itself can be reduced in size, and high-speed AF is possible.
  • the wide-angle side force is also covered up to the telephoto side, regardless of the shooting distance. A high-quality image can be acquired.
  • FIG. 1 is a diagram showing a lens configuration of a first embodiment of a zoom lens system according to the present invention.
  • FIG. 2 is a diagram showing various aberrations of the first example of the zoom lens system according to the present invention, showing spherical aberration, astigmatism, and distortion at the wide angle end.
  • FIG. 3 shows spherical aberration, astigmatism, and distortion at the intermediate focal length of the first example.
  • FIG. 4 shows spherical aberration, astigmatism and distortion at the telephoto end of the first embodiment.
  • FIG. 5 is a diagram showing a lens configuration of a second embodiment of the zoom lens system of the present invention.
  • FIG. 6 is a diagram showing various aberrations of the second embodiment of the zoom lens system according to the present invention, and shows spherical aberration, astigmatism, and distortion at the wide-angle end.
  • FIG. 7 shows spherical aberration, astigmatism, and distortion at the intermediate focal length of the second example.
  • FIG. 8 shows spherical aberration, astigmatism, and distortion at the telephoto end of the second embodiment.
  • FIG. 9 is a diagram showing a lens configuration of a third embodiment of a zoom lens system according to the present invention.
  • FIG. 10 is a diagram showing spherical aberration, astigmatism, and distortion at the wide-angle end in the third example of the zoom lens system according to the present invention.
  • FIG. 11 shows spherical aberration, astigmatism, and distortion at the intermediate focal length of the third example.
  • FIG. 12 shows spherical aberration, astigmatism, and distortion at the telephoto end of the third example.
  • FIG. 13 is a block diagram showing an embodiment of an imaging apparatus to which the zoom lens system according to the present invention is applied. BEST MODE FOR CARRYING OUT THE INVENTION
  • the zoom lens system according to the present invention includes at least a first lens group GR1 having a positive refractive power, a second lens group GR2 having a negative refractive power, and a positive refractive power, arranged in order from the object side.
  • the magnification is changed by changing the distance between the lens groups, and the group distance between the i-th lens group and the j-th lens group at the wide-angle end at infinity is set to DW (ij), at infinity.
  • a compact and high-magnification zoom lens that has at least six lens groups of positive, negative, positive, positive, and negative and changes the distance between each lens group during zooming, which moves the entire lens system relatively little.
  • a system can be achieved.
  • the fourth lens group GR4 is a focus group, the focus group can be made smaller than when the conventional first lens group and the second lens group are used as a focus group.
  • the drive mechanism can be downsized and high-speed AF (autofocus) is also possible.
  • AF autofocus
  • Conditional expression (1) is for the first lens group GR1 and the second lens for zooming from the wide-angle end to the telephoto end.
  • the conditional expression (2) defines the distance between the second lens group GR2 and the third lens group GR3 when zooming from the wide-angle end to the telephoto end. If these conditions are satisfied, a large zooming action can be obtained up to the wide-angle end force and the telephoto end.
  • Conditional expression (3) defines the distance between the third lens group GR3 and the fourth lens group GR4, which is the focus group, during zooming from the wide-angle end to the telephoto end. 4) defines the distance between the 4th lens group GR4 and 5th lens group GR5, which is the focus group during zooming from the wide-angle end to the telephoto end.
  • Spherical aberration fluctuations that occur due to changes in the subject distance, as well as suppressing fluctuations in the surface curvature can be corrected well by canceling them by generating them in the opposite direction by changing the front-to-back distance of the focus lens group GR4. be able to.
  • Conditional expression (5) defines the distance between the fifth lens group GR5 and the sixth lens group GR6 upon zooming from the wide-angle end to the telephoto end. A zooming effect can be provided while correcting aberrations well.
  • the fourth lens group GR4 which is the focus group, is composed of one negative lens.
  • the focal length of the fourth lens group GR4 is fg4
  • the focal length at the wide-angle end of the entire system is the d-line of the fourth lens group GR4. It is desirable that the following conditional expressions (6), (7), and (8) are satisfied, where Ndg4 is the refractive index at Vd, and Abd's number at the d-line of the fourth lens group GR4 is Vdg4.
  • the focus group can be made lighter, which allows the drive mechanism to be made smaller and, in turn, improves the AF speed. Can also contribute.
  • Conditional expression (6) defines the ratio between the focal length of the fourth lens group GR4, which is a focus group having negative refractive power, and the focal length at the wide-angle end in the entire lens system. If the value of f g 4 / lw I is less than 1.5, the negative power of the focus group becomes too strong, resulting in excessive field curvature during close-up shooting at the wide-angle end, resulting in significant performance degradation. Not only The amount of image plane variation with respect to the amount of movement of the orcus group becomes large, which is not preferable for AF control. On the other hand, if the value of
  • Conditional expression (7) defines the refractive index of the fourth lens group GR4, which is a focus group having negative refractive power. If the value of Ndg4 is less than 1.8, the amount of curvature of field and spherical aberration will increase, and it will be difficult for the entire lens system to correct this.
  • Conditional expression (8) defines the amount of chromatic aberration generated by the fourth lens group GR4, which is a focus group having negative refractive power. If the value of Vdg4 exceeds 25, the amount of chromatic aberration generated during close-up photography increases, and it is difficult to correct this even for the entire lens system.
  • the third lens group GR3 and the fifth lens group GR5 move integrally along the optical axis.
  • the third, fourth, and fifth lens groups GR3, GR4, and GR5 can be configured with a single cam cylinder, and if the fourth lens group GR4, which is the focus group, is moved, The relative positioning of the third, fourth, and fifth lens groups GR3, GR4, and GR5, which tend to be tighter than the mechanical construction, is also easy.
  • Conditional expression (9) defines the ratio between the BF (back focus) length at the wide-angle end and the focal length of the entire lens system at the wide-angle end.
  • Twbf / l is less than 0.2
  • LPF (low-pass filter) or IR (infrared cut) glass is very close to the image sensor surface, and dust that adheres to LPF or IR glass at the minimum aperture is reduced to LPF or IR glass defects are more noticeable.
  • the value of Twbf / l exceeds 1.2, the lens diameter at the front of the lens will increase, making it difficult to reduce the angle of view, making it difficult to reduce the size.
  • the value of Twbf / l is in the range of 0.3 to 0.8.
  • the sixth lens group GR6 has at least one negative lens having negative refractive power and one positive lens having positive refractive power arranged in order from the object side, and the telephoto end of the sixth lens group GR6. It is desirable that the following conditional expression (10) is satisfied, where ⁇ tg6 is the lateral magnification at.
  • the sixth lens group GR6 since the sixth lens group GR6 has a large magnification, it is possible to shoot at a closer distance in spite of a large imaging element, and the closest distance can be obtained. If the value of j8 tg6 is less than 1.1, the magnification ratio of the sixth lens group GR6 will be small, and not only will it be difficult to downsize the entire lens system, but also the closest distance will become long. On the other hand, if the value of i8 tg 6 exceeds 2.0, the accuracy of assembling the lens becomes very strict, which is not preferable for manufacturing.
  • At least one of the surfaces of the lenses constituting the fifth lens group GR5 is composed of an aspheric surface. This is because the various aberrations such as spherical aberration that occur when the subject distance fluctuates are corrected by the variation in the distance before and after the focus group GR4.
  • effective correction can be made so that various aberrations that occur when the subject distance changes and various aberrations that occur when the magnification changes simultaneously are satisfied. Become.
  • the first lens group GR1 moves once to the image plane side and then to the object side. This makes it possible to achieve high optical performance while keeping the overall lens length compact in the entire zoom range from the wide-angle end to the telephoto end.
  • the fourth lens group GR4 The distance from the fifth lens group GR5 decreases from the wide-angle end to the intermediate focal length, increases from the intermediate focal length to the telephoto end, and the fourth lens group GR4 and the fifth lens at the telephoto end when shooting at infinity.
  • the distance from the lens group GR5 is DT (4-5) and the focal length of the fourth lens group GR4 is fg4, the following conditional expression It is desirable to satisfy (11).
  • the fourth lens group GR4, the focus group is located between the third and fifth lens groups GR3 and GR5.
  • Conditional expression (11) which enables focusing even to a close distance even with a large image sensor while maintaining the ratio, is the ratio of the movable range and focal length of the fourth lens group GR4, which is the focus group, at the telephoto end. It prescribes.
  • At least one of the surfaces of the lenses constituting the second lens group GR2 is composed of an aspheric surface.
  • At least one of the surfaces of the lenses constituting the sixth lens group GR6 is composed of an aspheric surface. This makes it possible to effectively correct field curvature and coma in the peripheral area.
  • the negative lens constituting the fourth lens group GR4 which is the focus group, may be a combination of two or more lenses.
  • the zoom lens system according to the present invention will be described with reference to FIGS. 1 to 12 and Tables 1 to 11.
  • FIG. 1 shows the configuration of a zoom lens system according to the present invention.
  • a first lens group GR1 having a positive refractive power a second lens group GR2 having a negative refractive power, and a positive refractive power are shown.
  • a third lens group GR3 having folding power, a fourth lens group GR4 having negative refractive power, a fifth lens group GR5 having positive refractive power, and a sixth lens group GR6 having negative refractive power are arranged. Therefore, when zooming to the telephoto end, each lens unit moves on the optical axis as shown by the solid arrows.
  • the first lens group GR1 is composed of a positive lens G1.
  • the second lens group GR2 includes a negative lens G2, a negative lens G3 having a composite aspheric surface on the imaging surface side, and a positive lens G4.
  • the third lens group GR3 includes a positive lens G5 having a composite aspheric surface on the object side, a stop S, and a cemented lens of a negative lens G6 and a positive lens G7 having an aspheric surface on the imaging surface side.
  • the fourth lens group GR4 is composed of a negative lens G8.
  • the fifth lens group GR5 is composed of a positive lens G9 having aspheric surfaces on both sides.
  • the sixth lens group GR6 includes a cemented lens of a negative lens G10 and a positive lens G11, and a positive lens G12.
  • a parallel plane plate-like low pass filter LPF is interposed between the final lens surface of the zoom lens system and the imaging surface IMG.
  • the low-pass filter LPF is a birefringent low-pass filter made of quartz or the like with a predetermined crystal axis direction adjusted, and the required optical cutoff frequency characteristics are achieved by the diffraction effect.
  • a phase-type low-pass filter can be applied. Table 1 shows a first example in which specification values are given to the first embodiment.
  • f is a focal length
  • FNo is an F number
  • is a half angle of view
  • R is a radius of curvature
  • D is a lens surface interval
  • Vd is the Abbe number for the d line.
  • the surface indicated by “ASP” is aspherical.
  • the curvature radius “INFINITY” indicates that it is a plane.
  • the interplanar spacing D25 changes.
  • Table 2 shows the values at the wide-angle end, the intermediate focal length between the wide-angle end and the telephoto end, and the values at the telephoto end, along with the focal length f, F number Fno., And half angle of view ⁇ .
  • the seventh, tenth, sixteenth, nineteenth and twentieth lens surfaces are aspherical, and the aspherical coefficients are as shown in Table 3.
  • E-i represents an exponential expression with a base of 10, that is, “10—.
  • 0.12345E-05 it represents the 0.12345 X 10 _5 ".
  • Figures 2 to 4 show various aberration diagrams of the numerical example 1 in the infinite focus state.
  • Fig. 3 is the intermediate focal length between the wide-angle end and the telephoto end.
  • (f 32.0597)
  • the vertical axis represents the ratio of the open F value
  • the horizontal axis is defocused
  • the solid line represents the spherical aberration at the d-line, broken line, and dotted line.
  • the vertical axis represents the image height
  • the horizontal axis represents the focus
  • the solid line represents the sagittal
  • the broken line force S represents the image plane.
  • the vertical axis represents the image height
  • the horizontal axis represents the distortion aberration rate.
  • conditional expressions 1 to 11 are satisfied as shown in Table 10 and Table 11 described later, and as shown in each aberration diagram, the wide-angle end, the wide-angle end, and Each aberration is corrected in a balanced manner at the intermediate focal length from the telephoto end and the telephoto end.
  • FIG. 5 shows a second embodiment of the zoom lens system according to the present invention.
  • a first lens group GR1 having a positive refractive power a second lens group GR3 having a negative refractive power
  • a third lens group GR3 having a positive refractive power a fourth lens group GR4 having a negative refractive power
  • a fifth lens group GR5 having a positive refractive power and a sixth lens group GR6 having a negative refractive power
  • the first lens group GR1 is composed of a positive lens G1.
  • the second lens group GR2 includes a negative lens G2 having a compound aspheric surface on the object side, a negative lens G3, a positive lens G4, and a negative lens G5.
  • the third lens group GR3 includes a positive lens G6 having aspheric surfaces on both sides, a stop S, and a cemented lens of a negative lens G7 and a positive lens G8.
  • the fourth lens group GR4 is composed of a negative lens G9.
  • the fifth lens group GR5 is composed of a positive lens G10 having aspheric surfaces on both sides.
  • the sixth lens group GR6 includes a negative lens G11, a negative lens G12, and a positive lens G13.
  • Table 4 shows a second example in which specific numerical values are applied to the above-described second embodiment.
  • the surface distance D2 between the first lens group GR1 and the second lens group GR2 and between the second lens group GR2 and the third lens group GR3 The surface distance between the third lens group GR3 and the fourth lens group GR4 D17, the surface distance between the fourth lens group GR4 and the fifth lens group GR5 D19, the fifth lens group.
  • the surface distance D21 between GR5 and the sixth lens group GR6 and the surface distance D27 between the sixth lens group GR6 and the low-pass filter LPF change. Therefore, Table 5 shows the inter-plane spacing between the wide-angle end and the middle between the wide-angle end and the telephoto end. The values at the focal length and telephoto end are shown together with the focal length f, F number Fno. And half angle of view ⁇ .
  • the lens surfaces of the third surface, the twelfth surface, the thirteenth surface, the twentieth surface and the twenty-first surface are aspheric surfaces, and the aspherical coefficients are as shown in Table 6.
  • Figures 6 to 8 show various aberration diagrams of the second example in the infinite focus state.
  • Fig. 7 is the intermediate focus between the wide-angle end and the telephoto end.
  • Distance (f 35.4023)
  • the vertical axis is the ratio of the open F value
  • the horizontal axis is the focus
  • the solid line is the spherical aberration at the d line
  • the broken line is the dotted line
  • the dotted line represents the dotted line
  • the vertical axis represents the image height
  • the horizontal axis represents the focus
  • the solid line represents the sagittal
  • the broken line represents the meridional image plane.
  • the vertical axis represents the image height
  • the horizontal axis represents the distortion aberration rate.
  • Conditional Expression 1 To 11 and each aberration is corrected with good tolerance at the wide-angle end, at the intermediate focal length between the wide-angle end and the telephoto end, and at the telephoto end, as shown in each aberration diagram.
  • FIG. 9 shows a lens configuration of a third embodiment of the zoom lens system according to the present invention.
  • a first lens group GR1 having a positive refractive power and a second lens having a negative refractive power are shown.
  • Group GR3, third lens group GR3 having positive refractive power, fourth lens group GR4 having negative refractive power, fifth lens group GR5 having positive refractive power, and sixth lens group having negative refractive power GR6 is arranged, and the first lens group GR1 is composed of a cemented lens of a negative lens G1 and a positive lens G2, and a positive lens G3.
  • the second lens group Gr2 includes a negative lens G4 having a compound aspheric surface on the object side, a negative lens G5, a positive lens G6, and a negative lens G7.
  • the third lens group GR3 includes a positive lens G8 having aspheric surfaces on both sides, a stop S, a cemented lens of a negative lens G9 and a positive lens G10.
  • the fourth lens group GR4 is composed of a negative lens G11.
  • the fifth lens group GR5 is composed of a positive lens G12 having aspheric surfaces on both sides.
  • the sixth lens group GR6 includes a negative lens G13, a negative lens G14, and a positive lens G15.
  • Table 7 shows a third example in which specific numerical values are applied to the lens system of the third embodiment described above.
  • the surface distance D5 between the first lens group GR1 and the second lens group GR2 and between the second lens group GR2 and the third lens group GR3 Surface distance D14, surface distance between third lens group GR3 and fourth lens group GR4 D20, surface distance between fourth lens group GR4 and fifth lens group GR5, D22, fifth lens group GR5 And 6th lens group GR6
  • the surface distance D24 between and the surface distance D30 between the sixth lens group GR6 and the low-pass filter LPF changes.
  • Table 8 shows the values at the wide-angle end, the intermediate focal length between the wide-angle end and the telephoto end, and the values at the telephoto end, along with the focal length f, F number Fno., And half angle of view ⁇ .
  • the lens surfaces of the sixth surface, the fifteenth surface, the sixteenth surface, the twenty-third surface, and the twenty-fourth surface are aspherical, and the aspherical coefficients are as shown in Table 9.
  • Figures 10 to 12 show various aberration diagrams of the numerical example 3 in the infinite focus state.
  • Fig. 11 is the intermediate focal length between the wide-angle end and the telephoto end.
  • the vertical axis represents the ratio to the open F value
  • the horizontal axis is defocused
  • the solid line represents the spherical aberration at the d-line, the broken line, and the dotted line.
  • the vertical axis represents the image height
  • the horizontal axis represents the focus
  • the solid line represents the sagittal
  • the broken line represents the meridian image plane.
  • the vertical axis represents the image height
  • the horizontal axis represents the distortion aberration rate.
  • the conditional expressions 1 to 11 are satisfied as shown in Table 10 and Table 11 to be described later, and the wide-angle end, the wide-angle end, and the telephoto end are shown in each aberration diagram. At the intermediate focal length from the end and the telephoto end, each aberration is corrected with a good tolerance.
  • Each lens group of the zoom lens shown in each of the above-described embodiments includes a refractive lens that deflects incident light by refraction (that is, a lens that is deflected at an interface between media having different refractive indexes).
  • a refractive lens that deflects incident light by diffraction that is, a lens that is deflected at an interface between media having different refractive indexes.
  • a diffractive lens that deflects incident light by diffraction a refraction / diffractive hybrid lens that deflects incident light by a combination of diffractive action and refracting action, and incident light as a medium.
  • Each lens group may be composed of a refractive index distribution type lens or the like that is deflected by the refractive index distribution.
  • a surface that does not have optical power may be arranged in the optical path so that the optical path is bent before or after the zoom lens system. If the folding position is set as required, it is possible to achieve an apparent thinning of the camera by appropriately folding the optical path.
  • one or a plurality of lens groups or a part of one lens group is shifted in a direction substantially perpendicular to the optical axis. It is also possible to shift the image and prevent this by combining with a detection system that detects camera shake, a drive system that shifts the lens group, and a control system that gives the drive system a shift amount according to the output of the detection system. It is possible to function as a vibration optical system.
  • the present invention it is possible to shift an image with a small aberration variation by shifting a part or the whole of the third, fourth, and fifth lens groups in a direction substantially perpendicular to the optical axis.
  • the third lens group is arranged in the vicinity of the aperture stop, and the off-axis light beam passes through the vicinity of the optical axis, so that there is little fluctuation in coma aberration that occurs when shifting.
  • FIG. 13 shows an embodiment of an imaging apparatus according to the present invention.
  • An imaging apparatus 10 illustrated in FIG. 13 includes a zoom lens 20 and includes an imaging element 30 that converts an optical image formed by the zoom lens 20 into an electrical signal.
  • an imaging element 30 that converts an optical image formed by the zoom lens 20 into an electrical signal.
  • the image sensor 30 For example, a device using a photoelectric conversion element such as a charge coupled device (CCD) or a complementary meta-oxide semiconductor (CMOS) can be applied.
  • the zoom lens system according to the present invention can be applied to the zoom lens 20.
  • each lens group of the zoom lens 1 of the first embodiment shown in FIG. 1 is simplified to a single lens. It is shown.
  • it is possible to use the zoom lenses 2 and 3 of the second and third embodiments which are not limited to the zoom lens 1 of the first embodiment.
  • the electrical signal generated by the imaging element 30 is sent to the control circuit 50 as a focus control signal by the video separation circuit 40, and the video signal is sent to the video processing circuit.
  • the signal sent to the video processing circuit is processed into a form suitable for the subsequent processing, and used for various processes such as display by a display device, recording on a recording medium, and transfer by a communication means.
  • an operation signal from the outside such as an operation of a focus ring or a focus switch is input to the control circuit 50, and various processes are performed according to the operation signal.
  • the drive unit 70 is operated via the driver circuit 60 that is in accordance with the focal length state based on the command, and the fourth lens group GR4 is moved to a predetermined position.
  • Position information of the fourth lens group GR4 obtained by each sensor 80 is input to the control circuit 50 and is referred to when a command signal is output to the driver circuit 60.
  • the control circuit 50 checks the focus state based on the signal sent from the image separation circuit 40, and, for example, the fourth lens group GR4 is connected to the driver circuit so as to obtain the optimum focus state. Control through 60.
  • the imaging device 10 described above can take various forms as a specific product. For example, it can be widely applied as a digital still camera, a digital video camera, a mobile phone with a built-in camera, a camera unit of a digital input / output device such as a PDA (Personal Digital Assistant) with a built-in camera.
  • a digital still camera a digital video camera
  • a mobile phone with a built-in camera a camera unit of a digital input / output device such as a PDA (Personal Digital Assistant) with a built-in camera.
  • PDA Personal Digital Assistant

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)
  • Cameras In General (AREA)
  • Lens Barrels (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

 本発明は、レンズ一体型カメラ等の撮像装置に用いられるズームレンズ系であり、少なくとも、物体側より順に配列された、正の屈折力を有する第1レンズ群GR1と、負の屈折力を有する第2レンズ群GR2と、正の屈折力を有する第3レンズ群GR3と、負の屈折力を有する第4レンズ群GR4と、正の屈折力を有する第5レンズ群GR5と、負の屈折力を有する第6レンズ群GR6とを含み、上記レンズ群の間の間隔を変化させることにより変倍を行い、無限遠撮影時の広角端における第iレンズ群と第jレンズ群との間の群間隔をDW(i-j) 、無限遠撮影時の望遠端における第iレンズ群と第jレンズ群との間の群間隔をDT(i-j) としたとき、以下の条件式(1)、(2)、(3)、(4)、(5)を満足し、  (1)DW(1-2) <DT(1-2)  (2)DW(2-3) >DT(2-3)  (3)DW(3-4) >DT(3-4)  (4)DW(4-5) <DT(4-5)  (5)DW(5-6) <DT(5-6)  かつ、第4レンズ群GR4が光軸方向に移動することによってフォーカシングが行われる。

Description

明 細 書
ズームレンズ系及び撮像装置
技術分野
[0001] 本発明は、ズームレンズ系及びこのズームレンズ系を用いた撮像装置に関する。
本出願は、 日本国において 2005年 3月 11日に出願された日本特許出願番号 200 5— 068901を基礎として優先権を主張するものであり、この出願は参照することによ り、本出願に援用される。
背景技術
[0002] 従来、デジタルスチルカメラ等の個体撮像素子を用いた撮像装置が用いられて!/ヽ る。この種の撮像装置のうち、デジタルスチルカメラにおいては、コンパクト性に優れ 、 1本のレンズで広角側から望遠側までをカバーしつつ、かつ高速オートフォーカス に最適で撮影距離によらず高 、結像性能を有するズームレンズ系が求められて 、る このような要求に応えるため、高変倍ィ匕を図ったズームレンズが提案されている。こ の種のズームレンズとして、特開平 4— 146407号公報 (特許文献 1)、特開平 11—1 74324号公報 (特許文献 2)に開示されたものがある。これら特許文献に記載される ズームレンズは、正負正負正負の 6つのレンズ群を設け高変倍化を図っている。 発明の開示
発明が解決しょうとする課題
[0003] ところで、特許文献 1及び 2に記載されたズームレンズは、一眼レフカメラ等に使用 する交換レンズに関するものであり、跳ね上げミラーの配置スペース等を確保するた めに長いバックフォーカスが必要であり、小型化並びに広角化が困難である。
また、フォーカシングに関しては、例えば、マニュアルフォーカス操作のための機構 との組み合わせ等で主に第 1レンズ群あるいは第 2レンズ群を移動させてフォーカシ ングを行っているため、被写体距離の変動に対し画角変化が大きいといった問題が めつに。
これは、一眼レフカメラ等の交換レンズにおけるオートフォーカス (AF)に関しては、 フォーカシングの際の画角変化は測距システムの違いにより問題にならないが、レン ズー体型デジタルスチルカメラ等における AFに関しては、撮像素子によって得られ たデータをもとにフォーカス位置を算出しているために、フォーカシングの際の画角 変化が発生することは、処理上大きな問題となるためである。
さらにまた、メカ的構造上においても大きなレンズ群をフォーカス群として用いること は、駆動機構が大きくなり、 AFの応答速度にも大きく影響を及ぼすといった問題があ つ 7こ。
本発明は、上記したような従来の技術が有する問題点を解消し、ビデオカメラ、デジ タルスチルカメラなど、レンズ一体型カメラ等の撮像装置に用いて有用なズームレン ズ系と提供することを目的とする。
また、本発明は、コンパクトで広角側カゝら望遠側までカバーしつつ、高速 AFに最適 で撮影距離によらず高い結像性能を有するズームレンズ系を使用した撮像装置を提 供することを目的とする。
本発明に係るズームレンズ系は、少なくとも、物体側より順に配列された、正の屈折 力を有する第 1レンズ群 GR1と、負の屈折力を有する第 2レンズ群 GR2と、正の屈折 力を有する第 3レンズ群 GR3と、負の屈折力を有する第 4レンズ群 GR4と、正の屈折 力を有する第 5レンズ群 GR5と、負の屈折力を有する第 6レンズ群 GR6とを含み、上 記レンズ群の間の間隔を変化させることにより変倍を行い、無限遠撮影時の広角端 における第 iレンズ群と第 jレンズ群との間の群間隔を DWG-j)、無限遠撮影時の望遠 端における第 iレンズ群と第 jレンズ群との間の群間隔を DT(H)としたとき、以下の条 件式 (1)、 (2)、 (3)、 (4)、 (5)を満足し、
(1) DW(l-2) < DT(l-2)
(2) DW(2-3) >DT(2-3)
(3) DW(3-4) >DT(3-4)
(4) DW(4-5) < DT(4-5)
(5) DW(5-6) < DT(5— 6)
かつ、第 4レンズ群 GR4が光軸方向に移動することによってフォーカシングが行われ る。 また、本発明に係る撮像装置は、複数の群から成り群間隔を変えることにより変倍を 行うズームレンズ系と、ズームレンズ系により形成された光学像を電気的な信号に変 換する撮像素子とを備えた撮像装置であって、ズームレンズ系は、少なくとも、物体 側より順に配列された、正の屈折力を有する第 1レンズ群 GR1と、負の屈折力を有す る第 2レンズ群 GR2と、正の屈折力を有する第 3レンズ群 GR3と、負の屈折力を有す る第 4レンズ群 GR4と、正の屈折力を有する第 5レンズ群 GR5と、負の屈折力を有す る第 6レンズ群 GR6とを含み、上記レンズ群の間の間隔を変化させることにより変倍を 行い、無限遠撮影時の広角端における第 iレンズ群と第 jレンズ群との間の群間隔を DW(i-j)、無限遠撮影時の望遠端における第 iレンズ群と第 jレンズ群との間の群間隔 を DT(i-j)としたとき、以下の条件式(1)、 (2)、 (3)、 (4)、 (5)を満足し、
(1) DW(l-2) < DT(l-2)
(2) DW(2-3) >DT(2-3)
(3) DW(3-4) >DT(3-4)
(4) DW(4-5) < DT(4-5)
(5) DW(5-6) < DT(5— 6)
かつ、第 4レンズ群 GR4が光軸方向に移動することによってフォーカシングが行われ る。
本発明に係るズームレンズ系は、正負正負正負の少なくとも 6個のレンズ群を設け、 変倍時に各レンズ群間隔を変化させることにより、レンズ全系の移動量が比較的少な いコンパクトでかつ高倍率を達成することができる。また、第 4レンズ群 GR4をフォー カス群とすることによって、従来の第 1レンズ群や第 2レンズ群をフォーカス群とする場 合に比較してフォーカス群を小型に構成できるため、駆動機構を小型化することが可 能になり、高速 AF (オートフォーカス)も可能になる。さらに、最終群に負群を配し、 像を一気に拡大することで、最至近撮影距離を短くすることができ、かつ撮影距離に よらず、高い結像性能を達成することができる。
また、本発明に係るズームレンズ系を用いた撮像装置は、ズームレンズ系の小型化 が図られることから装置自体の小型化を図ることができ、しかも、高速 AFが可能とな るため、使い勝手がよぐまた、広角側力も望遠側までカバーし、撮影距離によらず 高画質の画像を取得することができる。
本発明のさらに他の目的、本発明によって得られる具体的な利点は、以下におい て図面を参照して説明される実施の形態から一層明らかにされるであろう。
図面の簡単な説明
[図 1]図 1は、本発明に係るズームレンズ系の第 1の実施の形態のレンズ構成を示す 図である。
[図 2]図 2は、本発明に係るズームレンズ系の第 1の実施例の各種収差図を示すもの であり、広角端における球面収差、非点収差、歪曲収差を示す。
[図 3]図 3は、第 1の実施例の中間焦点距離における球面収差、非点収差、歪曲収差 を示す。
[図 4]図 4は、第 1の実施例の望遠端における球面収差、非点収差、歪曲収差を示す
[図 5]図 5は、本発明ズームレンズ系の第 2の実施の形態のレンズ構成を示す図であ る。
[図 6]図 6は、本発明に係るズームレンズ系の第 2の実施例の各種収差図を示すもの であり、広角端における球面収差、非点収差、歪曲収差を示す。
[図 7]図 7は、第 2の実施例の中間焦点距離における球面収差、非点収差、歪曲収差 を示す。
[図 8]図 8は、第 2の実施例の望遠端における球面収差、非点収差、歪曲収差を示す ものである。
[図 9]図 9は、本発明に係るズームレンズ系の第 3の実施の形態のレンズ構成を示す 図である。
[図 10]図 10は、本発明に係るズームレンズ系の第 3の実施例のは広角端における球 面収差、非点収差、歪曲収差を示すものである。
[図 11]図 11は、第 3の実施例の中間焦点距離における球面収差、非点収差、歪曲 収差を示す。
[図 12]図 12は、第 3の実施例の望遠端における球面収差、非点収差、歪曲収差を示 す。 [図 13]図 13は、本発明に係るズームレンズ系を適用した撮像装置の一実施の形態を 示すブロック図である。 発明を実施するための最良の形態
以下に、本発明に係るズームレンズ系及び撮像装置の実施の形態を図面を参照し て説明する。
本発明に係るズームレンズ系は、少なくとも、物体側より順に配列された、正の屈折 力を有する第 1レンズ群 GR1と、負の屈折力を有する第 2レンズ群 GR2と、正の屈折 力を有する第 3レンズ群 GR3と、負の屈折力を有する第 4レンズ群 GR4と、正の屈折 力を有する第 5レンズ群 GR5と、負の屈折力を有する第 6レンズ群 GR6とを含み、各 レンズ群の間の間隔を変化させることにより変倍を行い、無限遠撮影時の広角端に おける第 iレンズ群と第 jレンズ群との間の群間隔を DW(i-j)、無限遠撮影時の望遠端 における第 iレンズ群と第 jレンズ群との間の群間隔を DT(H)としたとき、以下の条件 式(1)、 (2)、 (3)、 (4)、 (5)を満足し、かつ、上記第 4レンズ群 GR4が光軸方向に移 動することによってフォーカシングが行われる。
(1) DW(l-2) < DT(l-2)
(2) DW(2-3) >DT(2-3)
(3) DW(3-4) >DT(3-4)
(4) DW(4-5) < DT(4-5)
(5) DW(5-6) < DT(5— 6)
上述したように、正負正負正負の少なくとも 6個のレンズ群を設け、変倍時に各レン ズ群間隔を変化させることにより、レンズ全系の移動量が比較的少ないコンパクトで かつ高倍率なズームレンズ系を達成することができる。また、第 4レンズ群 GR4をフォ 一カス群とすることによって、従来の第 1レンズ群や第 2レンズ群をフォーカス群とする 場合に比較してフォーカス群を小型に構成することができるため、駆動機構を小型化 することが可能になり、高速 AF (オートフォーカス)も可能になる。さらに、最終群に負 群を配し、像を一気に拡大することで、最至近撮影距離を短くすることができ、かつ、 撮影距離によらず、高 、結像性能を達成することができる。
条件式(1)は、広角端から望遠端への変倍に際しての、第 1レンズ群 GR1と第 2レ ンズ群 GR2との間の間隔を規定するものであり、条件式 (2)は、広角端から望遠端へ の変倍に際しての第 2レンズ群 GR2と第 3レンズ群 GR3との間の間隔を規定するもの であり、これらを満足することで広角端力 望遠端まで大きな変倍作用をもたすことが できる。
条件式 (3)は、広角端から望遠端への変倍に際しての、第 3レンズ群 GR3とフォー カス群である第 4レンズ群 GR4との間の間隔を規定するものであり、条件式 (4)は、 広角端から望遠端への変倍に際してのフォーカス群である第 4レンズ群 GR4と第 5レ ンズ群 GR5との間の間隔を規定するものであり、これらを満足することで像面湾曲の 変動を抑えるばかりでなぐ被写体距離の変化により発生する球面収差の変動を、フ オーカスレンズ群 GR4の前後間隔を変化させることによって逆方向に発生させて打 ち消すことで良好に補正することができる。
条件式 (5)は、広角端から望遠端への変倍に際しての、第 5レンズ群 GR5と第 6レ ンズ群 GR6との間の間隔を規定するものであり、これらを満足することで諸収差を良 好に補正しつつ、変倍作用をもたせることができる。
フォーカス群である第 4レンズ群 GR4は、 1つの負レンズによって構成され、第 4レ ンズ群 GR4の焦点距離を fg4、全系の広角端での焦点距離を 、第 4レンズ群 GR4 の d線での屈折率を Ndg4、第 4レンズ群 GR4の d線でのアッベ数を Vdg4としたとき、 以下の条件式 (6)、 (7)、 (8)を満足することが望ましい。
(6) 1.5 < |fg4/lw| < 3.5
(7) 1.8 < Ndg4
(8) 25 < Vdg4
フォーカス群である第 4レンズ群 GR4を 1つの負レンズによって構成することにより、 フォーカス群を軽量ィ匕することができ、これによつて駆動機構の小型化が可能になり 、ひいては AF速度の向上にも寄与することができる。
条件式 (6)は、負の屈折力を有するフォーカス群である第 4レンズ群 GR4の焦点距 離とレンズ全系における広角端での焦点距離との比率を規定するものである。 |fg4/lw Iの値が 1. 5を下回ると、フォーカス群の負のパワーが強くなりすぎて、広角端での近 接撮影時において像面湾曲がオーバーに発生し性能劣化が大きくなるばかりか、フ オーカス群の移動量に対する像面変動量が大きくなり、 AF制御上好ましくない。また 、 |fg4/l |の値が 3. 5を上回るとフォーカス群の負のパワーが弱くなりすぎてフォー力 ス群の可動範囲が大きくなり、レンズ系全体の小型化が困難になる。
条件式(7)は、負の屈折力を有するフォーカス群である第 4レンズ群 GR4の屈折率 を規定するものである。 Ndg4の値が 1. 8を下回ると、像面湾曲並びに球面収差の発 生量が大きくなり、これを補正することはレンズ系全体でも困難となる。
条件式 (8)は、負の屈折力を有するフォーカス群である第 4レンズ群 GR4の色収差 の発生量を規定するものである。 Vdg4の値が 25を上回ると、近接撮影時での色収差 の発生量が大きくなり、これを補正することはレンズ系全体でも困難となる。
変倍に際し、第 3レンズ群 GR3と第 5レンズ群 GR5は、光軸上に沿って一体的に移 動することが望ましい。これによつて、第 3、 4、 5レンズ群 GR3、 GR4、 GR5を 1つの カム筒で構成することができ、その中でフォーカス群である第 4レンズ群 GR4を動か すようにすれば、メカ構成上容易になるだけでなぐ製造上の公差が厳しくなりがちな 第 3、 4、 5レンズ群 GR3、 GR4、 GR5の相対的な位置出しが容易になる。
広角端におけるバックフォーカス (空気換算長)を Twbfとし、全系の広角端での焦点 距離を 1 としたとき、以下の条件式 (9)を満足することが望ま 、。
(9) 0.2 < Twbf/lw < 1.2
条件式(9)は、広角端における BF (バックフォーカス)長と広角端におけるレンズ全 系の焦点距離との比率を規定するものである。 Twbf/l の値が 0. 2を下回ると、 LPF ( ローパスフィルタ)や IR (赤外線カット)ガラスが撮像素子面に非常に近くなり、最小絞 り時に LPFや IRガラスに付着したゴミゃ LPFや IRガラスの欠陥が目立ちやすくなる。 また、 Twbf/l の値が 1. 2を上回ると、レンズ前玉径が大きくなり、小型化が困難にな るだけでなぐ広角化が困難になる。特に、 Twbf/l の値が 0. 3から 0. 8の範囲にあ ることがさらに望ましい。
第 6レンズ群 GR6は、少なくとも物体側カゝら順に配列された負の屈折力を有する負 レンズと正の屈折力を有する正レンズとを 1つずつ有し、第 6レンズ群 GR6の望遠端 における横倍率を β tg6としたとき、以下の条件式(10)を満足することが望ま 、。
(10) 1.1〈j8 tg6く 2.0 物体側力 順に少なくとも負の屈折力を有する負レンズと正の屈折力を有する正レ ンズとを 1つずつ有することによって、負レンズで周辺光線を跳ね上げ、正レンズで抑 えてあげることで、歪曲収差を抑えつつ、広角化が容易になり、撮像素子への入射 角度も緩やかにすることができる。また、倍率色収差も効果的に補正することができる 条件式(10)は、望遠端における第 6レンズ群 GR6の横倍率を規定するものである 。これによつて、像を一気に拡大することができるため、レンズ全系を小型化すること が可能になる。また、第 6レンズ群 GR6が大きな倍率を有することにより、大型撮像素 子にもかかわらずより近距離側までの撮影が可能になり、最至近距離を稼ぐことがで きる。 j8 tg6の値が 1. 1を下回ると、第 6レンズ群 GR6による拡大率が小さくなり、レン ズ全系の小型化が困難になるだけでなぐ最近接距離も長くなつてしまう。また、 i8 tg 6の値が 2. 0を上回ると、レンズの組み付け精度が非常に厳しくなり製造上好ましくな い。
第 5レンズ群 GR5を構成するレンズの各面のうち、少なくとも 1の面を非球面によつ て構成することが望ましい。これは、被写体距離の変動の際に発生する球面収差を 始めとする諸収差をフォーカス群 GR4前後の間隔変動によって補正していることは 上述した通りである力 第 5レンズ群 GR5を構成するレンズの各面のうち、少なくとも 1 の面を非球面によって構成することによって、被写体距離の変動に際して発生する 諸収差と倍率変動に際して発生する諸収差を同時に満足するような効果的な補正が 可會 になる。
広角端力 望遠端への変倍に際し、第 1レンズ群 GR1は一度像面側に移動した後 、物体側へ移動することが望ましい。これによつて、広角端から望遠端までの全変倍 域においてレンズ全長をコンパクトなサイズに抑えつつ、高い光学性能を達成できる 広角端から望遠端への変倍に際し、第 4レンズ群 GR4と第 5レンズ群 GR5との間の 間隔が広角端から中間焦点距離までは減少し、中間焦点距離から望遠端までは増 大し、無限遠撮影時の望遠端における第 4レンズ群 GR4と第 5レンズ群 GR5との間 の間隔を DT(4-5)とし、第 4レンズ群 GR4の焦点距離を fg4としたとき、以下の条件式 (11)を満足することが望ましい。
(l l) 3< |fg4/DT(4-5) |< 6
本実施に形態のズームレンズ系にお 、ては、第 4レンズ群 GR4であるフォーカス群 が第 3、 5レンズ群 GR3、 GR5の間に位置することで変倍'合焦時の収差補正を行つ ているが、特に、第 4レンズ群 GR4と第 5レンズ群 GR5との間の間隔を上記のごとく変 化させることによって、ズーム'フォーカス全域での収差変動を抑えて高い結像性能 を保ちながら、大型撮像素子においても至近距離までも合焦させることが可能となる 条件式(11)は、望遠端における、フォーカス群である第 4レンズ群 GR4の可動範 囲と焦点距離との比率を規定するものである。 |fg4/DT(4-5) Iの値が 3を下回ると、第 4レンズ群 GR4のパワーが弱くなり DT(4- 5) (フォーカス群の可動範囲)が長くなり、フ オーカス部が大型化し好ましくない。一方、 |fg4/DT(4-5) Iの値が 6を上回ると、第 4レ ンズ群 GR4のパワーが強くなり、近距離撮影時の収差変動が大きくなつてしまい好ま しくない。
第 2レンズ群 GR2を構成するレンズの各面のうち、少なくとも 1の面を非球面によつ て構成することが望ましい。これにより、広角端における歪曲収差やコマ収差を効果 的に補正することができ、コンパクト化と高性能化を達成することができる。
第 6レンズ群 GR6を構成するレンズの各面のうち、少なくとも 1の面を非球面によつ て構成することが望ましい。これにより、周辺域での像面湾曲やコマ収差を効果的に 補正することが可能になる。
近接撮影時の色収差の変動を抑えた 、場合には、フォーカス群である第 4レンズ群 GR4を構成している負レンズは、 2枚以上のレンズを貼り合わせたものであってもよい 以下に、本発明に係るズームレンズ系の 3つの実施例について図 1乃至図 12及び 表 1乃至表 11を参照して説明する。
なお、各実施例において非球面が用いられる力 非球面形状は次の第 1式によつ て表される。
[数 1]
Figure imgf000012_0001
ここで、
y :光軸と垂直な方向の高さ
X:レンズ面頂点からの光軸方向の距離
c:レンズ頂点での近軸曲率
K:コーニック定数
A1:第 i次の非球面係数
である。
図 1は、本発明に係るズームレンズ系のレンズの構成を示し、物体側より順に、正の 屈折力を有する第 1レンズ群 GR1、負の屈折力を有する第 2レンズ群 GR2、正の屈 折力を有する第 3レンズ群 GR3、負の屈折力を有する第 4レンズ群 GR4、正の屈折 力を有する第 5レンズ群 GR5、負の屈折力を有する第 6レンズ群 GR6が配設されて なり、広角端力 望遠端までの変倍に際し、各レンズ群は実線矢印で示すように光軸 上を移動する。第 1レンズ群 GR1は、正レンズ G1で構成される。第 2レンズ群 GR2は 、負レンズ G2と、撮像面側に複合非球面を有する負レンズ G3と、正レンズ G4とで構 成されている。第 3レンズ群 GR3は、物体側に複合非球面を有する正レンズ G5と、 絞り Sと、負レンズ G6と撮像面側に非球面を有する正レンズ G7との接合レンズとで構 成されている。第 4レンズ群 GR4は、負レンズ G8で構成されている。第 5レンズ群 GR 5は、両面に非球面を有する正レンズ G9で構成される。第 6レンズ群 GR6は、負レン ズ G 10と正レンズ G 11との接合レンズと、正レンズ G 12で構成されて!、る。
この第 1の実施の形態、後述する第 2及び第 3の実施の形態において、ズームレン ズ系の最終レンズ面と撮像面 IMGとの間に平行平面板状のローパスフィルタ LPFが 介挿されている。なお、ローノ スフィルタ LPFとしては、所定の結晶軸方向が調整さ れた水晶等を材料とする複屈折型ローパスフィルタや、必要とされる光学的な遮断周 波数の特性を回折効果により達成する位相型ローパスフィルタ等の適用が可能であ る。 表 1に、第 1の実施の形態に諸元の値を与えた第 1の実施例を示す。この第 1の実 施例 1及び後に説明する各実施例の諸元表中の fは焦点距離、 FNoは Fナンバー、 ωは半画角、 Rは曲率半径、 Dはレンズ面間隔、 Ndは d線( λ =587.6nm)に対する屈 折率、 Vdは d線に対するアッベ数を示す。また、「ASP」で示した面は非球面であるこ とを示す。曲率半径「INFINITY」は平面であることを示す。
[表 1]
Figure imgf000013_0001
広角端より望遠端へのレンズ位置状態の変化に伴って、第 1レンズ群 GR1と第 2レ ンズ群 GR2との間の面間隔 D2、第 2レンズ群 GR2と第 3レンズ群 GR3との間の面間 隔 D9、第 3レンズ群 GR3と第 4レンズ群 GR4との間の面間隔 D16、第 4レンズ群 GR 4と第 5レンズ群 GR5との間の面間隔 D18、第 5レンズ群 GR5と第 6レンズ群 GR6と の間の面間隔 D20、第 6レンズ群 GR6とローパスフィルタ LPFとの間の面間隔 D25 が変化する。
そこで、表 2に各面間隔の広角端、広角端と望遠端との間の中間焦点距離及び望 遠端における各値を焦点距離 f、 Fナンバー Fno.及び半画角 ωと共に示す。
[表 2]
Figure imgf000014_0001
第 7面、第 10面、第 16面、第 19面及び第 20面の各レンズ面は非球面で構成され ており、非球面係数は表 3に示す通りである。なお、表 3及び以下の非球面係数を示 す表において「E—i」は 10を底とする指数表現、すなわち、「10— を表しており、例 えば、「0.12345E- 05」は「0.12345 X 10_5」を表している。
[表 3]
面 No. K A* A* A* Α»ο
7 •1.092E-01 •2.822E-05 -6.366Ε 8 6. E-11 •7.54E-13
10 O.00OE+00 -2.071E-05 •2.457Ε-08 -3.06E-10 2.03E-12
16 2.549E-01 3.840B-06 -2.542Ε-08 •2.74Ε-09 2.67Ε 11
19 O.OOOE+00 2.296E-05 -4.800Ε-07 9.29Ε-09 -1.23E-10
20 0.00OE+OO 6.366E-06 -6.296Ε-07 1.12B-08 -1.35E-10 図 2乃至図 4に上記数値実施例 1の無限遠合焦状態での諸収差図をそれぞれ示し 、図 2は広角端 (f= 14.71)、図 3は広角端と望遠端との中間焦点距離 (f =32.0597)、 図 4は望遠端 (f= 69.8725)における諸収差図を示すものである。
図 2乃至図 4の各収差図において、球面収差では縦軸は開放 F値との割合、横軸 にデフォーカスをとり、実線が d線、破線力 線、点線力 ½線での球面収差を表す。非 点収差では縦軸が像高、横軸がフォーカスで、実線がサジタル、破線力 Sメリジォナル の像面を表す。歪曲収差は縦軸が像高を表し、横軸は歪曲収差率を表す。
上述した第 1の実施例 1にあっては、後述する表 10及び表 11に示すように、条件 式 1乃至 11を満足し、また、各収差図に示すように、広角端、広角端と望遠端との中 間焦点距離及び望遠端にお!ヽて、各収差ともバランス良く補正されて 、る。
図 5は、本発明に係るズームレンズ系の第 2の実施の形態を示し、物体側より順に、 正の屈折力を有する第 1レンズ群 GR1、負の屈折力を有する第 2レンズ群 GR3、正 の屈折力を有する第 3レンズ群 GR3、負の屈折力を有する第 4レンズ群 GR4、正の 屈折力を有する第 5レンズ群 GR5、負の屈折力を有する第 6レンズ群 GR6が配列さ れてなり、第 1レンズ群 GR1は、正レンズ G1で構成される。第 2レンズ群 GR2は、物 体側に複合非球面を有する負レンズ G2と、負レンズ G3と、正レンズ G4と、負レンズ G5とで構成されている。第 3レンズ群 GR3は、両面に非球面を有する正レンズ G6と 、絞り Sと、負レンズ G7と正レンズ G8の接合レンズとで構成されている。第 4レンズ群 GR4は、負レンズ G9で構成されている。第 5レンズ群 GR5は、両面に非球面を有す る正レンズ G10で構成される。第 6レンズ群 GR6は、負レンズ G11と、負レンズ G12と 、正レンズ G13とで構成されている。
表 4に、上述した第 2の実施の形態に具体的数値を適用した第 2の実施例を示す。
[表 4] 面 No. R D Nd Vd
1 61.208 5.749 1.4970 81.608
2 453.103 variable
3 109.374 ASP 0.200 1.5361 41.207
4 71.011 1.500 1.8830 40.805
5 16.719 8.717
6 •84.775 1.300 1.8350 42.984
7 62.847 1.306
8 61.963 3.69V 1.9229 20.880
9 -82.497 2.021
10 -31.659 1.218 1.8350 42.984
11 -52.88S variable
12 19.011 ASP 4.917 1.6325 63.756
13 -53.964 ASP 4.155
絞り INFINITY 3.000
15 53.249 0.900 1.9037 31.312
16 11.333 4.643 1.6180 63.396
17 -47.031 variable
18 •567.820 1.000 1.8830 40.805
19 41.637 variable
20 82.577 ASP 2.400 1.5831 59.461
21 -42.774 ASP variable
22 -15.375 1.100 1.8350 42.984
23 .24.965 1.800
24 -14.073 1.200 1.6968 55.460
25 -27.569 0.649
26 200.000 2.804 1.9229 20.880
27 •47.868 variable
28 INFINITY 2.820 1.5168 64.198
29 INFINITY 1.000
30 INFINITY 0.500 1.5567 58.649
31 INFINITY 1.000
広角端より望遠端へのレンズ位置状態の変化に伴って、第 1レンズ群 GR1と第 2レ ンズ群 GR2との間の面間隔 D2、第 2レンズ群 GR2と第 3レンズ群 GR3との間の面間 隔 Dl l、第 3レンズ群 GR3と第 4レンズ群 GR4との間の面間隔 D17、第 4レンズ群 G R4と第 5レンズ群 GR5との間の面間隔 D19、第 5レンズ群 GR5と第 6レンズ群 GR6と の間の面間隔 D21、第 6レンズ群 GR6とローパスフィルタ LPFとの間の面間隔 D27 が変化する。そこで、表 5に上記各面間隔の広角端、広角端と望遠端との間の中間 焦点距離及び望遠端における各値を焦点距離 f、 Fナンバー Fno.及び半画角 ωと ともに示す。
[表 5]
Figure imgf000017_0001
第 3面、第 12面、第 13面、第 20面及び第 21面の各レンズ面は非球面で構成され ており、非球面係数は表 6に示す通りである。
[¾6]
Figure imgf000017_0002
図 6乃至図 8に、第 2の実施例の無限遠合焦状態での諸収差図をそれぞれ し、 図 6は広角端 (f= 14.700)、図 7は広角端と望遠端との中間焦点距離 (f =35.4023)、 図 8は望遠端 (f =85.2599)における諸収差図を示す。
図 6乃至図 8の各収差図において、球面収差では縦軸は開放 F値との割合、横軸 でフォーカスをとり、実線が d線、破線力 ^線、点線力 ½線での球面収差を表す。非点 収差では縦軸が像高、横軸がフォーカスで、実線がサジタル、破線がメリジォナルの 像面を表す。歪曲収差は縦軸が像高を表し、横軸は歪曲収差率を表す。
上述の第 2の実施例にあっては、後述する表 10及び表 11に示すように、条件式 1 乃至 11を満足し、また、各収差図に示すように、広角端、広角端と望遠端との中間焦 点距離及び望遠端にぉ 、て、各収差ともノ ランス良く補正されて ヽ
図 9は、本発明に係るズームレンズ系の第 3の実施の形態のレンズ構成を示し、物 体側より順に、正の屈折力を有する第 1レンズ群 GR1、負の屈折力を有する第 2レン ズ群 GR3、正の屈折力を有する第 3レンズ群 GR3、負の屈折力を有する第 4レンズ 群 GR4、正の屈折力を有する第 5レンズ群 GR5、負の屈折力を有する第 6レンズ群 GR6が配列されてなり、第 1レンズ群 GR1は、負レンズ G1と正レンズ G2の接合レン ズと、正レンズ G3で構成される。第 2レンズ群 Gr2は、物体側に複合非球面を有する 負レンズ G4と、負レンズ G5と、正レンズ G6と、負レンズ G7とで構成されている。第 3 レンズ群 GR3は、両面に非球面を有する正レンズ G8と、絞り Sと、負レンズ G9と正レ ンズ G10の接合レンズとで構成されている。第 4レンズ群 GR4は、負レンズ G11で構 成されている。第 5レンズ群 GR5は、両面に非球面を有する正レンズ G 12で構成され る。第 6レンズ群 GR6は、負レンズ G13と、負レンズ G14と、正レンズ G15とで構成さ れている。
表 7に、上述した第 3の実施の形態のレンズ系に具体的数値を適用した第 3の実施 例を示す。
[表 7]
面 No. R D Nd Vd
1 183.226 1.500 1.6477 33.841
2 72.384 4.000 1.6230 68.122
3 172.155 0.200
4 69.943 4.092 1.7725 49.624
5 298.241 variable
6 95.817 ASP 0.200 1.5361 41.207
7 G9.272 1.500 1.8830 40.805
8 15.456 7.474
9 -97.927 1.300 1.7725 49.624
10 40.837 0.630
11 39.617 3.186 1.9229 20.880
12 -304.336 2.793
13 -25.835 1.279 1.8350 42.984
14 -34.463 variable
15 19.823 ASP 5.000 1.6180 63.396
16 ■42.552 ASP 5.000
絞り INFINITY 1.580
18 60.961 0.900 1.9037 0.313
19 12.616 5.500 1.6180 63.396
20 ■32.237 variable
21 -323.626 1.000 1.8830 40.805
22 32.230 variable
23 64.803 ASP 3.007 1.5831 59,461
24 -30.077 ASP variable
25 15.089 1.100 1.8350 42.984
26 ■33.111 2.904
27 -13.200 1.200 1.5209 64.097
28 -23.078 0.814
29 200.000 2.785 1.9229 20.880
30 -52.191 variable
31 INFINITY 2.820 1.5168 64.198
32 INFINITY 1.000
33 INFINITY 0.500 1.5567 58.649
34 INFINITY 1.000
広角端より望遠端へのレンズ位置状態の変化に伴って、第1レンズ群 GR1と第2レ ンズ群 GR2との間の面間隔 D5、第 2レンズ群 GR2と第 3レンズ群 GR3との間の面間 隔 D14、第 3レンズ群 GR3と第 4レンズ群 GR4との間の面間隔 D20、第 4レンズ群 G R4と第 5レンズ群 GR5との間の面間隔 D22、第 5レンズ群 GR5と第 6レンズ群 GR6と の間の面間隔 D24、第 6レンズ群 GR6とローパスフィルタ LPFとの間の面間隔 D30 が変化する。そこで、表 8に上記各面間隔の広角端、広角端と望遠端との間の中間 焦点距離及び望遠端における各値を焦点距離 f、 Fナンバー Fno.及び半画角 ωと ともに示す。
[表 8]
Figure imgf000020_0001
第 6面、第 15面、第 16面、第 23面及び第 24面の各レンズ面は非球面で構成され ており、非球面係数は表 9に示す通りである。
[表 9]
Figure imgf000020_0002
図 10乃至図 12に上記数値実施例 3の無限遠合焦状態での諸収差図をそれぞれ 示し、図 10は広角端 (f= 14.700)、図 11は広角端と望遠端との中間焦点距離 (f=35 .087)、図 12は望遠端 (f =83.7453)における諸収差図を示すものである。 図 10乃至図 12の各収差図において、球面収差では縦軸は開放 F値との割合、横 軸にデフォーカスをとり、実線が d線、破線力 線、点線力 ½線での球面収差を表す。 非点収差では縦軸が像高、横軸がフォーカスで、実線がサジタル、破線がメリジォナ ルの像面を表す。歪曲収差は縦軸が像高を表し、横軸は歪曲収差率を表す。
第 3の実施例 3にあっては、後述する表 10及び表 11に示すように、条件式 1乃至 1 1を満足し、また、各収差図に示すように、広角端、広角端と望遠端との中間焦点距 離及び望遠端にぉ 、て、各収差ともノランス良く補正されて 、る。
上述の第 1実施例 1乃至第 3の実施例の条件式(1)乃至(5)対応値を表 10に、ま た、条件式 (6)乃至(11)対応値を表 11に、それぞれ示す。
[表 10] 数値実施例
式 (1) DW.U— 2) DT (1— 2)
1 1.000 43.456
2 1.000 51.460
3 1.000 47.327
式 (2) DW (2- 3) DT (2 - 3)
1 36.851 1.366
2 38.369 1.000
3 33.950 1.000
式 (3) DW (3- 4) DT (3 - 4)
1 3.937 2.544
2 2.100 1.800
3 2.621 1.800
式 (4) DW (4— 5) DT (4— 5)
1 6.037 7.430
2 8.636 8.935
3 7.380 7.580
式 (5) DW (5 - 6) DT (5 - 6)
1 4.829 15.086
2 2.800 12.179
3 2.560 9.304
[表 11] 数値実施例 1 %4 ftv l Ndg4 Vdg4 Twbf/fw 6tg6 | ¾4 DT(4-5) |
1 2.336 1.904 31.319 0.457 1.394 4.625
2 2.969 1.883 40.805 0.420 1.656 4.885
3 2.242 1.883 40.805 0.352 1.844 4.348
なお、上述の各実施の形態で示すズームレンズの各レンズ群は、入射光線を屈折 により偏向させる屈折型レンズ (つまり、異なる屈折率を有する媒質同士の界面で偏 向が行われるタイプのレンズ)のみで構成されている力 これに限らず、例えば、回折 により入射光線を偏向させる回折型レンズ、回折作用と屈折作用との組み合わせで 入射光線を偏向させる屈折,回折ハイブリッド型レンズ、入射光線を媒質内の屈折率 分布により偏向させる屈折率分布型レンズ等で各レンズ群を構成してもよい。
また、光学的なパワーを有しない面 (例えば、反射面、屈折面、回折面)を光路中に 配置することにより、ズームレンズ系の前後又は途中で光路を折り曲げるようにしても よい。折り曲げ位置は必要に応じて設定すればよぐ光路の適正な折り曲げにより、 カメラの見かけ上の薄型化を達成することが可能である。
また、本発明においては、レンズ系を構成するレンズ群のうち、 1つ又は複数のレン ズ群、あるいは 1つのレンズ群の一部を光軸にほぼ垂直な方向にシフトさせることによ り、像をシフトさせることも可能であり、カメラのブレを検出する検出系、上記レンズ群 をシフトさせる駆動系、検出系の出力に従って駆動系にシフト量を与える制御系と組 み合わせることにより、防振光学系として機能させることが可能である。
特に、本発明においては、第 3、 4、 5レンズ群の一部、あるいは全体を光軸にほぼ 垂直な方向にシフトさせることにより、少ない収差変動で像をシフトさせることが可能 である。第 3レンズ群は開口絞りの近傍に配置されるので、軸外光束が光軸付近を通 過するので、シフトさせた際に発生するコマ収差の変動が少ないからである。
図 13に、本発明に係る撮像装置の実施の形態を示す。
図 13に示す撮像装置 10は、ズームレンズ 20を備え、ズームレンズ 20によって形成 した光学像を電気信号に変換する撮像素子 30を有する。なお、撮像素子 30として は、例えば、 CCD (Charge Coupled Device)や CMOS (Complementary Metaト Oxid e Semiconductor)等の光電変換素子を使用したものが適用可能である。上記ズーム レンズ 20には本発明に係るズームレンズ系を適用することができ、図 13では、図 1に 示した第 1の実施の形態のズームレンズ 1の各レンズ群を単レンズに簡略化して示し てある。勿論、第 1の実施の形態のズームレンズ 1だけでなぐ第 2、第 3の実施の形 態のズームレンズ 2、 3を使用することができる。
上述の撮像素子 30によって生成された電気信号は、映像分離回路 40によってフ オーカス制御用の信号が制御回路 50に送られ、映像用の信号は映像処理回路へと 送られる。映像処理回路へ送られた信号は、その後の処理に適した形態に加工され て、表示装置による表示、記録媒体への記録、通信手段による転送等々種々の処理 に供される。
制御回路 50には、例えば、フォーカスリングやフォーカススィッチの操作等、外部か らの操作信号が入力され、該操作信号に応じて種々の処理が為される。例えば、フ オーカススィッチによるフォーカス指令が入力されると、指令に基づく焦点距離状態と すべぐドライバ回路 60を介して駆動部 70を動作させて、第 4レンズ群 GR4を所定の 位置へと移動させる。各センサ 80によって得られた第 4レンズ群 GR4の位置情報は 制御回路 50に入力されて、ドライバ回路 60へ指令信号を出力する際に参照される。 また、 AF時においては制御回路 50は上記映像分離回路 40から送られた信号に基 づいてフォーカス状態をチェックし、最適なフォーカス状態が得られるように、例えば 、第 4レンズ群 GR4をドライバ回路 60を介して制御する。
上記した撮像装置 10は、具体的製品としては、各種の形態を採りうる。例えば、デ ジタルスチルカメラ、デジタルビデオカメラ、カメラが組み込まれた携帯電話、カメラが 組み込まれた PDA (Personal Digital Assistant)等々のデジタル入出力機器のカメラ 部等として、広く適用することができる。
なお、上述した各実施の形態及び各実施例にお!、て示された各部の具体的形状 及び数値は、何れも本発明を実施するに際して行う具体ィ匕の一例を示したものに過 ぎず、これらによって本発明の技術的範囲が限定されるものではない。

Claims

請求の範囲 [1] 1.少なくとも、物体側より順に配列された、正の屈折力を有する第 1レンズ群 GR1と 、負の屈折力を有する第 2レンズ群 GR2と、正の屈折力を有する第 3レンズ群 GR3と 、負の屈折力を有する第 4レンズ群 GR4と、正の屈折力を有する第 5レンズ群 GR5と 、負の屈折力を有する第 6レンズ群 GR6とを含み、 上記レンズ群の間の間隔を変化させることにより変倍を行い、 無限遠撮影時の広角端における第 iレンズ群と第 jレンズ群との間の群間隔を DWG- j)、無限遠撮影時の望遠端における第 iレンズ群と第 jレンズ群との間の群間隔を DT( i-j)としたとさ、 以下の条件式 (1)、 (2)、 (3)、 (4)、 (5)を満足し、
(1) DW(l-2) < DT(l-2)
(2) DW(2-3) >DT(2-3)
(3) DW(3-4) >DT(3-4)
(4) DW(4-5) < DT(4-5)
(5) DW(5-6) < DT(5— 6)
かつ、上記第 4レンズ群 GR4が光軸方向に移動することによってフォーカシングが 行われることを特徴とするズームレンズ系。
[2] 2.上記第 4レンズ群 GR4は 1つの負レンズで構成され、第 4レンズ群 GR4の焦点距 離を fg4、全系の広角端での焦点距離を 、第 4群レンズ GR4の d線での屈折率を Nd g4、第 4レンズ GR4の d線でのアッベ数を Vdg4としたとき、以下の条件式(6)、 (7)、 ( 8)を満足することを特徴とする請求の範囲第 1項記載のズームレンズ系。
(6) 1.5 < |fg4/lw| < 3.5
(7) 1.8 < Ndg4
(8) 25 < Vdg4
[3] 3.上記第 3レンズ群 GR3と第 5レンズ群 GR5は、変倍に際し、が光軸上に沿って一 体的に移動することを特徴とする請求の範囲第 1項記載のズームレンズ系。
[4] 4.上記ズームレンズ系の広角端におけるバックフォーカス (空気換算長)を Twbfとし 、全系の広角端での焦点距離 ^としたとき、以下の条件式 (9)を満足することを特 徴とする請求の範囲第 1項記載のズームレンズ系。
(9) 0.2 < Twbf/lw < 1.2
[5] 5.上記第 6レンズ群 GR6は、少なくとも物体側力も順に配列された負の屈折力を有 する負レンズと正の屈折力を有する正レンズとを 1つずつ有し、第 6レンズ群 GR6の 望遠端における横倍率を β tg6としたとき、以下の条件式(10)を満足することを特徴 とする請求の範囲第 1項記載のズームレンズ系。
(10) 1.1〈j8 tg6く 2.0
[6] 6.上記第 5レンズ群 GR5を構成するレンズの各面のうち少なくとも 1の面は、非球面 によって構成されたことを特徴とする請求の範囲第 1項記載のズームレンズ系。
[7] 7.上記第 1レンズ群 GR1は、広角端から望遠端への変倍に際し、一度像面側に移 動した後物体側へ移動することを特徴とする請求の範囲第 1項記載のズームレンズ 系。
[8] 8.広角端から望遠端への変倍に際し、上記第 4レンズ群 GR4と第 5レンズ群 GR5と の間の間隔が広角端力も中間焦点距離までは減少し、中間焦点距離から望遠端ま では増大し、無限遠撮影時の望遠端における第 4レンズ群 GR4と第 5レンズ群 GR5 との間の間隔を DT(4-5)とし、第 4レンズ群 GR4の焦点距離を fg4としたとき、以下の 条件式(11)を満足することを特徴とする請求の範囲第 1項記載のズームレンズ系。
(11) 3< |fg4/DT(4-5) |< 6
[9] 9.複数の群力 成り群間隔を変えることにより変倍を行うズームレンズ系と、上記ズ ームレンズ系により形成された光学像を電気的な信号に変換する撮像素子とを備え た撮像装置であって、
上記ズームレンズ系は、少なくとも、物体側より順に配列された、正の屈折力を有す る第 1レンズ群 GR1と、負の屈折力を有する第 2レンズ群 GR2と、正の屈折力を有す る第 3レンズ群 GR3と、負の屈折力を有する第 4レンズ群 GR4と、正の屈折力を有す る第 5レンズ群 GR5と、負の屈折力を有する第 6レンズ群 GR6とを含み、
上記レンズ群の間の間隔を変化させることにより変倍を行い、
無限遠撮影時の広角端における第 iレンズ群と第 jレンズ群との間の群間隔を DWG- j)、無限遠撮影時の望遠端における第 iレンズ群と第 jレンズ群との間の群間隔を DT(i -j)としたとき、
以下の条件式 (1)、 (2)、 (3)、 (4)、 (5)を満足し、
(1) DW(l-2) < DT(l-2)
(2) DW(2-3) >DT(2-3)
(3) DW(3-4) >DT(3-4)
(4) DW(4-5) < DT(4-5)
(5) DW(5-6) < DT(5— 6)
かつ上記第 4レンズ群 GR4が光軸方向に移動することによってフォーカシングが行 われることを特徴とする撮像装置。
[10] 10.上記第 4レンズ群 GR4は 1つの負レンズで構成され、第 4レンズ群 GR4の焦点 距離を fg4、全系の広角端での焦点距離を 、第 4群レンズ GR4の d線での屈折率を Ndg4、第 4レンズ GR4の d線でのアッベ数を Vdg4としたとき、以下の条件式(6)、 (7) 、 (8)を満足することを特徴とする請求の範囲第 9項記載の撮像装置。
(6) 1.5 < |fg4/lw| < 3.5
(7) 1.8 < Ndg4
(8) 25 < Vdg4
[11] 11.上記第 3レンズ群 GR3と第 5レンズ群 GR5は、変倍に際し、光軸上に沿って一 体的に移動することを特徴とする請求の範囲第 9項記載の撮像装置。
[12] 12.上記ズームレンズ系の広角端におけるバックフォーカス(空気換算長)を Twbfと し、全系の広角端での焦点距離 ¾ としたとき、以下の条件式 (9)を満足することを 特徴とする請求の範囲第 9項記載の撮像装置。
(9) 0.2 < Twbf/lw < 1.2
[13] 13.上記第 6レンズ群 GR6は、少なくとも物体側力 順に配列された負の屈折力を 有する負レンズと正の屈折力を有する正レンズとを 1つずつ有し、第 6レンズ群 GR6 の望遠端における横倍率を β tg6としたとき、以下の条件式(10)を満足することを特 徴とする請求の範囲第 9項記載の撮像装置。
(10) 1.1〈j8 tg6く 2.0
[14] 14.上記第 5レンズ群 GR5を構成するレンズの各面のうち少なくとも 1の面は、非球 面によって構成されたことを特徴とする請求の範囲第 9項記載の撮像装置。
[15] 15.上記第 1レンズ群 GR1は、広角端から望遠端への変倍に際し、一度像面側に移 動した後物体側へ移動することを特徴とする請求の範囲第 9項記載の撮像装置。
[16] 16.広角端から望遠端への変倍に際し、上記第 4レンズ群 GR4と第 5レンズ群 GR5 との間の間隔が広角端から中間焦点距離までは減少し、中間焦点距離から望遠端 までは増大し、無限遠撮影時の望遠端における第 4レンズ群 GR4と第 5レンズ群 GR 5との間の間隔を DT(4-5)とし、第 4レンズ群 GR4の焦点距離を fg4としたとき、以下の 条件式 (11)を満足することを特徴とする請求の範囲第 9項記載の撮像装置。
(l l) 3< |fg4/DT(4-5) |< 6
PCT/JP2006/302662 2005-03-11 2006-02-15 ズームレンズ系及び撮像装置 WO2006095543A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602006006039T DE602006006039D1 (de) 2005-03-11 2006-02-15 Telezoomobjektiv mit sechs Linsengruppen
US11/885,365 US7535657B2 (en) 2005-03-11 2006-02-15 Zoom lens system and imaging device
EP06713803A EP1865352B1 (en) 2005-03-11 2006-02-15 Telephoto-type zoom lens having six lens groups

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-068901 2005-03-11
JP2005068901A JP4315450B2 (ja) 2005-03-11 2005-03-11 ズームレンズ系及び撮像装置

Publications (1)

Publication Number Publication Date
WO2006095543A1 true WO2006095543A1 (ja) 2006-09-14

Family

ID=36953145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302662 WO2006095543A1 (ja) 2005-03-11 2006-02-15 ズームレンズ系及び撮像装置

Country Status (9)

Country Link
US (1) US7535657B2 (ja)
EP (1) EP1865352B1 (ja)
JP (1) JP4315450B2 (ja)
KR (1) KR20070108886A (ja)
CN (1) CN100592135C (ja)
AT (1) ATE427514T1 (ja)
DE (1) DE602006006039D1 (ja)
TW (1) TW200702717A (ja)
WO (1) WO2006095543A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047607A (zh) * 2022-08-15 2022-09-13 江西晶超光学有限公司 光学系统、镜头模组和电子设备

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5115848B2 (ja) * 2008-01-30 2013-01-09 株式会社ニコン 変倍光学系及びこの変倍光学系を備えた光学機器
JP5344291B2 (ja) * 2009-02-18 2013-11-20 株式会社ニコン ズームレンズ、光学機器及びズームレンズの製造方法
JP5440760B2 (ja) * 2009-05-19 2014-03-12 株式会社ニコン 変倍光学系、この変倍光学系を有する光学機器
JP5462111B2 (ja) * 2010-08-24 2014-04-02 パナソニック株式会社 ズームレンズ系、交換レンズ装置及びカメラシステム
JP2012155223A (ja) * 2011-01-27 2012-08-16 Tamron Co Ltd 広角単焦点レンズ
CN103477266B (zh) * 2011-04-06 2016-12-28 株式会社尼康 变焦光学系统及具有其的拍摄装置
JP5919519B2 (ja) * 2012-03-14 2016-05-18 パナソニックIpマネジメント株式会社 ズームレンズ系、撮像装置及びカメラ
JP5919518B2 (ja) * 2012-03-14 2016-05-18 パナソニックIpマネジメント株式会社 ズームレンズ系、撮像装置及びカメラ
JP5933366B2 (ja) 2012-06-22 2016-06-08 株式会社タムロン ズームレンズ及びそれを備えた撮像装置
JP5973252B2 (ja) 2012-06-22 2016-08-23 株式会社タムロン ズームレンズ及びそれを備えた撮像装置
JPWO2014006653A1 (ja) * 2012-07-04 2016-06-02 パナソニックIpマネジメント株式会社 ズームレンズ系、撮像装置及びカメラ
WO2014013648A1 (ja) * 2012-07-17 2014-01-23 パナソニック株式会社 ズームレンズ系、撮像装置及びカメラ
US9261682B2 (en) 2013-02-05 2016-02-16 Olympus Corporation Zoom lens
CN104995543B (zh) * 2013-02-22 2018-01-09 松下知识产权经营株式会社 变焦镜头系统、可交换镜头装置以及相机系统
TWI476442B (zh) * 2013-02-26 2015-03-11 Sintai Optical Shenzhen Co Ltd 變焦鏡頭
KR102001220B1 (ko) 2013-03-12 2019-07-17 삼성전자주식회사 망원 줌 렌즈계 및 이를 포함한 촬영 장치
JP6308786B2 (ja) * 2013-03-13 2018-04-11 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP6173039B2 (ja) 2013-05-22 2017-08-02 株式会社タムロン ズームレンズ及び撮像装置
JP6436626B2 (ja) * 2013-12-17 2018-12-12 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JPWO2015146067A1 (ja) * 2014-03-28 2017-04-13 パナソニックIpマネジメント株式会社 ズームレンズ系、交換レンズ装置、及びカメラシステム
KR102335740B1 (ko) * 2015-03-05 2021-12-06 삼성전자주식회사 줌 렌즈 및 이를 포함한 촬영 장치
JP6604918B2 (ja) 2016-08-04 2019-11-13 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
US11269163B2 (en) 2016-11-21 2022-03-08 Nikon Corporation Zoom optical system, optical apparatus and imaging apparatus using the zoom optical system, and method for manufacturing the zoom optical system
JP6576381B2 (ja) * 2017-03-03 2019-09-18 キヤノン株式会社 ズームレンズおよびそれを有する撮像装置
JP6566991B2 (ja) 2017-05-31 2019-08-28 キヤノン株式会社 ズームレンズおよびそれを有する撮像装置
JP6980430B2 (ja) 2017-06-28 2021-12-15 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP7088196B2 (ja) * 2017-09-11 2022-06-21 株式会社ニコン 変倍光学系、光学装置、および変倍光学系の製造方法
JP7192852B2 (ja) * 2018-03-29 2022-12-20 ソニーグループ株式会社 ズームレンズおよび撮像装置
US12000997B2 (en) 2020-08-12 2024-06-04 Apple Inc. Zoom lens and imaging apparatus
US20240255742A1 (en) * 2021-06-09 2024-08-01 Nikon Corporation Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
CN113376814B (zh) * 2021-08-16 2021-11-30 江西晶超光学有限公司 光学系统、镜头模组以及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146407A (ja) 1990-10-08 1992-05-20 Minolta Camera Co Ltd 高変倍率ズームレンズ
JPH0777656A (ja) * 1993-07-14 1995-03-20 Canon Inc ズームレンズ
JPH09243912A (ja) * 1996-03-06 1997-09-19 Minolta Co Ltd ズームレンズ
JPH11174325A (ja) * 1997-12-15 1999-07-02 Canon Inc ズームレンズ
JP2001350093A (ja) 2000-04-07 2001-12-21 Minolta Co Ltd 撮像レンズ装置
JP2005068901A (ja) 2003-08-27 2005-03-17 Miwa Lock Co Ltd 角軸と操作部材の連結機構

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189557A (en) * 1990-11-20 1993-02-23 Canon Kabushiki Kaisha High variable magnification range zoom lens
JP3292510B2 (ja) 1992-07-21 2002-06-17 オリンパス光学工業株式会社 ズームレンズ
US5691851A (en) * 1993-07-14 1997-11-25 Canon Kabushiki Kaisha Zoom lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146407A (ja) 1990-10-08 1992-05-20 Minolta Camera Co Ltd 高変倍率ズームレンズ
JPH0777656A (ja) * 1993-07-14 1995-03-20 Canon Inc ズームレンズ
JPH09243912A (ja) * 1996-03-06 1997-09-19 Minolta Co Ltd ズームレンズ
JPH11174325A (ja) * 1997-12-15 1999-07-02 Canon Inc ズームレンズ
JP2001350093A (ja) 2000-04-07 2001-12-21 Minolta Co Ltd 撮像レンズ装置
JP2005068901A (ja) 2003-08-27 2005-03-17 Miwa Lock Co Ltd 角軸と操作部材の連結機構

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047607A (zh) * 2022-08-15 2022-09-13 江西晶超光学有限公司 光学系统、镜头模组和电子设备

Also Published As

Publication number Publication date
EP1865352A4 (en) 2008-07-16
US20080218875A1 (en) 2008-09-11
JP4315450B2 (ja) 2009-08-19
JP2006251462A (ja) 2006-09-21
CN100592135C (zh) 2010-02-24
DE602006006039D1 (de) 2009-05-14
TWI309309B (ja) 2009-05-01
EP1865352A1 (en) 2007-12-12
ATE427514T1 (de) 2009-04-15
US7535657B2 (en) 2009-05-19
TW200702717A (en) 2007-01-16
EP1865352B1 (en) 2009-04-01
CN101137921A (zh) 2008-03-05
KR20070108886A (ko) 2007-11-13

Similar Documents

Publication Publication Date Title
JP4315450B2 (ja) ズームレンズ系及び撮像装置
JP5530868B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP5585425B2 (ja) ズームレンズおよび撮像装置
JP2006301474A (ja) ズームレンズ及び撮像装置
JP2005215165A (ja) ズームレンズ及び撮像装置
WO2012101959A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP2007322804A (ja) ズームレンズ及び撮像装置
JPWO2006095544A1 (ja) ズームレンズ及び撮像装置
WO2006090660A1 (ja) ズームレンズ系、撮像装置及びカメラ
KR20070109840A (ko) 줌 렌즈 및 촬상장치
WO2011045913A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP4507064B2 (ja) ズームレンズ及び撮像装置
JP4496460B2 (ja) ズームレンズ及び撮像装置
JP4917922B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP4324878B2 (ja) ズームレンズ系及び撮像装置
JP2008039838A (ja) ズームレンズ系、撮像装置及びカメラ
JP2007212636A (ja) ズームレンズ系、撮像装置及びカメラ
JP2004109653A (ja) ズームレンズ及びそれを有するカメラ
JP2011085653A (ja) ズームレンズ系、撮像装置及びカメラ
JP2009229875A (ja) ズームレンズ及び撮像装置
JP4870527B2 (ja) ズームレンズ系、撮像装置及びカメラ
JPH1020194A (ja) ズームレンズ
JP4799210B2 (ja) ズームレンズ系及びそれを備えたカメラシステム
JP4913634B2 (ja) ズームレンズ系、撮像装置及びカメラ
WO2014013648A1 (ja) ズームレンズ系、撮像装置及びカメラ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680007834.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11885365

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006713803

Country of ref document: EP

Ref document number: 1020077019958

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006713803

Country of ref document: EP