WO2006064799A1 - Composite metal oxide photocatalyst exhibiting responsibility to visible light - Google Patents
Composite metal oxide photocatalyst exhibiting responsibility to visible light Download PDFInfo
- Publication number
- WO2006064799A1 WO2006064799A1 PCT/JP2005/022870 JP2005022870W WO2006064799A1 WO 2006064799 A1 WO2006064799 A1 WO 2006064799A1 JP 2005022870 W JP2005022870 W JP 2005022870W WO 2006064799 A1 WO2006064799 A1 WO 2006064799A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- photocatalyst
- metal oxide
- composite metal
- visible light
- present
- Prior art date
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 132
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 45
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 43
- 239000002131 composite material Substances 0.000 title claims abstract description 36
- 230000001747 exhibiting effect Effects 0.000 title abstract 3
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 11
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 10
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 45
- 230000001699 photocatalysis Effects 0.000 claims description 41
- 239000010419 fine particle Substances 0.000 claims description 37
- 239000000843 powder Substances 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 238000010304 firing Methods 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 22
- 239000010409 thin film Substances 0.000 claims description 22
- 229910052760 oxygen Inorganic materials 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 8
- 238000000746 purification Methods 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 229910003455 mixed metal oxide Inorganic materials 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- -1 ZnO metal oxides Chemical class 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 3
- 239000005416 organic matter Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 239000003973 paint Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 32
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 7
- 229910002915 BiVO4 Inorganic materials 0.000 abstract 1
- 238000013329 compounding Methods 0.000 abstract 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 26
- 238000001228 spectrum Methods 0.000 description 16
- 239000000126 substance Substances 0.000 description 14
- 238000000354 decomposition reaction Methods 0.000 description 13
- 238000005530 etching Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000006722 reduction reaction Methods 0.000 description 7
- 238000000985 reflectance spectrum Methods 0.000 description 7
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000006862 quantum yield reaction Methods 0.000 description 6
- 230000003373 anti-fouling effect Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000000862 absorption spectrum Methods 0.000 description 4
- 238000001720 action spectrum Methods 0.000 description 4
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 230000004298 light response Effects 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000006864 oxidative decomposition reaction Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000010525 oxidative degradation reaction Methods 0.000 description 3
- 238000007539 photo-oxidation reaction Methods 0.000 description 3
- 238000006303 photolysis reaction Methods 0.000 description 3
- 230000015843 photosynthesis, light reaction Effects 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000001877 deodorizing effect Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 231100000507 endocrine disrupting Toxicity 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G31/00—Compounds of vanadium
- C01G31/006—Compounds containing vanadium, with or without oxygen or hydrogen, and containing two or more other elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/20—Vanadium, niobium or tantalum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/20—Vanadium, niobium or tantalum
- B01J23/22—Vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/02—Preparation of oxygen
- C01B13/0203—Preparation of oxygen from inorganic compounds
- C01B13/0207—Water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G33/00—Compounds of niobium
- C01G33/006—Compounds containing niobium, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G35/00—Compounds of tantalum
- C01G35/006—Compounds containing tantalum, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
- C09D5/1606—Antifouling paints; Underwater paints characterised by the anti-fouling agent
- C09D5/1612—Non-macromolecular compounds
- C09D5/1618—Non-macromolecular compounds inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
- C09D7/62—Additives non-macromolecular inorganic modified by treatment with other compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Definitions
- the present technology relates to a photocatalyst comprising a novel compound having visible light responsiveness, and in particular, photocatalyst for water splitting capable of efficiently generating photocurrent by photooxidizing water (generating oxygen).
- the present invention relates to a photocatalyst capable of efficiently decomposing an organic substance such as a medium or methanol under visible light.
- water can be photodecomposed using photocatalysts.
- a method for producing hydrogen is known.
- Patent Document 1 It has been reported to improve the visible light response by improving the manufacturing method (Patent Document 1, Patent Document 2).
- nitrogen, carbon, sulfur, and transition elements such as chromium are added to TiO.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2004-24936
- Patent Document 2 Japanese Patent Laid-Open No. 2001-2419
- the present invention is that the activity of the visible light responsive photocatalyst in the background art is not sufficient.
- the purpose of this is a highly active photocatalyst that can exhibit its photocatalytic function efficiently even with sunlight, and its photocatalytic activity disappears even if it is in the form of a fine particle film or suspended in water. It is an object of the present invention to provide a photocatalyst that can be suitably used for photolysis of water, for example, water.
- Titanium dioxide (Ti ⁇ ) is a known photocatalyst vanadate
- the purpose is to broaden the application field for applications such as antifouling, deodorizing and antibacterial purposes indoors and in cars.
- the first aspect of the present invention is to combine two photocatalytic systems of TiO and BiVO,
- composite metal oxides containing elements of Bi, Ti, and V can be photocatalysts with high activity under visible light.
- two photocatalytic systems of TiO and BiVO have a molar ratio of 1: 9 to 9:
- a composite metal oxide containing Bi, Ti, and V elements as composition elements can be a photocatalyst having high activity under visible light.
- BiTiVO obtained with a blending ratio of 1: 1 is preferable as a photocatalyst having remarkably high activity under visible light.
- the mixing ratio of the two photocatalytic systems of VO is a force that can be freely changed.
- a molar ratio of 1: 1 is high.
- Two photocatalytic systems of TiO and BiVO can be mixed in a molar ratio of 1: 9 to 9: 1.
- the XRD pattern diagram and the XRD pattern diagram of TiO and BiTiVO of the present invention are almost the same.
- BiTiVO obtained at a mixing ratio of 1: 1 has the highest activity under visible light. It is considered as a photocatalyst.
- FTO is fluorine-doped tin oxide.
- the second aspect of the present invention is a general formula BiTiMO (wherein M is composed of V, Nb, and Ta).
- a complex metal oxide represented by (2) represents a photocatalyst having high activity under visible light.
- BiTiVO for M force SV represents a photocatalyst having high activity under visible light.
- the composite metal oxides represented by (1) represent NH VO, Nb 2 O and Ta 0
- first baking process Bake under (first baking process), then cool down and pulverize, and fire again at a higher temperature than the first baking process for a predetermined time (second baking process), and then cool gently It is produced by.
- the first firing step and the second firing step described above are performed under high humidity.
- Performing under high humidity means, for example, putting water in a reaction vessel.
- the first firing step described above is performed under a temperature condition of 550 to 750 ° C.
- the second firing step is performed under a temperature condition of 800 to 900 ° C.
- Specific production conditions will be described in the following examples, but it is more preferable that the first baking step is performed at 700 ° C. for 30 hours and the second baking step is performed at 850 ° C. for 30 hours.
- the composite metal oxide obtained by the above production method is further subjected to etching treatment in hydrochloric acid or sulfuric acid.
- etching treatment in hydrochloric acid or sulfuric acid.
- the composite metal oxide obtained by the above production method is further pulverized by a ball mill.
- the specific surface area per unit gram increases and the activity improves.
- the composite metal oxide can be a photocatalyst having high activity under visible light.
- the fourth aspect of the present invention is that the general formula BiL VO (wherein L is composed of Ca, Ni and Zn).
- a composite metal oxide represented by at least one element selected from the group described above can be a photocatalyst having high activity under visible light.
- the composite metal oxide represented by (2) represents a powder mixture of a metal oxide selected from CaO, NiO, and ZnO and BiO and TiO for a predetermined time under a predetermined temperature condition.
- first firing process then cooled and pulverized, then fired again for a predetermined time under higher temperature conditions than the first firing process (second firing process), and then gently cooled to produce It is characterized by being.
- the first firing step and the second firing step described above are performed under high humidity.
- Performing under high humidity means, for example, putting water in a reaction vessel.
- the first firing step described above is performed under a temperature condition of 550 to 750 ° C.
- the second firing step is performed under a temperature condition of 800 to 900 ° C.
- Specific production conditions will be described in the following examples, but it is more preferable that the first baking step is performed at 700 ° C. for 30 hours and the second baking step is performed at 850 ° C. for 30 hours.
- the composite metal oxide obtained by the above production method is further subjected to etching treatment in hydrochloric acid or sulfuric acid.
- etching treatment in hydrochloric acid or sulfuric acid.
- a fifth aspect of the present invention is that the composite metal oxide shown in the first to fourth aspects of the present invention can be used as a photocatalyst by using it in the form of a fine particle thin film.
- the sixth aspect of the present invention is that the composite metal oxide shown in the first to fourth aspects of the present invention can be used as a photocatalyst by using it in a suspension state.
- a seventh aspect of the present invention is to photolyze water under light irradiation including at least visible light using the photocatalyst according to any one of the first to sixth aspects of the present invention. It can be used as a method for producing oxygen and hydrogen.
- an eighth aspect of the present invention is the use of the photocatalyst according to any one of the first to sixth aspects of the present invention under the irradiation of light containing at least visible light (such as methanol). Photolysis It can be utilized as a purification method characterized by doing.
- the ninth aspect of the present invention is to provide a photocatalyst according to any one of the first to fourth aspects of the present invention by coating the surface of the substrate, thereby providing a wide variety of applications of the photocatalyst. It can be applied to the fields (antifouling self-cleaning 'antibacterial / anti-fogging field, air purification, water purification, etc.).
- a tenth aspect of the present invention provides a photocatalyst, a photosensor, and a photovoltaic cell using a visible light responsive coating material containing the photocatalyst according to any one of the first to fourth aspects of the present invention as a material. It can be used as a material, a photofouling material, a photohydrophilic material, a photobacterial material, and the like.
- the novel composite metal oxide according to the present invention has a high sensitivity to visible light, the activity is greatly improved, and a small amount of photocatalyst can be achieved in conventional applications, and it has not been possible to use due to insufficient activity until now. Since the application can be expanded to the area, the application is greatly expanded.
- the new BiTiVO particulate photocatalyst is visible to improve the utilization efficiency of sunlight.
- the photocatalyst of the present invention has both high oxidation ability and reduction ability with respect to other substances, for example, organic substance decomposition reaction, metal ion reduction reaction, or nitrogen It can also be applied to environmental purification such as oxide treatment, and has the effect of photolyzing endocrine disrupting substances present in the system to be purified, particularly the system to be purified.
- the method for producing the photocatalyst according to the present invention is not particularly limited, and can be produced by a known method such as a solid phase method, a wet method, or a gas phase method. Method Is described below.
- a novel photocatalyst BiTiVO fine particle thin film which is an embodiment of the present invention is produced by a solid phase method
- oxides of the respective metal components as raw materials are mixed at a predetermined composition ratio, and, for example, fired in the atmosphere at a firing temperature of 700 ° C. for 30 hours.
- it is cooled to room temperature, pulverized by force, and then fired again at a firing temperature of 850 ° C. for 30 hours. This makes it possible to produce the desired photocatalyst.
- the photocatalyst BiTiVO according to the present invention has high oxidation ability and reduction ability with respect to other substances.
- FIG. 1 shows a diffuse reflectance spectrum of the photocatalyst BiTiVO which is an embodiment of the present invention.
- the wavelength dependence of solar energy density (Solar Spectrum) is plotted.
- Solar Spectrum when the wavelength is 400 nm or less, ultraviolet light, 400 nm to 750 nm is visible light, and 750 awakening is infrared light region, the photocatalyst according to the present invention BiTiV O force diffuse reflection in the visible light region
- the spectrum is broad
- Titanium dioxide that responds to ultraviolet rays but does not respond to visible light
- the photocatalyst BiTiVO according to the present invention absorbs from 400 nm to 800 nm.
- FIG. 2 shows a horizontal axis obtained from the diffuse reflection spectrum of the photocatalyst BiTiVO according to the present invention.
- Figure 2 shows that the photocatalyst BiTiVO according to the present invention has a narrow band gap of 2. leV.
- the composition of the sample was identified using XPS (ESCA 2000, manufactured by Shimadzu Corporation).
- the crystal form is determined with XRD (manufactured by Philips, model: X'Pert Diffractometer), and the observation of granular morphology is performed with a scanning electron microscope (SEM) (manufactured by Hitachi, model: S-5000).
- SEM scanning electron microscope
- the diffuse reflection spectrum was measured with an ultraviolet-visible near-red spectrophotometer (manufactured by JASCO, model: V-570).
- a combination of a filter that cuts off light with a wavelength of 420 nm or less (L42 cut-off filter) and a 300W Xe lamp was used as the light source for oxygen generation.
- the light source for decomposing organic matter was measured using a combination of a filter that cuts off light with a wavelength of 420 nm or less (L42 cut-off finolator) and a 300 W Xe lamp.
- Bi O 99.99%, Wako
- TiO ST-01
- NH VO 99.0%, Wako
- the mixed reaction product is first calcined, for example, in the air at a calcining temperature of 700 ° C. for 30 hours. Then, after cooling to room temperature and finely pulverizing, the second baking is performed again at a baking temperature of 850 ° C. for 30 hours. And the target photocatalyst can be manufactured by slow cooling. The result is a dark yellow powder (powder).
- Fine particles of BiTiTaO are the above-mentioned photocatalyst
- Fig. 3 shows a diffuse reflection spectrum of the photocatalyst BiTiVO, BiTiNbO, BiTiTaO according to the present invention.
- FIG. 4 shows the photocatalysts BiTiVO, BiTiNbO, and BiTiTaO according to the present invention.
- Fig. 3 and Fig. 4 show the band gap obtained (color) and the color of the photocatalyst powder that is the product of the reaction (Original materials).
- Fig. 5 shows a known visible light responsive photocatalyst, bismuth vanadate (BiVO) and two
- FIG. 5 shows that bismuth vanadate (BiVO) is a known visible light responsive photocatalyst.
- the photocatalyst BiT iVO according to the present invention can absorb light with a wavelength up to 700 nm and has excellent visible light response.
- the photocatalyst BiTiVO according to the present invention absorbs ultraviolet light of a wavelength
- FIG. 6 is a schematic view of a photocatalytic BiTiVO powder according to the present invention, which is obtained from NalO aqueous solution by irradiation with visible light.
- the oxygen generation characteristics of the present invention are shown in comparison with the known photocatalysts BiVO and WO.
- Catalysts include BiTiVO (1-2 ⁇ ⁇ ) powder, BiVO (0.1-0.2 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ) powder, and commercially available W ⁇ (
- the photocatalyst BiTiVO powder according to the present invention is compared with the known photocatalysts BiVO and WO.
- the photocatalyst of the present invention can be used as a method for producing oxygen and / or hydrogen by photodegrading water under light irradiation including at least visible light. This will be described below while showing.
- FIG. 7 is a graph of photocurrent quantum yield (IPCE) of the photocatalytic BiTiVO fine particle thin film according to the present invention.
- the measurement conditions were a BiTiVO thin film electrode in a solution of electrolyte Na SO (0.5 M).
- a potential (0.4V, 0.5V, 1.0V, 1.2V, 1.3V) is applied to the 2 4 6 electrodes with reference to the Ag / AgCl reference electrode.
- Figure 7 shows the wavelength dependence of the photocurrent quantum yield of the BiTiVO thin film electrode.
- the photocurrent due to the oxidative decomposition of water starts at a wavelength of 500 nm, and that the oxidative decomposition of water occurs for visible light irradiation up to around 500 nm.
- FIG. 8 shows the photocatalytic BiTiVO fine particle thin film and the photocatalytic BiVO fine particle thin film according to the present invention.
- IPCE photocurrent quantum yield
- Photocatalytic BiTiVO fine particle thin film is more effective for visible light irradiation up to around 500mm
- FIG. 9 shows a surface SEM photograph of the photocatalytic BiTiVO fine particles according to the present invention.
- BiTiVO powder is a fine particle with high crystallinity and an average particle size of 1-2 / ⁇
- the photocatalyst BiTiVO particles of the present invention is 100 to 200 nm, the photocatalyst BiTiVO particles of the present invention
- the child size is as large as 1000-2000nm. Since the activity of the photocatalyst is proportional to the surface area of the particles, it is expected that the activity of the photocatalyst BiTiVO of the present invention will be further improved by further reducing the particle size.
- FIG. 10 shows the photocatalytic BiTiVO fine particles (Bi4f, Ti2p, V2p, ⁇ ls of the present invention).
- FIG. 11 shows a photocurrent one-potential curve of the photocatalytic BiTiVO fine particle thin film electrode according to the present invention.
- Fig. 12 shows the photocurrent-potential curve of the photocatalytic BiVO fine film electrode for comparison
- the photocatalytic BiTiVO fine particle thin film electrode according to the present invention As understood from FIGS. 11 and 12, the photocatalytic BiTiVO fine particle thin film electrode according to the present invention
- the photocatalyst BiTiVO fine particle thin film electrode according to the present invention is more in solution than the existing BiVO.
- the photocatalyst of the present invention has both high oxidation ability and reduction ability with respect to other substances. Therefore, for example, the decomposition reaction of organic substances and the reduction of metal ions are not limited to the decomposition reaction of water. It can also be applied to environmental purification such as reaction or treatment of nitrogen oxides, and it can photolyse endocrine disrupting substances present in the system to be purified, especially the system to be purified.
- FIG. 13 shows the photoelectric flow rate of the photocatalytic BiTiVO fine particle thin film according to the present invention.
- the action spectrum in the presence of methanol of the child yield (IPCE) is shown in comparison with the absence of methanol.
- Photocatalyst according to the present invention prepared by combining BiZn VO with water and methanol
- BiZn VO is a reaction product of Bi O (99.99%, Wako), Zn
- BiZn VO has strong absorption in the visible light region up to about 530 nm.
- IPCE photocurrent quantum yield
- Example 5 the photocatalyst BiZn VO prepared in Example 4 is taken as an example, and the activity is further increased.
- Photocatalyst BiZn VO is used as a reactant as described above.
- Bi ⁇ 99.99%, Wako
- Zn ⁇ 99.9%, Wako
- NH VO 99.0%, Wako
- a suitable amount of these powders are mixed and fired at a firing temperature of 800 ° C for 30 hours in the air.
- the resulting powder is etched in H 2 SO (0.5 M).
- the property can be further improved.
- Figure 16 shows the oxygen generation characteristics of the photocatalytic BiZn VO powder by visible light irradiation.
- a is a photocatalyst without etching in H 2 SO (0.5 M) BiZ
- n shows VO powder
- b shows etching time in H 2 SO 4 (0.5 M) for 24 hours
- the photocatalyst performed is for BiZn VO powder, c is the etch in H 2 SO (0.5 M).
- the photocatalytic BiZn VO powder was processed for 48 hours.
- the etching process is performed by placing BiZn VO powder l.Og in 50 ml of H 2 SO 4 (0.5 M).
- the test was conducted at 70 ° C for 24 hours or 48 hours. After that, the BiZn VO powder that had been cleaned and etched was annealed at 300 ° C.
- Figure 16 shows that the oxygen generation characteristics are improved by about 2.7 times in the case where the etching process is performed for 24 hours (b) compared with the case where the etching process is not performed (a), and the etching process is performed for 48 hours. (B) shows that the oxygen evolution characteristics are improved by about 3.5 times.
- Figure 17 shows an SEM photograph of the photocatalytic BiZn VO powder. Etched
- Etching is not limited to the photocatalytic BiZn VO powder, but the photocatalyst BiTi described above.
- the molar ratio of the mixture is 4: 1 and 2: 1, and the diffuse reflection spectrum and the photocurrent potential curve of the thin film electrode are shown. From these, two photocatalytic systems of TiO and BiVO
- the photocatalyst according to the present invention is excellent in visible light responsiveness, for purifying air and water, antifouling walls and glass, sterilizing hospital walls, and generating hydrogen by sunlight. Available.
- it can be used for outdoor antifouling purposes using sunlight (for example, coating, exterior materials such as building materials, sound insulation materials, vehicle side mirrors, etc.).
- visible light such as sunlight and fluorescent lamps for purposes such as antifouling, deodorizing, and antibacterial purposes indoors and cars (interior materials such as paint, porcelain, glass, and building materials, furniture, home appliances, It can be used for electric lights).
- FIG. 1 shows a diffuse reflection spectrum of the photocatalyst BiTiVO according to the present invention.
- FIG. 2 Waves on the horizontal axis obtained from the diffuse reflection spectrum of the photocatalyst BiTiVO according to the present invention.
- Fig. 2 shows an absorption spectrum obtained by changing the scale from wavelength to light energy on the horizontal axis, as determined by force.
- FIG. 6 Photocatalytic BiTiVO powder according to the present invention in comparison with photocatalyst BiVO and WO
- FIG. 8 Photocatalytic BiTiVO fine particle thin film and photocatalytic BiVO fine particle thin film electrode according to the present invention
- IPCE photocurrent quantum yield
- FIG. 9 shows a surface SEM photograph of the photocatalytic BiTiVO fine particles according to the present invention.
- Fig. 10 XPS spectra of photocatalytic BiTiVO fine particles according to the present invention (Bi4f, Ti2p, V2p,
- FIG. 15 is a graph of photocurrent quantum yield (IPCE) of the photocatalytic BiZn VO fine particle film according to the present invention.
- FIG. 16 shows the characteristics of oxygen generation by visible light irradiation of photocatalyst BiZn VO powder.
- FIG. 17 shows an SEM photograph of the photocatalytic BiZn VO powder.
- the combined diffuse reflectance spectrum is shown.
- the photocurrent potential curve of an electrode is shown.
- the combined diffuse reflectance spectrum is shown.
- the photocurrent potential curve of an electrode is shown.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Catalysts (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006548853A JPWO2006064799A1 (en) | 2004-12-13 | 2005-12-13 | Composite metal oxide photocatalyst with visible light response |
US11/792,824 US20080105535A1 (en) | 2004-12-13 | 2005-12-13 | Composite Metal Oxide Photocatalyst Exhibiting Responsibility to Visible Light |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-359355 | 2004-12-13 | ||
JP2004359355 | 2004-12-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006064799A1 true WO2006064799A1 (en) | 2006-06-22 |
Family
ID=36587854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/022870 WO2006064799A1 (en) | 2004-12-13 | 2005-12-13 | Composite metal oxide photocatalyst exhibiting responsibility to visible light |
Country Status (3)
Country | Link |
---|---|
US (1) | US20080105535A1 (en) |
JP (1) | JPWO2006064799A1 (en) |
WO (1) | WO2006064799A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007117999A (en) * | 2005-09-29 | 2007-05-17 | Sumitomo Metal Ind Ltd | Titanium oxide photocatalysts and their applications |
JP2008010593A (en) * | 2006-06-28 | 2008-01-17 | National Institute Of Advanced Industrial & Technology | Photoelectrochemical energy conversion system and photoelectrochemical water splitting system |
CN101786023B (en) * | 2010-02-12 | 2011-10-19 | 湖州师范学院 | Ultrasonic chemical in-situ preparation method for phthalocyanine-sensitized vanadate nano-powder |
JP2012532985A (en) * | 2009-07-09 | 2012-12-20 | サン−ゴバン グラス フランス | Deposition method by sputtering, product obtained and sputtering target |
JP2013523445A (en) * | 2010-04-16 | 2013-06-17 | トライバッハー インドゥストリ アクチエンゲゼルシャフト | Catalyst composition for selective catalytic reduction of exhaust gas |
CN103372424A (en) * | 2012-04-12 | 2013-10-30 | 沈阳理工大学 | Synthetic method for high-activity N-F co-doped bismuth vanadate visible light photocatalytic material |
JP2015009206A (en) * | 2013-06-28 | 2015-01-19 | 独立行政法人産業技術総合研究所 | Visible light responsive composition and photoelectrode, photocatalyst, optical sensor prepared using the same |
JP2015009208A (en) * | 2013-06-28 | 2015-01-19 | 独立行政法人産業技術総合研究所 | Visible light responsive composition and photoelectrode, photocatalyst, optical sensor prepared using the same |
JP2015009207A (en) * | 2013-06-28 | 2015-01-19 | 独立行政法人産業技術総合研究所 | Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same |
CN104437461A (en) * | 2014-12-28 | 2015-03-25 | 桂林理工大学 | Visible light-responsive photocatalyst Li3Bi5O9 and its preparation method |
JP2015112501A (en) * | 2013-12-06 | 2015-06-22 | 株式会社 グリーンケミー | Visible light-responsive catalyst body and water decomposition method utilizing the same |
CN106076314A (en) * | 2016-06-20 | 2016-11-09 | 宁波工程学院 | A BiVO4 fully mesoporous nanobelt high-efficiency photocatalyst and its preparation method and application |
CN106111115A (en) * | 2016-06-20 | 2016-11-16 | 宁波工程学院 | A kind of BiVO4 nanobelt high-efficiency photocatalyst and its preparation method and application |
CN109126810A (en) * | 2018-08-15 | 2019-01-04 | 四川省有色冶金研究院有限公司 | A kind of zeolite-loaded Bi1-xRxVO4-Fe3O4Magnetic nanometer photocatalyst and preparation method thereof |
CN110354840A (en) * | 2019-08-02 | 2019-10-22 | 重庆大学 | It is a kind of to prepare β-Bi2O3/BiVO4The new method of composite photocatalyst material |
CN110368926A (en) * | 2019-07-04 | 2019-10-25 | 肇庆市华师大光电产业研究院 | A kind of preparation method of double Bi defect photochemical catalysts |
CN111203247A (en) * | 2020-02-24 | 2020-05-29 | 青岛旭晟东阳新材料有限公司 | Red phosphorus-based semiconductor antibacterial photocatalyst and preparation method thereof |
CN114345320A (en) * | 2021-11-19 | 2022-04-15 | 绍兴道普新材料科技有限公司 | Hydrogenated BiXOnMaterial, preparation method and application thereof |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4792739B2 (en) * | 2004-12-13 | 2011-10-12 | 三菱瓦斯化学株式会社 | Tooth bleaching material and tooth bleaching method |
DE102009044926A1 (en) * | 2009-09-23 | 2011-03-31 | Schott Ag | Photocatalyst device, useful for photocatalytic decomposition of organic substances, comprises a light-guiding element and a photocatalytic substance (comprising e.g. nitrogen-doped titanium dioxide) arranged on the light-guiding element |
CN102580721B (en) * | 2011-12-19 | 2014-07-02 | 陕西科技大学 | Method for Preparation of TiO2/BiVO4 Composite Photocatalyst by Microwave Hydrothermal |
CN103157498B (en) * | 2013-03-29 | 2015-04-08 | 黑龙江大学 | Synthesis Method of Phosphoric Acid Bridging Composite TiO2-BiVO4 Nano Photocatalyst |
CN103480384B (en) * | 2013-09-18 | 2015-07-29 | 重庆大学 | A kind of preparation method of composite bismuth vanadium photocatalyst of strontium ferrite load |
CN104016515B (en) * | 2014-06-13 | 2016-04-27 | 滨州学院 | The method of Treatment by Photocatalysis Oxidation dyeing waste water |
CN104148049A (en) * | 2014-06-30 | 2014-11-19 | 复旦大学 | Preparation method for carbon-based Bi/Ti composite photocatalyst |
CN104399504B (en) * | 2014-11-04 | 2016-05-11 | 陕西科技大学 | Fluorine, nitrogen co-doped bismuth phosphate-tin oxide composite photo-catalyst and preparation method thereof |
CN104399505B (en) * | 2014-11-04 | 2016-04-20 | 陕西科技大学 | Fluorine, nitrogen co-doped bismuth phosphate-cuprous oxide catalysis material and preparation method thereof |
CN104475137B (en) * | 2014-11-04 | 2016-05-25 | 陕西科技大学 | In-situ doping type bismuth phosphate-cuprous oxide composite photo-catalyst and preparation method thereof |
CN104645965B (en) | 2015-03-18 | 2017-10-27 | 重庆文理学院 | One kind is used for light-catalysed bismuth titanium oxide nano-material and preparation method |
CN105032394A (en) * | 2015-07-23 | 2015-11-11 | 河南科技大学 | Pucherite visible-light-driven photocatalyst, preparing method and application |
CN105457621B (en) * | 2015-11-24 | 2017-11-03 | 李跃军 | The preparation method of the rear-earth-doped vanadate composite nano fiber catalysis material of heterojunction type titanium dioxide |
CN106887336A (en) * | 2017-03-21 | 2017-06-23 | 天津城建大学 | TiO2/BiVO4The preparation method of nano-array optoelectronic pole |
CN108855193B (en) * | 2018-07-23 | 2021-04-13 | 辽宁大学 | TaN/BiVO4Heterojunction composite material and preparation method and application thereof |
WO2020073298A1 (en) * | 2018-10-11 | 2020-04-16 | 南通纺织丝绸产业技术研究院 | Niobium and vanadium-doped titanium tantalate-based photocatalyst, preparation method therefor and use thereof |
CN111099557B (en) * | 2018-10-25 | 2023-02-21 | 中国科学院金属研究所 | Method for constructing integrated photocatalytic decomposition water system by utilizing liquid metal current collector |
CN111097404B (en) * | 2018-10-26 | 2023-01-13 | 中国科学院金属研究所 | BiVO (BiVO) selectively etched by crystal face in alkali solution 4 Method (2) |
CN109331848A (en) * | 2018-11-15 | 2019-02-15 | 河海大学 | Preparation method of visible light-responsive Fe3O4 quantum dots modified BiOCl/BiVO4 |
CN115845832B (en) * | 2022-11-24 | 2024-05-07 | 百色学院 | Preparation method and application of ZnO/BiVO4 heterojunction composite derived from ZIF-8 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04214035A (en) * | 1990-01-25 | 1992-08-05 | Ciba Geigy Ag | Monoorthorhombic crystalline modified pigment of bismuth vanadate |
JPH07326222A (en) * | 1994-04-08 | 1995-12-12 | Ube Ind Ltd | Dielectric porcelain composition |
JP2001048647A (en) * | 1999-08-16 | 2001-02-20 | Murata Mfg Co Ltd | Manufacturing method of piezoelectric ceramics |
JP2004014950A (en) * | 2002-06-10 | 2004-01-15 | Nippon Tungsten Co Ltd | Ceramics material having ptc characteristic |
-
2005
- 2005-12-13 US US11/792,824 patent/US20080105535A1/en not_active Abandoned
- 2005-12-13 JP JP2006548853A patent/JPWO2006064799A1/en active Pending
- 2005-12-13 WO PCT/JP2005/022870 patent/WO2006064799A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04214035A (en) * | 1990-01-25 | 1992-08-05 | Ciba Geigy Ag | Monoorthorhombic crystalline modified pigment of bismuth vanadate |
JPH07326222A (en) * | 1994-04-08 | 1995-12-12 | Ube Ind Ltd | Dielectric porcelain composition |
JP2001048647A (en) * | 1999-08-16 | 2001-02-20 | Murata Mfg Co Ltd | Manufacturing method of piezoelectric ceramics |
JP2004014950A (en) * | 2002-06-10 | 2004-01-15 | Nippon Tungsten Co Ltd | Ceramics material having ptc characteristic |
Non-Patent Citations (6)
Title |
---|
BOSACKA M. ET AL: "Phase relations in the system ZnO-BiVO4: the synthesis and properties of BiZn2VO6", THERMOCHIMICA ACTA, vol. 428, no. 1-2, April 2005 (2005-04-01), pages 51 - 55, XP004787025 * |
CHO H.S. ET AL: "Behavior of oxygen concentration cells using BiMeVOx(Me=Cu, Ti, Sb) compounds", CHEMICAL SENSORS, vol. 20, no. B, 11 July 2004 (2004-07-11), pages 250 - 251, XP002995597 * |
KATO K. ET AL: "Die Kristallstruktur von Wismuttitanoniobat BiTiNbO6", ACTA CRYSTALLOGRAPHICA, vol. B34, no. PART 8, 1978, pages 2393 - 2397, XP002995595 * |
KUDO A. ET AL: "H2 or O2 Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi3+ with 6s2 Configuration and d0 Transition Metal Ions", CHEMISTRY LETTERS, no. 10, 1999, pages 1103 - 1104, XP002995596 * |
MAESTRELLI S.C. ET AL: "Densification and Electrical Properties of BIMEVOX Family Compounds", KEY ENGINEERING MATERIALS, vol. 189-191, 2001, pages 144 - 148, XP002995599 * |
RADOSAVLJEVIC I.: "Synthesis and Structure of BiCa2VO6", JOURNAL OF SOLID STATE CHEMISTRY, vol. 137, 1998, pages 143 - 147, XP002995598 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007117999A (en) * | 2005-09-29 | 2007-05-17 | Sumitomo Metal Ind Ltd | Titanium oxide photocatalysts and their applications |
JP2008010593A (en) * | 2006-06-28 | 2008-01-17 | National Institute Of Advanced Industrial & Technology | Photoelectrochemical energy conversion system and photoelectrochemical water splitting system |
JP2012532985A (en) * | 2009-07-09 | 2012-12-20 | サン−ゴバン グラス フランス | Deposition method by sputtering, product obtained and sputtering target |
CN101786023B (en) * | 2010-02-12 | 2011-10-19 | 湖州师范学院 | Ultrasonic chemical in-situ preparation method for phthalocyanine-sensitized vanadate nano-powder |
JP2013523445A (en) * | 2010-04-16 | 2013-06-17 | トライバッハー インドゥストリ アクチエンゲゼルシャフト | Catalyst composition for selective catalytic reduction of exhaust gas |
CN103372424A (en) * | 2012-04-12 | 2013-10-30 | 沈阳理工大学 | Synthetic method for high-activity N-F co-doped bismuth vanadate visible light photocatalytic material |
JP2015009206A (en) * | 2013-06-28 | 2015-01-19 | 独立行政法人産業技術総合研究所 | Visible light responsive composition and photoelectrode, photocatalyst, optical sensor prepared using the same |
JP2015009208A (en) * | 2013-06-28 | 2015-01-19 | 独立行政法人産業技術総合研究所 | Visible light responsive composition and photoelectrode, photocatalyst, optical sensor prepared using the same |
JP2015009207A (en) * | 2013-06-28 | 2015-01-19 | 独立行政法人産業技術総合研究所 | Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same |
JP2015112501A (en) * | 2013-12-06 | 2015-06-22 | 株式会社 グリーンケミー | Visible light-responsive catalyst body and water decomposition method utilizing the same |
CN104437461A (en) * | 2014-12-28 | 2015-03-25 | 桂林理工大学 | Visible light-responsive photocatalyst Li3Bi5O9 and its preparation method |
CN106076314A (en) * | 2016-06-20 | 2016-11-09 | 宁波工程学院 | A BiVO4 fully mesoporous nanobelt high-efficiency photocatalyst and its preparation method and application |
CN106111115A (en) * | 2016-06-20 | 2016-11-16 | 宁波工程学院 | A kind of BiVO4 nanobelt high-efficiency photocatalyst and its preparation method and application |
CN109126810A (en) * | 2018-08-15 | 2019-01-04 | 四川省有色冶金研究院有限公司 | A kind of zeolite-loaded Bi1-xRxVO4-Fe3O4Magnetic nanometer photocatalyst and preparation method thereof |
CN110368926A (en) * | 2019-07-04 | 2019-10-25 | 肇庆市华师大光电产业研究院 | A kind of preparation method of double Bi defect photochemical catalysts |
CN110368926B (en) * | 2019-07-04 | 2022-04-05 | 肇庆市华师大光电产业研究院 | Preparation method of double-Bi defect photocatalyst |
CN110354840A (en) * | 2019-08-02 | 2019-10-22 | 重庆大学 | It is a kind of to prepare β-Bi2O3/BiVO4The new method of composite photocatalyst material |
CN110354840B (en) * | 2019-08-02 | 2021-06-29 | 重庆大学 | A method for preparing β-Bi2O3/BiVO4 composite photocatalytic material |
CN111203247A (en) * | 2020-02-24 | 2020-05-29 | 青岛旭晟东阳新材料有限公司 | Red phosphorus-based semiconductor antibacterial photocatalyst and preparation method thereof |
CN114345320A (en) * | 2021-11-19 | 2022-04-15 | 绍兴道普新材料科技有限公司 | Hydrogenated BiXOnMaterial, preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
US20080105535A1 (en) | 2008-05-08 |
JPWO2006064799A1 (en) | 2008-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006064799A1 (en) | Composite metal oxide photocatalyst exhibiting responsibility to visible light | |
Zaleska | Doped-TiO2: a review | |
Dahl et al. | Composite titanium dioxide nanomaterials | |
JP6342225B2 (en) | Photocatalyst composite material and method for producing the same | |
Pérez-González et al. | Optical, structural, and morphological properties of photocatalytic TiO2–ZnO thin films synthesized by the sol–gel process | |
JP4353978B2 (en) | Method for producing titanium oxide photocatalyst | |
US20120322648A1 (en) | Visible light sensitive photocatalyst, method of producing the same, and electrochemical water decomposition cell, water decomposition system, and organic material decomposition system each including the same | |
Jang et al. | A composite photocatalyst of CdS nanoparticles deposited on TiO2 nanosheets | |
WO2010030098A2 (en) | Method for the manufacture of uniform anatase titanium dioxide nanoparticles | |
Harun-Ur-Rashid et al. | Hybrid nanocomposite fabrication of nanocatalyst with enhanced and stable photocatalytic activity | |
KR20110093108A (en) | Method for preparing hybrid photocatalyst surface treatment agent and hybrid photocatalyst produced thereby | |
Tai et al. | Nano-photocatalyst in photocatalytic oxidation processes | |
JP4997627B2 (en) | Visible light responsive photocatalyst | |
TWI272250B (en) | Visible light-activated photocatalyst and method for producing the same | |
KR101109991B1 (en) | Visible light active nanohybrid photocatalyst and manufacuring method thereof | |
CN101716501B (en) | Zinc titanate micro-nano photocatalysis material and preparation method thereof | |
JP2008230950A (en) | N- and / or S-doped tubular titanium oxide particles and method for producing the same | |
KR101855747B1 (en) | Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom | |
JP4351936B2 (en) | Method for producing titanium oxide photocatalyst | |
JP4386788B2 (en) | Method for producing titanium oxide photocatalyst | |
KR101400633B1 (en) | Visible ray reaction type Zirconium TiO2/SiO2 photocatalyst and preparation method thereof | |
JP3933640B2 (en) | photocatalyst | |
KR102562523B1 (en) | Complex Photocatalyst for Decomposition of Pollutants and Manufacturing Method thereof | |
JP2008179528A (en) | Manufacture method of titanium oxide | |
KR101242576B1 (en) | Photocatalyst having a tin oxide with metal ion and titanium dioxide composite structure and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 11792824 Country of ref document: US Ref document number: 2006548853 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05816718 Country of ref document: EP Kind code of ref document: A1 |
|
WWP | Wipo information: published in national office |
Ref document number: 11792824 Country of ref document: US |